

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/106599

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/106599
mailto:wrap@warwick.ac.uk

An ontology-based approach for

integrating engineering workflows for

industrial assembly automation

systems

Mussawar Ahmad

Thesis submitted to the University of Warwick in partial fulfilment for the degree of

Doctor of Philosophy

August 2017

i

Abstract

Modern manufacturing organisations face a number of external challenges as the customer-

base is more varied, more knowledgeable, and has a broader range of requirements. This

has given rise to paradigms such as mass customisation and product personalisation.

Internally, businesses must manage multidisciplinary teams that must work together to

achieve a common goal despite spanning multiple domains, organisations, and due to

improved communication technologies, countries.

The motivation for this research is to therefore understand firstly how the multiplicity of

stakeholders come together to realise the ever increasing and ever more complex number

of product variants that manufacturing systems must now realise. The lack of integration

of engineering tools and methods is identified to be one of the barriers to smooth

engineering workflows and thus one of the key challenges faced in the current dynamic

market.

To address this problem, this research builds upon previous works that propose domain

ontologies for representing knowledge in a way that is both machine and human readable,

facilitating interoperability between engineering software. In addition to this, the research

develops a novel Skill model that brings the domain ontologies into a practical,

implementable framework that complements existing industrial workflows. The focus of

this thesis is the domain of industrial assembly automation systems due to the role this stage

of manufacturing plays in realising product variety. Therefore, the proposed ontological

models and framework are applied to product assembly scenarios.

The key contributions of this work are the consolidation of domain ontologies with a Skill

model within the context of assembly systems engineering, development of a broader

framework for the ontologies to sit within that complements existing workflows. In

addition, the research demonstrates how the framework can be applied to connect assembly

process planning activities with machine control logic to identify and rectify

inconsistencies as new products are introduced.

In summary, the thesis identifies the shortcomings of existing ontological models within

the context of manufacturing, develops new models to address those shortcoming, and

develops new, useful ways for ontological models to be used to address industrial problems

by integrating them with virtual engineering tools.

ii

List of Publications

Over the course of the PhD research project the author has published a number of works,

with some still in progress.

First Author

 Ahmad, M., Zhang, J., Ahmad, B., Harrison, R., “Connecting assembly process

planning with machine control software using virtual engineering tools and semantic

web technologies”, Submitted to the Journal of Robotics and Computer Integrated

Manufacturing (July 2017)

 Ahmad, M., Ferrer, B. R., Ahmad, B., Vera, D., Martinez Lastra, J. L., Harrison, R.,

“Knowledge-Based PPR Modelling for Assembly Automation”, Submitted to the CIRP

Journal of Manufacturing Science and Technology (accepted – January 2018)

 Ahmad, M., Ferrer, B. R., Ahmad, B., Martinez Lastra, J. L., Harrison, R., (2017),

“Ensuring the consistency between assembly process planning and machine control

software”, Proceedings of the 15th International Conference on Industrial Informatics

(INDIN 2017), 24-26th July 2017, Emden, Germany

 Ahmad, M., Harrison, R., Meredith, J., Bindel, A., Todd, B., (2017), “Validation of a

fuel cell compression spring equivalent model using polarisation data”, International

Journal of Hydrogen Energy

 Ahmad, M., Ahmad, B., Harrison, R., Alkan, B., Vera, D., Meredith, J., Bindel, A.,

(2016), “A framework for automatically realizing assembly sequence changes in a

virtual manufacturing environment” Proceedings of the 26th CIRP Design conference,

15-17th June 2016, Stockholm, Sweden

 Ahmad, M., Ahmad, B., Alkan, B., Vera, D., Harrison, R., Meredith, J., Bindel, A.,

(2016), “Hydrogen fuel cell pick and place assembly systems: Heuristic evaluation of

reconfigurability and suitability”, Proceedings of the 49th CIRP Conference on

Manufacturing Systems (CIRP-CMS 2016), 25-27th May 2016, Stuttgart, Germany

 Ahmad, M., Alkan, B., Ahmad, B., Vera, D., Harrison, R., Meredith, J., Bindel, A.,

(2016), “The use of a complexity model to facilitate in the selection of a fuel cell

assembly sequence”, Proceedings of the 6th CIRP Conference on Assembly

Technologies and Systems (CATS), 16-18th May 2016, Gothenburg, Sweden. BEST

PAPER AWARD

 Ahmad, M., Harrison, R., Ferrer, B. R., Martinez Lastra, J. L., Meredith, J., Bindel,

A., (2015), “A knowledge-based approach for the selection of assembly equipment

iii

based on fuel cell component characteristics”, Proceedings of the 41st annual

conference of the IEEE Industrial Electronics Society (IES) (IECON), 9-12th

November 2015, Yokohama, Japan

 Ahmad, M., Harrison, R., Meredith, J., Bindel, A., Todd, B., (2015), “Analysis of the

compression characteristics of a PEM stack, development of an equivalent spring

model and recommendations for compression process improvements”, Proceedings of

the 6th International Renewable Energy Congress (IREC), 24-26th March 2015, Sousse,

Tunisia

Co-Author

 Alkan, B., Ahmad, M., Vera, D., Harrison, R., “Complexity in manufacturing systems

and its measures: A literature review”, Submitted to the European Journal of Industrial

Engineering (accepted – November 2017)

 Alkan, B., Ahmad, M., Vera, D., Harrison, R., “Heuristic design evaluation of

reconfigurable manufacturing systems based on time independent complexity

criteria”, Submitted to Journal of Engineering Design (July 2017)

 Ferrer, B. R., Mohammed, W. M., Martinez Lastra, J. L., Ahmad, M., Zhang, J.,

Harrison, R., Iarovyi, S., “Comparing Ontologies and Databases: a critical review for

lifecycle engineering models in manufacturing” – in progress

 Afolaranmi, S. O., Ferrer, B. R., Mohammed, W. M., Martinez Lastra, J. L., Ahmad,

M., Harrison, R., “Providing an Access Control layer to Web-Based Applications for

the industrial domain; FASTory simulator case” Proceedings of the 15th International

Conference on Industrial Informatics (INDIN 2017), 24-26th July 2017, Emden,

Germany

 Konstantinov, S., Ahmad, M., Ananthanarayan, K., Harrison, R., (2017)“The Cyber-

Physical e-machine Manufacturing System: Virtual Engineering for Complete

Lifecycle Support” Proceedings of the 50th CIRP Conference on Manufacturing

Systems (CIRP-CMS), 3-5th May 2017, Taichung City, Taiwan. BEST PAPER

AWARD

 Chinnathai, M. K., Gunther, T., Ahmad, M., Stocker, C., Richter, L., Schreiner, D.,

Vera, D., Reinhart, G., Harrison, R., (2017) “An application of physical flexibility and

software reconfigurability for the automation of battery module assembly”

Proceedings of the 50th CIRP Conference on Manufacturing Systems (CIRP-CMS), 3-

5th May 2017, Taichung City, Taiwan.

iv

 Alkan, B., Vera, D., Ahmad, M., Ahmad, B., Harrison, R., (2016) “Design evaluation

of automated manufacturing processes based on complexity of control logic”

Proceedings of the 26th CIRP Design conference, 15-17th June 2016, Stockholm,

Sweden

 Alkan, B., Vera, D., Ahmad, M., Ahmad, B., Harrison, R., (2016) “A model for

complexity assessment in manual assembly operations through predetermined motion

time systems”, Proceedings of the 6th CIRP Conference on Assembly Technologies

and Systems (CATS), 16-18th May 2016, Gothenburg, Sweden

 Alkan, B., Vera, D., Ahmad, M., Ahmad, B., Harrison, R., (2016) “A lightweight

approach for human factor assessment in virtual assembly designs: an evaluation

model for postural risk and metabolic workload”, Proceedings of the 6th CIRP

Conference on Assembly Technologies and Systems (CATS), 16-18th May 2016,

Gothenburg, Sweden

Conference Presentations (slideshows)

 “Connecting Assembly Process Planning with Machine Control Software”, WMG

Doctoral Research and Innovation Conference, University of Warwick, 28th June 2017

 “Automating Automation – Machine Sequence Changes Using Ontologies”, Research

Student Skills Programme (RSSP) Poster competition, University of Warwick, 2016

 “A PEM fuel cell ontology to facilitate assembly line generation using a semantic

approach: A proof of concept”, Fuel Cell and Hydrogen Technical Conference 2015

& WMG Doctoral Research and Innovation Conference, 30th June 2015. BEST

PAPER AWARD

 “Fuel Cell Pick and Place Assembly System Complexity”, Midlands Energy

Consortium (MEC) Student Conference, 17th Dec 2015

 “Finding an optimal fuel cell assembly sequence”, Hydrogen and Fuel Cell Research

Conference, Bath, 2015

 “Developing a PEM fuel cell master assembly sequence”, Future Powertrains

Conference (FPC), 2015 - Poster

 “Benchmarking the fuel cell compression process for the Horizon Closed Cathode Fuel

Cell Stack using Fuji Prescale pressure sensitive films”, Hydrogen and Fuel Cell

Research Conference, 15-17th Dec, 2014.

v

Acknowledgements

There are a number of individuals I would like to thank for their support and contributions

without whom this work would not have come to fruition.

Firstly, I would like to thank my main supervisor, Robert Harrison, who is a true role model

for integrity and humility. He believed in me and my work when I did not and his door was

always open. I am both honoured and grateful to have had the opportunity to have worked

with him and look forward to continuing to do so. I would also like to thank Bilal Ahmad

for his supervision and support, as well as my external supervisors James Meredith and

Axel Bindel. I must also extend my sincerest thanks to the High Speed Sustainable Institute

(HSSMI) and the Engineering and Physical Sciences Research Council (EPSRC) for

funding my research work through the Knowledge Driven Configurable Manufacturing

(KDCM) project as well as the associated iCASE studentship.

All of my colleagues at the Automation Systems Group at the University of Warwick have

been a source of inspiration, in particular Daniel Vera, Karthik Ananthanaryan, and Bugra

Alkan, all who have provided invaluable friendship and advice. In addition, I must thank

my friend Manal Assaad has been instrumental in providing support and motivation as I

have worked through the thesis correction process.

I must also extend my thanks to my good friend and colleague at the FAST lab at the

Technical University of Tampere, Borja Ramis Ferrer. Without his support and

contribution, I would not have been able to do this work. In addition, I am grateful for the

technical support provided by my colleague Jiayi Zhang when my programming skills

failed me.

A big thanks also goes to colleagues at the various companies that I have interacted with

over the course of my research who have made their facilities and knowledge open and

available to me, in particular Ben Todd and Jermu Pulli at Arcola Energy, Daniel Bolton at

Horizon Instruments, and Tim Nixon at Contron.

I wish to express my sincerest gratitude to my parents who have been incredibly patient,

supportive, and accommodating through this journey. The English vocabulary is

insufficiently expressive to describe how grateful I am to you both for everything.

Finally and most importantly, I thank God. He has given me opportunities I could never

have dreamed of and bequeathed me with the capability to experience the world.

However, fleeting it may be, it is certainly exciting to exist.

vi

Contents

Abstract .. i

List of Publications ... ii

Acknowledgements ... v

Contents ... vi

Table of Figures ... xi

Table of Tables ... xv

Abbreviations and Acronyms .. xvi

1 Introduction ... 1

 Problem Background .. 1

1.1.1 Industrial Challenges... 1

1.1.2 Scientific Challenges... 4

1.1.3 Summary ... 6

 Formulation of Research Problem .. 7

1.2.1 Vision .. 7

1.2.2 Problem Synthesis ... 8

1.2.3 Research aim and hypothesis .. 9

1.2.4 Research questions and objectives .. 9

1.2.5 Scope – Limitations and Assumptions .. 10

1.2.6 Contributions ... 11

 Research Methodology ... 11

 Thesis Outline ... 12

2 Literature Review .. 15

 Introduction ... 15

 Engineering Change Management: the process and the challenges 16

2.2.1 Steps and Methods for Executing Engineering Change Management 17

2.2.2 Manufacturing Change Management .. 18

vii

2.2.3 Research Opportunities in Engineering Change Management 19

 Tools and methods for manufacturing systems engineering 20

2.3.1 The use of MBSE for inconsistency management in automation systems 23

2.3.2 The Digitalisation of Manufacturing ... 24

2.3.3 Towards integrating digital with physical ... 29

 Assembly process planning ... 31

2.4.1 Background to Assembly Sequence Planning ... 31

2.4.2 Connecting ASP with the Resource Domain .. 33

 Ontologies and Knowledge Representation .. 39

2.5.1 Types of ontologies ... 41

2.5.2 PPR Modelling .. 42

2.5.3 Skill Modelling ... 52

 Summary and Gap Analysis .. 59

2.6.1 Knowledge Gaps ... 61

3 A knowledge-based approach for integrating engineering workflows 62

 Introduction ... 62

 Methodology overview ... 63

 Domain Ontologies ... 65

 Product Domain .. 67

3.4.1 Modelling Product Variety .. 67

3.4.2 Assembly ... 69

3.4.3 Features ... 70

3.4.4 Product Domain summary .. 73

 Process Domain .. 75

3.5.1 Skills in the Process Domain .. 77

3.5.2 Process Domain summary ... 80

 Resource Domain .. 81

viii

3.6.1 vueOne engineering tool description .. 82

3.6.2 Shortcomings of vueOne and extension .. 84

3.6.3 Resource Domain ontology ... 86

 Skill model .. 87

3.7.1 Rationale for terminology ... 87

3.7.2 Skill model description ... 88

3.7.3 Model Enrichment... 88

 Inconsistency management ... 90

3.8.1 Capability checking... 90

3.8.2 Inconsistency checking method .. 96

3.8.3 Modification of logical changes through virtual engineering and ontologies

 99

 Chapter Summary ... 103

4 Application evaluation through Case Studies ... 104

 Introduction ... 104

 Case 1 - Checking manufacturing resource capability with respect to product and

process requirements ... 104

4.2.1 System description – engine assembly station .. 104

4.2.2 Experimental Setup ... 105

4.2.3 Query 1 – Determining Resource capabilities with respect to Product

requirements .. 106

4.2.4 Query 2 – Aligning Resource capabilities with Process Requirements .. 111

4.2.5 Summary of Case 1 ... 112

 Case 2 – Connecting assembly process plans at different granularities to machine

control software .. 113

4.3.1 System description – fuel cell assembly station 113

4.3.2 Transforming domain descriptions to ontological models 116

4.3.3 Implementation and results ... 119

ix

4.3.4 Summary of Case 2 ... 121

 Case Study 3 – Resolving inconsistencies .. 122

4.4.1 Case description .. 122

4.4.2 Swapping and adding steps ... 123

4.4.3 Summary of Case 3 ... 125

 Chapter Summary ... 125

5 Success evaluation through comparison of existing comparable works 126

 Introduction ... 126

 PPR and Skill model Ontology Evaluation ... 126

5.2.1 Evaluation methods and criteria for ontologies 126

5.2.2 Ontology evaluation results .. 129

5.2.3 Discussion of ontology evaluation .. 135

 Framework evaluation... 137

5.3.1 Framework evaluation approach ... 137

5.3.2 Comparable frameworks ... 138

5.3.3 Framework evaluation results ... 140

 Summary ... 143

6 Conclusion and Further Work ... 144

 Introduction ... 144

 Summary of knowledge gaps .. 144

6.2.1 Objective 1 .. 144

6.2.2 Objective 2 .. 145

 Key Contributions ... 145

6.3.1 Objective 3 .. 145

6.3.2 Objective 4 .. 146

6.3.3 Objective 5 .. 147

 Further Work ... 148

x

6.4.1 Supporting more complex process logic changes 148

6.4.2 History management ... 149

6.4.3 Full implementation with virtual engineering tools 149

6.4.4 Mechanical reconfiguration .. 149

6.4.5 Fuel cell manufacturing knowledge .. 150

6.4.6 Web implementation ... 150

References ... 151

xi

Table of Figures

Figure 1-1 Workflow to realising industrial automation systems 3

Figure 1-2 Problem Background ... 6

Figure 1-3 PhD thesis structure aligned with DRM framework 14

Figure 2-1 Commonality between ECM and MCM modified from Koch et al. (Koch et al.,

2016) indicating that ECM, when considered from a process perspective, is very similar to

MCM. .. 19

Figure 2-2 Waterfall model with Royce’s iterative feedback (Ruparelia, 2010) 22

Figure 2-3 V-model using decomposition and feedback for verification and validation

(Ruparelia, 2010) .. 22

Figure 2-4 Boehm’s spiral life-cycle (Ruparelia, 2010) ... 23

Figure 2-5 Screenshot of Siemens Process Simulate engineering environment 25

Figure 2-6 Screenshot of Delmia engineering environment ... 26

Figure 2-7 Screenshot of the core component editor within the vueOne virtual engineering

toolset .. 28

Figure 2-8 The relationship between the Digital Factory, Virtual Factory, and the Real

Factory (Kuehn, 2006) .. 30

Figure 2-9 RAMI 4.0 (Hankel and Rexroth, 2015) ... 31

Figure 2-10 The use of pre-existing knowledge to generate a master sequence from which

new sequence can be extracted. Adapted from (Kashkoush and ElMaraghy, 2015) 33

Figure 2-11 Framework for manufacturing process information modelling proposed by

(Yang et al., 2016) .. 34

Figure 2-12a) Process information model and b) manufacturing process model from (Feng

and Song, 2003) .. 36

Figure 2-13 Example of function block in an assembly cell FB network from (Wang et al.,

2008) ... 37

Figure 2-14 Overview of methodology for connecting APP with machine control code

(Michniewicz and Reinhart, 2015).. 38

xii

Figure 2-15 Representation layers for ontologies adapted from Lin et al. (Lin et al., 2004)

 .. 40

Figure 2-16 Integrated assembly model (Rampersad, 1994) .. 43

Figure 2-17 High level view of the ONTOMAS ontology describing inter-domain links

(Lohse, 2006) .. 44

Figure 2-18 Product-Process-System Model (Lanz, 2010) ... 45

Figure 2-19 Main classes and object properties of the MASON ontology (Lemaignan et al.,

2006) ... 46

Figure 2-20 Top-level abstract classes from the MSE ontology (Lin et al., 2004) 47

Figure 2-21 Full design and manufacturing ontology from (Chhim et al., 2017) 48

Figure 2-22 The Core Product Model (Rachuri et al., 2006) .. 49

Figure 2-23 The Open Assembly Model ((Rachuri et al., 2006) 49

Figure 2-24 Lightweight representation of the Manufacturing Core Concepts Ontology

(Usman, 2012)... 50

Figure 2-25 Basic Concepts of PSL (Bock and Gruninger, 2005) 51

Figure 2-26 Manufacturing Ontology in the ADACOR Architecture (Borgo and Leitão,

2007) ... 52

Figure 2-27 Capability model (Järvenpää, 2012) .. 53

Figure 2-28 Matching software capability profiles (Matsuda and Wang, 2010) 54

Figure 2-29 Top skill classification, as defined by the SIARAS ontology (Stenmark and

Malec, 2015) ... 55

Figure 2-30 Top level ontology used in the ROSETTA project with aspects of a Skill model

(Björkelund et al., 2011b) ... 56

Figure 2-31a) Overview of the composite skill concept, and b) conceptual overview of the

configuration process (Ferreira and Lohse, 2012) .. 58

Figure 2-32 Skill concept aligned to classical PPR from the SkillPro Project (Aleksandrov

et al., 2014) ... 59

Figure 3-1 Lack interoperability and knowledge integration addressed through PPR

ontology and Skill model .. 62

xiii

Figure 3-2 Model Overview with contribution ... 66

Figure 3-3 a) exploded view of fuel cell b) undirected graph of fuel cell assembly (Ahmad

et al., 2016) ... 70

Figure 3-4 Workflow diagram showing how data annotated through PMI can enable

effective communication and design verification. Particularly within the context of design

changes, there is the potential to highlight (almost instantaneously) what aspects of the

Resource domain may need modifications and at what level (parameters, logic, structure).

 .. 73

Figure 3-5 Product Domain Ontology .. 74

Figure 3-6 Example product demonstrating how the Skill concept is used in the Process

Domain .. 80

Figure 3-8 Process Domain Ontology ... 81

Figure 3-9 System lifecycle supported by the use of a common modelling framework to

enable CPS (Harrison;, 2017) ... 84

Figure 3-10 Resource Domain Ontology .. 86

Figure 3-11 Skill Model .. 88

Figure 3-12 Illustration of Rule 2 ... 90

Figure 3-13 Example of how ontologies and queries are used to support engineering and

decisional workflow .. 92

Figure 3-14 Ontological model navigation for capability checking 94

Figure 3-15 Example of how Query 1 could be written for any given instance of

ProductComponent using SPARQL syntax .. 95

Figure 3-16 Example of how Query 2 could be written for any given instance of Liaison or

Process using SPARQL syntax ... 95

Figure 3-17 Current approach for automation system engineering highlighting focus of this

work .. 97

Figure 3-18 Mappings between ProcessSkill and ResourceSkill as an outcome of Rule 1 to

use as a basis for consistency checking .. 98

Figure 3-19 Inconsistency check query using SPARQL... 99

Figure 3-20 Full framework to realise vision .. 101

xiv

Figure 3-21 Algorithm for executing changes .. 102

Figure 4-1a) Machine sequence, and b) annotated screenshot of assembly station within the

vueOne engineering environment ... 105

Figure 4-2 High level view of additional concepts added to model engine assembly station

 .. 107

Figure 4-3 Protégé screenshot showing how the SWRL rules infer that the “Bolt-OilPan-

EngineBlock” liaison infer the requirement of BoltTightener SkillAction and NutRunning

Process (highlighted in yellow) .. 108

Figure 4-4 SPARQL query and results for Query 1 .. 109

Figure 4-6 SPARQL query and result for Query 2 ... 112

Figure 4-7a) Illustration of fuel cell stack, b) fuel cell component IDs, and c) undirected

graph with focus area for case study in red ... 114

Figure 4-8a) Two levels of process description granularity for half-cell assembly, and b)

the assembly system used represented in the vueOne engineering tools together with the

ResourceView ProcessComponent ... 115

Figure 4-9 JAPE rules and GATE interface .. 118

Figure 4-10 Assigning and mapping skills ... 119

Figure 4-11 Implementation of Description 1 and Description 2 in Protégé 120

Figure 4-12 Query and query results for inconsistency check for objective 2 121

Figure 4-13 Process descriptions for additional product variants 123

Figure 4-14 a) swapping process steps, and b) inserting new process step 124

Figure 5-1 Capability model (Järvenpää, 2012) .. 132

Figure 5-2 FBS (Lohse et al., 2004).. 133

Figure 5-3 Skill model (this work) .. 133

Figure 5-4 Layered architecture of ontology-based reconfiguration agent (Alsafi and

Vyatkin, 2010) .. 139

Figure 5-5 Conceptual architecture of knowledge base (Lanz, 2010) 139

Figure 5-6 Framework of this research ... 140

xv

Table of Tables

Table 3-1 Example of Product, ProductFamily and ProductVariant 68

Table 3-2 Summary of Process Domain hierarchies presented in the literature 76

Table 3-3 Existing vueOne engineering tool data model and extensions within this research

 .. 85

Table 3-4 Excerpt of addition of “inverseOf” object properties 89

Table 3-5 Addition of SWRL Rules ... 90

Table 4-1 Pre-processing example for Query 1 .. 110

Table 4-2 Extract of explicit and generated mappings – Process Domain 117

Table 4-3 Extract of explicit and generated mappings – Resource Domain 117

Table 5-1 Ontology evaluation methods ... 128

Table 5-2 Quality criteria for ontology evaluation from the literature 129

Table 5-3 Domain ontology evaluation .. 130

Table 5-4 Skill model evaluation .. 133

xvi

Abbreviations and Acronyms

ACO Ant Colony Optimisation

ADACOR ADAptive holonic Control aRchitecture for distributed manufacturing control

AGV Automated Guided Vehicles

ALB Assembly Line Balancing

API Application Programming Interface

APP Assembly Process Planning

ASP Assembly Sequence Planning

BFO Basic Formal Ontology

BOM Bill of Materials

BOP Bill of Process

CAD Computer Aided Design

CAE Computer Aided Engineering

CAPP Computer Aided Process Planning

CCS Capability Class Structure

CPPS Cyber Physical Production System

CPS Cyber Physical System

DFA Design For Assembly

DFMEA Design Failure Modes Effects and Analysis

DRM Design Research Methodology

EAS Evolvable Assembly Systems

EC Engineering Change

ECM Engineering Change management

FBS Function Behaviour Structure

FMS Flexible Manufacturing System

GA Genetic Algorithm

GATE General Architecture for Text Engineering

GD&T Geometric Dimensioning and Tolerancing

GDL Gas Diffusion Layer

GUI Graphical User Interface

HMS Holonic Manufacturing System

ID Identification Number

IDEAS Instantly Deployable Evolvable Assembly Systems

ISO International Organization for Standardization

xvii

JAPE Java Annotation Pattern Engine

KB Knowledge Base

KDCM Knowledge Driven Configurable Manufacturing

KIF Knowledge Integration Framework

KR Knowledge Representation

MBE Model Based Engineering

MBSE Model Based Systems Engineering

MCCO Manufacturing Core Concepts Ontology

MCM Manufacturing Change Management

MCS Machine Control Software

MDD Manufacturing Domain Data Model

MDM Manufacturing Data Model

MODAPTS MODular Arrangement of Predetermined Time Standards

MSE Manufacturing Systems Engineering

MSU Manufacturing Software Unit

NASA National Aeronautics and Space Administration

NIST National Institute of Standards and Technology

OCL Object Constraint Language

ONTOMAS Ontology for the design of Modular Assembly Systems

OPC-UA Open Platform Communications Unified Architecture

OWL Web Ontology Language

PDM Product Data Management

PEM Proton Exchange Membrane

PERFoRM Production harmonized Reconfiguration of Flexible Robots and Machinery

PFMEA Process Failure Modes Effects and Analysis

PLC Programmable Logic Controller

PLM Product Lifecycle Management

PMI Product Manufacturing Information

PMTS Predetermined Motion Time System

PPR Product, Process, Resource

PSL Process Specification Language

PSO Particle Swarm Optimisation

RDF Resource Description Framework

RMS Reconfigurable Manufacturing System

xviii

ROSETTA Robot control for Skilled ExecuTion of Tasks in natural interaction with humans;

based on Autonomy, cumulative knowledge and learning

SA Simulated Annealing

SFC Sequential Function Chart

SIARAS Skill-based Inspection and Assembly for Reconfigurable Automation Systems

SIC Sequence Interlock Chart

SkillPro Skill-based Propagation of "Plug&Produce"-Devices in Reconfigurable

Production Systems by AML

SOP Sequence of Operations

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SWRL Semantic Web Rule language

SWT Semantic Web Technologies

SysML System Modelling Language

TC Timing Chart

UML Unified Modelling Language

URI Unique Resource Identifier

VE Virtual Engineering

VFF Virtual Factory Framework

V-Man Virtual Manikin

V-Rob Virtual Robot

W3C World Wide Web Consortium

XML Extensible Markup Language

1

1 Introduction

 Problem Background

1.1.1 Industrial Challenges

Manufacturing organisations face a number of challenges in the modern age. The

emergence of smaller electronics, more powerful hardware, and better access to software

has resulted in the evolution of complex, high value products across a range of industries.

Many products now consist of their mechanical arrangement, electrical system, and

software implementation. Furthermore, a more demanding customer base has resulted in a

paradigm shift away from mass production and through to mass customisation. This is

prevalent in the automotive sector where the number of product variants continue to

increase as manufacturers rapidly approach a “batch size of one” (ElMaraghy, 2012). It has

been reported that the number of product variants has increased between 500% and 700%

in the German industry while production volumes have dropped to only as little as 85% of

their original volume (ElMaraghy, 2012). This turbulent environment calls organisations

to increase their responsiveness to maintain productivity and prevent costs from escalating

to a point where they are no longer competitive.

In order to meet safety, quality, and volume requirements, industrial automation systems

are often employed within manufacturing organisations. The workflow to realise an

industrial automation system is complex and is presented in Figure 1-1. The complexity

associated with realising industrial automation systems is attributed to in part the number

of stakeholders involved and also the number of times information is exchanged as a

consequence. Managing and controlling the exchange of information and ensuring that

requirements and challenges are being correctly communicated is an on-going battle in a

manufacturing organisation that employs industrial automation systems. Furthermore, the

engineering and development processes for such organisations remains ad-hoc and

unconnected across phases and domains. Therefore, there is an opportunity to learn from

the shortcomings of existing product development processes and manufacturing system

data integration methods.

The workflow presented in Figure 1-1 is summarised as follows, assuming the position that

an assembly automation system is the objective:

2

 A new product or product variant is introduced that is designed by the product

designer. There is typically a process of prototyping the product within both

simulation environments through finite element modelling by product engineers.

Furthermore, there may also be some work done within design teams to consider

design for assembly or design for manufacture with some proposals for the

sequence and nature of processes

 The Product Domain then exports information concerning a product which is

continuously changing as the product enters different stages of maturity from

conceptual through to final design

 The Process Domain imports some of the product information and combined with

knowledge about manufacturing processes, including those capabilities that exist

within the organisation and also what other processes exist beyond this, the process

planner transforms product design information into an assembly process plan.

 The Process Domain also exchanges information with the Product Domain about

what constraints surround the product in terms of design for assembly and in some

cases some product design changes are executed as a direct consequence of

feedback

 The information exported from the Product Domain and the Process Domain is

then absorbed by the Resource Domain which is initiated through interaction with

a machine builder, who is typically trained as a mechanical engineer. The

mechanical engineer’s role in this context is to transform the combination of

product and process requirements into the instantiation of a physical machine

 The mechanical engineer begins a conceptualisation process considering the

mechanical arrangement of components and the types of automation components

that will be used based on the requirements

 This conceptualisation is fed to both the controls engineering and the process

planner in the form a timing diagram which illustrates the machines behaviour

 The process planner compared the timing diagram with the assembly process plan

to ensure requirements are met and criticise design proposals accordingly

 In the same way, the controls engineer creates a sequence interlock chart which

describes how the proposed behavioural requirements are to be transformed into

machine control code with the appropriate sequence checks and interlocks. This

chart is compared with the timing diagram to ensure requirements are being met

3

 The machine design generated by the mechanical engineer is fed to the electrical

engineer who then begins the process of design the electrical system and eventually

constructing the electrical cabinet

 The mechanical engineer instantiates the building the machine, the controls

engineer programs it

 Ultimately a physical machine is built by the Resource Domain that is able to

automate the assembly process envisioned by the Process Domain, which realises

a product created by the Product Domain.

Figure 1-1 Workflow to realising industrial automation systems

An additional challenge that manufacturers must contend with is that of sustainability. Ever

stringent government legislation impose significant pressure on companies to work towards

holistic strategies that develop the pillars of sustainability: society, environment, and

economy (Bi, 2011). All three pillars have much to gain from the transition, or at least the

development of, technologies that consume renewable energy, use energy more efficiently,

and with less harmful waste products. Within the context of power generation technologies

such as combustion engines, a clear motivation exists to move towards cleaner and

“greener” offerings. However, there is a significant lack of knowledge associated with the

manufacturing and assembly of these products that include: electric machines for

propulsion, battery packs for energy storage, and hydrogen fuel cells as a potential direct

replacement of the internal combustion engine (Wang et al., 2013, Mehta and Cooper,

2003, Çağatay Bayindir et al., 2011, Sharaf and Orhan, 2014). It is important to note that

4

these technologies are not limited to automotive or transport. Distributed, off-grid, backup

and portable power all offer opportunities for these new technologies (Sharaf and Orhan,

2014). However, the in-house knowledge that exists within the organisation of those

manufacturers that are experts in producing conventional technologies, does not extend to

producing the aforementioned set of sustainable technologies. With engineering workflows

that rely on the knowledge of experts, introducing and developing entirely new products

presents a significant challenge. To address the concerns and risks related to climate

change, conventional workflows cannot be relied upon to realise the aforementioned new

technologies in a timely manner.

In order to develop new technologies in a rapidly changing environment, effective

knowledge and information management is essential. Understanding the interaction

between product requirements and manufacturing system capability is a fundamental part

of this. The ability to know where and how a manufacturing system must adapt as a

consequence of new product design requirements requires the connection of multiple

engineering and design disciplines. Current industrial data management tools are not

sufficiently well integrated or provide sufficient detail for users to fully appreciate the

impact of change. Furthermore, design and engineering tools across the domains of product

realisation (product, process, and resource) suffer from poor interoperability i.e. models are

created in proprietary standards, utilise inconsistent semantic descriptions across domains,

and there is a lack of model maintenance preventing digitisation efforts to be fully exploited

(Harrison;, 2017, Harrison et al., 2016). Finally, due to the dynamic nature of production

environments, tools and methods originally developed for mass production scenarios are

unable to react with the necessary agility (Järvenpää, 2012).

1.1.2 Scientific Challenges

The academic community are well aware of the challenges facing industry solutions have

been presented to address them. A broad variety of manufacturing paradigms have been

introduced, developed and tested with varying degrees of success. Flexible manufacturing

system (FMS) are able to meet a broad range of requirements without modifications to the

system structure (Hu et al., 2011, ElMaraghy et al., 2013, ElMaraghy and Wiendahl, 2014).

On the other hand reconfigurable manufacturing system (RMS) adapt to change through

modification of the manufacturing system’s mechanical or software components

(Järvenpää et al., 2016, Koren and Shpitalni, 2010). This vision requires the manufacturing

system to have certain characteristics such as modularity and convertibility (Koren and

Shpitalni, 2010). As the computing power of control and controlled devices has increased,

5

the paradigm of agent-based and holonic manufacturing systems (HMS) has emerged

(Leitão, 2009). This paradigm focuses largely on the software aspect of change, enabling

dynamic shop floor behaviour adaption through intelligent, autonomous entities that can

interact with their environment and other agents to achieve a goal (Leitão, 2009).

The vision presented by the Industrie 4.0 framework is one of self-organization, self-

optimisation, and self-diagnosis, with a view to achieving a business goal (Westkämper

and Jendoubi, 2003, Adolphs et al., 2015, Hankel and Rexroth, 2015).This vision is enabled

through some mix of the aforementioned paradigms. This is supplemented by more

effective communication and integration of domains of engineering and data/information

models across the lifecycle and through the business.

However, regardless of what combination of technologies and paradigms for the required

degree of dynamism are implemented on the shop floor (FMS, RMS, HMS), it is necessary

for such changes to be managed and executed through domains of design and engineering

that sit outside of the factory. In other words it is not enough to develop hardware, software,

and engineering tools and methods that enable the factory to change. Currently, there is

limited research on considering how product and process information evolves and finds

itself in the factory’s domain (Järvenpää et al., 2016, Järvenpää, 2012). The understanding

of this would allow the development of more formal links within and across the product

realisation domains. This in turn facilitates the modelling and thus predictions of the impact

and/or nature of change on the factory. Appropriate preparations for change can be made

and the relevant engineering teams have more time to find and develop optimal solutions

than what is often a last minute, ad-hoc and often expensive approach. There is a lack of

research that formalises knowledge associated with what the factory is able to do and

linking this with what it is required to do. Formalisation of this nature would enable changes

to be executed more successfully across the domains and maintain a structured engineering

workflow through the lifecycle of both the product and the manufacturing system.

The challenge presented to the scientific community is either to: i) develop and test new

engineering tools and methods that are at their onset open and use non-proprietary data in

the hope that industry engages with such solutions to encourage further funding or ii)

develop tools and methods that store knowledge for integrating pre-existing tools and

methods through neutral exchange formats hoping that the concepts are sufficiently

comprehensive and generic to accommodate the breadth of complexity required.

6

1.1.3 Summary

The industry needs to work towards evolving engineering workflows such that it is more

readily able to adapt to change as a consequence of new product variants, reduced product

lifecycle, mass customisation, and governmental and consumer pressures to transition

towards more sustainable products and manufacturing systems. The scientific community

needs to develop methodologies that enable this requirement while complementing existing

approaches, tools, and methods. It is clear that the digitisation of products and factories is

an enabler of more effective data integration, but to truly exploit this paradigm,

transforming data into knowledge that can be reused to make informed decisions is key.

Figure 1-2 illustrates a high level view of the problem and shows that while there is some

integration or communication of information at the tool layer across domains i.e. some

parameters or pieces of information can be communicated from one piece of software to

another, the respective data or information models are not effectively integrated.

Figure 1-2 Problem Background

Te
am

 L
ay

e
r

To
o

l L
ay

er

Product Domain Process Domain Resource Domain

D
at

a
 L

ay
er

C4

C2

C6

C3

C5

C1

C7

L1 L2

L3

L4 L5

L6L7
L8

L9L10

Key

Engineering data
work flow

Some data
integration

Lack of data
integrationProduct

Design
Process

Planning
Resource

Design

7

 Formulation of Research Problem

1.2.1 Vision

The wider context of this work is a vision whereby the engineering workflow through the

product realisation domains is streamlined, efficient, and error free. The transition from

data and information towards knowledge is to be enabled by better integrated engineering

tools allowing better informed decisions to be made more quickly.

It is envisioned that designers and engineers will be focused on innovation and adding value

to a business rather than engaging with inconsistencies, model discrepancies, and

miscommunication due to a lack of domain integration. When changes are made in one

domain the relevant stakeholders are advised and appropriate solutions can be selected from

a knowledge base.

Solutions within engineering and manufacturing organisations often need to be bespoke to

account for nuances and subtleties associated with small details that are overlooked during

the modelling process. It is the resolution of these nuances in an innovative way that should

be the focus of those employed by such organisations. Effective information model

integration coupled with a knowledge-base is a key enabler of this.

Moving into the operational phase of a manufacturing system, it is envisioned that changes

associated with the logical aspects of process e.g. sequence, and in the future the

mechanical arrangement of equipment could be reconfigured through standard-driven auto-

code generation and technologies such as AGVs (Automated Guided Vehicles). This would

be achieved through knowledge-models that infer the new requirements based on

knowledge about exist capabilities and limitations. Automatic notification of where

shortcomings may exist within shop floor component libraries would be highlighted to the

relevant stakeholders rather than such people actively having to sift through complex

models and large amounts of paperwork to determine where limitations exist.

Ultimately, the increased responsiveness and ease of implementing change will free up

resources such that new products are more innovative increasing the value of the

engineering process. Less time is spent on administration and non-value adding work. In

addition, the quality of products is expected to increase as potential shortcomings

associated with inadequate processes can be more readily identified.

