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Resumen

Los algoritmos de Machine Learning se benefician de la gran cantidad de datos

disponible. Cuanto mayor sea el conjunto de datos que se utiliza, mejor sera el entre-

namiento. Sin embargo, ésto implica que se requieran cada vez más tiempo y recursos

para obtener resultados.

Una forma de paliar esta limitación es buscar formas alternativas para optimizar

algunas tareas realizadas por algoritmos de Machine Learning. Otra forma de optimizar

estos procesos consiste en recurrir a las plataformas de computación distribuida que

ofrecen la posibilidad de escalar recursos para afrontar la necesidad de un alto consumo

de recursos computacionales.

Sin embargo, ante ésta última posibilidad surge un problema que está relacionado

con los algoritmos que se utilizan para la fase de entrenamiento de los datos. Estos

algoritmos son de naturaleza iterativa, es decir, cada paso depende del anterior y por

lo tanto no hay una forma natural o directa de paralelizar estos pasos.

En este Trabajo de Fin de Grado se abordará el problema de la paralelización de

algunas tareas dentro de los algoritmos de Machine Learning. En particular, se hará un

estudio del arte sobre el problema abordando las distintas aproximaciones y soluciones

que se han planteado en la literatura, estudiando su viabilidad y probando las más

prometedoras para paliar las limitaciones existentes. Adicionalmente, en este Trabajo

se implementado una aplicación con Keras sobre TensorFlow Distribuido, con el fin

de codificar las soluciones seleccionadas y comprobar, de forma práctica, la viabilidad

de un enfoque paralelo y distribuido para solucionar las limitaciones antes menciona-

das. Finalmente, se introduce un análisis sobre los resultados obtenidos, las soluciones

implementadas y las conclusiones obtenidas.
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Abstract

Machine Learning algorithms benefit from the large amount of data available. The

larger the datasets used, the better the training. However, this implies a growth in the

time and resources required to obtain results.

One way to alleviate this limitation is to look for alternative ways to optimize

some tasks performed by Machine Learning algorithms. Another way to optimize these

processes is to resort to distributed computing platforms that offer the possibility of

scaling up resources to meet the need for high consumption of computational resources.

However, against this last possibility, a problem related to the algorithms that are

used for the training phase of the data arises. These algorithms are iterative in nature,

that is, each step depends on the previous one and therefore there is no natural or direct

way to parallelize these steps.

In this Final Project, the problem of the parallelization of some tasks within the

Machine Learning algorithms will be addressed. In particular, a study of the art on the

problem will be made by addressing the different approaches and solutions that have

been raised in the literature, studying their feasibility and testing the most promising in

mitigating the existing limitations. Additionally, an application with Keras over Distri-

buted TensorFlow was implemented in this work, in order to test the selected solutions

and check, in a practical way, the viability of a parallel and distributed approach to

solve the aforementioned limitations. Finally, an analysis on the results obtained, the

implemented solutions and the conclusions obtained is introduced.
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Chapter 1

Introduction

In recent years, technology that creates and collects data has become cheap and

accessible, and in consequence it is spreading everywhere. Devices like computers, smart-

phones, cameras, RFID (radio-frequency identification), sensors, etc., are capable to

collect a huge amount of different kind of data. This huge amount of data, known as

“Big Data” is characterized by not having a defined structure, it is being generated

fast and it is considered with a great value among others. Big Data is an inexhaustible

source of knowledge for scientists, industries and governments.

The growth of the technology supporting the storage and the extraction of value from

Big Data is already available. However, specific and more accurate tools and algorithms

to extract value of Big Data in an efficient way remain still a challenge. In particular, an

important factor is that the existing algorithms mostly have an iterative nature finding

trouble to take advantage of the massive and distributed parallel computing platforms

and frameworks.

Machine Learning techniques are, indeed, being applied in a variety of fields, and da-

ta scientists are being sought after in many different industries. With Machine learning,

we identify the processes through which we gain knowledge that is not readily apparent

from data, in order to be able to make decisions. Applications of Machine Learning

techniques may vary greatly and are applicable in disciplines as diverse as medicine,

finance, and advertising and also, in many scientific fields as Computer Vision, Natural

Language Processing, etc.

1
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The Gradient Descent Algorithm (GDA) is one of the most important optimization

techniques used in many Machine Learning applications. Specifically, GDA is an al-

gorithm used to perform multidimensional optimization. The objective is to reach the

global minimum. It is used to improve or optimize the model prediction included in the

Machine Learning applications. Optimization involves calculating the error value and

changing the weights of the parameters to achieve that minimal error. The direction

of finding the minimum is the negative of the gradient of the loss function. The GDA

implementation is iterative and its performance results are very good. Currently, the-

re are not many parallelized adaptations of this algorithm that are able to work over

parallel and distributed computational platforms.

