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S U M M A R Y
Random velocity fluctuations distributed in the solid Earth function as sources of seismic wave
scattering. Scattering effects are often observed in high-frequency seismograms of earthquakes
as the broadening of the apparent duration of an S-wavelet and the emergence of coda waves.
We conduct large-scale 3-D finite difference (FD) simulations of the scalar wave equation
to analyse the intensities of scattered waves propagating through random small-scale hetero-
geneous media. First, we compare ensemble averaged intensities (mean square amplitudes)
derived by the FD simulation with those synthesized based on statistical methods such as the
radiative transfer equation with the Born approximation and the newly developed spectrum di-
vision methods. We consider several types of random media characterized by von Kármán type
autocorrelation functions with different characteristic distances and mean square fractional
fluctuations. In the case of a large characteristic distance, the forward scattering is dominant
and the fluctuation of the traveltime is large. Even in that case, the newly developed spectrum
division method can reproduce the average intensity derived by FD simulations in the entire
lapse time range. We further investigate the characteristics of scattered waves. To know the
property of the fluctuation of intensities due to the small-scale heterogeneity is important for
the ground motion prediction. We reveal the gradual shift of intensity fluctuations from the
log-normal distribution to the exponential one with the increase of lapse time. The timing of
the shift varies depending on the random medium parameters. This can be explained as the
shift from the multiple forward scattering regime to the incoherent wide-angle scattering one.
The decay rate of the intensity changes from r−2 to r−4 with the increase of the propagation
distance r, which corresponds to the empirical relationship of the observed intensity. This
timing of the change also depends on the random medium parameters.
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1 I N T RO D U C T I O N

Coda waves have been analysed as scattered waves by random
small-scale heterogeneities distributed in the solid Earth since the
pioneering work of Aki & Chouet (1975). Coda waves are thought
as incoherent scattered waves and the spatial distribution of their
intensity at a late lapse time becomes almost uniform and isotropic.
Those characteristics have been used as the bases of coda analyses.
We show an observational example of the spatial distribution of the
energy in Fig. 1. The coda energy level decreases as lapse time in-
creases and its distribution becomes nearly flat around the epicentre
at a large lapse time.

The other characteristic of the coda is that it consists of scattered
waves with random phases. Takahara & Yomogida (1992) showed
that the root mean square (RMS) envelope of the coda obeys the
Rayleigh distribution. Nakahara & Carcole (2010) considered the

Nakagami distribution to model the amplitude fluctuation of coda
and they found that it could be modelled by the Rayleigh distribution
as a special case of the Nakagami distribution. This characteristic
can be explained by considering coda as a Gaussian noise which
has random phases. When the amplitude obeys the Rayleigh distri-
bution, the intensity obeys the exponential distribution. Conversely,
intensities just after the direct arrival obey the log-normal distri-
bution (Rytov et al. 1989; Yoshimoto et al. 2015). This can be
explained as the result of multiple forward scattering. When the
amplitude obeys the log-normal distribution, the squared amplitude
also obeys the log-normal distribution. Therefore, the fluctuations
of the intensity shift from the log-normal distribution to the ex-
ponential one. The timing and the medium parameter dependence
have not been investigated yet. To know the property of the fluc-
tuation is important to deepen the understanding of the basics of
scattered wavefields. This is also important for the prediction of
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Figure 1. The left panel shows snapshots of observed energy density at the frequency band of 2–4 Hz at lapse times of 20, 40 and 80 s. Red and grey circles
represent that the signal to noise ratio is higher and lower than 5, respectively. The right panel shows the epicentre of the earthquake (date: 2011 November 21,
magnitude: 5.2, depth: 12 km) by a black star and Hi-net stations (Okada et al. 2004; Obara et al. 2005) by squares. The energy density is calculated as the sum
of squared velocity seismograms of three components.

the strong ground motion to estimate the possible error range due
to the small-scale heterogeneity. The amplitudes of observed seis-
mograms are affected not only by the small-scale heterogeneity but
also by other factors, such as the site amplification factor, the source
size, the radiation pattern of the source and the intrinsic attenuation.
Therefore, to investigate the effect of the small-scale heterogeneity
on the amplitude fluctuation, the role of the numerical simulation is
important.

In order to investigate the characteristics of wave propagation in
random small-scale heterogeneous media, there have been develop-
ments of theoretical approaches to describe the averaged intensity of
waves. In the theoretical approach, an ensemble of random media is
considered. Random media are statistically characterized by the au-
tocorrelation function (ACF) of random velocity fluctuation, which
is parametrized by a characteristic distance (a), an RMS fractional
velocity fluctuation (ε) and a roll-off parameter of the spectrum
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Figure 2. Ricker wavelets at r = 25 km for fc = 1.5 Hz (red) and fc = 3.0 Hz
in a homogeneous medium with V0 = 4 km s−1. Left and right axes indicate
the amplitude for fc = 1.5 Hz and fc = 3.0 Hz, respectively.