8

1.2.2 Problem Synthesis

As discussed in Section 1.1.1 the current method for communicating the requirements of

the product and process through to machine design and control remains either document

based or model-based with poor model coupling, despite the respective activities utilising

their own engineering tools. This means that documents or models need to be examined

and interrogated to extract the key information proceed to the next stage of the product

realisation process. This also means that when changes are made, the manual interrogation

process needs to be carried out to identify where the changes have been made and what

impact they will have.

In a model-based approach it is often necessary to develop software plugins through APIs

(application program interface) through languages such as Visual Basic (Balena and

Foreword By-Fawcette, 1999) to connect models in an ad hoc way and, due to the lack of

semantic formalisation, model modifications render plugins unusable. The efforts of

interrogation, correction, modification and the like results in high costs and prolonged lead

times which negatively impact on the organisation’s ability to meet the needs of the

customer i.e. customisation.

The use of knowledge representation (KR) through methods like ontologies has seen

limited to no use in the manufacturing industry. However, the awareness of such

technologies is growing which is a direct consequence of the increasing number of large

EU projects that bring together academic expertise and industrial state of the art. Despite

these efforts, the problem remains that ontologies are powerful tools within their own right,

but it is not clear how they can be used to support the engineering activities associated with

product realisation with a view to supporting product design, process planning, and

machine reconfiguration.

Due to the breadth of changes that a manufacturer can face as an outcome of introducing a

new product, the author chooses to focus on the specific problem associated with control

logic. Changes within the manufacturing system can be classified into physical and

software based. Physical changes encompass those of a mechanical nature which form the

majority, but can also include electrical.

On the other hand, software changes are those associated with parametric changes and those

that are logic based. When introducing a new product or product variant, there is a risk that

the assembly sequence and in turn the control logic of the automated machine will change

also. Although the work is proposes a method to identify the consistency between the

9

mechanical nature of a given machine and the mechanical requirements of a product (as

per the Skill model in the vision section), the primary focus remains on the software side.

1.2.3 Research aim and hypothesis

The core aim of this research is to understand why ontologies (or other forms of knowledge

representation) are not being more extensively used beyond academic settings, particularly

in manufacturing environments. Based on this understanding, the author aims to develop a

toolset or workflow that supports an engineering process that is beyond the capability of

tools and methods that are classically deployed in industrial settings e.g. Product Lifecycle

Management through relational databases.

The hypothesis of this research is therefore that:

“Ontologies can be integrated with engineering tools to complement existing engineering

workflows through the identification and resolution of inconsistencies between typically

un-integrated and disparate engineering models, complementing and enhancing the

capability of databases.”

1.2.4 Research questions and objectives

Based on the problems identified, the research aim and the research hypothesis, the

following questions are raised:

1. How is change management executed within industrial settings and what

methodologies have evolved to support this process?

2. What are the shortcomings of existing ontological models that prevent their use

within industrial settings to support change management?

3. How can ontologies be used in conjunction with engineering tools and methods to

complement existing engineering workflows to support the introduction of new

products?

4. How can assembly process plans be connected to machine control software through

ontological models to facilitate in the identification of inconsistencies with a view

to resolving them?

The following objectives are derived from the questions above:

1. Identify change management methods within the context of manufacturing and

engineering changes and the challenges that are faced

10

2. Identify the ontological models that have been developed in the literature and how

they have been applied as well as their shortcomings

3. Develop a set of PPR ontologies that can be used to support assembly automation

systems engineering through its lifecycle

4. Develop a framework that integrates engineering tools, methods, and workflows

with an ontological model

5. Demonstrate how ontologies can be used in a practical way to identify and resolve

inconsistencies

1.2.5 Scope – Limitations and Assumptions

The domain of manufacturing includes activities and processes that range from the creation

of components from raw materials, the transformation of material properties through a

range of tightly controlled processes, as well as the assembly of components to produce

sub-assemblies or products. In order to keep the scope of this research within that of a PhD

thesis, this work focuses only on assembly of products, assembly processes, and assembly

systems. However, the modelling approach used in this thesis could be extended to include

manufacturing processes beyond assembly. Furthermore, the modelling of semi-automated

systems i.e. those where human-machine interaction exists, is not within scope of this

research. Again, the modelling approach could potentially be extended to support this as

the virtual engineering tools used have functionality to model human-machine interaction.

The work in this thesis has complemented an Innovate UK project titled Fuel Cell

Manufacturing and the Supply Chain (project ref: 101980) and more recently DIGIMAN

(DIGItal MAterials CharacterisatioN proof-of-process auto assembly) which is a Horizon

2020 project funded by the European Commission (project ref: 736290). Both projects

investigate the challenges associated with fuel cell manufacturing and assembly with the

former focusing on low volume production (up to 1000 stacks per year) and the latter on

mid-high volume production (up to 100,000 stacks per year). This thesis captures some of

the challenges that have been identified with fuel cell assembly systems. The problems

have been abstracted into more general ones that could also be linked to other similar

products such as battery packs. In addition, the Knowledge Driven Configurable

Manufacturing (KDCM) (EP/K018191/1) project has been vital in funding the

development of virtual engineering tools that build upon the component paradigm. These

tools have been used extensively in the case study chapter (Chapter 4).

11

1.2.6 Contributions

There are three contributions of this thesis. The justification that these gaps exist within the

body of knowledge is made in the literature review (Chapter 2) and the verification that

they have been addressed is made through case studies and their evaluation. The

contributions are summarised as follows, with more detail presented in the concluding

chapter:

1. Development of PPR Ontologies and a Skill Model to address the lack of

explicitly defined ontological models that describe the concepts and relations

across the two

2. The development of a broader framework for integrating ontologies with

virtual engineering tools to demonstrate how ontological models can be used in

conjunction with engineering tools and thus complement existing engineering

workflows

3. The use of ontological models to support inconsistency management to build a

stronger case for their use in engineering settings and complement existing data

storage methods e.g. relational databases within Product Lifecycle Management

systems.

In summary, the thesis identifies the shortcomings of existing ontological models within

the context of manufacturing, develops new models to address those shortcoming, and

develops new, useful ways for ontological models to be used to address industrial problems

by integrating them with virtual engineering tools.

 Research Methodology

The research methodology adopted for this research originates from design science. In this

research, the Design Research Methodology (DRM) is used (Blessing and Chakrabarti,

2009). This is the same methodology used by Järvenpää (Järvenpää, 2012) due to the

similarity of the field and approach used. The methodology is split into four stages which

are described as follows:

 Criteria Formulation: identification of the aim of the thesis which is to identify

a means to integrate engineering data through the lifecycle and across domains.

This is to support industry which is engaged with tackling the problem of product

variety, mass customisation, as well as the more broad environmental challenges

generating a need for alternative energy technologies. Conventionally, criteria

12

formulation would present criteria that are measurable e.g. increased profitability

of an organisation to illustrate the efficacy or benefits of a method. However, due

to practical constraints associated with the time-scale of the research project and

the availability of data, it is not possible to assess whether the methodology

presented in this research is measurably better than industrial state of the art. As a

result, the work is assessed based on the approaches identified in scientific

literature and how the methodology in this research extends them and fills current

gaps.

 Descriptive Study I: the role of this stage is to increase the understanding of the

existing methods and tools in industry and academia to identify current practices

and thus a basis on which improvements can be made. As described by Blessing

and Chakrabarti (Blessing and Chakrabarti, 2009) this generates a reference model.

Within the context of this thesis, the outcome of this stage is to shed light on the

existing workflow and associated tools. This is achieved through a literature review

(see Chapter 2) as well as the experience of the author’s involvement with

industrial research projects and the insights acquired due to this exposure.

 Prescriptive Study: the outcome of the Descriptive Study is used to identify a

reference model or theory that the Prescriptive study extends or develops. In the

case of this research thesis, the Descriptive Study (literature review) is used to build

a PPR ontology in conjunction with a Skill model with concepts and relations

derived and inspired by what already exists, but then extended to address what

doesn’t. In addition, gaps in the knowledge concerning broader frameworks that

include ontologies within engineering workflows are created. The methodology is

then tested and validate through case studies in Chapter 4.

 Descriptive Study II: a second descriptive study is undertaken to evaluate the

application of the methodology developed in the Prescriptive Study. The

evaluation considers both the application to identify whether the method has the

expected effect and the success to determine whether the method is beneficial. The

application evaluation is carried out within the Case Study chapter while the

success evaluation is carried out in the Evaluation chapter.

 Thesis Outline

The thesis is organised as follows:

 Chapter 2 Literature Survey – A review of the literature in the areas of: ontological

models in manufacturing, skill and capability modelling and their uses, inconsistency

13

and change management in manufacturing, state of the art in the management of

product data in industry such as PLM. The chapter concludes with a summary clearly

identifying the gaps in the literature.

 Chapter 3 A knowledge-based approach for integrating engineering workflows –

Based on the gaps identified in the literature review, a PPR ontology with a Skill model

is created and it is shown how the authors envision such a model would integrate with

the engineering workflow to realise and support manufacturing. The focus of the model

is on assembly, however due to its modular nature, it could be extended to encompass

other domains of process activities and the associated manufacturing resources.

 Chapter 4 Case Study – To test the models developed in the methodology chapter

three case studies are presented. The first demonstrates how the Skill model would

enable the verification that the skills or capabilities required of the manufacturing

system exist within it. The second demonstrates how the identification of an

inconsistency from a logical perspective, that is to say that the process plan is

inconsistent with a piece of automation equipment’s control logic, is identified. The

third case study validates the resolution of inconsistencies. All case studies are

demonstrated through virtual modelling as it is important to show how engineering

tools integrate with the proposed knowledge-based approach.

 Chapter 5 Discussion and Evaluation – Based on the results of the case studies, the

models generated are evaluated as well as the approach more broadly. This is carried

out in a qualitative way by revisiting the literature review and the gaps identified and

checking how the research addresses them. This analysis justifies what the author

argues to be the contribution of the work. In addition, the models and method is

critiqued to extract the shortcomings as a basis for future work that should be done.

 Chapter 6 Conclusion and Further Work – The work as a whole is summarised and

remarks are made with respect to the problems identified in Chapter 1 discussing the

impact of the work both within an industrial and scientific context. Finally, the

contributions of the work are also summarised with future research questions and

directions generated as a consequence of this research project.

The DRM has been used as a supporting tool to structure this research work and ensure a

certain level of academic rigour. Figure 1-3 illustrates how the thesis structure presented in

this section aligns with the DRM discussed in Section 3.

14

Figure 1-3 PhD thesis structure aligned with DRM framework

15

2 Literature Review

 Introduction

This chapter identifies and reviews literature within the context of methods and tools for

integrating the lifecycle data associated with manufacturing systems. The manufacturing

system in this review is defined by the aggregation of the engineering and design activities

in the Product, Process, and Resource (PPR) domains. More specifically, the review

focuses on assembly, but relevant tools and methods beyond this domain are referenced

also. Each of the PPR domains are highly interconnected and the nature of their

characteristics and interaction is fundamental in understanding how best to integrate them.

This chapter opens with describing change propagation and the engineering change

management process presenting the challenges highlighted in the literature. This is

reviewed as the paradigm shift towards mass customisation, personalised products, and

reduced product lifecycles necessitates more agility on the part of the organisation

(Mourtzis and Doukas, 2014). It is important to understand how this is currently managed

in industry and academia to identify the shortcomings and address them accordingly.

One of the major enablers of managing change is the transition from document-based

engineering to model-based engineering (MBE) which moves the record of authority from

documents to digital models. This allows engineering teams to more readily understand

design change impacts, communicate design intent, and analyse a system’s design prior to

build (Hart, 2015). Model based systems engineering (MBSE) is a focused version of MBE

specifically associated with systems engineering. The literature review focuses on the use

of MBSE within the context of the manufacturing workflow i.e. PLM, and what

methodologies exist to link the aforementioned PPR domains, highlighting the limited use

of knowledge management within this context.

Next, a review of tools and methods associated with assembly process planning (APP) is

presented. This section of the literature is presented as assembly process planning is an

activity which connects the Product and Resource domains. It is therefore considered that

the Process domain is defined at least by the definition of APP if PPR exists within the

domain of assembly. However, the author reiterates that within the broader scope of

manufacturing there is the activity of “process planning” which would encompass

processes beyond the scope of assembly e.g. casting, milling, extruding etc.

16

Finally, as the methodology utilised in this thesis to demonstrate how the PPR domains can

be connected in an intelligent way uses ontological models, the review identifies the

existing use of ontologies in the literature within the context of manufacturing. This section

of the review also examines the use of skill or capability models and how they integrate

with or are used in a complementary way with PPR models.

 Engineering Change Management: the process and the

challenges

The term engineering change (EC) has been defined in multiple ways and has continued to

evolve as the complexity associated with the process and its multidisciplinary nature has

increased. In a review of engineering change management published in 2012, the following

definition was proposed: “ECs are changes and/or modifications to released structure,

behaviour, function, or the relations between functions and behaviours of a technical

artefact (Hamraz et al., 2013).” The key message to take away from this definition is that

the engineering change is to be effected upon an artefact that exists or has been “released.”

This does not mean that engineering changes do not occur during an initial design process

i.e. original designs during the product development phase (Otto and Wood, 1998, Pahl and

Beitz, 2013). However, it is agreed that the majority of engineering changes occur as a

consequence of evolutionary design (Bentley and Corne, 2002, Kicinger et al., 2005).

The management of ECs requires the investment of significant resources in manufacturing

organisation (Huang and Mak, 1999). In the automotive industry, Ford, GM and

DaimlerChrysler claimed that they handled approximately 350,000 ECs in a single year

combined. The organisations suggested that the costs per change were more than $50,000,

including both the capital investment involved as well as lost man hours and delays

(Wasmer et al., 2011). It is argued that design changes that occur later in the development

lifecycle can be up to 10 times more costly to implement than those identified at earlier

stages (E. Carter and S. Baker, 1992). Whether the cost is as great as suggested by Carter

and Baker (E. Carter and S. Baker, 1992) is debatable, however other literature does suggest

figures that do show significant cost differences at different lifecycle stages e.g. prototype

phase: <$20,000 and after production: >$100,000 (Stamatis, 2002). However, it is

necessary to be able to make changes even when a manufacturing system is mature as it is

at this stage of its lifecycle that it exists for the longest amount of time. In fact, due to this

idea, the paradigms of flexible manufacturing systems (FMS) and reconfigurable

manufacturing systems (RMS) emerged to be able to accommodate change during the

17

operational phase of a manufacturing system (ElMaraghy, 2006, Koren et al., 1999, Hu et

al., 2011, Tolio et al., 2010).

2.2.1 Steps and Methods for Executing Engineering Change

Management

Engineering change management (ECM) can be regarded as the core function of

configuration management, which in turn is a discipline of systems engineering (Jarratt et

al., 2011). In a review on the topic of engineering change management (ECM) in 1996,

Huang and Mak (Huang and Mak, 1999) found that two main approaches existed: formal

and ad hoc. The former approach was used by approximately 95 per cent of those that

responded to the questionnaire that was sent out as part of the review. The authors had

usable data from approximately 100 companies, from an initial sample size of 2,000. Of

those that did not respond the reasons included a lack of relevance of ECM to their business,

or a lack of necessary data to complete the questionnaire. As the questionnaire was sent

only to companies that were involved in product design and manufacture, the author’s

conclusion that a high percentage of companies utilise formal ECM processes is not fully

justified. It seems that only those that did have a formal ECM process responded, from this

it could be inferred that the majority of companies in fact use ad hoc methods. This view is

supported by similar studies at the time Huang and Mak (Huang and Mak, 1999) published

their work e.g. Maull et al. (Maull et al., 1992).

Within the context of formal methods, the set of steps identified for executing ECs in Huang

and Mak (Huang and Mak, 1999) align with more recent studies (Jarratt et al., 2011,

Quintana et al., 2012, Hayes, 2014). These can be summarised as: 1) raise an engineering

change request which contains reasoning, instructions, and risk assessment, 2) a decision

is made as to whether the request should be actioned, 3) the change is executed or

implemented, and finally 4) documentation pertaining to the change is updated and

reviewed. The level of detail varies depending on the study, but the sequence of steps

remains consistent across the literature.

The consensus regarding formal methods for ECM is that traditional paper-based

approaches are not suitable and thus digital methods have been developed (Demoly et al.,

2013, Do, 2015, Wasmer et al., 2011). These largely integrate with or are synonymous to

product lifecycle management (PLM) or product data management (PDM) i.e. Wasmer et

al. (Wasmer et al., 2011, Do, 2015). Huang et al. (Huang et al., 2003) describe a set of

standardised frameworks for change management: MIL-STD-973, ISO 9000, ISO 10007,

18

and BS 6488:1984. However, they found limited evidence for their regular and formal use

in industrial applications. The Institute of Configuration Management (2004) developed

the CMII model as framework to support products, processes, and facilities by managing

their associated information. According to (Wu et al., 2012) however there has been limited

implementation of the model within an industrial context and thus they attempt to apply it

to the manufacture of motorcycles by creating Full-track and Fast-track EC workflows.

However, the integration of the proposed framework within existing engineering methods

and tools is not described

In addition to software tools and standards, implementation of engineering changes are

supported by specially appointed personnel within an organisation referred to an EC co-

ordinator or an EC board (Huang and Mak, 1999). These people operate between respective

disciplines or departments to communicate changes, align stakeholders, and also make

decisions between the key EC steps. However, these systems and methods remain largely

focused on product data and thus product focused engineering changes (Shankar et al.,

2012). In fact, much of the literature on ECM typically focuses on the Product domain,

considering process changes and manufacturing resource changes simply a consequence

(Hamraz et al., 2013, Koch et al., 2016) even though these activities could still be

considered within the definition of the “manufacturing system”. This view is a consensus,

evolving from the work of McMahon in 1994 (Hamraz et al., 2013, McMahon, 1994).

2.2.2 Manufacturing Change Management

A recent study by (Koch et al., 2016) highlighted the issue of the lack of literature

concerning the management of change within the area of manufacturing. To that effect,

they created and validated a manufacturing change management (MCM) process that they

derived from the literature within the areas of: MCM, factory planning, continuous

manufacturing planning, and ECM. They concluded that the following processes defined

the MCM: need for change, change identification, solution finding, evaluation and

decision, change planning, implementation planning, implementation, knowledge

management and control. The author notes that this differs very little from the literature

derived stages associated with ECM (Figure 2-1). This highlights that regardless of the

domain, the process steps associated with change are similar if not the same. Regardless,

the management of engineering changes remains disjointed and document-based or through

the use of software tools that digitise the process.

19

Figure 2-1 Commonality between ECM and MCM modified from Koch et al. (Koch et al., 2016) indicating

that ECM, when considered from a process perspective, is very similar to MCM.

2.2.3 Research Opportunities in Engineering Change Management

Section 2 has touched upon the steps required to execute an engineering change and

highlighted some of the methods to do this e.g. software tools, standards, and elected

personnel. Furthermore, the limited consideration for engineering changes outside of the

product domain highlights a gap in ECM literature. The caveat here is that in some sense,

resource components i.e. elements of a manufacturing system that perform process tasks to

realise a product (Labrousse and Bernard, 2008), could be considered a Product i.e. an

element which is at the first instance designed for a given requirement and produced

accordingly, at some point in their lifecycle. However, even given this, the interaction and

evolution of such entities is not the focus of ECM. Some simulations have been developed

which investigate the complex EC task interrelations of a known set of interactions e.g.

Eckert at al. (Eckert et al., 2009) and Wynn et al. (Wynn et al., 2010), but the interactions

remain within the product. Thus it appears as though the focus is identifying strategies for

managing and executing changes effectively and efficiently, and not how changes within

the given domain impact other domains (Hamraz et al., 2013, Fricke et al., 2000, Clark and

Fujimoto, 1991).

Hamraz et al. propose that further research needs to be carried out on how ECs can be

avoided through people-oriented measures e.g. better communication and knowledge

sharing among designers and other disciplines (Hamraz et al., 2013). However, they neglect

to consider that ECs reflect the learning process of a given organisation as well as the need

to adapt to new customer requirements. This view on the importance of ECs is taken by

Wasmer et al. (Wasmer et al., 2011) who indicate that ECs should actually be encouraged

to produce a better and more reliable products and increase the productivity and efficiency

of manufacturing systems. Thus, the gap identified by Hamraz et al. (Hamraz et al., 2013)

can be transformed to the question of how does communication and knowledge sharing

enable more effective ECs, rather than to eliminate them. Furthermore, the complexity of

20

products continues increase and as a result the impact that ECs have on the other domains

are also more complex due to the number and type of interactions (ElMaraghy et al., 2012).

The impact of complexity on the other product realisation domains when attempting to

execute ECs are increased lead times and costs. The lead times can be brought down if the

EC is decomposed and tasks are, where possible, executed concurrently. This requires a

high degree of collaboration between people and although there are numerous examples of

the digitisation of the change management process in the literature (Huang et al., 2001,

Wasmer et al., 2011), the use of digital domain models presents the opportunity to integrate

ECM more readily with the engineering workflow. Therefore, the following section

discusses the paradigm of MBSE and examples of how it has been used within the context

of manufacturing.

 Tools and methods for manufacturing systems engineering

As already alluded to in the introduction to this chapter, MBSE is a subset of MBE. Models

are used extensively across a range of fields and disciplines as a way of representing a

system for visualisation, testing, and validation. Within the context of MBSE a model is a

digital representation of a system or entity. Such models can be generated through a number

of software tools using languages that describe behaviour, geometry, relations etc. In order

to effectively manage increasingly complex systems, the discipline of systems engineering

has employed a number of lifecycle models. These lifecycle models are considered to have

emerged from software development (Ruparelia, 2010, Estefan, 2007). It is important to

note that the software development process can be quite different from systems

engineering, of which manufacturing systems engineering is a subset. This is due to the

fact that systems engineering, particularly manufacturing systems, have a myriad of

perspectives such as electrical, electronics, mechanical, and of course software (Vogel-

Heuser et al., 2014). This means that the system development lifecycles that have been

adopted are not necessarily fully appropriate for manufacturing systems engineering as they

are ill-suited to managing the complexity of different modelling perspectives for a given

system. There are three commonly cited lifecycle development models in the literature that

are the Waterfall, V, and Spiral Lifecycle models and are illustrated in Figure 2-2, Figure

2-3 and Figure 2-4 respectively.

The Waterfall model (sometimes referred to as the cascade model) was originally proposed

Benington (Benington, 1983) as a method for developing large computer programmes. The

phases within this model underpin the lifecycle models that have proceeded it. The original

model did not make considerations for unforeseen changes and modifications at the

21

conclusion of each milestone. As a result, Royce extended the model with a feedback loop

so that a preceding stage could be revisited should issues arise (Royce, 1987). Furthermore,

identifying that there would be a need to revisit development phases that may not

necessarily sit adjacent to each other, Royce added more complex feedback loops also that

are represented as dashed arrows in Figure 2-2.

The V-model was developed by NASA (National Aeronautics and Space Administration)

and first presented by Forsberg and Mooz (Forsberg and Mooz, 1991). The left leg of the

V-model focuses on decomposing requirements while the right leg represents the solutions

to address requirements and the process of integration, and verification. The more complex

a system, the greater level of decomposition must occur. The V-model also has a z-axis that

exists through the plane which accommodates multiple deliveries or multiple aspects of a

given project.

Finally, the Spiral model was developed by Boehm (Boehm, 1988) that is based on the

philosophy of “start small, think big.” The Spiral model addresses of the shortcomings of

the Waterfall model in that it is incumbent on the development team to look-ahead so that

reusability concerns are met as well as risks and issues that are often missed. While the

Waterfall model is a specification driven approach, the Spiral model is considered to be

risk-driven. The spiral moves through four phases as the development matures which are:

i. Determine objectives

ii. Evaluate alternatives and manage risks

iii. Develop and test

iv. Plan next iteration

Risk management in the Spiral model is used to assess the effort in terms of cost and time

that is to be used for a given activity. Thus one of the key benefits of this lifecycle

development model is the management of risks and costs at the outset. However, the Spiral

model requires highly adaptive and agile project management as well as effective

communication between domain stakeholders. Furthermore, it relies heavily on the ability

to identify risks. Within complex system engineering environments, these shortcomings

prevent the Spiral model from being employed effectively due to a lack of transparency

and heavy administrative processes that are insufficiently reactive. As a result, despite the

benefits of the Spiral approach, modern system engineering processes typically use a

Waterfall model due to the clarity it provides and the fact that it aligns with existing

management structures.

22

A hybrid of the Waterfall and Spiral approach was proposed by Iivari (Iivari, 1987) where

provisions for baselines and milestones were made for each spiral cycle to facilitate control.

While main phases would be risk-driven, sub-phases would be discipline driven. This was

referred to as the hierarchical spiral model and provided a risk/cost conscious approach

(Spiral) in conjunction with some level of domain stakeholder discipline (Waterfall).

Figure 2-2 Waterfall model with Royce’s iterative feedback (Ruparelia, 2010)

Figure 2-3 V-model using decomposition and feedback for verification and validation (Ruparelia, 2010)

23

Figure 2-4 Boehm’s spiral life-cycle (Ruparelia, 2010)

2.3.1 The use of MBSE for inconsistency management in automation

systems

While lifecycle models allow stakeholders within management to track and control the

development of a given system, there is still a need to connect output of a given phase or

activity to the adjacent one. However, regardless of the decomposition, it is impossible to

entirely decouple each activity or discipline. This overlap results in inconsistencies

between the different domain models. The inconsistency is present when two or more

statements are not jointly satisfiable (Spanoudakis and Zisman, 2001). This can commonly

be attributed to human error, poor cross-disciplinary communication, and model

complexity. Finkelstein is often credited with introducing the notion of inconsistency

management (Finkelstein et al., 1994). Building upon his work Spanoudakis and Zisman

(Spanoudakis and Zisman, 2001) proposed a framework through which inconsistencies can

be managed for software development: detection of overlaps, detection of inconsistencies,

diagnosis, handling, tracking, and finally the application of an inconsistency management

policy.

Gausemeier et al. propose a cross-domain base model at the conceptual design phase from

which domain specific models emerge during the detailed design phase (Gausemeier et al.,

2009). A transformation engine propagates changes when they are made in a given domain,

however this did not consider behavioural models. Hehenberger et al. (Hehenberger et al.,

24

2010) create a mechatronic ontology to check consistency which uses a Model/Analyser

approach supported by rules. In Feldmann et al. (Feldmann et al., 2015), Semantic Web

Technologies (SWT) are used through the Resource Description Framework (RDF) where

explicit links are formed between common concepts across heterogeneous models.

SPARQL queries are then used to identify inconsistencies based on some user-defined

bounds. Herzig et al. propose that a model can be represented by a graph and thus use an

approach that uses graph pattern matching to check for inconsistencies (Herzig and Paredis,

2014). However, the approach is considered to be computationally expensive, although this

has not validated through a case study.

Outside of the industrial automation domain, Liu (Liu, 2013) addresses the problem of

inconsistency in Unified Modelling Language (UML) diagrams. A total of 13 rules are

presented which are checked through: manual checks, compulsory restrictions, automatic

maintenance, and dynamic checks. This work focused on the design stage of the models

and not how inconsistencies can arise during the use phase. Chavez et al. (Chavez et al.,

2016) state that the semantic gap that exists between certain languages is narrow i.e. C and

Simulink, and therefore consistency can be checked more readily e.g. through Reactis1.

However, where abstraction levels are different, inconsistencies are more difficult to

identify due to the wider semantic gap. They describe an approach that checks consistency

between UML and Java implementation called CCUJ (Conformance Checking between

UML and Java) using constraints described using the Object Constraint Language (OCL).

However, one of the limitations of the approach is the generation of false negatives i.e.

inconsistencies would be detected even when there were none.

2.3.2 The Digitalisation of Manufacturing

Digital modelling and simulation solutions are used extensively in various engineering

domains as they have the potential to enable the testing and validation of a system’s

behaviour and/or characteristics prior to physical implementation. This generally allows

shorter and fewer design iterations and better design outputs (Harrison et al., 2016). Figure

2-5 and Figure 2-6 are screenshots of the Siemens Process Simulate environment and

Dassault Systemes Delmia environment respectively. These tools are focused on

visualisation and validation of manufacturing systems with modules to support

mechatronic devices, process industry systems, as well as provisions for capabilities such

as virtual commissioning. These screenshots have been included to demonstrate that i)

1 http://www.reactive-systems.com

25

engineering models used are heavyweight as a consequence of representing complex

geometries and details that may not necessarily be of value to the domain activity being

executed, and ii) the differences in user interfaces highlighting the fact that software

vendors are keen to leave their signature on their software. This, on one hand enables the

user to navigate more easily within a broader package, but does hinder transition between

the solutions of different vendors. Furthermore, the functionality of the respective software

may be common however the semantics are often different (whether graphically or from a

terminology perspective). This issue makes those that are experts in using a given

engineering software to be averse to using another.

Figure 2-5 Screenshot of Siemens Process Simulate engineering environment

26

Figure 2-6 Screenshot of Delmia engineering environment

Major CAD providers e.g. Siemens, have extended the capabilities of their respective

engineering tools to more accurately model the PPR domain relations and, where possible,

provided a mechanism for integrating the generated data within consistent modelling and

simulation environments . The major benefit is to make unambiguous the implicit

relationships that exist between domains, thus moving toward the objective of facilitating

rapid, error-free change and re-design/-engineering of manufacturing systems in response

to new requirements (e.g. product design, production process and volume changes). To

provide value-adding engineering support i.e. design validation, optimisation, a variety of

data types are required to implement executable models and simulations. However, the

required sets of information are generally produced by various departments or

organisations within the business or the supply chain are i) not available at the same point

in time because of constraints inherent to the engineering process (Chandrasegaran et al.,

2013), and/or ii) likely to exists in a variety of data formats and standards (often digital but

sometime not) depending on organisations, department, engineering domain, and software

choices (Demoly et al., 2013, Do, 2015).

While CAD solution providers offer integrated solutions to gain control over data flows to

align milestones (i.e. PLM/PPR central data base and data management systems) and

potentially solve the problem of heterogeneous data formats by adopting proprietary data

formats, their practical deployment is not always beneficial. Firstly, integrated solutions

rely on several software modules to support modelling/simulation data editing and

27

management, engineering workflows management, collaboration, etc. which are heavily

reliant on so-called platforms e.g. Dassault 3DSexpericene . Secondly, the deployment of

such solutions within an organisation requires re-defining, adapting, adding, and removing

existing engineering processes. This is a time and resource intensive process which incurs

a risk on existing projects occurring during the changeover phase. Finally, the costs

(purchase, deployment, training, maintenance/support) associated with large scale

integrated solutions can inhibit and often exclude supporting engineering organisations

distributed across the supply chain. One of the few examples in the literature that

systematically and critically discusses the shortcomings of commercial PLM offerings is

(Hewett, 2009). Despite being a work published in 2009, many of the points raised are still

valid today:

i) Lack of maturity of PLM solutions whereby a complex collection of tools is

required which are then patched together in an ad-hoc way depending on the

needs of the organisation

ii) Although engineers and designers are already on board with the software tools

that they use, the implementation of PLM does not usually align with the

practical workflows that they would prefer. Rather than applying a generic

workflow to a given organisation, more could be done to include the respective

stakeholders in the implementation process

Some of the shortcomings of PLM systems are addressed in this research work. The

Evaluation chapter (chapter 5) continues the PLM discussion to compare and contrast the

outcomes of this thesis.

Alternatives to major commercial solutions do exist, in the form of i) simpler platforms

(e.g. Visual Components, vueOne) (Harrison et al., 2016) , ii) ad-hoc integration of open

source or low cost software modules to fulfil specific functions (Makris et al., 2012, Exel

et al., 2014, Bergert and Kiefer, 2010, Kernschmidt and Vogel-Heuser, 2013, Vogel-

Heuser et al., 2014)) and iii) outsourcing of engineering services (e.g. Simulation Solution

– SimSol , TCS Digital Solution) that make use of combination of the above mentioned

software solutions to provide consultancy and engineering services related to Digital

Manufacturing. In Figure 2-7 a screenshot of the core component editor within the vueOne

engineering toolset is presented. It provides some similar functions to the tools illustrated

in Figure 2-5 and Figure 2-6, but the simpler interface is a true reflection of its reduced

capability as compared to commercial solutions. These tools are used and extended in this

28

research with Chapter 3 describing the tool data model in more detail as well as the

shortcomings addressed.

Figure 2-7 Screenshot of the core component editor within the vueOne virtual engineering toolset

A number of academic groups have also presented digital manufacturing tools for virtual

prototyping namely: Min et al. (Min et al., 2002) who integrated real-time machine tool

data within a virtual manufacturing environment. Suk-Hwan et al. (Suh et al., 2003)

developed Web-based virtual machine tools to interactively operate CNC machine tools,

and Dietrich et al. (Dietrich et al., 2002) presented sample scenarios for how the real and

virtual processes could be integrated. While these tools show promise in their respective

applications, they do not easily integrate with the other domain stakeholders. As a result,

changes cannot easily be made unless these are discussed at the team layer which represents

domain experts.

In summary, despite the benefits of digital manufacturing, the challenge of interoperability

and data integration remains due to the breadth of design and engineering activities through

the product realisation domains. There have been some examples in academia whereby

there is a degree of integration across product realisation domains such as:

29

i. the generation of assembly sequences from product design CAD models in Pintzos

et al. (Pintzos et al., 2016) demonstrating a link between Product and Process

domain models

ii. the reconfiguration of mobile robots based on process modifications in Angerer et

al. (Angerer et al., 2010) demonstrating a link between the Process and Resource

domain models

However, such works have yet to move into industry as they are typically point solutions

focusing on specific lifecycle phases with limited consideration of how they interact with

other domains, disciplines, or phases. An understanding of domain activities coupled with

knowledge-based models can provide a solution, regardless of the digital engineering tools

used.

2.3.3 Towards integrating digital with physical

Classically, digital or virtual models are used to support in the design or engineering

process but once the system has been commissioned such models are often never referred

to later in the lifecycle. In fact, in the cases where these models are interrogated with a view

to understand the layout, capability, or structure of a given system, such models are out-of-

date and thus of little value. There remains a culture within industrial environments to store

but not maintain models. This issue was scrutinised by a number of academics who wanted

to explore what could be done with the heavy, complex, expensive engineering models

created at the design and development phases of a manufacturing system.

Firstly, the notion of uni-directional digital data integration from the physical factory to the

digital model was explored, resulting in the paradigm of the “Virtual Factory”. This was

with a view to enable more accurate simulations and as a result, more accurate predictions

could be made from more relevant optimisation strategies based on real disturbance

characteristics (Kuhn, 2006, Terkaj et al., 2015). The Virtual Factory Framework (VFF)

aimed to develop an integrated framework to implement the virtual factory (Sacco et al.,

2010, Tolio et al., 2013). The project (funded in part by the European Commission) was

self-described as “An integrated virtual environment supporting the design and

management of all the factory entities, ranging from the single product to the network of

companies, along all the phases of the factory lifecycle” (Sacco et al., 2010). In addition

to addressing the aforementioned lack of interoperability of engineering software, the

project claimed to synchronise the real and the virtual factory. This synchronisation process

was periodical and based on retrieving data from the real factory. The idea of the Virtual

30

Factory as per the descriptions in the references was to use historical data of the system and

thus a real-time connection was not present.

However, Westkämper and Jendoubi had a more revolutionary vision when introducing the

concept of the “Digital Factory”, to support in the broader vision of the “Smart Factory”

which proposed that data should flow bi-directionally between physical systems and digital

models at real-time (Westkämper and Jendoubi, 2003). This enabled system monitoring,

but in addition also allowed decisions made based on simulations models to be

implemented, directly increasing system responsiveness and agility (Monostori et al.,

2016). At the time these ideas were conceived, computing power was at a premium,

communication speeds were slower, and engineering software was insufficiently mature to

cope with such requirements. Figure 2-8 illustrates the relationship between the Digital,

Virtual, and Real factories. In summary, the Digital Factory integrates the Virtual Factory

with the Real Factory. On its own, the Virtual Factory is able to simulate the Real Factory

and support planning activities by importing data, while the Digital Factory enables a more

permanent, operational connection between the respective factories.

Figure 2-8 The relationship between the Digital Factory, Virtual Factory, and the Real Factory (Kuehn,

2006)

With the advent of increased computational power that can be encapsulated within smaller

volumes and lower mass, high speed communication, and Internet connectivity i.e. IoT,

there has been a paradigm shift towards Cyber Physical Production Systems (CPPS) that

exploit the interaction of the cyber and the physical world (Monostori et al., 2016). The

CPPS consists of autonomous, cooperating elements that are to form connections

dynamically to exchange information across all production levels. The aforementioned

virtual models play a significant role to support the CPPS, but form part of a much broader

system architecture.

Within the context of future manufacturing systems, one of the most cited architectures is

RAMI 4.0 to realise Industry 4.0 (Figure 2-9) (Iarovyi et al., 2016, Harrison et al., Adolphs

31

et al., 2015, Hankel and Rexroth, 2015). Along the “Hierarchy Levels” axis the architecture

complements the existing ISA-95 standard but extends it by adding the Product and

Connected World layers, referencing a more intelligent product as well as a broader more

connected set of enterprises that are able to exchange information. Along the “Life Cycle

Value Stream” axis, the architecture respects the evolution of system entities, be they

physical or cyber in nature, and their respective lifecycles. Finally, the “Layers” axis forms

the most valuable part of the architecture to realise the vision of Industry 4.0. Along this

axis, the transformation of assets from entities that generate data to agents that execute

services at the business level is represented. In this thesis, the research aims to capture the

knowledge that is generated through the lifecycle, from products all the way to the

manufacturing system, with a view to transforming generic information to functional

knowledge that can be exploited.

Figure 2-9 RAMI 4.0 (Hankel and Rexroth, 2015)

 Assembly process planning

2.4.1 Background to Assembly Sequence Planning

One specific type of manufacturing process is assembly. This stage of manufacturing

contributes up to 50% of total production time and accounts for more than 20% of total

manufacturing cost (Rashid et al., 2012). One of the key activities associated with realising

an assembly is Assembly Process Planning (APP) (Jun et al., 2005). In the literature, APP

is decomposed into two further activities: Assembly Sequence Planning (ASP) and

Assembly Line Balancing (ALB) (Rashid et al., 2012). At a high level APP is focused on

32

determining those set of processes that aggregate to realise an assembly within a given

time. ASP is focused on converting the relationships that exist between product

components into a sequential set of steps that are practically feasible. ALB is focused on

ensuring that assembly stations have a balanced workload to prevent bottleneck or areas of

starvation. In order to ascertain the amount of time it will take an activity to occur it is

necessary to know the resources that are to be used, and to decompose the realisation of

sequenced liaisons i.e. the output of ASP, into a more granularly defined set of tasks. There

is therefore a close interaction between APP activities and manufacturing system design or

reconfiguration (phase dependant).