In this work, we study and analyze the GDA and its performance. We go over most

used GD algorithms focusing on the advances made on distributed implementations. We

also study and test the better frameworks for Deep Learning and distributed compu-

tation. With the global view obtained we design and test a use case with the objective

of training a deep neural network over a given data set using distributed computation.

1.1. Specific Goals

In order to reach this main goal, we have defined a set of specific goals supporting it,

namely:

1. Research and study gradient-based algorithms used to train deep networks.

2. Study the logic behind distributed computing.

3. Investigate previous work on the field of distributed optimizations for deep net-

work training algorithms.

4. Parallelize an iterative algorithm over a distributed computing framework.

5. Evaluate the parallelized implementation running over simulated cluster of ma-

chines.

6. Compare results between iterative and parallelized implementations.
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7. Become familiar with the Python programming language, TensorFlow library and

Apache Spark cluster-computing framework.

1.2. Motivation and justification

It is common to hear about Machine Learning in any recent publication related

with information technology field. This is in consequence of the wide field of application

that this technology covers. Within its varied uses we can find some that play a very

important role in modern society. In a fully connected world were new data is being

generated every minute, including sensitive personal data, data security gains vital

importance. Machine learning is used to predict if certain files contain malware software

or even to detect anomalies when accessing sensitive information that can become

security breaches. There are many other uses apart from cybersecurity, some of them

are computer vision, speech recognition, anomaly detection in network traffic, it is also

used in healthcare to detect patterns that can facilitate diagnosis of severe diseases like

cancer, natural language processing or even smart vehicles.

One specific field inside Machine Learning is Deep Learning, where complex compu-

ting systems called Neural Networks (NN) are used to reach the goal of the problem. NN

is a model offering excellent results in classification problems, but it is computationally

expensive. Therefore, it is important to find more efficient versions of each component

within this kind of models.

The problem that motivates this work comes with optimization. With modern hard-

ware, software and networks the size of data is growing exponentially every minute. This

has a good point because having more data to train our systems will produce more accu-

rate predictions, but it also shows a bad point when talking about performance. When

Machine Learning systems try to process that huge quantity of data, performance falls

taking long execution times that could result in late predictions, that in other words

are useless predictions.

A possible solution to this problem comes with modern distributed computing fra-

meworks. This kind of platform convey great computing power that allows managing

this enormous data quantity.
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Summarizing, in this work we are studying the way algorithmic components of Deep

Learning applications are optimized over distributed computing frameworks in order to

work with larger datasets that will lead to better accuracy when finding the solution

to a given problem.

We are going to focus on the algorithms behind Deep Learning, more specially on

the algorithms used to train deep networks. This is because since these algorithms are

usually iterative, they take very long when working with large scale data, so there is

need for optimization and in addition Deep Learning covers some of the most promising

uses of Machine Learning, as for example, real time computer vision. In particular, we

address the Gradient Descent Algorithm.

1.3. Document structure

This Final Project is structured as follows. In the Background chapter, the theore-

tical framework supporting this work is introduced. State of Art chapter introduces the

previous work on the topic. It will be studied over different publications in order to set a

complete and current framework about the solutions proposed. Everything related with

the design and implementation of the algorithms involved and every framework and

technology that plays an important role in the solution of the problem will be covered

in this chapter.

Then, the next chapters introduce the development of the use case proposed in

this work. First, we will analyze the problem and choose the adaptation of the algo-

rithm that fits better supported by its design and the reasons for its choice. Next,

our implementation is presented together with the details about its deployment into

a computational architecture used. A set of experiments are going to defined in order

to prove the evaluation of the results obtained by the solution. These experiments also

can be able to show the performance results and its suitability to be adapted into Deep

Learning applications.

The document will end with the conclusions and future work chapter based on

experiment results.



Chapter 2

Background

Machine learning systems automatically learn models from examples known as trai-

ning data. Typically, these systems consist of three components, feature extraction, the

objective function and learning.

Figure 2.1: Machine Learning Process

Feature extraction processes the raw training data to obtain the feature vector,

where each feature captures an attribute of the training data. The objective function is

the expression of Machine Learning algorithms goal, and it captures the properties of

the learned model. The learning algorithm minimizes this objective function to obtain

the model. This kind of algorithm iteratively refines the model by processing training

data until an optimal solution is found, considering that the model has converged.