decay (κ) at large wavenumbers. Following theoretical methods
have been widely known: the radiative transfer equation (RTE) with
the Born approximation (e.g. Chandrasekhar 1960; Chernov 1960;
Margerin 2005), the diffusion approximation (e.g. Ishimaru 1978)
and the Markov approximation based on the parabolic approxima-
tion, which is a stochastic extension of the phase screen method (e.g.
Shishov 1974; Rytov et al. 1989; Sato 1989). We note that those
methods have been applied to observed data. For example, Przybilla
et al. (2009) and Silva et al. (2018) stacked observed seismograms
to obtain the averaged envelopes and estimated the intrinsic and the
scattering attenuations by applying the RTE for elastic waves. Be-
cause each approximation has both advantages and disadvantages,
we need to properly choose a method depending on the purpose and
the situation. Also, it is necessary to validate the approximation by
comparing with the numerical simulation.

Recently, Sato (2016, referred to as Paper I in the following)
proposed a new method to solve the intensity propagation through
von Kármán type random media. Dividing the power spectrum den-
sity function (PSDF) of random media into short- and long-scale
components, Paper I applies the Markov approximation for the long-
scale components and estimated the scattering loss by applying the
Born approximation to the short-scale component. This method an-
alytically solves the intensity, especially around the peak arrival.
We refer to this method as the spectrum division method I in the
following. However, this method is not able to synthesize the inten-
sity in the late coda. By extending the method proposed by Paper
I, Sato & Emoto (2017, referred to as Paper II in the following)
have developed a new method to solve especially when akc � 1
and ε2a2k2

c � O(1). They apply the Markov approximation and the
RTE with the Born approximation for the long- and the short-scale
components, respectively. It is a new idea that they convolved the
intensity calculated by the RTE for the short-scale component with
the broadening effects as scattering contribution of the long-scale
component in the time domain (hereafter referred to as the spectrum
division method II).

To verify the reliability of proposed theoretical methods, we need
to compare synthesized intensities by those methods with numeri-
cal simulations of the wave propagation in random heterogeneous
media. Numerical simulations of the wave propagation in random
small-scale heterogeneous media have been conducted since the
1980s (e.g. Frankel & Clayton 1986; Jannaud et al. 1991; Ikelle
et al. 1993; Shapiro & Keib 1993). Recently, the numerical sim-
ulation of the wave propagation in 3-D random media has been
conducted to analyse the effect of the scattering on the ground mo-
tion (Imperatori & Mai 2013) and the sensitivity of the medium
change (Obermann et al. 2016). However, the computational costs

of the 3-D numerical simulation are high. Especially, the simulation
of coda waves requires a large model space because any boundary
condition affects the coda waves. So the validity of the theoretical
methods in 2-D random media has been often analysed. In 2-D ran-
dom media, the comparison of intensities derived by the Markov
approximation with the finite difference (FD) simulation of the wave
equation has been conducted (e.g. Fehler et al. 2000; Saito et al.
2003; Korn & Sato 2005; Emoto et al. 2012). Sato & Fehler (2016)
successfully showed a good fit of the spectrum division method I
and FD simulations for von Kármán type random media except for
the coda part. In the 3-D random media, Przybilla & Korn (2008)
compared the FD simulation with the Markov approximation and
the RTE at short propagation distances. They concluded that the
RTE can be used to model the intensity even when akc � 1 by con-
volving the wandering term which means statistical fluctuation of
traveltimes. We note that Paper II also successfully showed a good
fit of averaged intensities of the spectrum division method II and
FD simulations for a large size of random media, where the model
space is a long and narrow rectangular parallelepiped for the study
of intensity variation with travel distance increases. However, the
comparison of late coda has not been conducted yet.

In this paper, we conduct FD simulations of scalar waves in 3-
D random media of exponential type ACFs (κ = 0.5). First, we
compare averaged intensities derived by the FD simulation and
those synthesized by using the proposed theoretical methods to
check their validities. Different from Paper II, the model space is a
large cube for the study of coda intensity variation with the increase
of lapse time. In addition to these data, we reanalyse the same
data as used in Paper II. Next, we investigate the characteristics of
intensities of scattered waves, such as the lapse time dependence
of the distribution of intensities and the attenuation rate per travel
distance due to the small-scale heterogeneities.

2 M E T H O D

2.1 Wave equation in random media

The scalar wave u is governed by the wave equation in a 3-D inho-
mogeneous medium:

∇2u(x, t) − 1

V (x)2
ü(x, t) = f (x, t), (1)

where x = (x, y, z) and f is the source term. We consider that the
medium velocity is fluctuated as V (x) = V0 (1 + ξ (x)), ξ is a ran-
dom variable. Here, we imagine an ensemble of the random fluc-
tuation {ξ} with ξ=0, where 〈 〉 denotes the ensemble average. We
assume that the fluctuation is weak, ε2 ≡ ξ 2 � 1. The ensemble
averaged velocity V0 = 〈V (x)〉 is chosen to be 4 km s−1. When the
random fluctuation is a von Kármán type, the PSDF is written as

PvK(m) = 8π
3
2 �

(
κ + 3

2

)
ε2a3

�(κ)(1 + a2m2)κ+ 3
2

, (2)

where m is the wavenumber of the fluctuation.
We put a special focus on von Kármán type random media with

κ = 0.5, which is an exponential type. The ACF and the PSDF are
written as

Rexp(r ) = ε2e− r
a , (3a)

and

Pexp(m) = 8πε2a3

(1 + a2m2)2
. (3b)
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Table 1. List of statistical medium parameters. In all cases, V0 = 4 km s−1. tT is the transport mean free time, which is calculated from P. Cases 5–7 are the
same as analysed in Paper II.