Both ASP and ALB are referred to as NP hard problems (Rashid et al., 2012). Within the

context of ASP several methods have been developed to address this problem that can be

classified into: graph/matrix-based, metaheuristics-based, and knowledge/artificial

intelligence (AI) based (Chen et al., 2010, Demoly et al., 2011, Ahmad et al., 2016). The

graph-based approach is one of the earliest formal methods generating simple, undirected

graphs to represent a product’s topological structure, where nodes are components and

edges are liaisons (Bourjault, 1986, De Fazio and Whitney, 1987), into directed graphs that

show assembly direction based on constraints (Sanderson et al., 1990). Based on the

graphs, “cut-set” i.e. assembly by disassembly, methods were used to generate all possible

assembly sequences, typically represented using AND/OR graphs (Homem de Mello and

Sanderson, 1991). This method generated the complete set of assembly sequences which

would become difficult to manage and represent as with complex products (Ben-Arieh and

Kramer, 1994, Xu et al., 1994). Matrices present the same information as graphs but in a

more machine readable way, but both methods form the foundation of modern ASP

methodologies.

The objective of metaheuristic approaches is to manage the large workspace associated

with the ASP problem with complex products. Common methods include genetic

algorithms (GA), ant colony optimisation (ACO), particle swarm optimisation (PSO), and

simulated annealing (SA) (Rashid et al., 2012, Wang et al., 2009). These methods define a

set of objectives for an algorithm e.g. minimum number of part orientations, with a view to

deriving an optimum. These methods are used extensively and successfully in the ASP

literature but they do suffer from tedious data entry processes, premature convergence, and

high computational requirements (Rashid et al., 2012, Wang et al., 2012, Wang et al.,

2009).

33

Finally, there is the knowledge-based/AI approach to ASP. The tools used to facilitate these

types of approach use new and novel models such as the connection-semantics-based-

assembly trees (CSBATs) presented in Dong et al. (Dong et al., 2007) that integrated

geometry-based reasoning with knowledge-based reasoning to derive a sequence.

PEGASUS (Product dEsign enGineering based on Assembly SeqUenceS Planning) was an

assembly oriented design module for product lifecycle management (PLM) systems to

facilitate concurrency across lifecycle phases i.e. product design and ASP (Demoly et al.,

2011). Design for Assembly (DFA) rules were captured mathematically and each assembly

type (serial, parallel etc.) had a pre-determined cycle time to support process engineers in

ascertaining the resources required. Kashkoush and Elmaraghy (Kashkoush and

ElMaraghy, 2015, Kashkoush and ElMaraghy, 2014) described an approach that utilised

pre-existing sequence knowledge to derive new sequences using a master assembly tree

was proposed (see Figure 2-7). A similar approach that used pre-existing organisational

knowledge concerning sequences was described in (Chen et al., 2006) and applied to

automotive body design. A knowledge-based approach using a three-stage optimisation

method that culminated in a back-propagating neural network engine embedded within

Siemens NX CAD tools was presented in (Hsu et al., 2011). The major shortcoming of

works that focus on ASP is the isolation of the method from practical workflows,

particularly downstream to the Resource domain.

Figure 2-10 The use of pre-existing knowledge to generate a master sequence from which new sequence can

be extracted. Adapted from (Kashkoush and ElMaraghy, 2015)

2.4.2 Connecting ASP with the Resource Domain

To address the shortcoming of literature that focuses solely on ASP, a number of works

have extended knowledge-based approaches to assimilate information across domains and

phases.

The work of Yang et al. (Yang et al., 2016) proposed a four-layer framework for

manufacturing process information based on a metamodel (see Figure 2-11). The major

34

focus of the work was maintaining consistency, accuracy, completeness, and generality

between process planning activities and the manufacturing system. One of the key insights

of the work was recognising the need for a layered framework that considered abstracted

concepts (in the metamodel) down to instantiation of specific data in the data layer. This

layered approach has been adapted and extended in this thesis. One of the shortcomings of

the work by Yang et al. (Yang et al., 2016) was its high level implementation using UML

and thus an inability to exploit the semantics proposed.

Figure 2-11 Framework for manufacturing process information modelling proposed by (Yang et al., 2016)

In Zha et al. (Zha et al., 1999) a concurrent product design and assembly planning

(CDAPFAES) methodology was proposed that included conceptual design, detailed

design, assemblability analysis, DFA, assembly system design, APP, simulation, and

techno-economic analysis. The approach was further developed in Zha et al. (Zha et al.,

2001b) and then implemented in Zha et al. (Zha et al., 2001a) where it was renamed to

Assembly-Oriented Design Expert System (AODES). The system allowed the given

stakeholder i.e. product designer, to generate, modify, and analyse a product through its

design stages i.e. concept design, detailed design etc. In order to capture designer

35

knowledge and requirements, interaction between human and computer was enabled

through questions to provide decision support. In Su and Smith (Su and Smith, 2003) a

method that integrated DFA, APP, and production simulation was presented. An integrated

framework, Assembly-Oriented Product Design and Optimisation (AOPDO), used a

function modelling approach to structure functions, activities, and processes for a given

system model be it within the Product domain or the Resource domain using IDEF0

(Mayer, 1992). Details of the approach were not fully elaborated and production simulation

was limited to petri nets so there was a lack of virtual modelling. The Sequence Planning

and Design Environment (SPADE) method presented both a hierarchy of the product model

and for component liaisons that enabled the mapping of assembly actions (Barnes et al.,

2004). Although this work did not fully extend into identifying the resources that would be

used to execute said actions, embedding assembly actions within the methodology provided

a link to the Resource domain.

An early example of an attempt to integrate process planning with machine software is

presented in Feng and Song (Feng and Song, 2003). The work culminated in the

development of Part 2 of ISO 16100 which focused on providing a standard view of

information models for interoperability in industrial automation systems. The work used

UML to represent the process information and considered a broad range of manufacturing

and assembly processes as well as categorising manufacturing system equipment and the

parameters associated with it. Figure 2-12a and Figure 2-12b are extracts of the standard

illustrating the assembly process and manufacturing system resource models respectively.

The reader should note the similarity in structure, terminology, and properties of the

respective classes as compared to the ontological models that are presented later in this

chapter. Although not referred to as an ontology in the standard itself, the work does align

with the definition. The major shortcoming is its representation within UML and no

implementation within a language that supports knowledge representation e.g. RDF/OWL.

Another shortcoming of the model is the lack of the link to machine control and thus

preventing explicit mapping between the process model and the resource model.

Despite its comprehensive, structured approach to capturing process and manufacturing

information, the standard has seen limited use in both industry and academia, evidenced by

the lack of its use in the literature. This may be because it does not address the complex

semantic relations between the concepts described, a resistance from software vendors to

embrace open standards, or simply a lack of publicity concerning the standard.

36

Figure 2-12a) Process information model and b) manufacturing process model from (Feng and Song, 2003)

The use of function blocks to support in adaptive APP is described in Wang et al (Wang et

al., 2008, Wang et al., 2012). For a given assembly sequence, assembly features are

mapped to assembly feature function blocks. An assembly feature is defined as the

connection between two mating components. Figure 2-13 illustrates an example of

implementation of the adaptive function blocks proposed in Wang et al (Wang et al.,

2008). The management function block (M-FB) is an execution manager that handles what

cannot be managed by assembly feature function blocks (AF-FB). After every assembly

task is fulfilled the proceeding AF-FB is called based on the assembly sequence. One of

the key benefits of the work was proposed to be the reusability of function blocks as they

encapsulated knowledge about how an assembly task should be executed within an

algorithm. However, the work did not describe how the sequence would be checked for

consistency when the function block has been instantiated. Furthermore, the issues

associated with semantics are not addressed i.e. different stakeholders, industries, or

product designers will name assembly features in a different way.

a) b)

37

Figure 2-13 Example of function block in an assembly cell FB network from (Wang et al., 2008)

In Proctor et al. (Proctor et al., 2016) the use of Product and Manufacturing Information

(PMI) is used to automate robot planning in conjunction with the Robot Operating System

(ROS). Due to the recent development of semantic PMI in ISO 10303 AP 242, geometric

dimensioning and tolerance (GD&T) requirements are carried through from design to robot

process planning without human intervention. The work of Michniewicz (Michniewicz and

Reinhart, 2015, Michniewicz and Reinhart, 2014, Michniewicz et al., 2016) presented a

framework that spanned ASP through to machine control code, again with a primary focus

on robotic assembly cells. The method automatically derives an assembly sequence from

CAD drawings through an “assembly by disassembly approach” that is supported through

some manual efforts should any preference or pre-existing knowledge need to drive the

final solution. The sequence is transformed into a set of process primitives (similar to

Barnes et al. (Barnes et al., 2004)) and then, based on a skill model, the capabilities of a

38

robot transform process primitives into control code. Due its focus on robotic cells, the

method needs to be proved on more bespoke and thus complex equipment, and furthermore

it is not clear how this would link with IEC 61131-3 (Hanssen, 2015). An overview of the

methodology described by Michniewicz is illustrated in Figure 2-14.

Figure 2-14 Overview of methodology for connecting APP with machine control code (Michniewicz and

Reinhart, 2015)

On the other hand a heavy focus on supporting changes to PLC code is presented by

Lennarton and Bengtsson (Lennartson et al., 2010, Bengtsson et al., 2013, Bengtsson and

Lennartson, 2014). This set of work addresses the lack of flexibility of existing PLC code,

39

attributing it to the lack of decoupling between core concerns which are related to

operations defining the behaviour of the system and support concerns such as alarms,

safety, manual control etc. To address this problem an aspect-oriented programming

approach is used that culminates in the development of a graphical language called

sequence of operations (SOP). There are similarities between SOP and sequential function

chart (SFC), the differences are largely semantics. This language is used in a prototype tool

called Sequence Planner. The first part of the work that sets the groundwork for the

language decomposes the problem into PPR domains and relations are discussed in much

the same way as PPR ontologies (Lennartson et al., 2010). The integration of the approach

with PLM tools is not discussed and so visualisation through virtual models for validation

is not addressed, although this is mentioned to be a part of future work. Furthermore, as the

approach was not implemented using ontologies, the ability to infer the impact of change

and make modifications to the sequence is not possible.

 Ontologies and Knowledge Representation

Artificial Intelligence (AI) is the study of intelligence with a view to replicating and

implementing it on computer systems [32]. Knowledge Representation (KR) is a form of

AI that focuses on modelling concepts which are both human and machine readable

utilising semantics for system description. This allows questions to be asked and answered

on the basis of which decisions can be made, either using computer-based algorithms or

through human experts. The aforementioned PLM tools use a very basic form of KR, but

full realisation is hindered by the problems described in the previous section i.e. proprietary

formats. KR is envisioned to move beyond current approaches for generating, integrating

and managing data, such that true concurrent and collaborative engineering can be realised.

A key benefit of KR is in its potential to automate processes, with this research focusing

on the engineering workflow. Knowledge can be modelled, mapped, and linked using

different methods such as: ontologies, Linked Data, and rules or frames (Brachman, 2004).

In KR, a Knowledge Base stores the knowledge model, which can be accessed to be queried

and/or updated.

The word “ontology” has a different meaning depending on the context. Firstly, there is the

philosophical discipline which is an uncountable noun written as “Ontology” which deals

with nature and the structure of “reality” (Guarino et al., 2009). Aristotle dealt with this

subject and defined Ontology as the “science of being”. Unlike the scientific ontology, this

40

branch of metaphysics focuses on the nature and structure or reality independent of how

this information would be used.

On the other hand, the use of ontology in this research stems from the field of Computer

Science whereby it refers to a type of information object. An ontology is a form of KR and

defined by Gruber (Gruber, 1993) as “an explicit specification of a conceptualisation”

while Borst (Borst et al., 1997) extends this definition to “shared conceptualisation”.

Ontologies are a form of knowledge representation for a given domain through the use of

formal semantics and can be used to arrange and define concept hierarchy, taxonomy, and

topology. Ontologies differ from a database approach as their focus is the preservation of

meaning to facilitate interoperability, while the main purpose of database schema is to store

and query large data sets (Martinez-Cruz et al., 2012). Ontologies can be accessed for

querying and/or modification purposes and they can be implemented using several

semantic languages (Kalibatiene and Vasilecas, 2011). Resource Description Framework

(RDF) based languages remain dominant which are based on XML, part of the World

Wide Web Consortium (W3C) recommendations . RDF-based models (i.e., RDF graphs)

are set of triples composed of a subject, a predicate, and an object. This structure to

information description mimics natural language. The Web Ontology Language (OWL)

(McGuinness and Van Harmelen, 2004) is an enriched extension of RDF that has the

capability to model cardinality constraints, enumeration, and axioms resulting in a richer

more accurate model. Figure 2-15 illustrates the language architecture described.

Figure 2-15 Representation layers for ontologies adapted from Lin et al. (Lin et al., 2004)

The information from OWL models can be queried using RDF-based query language

(SPARQL) (Prud’Hommeaux and Seaborne, 2008). In addition, SPARQL update

(Seaborne et al., 2008) can be used for retrieving and updating ontological models. Rule-

41

based languages such as the Semantic Web Rule Language (SWRL) (Horrocks et al., 2004)

can be employed within ontologies. These rules are defined on top of such ontological

models, as presented in (Puttonen et al., 2013). Through the use of rules and RDF triples,

semantic reasoning engines can infer implicit knowledge and validate the consistency of a

model.

2.5.1 Types of ontologies

In Usman (Usman, 2012) a classification of ontologies within the context of manufacturing

systems engineering is presented. The two criteria are the level of formalisation and the

level of specificity. In the former, there exist Lightweight and Heavyweight ontologies,

while in the latter there exist Foundational, Core, and Domain ontologies.

2.5.1.1 Levels of ontological formalisation

Lightweight ontologies are based on simple taxonomies with simple parent child

relationships between concepts (Borgo and Leitão, 2007). Examples of these types of

ontologies are WordNet (Miller, 1995), as well as a number of international standards

within the context of product data management e.g. STEP (ISO, 2011). These types of

ontologies have limited concept constraints such that their semantics are insufficient to

support interoperability i.e. to integrate different domain models (Dartigues et al., 2007).

To address this, particularly for the STEP format, the ONTOSTEP ontology was developed

which addressed the lack of logical formalism of EXPRESS so that reasoning and semantic

operability could be realised (Krima et al., 2009). This brings the advantage of inference

capabilities and thus allows them to address interoperability issues.

2.5.1.2 Levels of ontological specification

Foundational ontologies aim to cover the semantics of “everything” and thus cover the

semantic base for any given domain. Examples of foundational ontologies include DOLCE

(Masolo et al., 2003) and the Basic Formal Ontology (BFO) (Smith and Grenon, 2002).

The concepts in Foundational ontologies are generic and as a result are often too broad to

be used in a practical engineering context.

Core ontologies are limited in the literature and sit at a level of specificity between

Foundational and Domain ontologies. The objective of Core ontologies is to cover a set of

semantics that are shared across multiple domains (Deshayes et al., 2007). As a result, they

lend themselves to reuse and are of particular importance within the context of

interoperability. As with ontologies more generally, the shortcoming of Core ontologies

42

remains the lack of “shared conceptualisation” between practitioners and developers.

Focusing on the semantics i.e. the set of generic concepts that should exist within a given

ontology is insufficient to encourage the application of Core ontologies.

The author takes the stance that the most effective realisation of Core ontologies (and other

ontologies more generally) is in part the terminology used to describe the system in

question, but also to enrich said terminology with meaning derived from relations with

other concepts. This formation of graph patterns can in turn be analysed and inferences

made that enable the identification of a common entity under multiple aliases.

Finally, Domain ontologies have the greatest level of specificity and due to their focus and

distinct semantics, interoperability between Domain ontologies is challenging. Within the

context of supporting manufacturing system lifecycles, it is therefore incumbent on the

Domain ontology development team to identify Domain touchpoints and ensure that links

and mappings exist between the relevant concepts.

2.5.2 PPR Modelling

There is a rapidly growing body of literature in the area of PPR modelling. This section

focuses on the methods used to create these models, how and where they have been used

and the respective shortcomings to highlight both the technical and knowledge gaps.

Rampersad (Rampersad, 1994) introduced an integrated PPR model that integrated the PPR

domains in 1994. He decomposed the domains and showed how and where different areas

should be linked. A key insight of Rampersad was to link the product domain to the

assembly system as well as to the process resulting in the formation of the integrated

assembly model illustrated in Figure 2-16. This was with a view to realise concurrent

engineering. However, at the time of publishing, there was a lack of computing power,

engineering tools and industrial consensus on the approach, therefore this remained a

conceptual work.

43

Figure 2-16 Integrated assembly model (Rampersad, 1994)

Delamer et al. (Delamer and Lastra, 2006) described how ontological models supported by

semantic web services could be utilised to rapidly reconfigure manufacturing systems.

However, the work did not embed the ontology with an ability to recognise functional

aspects of processes and equipment, preventing automatic selection and invocation of

manufacturing processes. Further, there was limited description of the product ontology

and no explicit identification of how the respective ontologies were linked.

Lohse (Lohse, 2006) on the other hand did provide insight with regards to the mappings

within and across domains using a function-behaviour-structure framework in the

ONTOMAS framework (Figure 2-17). However, Lohse’s approach to domain integration

detracted from Rampersad’s in that it utilised the Process domain as the “middle man” i.e.

there was no explicit link between the Product and Resource domain (although a “port”

concept did permit the representation of interrelations between the Product domain and the

Resource domain (Lohse et al., 2005, Lohse et al., 2004)) This had the consequence of the

inability to query system suitability with respect to product and vice versa, preventing the

full exploitation of the presented ontological models.

44

Figure 2-17 High level view of the ONTOMAS ontology describing inter-domain links (Lohse, 2006)

The work of Lanz (Lanz, 2010) aligns well with the work presented in this research paper

as it addressed the same problems: i) to give meaning to the large amount of data and

information that exist in organisations, and ii) to have decision support systems that can be

trusted by designers and engineers. Lanz therefore created a PPR ontology and showed how

the respective domains are linked (Figure 2-18). The work demonstrated how data from

engineering tools could be imported into the ontology, although the reverse was not

described. In addition, there was limited description as to how the data extracted and linked

from the engineering tools can be exploited and manipulated.

45

Figure 2-18 Product-Process-System Model (Lanz, 2010)

The concept of “feature” was used by (Hasan et al., 2014) to carry information concerning

a product through process planning and the engineering of shop floor devices such as

grippers to map to skills. Hasan et al. then extended this work in Hasan et al. (Hasan et al.,

2016b, Hasan et al., 2016a, Hasan and Wikander, 2017 , Hasan and Wikander, 2016) to

directly extract product assembly feature data from SolidWorks through an application

programming interface (API) using a boundary representation methodology.

MASON (MAnufacturing Semantics ONtology) was proposed by Lemaignan et al. which

demonstrated automated cost estimation and semantic-aware multi-agent system for

manufacturing (Lemaignan et al., 2006). However, being self-described as an upper-

ontology, it was too abstract to be used as a practical engineering tool and is similar in

scope to the work of Ahmad et al. (Ahmad et al., 2015a). The main concepts and object

properties of the MASON ontology are illustrated in Figure 2-19.

46

Figure 2-19 Main classes and object properties of the MASON ontology (Lemaignan et al., 2006)

Panetto et al. present another manufacturing related ontology called ONTOPDM

(ONTOlogy for Product Data Management) which is an approach for facilitating system

interoperability within manufacturing environments (Panetto et al., 2012). To manage

heterogeneous data sets, Panetto et al. utilised existing standards for product technical data

(IEC 10303) and Enterprise Resource Planning/Manufacturing Execution System data

(ISO 62264). However, the research focused primarily on the Product Domain and how

information could be exchanged with reduced semantic uncertainty. As a result the other

product realisation domains were less well defined. In addition, by creating an ontology

that linked to a set of standards, Panetto et al. concluded that it was necessary to further

extend the ontology to include other standardisation initiatives. This poses the risk of a

large, monolithic ontology that may be difficult to maintain.

A manufacturing systems engineering (MSE) ontology was presented by Lin and Shahbaz

in (Lin et al., 2004). The work formed part of a broader, extended enterprise system called

the EEMSE moderator (the acronym was not elaborated in the work). A moderator was

defined in the work as “an intelligent support application designed to facilitate and improve

concurrent engineering design by enhancing the degree of awareness, cooperation, and

coordination among engineering team members”. The research noted two key issues when

considering a multi-enterprise, complex, engineering projects. Firstly, design change

information needs to be effectively communicated to relevant stakeholders and secondly

what is perceived to be important aspects of a given design by a given stakeholder need

to be expressed explicitly. The work culminated in the development of a large, complex

47

ontology with the top level abstract classes illustrated in Figure 2-20. This monolithic, non-

modularised model hindered reuse and thus the authors of that paper do not have appeared

to extended the work as discussed in the concluding section of the paper which was to

support more powerful query and inference.

Figure 2-20 Top-level abstract classes from the MSE ontology (Lin et al., 2004)

Recently, Chhim et al. (Chhim et al., 2017) presented a product design and manufacturing

process based ontology to support manufacturing knowledge reuse. They identified that a

lack of granular mappings between product design (the Product Domain) and the

manufacturing process (Process Domain) did not exist, and hypothesised that this was one

of the reasons for the lack of industrial uptake of ontologies. The authors focused on reusing

the knowledge generated from DFMEA (design failure modes and effects analysis) and

PFMEA (process failure modes and effects analysis) processes. The full design and

manufacturing ontology is presented in Figure 2-21 and it was used to identify how a given

product component could fail and what detection controls had been used in the past using

a SPARQL query. Although the research identified the lack of granular mapping in existing

works, examination of Figure 2-21 reveals a lack of mapping at the lowest levels of

DFMEA (left branch) and PFMEA (right branch). In order to identify relationships,

complex queries would need to be written. However, this could be addressed through

SWRL rules that could automate low level mappings and thus simplifying queries.

48

Figure 2-21 Full design and manufacturing ontology from (Chhim et al., 2017)

The CPM (Core Product Model) (see Figure 2-22) in conjunction with the OAM (Open

Assembly Model) (see Figure 2-23) both developed by NIST (National Institute of

Standards and Technology) form basic “beyond geometry”-level product models that were

designed to exist at a level of abstraction that allows them to be capable of capturing

common engineering and design information (Rachuri et al., 2006, Fenves et al., 2008).

However, these models are in a similar vein to Panetto et al., focussed on the Product

Domain with limited consideration of the other domains. The OAM uses a data structure

adopted from the STEP (Standard for Exchange of Product data) standard (ISO 10303).

STEP is represented by Application Protocols (APs), the most common of which are AP203

and AP214 for the exchange of geometrical information i.e. CAD data, and AP239 for

product life-cycle support. Originally STEP was developed within the EXPRESS language,

however due to its lack of formal semantics, an OWL-DL implementation of STEP was

created and named OntoSTEP (Krima et al., 2009).

49

Figure 2-22 The Core Product Model (Rachuri et al., 2006)

Figure 2-23 The Open Assembly Model ((Rachuri et al., 2006)

Usman et al. (Usman et al., 2011, Usman et al., 2013) and Chungoora et al. (Chungoora et

al., 2013) worked to formalise product and manufacturing concepts in the MCCO

50

(Manufacturing Core Concepts Ontology) (see Figure 2-24). The aim of the work was to

provide an ontological foundation for sharing knowledge across domains. In a similar vein

to Panetto et al., the work utilised ISO standards to support in the selection of relevant

concepts. A key contribution was the development of a Feature concept that facilitated

integration. However, there was a lack of modularity in the ontology and the resource

concepts did not decompose down to the level of states preventing granular mapping.

Figure 2-24 Lightweight representation of the Manufacturing Core Concepts Ontology (Usman, 2012)

Within the Process Domain, a commonly cited modelling standard is PSL (Process

Specification Language) (see Figure 2-25). The basic concepts represented within the PSL

ontology are “Activity”, “Occurrence”, and “Successor”. These concepts together with

axiomisation of primitive process concepts provides a rich set of semantically constrained

terminologies for describing process knowledge. Although PSL provides a holistic set of

capabilities for the Process Domain including process planning, production planning,

process simulation, and business process re-engineering (Bock and Gruninger, 2005,

Grüninger and Kopena, 2005) it has seen limited development and use. This is largely

attributed to a lack of tools and that, in industrial settings, the activities of the Process

domain are executed in an ad hoc fashion (Lanz, 2010). The Framework Programme 6

project, PABADIS’PROMISE (Pabadis’Promise, 2006), resulted in the formation of the

51

P2 model and the P2 ontology. This ontology is holistic as it models all the PPR domains

and in a machine understandable way by using RDF. In this work, conversion and

transformation of data is executed semi-automatically. Borgo et al. (Borgo and Leitão,

2007) define and develop a core ontology for manufacturing. The work utilised an

established foundation ontology, DOLCE (Descriptive Ontology for Linguistic and

Cognitive Engineering) to improve system consistency. The work of Borgo et al. in

conjunction with (Leitao, 2004) created the ADACOR (ADAptive holonic Control

aRchitecture for distributed manufacturing control) ontology (see Figure 2-26). This

ontology was expressed in an object-oriented frame-based manner and focused on

modelling processes and resources with a view to realising changes within the domain of

holonic manufacturing systems.

Figure 2-25 Basic Concepts of PSL (Bock and Gruninger, 2005)

52

Figure 2-26 Manufacturing Ontology in the ADACOR Architecture (Borgo and Leitão, 2007)

2.5.3 Skill Modelling

The use of a “skill” concept (Pfrommer et al., 2013, Schleipen et al., 2014) and other

synonymous terms such as “capability” (Järvenpää, 2012) or “function” (Lohse, 2006) have

been used in varying degrees in the literature. One of the earlier examples is in (Oliveira,

2003) which uses a skill concept in an agent-based production system. However,

consideration for consistency checking between plans and machine control was not present.

In (weser and Zhang, 2009) the appropriate level of abstraction for robot actions is

discussed, but inconclusively. The integration of planning and robot control is realised

through JShop2, however it was noted that failures in skill execution arose due to

inconsistent descriptions. In the ADACOR ontology, the concept of “property” was used

synonymously with “skill” however this focused only on the capabilities of the “resource”

class and no consideration was made with regards to the needs or requirements of the

“product” or “operation” class.

Järvenpää (Järvenpää, 2012) extended the work of Lanz (Lanz, 2010) by enriching the

Resource domain model in the PPR modelling framework with a comprehensive capability

model to allow manufacturing systems to adapt to new requirements (Figure 2-27). One of

the shortcomings of the work was a lack of a clear workflow that demonstrated how the

methodology would be used in an industrial context. Furthermore, the work did not

consider the program generation or control of machines. Capabilities were abstracted and

53

modelled from the perspective of physical equipment rather than combining them with

control aspects e.g. PLC software.

Figure 2-27 Capability model (Järvenpää, 2012)

The lack of use of the ISO 16100 standard was discussed in 2.4.2, however one of the rare

instances where the standard is recognised for its potential to support software

interoperability is in Matsuda and Wang (Matsuda and Wang, 2010) where it is extended

by through a capability template. A matching algorithm was created that matched capability

requirements to instances of capabilities that pre-existed within a database. Figure 2-28

illustrates the matching process, where MDM is the manufacturing data model, MSU is a

manufacturing software unit, MDD is the manufacturing domain data model, and CCS is

the capability class structure. The MDM consisted of a structured activity tree which

utilised unambiguous and unique names together with semantic information expressed as

a sequence of MDDs. The MDD provided information about resources, processes,

information exchange, and resource relationships and would be created by the system

designer (those within the Resource Domain. The workflow here is interesting because it

is incumbent on the software developer to ensure that the software unit they develop aligns

with the model so that the end user can query for it accordingly. This enforces alignment

between the teams and stakeholders that are involved with realising a complex system. As

the system was implemented within a .Net Framework using C# mapping the

aforementioned benefits of ontologies could not be exploited. Furthermore, the work did

not actually show any integration with engineering software despite the claim in the title

i.e. “Software interoperability tools...” This lack of integration prohibited the work from

being validated within a workflow that could be aligned to industrial practices.

54

Figure 2-28 Matching software capability profiles (Matsuda and Wang, 2010)

As alluded to in the section that discussed the digitisation of manufacturing, the shift

towards smart manufacturing facilitated by technologies such as the IoT and driven by

ever-challenging customer requirements has resulted in the emergence of Cyber-Physical

Production Systems (CPPS). Within the context of system operation, skills are executed by

“agents” or encapsulated within “services” (Leitão, 2009, Stark et al., 2017). There remains

a disconnect however between the functional capabilities of a CPPS, the representation of

those capabilities within digital models, and the execution of capabilities. The IEC 61499

(Vyatkin, 2009) function block standard is a modelling approach that has the potential to

bring these elements together, however there remains a lack of uptake by major PLC

vendors, primarily due to the domination of IEC 61131 (Hanssen, Leitão, 2009). An

example of the capability of IEC 61499 is described in Alsafi and Vyatkin (Alsafi and

Vyatkin, 2010) where it is used to support software reconfiguration through an ontology-

based reconfiguration agent. Although there is a lack of visualisation to validate changes

to the system control, the work demonstrates how the knowledge model infers facts about

the manufacturing environment and then decides whether a set of requirements can be met.

One of the key focus points of this thesis is the mapping of high level process planning

with low level mechatronic control and this is also addressed in (Alsafi and Vyatkin, 2010).

The Evaluation chapter discusses in more detail how the work in this thesis complements

and extends the relevant aspects of Alsafi and Vyatkin (Alsafi and Vyatkin, 2010).

55

There have also been a number of EU funded projects in the last decade that consider skills

within their scope, these are summarised as follows:

 SIARAS (Skill-based Inspection and Assembly for Reconfigurable Automation

Systems) built a skill-based model to connect top-down and bottom-up views on

the system reconfiguration process (Malec et al., 2007, 2008, Haage et al., 2011)

(Figure 2-29). An ontology of skill primitives was developed within a skill server

to aid the matching of process requirements to resource capabilities.

Figure 2-29 Top skill classification, as defined by the SIARAS ontology (Stenmark and Malec, 2015)

56

 ROSETTA (Robot control for Skilled ExecuTion of Tasks in natural interaction

with humans; based on Autonomy, cumulative knowledge and learning) used skills

to execute tasks in environments where robots interacted with humans (Björkelund

et al., 2011b, Björkelund et al., 2011a). The approach used AutomationML as a

data exchange format and build a knowledge base by converting this structured

data into RDF triples. The work resulted in the culmination of the “Knowledge

Integration Framework” (KIF) which exploited the skill and device ontology that

had been developed (see Figure 2-30). The KIF server was at the centre of an

architecture consisting of a production station, controller, and various interfaces

with implementation carried out within Robot Studio software by ABB. One of the

limitations of the work was the syntax-based translation of XML files which does

not align with the broader vision of the semantic technologies used. Furthermore,

due to the focus on capturing execution/operational data and converting it to skill

knowledge, there was a lack of description as to how this knowledge would be

mapped with other domains.

Figure 2-30 Top level ontology used in the ROSETTA project with aspects of a Skill model (Björkelund et al.,

2011b)

57

 IDEAS (Instantly Deployable Evolvable Assembly Systems) focused on the

implementation of agent technology (Onori et al., 2012). An evolvable assembly

system (EAS) is one that co-evolves with the evolution products and processes

(Oliveira, 2003). The project took advantage of a number of developments from

the EUPASS FP6 project, namely: ontological descriptions of assembly processes,

equipment modules with embedded control, and data exchange protocols. The

implementation of agent technology was achieved by exploiting the IEC 61499

(Vyatkin, 2009) standard for distributed control to enable the vision of “plug &

produce” (Ferreira and Lohse, 2012, Ferreira et al., 2012). This required the

development of a skill model which consisted of “atomic skills” that were defined

at the lowest level of granularity or at the module level, and “composite skills”

which aggregated module “atomic skills” to form more complex skills. The

definition of a skill consisted of four main characteristics: assembly process type,

level of granularity, control ports, and parameter ports. Figure 2-31a is a schematic

overview of the composite skill concept using IEC 61499 notation. There is a high

level of similarity between this work and Wang et al. (Wang et al., 2008, Wang et

al., 2012) with both focus of the execution of skills using function blocks.

In order to realise the “evolution” aspect of the approach a configuration process

was developed. This was also supported through the skill approach with the

workflow illustrated in Figure 2-31b. First the assembly process requirements need

to be defined based on the new product/product variant assembly step sequence,

precedence constraints, and process parameters. Next, skills are assigned to the

assembly process requirements. Finally, the third step considers those requirements

that are not executable by the existing skills necessitating the generation of new

ones.

The work showed potential in the sense that the capabilities of a system could be

described within a rich, extensible model. Furthermore the project successfully

demonstrated multi-agent control for assembly systems by building a number of

physical demonstrators. However, the approach did not use semantic technologies

preventing, for example, the querying of skills at the product development stage to

ascertain what change, if any, would need to be made to the system. As such, the

workflow described would be largely manual or possibly implemented within a

database resulting in poor extensibility. Furthermore, the skill model did not

explicitly link with Product and Process Domain activities, sitting squarely within

the Resource domain as properties of modules.

58

Figure 2-31a) Overview of the composite skill concept, and b) conceptual overview of the configuration

process (Ferreira and Lohse, 2012)

 SkillPro (Skill-based Propagation of "Plug&Produce"-Devices in Reconfigurable

Production Systems by AML) (Pfrommer et al., 2013, Schleipen et al., 2014)

utilised the PPR concept that exists within AutomationML (Drath et al., 2008) with

the addition of production component skills to develop a holistic service-oriented

framework for adaptable production systems. In the SkillPro project, the “Skill” is

a placeholder for a process and provides metadata such as parameters needed to

specify it. A skill hierarchy exists thus building a skill taxonomy however it

appears that the creation of such a taxonomy was beyond the scope of the project

as this cannot be found in the literature. A “Production Skill” provides some

indication of production requirements and seems to be an output from process

planning activities, while the “Asset Skill” is the skill that is executable by a

physical asset. In order to manage assets, an asset management system was

developed supporting the paradigm of digital manufacturing as a library that can

be reused. It was not clear how this asset management system was implemented

a)

b)

59

and thus how it would integrate with engineering software. One interesting

extension of the skill model in SkillPro that has not been observed in other works

is the recognition of the skills that human operators have. The skill concept and its

relation with the PPR model is illustrated in Figure 2-32. The work did not use did

not use ontologies it suffers from an inability to reason about skills and

inconsistencies across domains or infer new knowledge from explicit relationships.

Furthermore, there was limited evidence of the models themselves resulting in the

output of the project seeming more conceptual in nature and thus difficult to

evaluate.

Figure 2-32 Skill concept aligned to classical PPR from the SkillPro Project (Aleksandrov et al., 2014)

 PERFoRM (Production harmonized Reconfiguration of Flexible Robots and

Machinery) is an ongoing project (at the time of writing) that continues work on

the concept of “plug & produce”. Ontologies are to be used within the Resource

domain to facilitate interoperability of heterogeneous devices (Leitão et al., 2016).

 Summary and Gap Analysis

In order to support the paradigm shift towards mass customisation and reduced product

lifecycles, engineering changes must occur, and must occur more frequently, through a

number of engineering domains fluidly. Thus, this chapter opened with describing change

propagation and the engineering change management process presenting the challenges

highlighted in the literature. The review found that increasingly complex products in

conjunction with a more demanding customer base (a consequence of the paradigms of

mass customisation and personalised production (Mourtzis and Doukas, 2014)) increases

60

both the complexity and the frequency of the engineering change process. Change

propagates to a larger number of stakeholders and through more means than was

conceivable a few decades ago.

Although in principle model-based systems engineering provides a business the capability

to have defined relationships across multiple design and engineering domains and phases,

models are often created in proprietary standards which are industry or software vendor

specific. As a consequence, despite scientific and industrial research efforts, models remain

disjointed and uncoupled in many instances. Furthermore, a typical outcome of MBSE is

the emergence of conflict as inconsistences arise between different models that, regardless

of the level of activity decoupling, need to be addressed. This is referred to in the literature

as inconsistency management and the literature review explores the different methods

associated with identifying and resolving this issue. Examples of this have been presented

with ontologies, but without reference to any skill models.

Within the review, it was identified that there are some connection points between the

Product Domain and Resource Domain i.e. through the exchange of information

concerning geometries. Logical aspects such as sequencing and selecting the appropriate

resources based on process types is achieved through activities classically associated with

APP. The argument presented in this section is that the existing methods and tools are not

connected in a way to the other domains that allows changes to be communicated in an

effective way. Industrial approaches are manual and therefore error prone, and even digital

models while providing a degree of stability and traceability are often not integrated with

other domains. There is a need for humans to interrogate documents or models is changes

are made to the Product domain to understand how the process plan will change and inform

the Resource domain accordingly. There are some examples of automating the change

presented, but a holistic methodology is missing.

To address the integration and interoperability, the remainder of the literature focused on

how ontologies have been used to formalise semantics and store the knowledge that

currently exists in the minds of experts. Within the context of ontological models, there

many examples and some level of convergence can be seen with respect to the concepts,

but there remains a disconnect as to the semantics or definitions between the models of

different authors. There was a detailed section on skill modelling as a means for

representing the functional capability of manufacturing system resources and how such

models are used to connect the respective product realisation domains. Ultimately however,

61

the focus of skill models remains on the execution aspect of manufacturing system with

limited consideration for how the workflow to realise change is supported.

2.6.1 Knowledge Gaps

Based on the review of literature, the author identifies the following knowledge gaps:

 Both ontological models of the respective PPR domains and those for skill models

exist in the literature, however where the two exist in a single piece of work, the

latter always sits squarely in the Resource Domain with limited explicit

consideration for its interaction with the other domains. There is a lack of

knowledge as to how the Product Domain and the Process Domain interact with

skill models and how this connection can support in inconsistency management

within the context of engineering changes.

 One the significant benefits of ontologies is their ability to enable interoperability

between heterogeneous systems. Within the context of manufacturing systems

research, this is largely focused on enabling the interoperability of heterogeneous

devices and in some cases executable software e.g. the PERFoRM project.