The two main variants of Machine Learning problems are those related with risk

minimization and those referred as unsupervised learning. The first main group, risk

minimization, works with labeled data, meaning each training example is associated

with a label. Models generated with this kind of data, try to predict the value of the

label for a future example, with the prediction depending on the parameters.

5
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In any learning algorithm there is an important relation between the amount of

data and the model size. Un balanced situations may result in overfitted models that

fail predictions or underfitted models that will fail to capture relevant attributes of the

training data.

Regularized risk minimization is a method to find a model that balances model

complexity and training error. The risk, that is the prediction error, is used to penalize

model complexity in order to find a better balance that fits the problem in a way that

it increases prediction accuracy.

In the second major class of Machine Learning algorithms, the label to be applied to

the training examples is unknown, and for that they are called unsupervised algorithms.

These procedures attempt to find the underlying structure in the data, with different

approaches such as clustering or topic modeling.

The Gradient Descent Algorithm (GDA) is one of the most important optimization

techniques used in many Machine Learning applications. Specifically, GDA is an al-

gorithm used to perform multidimensional optimization. The objective is to reach the

global minimum. It is used to improve or optimize the model prediction included in the

Machine Learning applications. Optimization involves calculating the error value and

changing the weights of the parameters to achieve that minimal error. The direction

of finding the minimum is the negative of the gradient of the loss function. The GDA

implementation is iterative and its performance results are very good. Currently, the-

re are not many parallelized adaptations of this algorithm that are able to work over

parallel and distributed computational platforms.

2.1. Gradient Descent

This goal of this algorithm [Ng, ] is to find the global minimum of a function using a

given set of examples. Each example comes labeled with a value. The function tries to

predict values for each example. The objective is to find the parameters of the function

that minimize the error, which is the difference between predicted and actual values.

So we have an hypothesis function hθ
(
x(i)
)

that gives the predicted value for an

example x(i), being x(i) the ith example. Using this function and the actual value for
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the example y(i) we can write down the function to minimize as the summed squared

error. The total number of examples is noted as m.

J(θ) =
1

2m

m∑
i=1

(
hθ
(
x(i)
)
− y(i)

)2

Gradient descent will iteratively update parameters θ given a learning rate α and

cumputing the partial derivative term for the function, being j the n number of para-

meters.

θj := θj − α
∂

∂θj
J(θ)

Puting everything together as an algorithm implementation we have the folowing

pseudocode.

Algorithm 1 Gradient Descent

repeat

θj := θj − α 1
m

∑m
i=1

(
hθ
(
x(i)
)
− y(i)

)
x
(i)
j (for every j=0, 1, 2, ..., n)

until converged

It is worth mentioning the convenience to add some gradient checking implementa-

tion that tell if the algorithm is converging to the minimum or if there is a need to set

a better learning rate α. Also vectorized implementations are recommended to reduce

the workload of every iteration.

The iterative nature of the algorithm leads to very long execution times when wor-

king with large sets of training data m because it has to go over every single example

to take one step forward. This limitation lead to some optimizations that reduce the

workload, being Stochastic Gradient Descent the most used one.
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2.1.1. Stochastic Gradient Descent

This algorithm shares the same goal as the previous one but with a main difference

in the way of reaching that goal. Instead of going through the entire training set in

order to take every step, we just need to look at a single training example to start

making progress towards moving the parameters to the global minimum.

To clarify, what this algorithm is going to do, is to compute the first example and

modify the parameters a little bit to fit just the first example a bit better. Then it will

do the same for the second example and so on until going over the full training set and

in case of need, starting all over again from the first one. Because of this procedure, it

is recommended to shuffle the training examples.

We have to set a mathematical formulation for the cost of modifying the parameters

for a single example.

Cost
(
θ,
(
x(i), y(i)

))
=

1

2

(
hθ
(
x(i)
)
− y(i)

)2

And the partial derivative term for this cost.

∂

∂θj
Cost

(
θ,
(
x(i), y(i)

))
=
(
hθ
(
x(i)
)
− y(i)

)
x(i)

We can now write the algorithm as pseudo-code, having in mind that two loops are

needed. An outer loop that relates with the times that the algorithm has to go over the

entire training set. It is observed that for many situations the algorithm can converge

when computing every example just once. It usually takes between one to ten times.

The second loop is used to compute every single example in the training set.