Case fc (Hz) kc (km−1) a (km) ε κ akc ε2a2kc
2 tT (s) Description

1 1.5 2.4 1 0.05 0.5 2.4 1.39× 10−2 45.7 Weak forward scattering
2 1.5 2.4 5 0.01 0.5 12 1.39× 10−2 2.35× 103 Forward but weak scattering
3 1.5 2.4 5 0.05 0.5 12 3.47× 10−1 93.9 Forward scattering
4 1.5 2.4 10 0.05 0.5 24 1.39 149 Strong forward scattering
5 3.0 4.7 5 0.05 0.1 24 1.39 59.6 Rich small-scale component
6 3.0 4.7 5 0.05 0.5 24 1.39 74.6 –
7 3.0 4.7 5 0.05 1.0 24 1.39 164 Poor small-scale component
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Figure 3. (a) PSDFs and (b) scattering coefficients gB(kc, ψ) by the Born approximation for cases 1–4. Red, green, blue and yellow colours indicate cases 1–4,
respectively. (c) and (d) are the same as (a) and (b) but for cases 5–7. Red, blue and green colours indicate cases 5–7, respectively. The vertical dashed lines in
(a) and (c) indicate kc=2.4 km−1 for 1.5 Hz and kc=4.7 km−1 for 3.0 Hz, respectively.

We focus on the propagation of a Ricker wavelet with the central
frequencies fc=1.5 and 3.0 Hz, whose centre-wavenumbers are kc =
2.4 km−1 and 4.7 km−1, respectively (see Fig. 2). We consider four
cases of random medium parameters for fc = 1.5 Hz and three cases
for fc = 3.0 Hz as enumerated in Table 1. The latter three cases are
the same as those studied in Paper II. The PSDFs for all the cases
are shown in Figs 3(a) and (c). Cases 2 and 3 have the same corner
wavenumber at a−1=0.2 km−1, but the DC levels are different. For
case 1, the corner wavenumber is larger than other cases, but the DC
level is the smallest. The case 4 has the smallest corner wavenumber.
Cases 5–7 have the same corner wavenumber but different roll-off
at high wavenumber range. For case 5, the DC level of the PSDF
is small, but it has rich high-wavenumber components. Conversely,
the high-wavenumber components are small for case 7. For case
6, the PSDF is the same as case 3, but the centre-wavenumber is
4.7 km−1. In cases 5 and 7, we put κ = 0.1 and 1.0, respectively.

The scattering power per unit volume is characterized by the
scattering coefficient. In Figs 3(b) and (d), we show the angular
dependence of the scattering coefficient according to the Born ap-
proximation,

gB(kc, ψ) = k4
c

π
P(2kc sin

ψ

2
) (4)

(see Paper II, eq. 9). For all the cases, scattering coefficients have
a peak at 0◦. It means that the forward scattering is dominant. The
forward scattering becomes stronger with increasing akc. In case 1,
forward scattering is relatively small and wide-angle scattering is
relatively large compared to other cases. In the Born approximation,
the condition of ε2a2k2

c � 1 is required (see Paper II). This means
that the phase shift during the scattering process should be small. For
cases 4–7, ε2a2k2

c =1.39, so the Born approximation breaks down.
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Figure 4. (a) Setting of a source and receivers in the model space for FD simulations for cases 1–4. Coloured spheres indicate receivers, where different
colours indicate different distances from the source (black sphere). At each distance, receivers located at the vertices of a regular dodecahedron. (b) Magnified
view of receivers at a propagation distance of 25 km.

2.2 Finite difference simulation

In practice, a random medium is realized (synthesized) by using
the fast Fourier transform (FFT). The random variable ξ (x) is the
inverse Fourier transform of the square root of the PSDF multiplied
by random phases. For large-scale computation, it is difficult to syn-
thesize a random medium due to the physical memory limitation. To
overcome this limitation, we merge small random media generated
by using different seeds and create a large random medium. Each
small medium overlaps with adjacent media. The overlap length is
set to be the characteristic distance and the fluctuation is weighted by
a cosine taper function. The details of making a large-scale random
medium are described in Supporting Information Section S1. We
use the FFTE package to perform the 3-D FFT, which supports the
Message Passing Interface (MPI) parallel computation Takahashi
(2010).