However, there is a lack of knowledge as to how ontologies (in conjunction with

skill models) can support in the engineering workflow associated with engineering

software, particularly those used for the design and visualisation of manufacturing

systems. The interaction between ontologies and software tools has not been

explored in considerable detail beyond the former’s ability to store the knowledge

generated by the latter, and not how said knowledge can be exploited and reused

in a practical way.

The following chapter address these knowledge gaps by first identifying the key concepts

that should exist within the PPR domains based on what has come before, the formation of

a Skill model that brings the domains together, and a broader framework that facilitates the

integration of engineering workflows with knowledge representation.

62

3 A knowledge-based approach for integrating

engineering workflows

 Introduction

The gap analysis at the close of Chapter 2 identified that PPR approaches using ontologies

have been demonstrated in the literature, but there is limited evidence of how these models

can be used to complement existing engineering workflows. In addition, the use of

deduction and inferences through the workflow is limited and there are only a few examples

of a how Skill or Capability models facilitate design, development, and modifications

across the PPR domains. Therefore, the vision for how the PPR models (in conjunction

with the Skill model) fit into the wider workflow at a high level is presented in Figure 3-1.

Domain stakeholders work within their respective teams using their respective engineering

tools/methods and modelling software with a “team layer”. However, more often than not,

the connectivity and integration of the digital models is poor (and integration of paper-

based documentation is purely manual). Thus the communication of requirements and

constraints are carried out in an informal manners e.g. through meetings, emails,

documents. This research proposes an addition to the workflow of the team layer through

the Skill model which extends the descriptions of the digital models such that they can be

effectively integrated into the knowledge layer i.e. the PPR ontology. The digital models

could be parsed through a standard like AutomationML, however to ensure consistent

semantics and the explicit declaration of contexts, the Skill model is fundamental.

Figure 3-1 Lack interoperability and knowledge integration addressed through PPR ontology and Skill model

Human interaction
Creation & Use of

digital models
Lack of effective digital

model integration

PPR Ontology

Process
Domain

Product
Domain

Resource
Domain

Digital engineering
tools

Engineers, designers
& planners

Product
view

Skill model

Process
view

Resource
view

Linking of ontological
models

63

 Methodology overview

This chapter begins with a general description of the model used for this approach. It then

presents the respective PPR domain ontologies justifying the concepts, the descriptions,

comparing the structure and semantics with existing works and finally presenting the intra

and inter domain relations. Once the ontologies have been described, their use to support

inconsistency management as a consequence of engineering changes is discussed. In

Daconta et al. (Daconta et al., 2004) three representation levels for ontologies are described

as a structured method for implementing knowledge representation. These are described as

follows:

 At Level 1 there is the Knowledge Representation (KR) level which includes the

fundamental constructs associated with KR such as Classes, Axioms, Rules etc. In

this work, the Web Ontology Language (OWL) is used which is an enriched

extension of the Resource Description Framework (RDF) language. The

environment used to create and edit the ontological models is Protégé which is an

ontology editor developed by Stanford University .

 At Level 2 there is the Conceptualisation process which identifies the necessary

concepts needed to capture the part of reality being modelled in the ontology

(Guarino, 1998). The implementation of KR within modular ontologies in this

work is described using standard domain terminology. Standard terms have been

derived from the literature, with key sources being ontological models with a

similar focus, namely: (Lanz, 2010, Lastra, 2004, Järvenpää, 2012, Delamer and

Lastra, 2006, Lohse, 2006, Usman et al., 2013, Panetto et al., 2012) as well as some

standards that exist, particularly within the context of assembly such as DIN 8580

(DIN, 2003) and VDI 2860 (VDI, 1990). These references have been examined in

Chapter 2 and the reader is directed there for further reading as well as the sources

themselves. When describing the respective domain ontologies and the chosen

concepts, the author justifies why a given concept has been chosen over another.

In some cases the choice is “just” semantics. In other cases, there is a significant

impact on the topology of a given domain and its relationship with others. The

conceptualisation level is represented through UML class diagrams (though not

using strictly formal syntax) as it permits the elaboration of data type properties,

multiplicity, and relationships such as aggregations and sub-classes.

 At Level 3 there is the Instantiation of the ontology which is the process of

populating the classes with individuals. In this research work this process is carried

64

out as a means to test the strength and capability of the conceptualisation level.

With respect to the research questions, knowledge gaps, and the contributions, the

tests determine:

i) whether the domain models sufficiently covers the range of

concepts needed,

ii) how capabilities are checked for using the Skill model

iii) how inconsistencies are identified

iv) how control code for machines can be modified based on the

identified inconsistencies.

There are a number of challenges in determining whether an object should be

conceptualised or instantiated. It is essentially dependent on the level at which the ontology

is to be used and how it is to be used. The distinction between Level 2 and Level 3 has been

made based on this consideration.

The PPR ontology consists of a model of three main modules i.e. Product, Process and

Resource as well as a Skill model, which include cross domain links and rules to infer

implicit knowledge. The result is an ontology with sufficient level of description that can

be used for supporting the re-engineering process when introducing new product variants

in assembly lines. As the focus is the link between the domains and the assembly process

planning activity, there is a heavy focus on this area. That is not to say that the ontology

will not have other uses also. These are investigated and considered in Chapter 5 –

Evaluation.

Moreover, the structure of the resource ontology is aligned with use of virtual engineering

(VE) tools called vueOne. The engineering toolset used are described in detail in (Harrison

et al., 2016) but can be summarised as a lightweight, low-cost toolset that aims to

complement commercially available VE solutions. vueOne used standards and open data

formats that allow interfacing with other engineering environments. However, the modular

nature of the ontology permits the addition of concepts that may not yet exist depending on

the desired tool to be used. During the development of the ontology, a number of

shortcomings of the engineering toolset were identified. In brief this included a lack of

detailed product modelling, limited high level process planning, and complex change

processes should models need to be rectified. The methodology chapter describes the “as

is” state of the engineering tools and what extensions are proposed to support

implementation of the research work with a view to providing a generalized set of

recommendations for industrial software also.

65

 Domain Ontologies

At their highest level, the domain ontologies in conjunction with the skill model can be

represented as presented in Figure 3-2. The Product domain, in order for it to be realised

requires some set of processes that are described by the Process domain. There are a number

of works in the literature that have been presented in Chapter 2 that automate the process

of converting a set of product component relations into an ordered set of processes.

There is some inherent knowledge that could be stored and referenced as a consequence.

The objective of the link between the Product Domain and the Process Domain is not the

storage of general knowledge i.e. that an instance of a screw in the Product Domain would

require an insertion process in the Process Domain, but specific knowledge that would be

generated through industry or organisation specific workflows e.g. that a specific product

assembly is realised by a specific operation.

The knowledge of what that operation is, could either be stored in the ontology or instead

it would refer to a location where such information could be found. This prevents the

ontology becoming heavy and thus computationally intensive to use as well as minimising

data duplication. On the other hand, there are provisions in the ontology to store knowledge

of what a given operation consists of should that be useful to the user. This offers flexibility

in its usage and thus does not impose a specific way of working on an organisation,

complementing workflows or engineering processes that may already exist. Both the

Product Domain and the Process Domain point towards the Skill model.

The Product domain will, in general, provide the model with some context i.e. what is it

handling? how heavy is it? what is the material? On the other hand, the Process domain

provides the requirement of the action i.e. I need to grip. I need to rotate. I need to move

etc. The issue of semantics arises here and this is conceptually addressed by proposing that

a standard terminology should be used. This is expanded upon in the Process Domain

ontology section.

66

Figure 3-2 Model Overview with contribution

Finally, the Resource Domain will, in general, execute a Skill. The key difference between

the ontological decomposition of how the Resource Domain executes a Skill as compared

to other similar works e.g. (Aleksandrov et al., 2014, Björkelund et al., 2011a, Björkelund

et al., 2011b, Pfrommer et al., 2013, Pfrommer et al., 2014, Schleipen et al., 2014,

Järvenpää et al., 2010, Järvenpää et al., 2016) is that it is based at a much finer level of

granularity. Conventionally, other authors have stipulated the execution of skills or

capabilities at the machine or station level. Although this is acceptable if a high level

understanding of what a station or machine is able to do is required, this does not a allow

the more nuanced behaviour of such equipment to be represented. This returns to the

industrial issues associated with engineering change management. If changes are made at

a high level without the associated knowledge of the impact of what happens at a finer level

of detail, such change processes are likely to face unforeseeable hurdles due to the lack of

models and thus transparency.

The domain ontologies are modularised to demonstrate how information can be linked and

exploited should, as is sensible to expect, respective domain knowledge structures be

designed by domain experts. Similar insights and approaches have been made and used by

Lohse (Lohse, 2006) and Ramis Ferrer et al. (Ramis Ferrer et al., 2016). Ensan and Du

(Ensan and Du, 2011) discuss the challenges of monolithic ontologies to be not only

maintenance, reasoning, and implementation due to their complexity, but also the inability

to work in a distributed environment, which is commonplace for modern manufacturing

organisations. The encapsulation of knowledge into an ontology module defines the content

as well as the interfaces or ports to other ontologies permitting a given system model to be

used from perspectives that may not have been considered at the time of design. Note that

67

this can also be achieved through defining interfaces or ports within an upper ontology.

This plays well into the idea of ontologies being extensible as opposed to the more rigid

nature of relational databases (Martinez-Cruz et al., 2012). Within the context of PPR

modelling, the boundaries that exist in the literature concerning which activity or concept

should be in which domain is hard and clear, however this cannot be expected to be the

case in every industrial setting. Therefore, certain concepts need to be shifted and plugged

into other areas to be aligned with specific industrial domain needs. Encapsulation of

certain aspects of knowledge within domain ontologies facilitates the shifting of broader

concepts where there is certainty and thus allows a KB that is more representative of a

given organisation’s operating structure, to be created.

 Having provided an overview of the models and their relations, the chapter progresses to

a more detailed description of the respective domains. Where possible, the author has

attempted to ensure consistency of colours associated with domains to make diagrams

easier to follow. The Product Domain is blue, the Process Domain is red, the Resource

Domain is green, and the Skill model is yellow.

 Product Domain

The focus of the methodology as a whole is on assembly processes and therefore concepts

within the Product Domain align with this focus. Many of the concepts and relations within

this domain are based on the works of Lohse, Kim (Lohse, 2006, Lanz, 2010, Kim et al.,

2006, Demoly et al., 2010, Fenves et al., 2008, Technology, 2005) where they have also

considered the structure of the product concept. In this work, the product model is focused

on ensuring that information about the broadest breadth of an organisation’s product family

can be captured, the features associated with product components, and the relations

between product components and assemblies. The product design process and associated

information is not included in this work, only the results of this activity. Furthermore, there

is no representation of the product or component geometry within the ontology. This

information is abstracted away as the ontology would be better served as a mechanism for

pointing to the file/model associated with detailed topology.

3.4.1 Modelling Product Variety

The ProductFamily is a high level concept that allows the representation of a broad range

of products that may exist within an organisation. A ProductFamily contains a set of

ProductVariants that share a common set of attributes. The ProductVariant is realised

through a set of Operation instances through the hasOperation property which is a link to

68

the Process Domain ontology. This is elaborated upon in the next section. A Product is

defined by the business dictionary as “A good, idea, method, information, object or service

created as a result of a process and serves a need or satisfies a want. It has a combination

of tangible and intangible attributes that a seller offers a buyer for purchase .” This is a

broader definition of Product than is necessary for this work as products such as services

can exist entirely within a digital environment and so negate the need for physical

assembly.

However, the author chooses to retain this definition due to it explicitly defining a link to

process and the mention of it serving a need or want. While this research does not extend

the Product Domain ontology to an area of what the product does, it would be a useful

addition to connect the ontology to the market i.e. external to the business environment

where such a model would be used. In order to help the reader understand how the concepts

of ProductFamily, ProductVariant, and Product would be instantiated, example from a

number of different manufacturers are presented in Table 3-1.

Table 3-1 Example of Product, ProductFamily and ProductVariant

Industry Concept

Product ProductVariant ProductFamily

Automotive Jaguar XF R-Sport,

LHD, 250PS, Auto,

Black, Gasoline

Jaguar XF Jaguar

Electronics Samsung Galaxy

S8, Midnight Blue,

64GB

Galaxy Series Mobile Phones

Fuel Cell Open Cathode

AC64, 2kW

Open Cathode

fuel cell

Fuel Cell

Modern products are more complex now than they have ever been and the level of

customisation means that the hierarchy presented in this ontology may prove to be

insufficient to capture the depth that may be required. This could be alleviated in part by

introducing new concepts above ProductFamily to support in the level of steps that may be

required by an organisation. Equally, for the sake of simplicity, it may not be necessary to

utilise the three levels presented and the user may only instantiate to the level of

ProductVariant.

69

3.4.2 Assembly

The Product is composed of any number of assemblies. In this context, the word Product

is synonymous with “final assembly”. The term Product was chosen over final assembly

because there are no examples of the latter being used in existing ontologies. Furthermore,

it is the Product that the customer receives in every instance and not a final assembly. The

difference may be some end of line testing or packaging. The Assembly is an aggregation

of ProductComponents in a way that respects the Liaisons between them. A Liaison is

defined as “the physical connection that exits between two components within an

assembly” (Lohse, 2006), and within the context of this ontology this refers to the

ProductComponent and the Assembly. Note that the concept of Liaison can also exist within

the Resource Domain. However, in that domain, this is avoided due to a functional view

being taken of the system due to a “component-based” philosophy being employed by the

author in that domain. In other words, the physical relationship that exists between

components in the Resource Domain is less relevant than the functions of Skills that they

are able to execute. Should knowledge be required concerning physical connections, this

could be derived from the virtual model.

The concept of sub-assemblies is handled through the contains object property. Both the

ProductComponent and the Assembly are connected to the Liaison class through hasLiaison

object property. The approach for modelling the Assembly in this way is based on the work

of (Lohse, 2006). This is due to it being a proven solution for describing product

components with respect to the assemblies they form and the relationship between both

components and assemblies. An Assembly is considered to be an undirected graph in the

Product Domain with ProductComponent and Liaison representing nodes and edges

respectively.

An illustrative example using a fuel cell is presented in Figure 3-3 that shows an exploded

view of the product on the left (a) labelled with component names. Figure 3-3b illustrates

how this information is transformed into a graph. Note that each of the liaisons has been

given a unique name which aligns with the general approach of OWL and Semantic Web

Technologies revolving around Unique Resource Identifiers (URIs). This explicit

declaration and thus the ability to directly instantiate relationships between components is

more expressive than modelling relationships through object properties as is the case in

(Ahmad et al., 2015b). However, naming liaisons is not typical practice in industry as it

requires the management of an additional data set. Therefore it could be possible to auto-

70

generate liaison instances through the aggregation of the names of the product components

or assemblies involved with a given liaison.

Only three types of Liaison are modelled in this work, but this can be extended by adding

further classes due to the extendable nature of ontologies. In this model, the Liaison has

been given a data property value of hasLiaisonQuantity to determine how much of a given

Liaison exists which helps to identify whether the resources are capable of meeting

requirements. The uses of this data property value could be: generation of cycle times if a

time value is assigned to a given Liaison, to provide a mechanism to check product designs

with previous variants, to ensure that the Process domain has ensured that all liaisons are

realised in the process plan. The realisation of a Liaison requires a Process, while the

Operation may be specific to a ProductVariant. The ProductComponent class has data

property values of hasProductComponentQuantity and hasProductComponentID. These

data properties can support in the management of product bill of materials. An Assembly

and a ProductComponent are also both examples of a SkillContext. This concept is

discussed in further detail in when presenting the Skill model.

Figure 3-3 a) exploded view of fuel cell b) undirected graph of fuel cell assembly (Ahmad et al., 2016)

3.4.3 Features

Although there is no model representing detailed product geometry, there are certain

features of a ProductComponent that can be represented through the ComponentFeature

class. The use of feature models within the Product domain has also been included in the

works of Usman et al., Lanz, Kim, and Demoly (Usman et al., 2013, Lanz, 2010, Kim et

al., 2006, Demoly et al., 2010, Technology, 2005). The author has taken inspiration from

71

the model presented in Lanz (Lanz, 2010) which decomposes features into Geometric and

NonGeometric. In this work, the ComponentFeature has two subclasses that are

QualitativeFeature and QuantitativeFeature. The former concerns those features that

cannot be described through integers. These include colours and materials. These concepts

have been defined as classes rather than as instances of the superclass QualitativeFeature

as there is knowledge that needs to be represented at this level to support the selection of

appropriate manufacturing resources. For example, a component within a fuel cell is the

gas diffusion layer (GDL). This component is made from carbon paper which is a porous

material. Therefore, the author envisions a material ontology e.g. Ashino and Fujita

(Ashino and Fujita, 2006) that could extend the Product domain and enhance the Skill

statement i.e. increasing the breadth of information available to the Skill model to ensure

that the appropriate resources can be selected. Upon selection of appropriate

equipment/resources, the knowledge associated with the selection process could be stored

explicitly as a triple. This could then be used to infer appropriate resources when the same

material is used in a different context.

The QuantitativeFeature is modelled in a different way to QualitativeFeature to exploit

the fact that this type of feature can be expressed through integers. The data type property

of OWL is used to model the QuantitativeFeature and this class can quite easily be

extended by adding new properties. The author has elected not to represent these properties

as classes because there is little else that can be gleaned or inferred from this information.

As an instance of ProductComponent is a physical thing it goes without saying that it will

possess some physical attributes.

There is no use case that the author has been able to identify (within the context of assembly

automation) that would lend itself to infer, for example, that a robot will need to lift an

object of mass. Rather, it is the value of the mass associated with the object that is important

and this cannot be captured through the use of a class. If the ontology was to be extended

and fully align with the definition of product presented at the head of this section, then there

may well be a need to transform the data properties associated with representing

QuantitativeFeature to classes. This is because non-tangible products will not have

physical attributes e.g. a mobile phone app. This would require an extension of the

ProductComponent class to represent tangible/physical and non-tangible components. In

this case it could be useful to infer that a component does not have a mass associated with

it and therefore there is no need to make inferences concerning it from physical parts of the

72

Resource domain. It may well be necessary to include this idea in a future, revised version

of the ontology, but it is not within the scope of this work.

Returning to the use of integers as a means for expressing the quantitative information

associated with product components, this can be used to check whether a resource is

capable of handling the given component. Functions within SPARQL enable the use of

simple mathematical calculations and so ultimately a result can be presented to the user

highlighting useful information based on the quantitative difference between two values.

Depending on the nature of the skill being assessed the result processing will be different.

For example, in the case of a weight carrying limit of a machine component, any value of

weight of the product less than the limit would result in a positive result. In other cases an

assessment would need to be made based on a range. For example, a pneumatic gripper

will have an upper and lower value for the size of component it can grip. In this case,

provided the product component is within this range, this would produce a positive results.

Negative results i.e. indications that the resource bounds are inconsistent with product

requirements would highlight how and where changes need to be made either within the

Product domain or the Resource domain.

The author has carried out some experiments using Product and Manufacturing Information

(PMI) which is supported by several CAD formats (ISO 10303 STEP, ISO 14306:2012 JT)

(Chinnathai et al., 2017). PMI is essentially a method to annotate 3D CAD models, usually

with geometric dimensioning and tolerance (GD&T) information that has conventionally

existed in 2D documents. Maintaining a common model rather than a document through

the lifecycle, irrespective of whether this is of the product or the manufacturing system,

aligns with the broader model-based, data-driven approach to engineering.

An additional use of PMI is the annotation of key information e.g. annotating the gripping

locations of a component. This information can be extracted by parsing the source file and

then imported into the relevant data type property of the given component, traceable

through unique component identification numbers. As a consequence of this information

being present in the ontology, a query can be written to identify whether resources (via the

Skill model) are appropriately configured for the product domain’s requirements. Rather

than having to process the source CAD for this information, it can be directly gleaned from

the ontology as it is explicitly declared. As the ontological model evolves within the

business, it is envisioned that annotations of this nature i.e. those associated with process,

would become a best practice within industry resulting in the development of standards for

how such source CAD should be marked up.

73

An example of the envisioned workflow described in this paragraph is presented in Figure

3-4. This is taken from a previous work of the author in an attempt to demonstrate how the

QuantitativeFeature class could be used in a practical way. One of the shortcomings is to

have the knowledge that such information can be queried in the first place. In other words,

the user may not know that such information exists within the ontology. Although beyond

the scope of this work, it is important to also consider how the ontology associated with the

ontology is maintained i.e. how to know what is known? This cannot be considered to be a

meta-ontology because that would exist at a higher level of abstraction.

Figure 3-4 Workflow diagram showing how data annotated through PMI can enable effective communication

and design verification. Particularly within the context of design changes, there is the potential to highlight

(almost instantaneously) what aspects of the Resource domain may need modifications and at what level

(parameters, logic, structure).

3.4.4 Product Domain summary

The conceptualisation of the ontology for the Product domain as has been described in this

section is presented in Figure 3-5 using a UML class diagram. Classes that have ellipses

within them represent concepts where the full extent of possibilities have not been

conceptualised. This is because it is not necessary to represent all of the possibilities within

the scope of this research and also because these concepts have already been well described

in existing literature (see Lohse (Lohse, 2006) and Matthew and Rao (Mathew and Rao,

74

2010) for extensions on the Liaison class, and Lanz (Lanz, 2010) and Fenves et al. (Fenves

et al., 2008) for more general product ontologies). It is important to design the ontology in

way that allows extension through clear superclass definitions and by providing examples

of sister class concepts. Figure 3-5 further illustrates what exists within the bounds of the

Product domain ontology and how it interfaces with the broader PPR model that is

presented in Figure 3-2. The reader may note that there is no link between

QuantitativeFeature and the Skill model as is implied in Figure 3-4. This connection would

in fact be managed through queries or rules which would navigate either from Assembly or

ProductComponent (which are connected to the Skill model) to the relevant value. This is

elaborated on in the following chapter through case studies.

Figure 3-5 Product Domain Ontology

Product Domain

ProductFamily

ProductVariant

hasProductVariant

1..1

1..*

Assembly

1..*

hasAssembly

1..*

ProductComponent

1..*

1..*

Liaison

hasProductComponentQuantity : integer

hasProductComponentID : string

contains

1..*

hasLiaisonQuantity : integer

hasLiaison

1..*

1..*

1..*

ComponentFeature

hasFeature

1..*

1..*

QuantitativeFeature QualitativeFeature

ScrewFitLiaison

ConcentricLiaison

KinematicLiaison

...Liaison

hasMass : integer

hasXDim : integer

hasYDim : integer

has... : integer

Material Colour ...

SkillContext hasSkillContexthasSkillContext Process

isRealisedByProcess

Product

Operation

hasOpNo : integer
1..* 1..*

hasOperation

75

 Process Domain

In this section the topology and hierarchy of the Process Domain ontology as well as its

connection to the other PPR domains and Skill model is presented. Lohse describes the

purpose of the Process Domain ontology eloquently in Lohse (Lohse, 2006) as:

“…the translation of the spatial topological requirements of the product into temporally

ordered capability requirements for the assembly system configuration process”

Essentially, this means to transform the Product Domain’s undirected graph into a directed

one. In Chapter 2, some automated methodologies for achieving this are presented. The

role of the Process Domain ontology is not to automate this process however, it is to store

the knowledge generated as an output of this reasoning process (be it automated or manual)

and link it to the other domains with a view to inferring new knowledge or ensuring

consistency between requirements and capabilities. In Figure 3-3 the liaisons that exist

between product components have been given numerical names. The numerical values

represent unique identification numbers (IDs) which the Process Domain transforms into

first a high level sequence and then a more granular description of the activities required to

achieve a given liaison.

It is clear that there is a need to define the concepts for the hierarchy in the Process Domain

ontology, however in contrast to the unsubstantiated claim of Lohse (Lohse, 2006), there

remains (to this day) a lack of convergence on the levels, terms, and even the

activities/responsibilities of this domain. Table 3-2 presents an overview of some works

that have presented an ontology within the Process Domain. This list does not claim be

entirely exhaustive or comprehensive review of Process Domain terminology, largely

because search terms are unable to reveal hierarchies that may well use similar concepts

through different words. Although not directly relevant, the terminology used in the

Microsoft project manager software – Microsoft Project, is also referenced. This is because

an analysis of existing process representations highlighted that project management tools

such as Gantt charts were a specific type of representation that used their own semantics

(Knutilla et al., 1998). However, to the author’s knowledge, consideration of the semantics

used beyond the domain of manufacturing have not been considered to derive Process

Domain ontologies in manufacturing in previous works.

76

Table 3-2 Summary of Process Domain hierarchies presented in the literature

Author Hierarchy (high to low)

Lohse (Lohse,

2006)

Activity, Process, Task, Operation, Action

Lanz (Lanz, 2010) Activity, Process, Task, Operation, Action, Sub-action

Lastra (Lastra,

2004)

Manufacturing Process, Assembly Task, Assembly

Process, Assembly Operation

Demoly et al.

(Demoly et al.,

2010)

Assembly Operation, Process

Borgo and Leitão

(ADACOR)

(Borgo and

Leitão, 2007)

Process Plan, Operation

Ramis Ferrer et al.

(Ramis Ferrer et

al., 2016)

Operation, Process, Task

Process

Specification

Language (PSL)

(Bock and

Gruninger, 2005,

Grüninger, 2004)

Activity, Subactivity, Primitive

Microsoft Project

(Chatfield and

Johnson, 2010)

Summary Task, Subtask

The conclusion that can be drawn from Table 3-2 is that while some convergence exists

with respect to the words, the hierarchical positions in which they appear are not consistent.

This does not appear to be the case in the Product or Resource domains where the semantics

remain largely consistent, albeit with differing topologies depending on the stance or

perspective of the creator. This may be the case because both of these domains exist

physically. On the other hand, the Process Domain is inherently abstract in nature. It is

perhaps the domain most aligned with the definition presented by Borst et al. in (Borst et

al., 1997) as the need for explicitly specifying what is only a “shared conceptualisation” is

most apparent in the Process domain.

To elaborate, there are typically physical artefacts generated by the activities of humans

within the Product and Resource domains. As a results, if humans no longer exist these

physical artefacts will continue to exist. On the other hand, the activities or processes

associated with realising these artefacts exist in the minds of humans. It is a shared reality

77

that is not tangible. This philosophical stance is important to express in this way because

it:

i) identifies why there is a lack of consistency for defining processes in a

systematic way i.e. the conceptualisation is not truly shared due to

differing perspectives, cultures etc. (Note that this is partly true in the other

domains but less prevalent)

ii) highlights that any choice of terms in the Process domain is likely not to

be adopted more broadly. It is more important to define the relationships

between the words chosen within this domain and others to generate a

meaning

Based on this rationale, despite the importance of formal semantics in ontologies, the terms

chosen to describe the Process Domain are not an instrumental part of the methodology.

The important aspects are, as mentioned above, the definitions which are defined through

the relationships that exist within this domain and between others.

3.5.1 Skills in the Process Domain

The concept of Skill has already been mentioned. Although this is elaborated further later

in this chapter, it is necessary to begin describing some aspects of the Skill model in this

section due to its strong ties with the Process Domain ontology.

In previous works, the Process Domain has been decomposed into types of activities.

Furthermore, due to the limited number of engineering methods or tools for describing

process in a way that is both human and machine interpretable, the terminology used to

describe the contextual aspect of a process remains non-standard. For example previous

works (identified in the literature review that address the knowledge capture of the PPR

domains) describe the Process Domain from the perspective of the activities that it must

execute. Essentially this means nothing more than representing the terminologies and

taxonomies from standards (VDI, 1990, DIN, 2003).

The information regarding how or on what the activities are to be executed remain elusive.

In some cases this could be inferred from the respective links to the other PPR domains.

However, often these links are not explicitly described. Typically PPR ontologies have a

high level link between domains but the relationships are not described using any

terminology to support the definition, it is only stated that a link exists. This has the

consequence of it not linking the concepts within the Process Domain to the broader

engineering workflow. In other words, if a researcher declares a concept in the Process

78

domain ontology e.g. operation, there is little to no description of how the instantiation of

this information would be populated into the ontological model in the first place. This

demonstrates a lack of connectivity with the practical industrial engineering process

associated with deriving a process plan (or any other Process domain activity.) Of course

at this point it is necessary to elaborate further on what the Process domain activities may

consist of. It must be asserted that this is not a comprehensive assessment. The definitions

of the Process domain activities vs. the Resource domain activities are fuzzy at best when

considered from a practical workflow perspective as opposed to the hard boundaries

assigned by academics.

As this thesis is focused on assembly systems only, the Process domain would consist of

activities typically defined by “Assembly Process Planning” (APP). In turn, APP consists

of assembly sequence planning (ASP) and assembly line balancing (ALB) (Bikas et al.,

2016, Wang et al., 2009). In this research activities associated with ALB are not considered

and therefore do not form part of the model.

Beyond the commonly cited activities of APP, the author believes that another dimension

must be added to APP which is the process description. This would be the process of

ascertaining at an appropriate level of granularity how the directed graph derived from the

output of ASP would be executed. Depending on the expertise of the process planner they

may be able to describe the nature of resources being used. In the case of a new

station/line/factory this will be less obvious, on the other hand for a reconfiguration process

this would be much clearer. Therefore, at some stage of the assembly system lifecycle the

process description will be quite vague, abstract and disconnected from reality although

evolving into something more relatable as the system emerges.

During the reconfiguration stages of the system, to accommodate new products or product

variants, there will be a much clearer understanding of the resource requirements and

capabilities, and this would be reflected in the process plan’s process description. Here, the

author identifies a challenge, largely because of the lack of engineering tools and methods

associated with representing the process description. Typically, these descriptions could be

stored within documents such as word processers, spreadsheets, or flow charts.

There are some process planning tools that are described in the literature concerning

computer aided process planning (CAPP) however they are typically focused on producing

3D representations of the process for animation and visualisation. Although they are

beneficial to the activities of the Process Domain they do not capture the true essence of

the process. In other words we, as humans, may be able to read or watch the process being

79

executed, but it is not done in way that is understandable to a machine. This means that

although a visualisation may be present, and even this may be transformed into a set of

work instructions, this information is not stored in a way that allows some inferences to be

made for future process plans through rules. There are no formal semantics used and this

information is not transferred to a knowledge base. Furthermore, there is no dissociation

between the aforementioned early and late stages of process planning that exists through

the lifecycle of the product or system.

The methodology presented in this research addresses the problems highlighted concerning

the lack of consideration for semantics in the Process Domain activities by mapping

Process Domain descriptions to two aspects of the Skill concept. Firstly, when describing

a process, it is obvious that some form of activity will need to be described. This is

represented through the aforementioned standards. The granularity of the nature of the

activities could be at a high level such as “place component 1 on component 2”, or at a

finer level of details such as “determine the location of component 1, grip the edges at

position 1 and position 2, lift component 1… etc.” The process description process follows

a workflow from a high level conceptual description which is later rationalised into more

detailed descriptions. Thus the Process Domain descriptions need to accommodate

differing levels of granularity. In the Process Domain model in this research this is achieved

through a three tier model consisting of an Operation that consists of an aggregation of

Process which in turn consists of an aggregation of Task. This terminology is derived from

the automotive industry, particularly Ford Motor Company with whom the research group

has a long-standing relationship. As discussed already, the terms used in this domain are

less important that the definitions they represent.

Both the Process and Task concept consist in part of the explicit actions that have already

been discussed. In this research, these are named as a SkillAction. On the other hand there

is a need to explicitly define the context of the SkillAction and this is managed by mapping

the Process and Task concepts to the SkillContext class. This class consists of all instances

of either the Product Domain or Resource Domain that are tangible concepts e.g. a

ProductComponent instance from the Product Domain. The explicit declaration of contexts

is a key novelty in this research as it allows descriptions to evolve through the lifecycle

and, provided a history is maintained, common instances or concepts referred to through

differing terminologies can be captured and this knowledge exploited.

Consider the three component assembly presented in Figure 3-6 which is a sub-assembly

of a fuel cell (see Figure 3-3). The product is represented in a graph format with the liaisons

80

represented as the edges “a” and “b”. Given that the process planner has derived a sequence

whereby “a” must precede “b”, it is necessary to then determine how this might be

achieved. At the Process concept level, not knowing the nature of the Resource Domain

the process planner can speculate on the types of actions required and on what those actions

act upon i.e. the context. The objective at this stage, when the context of the Process

Domain is in its early stages of maturity is to describe the execution of a Liaison and reflect

upon the type of actions required to realise this. The evolution of abstract ideas from the

Process Domain (represented as graphs with increasing levels of detail) are eventually

transformed into ideas that become more tangible.

Having described the Liaison execution, the process planner while rationalising through

the process will realise that there is a need for certain checks, alignment activities etc. These

more nuanced activities would fall under the concept of a Task. In and of itself a Task is

unable to realise a Liaison. It is some atomic activity that is ultimately achieved through a

change in state of a system. In this way, both the Task and the Process have been defined

independent of what the words themselves may mean. In addition to this, the link to

contexts and actions retains the knowledge of what these types of activities were trying to

achieve. This information would be made available to the Resource Domain stakeholders

(as this domain matures) e.g. machine builders, and some joint activity would derive the

type of process plan that is commonly represented within CAPP software tools.

Figure 3-6 Example product demonstrating how the Skill concept is used in the Process Domain

3.5.2 Process Domain summary

The previous sub-section has shed some light as to why the author feels it is necessary to

link the Process Domain with the Skill model and how this has been done. To summarise,

this is to follow the workflow that the author recognises is used within industrial

environments and captures the knowledge concerning a given process about a given

81

product, within or independent of a context provided by the Resource Domain. This is

important as it allows the Process Domain ontology in this research to be more fluid and

flexible than existing works have permitted it to be.

To summarise the structure of the Process Domain ontology (illustrated in Figure 3-7), an

aggregation of Task instances form a Process which in turns aggregates to form an

Operation. An aggregation of Operation instances describe a ProductVariant. The Task is

an atomic activity that is executed through the change of state of a machine described in

the Resource domain. A Task on its own is insufficient to describe the fulfilment of a

Liaison. The definition of Process is therefore that set of Task instances that realise a

Liaison. The Process class has a data property value called hasProcessNo which provides

directionality to a Liaison set. The Task class also has data property values to describe

directionality called hasTaskNo which describes the Task sequence relative to the Process.

In order to fully describe a given Process or Task it is necessary to describe the SkillAction

and the SkillContext.

Figure 3-7 Process Domain Ontology

 Resource Domain

Finally, the third domain of the PPR ontology is the Resource domain. This domain in this

research follows the structure of a set of virtual engineering tools developed by the

Automation Systems Group at the University of Warwick. These tools have been deployed

in a number of industrial and research projects to support the lifecycle of a production

system from concept generation through to process planning, code generation, virtual

commissioning and even supported the operation, maintenance and reconfiguration phases.

The Resource Domain ontology has been modelled after these tools because:

i) Accessibility to the data model used in the model allows an accurate

ontological model to be created for testing the methodology. Similar

engineering tools use proprietary models which cannot be deciphered so

readily

Operation Task

hasTaskNo : integer

hasProcess

hasOpNo : integer

hasTaskProcess

hasProcessNo : integer

SkillContext SkillActionLiaison

requiresSkillContext

Process Domain

realisesLiaison
requiresSkillAction

1..*1..1 1..*1..*

1..*

1..*

1..*

1..*
1..*

1..*1..1 1..1

ProductVariant

isOperationFor
1..*

1..*

82

ii) The tools have been shown to be of value through the lifecycle and so there is

a tangible value for developing the ontological model in line with these tools

as a test bed for future industrial research projects for knowledge capture,

storage, and inference

This section first describes the engineering tools in more detail. The “as is” data model

used in the engineering tools is described with its shortcomings and then the “to be”

modelled presented addressing the issues identified. Following this, the Resource Domain

ontology is presented which complements the schema of the tools as well as adding some

additional functionality.

3.6.1 vueOne engineering tool description

The vueOne engineering toolset capabilities and use within the lifecycle of a manufacturing

system are illustrated in Figure 3-8. vueOne is envisioned to be a common engineering

environment to support the full set of manufacturing system lifecycle phases enabled by a

component-based modelling approach (Lee et al., 2007, Harrison et al., 2016). The tool’s

extensible data model support process planning, system configuration, code generation and

deployment, commissioning, maintenance, operational analytics, and system

reconfiguration through different modules. Geometry for system components is converted

from native CAD formats to VRML/X3D and form a part of a uniquely identifiable

software component. Process planning within the tools is supported through the

combination of kinematics and IEC-61131-3 compliant STDs. The tools use a logic engine

that interprets the STD to drive the simulation. An XML file that the logic engine uses to

drive the simulation can be exported from within the engineering environment and this

document is used in this research to connect tool data to the ontological model.

As highlighted in the literature review, commercially available engineering tools with

similar capabilities to vueOne are often heavyweight, monolithic, and expensive. Thus,

sharing engineering models with the aforementioned stakeholders incur delays and costs

that consume valuable engineering time and resources. This is often attributed to complex

features, installation procedures, and licensing models. To overcome this, the vueOne

viewer is used to share models and simulations at different stage of the development

lifecycle to ensure that ideas are being communicated effectively at all levels of the

business and through the supply chain. This allows stakeholders to buy into concepts in a

more effective way than conventional, fragmented practice, and maintains consistency

through the development lifecycle.

83

At the more granular, detailed engineering of systems, the various components and

subsystems are exported from the engineering tools of machine builders into the vueOne

engineering tools. The respective model can be added or replaced into the common virtual

engineering model (often a crude initial model may be retained as an artefact of the concept

development phase) and the associated processes and behaviours are reintroduced. This

enables validation of configurations and process plans. In addition, the toolset has the

capability to model humans through the V-Man (virtual manikin) module and robot

behaviour through the V-Rob (virtual robot) module. These important elements of a

production system can exist within the common model so their interaction can be visualized

and assessed to improve and optimize processes and layouts The V-man module utilises an

intuitive posture manipulation interface and move sequence behaviour is represented

through a STD that can be fully integrated to the wider system behaviour through a form

of interlock logic. The V-man is calibrated through MODular Arrangement of

Predetermined Time Standards (MODAPTS) (Carey et al., 2001) which is a type of

Predetermined Motion Time System (PMTS) (Harrison et al., 2016). The V-Rob module

emulates robot behaviour and complements commercial offline programming tools such as

ABB’s RobotStudio through interfaces to import/export spatial and temporal robot

behaviour information.

Retention of domain specific engineering tools negates the need to train engineers on using

new tools. Considerably more detailed complementary information exists within such

specialist engineering tools, but only what is deemed necessary is brought into the common

model. This results in a lightweight model. The common model can then be used later in

the lifecycle of the production system to support in virtual commissioning through the

vueOne mapper module. This module maps components, PLC function blocks, I/O, and

memory addresses, as well as storage and version management of the mapping information.

Beyond the commissioning phase, the lightweight engineering models come into their own

as runtime connections through an OPC-UA client that can retrieve data from the physical

system and map it to the corresponding virtual component. A standard OPC-UA server is

used as it provides access to drivers for a variety of PLCs. This ability to capture runtime

data with contextual information is exploited through web-based mobile apps allow

monitoring, maintenance, and optimisation with respect to enterprise specific key

performance indicators. An overview of the phases of use of the software, its interaction

with conventional engineering lifecycle phases for automation systems, and how and where

the common model is used as part of CPS are illustrated in Figure 3-8.

84

.

Figure 3-8 System lifecycle supported by the use of a common modelling framework to enable CPS

(Harrison;, 2017)

3.6.2 Shortcomings of vueOne and extension

Information concerning the process sequence is stored within a ProcessComponent which

is a STD with only static states and conditions. The key issue with this approach for

executing process planning is that it does not permit a high level view of the process as

process steps are already described with respect to resource behaviours. This has a tendency

to hide process sequence information that could be related to a directed graph of a product

assembly. As a result, the ProcessComponent is not particularly accessible to a process

planner who may only have a high level view of the process and not details pertaining to

the control code. Therefore, in this work, the ProcessComponent is modified such that there

is a ResourceView (the original ProcessComponent) and the ProcessView which is intended

to be used to describe the process at a high level. This would be akin to what one would

derive from a directed graph. In order to map the high level ProcessView to the low level

ResourceView, an entirely new set of component properties have been defined that form

part of the Skill model.

85

An additional shortcoming of vueOne is its lack of expressivity with regards to products.

Typically, product components are modelled as a NonControlComponent. However, this

puts them in the same class as objects like fixtures. To address this issue, this research

extends the tools to include a specific ProductComponent component. This builds upon the

work that has been done in (Chinnathai et al., 2017) where the ProductComponent was

created and then enriched with feature information to enable parametric control logic

changes using explicit mappings within a relational database when product component

geometrical modifications were made.

Table 3-3 summarises the existing tool data model and the extensions that have been made

by the author to enable the approach presented in this research. The reader will note that as

the extension is being made to a specific toolset, it could be deemed to be a non-

generalizable method. However, many of the concepts that are represented within vueOne

are common to industrial engineering tools such as Process Simulate by Siemens.

Successful demonstration of the approach within a toolset developed within an academic

context can be considered to be a set of recommendations to software developers as to how

industrial tools should be extended to enable better integrated data models.

Table 3-3 Existing vueOne engineering tool data model and extensions within this research

86

3.6.3 Resource Domain ontology

The Resource domain ontology is represented in Figure 3-9 and is based on the vueOne

engineering tool data model (Table 3-3). However, many concepts and relations are

common to existing resource domain ontologies (Lohse, 2006, Lastra, 2004, Järvenpää,

2012, Lanz, 2010) demonstrating the generalisability of the methodology. The highest level

concept in this domain is that of ManufacturingSystem that is composed of Station

instances. A state is linked to the Skill model through executesSkillAction. Instances of

Sensor, ControlComponent and NonControlComponent can be linked to the Skill model

via hasSkillContext as they are objects that exist in the physical world. The lack of a formal

constraint applied between these classes and SkillContext provides flexibility in how skills

are described. In (Lohse, 2006) a similar differentiation is made between what the authors’

define as ControlComponent and NonControlComponent through concepts called Active

and Passive using an FBS approach. In addition to describing logic, the State class in

conjunction with the ElementType class support in the selection of instances of

FunctionBlock. This is an extension to the work presented in (Ramis Ferrer et al., 2015a).

Figure 3-9 Resource Domain Ontology

ManufacutringSystem

hasSystemID : string

Station

hasStationID : string

hasStation

ResourceComponent

hasComponentID : string

hasResourceComponent

NonControlComponent ProcessComponentControlComponent Sensor

State

hasStateNo : integer

hasStateID : string

hasStateDescription :
string

hasState

hasCondition
hasOriginState

hasDestinationState

1..11..11..1

1..*

1..*

1..*

SkillContext

SkillAction executesSkillAction

0..1

0..1
hasSkillContext

0..1 0..1

ElementType

FunctionBlock

hasElementType

1..1

1..*1..*

isConditionFor

1..*

1..*

isSelectionCriteraFor

1..*

1..*

1..*

Resource Domain

87

 Skill model

3.7.1 Rationale for terminology

The objective of the Skill model is to bring together the PPR ontologies to negate the need

for explicit mapping between them as far as necessary by inferring where connections or

links should be made. The Skill model should be able to describe what the Product Domain

and Process Domain require while describing what the Resource Domain is able to do.

Within the context of this research, it was necessary to pin down which term to use and

appreciate what the connotations of word choice may be should the model be extended

going forward. The word chosen for the model needed to be general, so as to meet the

above objective while ensuring that there was limited semantic conflict with other concepts

(Mens, 2002). As discussed in the literature review in 2.5.3, there are a number of terms

that are used by academics to describe what a “thing” is able to do. The most common

vocabulary used are “Skill” (Pfrommer et al., 2013, Schleipen et al., 2014), “Capability”

(Järvenpää, 2012), and “Function” (Lohse, 2006).

The term “Function” is defined by the Oxford English Dictionary as a noun that is “an

activity that is natural to or the purpose of a person or thing” and a verb “work or operate

in a proper or particular way”. There is some level of semantic conflict between the word

“Function” and the terminology used within the context of PLC programming when

describing one of the five IEC-61131 stipulated languages, namely Function Blocks (which

appear in the Resource Domain ontology). To prevent any confusion, the term “Function”

was not been chosen.

The term “Capability” is defined by the Oxford English Dictionary as a noun which is have

“the power or ability to do something”. Within the context of manufacturing, the term

“Capability” is also heavily used within the “Six Sigma” paradigm that is embraced by

many industries (Pyzdek and Keller, 2014). There are a number of statistical measures used

that fit within capability studies. These measures help to identify whether a process can

meet customer requirements. Due to the use of this word in this area and its prevalence, it

is likely that should the model be extended, it would be valuable to know not only whether

a given resource is able to execute something, but how well or how capable it is at doing

so.

The term “Skill” has therefore been chosen as i) it has been chosen by more modelers than

other terms within this context in the literature and therefore lends itself better to integration

should models be brought together, and ii) is less likely to run into semantic conflict if the

88

model is extended as the author has not found examples of this term being used in models

or tools beyond this context.

3.7.2 Skill model description

Each of the respective PPR domain models contain some link to either the SkillContext

class or the SkillAction class. The former is defined as a noun which is often either a

location or an object. The latter is defined as a verb and a standardised set could be used

from existing standards such as VDI 2860 or DIN 8580. Alternatively, the taxonomy

provided by (Järvenpää, 2012), (2008) or (Huckaby and Christensen, 2012) would also be

a suitable approach. The aggregation of a SkillContext and SkillAction form a ProcessSkill

or ResourceSkill depending on the source domain of the context and action. A SkillContext

hasEquivalentSkillContext with an instance of SkillContext. This is to allow equivalent

concepts to be linked so that descriptions related to the same thing, but described using

domain specific languages can be mapped. This addresses, in part, the issue of multiple

aliases for a given entity discussed earlier in this section. The dashed line in Figure 3-10 is

an inference based on the mappings of ProcessSkill and ResourceSkill according to their

respective relationships with SkillAction and SkillContext instances.

Figure 3-10 Skill Model

3.7.3 Model Enrichment

According to the W3C OWL Reference2, the properties in OWL have a direction from

domain to range, however to facilitate full and flexible navigation, it is of benefit to define

relations in both directions. OWL has built-in property called “inverseOf” that reduces the

2 https://www.w3.org/TR/owl-ref/

SkillContext

Skill Model hasEquivalentContext1..*
SkillAction

hasSkillActionNo : integerSkill

hasSkillNo : integer

hasNext

isSkillActionElementOf1..1

1..1

1..*

1..*

1..1
1..*

ProcessSkill ResourceSkill

isExecutedBy
1..10..1

1..*

isSkillContext
ElementOf

89

manual effort and thus risk of error when implementing reverse object properties. Table

3-4 describes the use of some of the inverseOf object properties added to the model.

Table 3-4 Excerpt of addition of “inverseOf” object properties

Domain Object Property Range inverseOf Object Property

State executesSkillAction SkillAction isExecutedBySkillAction

Operation hasProcess Process isProcessOf

Process hasTask Task isTaskOf

Station performsOperation Operation isPerformedBy

3.7.3.1 Rules

Using the Semantic Web Rule Language (SWRL) a number of rules are implemented that

provide a degree of high level consistency across different concepts. These are presented

in Table 3-5. Rule 1 facilitates the mapping of ProcessView skill requirements with

ResourceView skill capabilities. Note that instances of ProcessView are within the Process

Domain ontology within the Process concept. On the other hand the respective

ResourceComponent subclasses that have states within the Resource Domain ontology are

instances for the ResourceView. Rule 2 is used as the inverseOf object property cannot be

used on the hasState object property. This is because the ProcessComponent as well as the

ControlComponent and Sensor also use the hasState object property. Thus, an inverseOf

approach for adding bi-directionality would result in the reasoner incorrectly inferring that

the inverseOf a state of ProcessComponent are also states of ControlComponent and

Sensor. Rule 2 was implemented to allow inferences to be made as to what instances of

ElementType or ControlComponent the FunctionBlock class can be used for using the

canBeUsedFor object property. In order to depict how Rule 2 works, is presented below.

The solid line indicates the explicit mapping as already presented in Figure 3-9, while the

dashed line represents the new link as a result of Rule 2. Therefore, this rule permits the

semantic reasoner to infer which function block can be used for which instances of

ControlComponent and/or ElementType (Ramis Ferrer et al., 2015b).

90

Table 3-5 Addition of SWRL Rules

Rule name SWRL syntax

Rule 1 ResourceSkill(?a) ^ isSkillContextElementOf(?d, ?b) ^

isSkillContextElementOf(?d, ?a) ^ ProcessSkill(?b) ^ isSkillActionElementOf(?c,

?b) ^ isSkillActionElementOf(?c, ?a) -> isExecutedBy(?b, ?a)

Rule 2 State(?s) ^ ProcessComponent(?p) ^ hasState(?p, ?s) ->

isStateOfProcessComponent(?s, ?p)

Rule 3 ControlComponent(?x) ^ ElementType(?z) ^ hasElementType(?x, ?z) ^

FunctionBlock(?f) ^ isSelectionCriteriaFor(?z, ?f) -> canBeUsedFor(?f, ?z) ^

canBeUsedFor(?f, ?x) ^ canUseFunctionBlock(?x, ?f)

Figure 3-11 Illustration of Rule 2

 Inconsistency management

One of the key reason for using ontologies is their ability to reason and thus maintain

consistency. In this section, the way this reasoning power is used to support the engineering

workflow is described. In the following chapter, the methods used are instantiated with

some case examples.

3.8.1 Capability checking

It should be noted that the knowledge base created by instantiating the ontological model

forms a backend to vueOne with knowledge transfer within and across domains as

illustrated in Figure 3-1. Within an engineering context, knowledge is usually transferred

between respective domain stakeholders through documents that are either physical or

digital in nature, or via digital models. These exchanges of information include large

amounts of data and although there is a degree of common understanding as to what a given

document/model could/should contain, there remains an exercise of consultation to extract

the relevant information. To address this, this research proposes the use of SPARQL

queries that are able to infer implicit knowledge from explicit links and rules. The focus of

these queries is to allow the extraction of information from the Resource domain as this is

the most complex, with the longest lifecycle and highest re-engineering costs. It is reasoned

ControlComponent ElementType FunctionBlockhasElementType isSelectionCriteriaFor

canBeUsedFor

91

that if more information is made available with regards to its capabilities when introducing

new products or product variants, then the engineering process can become more

streamlined as changes to the product or system (whichever is deemed to be a priority by

respective stakeholders and the business more broadly) can be made sooner and with a clear

direction.

Figure 3-12 presents a workflow example to appreciate how the ontological domain models

in conjunction with the queries would interact with the decisional workflow and thus put

the presented work into context. The structure aligns with the vision presented in Figure

3-1 and thus manages in part the “human interaction” aspect which is often error-prone.

Query 1 focuses on whether or how the physical requirements e.g. mass, weight, physical

features, of the Product domain can be determined to be fulfilled by the Resource domain.

Information outputted from Query 1 would support in the determination of whether product

requirements are met by Resource domain skills/capabilities.

New market demands, often driven by externalities, would result in the development or

modifications of existing product lines. Product designers synthesize these requirements

and generate modified CAD models which in turn generate a corresponding bill of

materials (BOM). The CAD models would be parsed for the relevant information and

updated. The links from the Product Domain to the Resource Domain largely deal with

aspects that would influence the mechanical design of shop floor equipment. The output of

Query 1 would therefore ascertain whether the mechanical requirements have been fulfilled

and the results of the query would be passed back to the product designers and the

responsible mechanical engineering team. Based on the output of this query the relevant

stakeholders would know what the impact of the modified product is and what changes, if

any, need to be made early in the change propagation lifecycle.

On the other hand, Query 2 focuses on addressing the question as to how the requirements

of the Process domain can be determined to be fulfilled by the Resource domain component

logic as opposed to general machine capability. As a consequence of the product design

change, the process planner would need to determine what changes to the process need to

be made and, in turn, begin modifying the bill of process (BOP) and the assembly process

plan (APP). Note that this activity can be automated as has been demonstrated in (Pintzos

et al., 2016). The modifications to the respective process documentation would update the

relevant classes in the Process domain ontology. This would in turn trigger Query 2 and

advise whether the modified process requirements are executable by the relevant shop floor

equipment and what changes, if any, need to be made. This information would be passed

92

onto the relevant process planner as well as the responsible machine software programmer

who could collaborate and work towards finding a solution. As the Resource domain is

linked to the Product domain and Process domain in the reverse direction also, any changes

would be highlighted to the stakeholders of the respective domains allowing full

transparency of the system’s state.

Figure 3-12 Example of how ontologies and queries are used to support engineering and decisional workflow

Having described the basis for Query 1 and Query 2, it is necessary to consider how they

can be created in a generalized way by examining the ontological structure and determining

the best “route” that the respective queries should navigate.

For Query 1, questions of a mechanical nature arise such as “is the fixture large enough for

my part?” and “can the robot lift the part?” etc. At the highest level this can be addressed

by the SkillContext classes. The arrows in red with the small dashes in Figure 3-13 illustrate

how the mappings to this class allow a comparison to be made without have to explicitly

map between the Product and the Resource domain. When the users of the ontology interact

with the front end tools, the author proposes that it would be incumbent on them to define

the context of the engineering work they are doing within the broader context using the

library of information that exists within the ontology. This would make use of the

93

hasEquivalnetSkillContext relationship which would then allow the person within the

Product domain querying the system, to quickly identify what within the manufacturing

system is relevant to their ProductComponent. For example, if the product designer wishes

to identify whether a fixture has the correct dimensions for a new ProductComponent they

could query, via the SkillContext, what fixture hasEquivlaentSkillContext with the

ProductComponent. From this, the product designer could directly interrogate the CAD

model or discuss with the relevant stakeholder in that domain to understand what could be

done to make changes for the new ProductComponent. This is an example of how explicit

knowledge capture from humans that are interacting with the ontological models, via

engineering tools, can be used through lifecycle phases. As the ontology evolves, certain

attributes about certain components, both within the Product and the Resource domain,

would become a permanent property that is always queried. Knowing this, a datatype

property can be added to the relevant classes to accommodate this knowledge e.g. a specific

dimension of a ProductComponent that varies with application that aligns with a specific

dimension of a Fixture.

More detailed queries could then be written which then automate the aforementioned

manual interrogation process. One of the benefits of ontologies is the ability to query the

model itself and not just the instances. Therefore, if a new user arrives into the organisation

and is not aware of the relation between these specific dimensions, they could query the

nature of the knowledge that already exists within the system resulting in an understanding

what information can be queried in the future. Based on this high level capability checking

between the Product domain and the Resource domain, a query using SPARQL syntax is

presented in Figure 3-14.

For Query 2, Figure 3-13 uses solid red arrows to indicate the expected route that would

need to be navigated to check that the Resource domain was capable of executing the

requirements of the Process domain. In order to ascertain that the full set of Process domain

requirements are being met, it is necessary to decompose down to the Task level as it is at

this level of granularity that a relationship exists with the Resource domain via the Skill

model. Encapsulation of states to aggregate a Skill into a more complex Skill so that it is

something that be mapped directly to a Process is possible, but not addressed in this

research. This would be akin to the vision of IEC-61499 (Vyatkin, 2009) or the work of

Wang et al. (Wang et al., 2012, Wang et al., 2008) although with the additional power of

reasoning. Based on the aforementioned workflow, whereby the user defines SkillAction

and SkillContext for their respective domains, through reasoning based on Rule 1 (Table

94

3-5), a mapping would be created between ProcessSkill and ResourceSkill (Figure 3-10).

This would advise the user, who is likely to be the process planner in this case, as to whether

the process that has been designed is executable. This is based on the Skill of the State of a

ControlComponent. If findings are made to the contrary based on the query, an engineering

change workflow can be set in motion to modify the control logic of the machine. The

checking of capability execution between the Process domain and the Resource domain is

presented as a generalised SPARQL query in Figure 3-15.

Figure 3-13 Ontological model navigation for capability checking

95

Figure 3-14 Example of how Query 1 could be written for any given instance of ProductComponent using

SPARQL syntax

Figure 3-15 Example of how Query 2 could be written for any given instance of Liaison or Process using

SPARQL syntax

PREFIX ProductDomainOntology: <httpy//www[…]ProductDomainOntology.owl#>

PREFIX ResourceDomainOntology: <httpy//www[…]ResourceDomainOntology.owl#>

PREFIX SkillModel: <httpy//www[…]SkillModel.owl#>

SELECT ?ProductComponent ?NonControlComponent ?ControlComponent

WHERE {

?Assembly ProductDomainOntology: contains ?ProductComponent

?ProductComponent PPRSkill: hasSkillContext ?SkillContext

?NonControlComponent PPRSkill: hasSkillContext ?SkillContext

?ControlComponent PPRSkill: hasSkillContext ?SkillContext

?SkillContext SkillModel: hasEquivalentSkillContext ?SkillContext

FILTER (?ProductComponent = ProductDomainOntology: “an instance of ProductComponent”)

}

Result

ProductComponent ControlComponent NonControlComponent

an instance of

ProductComponent

A list of ControlComponents that

hasEquivalentSkillContext as an

instance of ProductComponent

A list of NonControlComponents

that hasEquivalentSkillContext as

an instance of ProductComponent

PREFIX ProductDomainOntology: <httpy//www[…]ProductDomainOntology.owl#>

PREFIX ProcessDomainOntology: <httpy//www[…]ProcessDomainOntology.owl#>

PREFIX ResourceDomainOntology: <httpy//www[…]ResourceDomainOntology.owl#>

PREFIX SkillModel: <httpy//www[…]SkillModel.owl#>

SELECT ?Liaison ?Process ?Task ?State

WHERE {

?Assembly ProductDomainOntology: hasLiaison ?Liaison

?Liaison PPRSkill: isRealisedByProcess ?Process

?Process ProcessDomainOntology: hasTask ?Task

?Task PPRSkill: requiresSkill ?Skill

?ControlComponent ResourceDomainOntology: hasState ?State

?State PPRSkill: executesSkill ?Skill

FILTER (?Liaison = ProductDomainOntology: “an instance of Liaison”)

OR

FILTER (?Process = ProcessDomainOntology: “an instance of Process”)

}

Result

Liaison Process Task State

an instance of

Liaison

an

instance of

Process

A list of Tasks that

aggregate to form an

instance of Process or

Liaison

A list of States that meet the Skill

requirements of Task to realise an

instance of Process or Liaison

96

Making changes of a physical nature e.g. creating a new fixture to meet new product

requirements, exist primarily in the physical. Although the shift towards Industry 4.0 could

see a CPS approach to physical system changes, there are a number of challenges that have

yet to be overcome, primarily the full realisation of Koren’s criteria for what denotes a

reconfigurable system (Koren and Shpitalni, 2010). On the other hand, due to the abstract

nature of software, changes can be made more readily. Furthermore, two types of changes

can be made at the software level. The first is the most simple software change that is

typically referred to as parametric, whereby a parameter or variable is modified. The next

level of change is at the logic level and this is associated with modifying the logic of the

machine. Changes at this level could include adding, removing, or swapping states or

conditions for a sequence of tasks. The remainder of this section presents a methodology

that firstly addresses how the ontology can be used to ascertain an inconsistency between

the description of machine control and process requirements from the output of Query 2.

Then an approach is presented for how the Skill model can be further exploited to enable

the modification of control logic.

3.8.2 Inconsistency checking method

As a consequence of a modified process plan, a machine’s control software will also need

modifications. These changes could include new process parameters such as magnitude of

motion or speed, or logical changes such as sequence. Some aspects of the machine’s

sequence are linked to mechanical constraints i.e. preventing clashes or ensuring that

actuators return to the home position, while other aspects are more functional in nature in

that they are directly linked with realising a product requirement i.e. a pick and place

operation to fulfil a liaison. This means that some aspects of machine control logic are not

mappable to APP as they add no value to the product. This section of the approach focuses

on how the output of information from APP activities (considered to be within the Process

domain) can be checked for consistency with machine software as an exploitation of the

integration that has been achieved through the Skill model. Figure 3-16 illustrates how

checks for consistency are made in real industrial environments i.e. through manual

interrogation and comparison of documents (Winkler et al., 2016, Lee et al., 2011a,

Demoly et al., 2013). The focus of this section and the proceeding one is highlighted by

the red connecting line.

97

Figure 3-16 Current approach for automation system engineering highlighting focus of this work

To support in the inconsistency management process, the mapping generated by Rule 1 in

Table 3-5 is used. In addition the hasSkillNo datatype property is a key tool for identifying

inconsistencies. For a ProcessSkill the hasSkillNo value is derived from the

hasSkillActionNo datatype property which would be declared explicitly by the user during

the process of decomposition. On the other hand, for the ResourceSkill the hasStateNumber

value is used. This value is derived from the STD that describes the ResourceView

ProcessComponent.

Thus, when Rule 1 is implemented and a mapping is created by the ProcessSkill and the

ResourceSkill it is possible to compare the integers associated with them to ascertain

inconsistency. This is because there are a finite set of potential mappings that could exist

as a result of inferences reasoned from Rule 1. This set of mappings is illustrated in Figure

3-17. Case 1 is the simplest of all cases and unlikely to exist in reality because ResourceSkill

instances will describe steps not considered in ProcessSkill. Regardless, no inconsistency

is identified here. Case 2 is expected to be the most common case whereby the description

of machine behaviour has a greater degree of granularity and therefore there exist steps that

are not considered by the Process domain. In this case, the numerical value associated with

ProcessSkill hasSkillNo will always be less than or equal to the value associated with

ResourceSkill hasSkillNo. In Case 3 there is an instance of ProcessSkill that is unmapped

to ResourseSkill. This indicates an inconsistency in that all of the requirements of the

Process domain have not been met. The integer value of ProcessSkill that is mapped post

98

the unmapped instance has a greater magnitude than its corresponding ResourceSkill. Case

4 is an example of where the mapping between the respective skills has been flipped. The

link from Step 3 to Step 4 from the ProcessSkill to the ResourceSkill in and of itself does

allow one to determine whether or not the respective descriptions are inconsistent. This is

because this scenario is identical to Case 2. However, the link from Step 4 to Step 3 from

the ProcessSkill to the ResourceSkill denotes the inconsistency. This is due to the

assumption that the ResourceSkill description is at least as detailed as the ProcessSkill

description. If this assumption is true, then a larger integer being mapped to a smaller

integer from the ProcessSkill to the ResourceSkill instantly denotes an inconsistency. Case

5 and Case 6 denote a many-to-one relationship. Both are examples which should not be

possible due to the common atomic methods for describing the ProcessSkill and the

ResourceSkill. If this does arise it indicates that the method has been used incorrectly and

the descriptions should be revisited for the given steps.

Figure 3-17 Mappings between ProcessSkill and ResourceSkill as an outcome of Rule 1 to use as a basis for

consistency checking

From the case-based analysis it is concluded that a sequence inconsistency exists if the

result from subtracting the integer associated with ResourceSkill from the integer

associated with ProcessSkill is positive. Due to the limitations of the ontology editor used

in this work (Protégé) the inferences generated by the reasoner through the SWRL rule

cannot be queried and thus exploited. Therefore, a SPARQL query (Figure 3-18) is written

which replicates the inferences generated and then finds the difference between the integers

99

associated with the respective skills. This is a general query that can be used in any use

case that utilises the Skill model used in this work.

Figure 3-18 Inconsistency check query using SPARQL

3.8.3 Modification of logical changes through virtual engineering and

ontologies

Having identified whether or not an inconsistency exists between APP descriptions and

machine control software in section 8.2, this section addresses how such an inconsistency

can be resolved. The SPARQL query that has already been described in Figure 3-18 is used

as an indicator of an inconsistency. One the shortcomings of using SPARQL within the

Protégé environment is the inability to exploit the resulting data outside of the ontological

model. Therefore, this deviates from the original vision that is illustrated in Figure 3-1. To

address this, a framework which extends what has already been alluded to in Figure 3-12

is illustrated in Figure 3-19 and described as follows.

The vueOne toolset is able to export the logic associated with a simulation in an XML

format. The General Architecture for Text Engineering (GATE) is used to semantically

annotate the exported XML so that the data can be automatically instantiated within the

PREFIX SkillModel: <httpy//www[…]SkillModel.owl#>

SELECT DISTINCT ?ProcessSkill ?ProcessSkillNo ?ResourceSkill ?ResourceSkillNo ?InconsistencyCheck

WHERE {

?ProcessSkill rdf:type SkillModel:ProcessSkill.

?ResourceSkill rdf:type SkillModel:ResourceSkill.

?SkillContext SkillModel:isSkillContextElementOf ?ProcessSkill.

?SkillAction SkillModel:isSkillActionElementOf ?ProcessSkill.

?SkillContext SkillModel:isSkillContextElementOf ?ResourceSkill.

?SkillAction SkillModel:isSkillActionElementOf ?ResourceSkill.

?ProcessSkill SkillModel:hasSkillNo ?ProcessSkillNo.

?ResourceSkill SkillModel:hasSkillNo ?ResourceSkillNo.

BIND (?ProcessSkillNo - ?ResourceSkillNo as ?InconsistencyCheck)

} ORDER BY ASC (?ResourceSkillNo)

Result

ProcessSkill ProcessSkillNo ResourceSkill ResourceSkillNo InconsistencyCheck

A set of instances

of all

ProcessSkills

a list of

ProcessSkillNo

datatype

properties

associated with

the corresponding

ProcessSkill

A set of instances

of all

ResourceSkills

a list of

ResourceSkillNo

datatype properties

associated with the

corresponding

ResourceSkill

Numerical

difference between

ProcessSkillNo and

ResourceSkillNo

100

ontology. GATE cannot be considered truly within the semantic web technology family,

but classed more generally as a semantic technology (2010). GATE’s primary function is

that of text analysis with components for parsers, morphology, and information extraction,

among others. GATE is implemented within a Java component model. With the release of

GATE 3.1, support for ontologies was added which are classified as language resources

within the GATE framework. In this work the Ontology Annotation Tool (OAT) is used

that is available from the broader Ontology Tools plugin set. Within this environment, the

user can manually annotate a source file with respect to one or more ontologies. This

allowed the authors to link tags from the engineering tool XML to the appropriate ontology

class as well as explicitly define relations that are not always clear from the source XML.

The Java Annotation Pattern Engine (JAPE) is then used to populate the ontology. It should

be noted that implementation beyond the vueOne engineering toolset presented in this work

would require an exercise in collating the multiple aliases that may exist for a single entity.

This process of name normalisation would be supplemented with knowledge concerning

the naming convention of common concepts in other engineering tools so that, regardless

of the source file’s textual form, a given entity is linked to the same ontology instance.

In order to manipulate the ontology the Apache Jena framework is used which provides a

greater degree of flexibility as compared to the tools available within the Protégé

environment. Apache Jena is an open source Java framework to support in the development

of Semantic Web applications. It provides an API to manipulate RDF triples, supports

OWL, the execution of SPARQL queries, as well as a rule-based inference engine.

Although ontology editors such as Protégé share some of the functionality of Jena, due to

the latter being implemented within Java, GUIs that are user friendly, intuitive and do not

require expert knowledge to operate can be developed. In other words, Jena has the

capability for developers to create a front end for end users within industrial environments

to use, while Protégé can usually only be operated by experts. In addition, Jena is scalable

and provides the most complete, easy to use framework as compared to its competitors e.g.

Sesame (Jaiswal et al., 2015). Furthermore, its flexibility accommodates the

implementation of a tailored solution allowing the authors to develop bespoke logic

resulting in a powerful decision support tool.

The manipulation of the ontology is executed by the user, who is most likely to be the

process planner, through a Java graphical user interface (GUI). The input data from the

user updates the process sequence at a high level and, due to the reasoning power of

ontologies, updates are made to the low level control logic. This in turn generates an

101

updated version of the XML file which is interpretable by vueOne for visualisation of the

machine based on the new process. Once the process has been validated it can be shared

with a controls engineer for approval. The updated process can be transformed into PLC

code and deployed to the physical machine. Dashed arrows in Figure 3-19 represent

information or knowledge that are artefacts of upstream lifecycle phases such as initial

design, engineering etc. Some of the steps illustrated such as auto-code generation

(denoted by the link from vueOne to machine s/w), have already been developed (Harrison

et al., 2016) and are thus not within the scope of this work.

Figure 3-19 Full framework to realise vision

3.8.3.1 Algorithm for executing changes

Having described how the high level process plan is connected to the low level machine

control code in previous sections, the next step is to present how this mapping is exploited

to enable changes. Figure 3-21 presents some pseudo code that describes the algorithm for

swapping, adding, or deleting steps. The input for the algorithm, which is implemented

within Java using the Jena framework, is the source XML from the engineering tools

denoted as the “Process XML” in the code below. In addition, the PPR ontology together

102

with the Skill model is required as the rules within this model allows the changes to be

made in a consistent way. Through GATE, the XML is auto-instantiated into the ontology

so that the latest version of the system is available. Via the GUI the user has three options.

Firstly, it is possible to swap a step. The method for doing so requires the user to indicate

the original process step and the target step.

Through the connections made via the Skill model the system is able to identify the relevant

control logic states that are associated with the process step in the ProcessView and swap

them accordingly. Note that when swapping steps, conditions remain in their original

location to allow the code to be executed. Next it is possible to add a step provided that the

system is capable of doing so. When introducing a new step, a library of processes and

product components is made available to the user based on the skills of the system and pre-

existing system knowledge. When adding the step, the logic engine collates those states

necessary to execute these steps by inferring the relevant ResourceSkills and inserts them

into the control code. Finally, the removal of a process step involves the opposite process

as compared to insertion where those ResourceSkills associated with the process step are

deleted to generate the final control code.

Once the user has completed the manipulation of the high level process plan, the OWL file

is converted back into an XML file that is compliant with the engineering tools using

GATE. Throughout this process, the control code was invisible to the process planner. This

reduces the complexity of making changes and as a consequence, the errors associated with

making them.

Figure 3-20 Algorithm for executing changes

103

 Chapter Summary

This chapter opened with an overview of the methodology describing the general approach

for creating domain ontologies, the need for a Skill model, and brief overview of vueOne.

Following this, a detailed description of the respective domain ontologies as well as the

Skill model was presented which form the foundation of this work. Next, the enrichment

of the ontological models with rules was discussed. The early part of this chapter set the

groundwork as to what the respective domain models looked like and how they were linked

so that it would be clear to the reader how the exploitation of these ontological models

would be carried out and how they would fit within a broader workflow.

After establishing this, the chapter described the inconsistency management aspect in three

parts. The author proposed that the Resource domain is the most complex of the three

domains and also has the greatest value associated with it. Therefore, the other domains as

well as the Skill model need to understand its status and capabilities so that when new

products are introduced and new process plans are generated, these can be checked with

respect to Resource domain capability. This argument formed the first part of the

inconsistency management section while also describing general queries that could be

implemented to help support the capability checking. The second part described a method

for identifying sequence inconsistencies using the Skill model. The third part established a

framework that brought all of the elements of the broader methodology together with a

view to allow sequence changes to be made (on the basis that an inconsistency has been

identified) by manipulating APP information within the Process domain. This elaborated

on the power and the need of the Skill model which has not been used in such a way in the

literature. To achieve this, a key contribution was made which extended the data model of

a set of component-based virtual engineering tools (vueOne – see Table 3-3) with the

necessary concepts identified through systematically examining previous work within a

similar context. The following chapter tests the queries and framework presented in this

chapter on some use cases to validate the approach.

104

4 Application evaluation through Case Studies

 Introduction

In the methodology chapter, inconsistency management through the use of the PPR

ontology and Skill model was described. In this chapter, the ideas and approaches are tested

through case studies. First the “capability checking” aspect of inconsistency management

is checked via a case study that uses an engine assembly station. As the scope of the thesis

and the methodology is then focused on supporting assembly process planning activities

and their link to machine control software, the second case study focuses on testing this

aspect. A fuel cell assembly is described using a high level and a low level description

which is compared to machine control code to demonstrate how, regardless of original

description language or granularity, a connection can be made between the respective

descriptions/models (see Figure 3-19). Then two new fuel cell product variants are

introduced and the logic of the assembly machine is modified accordingly.

 Case 1 - Checking manufacturing resource capability with

respect to product and process requirements

4.2.1 System description – engine assembly station

The case study for this part of the work is an assembly station from an engine assembly

line of a large UK based engine manufacturer. Figure 4-1a describes the process that the

station executes, the objective of which is to carry out a process known as a “nut running

operation”. The outcome is to affix the engine oil pan to the main engine block. The process

is summarised as follows. The engine arrives at the station on a conveyor. A data tag is

read at which point the engine is clamped, and lifted to the nut runner. Then, the nut runner

actuates, tightening all bolts simultaneously. Once completed, the engine is lowered and

rotated, and then lowered again onto the pallet. Finally, the engine is unclamped and

transported to the exit on a conveyor.

Figure 4-1b is a screenshot of the vueOne toolset’s core component editor module. The set

of components is described on the left, and an example of a component’s state transition

diagram (in this case, a clamp) is adjacent to it. The 3D model is to the right of the figure,

while below it the cycle timing diagram is present, which is automatically generated from

the data in the state transition diagram. Information from the virtual model including the

components and the sequence were instantiated into the ontological model manually for

105

this case study. The concepts that exist within the ontology and not in the original

implementation of the engineering tools e.g. Skill (see Table 3-3), were also added

manually to the ontology with the knowledge that such information could exist within the

engineering toolset in the future. The author had process documentation from the

automotive manufacturer which was used to populate the Process domain. Full product

information was not available, but there were sufficient details to describe the product at

the stage of completion for the station modelled. To maintain commercial confidence

agreements, some information from the virtual model has been hidden, however this does

not undermine the proof-of-concept presented in this research.

Figure 4-1a) Machine sequence, and b) annotated screenshot of assembly station within the vueOne

engineering environment

4.2.2 Experimental Setup

Figure 4-2 illustrates how the ontology is extended to allow a check to be made for the

system illustrated in Figure 4-1. The BoltHeads is a subclass of ProductComponent and

this is instantiated with an instance of BoltHeads with details such as the number.

Information regarding the BoltHeads is linked to the EngineBlock and OilPan (not

illustrated in Figure 4-2) through the hasLiaison property and instantiates the class of

ScrewFitLiaison. The ScrewFitLiaison class is linked to the Skill model via the Process

Domain through a NutRunning Process. Note that the realisation of a liaison, as per the

definition in the methodology, is exactly that instance of Process that describes its

fulfilment. This allows the linking to a generic description of the action required which is

BoltTightening. This same action is realised from the assembly station via the NutRunner

ControlComponent through a specific state that exists within this component’s STD. The

106

NutRunner actuator component has NutRunnerHeads fitted to it which form an instance of

NonControlComponent and hasEquivalentSkillContext with the ProductComponent

instance of BoltHeads (via the BoltHeads class). The full sequence associated with the

process is represented within the ProcessComponent as the NutRunningSequence. The

reader is reminded that this is the ResourceView ProcessComponent and the ProcessView

ProcessComponent is not used in this part of the work.

4.2.3 Query 1 – Determining Resource capabilities with respect to

Product requirements

The objective of Query 1, as discussed in the methodology chapter, is to determine whether

a machine meets a product’s requirements. The route that the general query would need to

follow has already been illustrated and discussed in (ref Fig no 14 from methodology). In

order to test whether the query would be able to deliver the results required, the contextual

information available regarding product components and machine components was

instantiated into the Skill model. In this example, due to the objective of the process being

to bolt the oil pan to the engine block, the number associated with the number of bolts in

the product is compared with the number of bolt heads in the machine. This is so that, if

and when a new product variant was introduced with a different number of bolts, the

capability of the machine could be checked with respect to the new requirement. This

information could be enriched with process parameters such as the number of turns and the

torque, due to the extensible nature of the model. The fully instantiated model is illustrated

in Figure 4-3 as a screenshot of Protégé.