We numerically solve the scalar wave equation by using the FD
method. The model space for cases from 1 to 4 is a cube of 3073 km3

(see Fig. 4). A source placed at the centre of the model space
isotropically radiates a Ricker wavelet with fc=1.5 Hz. The centre
wavelength for the average velocity is 2.7 km. We smoothly remove
the random fluctuation around the source by using a cosine taper
function to avoid the fluctuation of the source radiation energy. We
adopt the second- and fourth-order central difference schemes for
time and space, respectively. The time step is 6 ms and the space
interval is 80 m. The number of grid points is 38403. There are
enough grid points per wavelength to avoid the effect of the grid
dispersion. We set receivers at propagation distances of 25, 50,
75 and 100 km. Receivers are spherically distributed as vertices of
a regular dodecahedron. Therefore, there are 20 receivers at each
propagation distance. We assume that these receivers are statisti-
cally independent of each other. We conduct FD simulations for 18
realizations of random media, therefore there are 360 traces at each
propagation distance as the elements of the ensemble. We show
the example of traces in Supporting Information Section S2 and
describe the convergence of the ensemble average in Supporting In-
formation Section S3. We adopt the MPI parallel computation (e.g.
Furumura & Chen 2004) and the computation is conducted on the

Earth Simulator, a supercomputer managed by Japan Agency for
Marine-Earth Science and Technology (JAMSTEC). It takes about
45 min for each simulation by using 128 nodes. We define the wave
intensity of each wave time trace (hereafter called FD intensity) by
using the Hilbert transform as

I (x, t) = 1

2

{
u(x, t)2 + H [u(x, t)] 2

}
, (5)

where H indicates the Hilbert transform. The mean intensity, mean
square (MS) amplitude, is calculated by averaging intensities of 360
traces (hereafter called averaged FD intensity).

The detail of the setting of the FD simulation for cases 5–7 is
described in Paper II (see fig. 7), where the number of realizations
of random media is 6 and there are nine receivers at each travel
distance.

2.3 Monte Carlo simulation for the RTE with the Born
scattering coefficient

We synthesize the intensity of a scalar wavelet by using the Monte
Carlo simulation of the RTE, where the scattering coefficient is cal-
culated by using the Born approximation (see eq. 4). The Monte
Carlo simulation stochastically calculates the scattering of parti-
cles, where each particle carries a unit intensity (e.g. Gusev &
Abubakirov 1987; Hoshiba 1991; Yoshimoto 2000; Przybilla &
Korn 2008; Sens-Schönfelder et al. 2009). The scattering proba-
bility is calculated from the scattering coefficient. We isotropically
shoot particles and calculate the propagation trajectory of each par-
ticle with a small time step. The time step is 0.01 s, which should
be much smaller than the mean free time. The total propagation
time is 70 s. At each time step, we count the number of particles
in a spherical shell with a thickness of 1 km. Dividing the counted
number by the volume of the spherical shell and the total number
of particles, we obtain the intensity at a given travel distance, which
is the intensity Green function, GR. The total number of shot par-
ticles is 107 to stabilize intensity time traces. The calculation code
is written in Java. It takes about 10–20 min for each calculation by
using six threads of Intel Core i7-3770K. Convolution of GR with
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Figure 5. Snapshots of the spatial distribution of the intensity at lapse times of 10 s (blue), 20 s (red) and 40 s (green) for four cases. (a)–(d) correspond to
cases 1–4, respectively. For case 2 (b), the intensity at 40 s is below the lower limit of the plot. We set 600 receivers on the x-, y-, and z-axes with an interval of
1 km and stack 6 traces to calculate the intensity at each distance.

the intensity of a Ricker source wavelet s(t) gives the intensity time
trace IR = GR⊗s, where ⊗ denotes the convolution. In addition,
we need to correct the traveltime fluctuation, when we compare the
intensity derived by the RTE with that by the FD simulation as pro-
posed by Przybilla & Korn (2008). The statistical contribution of
traveltime fluctuations is called the wandering effect Lee & Jokipii
(1975); Sato (2006); Sato & Emoto (2017). For the exponential type
random media, the wandering term at a propagation distance r is

w(r, t) = 1√
π tW(r )

e
− t2

tW(r )2 , (6a)

where tW is the characteristic time of the wandering effect, defined
as

tW(r ) = 2

V0

√
ε2ar , (6b)

(see Paper II, eqs 11 and 13). We note that
∫ ∞

−∞ w(r, t)dt = 1.
Convolving the wandering term with the intensity derived by the
Monte Carlo simulation, we can obtain the intensity involving the
traveltime fluctuation as Iw, R = IR⊗w.