107

Figure 4-2 High level view of additional concepts added to model engine assembly station

Product Domain

ProductFamilyProductVariant
hasProductVariant

1..1 1..*

Assembly

1..*

hasAssembly

1..*

ProductComponent

1..*

1..*

Liaison

hasProductComponentQuantity : integer

hasProductComponentID : string

contains

1..*

hasLiaisonQuantity : integer

hasLiaison

1..*

1..*

1..*

Product

1..1

ScrewFitLiaison

BoltHeads

hasBoltHeadDiameter : integer

hasBoldHeadQuantity : integer

Skill Model

SkillContext SkillAction

requiresSkillAction (via ProcessDomain)

hasSkillContext

Skill

ResourceComponent

hasComponentID : string

ControlComponent

NutRunner

NonControlComponent

NutRunner_Head

State

hasStateNo : integer

hasStateID : string

hasStateDescription :
string

hasState

1..*

1..1

Resource Domain

isSkillContext
ElementOf

1..1

1..*

isSkillAction
Element of

1..1

1..*

BoltTightener

executesSkillAction

1..1

1..*

hasSkillContext

1..1

0..1

ProcessComponent

NutRunningSequence

108

Figure 4-3 Protégé screenshot showing how the SWRL rules infer that the “Bolt-OilPan-EngineBlock”

liaison infer the requirement of BoltTightener SkillAction and NutRunning Process (highlighted in yellow)

Although the generic description of Query 1 in the methodology chapter was focused on

ascertaining Product-Resource capability consistency at a high level. This case study

explores the expressive power of ontologies and data manipulation in more detail. As such,

a query was created that not only checked whether the Resource was generally capable i.e.

that the BoltTightening action existed, but also whether the contextual aspect of the skill

was consistent i.e. does the Resource have a sufficient number of NutRunner_Heads to

realise the number of ScrewFitLiaisons. As such, the query as illustrated in Figure 4-4 was

created and the results are presented here also. Note that the structure of the query follows

largely the same structure with respect to the routing as compared to the generic version of

Query 1 given in chapter 3. However, the key difference is a simple mathematical

calculation to determine the difference in the number of NutRunner_Heads and

ScrewFitLiaisons. As the difference is “0” it is observed that no difference between

capabilities exist and therefore the system is fully capable.

109

Figure 4-4 SPARQL query and results for Query 1

The results from Query 1 show how it is possible to link product data features with the

capabilities of resources to provide a mechanism for reconfiguration should requirements

or capabilities change. However, there are several shortcomings of the proposed approach.

One of the major issues is whether or not the user, who in this case would most likely be

the product designer, has awareness of the knowledge available in the ontology. This would

require that either, a considerable training exercise to communicate what can be queried is

undertaken, or that the user’s engineering tool is connected to the ontology. As a result,

when the relevant inconsistency is identified, the user is notified from within the

engineering environment. This would of course require further software development and

the question would be raised as to whether the additional human resources required to

maintain this connection would outweigh the benefits of seamless data model integration.

In addition, depending on the nature of the skill being assessed, the resultant processing

will be different. For example, in the case of a load limit of a ControlComponent e.g. a

robot, any value of mass of the product less than the limit would necessitate a result that

would indicate to the user that the requirements were consistent with the capabilities. In

another case, an assessment would need to be made based on a range. For example, a

pneumatic gripper has an upper and lower bound for the size of component that it can

handle. Provided a given ProductComponent was within the range, the user could be

110

notified that capabilities/skills meet requirements. Therefore, a beneficial extension of the

query would be to extend the ontology with additional rules that check the type of skill

being assessed e.g. limit, range, difference etc. and then consider the result accordingly. In

some sense, this was addressed in (Järvenpää, 2012) however the work was more focused

on aggregating and matching capabilities rather than a detailed analysis of the numerical

values associated with them.

Finally, it would be of benefit to the use if the numerical result generated by the query was

pre-processed before printing. An example for the pre-processing that could be achieved

for Query 1 is presented in Table 4-1. This post-processing and even the query itself does

not need to exist within Protégé which is a relatively limiting environment. The JENA

framework provides much more flexibility and due to its Java implementation would allow

the more complex data processing to be carried out more readily.

Table 4-1 Pre-processing example for Query 1

Query result

(hasLiaisonQuantity –

hasBoltHeadQuantity)

Printed result Interpretation

0 TRUE
the difference in the number of engine oil pan

bolts and nut runner heads equals zero

Negative number EXCESS SKILL

there are more nut runner heads on the machine

than there are engine oil pan bolts. This could

allow the designer to question design validity i.e.

there may be insufficient bolts to hold the oil pan.

On the other hand appropriate preparations could

be made to modify the machine triggering an

engineering change.

Positive number
EXCESS

PRODUCT

there are fewer nut runner heads on the machine

than there are engine oil pan bolts. Again, this

allows the designer to question the design

Null
NULL

PRODUCT

the required data does not exist in the product

domain

Null
NULL

RESOURCE

the required data does not exist in the resource

domain

Null FALSE
data does not exist in the product or resource

domain

It is important to note that the “EXCESS SKILL” result that could be generated does not

necessarily represent a design flaw, in fact it could simply be due to overcapacity within

the system for flexibility reasons. However, the ability to know that there is a difference is

simply an exchange of knowledge between the Resource domain and the Product domain.

111

With this knowledge in hand can allow the relevant stakeholders to make an informed

decision where before there would have been a lack of transparency that a decision needed

to be made at all.

4.2.4 Query 2 – Aligning Resource capabilities with Process

Requirements

Query 2 examines the connectivity between the Process and Resource domains. When

making a change to a process, it is often not clear how a piece of control logic relates to it,

requiring controls experts, and thus increasing the length of the re-engineering process.

This is due to the discrepancy between how different domains of an organisation work and

operate. Although in the example presented for this case study, the naming convention

between the process description in the Process Domain and the machine logic in the

Resource Domain has been kept consistent it does not follow that this is also true within an

industrial environment.

Query 2 is written such that it checks, for a specific instance of Task, whether there is a

relevant state that executes it within the ResourceView ProcessComponent. The query and

result is presented in Figure 4-5. This result demonstrates that it is possible, through the

use of ontological models coupled with virtual engineering tools, to check Product domain

and Resource domain compatibility. Note that the information concerning the states of the

machine was derived, albeit manually, directly from the engineering tool model. In the

implementation of this work, the user would manually need to work through each instance

of Task. Thus, one of the shortcomings of this approach is that if there is an instance of

ProcessComponent that has a State that executes a Skill and a given Task requires this Skill

in more than one step, then the resulting inference may be incorrect. For example, consider

a product that requires a bolt to be tightened in the early stage of an operation, and then

again at the final stages. While the system may have bolt tightening capabilities, due to

mechanical constraints, the station may be unable to fulfil both bolt tightening

requirements. However, the query as it stands would infer that the station would be capable.

This highlights the reason why the contextual information is important. Thus, it is necessary

to extend the query such that it produces a true result that is consistent with the real world.

112

Figure 4-5 SPARQL query and result for Query 2

4.2.5 Summary of Case 1

The results for Case 1 have demonstrated that:

i) the comparison of product requirements with resource capabilities can be

achieved by extending the ontology with the relevant classes and making

small modifications to the generic query

ii) a knowledge base can be used to integrate process planning with machine

logic at the state level to ensure consistency.

Furthermore, the work has illustrated how such an approach complements existing

industrial practices by presenting a methodology for how the queries presented in this

research would exploit the knowledge-base to support design and engineering teams across

the product realisation domains.

113

 Case 2 – Connecting assembly process plans at different

granularities to machine control software

4.3.1 System description – fuel cell assembly station

The hydrogen fuel cell is an electrochemical device that converts hydrogen and oxygen

into electricity and water. There continues to be real-world implementations of this

technology, particularly in the automotive sector by the likes of Toyota, Nissan, and more.

Hydrogen fuel cells are a promising technology to facilitate in the decarbonisation of

energy across industries ranging from portable power through to stationary and back-up.

Despite their inherent power flexibility (attributed to modularity) nuanced design changes

emerge to satisfy the specific needs of the respective markets. One of the consequences of

these design changes is inevitably the change in assembly sequence. In addition, during the

research and development phase of fuel cells, it is necessary to experiment with different

sequences to ascertain the impact on performance.

During the course of this PhD research project, the author has had the opportunity to be

involved with a number of industrial projects. Two of which have been focused on the

manufacturing and assembly of hydrogen fuel cells. As a result, the author has built an

appreciation of the nuances of fuel cell assembly, particularly within the context of specific

designs. However, due to confidentiality clauses and the sensitive nature of Intellectual

Property (IP) associated with the output of projects, the application of the approach

described in this research is limited to abstracted version of products, processes, and

systems. Despite this abstraction process, the author still claims that the approach described

in Chapter 3 can be validated and thus demonstrates a contribution to the body of

knowledge as to how process plans described at differing granularities can be mapped to

machine logic.

The general structure of a fuel cell stack is presented in Figure 4-6a, and a single cell with

unique components IDs and component liaison IDs in Figure 4-6b, respectively. The focus

area for the checking domain model consistency between the assembly process plan (APP)

and machine control software (MCS) is outlined in red in Figure 4-6c. The sub-assembly

highlighted is referred to as a half cell and is a mirror image of the relationships between

components C5, C6, and C7. As a whole, Figure 4-6 summarises the data required to

instantiate the Product Domain for this part of the work.

114

Figure 4-6a) Illustration of fuel cell stack, b) fuel cell component IDs, and c) undirected graph with focus

area for case study in red

The process sequence for realising the half-cell assembly illustrated in Figure 4-6c is

described in two levels of granularity in Figure 4-7a as “Description 1” and “Description

2”. Each step in “Description 1” aligns with the definition of the Process class, on the other

hand “Description 2” describes a more decomposed set of processes and is thus more

aligned to the Task class description. The author acknowledges that the process could also

be described in other ways to realise the same relations of the product at a common level

of granularity to the descriptions presented in Figure 4-7a. In order to keep the case study

clear and concise, only those descriptions illustrated have been tested within this case study.

The assembly system used to assemble the half-cell assembly is illustrated in Figure 4-7b

together with MCS in SFC format. This describes only the behaviour of the sequence logic

of the system and is thus equivalent to the ResourceView ProcessComponent. This diagram

has been recreated from the STD that is generated from the vueOne engineering tools to

improve readability. Note that the additional logic of the respective actuators has not been

included in this diagram but do exist within the engineering model and a physical system.

115

Figure 4-7a) Two levels of process description granularity for half-cell assembly, and b) the assembly system

used represented in the vueOne engineering tools together with the ResourceView ProcessComponent

The workflow in the case of this section of the work is that the process planner would

receive the product information as illustrated in Figure 4-6 within the broader workflow

that is presented in the methodology chapter. On receiving this information and through

discussion with the product designer an assembly sequence would be derived. This

information would then be passed onto the mechanical engineer who would, through

support from the aforementioned domain stakeholders, design a machine. The mechanical

engineer would be supported by the controls engineer who would derive the control code

for the machine, and a combination of efforts from stakeholders in the Resource Domain

would result in its physical instantiation. It is proposed that to support the activities of the

Resource Domain the vueOne engineering tools would be used and thus the virtual model

as illustrated in Figure 4-7b would be created. As opposed to the controls engineer creating

control code from scratch, it could be automatically generated from the virtual model as

has already been described and proven in (Ahmad, 2014). This automatic code would lend

itself to the more integrated engineering approach being described in this thesis as it would

116

inherently conform to a structure and not the style of a given software/controls engineer.

Despite this difference, the information content describing the control sequence would be

expected to be the same regardless of whether the code is manually or automatically

created. Therefore, it is proposed that the APP to MCS approach would be applicable to

either scenario. Regardless, the problem persists in that the complexity of the control level

description (ResourceView ProcessComponent) is difficult to validate with the high level

description (ProcessView ProcessComponent). Thus, the objective of this section of the

case study are twofold:

i) how APP descriptions at different abstraction levels can be checked for

consistency with respect to capabilities described in MCS

ii) how APP sequence requirements can be checked for consistency with

behaviour described in MCS

Note that objective 1 in this case is also resolved in the first case study, however the

validation of the methodology is enhanced through testing and demonstration on an entirely

different case application. Furthermore, in the first case study the process description was

already consistent with the resource description logic and so the test was only to ascertain

that skills were compatible. In this case the difference is a change in the granularity of

descriptions and ascertaining whether a consistency check can still be made.

4.3.2 Transforming domain descriptions to ontological models

Table 4-2 and Table 4-3 are extracts of the explicit relationships declared by the user made

within their respective engineering environments for the Process Domain and the Resource

Domain respectively. More specifically, it is possible to declare these explicit relationships

within the vueOne engineering tools due to the increased descriptive power of the tools.

However the implementation of the extended data model has not been realised.

Note that these extracts are all functionally equivalent in that they are achieving the

objective of moving component C1 from its initial position and placing it on the fixture.

Furthermore, it is important to highlight that step 1 in “Description 1” is functionally

equivalent to the sum of step 1 and step 2 in “Description 2”. However, despite the latter

being a more decomposed version of the former, the resulting number of ProcessSkill

instances is fewer. This is to demonstrate to the reader that this work cannot address the

problem of maintaining equivalent descriptions in an absolute sense despite both

descriptions using the same decomposition approach. Rather, it demonstrates how the

meaning of the descriptions in both source models can be compared and checked for

117

inconsistencies, regardless of how subtle differences between how the user may wish to

describe the process may emerge.

In the process of declaring instances the user is able to decompose their description in a

systematic way that aligns with the standard terminologies for Skill while retaining the

semantics associated with contexts. Once the explicit aspects have been declared the

instance associated with requiresSkillAction class and requiresSkillContext are aggregated

to form ProcessSkill or ResourceSkill depending on the source domain. This aggregation

process transforms the manually decomposed descriptions into human and machine

readable descriptions that can be cross checked for consistency.

Table 4-2 Extract of explicit and generated mappings – Process Domain

Table 4-3 Extract of explicit and generated mappings – Resource Domain

The information that already exists in the vueOne engineering model was auto-instantiated

into the ontology using JAPE rules which connected the XML file output to the relevant

118

classes of the OWL model. GATE was used as the interface between the source XML

(based on the XML tags) and the OWL model due to its ability to import OWL models. A

screenshot of the JAPE rules and GATE interface is presented in Figure 4-8.

Figure 4-8 JAPE rules and GATE interface

To help illustrate how skills are assigned within the ontology and how the inter-domain

connections are formed, Figure 4-9 represents the case information within the framework

illustrated in Figure 3-19. The PPR ontology is instantiated with the data that has been

presented in Table 4-2 and Table 4-3 based on the case illustrated in Figure 4-7. A manual

119

process from the respective members of the team layer would explicitly define what

constitutes a SkillAction or SkillContext within the Process domain description

(ProcessView) and the control model in the Resource domain description (ResourceView).

Nouns that exist within the Product domain such as ProductComponent or the Resource

domain such as Fixture are automatically transformed into unique instances of SkillContext

using the unique ID that is generated from the engineering tool and assigned a

hasSkillContext relation with the respective instance. Due to this link, users can identify to

what the SkillContext is being referred to as typically the unique ID could not be interpreted

in isolation to reveal its source.

Figure 4-9 Assigning and mapping skills

4.3.3 Implementation and results

4.3.3.1 Objective 1

The Protégé screenshot presented in Figure 4-10 illustrates the implementation of

“Description 1” and “Description 2” described in Table 4-2. New knowledge inferred from

Rule 1 (Table 3-5) is highlighted in yellow. Objective 1 of this part of the case study is

therefore achieved as the figure demonstrates that regardless of the initial abstraction level

presented in Table 4-2, the appropriate ResourceSkill that can execute it is still mapped.

This demonstrates that the model is able identify whether there is a state in the MCS that

is able to execute a given process step.

L2

L1

START
(Initialisation)

01_Move_X_XP1

02_Move_Y_WORK

X_XHOME &
Y_YHOME = 1

START BUTTON = 1

Sensor XP1 = 1

03_Grip_Componen
t_C1

Sensor YWORK = 1

04_Move_Y_HOME

Sensor Gripper = 1

05_Move_X_HOME

Sensor YHOME = 1

06_Move_Y_WORK

Sensor XHOME = 1

Moving to
Work position

1

Work Position
1

X Actuator
START (Home)

Moving to
Home

X at home position

Work Position
2

Work Position
3

Moving to
Work position

2

Moving to
Work position

3

Moving to
Work position

4

Work Position
4

Moving to
Home

Moving to
Home

Moving to
Home

Moving to Work
position

Work Position

Y Actuator
START (Home)

Moving to Home

Home position

Turning on vacuum

Vacuum on

Vacuum
gripper off

Turning vacuum off

Vacuum off

START

1. Place C1 on
fixture

2. Place C3 on
C1

3. Place C2 on
C1

FINISH

Actuator Logic (STDs)ProcessComponent ResourceView

Resource Domain

C1

C2

C3

Process Domain

ProcessComponent
ProcessView

Product Domain

Product
Description

Skill Model

ProcessSkill ResourceSkill
isExecutedBy

SkillContext
SkillAction

SkillContext

hasEquivalentSkillContext

120

Figure 4-10 Implementation of Description 1 and Description 2 in Protégé

4.3.3.2 Objective 2

Figure 4-11 illustrates the result of the inconsistency check for both “Description 1” and

“Description 2”. The rationalisation for ascertaining whether an inconsistency exists (as

discussed in the methodology chapter, see section 3.8.2) is demonstrated in the 5th column

of the query results table in Figure 4-11. The difference between the ProcessSkillNo and

the ResourceSkillNo is always negative indicating consistent descriptions. Furthermore, the

figure also demonstrates that regardless of the different levels of process description

abstraction levels, the consistency relative to the machine control logic description can be

checked. This query fulfils Objective 2 of this part of the case study as it demonstrates how

the process planner’s model can be checked for consistency with the machine programme

logic from the sequence perspective. However, only sequential processes have been

checked for consistency. It is not uncommon for branched or parallel processes to exist in

real machines. It is possible that the same methodology could be applied to resolve this

issue also, with the caveat that those processes that exist within the respective branches

having a standardised numerical coding associating with the states. At the initial design

phase of the code, this may be possible. However, as the control code evolves, it may not

121

be possible to maintain this standard because of its growing complexity and the lack of the

software/controls engineer’s knowledge about the full code. This creates a stronger case

for auto-code generation as it ensures that the control code follows a certain standard at all

times.

Figure 4-11 Query and query results for inconsistency check for objective 2

4.3.4 Summary of Case 2

The results for Case 2 have demonstrated that:

i) The interaction and the mapping between the PPR domain via the Skill model

allow consistency checks to be made with respect to capability across APP

descriptions (at different levels of granularity) with MCS

ii) Sequence inconsistency checks between APP (at different levels of

granualrtiy) can be made with MCS.

Within the broader workflow, one of the challenges would be to get the respective domain

stakeholders to decompose their respective process steps or machine states as proposed.

This would add additional workload to the user and thus may prevent acceptance. In

addition, the issue of developing a GUI that interacts with the user has not been addressed

in this research work but remains an essential part of the chain. It would be necessary to

link said GUI both with the ontology as well as the engineering tool being used. This could

be achieved through a framework like Apache Jena which is used in Case study 3 to support

122

in the rectification of inconsistencies. Despite the challenges, one of the key issues within

the context of differing semantics for common entities has been addressed through the

hasEquivalentSkillContextWith object property which is a novel insight and the author has

been unable to find a similar approach in the literature. It could be possible that as the

knowledge within a given ontology increases and evolves, tools such as natural language

processing and machine learning could be implemented. This would allow both the

extraction of the necessary information from the respective engineering models, but also

the automatic mapping of the aforementioned object property through inference to create a

powerful, reusable knowledge base.

 Case Study 3 – Resolving inconsistencies

Case study 3 is an extension of Case 2 in that it uses largely the same product, process, and

resource information. The addition in this case is the introduction of product variants and

a demonstration of how the respective semantic and semantic web technologies are used to

complete the workflow and resolve inconsistencies.

4.4.1 Case description

As aforementioned, the Product and Resource Domains are already described for this case

in Figure 4-6 and Figure 4-7b respectively. The extension to the Process Domain is through

the introduction of new product variants, the process descriptions for which are illustrated

in Figure 4-12. For Variant 1 after placing the cathode plate, first the GDL is placed and

then the gasket, while for Variant 2 first the gasket is placed and then the GDL. The reason

for this is some nuanced differences in the geometry of the gasket and the cathode plate

which affect how seals are formed between certain components. Variant 2.1 is an extension

of Variant 2 whereby an additional GDL is placed on the first one. Due to water production

on the cathode side, the additional GDL serves as a tool for supporting the fluid transport.

123

Figure 4-12 Process descriptions for additional product variants

4.4.2 Swapping and adding steps

Figure 4-13 illustrates the user interface that allows the manipulation of the ontological

model so that the exported file from vueOne can be modified rapidly and then reimported

for visualisation and validation purposes. In Figure 4-13a the transition from Variant 1 to

Variant 2 is made by swapping steps 2 and 3 in the ProcessView of the ProcessComponent.

As a consequence of doing this, through inferences via the Skill model, the low level

machine logic is also modified. The change from the user perspective takes a matter of

seconds needing only to type the command i.e. Swap, and then point to the steps that need

to be swapped. If the equivalent change is to be made within the engineering tool prior to

the introduction of the ProcessView ProcessComponent as well as the Skill model, a person

well versed in the model takes approximately thirty minutes to make the change. On the

other hand, someone familiar with the tools (but not necessarily the specific model) takes

up to an hour because they first need to interrogate the model to understand the

relationships between the different components and the sequence conditions. Beyond the

time savings, an additional benefit is the reduction of risks as the process for making the

change would normally be manually executed.

In Figure 4-13b the transformation from Variant 2 to Variant 2.1 is observed. In this case,

an additional command called ‘Add’ is used. When adding a process, only those processes

that exist within the library can be added. This is because this is part of the knowledge of

the system as it knows that the given process is executable by the system via the Skill

124

model. Although in this example the library is small, it is proposed that as the engineering

tool library is expanded, so too are the ontologies’ ability to reason available skills when

adding processes. The process of adding a step in the engineering tool is more complex

than swapping the steps and this is true more generally when control engineers need to

insert new steps within a sequence of PLC code. This is because it is often not clear what

impact the addition of a process step will have on the broader sequence as well as the risk

of errors associated with not adding all necessary conditions. By providing the semi-

automatic approach for adding process steps as illustrated in this section, there is both a

time saving as well as a confidence that executable code can be generated. One of the

shortcomings within the context of adding steps, is that the additional ProductComponent

is not automatically added to the model and so the gantry moves without holding an object

for the final step in the process for assembling Variant 2.1.

Figure 4-13 a) swapping process steps, and b) inserting new process step

125

4.4.3 Summary of Case 3

Case 3 successfully demonstrates the resolution of inconsistencies through an approach that

utilises front end virtual engineering tools supported by ontologies. The approach has been

demonstrated on a simple assembly which can be interrogated with relative ease by

humans. However, where more complex products are involved with many components,

interactions, and variants, a need arises for a method that can manage and execute changes

reliably. Thus this methodology describes a more efficient way of making system changes

by embedding the said expertise within a knowledge model. The key outcome from this

case study can therefore be summarised as follows:

i) The correction of inconsistencies that would arise between an assembly

process plan and machine control when a new product is introduced through

a validation pathway via virtual engineering tools minimising risks associated

with executing changes when a new process plan is generated

 Chapter Summary

In this chapter the author has demonstrated how PPR ontologies in conjunction with the

Skill model and integrated with virtual engineering tools through the Apache Jena

framework, can be used to check capabilities, identify sequence inconsistencies, and

resolve said inconsistencies. These case studies present a strong case for:

i) how ontological models can be used to support the engineering process in

real manufacturing systems in way that has seen limited demonstration in the

existing literature and

ii) substantiates the contribution to knowledge claims presented by the author in

the introductory chapter

The following chapter presents an evaluation of the methodology more broadly discussing

and comparing the approach with industrial state of the art i.e. PLM and existing ontologies

that have been presented in the literature with similar applications.

126

5 Success evaluation through comparison of existing

comparable works

 Introduction

This chapter discusses and evaluates the methodology presented in this thesis. The case

study chapter has demonstrated that for the given applications, the methodology is able to

successfully handle the challenges. However, it is necessary to also consider the

methodology within a broader context such as how it compares with similar works and

what the anticipated impact or benefits would be. This forms “Descriptive Study II” of the

Design Research Methodology introduced in Chapter 1. It should be noted that the

application evaluation was carried out in the case study chapter, and the success evaluation

is carried out here.

The core contribution of this work is the development and demonstration of modular

ontological models that integrate with engineering workflows associated with product

realisation. Therefore, in order to evaluate the work two comparisons with the state-of-the-

art need to be made, the first being of the ontologies while the second being the framework.

After this discussion this chapter summarises the evaluation, highlighting the key points.

 PPR and Skill model Ontology Evaluation

5.2.1 Evaluation methods and criteria for ontologies

Despite the prevalence of ontological models in the literature, there is a lack of agreement

as to how best to evaluate them. Hlomani and Stacey (Hlomani and Stacey, 2014)

complement the definition of ontology evaluation proposed by Brank et al. (Brank et al.,

2005) as deciding the quality of an ontology, with respect to a criterion set, based on the

proposed application. The definition proposed in Staab and Studer (Staab and Studer, 2010)

uses the concepts of verification and validation. Ontology verification determines whether

a given ontology has been built correctly while validation is concerned with identifying

whether the correct ontology has been built. In this research work, the verification of the

ontology has been demonstrated in the case study chapter. It can be seen that the ontology

does not have any inconsistencies, includes the concepts required, and is sufficiently robust

to accommodate engineering changes. Furthermore, the validation has been demonstrated

in part as it is able to meet the requirements of the application cases. However, the broader

127

validation question is whether it extends and improves upon what already exists or if it is

just more of the same.

Obrst et al. (Obrst et al., 2007) identified a need to create a systematic discipline of

ontology evaluation with a view to systematically create information systems rather than

the ad-hoc “close enough” approach that is prevalent in both industry and academia. They

highlighted ontology evaluation techniques derived from the field of biomedicine as:

application evaluation, comparing a given ontology with domain data, and performing

natural language evaluations. Despite the methods described, they concluded that the best

measure of an ontology is whether it has been adopted and reused. Surveys on ontology

evaluation have been carried out by Brank et al. (Brank et al., 2005) and Hlomani and

Stacey (Hlomani and Stacey, 2014) and have consolidated both the methods and the criteria

that exist within the literature.

The methods for ontology evaluation are summarised in Table 5-1. In most cases, the

methods all suffer heavily from subjectivity or in the case of the data-driven approach a

lack of appreciation of the dynamic nature of domain knowledge. However, an ontology is

inherently an attempt to approximate the real world, thus the use of the term

“conceptualisation” being used in all of the most highly cited definitions for ontologies.

Therefore, those that create ontologies are inherently influenced by their own predilections,

preferences, and expertise. As such, evaluation methodologies also suffer from the same

pitfalls: a conceptualisation is being evaluated through the eyes of a person/group with their

own conceptualisation. Ultimately, the method for evaluation must be able to measure the

distance between the real world and the approximated conceptualisation. The challenge is

determining and agreeing what the “real world” is.

To support this measurement problem, a number of metrics or criteria have been derived

and some level of consensus has been reached within the literature as to what these are

(Hlomani and Stacey, 2014, Bandeira et al., 2016, Gómez‐Pérez, 2001, Vrandečić, 2009).

These criteria are summarised in Table 5-2. All of the criteria focus on the ontology, apart

from “organisational fitness” which is a metric more aligned to the framework within which

the ontology sits (Vrandečić, 2009).

Based on this review of methods and metrics the author proposes the following for

evaluating the ontologies in this thesis:

Compare and contrast the PPR domain ontologies and the Skill model ontologies with

“gold-standard” PPR ontologies and Skill model ontologies in the literature for:

o Adaptability

128

o Clarity

o Cohesion

o Completeness

o Conciseness

These metrics have been chosen because the author has sufficient information from the

literature to allow an informed evaluation to be made.

The aim of this evaluation is to highlight the contribution that the ontologies in this work

make and of equal importance, to ascertain the shortcomings to consider future research

directions.

Table 5-1 Ontology evaluation methods

Method Description

Gold standard Comparing an ontology with a “gold-standard”. This could be an

ontology generally considered to be well-structured, sufficiently

expressive and complete within the domain of discourse. The key

shortcoming here is the evaluation of the “gold-standard” itself,

resulting in a circular evaluation problem i.e. is my actually ontology

bad, or is the ontology I am comparing with bad?

Application-

based

Evaluating the efficacy of an ontology within the context of an

application e.g. a use case. The pitfall of this approach is that the

application on which the ontology is evaluated will not be equivalent

to another and thus the results cannot be confidently generalised.

Furthermore, when multiple ontologies need to be compared, this can

quickly become a time and resource intensive process.

Data-driven Comparing the ontology against the existing data about the domain that

the ontology is attempting to model. This can be done, for example, by

comparing the ontology concepts with concepts that exist within

domain documents. In this approach, domain knowledge is considered

to be a constant, however this is not representative of reality where

knowledge evolves as new concepts are introduced and new relations

are created.

User-based An evaluation derived from user experience. The focus is evaluating

the subjective information about the ontology. The metadata from the

viewpoint of the ontology creators is compared with the metadata from

the view of the ontology users. This method is unable to establish

objective evaluation metrics and in some cases identifying the right

users can also be challenge.

129

Table 5-2 Quality criteria for ontology evaluation from the literature

Criteria Description

Accuracy The level of agreement between the asserted knowledge in the

ontology and expert knowledge

Adaptability Ease of use of ontology for different contexts or applications by means

of extension

Clarity The efficacy of how well the ontology communicates meaning of

terms/concepts

Cohesion A measure of ontology modularity or the level of relatedness between

classes

Competency/

completeness

The coverage of a domain of interest and whether all of the necessary

domains have been covered

Computational

efficiency

The speed at which tools can work with the model e.g. reasoners

Conciseness The amount of irrelevant or redundant concepts with respect to the

modelled domain and thus ensuring a minimum level of ontological

commitment i.e. specifying the least constraining conceptualisation

Consistency/

Coherence

The minimisation of contradictions. Also covers the consistency

between formal and informal ontological representations.

Organisational

fitness

Deployability of ontology for an application

5.2.2 Ontology evaluation results

The “gold-standard” ontologies used for comparing the PPR domain models are the works

of Lanz (Product-Process-System model) (Lanz, 2010) and Lohse (ONTOMAS) (Lohse,

2006). Although both of these authors published their respective ontologies in journals, the

author focuses only on the content as per their respective PhD theses. The reasoning for

this is that the thesis would be expected to be the most comprehensive description of their

ontologies including the detailed descriptions required for a comparison. Since the work of

the authors cited, a number of other ontologies have been published within a similar context

130

(see Chapter 2), however they either exist at a different level i.e. core or upper ontologies

rather than domain ontologies (Lemaignan et al., 2006, Borgo and Leitão, 2007, Usman et

al., 2013), or there is insufficient detail available about these models e.g. Hasan et al. and

Raza and Harrison (Hasan et al., 2016b, Raza and Harrison, 2011). The justification of the

“gold-standard” aspect could come from the number of citations which are 16 and 43 for

Lanz and Lohse respectively according to data from Google Scholar at the time of writing.

As the author is unable to find other descriptive PPR ontologies in the literature aside from

these, the numbers only suggest that those in this research area are aware of these works

and they have been relevant enough to be cited.

On the Skill model side, the work of Järvenpää (Capability model) (Järvenpää, 2012) and

Lohse (Function-Behaviour-Structure (FBS) (Lohse et al., 2004) are used as the “gold

standard”. Although the notion of skills/capabilities have been prevalent in a number of

publications and EU projects, there are limited examples of these ideas being expressed

within generalizable models. Furthermore, there are even fewer examples of such models

being expressed within ontologies. The works selected have explicit models that can be

compared with what has been described in this work and can therefore evaluated based on

the criteria selected.

5.2.2.1 Domain ontology evaluation

Table 5-3 presents the domain ontology evaluation based on the criteria selected. From the

table, the key areas where the ontologies presented in this work extend what has come

before are the demonstration of adaptability, cohesion, and concision from the point of

view of minimising ontological commitment. With regard to the other criteria, the author

believes the measures to be at least equivalent.

Table 5-3 Domain ontology evaluation

Criteria Evaluation

ONTOMAS & Product-Process-System model: No adaption of the

ontology demonstrated by means of extension to include new classes

in any of the case studies. However, as both works used Protégé, the

ontologies could be seen as easy to use being implemented within a

tool that most with the research area are familiar. Both works also

created a front end for the end-user to use and interact with the ontology

facilitating the exploitation of the knowledge.

131

This work: Case study 1 clearly illustrated how new classes were

added to the base model to allow the modelling of an assembly station

that the original ontology was insufficiently expressive to support.

Furthermore, general queries have been created to allow the user to

exploit knowledge within the ontology. Finally, due to the integration

with the Apache Jena framework a Java based GUI can be created to

improve usability.

ONTOMAS & Product-Process-System model: The words used to

describe a given concepts in both works are understandable by the

respective domain experts, however concept relations are not always

expressed clearly. This is particularly problematic when trying to

understand how domains interact with each other. The author also not

find a graphic of ONTOMAS that illustrates the ontology as a whole,

beyond just the very high level illustrations.

This work: The author has ensured that the concept names are based

on the “gold-standard” as well as other internationally recognised

standards. In addition, the relationships between domains are expressed

clearly to prevent any ambiguity.

Cohesion ONTOMAS & Product-Process-System model: Both works

describe the domains within ontology modules, but do not elaborate on

why this is beneficial. In both models the connectedness between the

Product and Resource domain low, forcing users to navigate through

the Process domain for querying purposes.

This work: As well as creating ontology modules, this work has

explicitly highlighted the benefits i.e. the ability to add domains or

large concepts that have not been represented. There are also

connections within and across domains that facilitate knowledge

exchange and interrogation.

ONTOMAS & Product-Process-System model: Coverage of both

models is comprehensive and are generally common with other

manufacturing ontologies in the literature

This work: many of the concepts have been derived from the cited

works, however the shortcoming of a lack of control logic modelling

has been addressed within the Resource domain

ONTOMAS & Product-Process-System model: Not all of the

concepts are used within the case study, however this may well be

because of the nature of the cases themselves and thus cannot be fully

attributed to redundant concepts. ONTOMAS is based on a core

ontology and therefore a level of ontological commitment is imposed.

132

However, in both cases there are no highly constraining axioms that

unduly constrain the ontology

This work: As with the cited works, not all of the concepts have been

used, but this is attributed to the nature of the case studies. The

ontology offers minimal ontological commitment within a number of

classes e.g. that a ResourceComponent could be an instance of

SkillContext. Preventing an unnecessary constraints upon the ontology

has been key to ensure that a myriad of engineering workflows can be

accommodated which the ultimate aim of the work.

5.2.2.2 Skill model evaluation

The Skill models being compared in this section of the evaluation are given in Figure 5-1,

Figure 5-2, and Figure 5-3 for the Capability model, FBS model, and the Skill model in

this work respectively. Note that Figure 5-1 and Figure 5-3 already exist in the literature

review chapter and the methodology chapter respectively, but have also been included here

to ease the evaluation process.

Table 5-4 presents the Skill model evaluation based on the criteria selected. From the table,

the key areas of contribution are the cohesion, completeness, and concision. The main

shortcoming of the Skill model is the clarity as compared to previous works, but in other

respects the model is at least equivalent.

Figure 5-1 Capability model (Järvenpää, 2012)

133

Figure 5-2 FBS (Lohse et al., 2004)

Figure 5-3 Skill model (this work)

Table 5-4 Skill model evaluation

Criteria Evaluation

Capability model & FBS: The Capability model is inherently

adaptable due to its ability to aggregate capabilities into new ones

allowing the ontology to evolve. FBS is more rigid due to the direct

link between Function and Equipment.

Skill model: In the same vein as the Capability model, the Skill model

can model both atomic Skills through SkillAction, but also their

aggregation through the Skill class. The usability is improved as the

granularity of an instance of Skill is user-dependant and dictated in part

by the requirements of the Process domain.

Capability model & FBS: The terms used in the Capability model are

clear and even a non-expert would be able to grasp what is being

modelled. The terms in the FBS model and their relationships are more

abstract due to constraints from the core ontology. The user would need

SkillContext

Skill Model hasEquivalentContext1..*
SkillAction

hasSkillActionNo : integerSkill

hasSkillNo : integer

hasNext

isSkillActionElementOf

1..1

1..1

1..*

1..*

1..1
1..*

ProcessSkill ResourceSkill

isExecutedBy
1..10..1

1..*

isSkillContext
ElementOf

134

to scrutinise documentation associated with the FBS model to

understand what is being represented.

Skill model: The terms used are not especially clear and the author

does feel that the user would need to consult documentation to

understand what is being modelled. However, as the Skill model forms

part of a broader framework and would be used via front end

engineering tools, it is not believed to be especially concerning

Cohesion Capability model & FBS: The Capability model exists solely within

the Resource domain and it is not clear from the work how it interacts

with other concepts. There is a greater level of cohesion in the FBS

model, attributed to the core ontology. However, in both cases, the

models are part of the Resource domain models and therefore limited

links with other concepts exist.

Skill model: There are a number of interactions with all of the PPR

domains demonstrating a more integrated model that is able to take

information from multiple sources and reason accordingly.

Capability model & FBS: Both models are complete in an absolute

sense, with the Capability model including the human factor of

competence which is missing in FBS. On the other hand, FBS

appreciates the need to model the sequence modelled through temporal

relationships which are missing in the Capability model.

Skill model: The model extends the absolute nature of skills or

capabilities that exist within the literature and contextualises increasing

the expressivity and thus reasoning ability. The temporal nature of

skills are modelled through data type properties, while human

competences would be handled through an action carried out by a

specific instance of a ResourceComponent i.e. a human

Capability model & FBS: The Capability model requires only 6

classes for an expressive model. The FBS illustrated in Figure 5-2 is

the highest level version of the model and so there are a number of

additional concepts. While this may aid expressivity, it could affect the

usability of the model require a large amount of information for

instantiation.

Skill model: There are 5 main classes in total but regardless of this the

model is more expressive than the Capability model. All of the classes

have been used in the case study and so a lack of redundancy has been

demonstrated.

135

5.2.3 Discussion of ontology evaluation

One of the limitations of the evaluation is that it is almost impossible to find any work that

has identical aims and objectives. Therefore, it must be stressed that an identified

shortcoming of a given work may exist simply because it was not within its scope and is

not intended to demean it in any way.

One of the important aspects of this work is that the ontologies for the PPR domains and

the Skill model are expressive and declarative about their relationships. This ensures that

the user can understand the rationale behind the link and then create queries that follow a

more natural logic than would be the case within an SQL database where the schema is

hidden. Furthermore, previous works within the same area e.g. Lohse(Lohse, 2006), Lanz

(Lanz, 2010), and Järvenpää (Järvenpää, 2012), have looked at either the PPR ontology or

the Skill model individually, but not brought them together under one integrated model.

These works have also not made it clear how and where cross domain links are formed.

This is of paramount importance as it at these domain interfaces where information is lost

and ensuring that clear links exist allows the user to identify why certain pieces of

information may not be carried across domain i.e. due to a lack of expressivity of a given

domain concept.

The author has also been keen to maintain a modularised approach to the ontological

models. Rather than all of the ontologies existing in a single file, the respective models are

independent from each other. This highlights the importance of declaring how the

respective domains are linked. Moreover, due to the modularised approach, sub-ontologies

can be added to accommodate concepts or domains that have not been included in this

work. For example, one of the important aspects of engineering change is weighing up the

cost of different options vs. the benefit they would provide. Therefore, a cost-model

ontology could be attached as a module, interacting with the relevant concepts from within

the respective domains to predict the investment required to implement a given solution.

Furthermore, the approach lends itself to the standardisation of terminology e.g. the

SkillAction class via DIN 8580 (DIN, 2003) or VDI 2860 (VDI, 1990), so that it can be

used across a host of applications. It also acknowledges efforts to move towards common

automation system lifecycle semantics through efforts such as AutomationML (AML)

(Drath et al., 2008), and thus provides a “semantic exchange” layer that enables those users

that would prefer its notation to do so. The work presented in Kovalenko et al. (Kovalenko

et al., 2015) experimented with comparing a model-driven approach (Ecore) with a

semantic web approach (OWL) for representing AML. The author raises this work here to

136

highlight that such projects evidence the rising appreciation for semantics within relevant

exchange languages. In the cited work, it was identified that the transformation of AML to

OWL was challenging and required several iterations. This could potentially have been

resolved by mapping the necessary concepts within AML to the PPR ontology presented

in this research work.

One of the fundamental tenets of ontological models is their ability to represent knowledge.

However, knowledge is inherently dynamic and fluid and the scientific community is an

excellent example of this. As new findings are made, updates are made to the body of

knowledge. Within the field of knowledge representation, this fluidity has been recognised

and addressed through dynamic knowledge representation (Alferes et al., 2000a, Javed et

al., 2013). There is a significant body of literature in this area and much like this research

it focuses on updating knowledge models and managing conflicts. In Alferes et al. (Alferes

et al., 2000b) a “Language of UPdateS” (LUPS) was created that, among other things,

allowed the authors to store and thus query the history of the knowledge models. The

importance of this ability was exemplified through legal reasoning where the law evolves

but knowledge about the state of the law prior to the current time is necessary to know and

thus determine whether a crime was committed in the past. Dynamic ontology evolution

was explored in Zablith (Zablith, 2008) through a framework called Evolva. The

framework consisted of several steps, namely: information discovery, data validation,

ontological changes, evolution validation, and evolution management. Of note was the

evolution management as recorded the changes made to the ontology to allow changes to

be rolled back. In Heflin and Hendler (Heflin and Hendler, 2000) the problems associated

with managing ontologies within distributed environments (akin to the design and

engineering activities associated with product realisation) and addressed through SHOE

(Simple HTML Ontology Extensions). They developed three ontology integration methods

which were:

1. Mapping ontologies: to assimilate different ontologies into a single one

2. Mapping revisions: to use rules to update multiple ontologies based on the

updates within one or many

3. Intersection ontology: where a new ontology intersects the concepts between

pre-existing ontologies, a process of renaming terms is carried out

A combination of these methods could be relevant to ontologies that are used within

manufacturing. The modular nature of ontologies presented in this work is a double-edged

sword, while it reduces model complexity and facilitates integration, there is a greater risk

137

of multiple versions evolving and diverging. Therefore it is important to implement such

methods to prevent inconsistencies and divergences arising in a model which is relied upon

to be consistent and the “single source of truth”.

The dynamic nature of knowledge in manufacturing system and the need to be able to query

its history is also important. However, within the approach presented in this research, the

historical aspect of the system was out of the scope. The author believes that it is important

to include this in future work so that i) a previous version of the manufacturing system can

be interrogated for its skills to find out for example how a previous product variant was

assembled, and ii) ascertain how the system evolved so that the system can be reverted to

its original state (particularly useful for control code) if there are issues with the current

version.

 Framework evaluation

5.3.1 Framework evaluation approach

The ontologies developed in this research were developed, from the outset, to sit within a

framework envisioned to bring together knowledge representation with engineering tools,

methods, and workflows. This was with a view to addressing a question as to how

ontologies can support new product introduction to combat reduced product lifecycles and

an increased number of product variants. The framework created formed a hierarchy that

included the multiple levels that exist within industry e.g. users and tools, and

complemented them with a knowledge level. The knowledge level was represented using

a PPR ontology in conjunction with an innovative, extendable Skill model.

This section of the evaluation compares frameworks that have been developed which are

similar in their scope as the one created in this work. This section does not use the more

formal evaluation process presented to evaluate the ontological models. Despite a literature

survey, the author has not found a methodology for evaluating architectures and

frameworks. As such, the author describes how well the frameworks address the following

goals:

1. The framework should clearly describe how the ontological models fit and the

value knowledge representation brings

2. The framework should show how it facilitates the engineering workflow through

change management or the given engineering process it was designed to support

138

3. The framework should show an appreciation for user interaction and how this is

accomplished i.e. through integration with engineering tools

5.3.2 Comparable frameworks

Ultimately the framework should be demonstrating a value-adding industrial case for

utilising knowledge representation. The frameworks that have been selected have already

been discussed in the literature review chapter, however they are discussed in more detail

here and with the perspective of facilitating the evaluation of the author’s research. The

works selected to compare and contrast for this evaluation are as follows:

1. Alsafi and Vyatkin (Alsafi and Vyatkin, 2010) where the objective was to utilise

knowledge representation to achieve fast reconfiguration of modular

manufacturing systems through an ontology agent. The agent inferred facts about

the manufacturing environment from the ontological model and determined

whether it was capable and then derive new configurations. The layered

architecture of the ontology-based reconfiguration architecture is presented in

Figure 5-4. The specifications layer explicitly provides all the raw data about the

manufacturing system including the requirements e.g. process information, the

layout, and the knowledge about the system itself. Note that the knowledge is

represented within an OWL-DL file. The analysing and modelling layer interprets

the information from the specifications layer into models that can be accessed and

manipulated. The intelligent reasoning layer reasons about the requirements, and

based on the layout and capabilities generates a final configuration. The

deployment manager in this top layer is mostly focused on deploying software

changes associated with the logical operation of the manufacturing system. In order

for the deployment manager to work, the caveat is that the low level distributed

system controllers are in compliance with IEC 61499 (Vyatkin, 2009).

139

Figure 5-4 Layered architecture of ontology-based reconfiguration agent (Alsafi and Vyatkin, 2010)

2. Lanz (Lanz, 2010) integrated the Product-Process-System model ontology into a

broader conceptual architecture that is illustrated in Figure 5-5. There are four

access layers which create software modules with their own responsibilities.

Information is implemented within XML-based files with the service interface

layer allowing the client layer access to the knowledge stored in the knowledge

base. The service layer serves as an access layer between the respective mappers

for the different formats i.e. X3D, VRML etc. These mappers facilitate data

exchange between different web applications. The ontology manager in the service

layer is responsible for modifying the content of the ontology based on updates

from the client layer data. The ontology access layer serves to provide reasoning

(via Pellet reasoner (Sirin et al., 2007)) and conflict avoidance capabilities due to

the distributed nature of the approach from the user perspective.

Figure 5-5 Conceptual architecture of knowledge base (Lanz, 2010)

Finally in Figure 5-6, the framework proposed and demonstrated in this research is

illustrated. This has already been described in detail in Chapter 3, however the figure has

been reproduced to facilitate easier reference for the reader.

140

Figure 5-6 Framework of this research

5.3.3 Framework evaluation results

5.3.3.1 Fit and value of KR in frameworks

Both of the frameworks in the literature demonstrate and clearly describe the benefits of

using ontologies in their works and are also clear in describing how they are used. However,

Alsafi and Vyatkin (Alsafi and Vyatkin, 2010) the specification layer includes both XML

and OWL files, while Lanz (Lanz, 2010) attempts to keep ontological models separate to

XML files with them interacting through mappers. In this work, the framework shares some

similarities with Lanz (Lanz, 2010) with respect to the fit of the ontologies, and sees the

work in Alsafi and Vyatkin (Alsafi and Vyatkin, 2010) to be a significantly narrower in

vision and thus reducing the value of implementing the ontology within the framework.

The framework significantly extends what has been proposed by implementing a Semantic

Exchange layer which is not limited by a specific type of data format (although XML is

used to demonstrate it) as is the case with the other frameworks. As aforementioned the

consideration for broader standards to integrate the tools with the ontology leads to a more

generally usable and thus valuable framework.

5.3.3.2 Contribution of the framework to the engineering workflow

Alsafi and Vyatkin (Alsafi and Vyatkin, 2010) contributed to the workflow at the

reconfiguration phase of a manufacturing system while Lanz (Lanz, 2010) was more

141

focused on knowledge retrieval which could exist at any phase. Due to the deployable

nature of the work carried out by Alsafi and Vyatkin (Alsafi and Vyatkin, 2010) there was

more value added as a consequence of using the framework as compared to Lanz (Lanz,

2010), despite its narrower application. This work demonstrates a framework that

contributes strongly through multiple lifecycle phases across multiple domains and

considers both the existing engineering workflow and the way that the generated

knowledge is managed in a way that complements industrial practices. The framework

allows the retrieval of knowledge, ascertaining the consistency across domain models, and

also rectifying such inconsistencies through parametric or logical changes. This is

demonstrated by the queries in Case Study 2 that appreciate the nature of the information

that would need to be queried at a given lifecycle phase, within a given domain, and how

information would flow through the ontology in a way that mimics the human interrogation

processes.

This section of the evaluation therefore surmises that an extension to what has come before

with respect to frameworks to support the engineering workflow with ontologies, has been

achieved through the research in this thesis.

5.3.3.3 User interaction with the framework

The framework presented by Alsafi and Vyatkin (Alsafi and Vyatkin, 2010) did not explain

how users would interact with the model with the assumption being that the entire process

would be automated. Lanz (Lanz, 2010) hints at some level of user interaction by

mentioning tools that are integrated with the framework. However, in the framework

presented in this thesis, there is a substantially clearer demonstration of how and why users

would interact with the framework and the ontology more specifically.

In addition, due to the integration with a component-based virtual engineering

environment, changes can be assessed before being implemented. The “component-based”

element is important to recognise as it does not reflect the industry standard for engineering

software. This prevents industrial engineering tools from being extensible and thus

preventing a number of key concepts represented within this approach, particularly the Skill

model, from being implemented directly into conventional engineering tools. On the other

hand, the vueOne toolset can be extended and the respective Skills form an attribute of the

different component types, be they ProductComponent, ProcessComponent, or

ResourceComponent. Therefore, to realise Objective 3 it was identified that the framework

developed cannot benefit industrial needs unless either software vendors embrace a more

open approach and reveal the nuances of their models, or a significant effort is undertaken

142

to understand the data models and map the concepts to neutral exchange standards such as

AML. The framework accommodates both scenarios, but does rely on the work of future

researchers for full implementation.

The “virtual engineering environment” integration facilitated a “zero-risk” nature of

experimenting with changes. This was not present in Alsafi and Vyatkin’s (Alsafi and

Vyatkin, 2010) work where the intention appeared to be direct deployment of modifications

with the assumption that risks had been mitigated through reasoners. However, in the

framework in this thesis, steps and logic can be tested without affecting the real system

until necessary. Although existing industrial virtual engineering tools for system modelling

offer the ability to model changes, the prerequisite remains that the user is operating within

the Resource domain i.e. there is no link with high level process descriptions. As a result,

changes within one domain must be transformed through domains by human intervention,

this can lead to errors as a result of miscommunication. Thus, this work demonstrates how

ontological models can be “used” within practical engineering workflows.

5.3.3.4 Additional remarks

5.3.3.4.1 Relevance to PLM

In the literature review chapter, the shortcomings of PLM was identified and it was noted

that the research work in this thesis would need to compare with such solutions. The

conventional PLM tool chain has suffered from information loss as the lifecycle progresses.

Furthermore, there is (as the name suggests) a heavy focus on product information within

this paradigm. As a result, the respective tools and methods that have emerged as an

outcome of attempting to align themselves within this paradigm have taken to a similar

design philosophy. Tools that the author would class within the Resource domain lack the

expressivity required and typically do not integrate well with other Resource domain tools.

On the other hand they do retain a substantial amount of Product domain information e.g.

geometry, material characteristics (Demoly et al., 2011, Lee et al., 2011b) etc. The

significance of this within the context of this research is the PLM paradigm and the PPR

approach are not aligned. This means that should an integration framework of the nature

presented in this work be successful for an industrial application, it would be necessary for

an alignment procedure to be carried out and some efforts to bring PLM and PPR together.

This challenge has been identified by a number of academics and there are ongoing projects

that aim to facilitate the exchange of data between PLM and PPR to address this (El Kadiri

and Kiritsis, 2015, Matsokis and Kiritsis, 2010, Milicic et al., 2013, Choi et al., 2010).

143

5.3.3.4.2 Concerns with OWL

The globalisation of manufacturing enterprises means that those designing the product do

not sit in the same geographical location as those considering the process, nor those that

design and commission the system. Furthermore, the manufacturing system itself may well

be in a different country. The exchangeability of data formats such as XML in conjunction

with semantic web technologies present a solution to this problem because OWL models

can be published on the World Wide Web thus providing access to anyone with a web

browser. This is not typically the case for engineering tools and thus supports more

distributed engineering activities. However, OWL has seen limited implementation within

industrial settings, particularly in manufacturing, despite its robustness. This has been

proved in a number of works, particularly in large EU funded research projects that are

summarised in Chapter 2. Despite the strength of the language, the tools used for

implementation e.g. Protégé, remain largely the plaything of academics. Furthermore OWL

2, which is the most recent version of OWL, was published in 2012. The language has not

had the time to proliferate through the education system and thus there is a lack of expertise

to realise implementation. Thus, despite the benefits of the approach demonstrated in this

work, the move into an industrial environment is hampered by a lack of expertise and tools.

 Summary

The evaluation of any piece of research is fundamental in determining whether or not any

novelty exists and there is a significant contribution to the body of knowledge. In this

chapter, the author has evaluated the ontology through metrics and a method derived from

the literature, and the broader framework based on the objectives of this thesis. An

application evaluation was carried out in the preceding chapter based on case studies.

The key points from the ontology evaluation are a more adaptable, cohesive, concise, and

complete model than has been previously presented in the literature that brings together

domain models with an independent Skill model spanning the domains. From the

framework evaluation the author identifies that a greater level of value can be derived as

compared to previous similar frameworks based on its broader scope and usability.

The following chapter concludes the work and based on the gaps and shortcomings

identified proposes future steps.

144

6 Conclusion and Further Work

 Introduction

As the paradigms of mass customisation and product personalisation become ever

prevalent, it is clear that the challenges facing the industry today are accommodating these

dynamic market conditions while maintaining profit margins and productivity. At the

highest level the questions were to understand why making changes was problematic, and

why existing methods for representing knowledge were not addressing the needs of the

industry? Following this, the author wanted to address what knowledge models and broader

frameworks should look like to support the uncertainty facing manufacturers today. To

address these issues, the objectives of the thesis were as follows:

1. Identify change management methods within the context of manufacturing and

engineering changes and the challenges that are faced

2. Identify the ontological models that have been developed in the literature and how

they have been applied as well as their shortcomings

3. Develop a set of PPR ontologies that can be used to support assembly automation

systems engineering through its lifecycle

4. Develop a framework that integrates engineering tools, methods, and workflows

with an ontological model

5. Demonstrate how ontologies can be used in a practical way to identify and resolve

inconsistencies

These objectives can be classed into two categories. The first category is for objectives 1

and 2 and is the identification of knowledge gaps and shortcomings of existing works that

address the same problems. The second category is for objectives 3, 4, and 5 and define the

key contributions of this work.

 Summary of knowledge gaps

6.2.1 Objective 1

With regards to Objective 1, the literature review identified that engineering changes are

the source of significant costs due to complex workflows attributed to multiple engineering

activities, product realisation domains, and domain specific languages and models. The

notion of minimising engineering changes, grouping them together, or avoiding the process

altogether is deemed to be somewhat archaic by the author, although works that aligned

145

with this philosophy were found to exist within the literature. In a sense the paradigm of

flexible manufacturing systems (FMS) aligns with this notion as such systems are designed

to be changeable within the limits of the system itself, which if considered from the

perspective of the system, is not changeable at all. The position the author took (which

aligns with the paradigm of adaptability in manufacturing (Keddis et al., 2013, Keddis et

al., 2014)), and thus formed the motivation for the research, is that change should be

encouraged, supported, and undertaken with gusto. However, it was confirmed from the

literature review that the bureaucracy and administration associated with making such

changes caused a significant level of apprehension for those involved.

6.2.2 Objective 2

Resolving Objective 2 was also a process carried out in the literature review chapter. It

identified that despite the prevalence of knowledge representation through ontologies

within the literature, the connection to software tools was limited, and lacked the

expressivity required to be of significant practical use for industrial applications.

 Key Contributions

The key contributions of this thesis are summarised in this section with references to the

sections in the thesis where these contributions have been made or evidence to that effect.

6.3.1 Objective 3

As a consequence of the knowledge gaps identified, the author first focused on what

concepts should exist within the respective PPR ontologies and furthermore to create a

reusable, extensible, and integrated Skill model. This was seen to be a key enabler of more

complex queries and thus bringing together the industrial engineering workflow associated

with realising automation systems with knowledge representation. As such, the first key

contribution of this research thesis as justified by both the application evaluation in the case

study chapter, and success evaluation in the previous chapter is the:

 Development of adaptable, cohesive, concise, and complete PPR Ontologies

and Skill Model to support the storage and reuse of knowledge within the

context of industrial automation systems. There are many examples of

manufacturing ontologies in the literature. However, only a limited number model

the skills or capabilities of the manufacturing system and consider how they map

to the requirements of the product or the process. Rather than simply presenting a

146

hierarchy of concepts within the Resource domain, it is necessary to contextualise

the information so that it is useful for domain stakeholders. This contribution has

been achieved by

a. Identifying the shortcomings of ontological models that have been

generated within the area of manufacturing (Section 2.6.1)

b. Developing new ontological models that focus on assembly by using pre-

existing models and extending them (Section 3.4.4, 3.5.2, 3.6.3)

c. Introducing a Skill model that integrates the respective PPR ontologies to

contextualise information, manage inconsistencies, and add more value to

the engineering workflow (Section 3.7.1)

d. Demonstrating extensibility of ontological concepts within the ontology

without resulting in inconsistencies and contradictions (Section 4.2.3,

Figure 4-2)

6.3.2 Objective 4

The existence of models that represent knowledge are, on their own, not able to support

industrial needs. The knowledge gap addressed in this case is therefore identifying the

nature of the framework that needs to exist to holistically support industrial automation

system engineering from the product design through to control code generation. Therefore,

the second key contribution of this work is the:

 Development of a framework that brings together the PPR ontologies and

Skill model with existing engineering tools and the associated domain

stakeholders. This has been achieved and demonstrated through evaluation by:

a. Significantly extending previous frameworks of a similar nature by

eliminating the limitation of working solely with XML files by introducing

a flexible semantic exchange layer, that could be supported through

standards that are growing in popularity e.g. AutomationML (Introduced

in Section 3.8.3, Figure 3-20 and Evaluated in Section 5.3.3)

b. Supporting existing engineering workflows more broadly than previous

works have through general queries (Section 3.8.1, Figure 3-15, 3-16)

c. Providing an access point for stakeholders that may be non-experts within

the context of ontology models through the Apache Jena framework which

sits in a position where it can interact both with source models as well as

the knowledge models (Introduced in Section 3.8.3, Figure 3-20 and

evaluated through proof of concept demonstration in 4.4.2)

147

d. Extending the data model of the vueOne engineering toolset to

accommodate additional concepts that previously have not existed with a

view to presenting a set of recommendations for software vendors creating

tools within similar domains (Section 3.6.2, Table 3-3)

6.3.3 Objective 5

One of the problems identified that the author wished to resolve through knowledge

representation was identifying and resolving inconsistencies that arise between models that

exist in different domains, using different language, and are expressed at different levels of

granularity. The focus therefore turned to how process plan models can be mapped to

control code with a view to maintaining logical consistency. Therefore the third key

contribution of the work was:

 A method for mapping process plans at different levels of abstraction with

control code through the novel Skill mode to identify and resolve

inconsistencies, facilitated by visualisation and verification through virtual

engineering tools. Although there have been some works that identify how

inconsistencies can be resolved across models, addressing and accommodating the

multiple and varying granularities of different domain models has not been

resolved. This contribution has been achieve by:

a. Exploiting the ontologies and the framework presented to support and

partially automate the engineering workflow associated with maintaining

the consistency between process plans and machine control code

(Introduced in Section 3.8.2, Figure 3-18 and evaluated through proof of

concept demonstration in 4.4.2)

In summary, the thesis identifies the shortcomings of existing ontological models within

the context of manufacturing, develops new models to address those shortcoming, and

develops new, useful ways for ontological models to be used to address industrial problems

by integrating them with virtual engineering tools. By formulating a method that can

integrate the assembly process sequence changes to machine control logic in a way that

facilitates visualisation and ultimately commissioning an important step to realise practical

engineering concurrency in industrial automation has been achieved.

Reflecting upon the original hypothesis of this thesis that:

“Ontologies can be integrated with engineering tools to complement existing engineering

workflows through the identification and resolution of inconsistencies between typically

148

un-integrated and disparate engineering models, complementing and enhancing the

capability of databases”

the following conclusions are derived:

1. Ontologies can be, given a suitable framework, integrated with exisiting

engineering tools and workflows as illustrated in this thesis to address issues

associated with resolving inconsistencies across models. However, there remains

the challenge of adopting a new, unfamiliar technology that requires a workforce

skilled in its use should ontologies be moved into an industrial setting.

2. The use of semantics and inference allows the enhancement and exploitation of

data that exists within databases. However, what is called into question,

particularly within an industrial setting, is the performance of ontological models

in comparison with databases and this must be investigated as part of future work.

 Further Work

Although this research has successfully and comprehensively addressed the objectives of

the thesis, a number of new questions and problems have been raised. These are discussed

in this section.

6.4.1 Supporting more complex process logic changes

The presented algorithm in Case Study 3 had the capability to swap, add, and remove

sequence steps from the process. One of the limitations that has been mentioned is the lack

of ability of the model, and thus the algorithm, to accommodate branched and parallel

processes. One of the reasons for this is the use of state numbers as a means for checking

consistency between the ProcessView and ResourceView ProcessComponent sequence.

Essentially, when mapping the ProcessSkill and the ResourceSkill the hasStateNo datatype

property is used as a means for ensuring sequence consistency. However, when considering

branched and parallel processes, the sequence is not linear. This results in state numbers

that are not sequential as a result consistency cannot be ascertained using this methodology.

This problem is exacerbated by the lack of a standardised way to number branched and

parallel logic. In future work, the consistency check model is to be extended which in turn

is expected to allow the capabilities of the algorithm presented in this work to be extended

also. More formal semantics could be used to enable the approach to work off of reasoning

from the language used by the respective domains when describing process steps.

149

6.4.2 History management

The evaluation chapter discussed the importance of managing historical knowledge to

allow a knowledge model to revert and thus query a previous state of existence.

Implementation of this could be supported through methods that have developed in the

literature. One of the interesting questions that could be answered if such history was

implemented on a wider scale is surrounding how manufacturing systems evolve and thus

whether any predictions can be made about the future.

6.4.3 Full implementation with virtual engineering tools

Although some level of implementation was achieved in this research, there remained a

manual process of importing and exporting files. In addition, further validation work is

required before the proposed approach can be offered to industry for implementation.

While this approach was sufficient to prove the validity of the method within an academic

setting, future work needs to fully implement the envisioned framework. As a consequence,

the challenges that cannot be seen at the more conceptual stage will be uncovered and

addressed resulting in further validation. The full implementation would also allow the case

studies that have been explored within a proof-of-concept level demonstration to be tested

in a more prototypical, stable environment so that engineers to use the system with some

level of autonomy. This would provide feedback that would in turn result in further

development and refinement of the workflow. The key outcome of this work would be to

evaluate to which degree such an approach mitigates risk associated with engineering

changes, which formed the primary motivation for this work.

6.4.4 Mechanical reconfiguration

The software aspect of reconfiguration as consequence of new requirements was addressed

in this research. However, there is also the physical, mechanical nature of change that needs

to be supported. Ontological models are not well-suited to representing complex

geometrical information. Therefore, the author proposes that work needs to be done within

virtual engineering tools themselves to support mechanical reconfiguration supported by

ontologies that advise the aspects that may need to be changed. The author is engaged in

developing this idea in collaboration with colleagues at the Technical University of

Munich, Germany. The vision is to develop an algorithm that integrates with the vueOne

toolset that can determine what steps need to be taken to mechanically reconfigure a

machine based on its existing state and new product requirements.

150

6.4.5 Fuel cell manufacturing knowledge

During the course of the research project, the author engaged heavily with a number of fuel

cell research projects focused on manufacturing and assembly. The author hoped to fully

integrate the fuel cell knowledge into the ontological models within the time-frame of the

PhD research as a referenceable knowledge model that can be used by fuel cell

manufacturers that are expected to emerge as the technology matures. It would further

validate the work and also extend the model with concepts that do not currently exist. The

author intends to carry out this work in due course with the permission of industrial

collaborators.

6.4.6 Web implementation

The globalisation of manufacturing enterprises means that those designing the product do

not sit in the same geographical location as those considering the process, nor those that

design and commission the system. Furthermore, the manufacturing system itself may well

be in a different country. The exchangeability of data formats such as XML in conjunction

with semantic web technologies present a solution to this problem because OWL models

can be published on the World Wide Web thus providing access to anyone with a web

browser. However, this was not implemented in this research work due to time constraints.

Demonstration of this would have presented a stronger case for modular ontologies but also

required serious consideration for factors such as access control and security.

151

References

ATG Simulation Approach [Online]. Available: http://www.atg.gb.com/simulation/
[Accessed 2016].

Definitions for Product, Process, and Resource [Online]. Available:
http://www.businessdictionary.com/ [Accessed].

Delmia 3D digital manufacturing solution, Dassault Systems [Online]. Available:
http://www.3ds.com/products-services/delmia/ [Accessed].

GATE - General Architecture for Text Engineering [Online]. Available: https://gate.ac.uk/
[Accessed 2016].

IDEAS - Instantly Deployable Evolvable Assembly Systems [Online]. Available:
http://www.ideas-project.eu/ [Accessed].

ontology editor developed by Stanford University [Online]. Available:
http://protege.stanford.edu/ [Accessed].

RDF Working Group, “Resource Description Framework (RDF) [Online]. Available:
http://www.w3.org/RDF/ [Accessed 2016].

Siemens Teamcenter [Online]. Available:
https://www.plm.automation.siemens.com/en_us/products/teamcenter/
[Accessed].

SimSol - Simulation Solutions [Online]. Available: http://www.simsol.co.uk/ [Accessed
2016].

SolidWorks - 3D software tools. Dassault Systemes.
Tata Consultancy Services - Digital Software and Solutions Group [Online]. Available:

http://www.tcs.com/digital-software-solutions/pages/default.aspx [Accessed
2016].

Visual Components [Online]. Available: http://www.visualcomponents.com/ [Accessed
2016].

W3C Recommendations - RDF Current Status [Online]. Available:
http://www.w3.org/standards/techs/rdf#w3c_all [Accessed 2016].

2004. Configuration Management Plans - From Traditional CM to CMII (Rev B), White
Paper.

2008. SIARAS - Skill-based Inspection and Assembly for Reconfigurable Automation
Systems

2010. Module 13 - Introduction to Semantic Technology, Ontologies and the Semantic Web
[Online]. GATE. Available:
https://gate.ac.uk/wiki/TrainingCourseAug2010/track4-slides/module-13.pdf
[Accessed June 2017].

ADOLPHS, P., BEDENBENDER, H., DIRZUS, D., EHLICH, M., EPPLE, U., HANKEL, M., HEIDEL,
R., HOFFMEISTER, M., HUHLE, H. & KÄRCHER, B. 2015. Reference architecture
model industrie 4.0 (rami4. 0). VDI/VDE Society Measurement and Automatic
Control (GMA).

AHMAD, B. 2014. A component-based virtual engineering approach to PLC code
generation for automation systems. Loughborough University.

AHMAD, M., AHMAD, B., HARRISON, R., FERRER, B. R., LASTRA, J. L. M., MEREDITH, J. &
BINDEL, A. A knowledge-based approach for the selection of assembly equipment
based on fuel cell component characteristics. Industrial Electronics Society,
IECON 2015-41st Annual Conference of the IEEE, 2015a. IEEE, 001002-001007.

AHMAD, M., AHMAD, B., HARRISON, R., RAMIS FERRER, B., LASTRA, J. M., MEREDITH, J. &
BINDEL, A. A knowledge-based approach for the selection of assembly equipment

ttp://www.atg.gb.com/simulation/
ttp://www.businessdictionary.com/
ttp://www.3ds.com/products-services/delmia/
ttps://gate.ac.uk/
ttp://www.ideas-project.eu/
ttp://protege.stanford.edu/
ttp://www.w3.org/RDF/
ttps://www.plm.automation.siemens.com/en_us/products/teamcenter/
ttp://www.simsol.co.uk/
ttp://www.tcs.com/digital-software-solutions/pages/default.aspx
ttp://www.visualcomponents.com/
ttp://www.w3.org/standards/techs/rdf#w3c_all
ttps://gate.ac.uk/wiki/TrainingCourseAug2010/track4-slides/module-13.pdf

152

based on fuel cell component characteristics. IECON, Nov. 9-12, 2015 2015b
Yokohama, Japan. IEEE.

AHMAD, M., ALKAN, B., AHMAD, B., VERA, D., HARRISON, R., MEREDITH, J. O. & BINDEL,
A. 2016. The use of a complexity model to facilitate in the selection of a fuel cell
assembly sequence. Procedia CIRP, 1-6.

ALEKSANDROV, K., SCHUBERT, V. & OVTCHAROVA, J. Skill-Based Asset Management: A
PLM-Approach for Reconfigurable Production Systems. IFIP International
Conference on Product Lifecycle Management, 2014. Springer, 465-474.

ALFERES, J. J., PEREIRA, L. M., PRZYMUSINSKA, H., PRZYMUSINSKI, T. C. & QUARESMA, P.
2000a. Dynamic Knowledge Representation and Its Applications. Artificial
Intelligence: Methodology, Systems, and Applications: 9th International
Conference, AIMSA 2000 Varna, Bulgaria, September 20–23, 2000 Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg.

ALFERES, J. J., PEREIRA, L. M., PRZYMUSINSKA, H., PRZYMUSINSKI, T. C. & QUARESMA, P.
2000b. An exercise with dynamic knowledge representation. December.

ALSAFI, Y. & VYATKIN, V. 2010. Ontology-based reconfiguration agent for intelligent
mechatronic systems in flexible manufacturing. Robotics and Computer-
Integrated Manufacturing, 26, 381-391.

ANGERER, S., POOLEY, R. & AYLETT, R. Self-reconfiguration of industrial mobile robots.
Self-Adaptive and Self-Organizing Systems (SASO), 2010 4th IEEE International
Conference on, 2010. IEEE, 64-73.

ASHINO, T. & FUJITA, M. 2006. Definition of a web ontology for design-oriented material
selection. Data Science Journal, 5, 52-63.

BALENA, F. & FOREWORD BY-FAWCETTE, J. 1999. Programming Microsoft Visual Basic 6.0,
Microsoft Press.

BANDEIRA, J., BITTENCOURT, I. I., ESPINHEIRA, P. & ISOTANI, S. 2016. FOCA: A
Methodology for Ontology Evaluation. arXiv preprint arXiv:1612.03353.

BARNES, C. J., JARED, G. E. M. & SWIFT, K. G. 2004. Decision support for sequence
generation in an assembly oriented design environment. Robotics and Computer-
Integrated Manufacturing, 20, 289-300.

BEN-ARIEH, D. & KRAMER, B. 1994. Computer-aided process planning for assembly:
generation of assembly operations sequence. The international journal of
production research, 32, 643-656.

BENGTSSON, K. & LENNARTSON, B. 2014. Flexible specification of operation behavior
using multiple projections. IEEE Transactions on Automation Science and
Engineering, 11, 504-515.

BENGTSSON, K., LENNARTSON, B., LJUNGKRANTZ, O. & YUAN, C. 2013. Developing control
logic using aspect-oriented programming and sequence planning. Control
Engineering Practice, 21, 12-22.

BENINGTON, H. D. 1983. Production of large computer programs. Annals of the History of
Computing, 5, 350-361.

BENTLEY, P. & CORNE, D. 2002. Creative evolutionary systems, Morgan Kaufmann.
BERGERT, M. & KIEFER, J. 2010. Mechatronic data models in production engineering. IFAC

Proceedings Volumes, 43, 60-65.
BI, Z. 2011. Revisiting system paradigms from the viewpoint of manufacturing

sustainability. Sustainability, 3, 1323-1340.
BIKAS, C., ARGYROU, A., PINTZOS, G., GIANNOULIS, C., SIPSAS, K., PAPAKOSTAS, N. &

CHRYSSOLOURIS, G. 2016. An Automated Assembly Process Planning System.
Procedia CIRP, 44, 222-227.

153

BJÖRKELUND, A., EDSTRÖM, L., HAAGE, M., MALEC, J., NILSSON, K., NUGUES, P., ROBERTZ,
S. G., STÖRKLE, D., BLOMDELL, A. & JOHANSSON, R. On the integration of skilled
robot motions for productivity in manufacturing. Assembly and Manufacturing
(ISAM), 2011 IEEE International Symposium on, 2011a. IEEE, 1-9.

BJÖRKELUND, A., MALEC, J., NILSSON, K. & NUGUES, P. 2011b. Knowledge and skill
representations for robotized production. IFAC Proceedings Volumes, 44, 8999-
9004.

BLESSING, L. T. & CHAKRABARTI, A. 2009. DRM: A Design Reseach Methodology, Springer.
BOCK, C. & GRUNINGER, M. 2005. PSL: A semantic domain for flow models. Software &

Systems Modeling, 4, 209-231.
BOEHM, B. W. 1988. A spiral model of software development and enhancement.

Computer, 21, 61-72.
BORGO, S. & LEITÃO, P. 2007. Foundations for a core ontology of manufacturing.

Ontologies. Springer.
BORST, P., AKKERMANS, H. & TOP, J. 1997. Engineering ontologies. International Journal

of Human-Computer Studies, 46, 365-406.
BOURJAULT, A. L., A; 1986. Modelling an assembly process. Int Conf Autom Manuf Ind.

IEEE.
BRACHMAN, R. J., LEVESQUE, H.J. 2004. Knowledge Representation and Reasoning,

Morgan Kaufmann.
BRANK, J., GROBELNIK, M. & MLADENIĆ, D. 2005. A survey of ontology evaluation

techniques.
ÇAĞATAY BAYINDIR, K., GÖZÜKÜÇÜK, M. A. & TEKE, A. 2011. A comprehensive overview

of hybrid electric vehicle: Powertrain configurations, powertrain control
techniques and electronic control units. Energy Conversion and Management, 52,
1305-1313.

CAREY, P., FARRELL, J., HUI, M. & SULLIVAN, B. 2001. Heyde’s MODAPTS: A language of
work. Heyde Dynamics Party ltd, 27-94.

CHANDRASEGARAN, S. K., RAMANI, K., SRIRAM, R. D., HORVÁTH, I., BERNARD, A., HARIK,
R. F. & GAO, W. 2013. The evolution, challenges, and future of knowledge
representation in product design systems. Computer-aided design, 45, 204-228.

CHATFIELD, C. S. & JOHNSON, T. D. 2010. Microsoft Project 2010 step by step, Pearson
Education.

CHAVEZ, H. M., SHEN, W., FRANCE, R. B., MECHLING, B. A. & LI, G. 2016. An Approach to
Checking Consistency between UML Class Model and Its Java Implementation.
IEEE Transactions on Software Engineering, 42, 322-344.

CHEN, G., ZHOU, J., CAI, W., LAI, X., LIN, Z. & MENASSA, R. 2006. A framework for an
automotive body assembly process design system. Computer-Aided Design, 38,
531-539.

CHEN, W.-C., HSU, Y.-Y., HSIEH, L.-F. & TAI, P.-H. 2010. A systematic optimization approach
for assembly sequence planning using Taguchi method, DOE, and BPNN. Expert
Systems with Applications, 37, 716-726.

CHHIM, P., CHINNAM, R. B. & SADAWI, N. 2017. Product design and manufacturing
process based ontology for manufacturing knowledge reuse. Journal of Intelligent
Manufacturing, 1-12.

CHINNATHAI, M. K., GÜNTHER, T., AHMAD, M., STOCKER, C., RICHTER, L., SCHREINER, D.,
VERA, D., REINHART, G. & HARRISON, R. 2017. An application of physical flexibility
and software reconfigurability for the automation of battery module assembly.
Procedia CIRP.

154

CHOI, S. S., YOON, T. H. & NOH, S. D. 2010. XML-based neutral file and PLM integrator for
PPR information exchange between heterogeneous PLM systems. International
Journal of Computer Integrated Manufacturing, 23, 216-228.

CHUNGOORA, N., YOUNG, R. I., GUNENDRAN, G., PALMER, C., USMAN, Z., ANJUM, N. A.,
CUTTING-DECELLE, A.-F., HARDING, J. A. & CASE, K. 2013. A model-driven
ontology approach for manufacturing system interoperability and knowledge
sharing. Computers in Industry, 64, 392-401.

CLARK, K. B. & FUJIMOTO, T. 1991. Product development performance: Strategy,
organization, and management in the world auto industry, Harvard Business
Press.

DACONTA, M. C., SMITH, K. T. & OERST, L. J. 2004. The Semantic Web: a guide to the future
of XML, Web services, and knowledge management. Computing Reviews, 45, 778-
779.

DARTIGUES, C., GHODOUS, P., GRUNINGER, M., PALLEZ, D. & SRIRAM, R. 2007. CAD/CAPP
integration using feature ontology. Concurrent Engineering, 15, 237-249.

DE FAZIO, T. L. & WHITNEY, D. E. 1987. Simplified generation of all mechanical assembly
sequences. Robotics and Automation, IEEE Journal of, 3, 640-658.

DELAMER, I. M. & LASTRA, J. M. Ontology modeling of assembly processes and systems
using semantic web services. Industrial Informatics, 2006 IEEE International
Conference on, 2006. IEEE, 611-617.