2.4 Spectrum division method I

When akc � 1, the forward scattering is dominant and the variation
of the wave along the source-receiver path is slow. In this case, the
Markov approximation based on the parabolic approximation can
be used to calculate the intensity around the peak arrival (Sato et al.
2012,Chap. 9). In the Markov approximation, we need to solve the

parabolic type wave equation for the two frequency mutual coher-
ence function (TFMCF). The intensity time trace can be obtained by
taking the inverse Fourier transform of the TFMCF at a given travel
distance. Paper I proposed to divide the PSDF into two parts: long-
and short-scale components. To define the PSDF of the short-scale
component, we let the corner wavenumber as

a−1
S = ζkc, (7)

where ζ is a tuning parameter. The RMS fractional fluctuation for
the short-scale component is

εS =
(aS

a

)κ

ε (8)

(see Paper II, eq. 16). By replacing a and ε in eq. (3b) with aS

and εS and taking the same κ , we can calculate the PSDF for the
short-scale component PS. The PSDF for the long-scale component
is calculated by PL(m) = P(m) − PS(m). Paper I applied the Markov
approximation to the long-scale component to analytically estimate
the intensity time trace, and the Born approximation to the short-
scale component to estimate the scattering loss as e−gS0V0t , where
gS0 is the total scattering coefficient for PS. The intensity is written
as

ILa(r, t) = wL(r, t) ⊗ bL(r, t) ⊗ Gg(r, t)e−gS0V0t ⊗ s(t), (9)

where Gg = 1
4πr2V0

δ(t − V0t
r ) is the Green function in a uniform

medium, wL and bL are the wandering and the broadening terms
derived by using the Markov approximation for PL (see Paper II,
eqs 23 and 26). We call this approximation the spectrum division
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Figure 7. Variance reductions in per cent between intensities derived by theoretical methods and averaged FD intensities for all cases. Blue, green, red
and yellow lines indicate intensities derived by the RTE with the Born approximation (IR), the spectrum division method I (ILa), the RTE with the Born
approximation including the wandering effect (Iw, R) and the spectrum division method II (IL, S), respectively. Note that the scale of vertical axes of cases 1–4
are different from those of cases 5–7.
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method I. In this case, the applicable range of the Born approxi-
mation is ε2

Sa2
Sk2

c � 1, which is a weak constraint compared to the
original constraint of the Born approximation for P. For the ap-
plicability of the Markov approximation for PL, the characteristic
time (tM) of the broadening should be much shorter than half of the
traveltime,

tM(kc, ζ, r ) � 1

2

r

V0
, (10)

where tM = ε2r2

2V0a ln(ζakc) (see Paper II, eqs 24, 25).
This method is a good approximation especially around the peak

arrival since it is based on the forward scattering approximation.
Sato & Fehler (2016, figs 5–7) show that syntheses of the spectrum
division method I well fit those of FD simulations in 2-D random
media. But, synthesized coda intensity is always underestimated
since the scattering contribution of the short-scale component is
introduced as the scattering loss effect only. The appropriate range
of ζ for the spectrum division method I is reported as between 0.5
and 1.0 by comparing with FD simulations Sato & Fehler (2016);
Tomiyama et al. (2017).

2.5 Spectrum division method II

Recently, Paper II proposed a method to take into account the wide-
angle scattering due to the short-scale component not only for the
coda intensity but also for the intensity just after the direct arrival.
Using the scattering coefficient of the Born approximation to the
short-scale component PS, Paper II solved the RTE for the synthesis
of the intensity Green function GR, S. They proposed to convolve
the scattering contribution of the long-scale component wL and bL

with GR, S in the time domain to obtain the intensity:

IL,S(r, t) = wL(r, t) ⊗ bL(r, t) ⊗ GR,S(r, t) ⊗ s(r, t), (11)

(see Paper II, eq. 29). We call this method the spectrum division
method II, which reflects well-balanced scattering contributions of
long- and short-scale components. Synthesized wavelet intensities
well explain those of FD simulations from the onset via the peak
until early coda (see Paper II, fig. 6). In the spectrum division method
II, the parameter ζ is chosen to satisfy ε2

Sa2
Sk2

c = 0.1.

3 R E S U LT S

3.1 Spatio-temporal distribution of FD intensities

We show snapshots of the spatial distribution of FD intensities
at lapse times of 10, 20 and 40 s for cases 1–4 in Fig. 5. The
intensity front propagates by the velocity of 4 km s−1, and the peak
locates a little inside of the front in each distribution. The intensity
rapidly emerges at the wave front and gradually decreases towards
the source. The spatial distribution of the intensity is nearly flat in the
vicinity of the source and the flat region spreads with the lapse time
increasing. For case 1 (Fig. 5a), the peak intensity is the smallest and
the intensity level around the source is the largest in the four cases.
This is because the wide-angle scattering generates the strong coda
due to rich short-scale components of the velocity fluctuation (see
Fig. 1b). Since we do not take into account the intrinsic absorption in
the FD simulation, the volume integral of scattered-wave intensities
is conserved. For case 2 (Fig. 5b), the peak intensity is the largest
and the coda intensity is the smallest due to the strong forward but
weak wide-angle scattering (see Fig. 1b). The intensity at a lapse
time of 40 s is below the lowest bound of the plot range.

3.2 Comparison of FD simulations with various statistical
methods

The averaged FD intensity at each receiver for cases 1–4 is shown
in Fig. 6. Coda intensities at different distances converge to a com-
mon decay curve especially for case 1, which means the uniform
distribution of coda intensity. The envelope broadening effect is
stronger for cases 3 and 4 due to the strong forward scattering. We
also plot intensities based on the theoretical models: the RTE with
the Born approximation (IR, blue line), IR with the wandering term
(Iw, R, red line), the spectrum division method I (ILa, greed dotted
line) and the spectrum division method II for cases 3 and 4 (IL, S,
orange line). In the spectrum division method I, we set ζ = 0.75
Sato & Fehler (2016); Tomiyama et al. (2017). For cases 3 and 4,
we apply the spectrum division method II, because the Born ap-
proximation for the original PSDF (P) is inappropriate for the case
of ε2a2k2

c � O(1). In the spectrum division method II, in order to
satisfy the Born approximation condition ε2

Sa2
Sk2

c = 0.1 for PS, we
set ζ = 0.13 and 0.10 for cases 3 and 4, respectively. These ζ values
are smaller than that used in the spectrum division method I because
coda waves are generated by wide-angle scattering in the spectrum
division method II. In the spectrum division method I, the (early)
coda is generated by scattering into the forward space, therefore ζ

which controls the scattering contribution of PL becomes large. To
make the quantitative comparison between the FD and theoretical
intensities, we calculate the variance reduction as

Variance reduction (r ) [%]

= 100 ×
(

1 −
∫ T

0 (IFD(r, t) − Ith(r, t))2 dt∫ T
0 I 2

FD(r, t)dt

)
, (12)

where IFD is the FD intensity, Ith is the intensity derived by using
the theoretical method and the upper limit of the integral T is set
as 45 s for cases 1–4. For cases 5–7, T is set as 17, 22, 30 and 35 s
at the propagation distances of 25, 50, 75 and 100 km, respectively.
We show the variance reduction for all cases in Fig. 7. Intensity
of the ILa (green dotted line in Fig. 6) well models the averaged
FD intensity from the onset to the (very) early coda through the
peak at each travel distance for cases 2–4. For case 1, the variance
reduction between ILa and IFD decreases with increasing propagation
distance. The intensity of ILa is mainly produced by the Markov
approximation. According to the comparison of intensities of the
Markov approximation and those of the FD simulation, the condition
of akc > (5–8) is required Przybilla & Korn (2008); Emoto et al.
(2010); however, akc = 2.4 for case 1. Note that ILa underestimates
the coda intensities because the wide-angle scattering is neglected.
Intensities of the RTE with the Born approximation Iw, R (red line)
and those of the spectrum division method II IL, S (orange line) can
reproduce averaged FD intensities (black line) for the entire lapse
time range.

We show the comparison of the averaged FD intensities with the-
oretical models for cases 5–7 in Fig. 8. For case 5, the wandering
effect is small, because the long-scale component of the fluctuation
is relatively small. We can recognize the shift of the peak arrival
time between the averaged FD intensities (black line) and ILa (green
dotted line) and their variance reduction is small for case 5 (see
Fig. 7). Because of rich small-scale components, the Markov ap-
proximation may not be appropriate. For cases 6 and 7, ILa can well
model the averaged FD intensities around the peak. Iw, R (red line)
and IL, S (orange line) agree well with averaged FD intensities (black
line) from the onset until coda for cases 5–7. At a small propaga-
tion distance for case 7, Iw, R and IR underestimate the coda level
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of FD intensity. This may be because of insufficient number of the
particles in the Monte Carlo simulation. The variance reductions
for cases 5–7 are smaller than those for cases 1–4 (see Fig. 7).

3.3 Distribution of intensities

In our FD simulation for cases 1–4, we have 360 realizations of
traces at each propagation distance. We investigate the characteris-
tics of the waveform ensemble. We show an example of the distri-
bution of intensities at a propagation distance of 75 km for case 3
in Fig. 9. Intensities scatter over more than two orders of magnitude
as shown in log-scale plots. At the time T1 just after the peak ar-
rival (see the intensity trace Fig. 9a), the intensity histogram looks
symmetric with respect to the mean value in the log-scale plot (see
Fig. 9b). Conversely, at the time T2 in the coda, the intensity his-
togram shows a long tail to the lower side (see Fig. 9c). We divide
the range between the maximum and the minimum of the intensi-
ties into 20 bins in log-scale to make a histogram. We calculate the
reduced chi-square values by assuming the log-normal and expo-
nential distributions. The probability of the log-normal distribution
is written as

fLN(x)dx = 1√
2πσ x

e− (ln x−μ)2

2σ2 dx, (13a)

and that of the exponential distribution is written as

fExp(x)dx = λe−λx dx, (13b)

where x is the intensity. The parameters σ , μ and λ control the
shape of each distribution. The reduced chi-square is defined as