DEMOLY, F., DUTARTRE, O., YAN, X.-T., EYNARD, B., KIRITSIS, D. & GOMES, S. 2013.
Product relationships management enabler for concurrent engineering and
product lifecycle management. Computers in Industry, 64, 833-848.

DEMOLY, F., MONTICOLO, D., EYNARD, B., RIVEST, L. & GOMES, S. 2010. Multiple
viewpoint modelling framework enabling integrated product–process design.
International Journal on Interactive Design and Manufacturing (IJIDeM), 4, 269-
280.

DEMOLY, F., YAN, X.-T., EYNARD, B., RIVEST, L. & GOMES, S. 2011. An assembly oriented
design framework for product structure engineering and assembly sequence
planning. Robotics and Computer-Integrated Manufacturing, 27, 33-46.

DESHAYES, L., FOUFOU, S. & GRUNINGER, M. 2007. An ontology architecture for
standards integration and conformance in manufacturing. Advances in Integrated
Design and Manufacturing in Mechanical Engineering II, 261-276.

DIETRICH, U., SCHULZ, T. & YARAMANOGLU, N. 2002. Bringing real and virtual worlds
together in the manufacturing process. Journal of Advanced Manufacturing
Systems, 1, 51-65.

DIN 2003. DIN 8580 Manufacturing processes - Terms and definitions.
DO, N. 2015. Integration of engineering change objects in product data management

databases to support engineering change analysis. Computers in Industry, 73, 69-
81.

DONG, T., TONG, R., ZHANG, L. & DONG, J. 2007. A knowledge-based approach to
assembly sequence planning. The International Journal of Advanced
Manufacturing Technology, 32, 1232-1244.

DRATH, R., LÜDER, A., PESCHKE, J. & HUNDT, L. AutomationML-the glue for seamless
automation engineering. Emerging Technologies and Factory Automation, 2008.
ETFA 2008. IEEE International Conference on, 2008. IEEE, 616-623.

E. CARTER, D. & S. BAKER, B. 1992. Concurrent Engineering: Product Development
Environment for the 1990s, Addison-Wesley Publishing Company.

ECKERT, C., WYNN, D. & CLARKSON, J. 2009. Design customisation in multi-project
environments: Using process simulation to explore the issues.

155

EL KADIRI, S. & KIRITSIS, D. 2015. Ontologies in the context of product lifecycle
management: state of the art literature review. International Journal of
Production Research, 53, 5657-5668.

ELMARAGHY, H., SCHUH, G., ELMARAGHY, W., PILLER, F., SCHÖNSLEBEN, P., TSENG, M. &
BERNARD, A. 2013. Product variety management. CIRP Annals-Manufacturing
Technology, 62, 629-652.

ELMARAGHY, H. & WIENDAHL, H.-P. 2014. Changeable Manufacturing. CIRP Encyclopedia
of Production Engineering. Springer.

ELMARAGHY, H. A. 2006. Flexible and reconfigurable manufacturing systems paradigms.
International Journal of Flexible Manufacturing Systems, 17, 261-276.

ELMARAGHY, H. A. 2012. Enabling manufacturing competitiveness and economic
sustainability, Springer.

ELMARAGHY, W., ELMARAGHY, H., TOMIYAMA, T. & MONOSTORI, L. 2012. Complexity in
engineering design and manufacturing. CIRP Annals-Manufacturing Technology,
61, 793-814.

ENSAN, F. & DU, W. 2011. A knowledge encapsulation approach to ontology
modularization. Knowledge and information systems, 26, 249-283.

ESTEFAN, J. A. 2007. Survey of model-based systems engineering (MBSE) methodologies.
Incose MBSE Focus Group, 25.

EXEL, L., FREY, G., WOLF, G. & OPPELT, M. Re-use of existing simulation models for DCS
engineering via the Functional Mock-up Interface. Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), 2014. IEEE, 1-4.

FELDMANN, S., HERZIG, S. J., KERNSCHMIDT, K., WOLFENSTETTER, T., KAMMERL, D.,
QAMAR, A., LINDEMANN, U., KRCMAR, H., PAREDIS, C. J. & VOGEL-HEUSER, B.
2015. Towards effective management of inconsistencies in model-based
engineering of automated production systems. IFAC-PapersOnLine, 48, 916-923.

FENG, S. C. & SONG, E. Y. 2003. A manufacturing process information model for design
and process planning integration. Journal of Manufacturing Systems, 22, 1.

FENVES, S. J., FOUFOU, S., BOCK, C. & SRIRAM, R. D. 2008. CPM2: a core model for product
data. Journal of Computing and Information Science in Engineering, 8, 014501.

FERREIRA, P. & LOHSE, N. Configuration model for evolvable assembly systems. 4th CIRP
Conference On Assembly Technologies And Systems, 2012.

FERREIRA, P., LOHSE, N., RAZGON, M., LARIZZA, P. & TRIGGIANI, G. Skill based
configuration methodology for evolvable mechatronic systems. IECON 2012-38th
Annual Conference on IEEE Industrial Electronics Society, 2012. IEEE, 4366-4371.

FINKELSTEIN, A. C., GABBAY, D., HUNTER, A., KRAMER, J. & NUSEIBEH, B. 1994.
Inconsistency handling in multiperspective specifications. IEEE Transactions on
Software Engineering, 20, 569-578.

FORSBERG, K. & MOOZ, H. The relationship of system engineering to the project cycle.
INCOSE International Symposium, 1991. Wiley Online Library, 57-65.

FRICKE, E., GEBHARD, B., NEGELE, H. & IGENBERGS, E. 2000. Coping with changes: causes,
findings, and strategies. Systems Engineering, 3, 169-179.

GAUSEMEIER, J., SCHÄFER, W., GREENYER, J., KAHL, S., POOK, S. & RIEKE, J. Management
of cross-domain model consistency during the development of advanced
mechatronic systems. DS 58-6: Proceedings of ICED 09, the 17th International
Conference on Engineering Design, Vol. 6, Design Methods and Tools (pt. 2), Palo
Alto, CA, USA, 24.-27.08. 2009, 2009.

GÓMEZ‐PÉREZ, A. 2001. Evaluation of ontologies. International Journal of intelligent
systems, 16, 391-409.

156

GRUBER, T. R. 1993. A translation approach to portable ontology specifications.
Knowledge acquisition, 5, 199-220.

GRÜNINGER, M. 2004. Ontology of the process specification language. Handbook on
ontologies. Springer.

GRÜNINGER, M. & KOPENA, J. B. Planning and the process specification language.
Proceedings of the ICAPS 2005 Workshop on the Role of Ontologies in Planning
and Scheduling, 2005. 22-29.

GUARINO, N. Formal ontology and information systems. Proceedings of FOIS, 1998. 81-
97.

GUARINO, N., OBERLE, D. & STAAB, S. 2009. What is an Ontology? Handbook on
ontologies. Springer.

HAAGE, M., MALEC, J., NILSSON, A., NILSSON, K. & NOWACZYK, S. Declarative-knowledge-
based reconfiguration of automation systems using a blackboard architecture.
Eleventh Scandinavian Conference on Artificial Intelligence, 2011. IOS Press, 163-
172.

HAMRAZ, B., CALDWELL, N. H. & CLARKSON, P. J. 2013. A holistic categorization
framework for literature on engineering change management. Systems
Engineering, 16, 473-505.

HANKEL, M. & REXROTH, B. 2015. Industrie 4.0: The Reference Architectural Model
Industrie 4.0 (RAMI 4.0).

HANSSEN, D. H. 2015. IEC 61131‐3. Programmable Logic Controllers: A Practical Approach
to IEC 61131-3 using CODESYS, 152-186.

HARRISON, R., VERA, D. & AHMAD, B. Engineering Methods and Tools for Cyber–Physical
Automation Systems.

HARRISON, R., VERA, D. & AHMAD, B. 2016. Engineering methods and tools for cyber–
physical automation systems. Proceedings of the IEEE, 104, 973-985.

HARRISON;, S. K. M. A. K. A. R. 2017. The Cyber-Physical e-machine Manufacturing System:
Virtual Engineering for Complete Lifecycle Support. Procedia CIRP.

HART, L. Introduction to Model-Based System Engineering (MBSE) and SysML. Delaware
Valley INCOSE Chapter Meeting, 2015 Delaware.

HASAN, B. & WIKANDER, J. 2016. Product Feature Modelling for Integrating Product
Design and Assembly Process Planning. World Academy of Science, Engineering
and Technology, International Journal of Mechanical, Aerospace, Industrial,
Mechatronic and Manufacturing Engineering, 10, 1693-1703.

HASAN, B. & WIKANDER, J. Features Extraction from CAD as a Basis for Assembly Process
Planning. Doctoral Conference on Computing, Electrical and Industrial Systems,
2017. Springer, 144-153.

HASAN, B., WIKANDER, J. & ONORI, M. Utilizing Assembly Features for determination of
Grasping Skill in Assembly System. Mechatronics Conference 2014 in Karlstad,
June 16-18, 2014. Curran Associates, Inc, 399-406.

HASAN, B., WIKANDER, J. & ONORI, M. 2016a. Assembly design semantic recognition
using SolidWorks-API. Int. J. Mech. Eng. Robot. Res, 5, 280-287.

HASAN, B., WIKANDER, J. & ONORI, M. Ontological approach to share product design
semantics for an assembly. 8th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, IC3K 2016,
Porto, Portugal, 9 November 2016 through 11 November 2016, 2016b.
SciTePress, 104-111.

HAYES, J. 2014. The theory and practice of change management, Palgrave Macmillan.
HEFLIN, J. & HENDLER, J. Dynamic ontologies on the web. AAAI/IAAI, 2000. 443-449.

157

HEHENBERGER, P., EGYED, A. & ZEMAN, K. Consistency checking of mechatronic design
models. ASME 2010 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, 2010. American Society
of Mechanical Engineers, 1141-1148.

HERZIG, S. J. & PAREDIS, C. J. 2014. A conceptual basis for inconsistency management in
Model-Based Systems Engineering. Procedia CIRP, 21, 52-57.

HEWETT, A. 2009. Product Lifecycle Management (PLM): Critical Issues and Challenges in
Implementation. In: NAMBISAN, S. (ed.) Information Technology and Product
Development. Boston, MA: Springer US.

HLOMANI, H. & STACEY, D. 2014. Approaches, methods, metrics, measures, and
subjectivity in ontology evaluation: A survey. Semantic Web Journal, 1-5.

HOMEM DE MELLO, L. S. & SANDERSON, A. C. 1991. A correct and complete algorithm for
the generation of mechanical assembly sequences. Robotics and Automation,
IEEE Transactions on, 7, 228-240.

HORROCKS, I., PATEL-SCHNEIDER, P. F., BOLEY, H., TABET, S., GROSOF, B. & DEAN, M.
2004. SWRL: A semantic web rule language combining OWL and RuleML. W3C
Member submission, 21, 79.

HSU, Y.-Y., TAI, P.-H., WANG, M.-W. & CHEN, W.-C. 2011. A knowledge-based engineering
system for assembly sequence planning. The International Journal of Advanced
Manufacturing Technology, 55, 763-782.

HU, S. J., KO, J., WEYAND, L., ELMARAGHY, H., LIEN, T., KOREN, Y., BLEY, H.,
CHRYSSOLOURIS, G., NASR, N. & SHPITALNI, M. 2011. Assembly system design
and operations for product variety. CIRP Annals-Manufacturing Technology, 60,
715-733.

HUANG, G. & MAK, K. 1999. Current practices of engineering change management in UK
manufacturing industries. International Journal of Operations & Production
Management, 19, 21-37.

HUANG, G., YEE, W. & MAK, K. 2001. Development of a web-based system for engineering
change management. Robotics and Computer-Integrated Manufacturing, 17, 255-
267.

HUANG, G. Q., YEE, W. Y. & MAK, K. L. 2003. Current practice of engineering change
management in Hong Kong manufacturing industries. Journal of Materials
Processing Technology, 139, 481-487.

HUCKABY, J. & CHRISTENSEN, H. I. A taxonomic framework for task modeling and
knowledge transfer in manufacturing robotics. Workshops at 26th AAAI
conference on artificial intelligence, 2012.

IAROVYI, S., MOHAMMED, W. M., LOBOV, A., FERRER, B. R. & LASTRA, J. L. M. 2016. Cyber
Physical Systems for Open-Knowledge-Driven Manufacturing Execution Systems.
Proceedings of the IEEE, PP, 1-13.

IIVARI, J. 1987. A hierarchical spiral model for the software process. ACM SIGSOFT
Software Engineering Notes, 12, 35-37.

ISO 2011. ISO 10303-203:2011 Industrial automation systems and integration -- Product
data representation and exchange -- Part 203: Application protocol: Configuration
controlled 3D design of mechanical parts and assemblies. www.iso.org.

JAISWAL, D., DEY, S., DASGUPTA, R. & MUKHERJEE, A. Spatial query handling in semantic
web application: an experience report. 2015 Applications and Innovations in
Mobile Computing (AIMoC), 12-14 Feb. 2015 2015. 170-175.

JARRATT, T., ECKERT, C. M., CALDWELL, N. & CLARKSON, P. J. 2011. Engineering change:
an overview and perspective on the literature. Research in engineering design, 22,
103-124.

https://livewarwickac-my.sharepoint.com/personal/wmrmbj_live_warwick_ac_uk/Documents/PhD/Research/00_Thesis/Chapters/ww.iso.org.

158

JÄRVENPÄÄ, E. 2012. Capability-based Adaption of Production Systems in a Changing
Environment. PhD Thesis, Tampere University of Technology.

JÄRVENPÄÄ, E., LANZ, M., MELA, J. & TUOKKO, R. Studying the information sources and
flows in a company-Support for the development of new intelligent systems.
Proceedings of the 20th International Conference on Flexible Automation and
Intelligent Manufacturing, FAIM 2010, July 12-14, 2010, California State
University East Bay, USA, 2010.

JÄRVENPÄÄ, E., SILTALA, N. & LANZ, M. Formal resource and capability descriptions
supporting rapid reconfiguration of assembly systems. 2016 IEEE International
Symposium on Assembly and Manufacturing (ISAM), 21-22 Aug. 2016 2016. 120-
125.

JAVED, M., ABGAZ, Y. M. & PAHL, C. 2013. Ontology Change Management and
Identification of Change Patterns. Journal on Data Semantics, 2, 119-143.

JUN, Y., LIU, J., NING, R. & ZHANG, Y. 2005. Assembly process modeling for virtual
assembly process planning. International Journal of Computer Integrated
Manufacturing, 18, 442-451.

KALIBATIENE, D. & VASILECAS, O. Survey on ontology languages. International
Conference on Business Informatics Research, 2011. Springer, 124-141.

KASHKOUSH, M. & ELMARAGHY, H. 2014. Consensus tree method for generating master
assembly sequence. Production Engineering, 8, 233-242.

KASHKOUSH, M. & ELMARAGHY, H. 2015. Knowledge-based model for constructing
master assembly sequence. Journal of Manufacturing Systems, 34, 43-52.

KEDDIS, N., KAINZ, G., BUCKL, C. & KNOLL, A. Towards adaptable manufacturing systems.
Industrial Technology (ICIT), 2013 IEEE International Conference on, 2013. IEEE,
1410-1415.

KEDDIS, N., KAINZ, G. & ZOITL, A. Capability-based planning and scheduling for adaptable
manufacturing systems. Emerging Technology and Factory Automation (ETFA),
2014 IEEE, 2014. IEEE, 1-8.

KERNSCHMIDT, K. & VOGEL-HEUSER, B. An interdisciplinary SysML based modeling
approach for analyzing change influences in production plants to support the
engineering. Automation Science and Engineering (CASE), 2013 IEEE International
Conference on, 17-20 Aug. 2013 2013. 1113-1118.

KICINGER, R., ARCISZEWSKI, T. & DE JONG, K. 2005. Evolutionary computation and
structural design: A survey of the state-of-the-art. Computers & Structures, 83,
1943-1978.

KIM, K.-Y., MANLEY, D. G. & YANG, H. 2006. Ontology-based assembly design and
information sharing for collaborative product development. Computer-Aided
Design, 38, 1233-1250.

KNUTILLA, A., SCHLENOFF, C., RAY, S., POLYAK, S. T., TATE, A., CHEAH, S. C. & ANDERSON,
R. C. 1998. Process specification language: An analysis of existing representations.
National Institute of Standards and Technology (NIST), Gaithersburg (MD), NISTIT,
6160.

KOCH, J., GRITSCH, A. & REINHART, G. 2016. Process design for the management of
changes in manufacturing: Toward a Manufacturing Change Management
process. CIRP Journal of Manufacturing Science and Technology, 14, 10-19.

KOREN, Y., HEISEL, U., JOVANE, F., MORIWAKI, T., PRITSCHOW, G., ULSOY, G. & VAN
BRUSSEL, H. 1999. Reconfigurable manufacturing systems. CIRP Annals-
Manufacturing Technology, 48, 527-540.

KOREN, Y. & SHPITALNI, M. 2010. Design of reconfigurable manufacturing systems.
Journal of manufacturing systems, 29, 130-141.

159

KOVALENKO, O., WIMMER, M., SABOU, M., LUDER, A., EKAPUTRA, F. J. & BIFFL, S.
Modeling AutomationML: Semantic Web Technologies vs. Model-Driven
Engineering. Emerging Technologies & Factory Automation (ETFA), 2015 IEEE
20th Conference on, 2015. IEEE, 1-4.

KRIMA, S., BARBAU, R., FIORENTINI, X., RACHURI, S., FOUFOU, S. & SRIRAM, R. D. 2009.
OntoSTEP: OWL-DL ontology for STEP.

KUEHN, W. 2006. Digital factory: integration of simulation enhancing the product and
production process towards operative control and optimisation. International
Journal of Simulation, 7, 27-39.

KUHN, W. Digital factory-simulation enhancing the product and production engineering
process. Simulation Conference, 2006. WSC 06. Proceedings of the Winter, 2006.
IEEE, 1899-1906.

LABROUSSE, M. & BERNARD, A. 2008. FBS-PPRE, an enterprise knowledge lifecycle model.
Methods and tools for effective knowledge life-cycle-management. Springer.

LANZ, M. 2010. Logical and semantic foundations of knowledge representation for
assembly and manufacturing processes. Tampereen teknillinen yliopisto. Julkaisu-
Tampere University of Technology. Publication; 903.

LASTRA, J. 2004. Reference Mechatronic Architecture for Actor-Based Assembly Systems,
PhD Thesis. Tampere University of Technology, Tampere.

LEE, C., LEEM, C. S. & HWANG, I. 2011a. PDM and ERP integration methodology using
digital manufacturing to support global manufacturing. The International Journal
of Advanced Manufacturing Technology, 53, 399-409.

LEE, J. Y., KIM, G. Y. & NOH, S. D. 2011b. Integration Framework and PPR+H Hub for DiFac.
In: CANETTA, L., REDAELLI, C. & FLORES, M. (eds.) Digital Factory for Human-
oriented Production Systems: The Integration of International Research Projects.
London: Springer London.

LEE, S., HARRISON, R., WEST, A. & ONG, M. 2007. A component-based approach to the
design and implementation of assembly automation system. Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,
221, 763-773.

LEITÃO, P. 2009. Agent-based distributed manufacturing control: A state-of-the-art
survey. Engineering Applications of Artificial Intelligence, 22, 979-991.

LEITÃO, P., BARBOSA, J., PEREIRA, A., BARATA, J. & COLOMBO, A. W. Specification of the
PERFoRM architecture for the seamless production system reconfiguration.
IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society,
23-26 Oct. 2016 2016. 5729-5734.

LEITAO, P. J. P. 2004. An agile and adaptive holonic architecture for manufacturing control.
University of Porto.

LEMAIGNAN, S., SIADAT, A., DANTAN, J.-Y. & SEMENENKO, A. MASON: A proposal for an
ontology of manufacturing domain. IEEE Workshop on Distributed Intelligent
Systems: Collective Intelligence and Its Applications (DIS'06), 2006. IEEE, 195-200.

LENNARTSON, B., BENGTSSON, K., YUAN, C., ANDERSSON, K., FABIAN, M., FALKMAN, P. &
AKESSON, K. 2010. Sequence planning for integrated product, process and
automation design. IEEE Transactions on Automation Science and Engineering, 7,
791-802.

LIN, H.-K., HARDING*, J. A. & SHAHBAZ, M. 2004. Manufacturing system engineering
ontology for semantic interoperability across extended project teams.
International journal of production research, 42, 5099-5118.

160

LIU, X. Identification and check of inconsistencies between UML diagrams. Computer
Sciences and Applications (CSA), 2013 International Conference on, 2013. IEEE,
487-490.

LOHSE, N. 2006. Towards an ontology framework for the integrated design of modular
assembly systems. University of Nottingham.

LOHSE, N., HIRANI, H. & RATCHEV, S. 2005. Equipment ontology for modular
reconfigurable assembly systems. International journal of flexible manufacturing
systems, 17, 301-314.

LOHSE, N., RATCHEV, S. & VALTCHANOV, G. 2004. Towards web-enabled design of
modular assembly systems. Assembly Automation, 24, 270-279.

MAKRIS, S., MICHALOS, G. & CHRYSSOLOURIS, G. 2012. Virtual commissioning of an
assembly cell with cooperating robots. Advances in Decision Sciences, 2012.

MALEC, J., NILSSON, A., NILSSON, K. & NOWACZYK, S. Knowledge-based reconfiguration
of automation systems. Automation Science and Engineering, 2007. CASE 2007.
IEEE International Conference on, 2007. IEEE, 170-175.

MARTINEZ-CRUZ, C., BLANCO, I. J. & VILA, M. A. 2012. Ontologies versus relational
databases: are they so different? A comparison. Artificial Intelligence Review, 38,
271-290.

MASOLO, C., BORGO, S., GANGEMINI, A., GUARINO, N., OLTRAMARI, A. & SCHNEIDER, L.
2003. The wonderweb library of fundational ontologies and the dolce ontology.
wonderweb deliverable d18, final report (vr. 1.0. 31-12-2003). The WonderWeb
Library of Fundational Ontologies and the DOLCE ontology. WonderWeb
Deliverable D18, Final Report (vr. 1. 0. 31-12-2003).

MATHEW, A. T. & RAO, C. 2010. A novel method of using API to generate liaison
relationships from an assembly. Journal of Software Engineering and Applications,
3, 167.

MATSOKIS, A. & KIRITSIS, D. 2010. An ontology-based approach for Product Lifecycle
Management. Computers in Industry, 61, 787-797.

MATSUDA, M. & WANG, Q. 2010. Software interoperability tools: Standardized capability-
profiling methodology ISO16100. Enterprise architecture, integration and
interoperability, 140-151.

MAULL, R., HUGHES, D. & BENNETT, J. 1992. The role of the bill-of-materials as a
CAD/CAPM interface and the key importance of engineering change control.
Computing & Control Engineering Journal, 3, 63-70.

MAYER, R. J. 1992. IDEF0 function modeling. A Reconstruction of the Original Air Force
Wright Aeronautical Laboratory Technical Report, AFWAL-TR-81-4023 (The IDEF0
Yellow Book), Knowledge-Based System Inc, College Station, TX.

MCGUINNESS, D. L. & VAN HARMELEN, F. 2004. OWL web ontology language overview.
W3C recommendation, 10, 2004.

MCMAHON, C. A. 1994. Observations on modes of incremental change in design. Journal
of Engeering Design, 5, 195-209.

MEHTA, V. & COOPER, J. S. 2003. Review and analysis of PEM fuel cell design and
manufacturing. Journal of Power Sources, 114, 32-53.

MENS, T. 2002. A state-of-the-art survey on software merging. IEEE transactions on
software engineering, 28, 449-462.

MICHNIEWICZ, J. & REINHART, G. 2014. Cyber-physical Robotics–Automated Analysis,
Programming and Configuration of Robot Cells based on Cyber-physical-systems.
Procedia Technology, 15, 566-575.

161

MICHNIEWICZ, J. & REINHART, G. 2015. Cyber-Physical-Robotics–Modelling of modular
robot cells for automated planning and execution of assembly tasks.
Mechatronics.

MICHNIEWICZ, J., REINHART, G. & BOSCHERT, S. 2016. CAD-Based Automated Assembly
Planning for Variable Products in Modular Production Systems. Procedia CIRP, 44,
44-49.

MILICIC, A., PERDIKAKIS, A., KADIRI, S. E. & KIRITSIS, D. 2013. PLM Ontology Exploitation
through Inference and Statistical Analysis A Case Study for LCC. IFAC Proceedings
Volumes, 46, 1004-1008.

MILLER, G. A. 1995. WordNet: a lexical database for English. Communications of the ACM,
38, 39-41.

MIN, B.-K., HUANG, Z., PASEK, Z. J., YIP-HOI, D., HUSTED, F. & MARKER, S. 2002.
Integration of real-time control simulation to a virtual manufacturing
environment. Journal of advanced manufacturing systems, 1, 67-87.

MONOSTORI, L., KÁDÁR, B., BAUERNHANSL, T., KONDOH, S., KUMARA, S., REINHART, G.,
SAUER, O., SCHUH, G., SIHN, W. & UEDA, K. 2016. Cyber-physical systems in
manufacturing. CIRP Annals - Manufacturing Technology, 65, 621-641.

MOURTZIS, D. & DOUKAS, M. 2014. The Evolution of Manufacturing Systems: From
Craftsmanship to the. Handbook of Research on Design and Management of Lean
Production Systems, 1.

OBRST, L., WERNER, C., INDERJEET, M., STEVE, R. & SMITH, B. 2007. The Evaluation of
Ontologies: Toward Improved Semantic Interoperability. Dans JO Christopher,
Baker, & K.-H. Cheung. Semantic Web: Revolutionizing Knowledge Discovery in the
Life Sciences.

OLIVEIRA, J. A. B. D. 2003. Coalition based approach for shop floor agility–a multiagent
approach.

ONORI, M., LOHSE, N., BARATA, J. & HANISCH, C. 2012. The IDEAS project: plug & produce
at shop-floor level. Assembly automation, 32, 124-134.

OTTO, K. N. & WOOD, K. L. 1998. Product evolution: a reverse engineering and redesign
methodology. Research in Engineering Design, 10, 226-243.

PABADIS’PROMISE, F. 2006. D3. 1 Development of manufacturing ontology, project
deliverable. The PABADIS’PROMISE consortium.

PAHL, G. & BEITZ, W. 2013. Engineering design: a systematic approach, Springer Science
& Business Media.

PANETTO, H., DASSISTI, M. & TURSI, A. 2012. ONTO-PDM: product-driven ONTOlogy for
Product Data Management interoperability within manufacturing process
environment. Advanced Engineering Informatics, 26, 334-348.

PFROMMER, J., SCHLEIPEN, M. & BEYERER, J. PPRS: Production skills and their relation to
product, process, and resource. Emerging Technologies & Factory Automation
(ETFA), 2013 IEEE 18th Conference on, 2013. IEEE, 1-4.

PFROMMER, J., STOGL, D., ALEKSANDROV, K., SCHUBERT, V. & HEIN, B. Modelling and
orchestration of service-based manufacturing systems via skills. Emerging
Technology and Factory Automation (ETFA), 2014 IEEE, 2014. IEEE, 1-4.

PINTZOS, G., TRIANTAFYLLOU, C., PAPAKOSTAS, N., MOURTZIS, D. & CHRYSSOLOURIS, G.
2016. Assembly precedence diagram generation through assembly tiers
determination. International Journal of Computer Integrated Manufacturing, 29,
1045-1057.

PROCTOR, F. M., VAN DER HOORN, G. & LIPMAN, R. 2016. Automating Robot Planning
Using Product and Manufacturing Information. Procedia CIRP, 43, 208-213.

162

PRUD’HOMMEAUX, E. & SEABORNE, A. 2008. SPARQL query language for RDF. W3C
recommendation, 15.

PUTTONEN, J., LOBOV, A. & LASTRA, J. L. M. Maintaining a Dynamic View of Semantic Web
Services Representing Factory Automation Systems. Web Services (ICWS), 2013
IEEE 20th International Conference on, June 28 2013-July 3 2013 2013. 419-426.

PYZDEK, T. & KELLER, P. A. 2014. The six sigma handbook, McGraw-Hill Education New
York.

QUINTANA, V., RIVEST, L., PELLERIN, R. & KHEDDOUCI, F. 2012. Re-engineering the
Engineering Change Management process for a drawing-less environment.
Computers in Industry, 63, 79-90.

RACHURI, S., HAN, Y.-H., FOUFOU, S., FENG, S. C., ROY, U., WANG, F., SRIRAM, R. D. &
LYONS, K. W. 2006. A model for capturing product assembly information. Journal
of Computing and Information Science in Engineering, 6, 11-21.

RAMIS FERRER, B., AHMAD, B., LOBOV, A., VERA, D., MARTINEZ LASTRA, J. L. & HARRISON,
R. 2015a. An approach for knowledge-driven product, process and resource
mappings for assembly automation. 2015 IEEE International Conference on
Automation Science and Engineering (CASE).

RAMIS FERRER, B., AHMAD, B., LOBOV, A., VERA, D., MARTINEZ LASTRA, J. L. & HARRISON,
R. 2015b. A knowledge-based solution for automatic mapping in component
based automation systems. 13th IEEE International Conference on Industrial
Informatics (INDIN).

RAMIS FERRER, B., AHMAD, B., VERA, D., LOBOV, A., HARRISON, R. & MARTÍNEZ LASTRA,
J. L. 2016. Product, process and resource model coupling for knowledge-driven
assembly automation. at-Automatisierungstechnik, 64, 231-243.

RAMPERSAD, H. K. 1994. Integrated and Simultaneous Design for Robotic Assembly:
Product Development, Planning, John Wiley & Sons, Inc.

RASHID, M. F. F., HUTABARAT, W. & TIWARI, A. 2012. A review on assembly sequence
planning and assembly line balancing optimisation using soft computing
approaches. The International Journal of Advanced Manufacturing Technology,
59, 335-349.

RAZA, M. B. & HARRISON, R. Ontological knowledge based system for product, process
and resource relationships in automotive industry. Proceedings of the 1st
International Workshop on Ontology and Semantic Web for Manufacturing, 2011.
23-36.

ROYCE, W. W. Managing the development of large software systems: concepts and
techniques. Proceedings of the 9th international conference on Software
Engineering, 1987. IEEE Computer Society Press, 328-338.

RUPARELIA, N. B. 2010. Software development lifecycle models. ACM SIGSOFT Software
Engineering Notes, 35, 8-13.

SACCO, M., PEDRAZZOLI, P. & TERKAJ, W. VFF: virtual factory framework. Proceedings of
16th International Conference on Concurrent Enterprising, Lugano, Switzerland,
2010. 21-23.

SANDERSON, A. C., DE MELLO, L. S. H. & ZHANG, H. 1990. Assembly sequence planning. AI
Magazine, 11, 62.

SCHLEIPEN, M., PFROMMER, J., ALEKSANDROV, K., STOGL, D., ESCAIDA, S., BEYERER, J. &
HEIN, B. Automationml to describe skills of production plants based on the ppr
concept. 3rd AutomationML user conference, 2014.

SEABORNE, A., MANJUNATH, G., BIZER, C., BRESLIN, J., DAS, S., DAVIS, I., HARRIS, S.,
IDEHEN, K., CORBY, O. & KJERNSMO, K. 2008. SPARQL/Update: A language for
updating RDF graphs. W3c member submission, 15.

163

SHANKAR, P., MORKOS, B. & SUMMERS, J. D. 2012. Reasons for change propagation: a
case study in an automotive OEM. Research in Engineering Design, 23, 291-303.

SHARAF, O. Z. & ORHAN, M. F. 2014. An overview of fuel cell technology: Fundamentals
and applications. Renewable and Sustainable Energy Reviews, 32, 810-853.

SIRIN, E., PARSIA, B., GRAU, B. C., KALYANPUR, A. & KATZ, Y. 2007. Pellet: A practical owl-
dl reasoner. Web Semantics: science, services and agents on the World Wide Web,
5, 51-53.

SMITH, B. & GRENON, P. 2002. Basic formal ontology. Draft. Downloadable at
http://ontology. buffalo. edu/bfo.

SPANOUDAKIS, G. & ZISMAN, A. 2001. Inconsistency management in software
engineering: Survey and open research issues. Handbook of software engineering
and knowledge engineering, 1, 329-380.

STAAB, S. & STUDER, R. 2010. Handbook on ontologies, Springer Science & Business
Media.

STAMATIS, D. H. 2002. Six sigma and beyond: design for six sigma, CRC Press.
STARK, R., KIND, S. & NEUMEYER, S. 2017. Innovations in digital modelling for next

generation manufacturing system design. CIRP Annals-Manufacturing
Technology.

STENMARK, M. & MALEC, J. 2015. Knowledge-based instruction of manipulation tasks for
industrial robotics. Robotics and Computer-Integrated Manufacturing, 33, 56-67.

SU, Q. & SMITH, S. 2003. An integrated framework for assembly-oriented product design
and optimization. Journal of Industrial Technology, 19.

SUH, S.-H., SEO, Y., LEE, S.-M., CHOI, T.-H., JEONG, G.-S. & KIM, D.-Y. 2003. Modelling and
Implementation of Internet-Based Virtual Machine Tools. The International
Journal of Advanced Manufacturing Technology, 21, 516-522.

TECHNOLOGY, N. I. F. S. A. 2005. CPM: A core model for product data.
TERKAJ, W., TOLIO, T. & URGO, M. 2015. A virtual factory approach for in situ simulation

to support production and maintenance planning. CIRP Annals-Manufacturing
Technology, 64, 451-454.

TOLIO, T., CEGLAREK, D., ELMARAGHY, H., FISCHER, A., HU, S., LAPERRIÈRE, L., NEWMAN,
S. T. & VÁNCZA, J. 2010. SPECIES—Co-evolution of products, processes and
production systems. CIRP Annals-Manufacturing Technology, 59, 672-693.

TOLIO, T., SACCO, M., TERKAJ, W. & URGO, M. 2013. Virtual Factory: An Integrated
Framework for Manufacturing Systems Design and Analysis. Procedia CIRP, 7, 25-
30.

USMAN, Z. 2012. A manufacturing core concepts ontology to support knowledge sharing.
Loughborough University.

USMAN, Z., YOUNG, R. I. M., CHUNGOORA, N., PALMER, C., CASE, K. & HARDING, J. A
manufacturing core concepts ontology for product lifecycle interoperability.
International IFIP Working Conference on Enterprise Interoperability, 2011.
Springer, 5-18.

USMAN, Z., YOUNG, R. I. M., CHUNGOORA, N., PALMER, C., CASE, K. & HARDING, J. A.
2013. Towards a formal manufacturing reference ontology. International Journal
of Production Research, 51, 6553-6572.

VDI 1990. VDI 2860 - Assembly and handling; handling functions, handling units;
terminology, definitions and symbols.

VOGEL-HEUSER, B., SCHÜTZ, D., FRANK, T. & LEGAT, C. 2014. Model-driven engineering of
Manufacturing Automation Software Projects–A SysML-based approach.
Mechatronics, 24, 883-897.

VRANDEČIĆ, D. 2009. Ontology evaluation. Handbook on Ontologies. Springer.

http://ontology/

164

VYATKIN, V. 2009. The IEC 61499 standard and its semantics. IEEE Industrial Electronics
Magazine, 3.

WANG, D., ZAMEL, N., JIAO, K., ZHOU, Y., YU, S., DU, Q. & YIN, Y. 2013. Life cycle analysis
of internal combustion engine, electric and fuel cell vehicles for China. Energy, 59,
402-412.

WANG, L., ADAMSON, G., HOLM, M. & MOORE, P. 2012. A review of function blocks for
process planning and control of manufacturing equipment. Journal of
manufacturing systems, 31, 269-279.

WANG, L., KESHAVARZMANESH, S. & FENG, H.-Y. 2008. Design of adaptive function blocks
for dynamic assembly planning and control. Journal of Manufacturing Systems,
27, 45-51.

WANG, L., KESHAVARZMANESH, S., FENG, H.-Y. & BUCHAL, R. O. 2009. Assembly process
planning and its future in collaborative manufacturing: a review. The International
Journal of Advanced Manufacturing Technology, 41, 132-144.

WASMER, A., STAUB, G. & VROOM, R. W. 2011. An industry approach to shared, cross-
organisational engineering change handling - The road towards standards for
product data processing. Computer-Aided Design, 43, 533-545.

WESER, M. & ZHANG, J. Autonomous planning for mobile manipulation services based on
multi-level robot skills. 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 10-15 Oct. 2009 2009. 1999-2004.

WESTKÄMPER, E. & JENDOUBI, L. Smart factories–Manufacturing environments and
systems of the future. Proceedings of the 36th CIRP International Seminar on
Manufacturing Systems, 2003. 13-16.

WINKLER, D., EKAPUTRA, F. & BIFFL, S. AutomationML review support in multi-disciplinary
engineering environments. 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), 6-9 Sept. 2016 2016. 1-9.

WU, W.-H., FANG, L.-C., LIN, T.-H., YEH, S.-C. & HO, C.-F. 2012. A novel CMII-based
engineering change management framework: an example in Taiwan's motorcycle
industry. IEEE Transactions on Engineering Management, 59, 494-505.

WYNN, D. C., CALDWELL, N. H. & CLARKSON, P. J. 2010. Can change prediction help
prioritise redesign work in future engineering systems?

XU, J., LIANG, B., WANG, J., XU, X. & ZHANG, B. An approach to automatic assembly
sequences generation. Proceedings of 2nd Asian Conference on Robotics and its
Application, 1994. 612-615.

YANG, B., QIAO, L., ZHU, Z. & WULAN, M. 2016. A Metamodel for the Manufacturing
Process Information Modeling. Procedia CIRP, 56, 332-337.

ZABLITH, F. 2008. Dynamic ontology evolution.
ZHA, X., LIM, S. & FOK, S. 1999. Development of expert system for concurrent product

design and planning for assembly. The International Journal of Advanced
Manufacturing Technology, 15, 153-162.

ZHA, X. F., DU, H. J. & QIU, J. H. 2001a. Knowledge-based approach and system for
assembly-oriented design, Part II: the system implementation. Engineering
Applications of Artificial Intelligence, 14, 239-254.

ZHA, X. F., DU, H. J. & QIU, J. H. 2001b. Knowledge-based approach and system for
assembly oriented design, Part I: the approach. Engineering Applications of
Artificial Intelligence, 14, 61-75.