χ̃ 2 = 1

d

N∑
k=1

(Ok − Ek)2

Ek
, (14)

where N is the number of bins, Ok is the number of samples within
the kth bin obtained by the FD simulation and Ek is the expected
value of the kth bin by assuming the log-normal or the exponential
distributions. The variable d is the number of degrees of freedom.
For the log-normal distribution d = N − 3, because there are three
constraints, the total number of elements of the ensemble (total
number of traces), the mean and the variance of the ensemble.
For the exponential distribution d = N − 2, because there is only
one control parameter λ and the mean and the variance are depen-
dent. When there is a bin with no sample, we merge neighbouring
bins. Therefore N ≤ 20. We calculate χ̃ 2 in log-scale, because the
exponential distribution has a sharp peak at x = 0, therefore the
histogram cannot well resolve the distribution around x = 0. We
show the reduced chi-square values and expected distributions at
the lapse times of T1 and T2 in Figs 9(b) and (c), respectively. We
calculate the parameter λ of the exponential distribution by using
the mean value or the variance of intensities, separately. We adopt
λ which leads to a smaller χ̃ . When χ̃ 2 ≤ O(1), the assumed distri-
bution well explains the ensemble of the FD intensity. At the lapse
time of T1, the log-normal distribution is better than the exponential
one. Conversely, at the lapse time of T2, the exponential distribution
well models the simulation result.

The lapse time dependence of χ̃ 2 is shown in Fig. 10. We apply
the Hanning window smoothing for 20 times, almost equivalent to
the Parzen window, to stabilize the variation of χ̃ 2. We also plot
averaged FD intensities in Fig. 10. For all the cases, χ̃ 2

LN < χ̃ 2
Exp

at the beginning of the intensity trace. Conversely, χ̃ 2
LN > χ̃ 2

Exp at
the coda. The distribution gradually changes from the log-normal
distribution to the exponential one. The timings of the shift from the

log-normal distribution to the exponential one for cases 3 and 4 are
later than those for cases 1 and 2. The strong forward scattering leads
the log-normal distribution. At the late coda, scattered waves are
random so the distribution of intensities becomes the exponential
one. The timing of the shift of the distribution is much earlier than
the transport mean free time shown in Table 1.

4 D I S C U S S I O N

4.1 Attenuation of the peak intensity

In the conventional seismological attenuation measurements, the
peak intensity of an individual seismogram is read irrespective of
the delay time from the onset for the determination of earthquake
magnitude. For example, Tsuboi (1954) proposed the decay of the
maximum intensity against distance as r−3.46 for the magnitude
determination in Japan. The peak value of the intensity of each sta-
tistical model (Iw, R, IL, S, IR and IL, S without the wandering term
shown by solid and dashed lines) well approximates that of the av-
eraged FD intensity (black triangle) for all the cases from 1–7 as
shown in Fig. 11. However, it is not clear the relationship between
the peak value of the averaged FD intensity (black triangle) and
the average of individual FD intensity peak values (white triangle).
When scattering is very weak as in case 2, the intensity decay curve
is well described by the geometrical spreading r−2 since scattering
loss is small. When the forward scattering is weak as in case 1, the
averaged FD intensity (black triangle) well approximates the aver-
age of individual FD intensity peak values (white triangle) since the
broadening effect is weak. The decay rate is a little stronger than
r−2. In other cases, the peak delay time of individual FD intensity
(white dots) fluctuates caused by the broadening factor; therefore,
the decay rate of the average of individual FD intensity peak values
(white triangle) is larger than the geometrical spreading but weaker
than the decay rate r−4 of the averaged FD intensity (black triangle),
which is given by the geometrical spreading factor and the broaden-
ing factor. These simulation results can be a possible explanation of
the power-law decay of the maximum intensity of a seismic wavelet
with the increase of the travel distance.

4.2 Lapse time dependence of the intensity distribution

By using real observed data, Takahara & Yomogida (1992) and
Nakahara & Carcole (2010) showed that the fluctuation of the coda
amplitudes obeys the Rayleigh distribution. First, they estimated the
averaged decay rate of the coda amplitude based on the maximum-
likelihood method. Then, they analysed the fluctuation of coda am-
plitudes around the estimated decay rate. They analysed late coda
part of the seismograms of which the time window starts from 1.5
or 2 times the traveltime of the direct S-wave. On the other hand,
Yoshimoto et al. (2015) investigated the fluctuation of the peak
amplitude of observed data. The observed peak amplitudes are af-
fected not only by the random small-scale heterogeneities but also
by other factors. They removed the effects of source size and the
site amplification based on the coda normalization method. Also,
they suppressed the effect of the radiation pattern by selecting the
stations located in the large radiation pattern coefficient directions
calculated by using the centroid moment tensor solution. After that,
they succeeded in modelling the observed level of the fluctuation
by the theoretical model and showed that the fluctuation of peak
amplitude obeys the log-normal distribution. The advantage of the
FD simulation is that we can continuously analyse the lapse time
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change of the distribution of the amplitude fluctuation from the
onset to the coda.

When the intensity obeys the exponential distribution, the wave-
field u satisfies the normal distribution whose average is 0. This
means that scattered waves have random phases and incoherent to
each other. According to our result, the intensity obeys the expo-
nential distribution in the lapse time range of coda. Conversely,
when the complex phase can be written as a summation of phases
along the path due to the forward scattering, the intensity obeys the
log-normal distribution. Therefore, the intensity around the peak
satisfies the log-normal distribution for strong forward scattering
cases as 3 and 4. With the increase of the lapse time from the onset,
the contribution of wide-angle scattering increases. So the distribu-
tion of intensities gradually shifts from the log-normal distribution
to the exponential one. In our result, this shift is not abrupt but grad-
ual. We need to consider other distributions to explain the gradual
change of the distribution (e.g. Blanc-Benon & Juvé 1993). This
theoretical consideration of the distribution will be left for future
work.

5 C O N C LU S I O N

For the study of the propagation characteristics of scaler wavelet in
3-D random media, we have synthesized the intensity, the MS ampli-
tude, based on several stochastic methods, and then compared them
with the averaged intensity calculated by FD simulations. We have
examined the RTE with the Born approximation, and the spectrum
division methods I and II, each of which is a balanced combination
of the Markov and Born approximations. In the first four cases,

random media are characterized by exponential ACFs and the tar-
get frequency is 1.5 Hz, and the average velocity is 4 km s−1. The
model space is a cube of 3073 km3 and the lapse time range is 50 s.
The other three cases are the same as Paper II, where random media
are characterized by von Kármán type ACFs with κ = 0.1, 0.5, and
1.0 and the target frequency is 3.0 Hz. First, we have statistically
synthesized intensities in space and time domains and compared the
general characteristics such as the coda excitation and the envelope
broadening for the first four cases. The RTE with the Born ap-
proximation overestimates the peak intensities of the FD simulation
for strong forward scattering cases. However, when the wandering
term is convolved, the RTE with the Born approximation adequately
models the averaged FD intensities for the entire lapse time, even in
the case when the Born approximation breaks down. The spectrum
division method I well models the averaged FD intensity from the
onset to the early coda through its peak value except for the weak
forward scattering case because of the breakdown of the parabolic
approximation used in the Markov approximation. The spectrum
division method II can reproduce the averaged FD intensities for
the entire lapse time with enough precision even for the strong for-
ward scattering cases: akc = 24 and ε2a2kc

2 = 1.39. The decay
rate of the peak intensity is controlled by the broadening effect due
to the long-scale component of the medium heterogeneity. It shifts
from r−2 to r−4 with the increase of the propagation distance. This
power-law decay rate is consistent with the empirical method for
the magnitude determination. By investigating the distribution of
intensities of FD simulation, we found that the distribution changes
from the log-normal distribution near around the onset to the expo-
nential one in the coda range. This change can be considered as the
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shift from the dominance of forward scattered waves to incoherent
scattered waves with random phases in wide angles.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.
Figure S1. Example of the mergence of two random fluctuations
in the x-direction, ξ 1 and ξ 2. The upper figure shows the weighting
function w1 (red) and w2 (green) of ξ 1 and ξ 2, respectively. The
lower figure shows the original ξ 1 (red), ξ 2 (green) and merged
fluctuation (grey). The random fluctuation is characterized by the
2-D exponential type ACF with a = 5 km and ε = 0.05.
Figure S2. Comparison of the (a) single large, (b) repeated and (c)
merged random media. Single large random medium is calculated
by using the 2-D FFT with the size of 4096 × 8192. After the FFT,
we cut the medium into the size of 2822 × 5519 to compare the
merged random medium in the same size. The repeated random
medium is created by repeating a small random medium calculated
by using the 2-D FFT with the size of 1024 × 1024 by 3 × 6 times.
The merged random medium is created by merged 3 × 6 small
random media whose size is 1024 × 1024. In the merged random

medium, all small random media have different random seeds. Red
squares in (b) and (c) indicate the size of the small random medium.
Figure S3. Comparison of 1-D PSDFs (a–c) and 1-D ACFs (d–
f) of the single large random medium (a and d), repeated ran-
dom medium (b and e) and merged random medium (c and f).
The ACF is calculated along the y-direction at every grid point
on the x-direction and the PSDF is the FFT of the ACF. Red and
green lines indicate the averaged and theoretical ACF and PSDF,
respectively. Black lines are the ACFs and PSDFs at different x
positions.
Figure S4. Example of traces for cases 1 (a) and 4 (b) at a dis-
tance of 75 km. We randomly selected 10 traces from the ensem-
ble. The vertical black line in (a) and (b) indicates the average
traveltime. (c) Density plot of intensity for case 1 at a distance
of 75 km. Solid white line represents the averaged FD intensity.
Colour indicates the frequency of intensities. (d) Same as (c) but for
case 4.
Figure S5. Required number of realizations whose average becomes
±10% of the ensemble average for cases 1 to 4. We plot the aver-
age value of the number of 100 trials by randomly sampling the
realization.
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the content or functionality of any supporting materials sup-
plied by the authors. Any queries (other than missing mate-
rial) should be directed to the corresponding author for the
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