SGD algorithm may take a longer path to find the global minimum of the function,

but each step will be considerably faster resulting on notable shorter times.
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Algorithm 2 Stochastic Gradient Descent

repeat

for i = 1 to m do

θj := θj − α
(
hθ
(
x(i)
)
− y(i)

)
x(i) (for every j=0, 1, 2, ..., n)

end for

until 1 to 10 repetitions (usually 1 if m is large)

2.1.2. Mini-batch Gradient Descent

A third variation worth noting is Mini-batch Gradient Descent. It takes something

from each previous algorithms. The main point is to work with reduced batches of trai-

ning examples. We can say that GD works with batches that include the whole training

set and SGD works with batches of only one training example. Working with slightly

larger batches brings the best of both implementations, reducing the time needed to

take each step and reducing the number of steps needed to converge.

Say that b = 10 is the batch size and m = 1000 we can write the following pseudo-

code for this algorithm.

Algorithm 3 Stochastic Gradient Descent

repeat

for i = 1,11,21,31,... to 991 do

θj := θj − α 1
10

∑i+9
i=1

(
hθ
(
x(k)
)
− y(k)

)
x
(k)
j (for every j=0, 1, 2, ..., n)

end for

until 1 to 10 repetitions (usually 1 if m is large)

This third variation of the Gradient Descent algorithm is very promising for para-

llelization. Using vectorization, meaning you use a vector that contains the examples of

each mini-batch, you can try to parallelize and compute them at the same time reducing

the overall time for the algorithm.
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2.2. Distributed and parallel computational frame-

works

This section covers some of the most suitable tools to work with distributed deep

learning and test different optimizations of gradient based algorithms. TensorFlow to

implement and deploy Machine Learning models and Keras to build deep neural net-

works. We are also covering Apache Spark because it is one of the most used distributed

computation frameworks in Big Data environments and some of the latest works in the

field are related with attempts of deploying TensorFlow over Spark.

2.2.1. TensorFlow

TensorFlow [Abadi et al., 2015] is an open-source library published by Google for

expressing and executing Machine Learning algorithms. The focus of the project is to

allow and simplify the real-world use of Machine Learning by providing the tools for

implementation and deployment of large scale models over different hardware platforms

such as mobile systems, single machines or large scale clusters running specialized ma-

chines.

Figure 2.2: TensorFlow graph example.
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To give some basis on how TensorFlow works, we are giving a brief description of the

basic concepts. A TensorFlow computation is described by a graph with several nodes

like in the figure 2.2. The graph represents data-flow computations. Each node instances

an operation and can have various inputs and outputs. Tensors are multidimensional

arrays that flow along normal edges of the graph. Special edges are used to control

dependencies between nodes. Variables handle persistent mutable tensors that survive

across executions of a graph. TensorFlow Session is used to run the whole graph or

some parts allowing to repeat some computations.

Both local and distributed implementations are allowed. The main components of

a system are the client that uses Session interface to communicate with the master

and one or more worker processes responsible for executing graphs on one or more

computational devices.

Figure 2.3: Single machine and distributed system structure [Abadi et al., 2015]

For multi-device and distributed execution, two steps are necessary. First, is node

placement, deciding where to put each node of the graph, and then managing commu-

nication of data across devices or workers with send/receive node pairs that replace any

cross-device edge of the resulting distributed graph.

TensorFlow includes built-in support for automatic gradient computation using

many optimization algorithms like SGD. It also allows data parallel training. Assu-

ming that a model is being trained using SGD with mini-batches, we can speed up

training by parallelizing the computation for the gradient for a mini-batch. We can use

several replicas of the model to each compute the gradients for each mini-batch and
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Figure 2.4: Send/Receive nodes insertion [Abadi et al., 2015]

then combine the gradients and apply updates. The update step can be made both

synchronously and asynchronously.

2.2.2. Keras

Keras [Chollet et al., 2015] is a high-level open-source neural networks API developed

with a focus on enabling fast experimentation. It is written in Python and is capable

of running on top of TensorFlow simplifying the user experience when designing and

working with neural networks.

A Keras model is understood as a sequence of modules that can be joined toget-

her almost without restrictions. In particular, neural layers, cost functions, optimizers,

initialization schemes, activation functions and regularization schemes are standalone

modules that can be combined to create new models.

2.2.3. Apache Spark

Spark [Zaharia et al., 2010] [Zaharia et al., 2012] is a distributed computation fra-

mework that supports applications that reuse a working set across multiple parallel

operations while retaining scalability and fault tolerance of MapReduce.

Spark introduced Resilient Distributed Datasets (RDD) that are read-only collection

of objects partitioned across a set of machines that can be rebuilt if a partition is lost.

Once an RDD is generated with the working data, two kinds of operations can be made,

transformations and actions. When an RDD is transformed, a new modified RDD based
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on the original one is generated. Actions consist on operations over an RDD to obtain

a result value that depends on the kind of action.

Since RDD can only be transformed and the resultant RDD depends on the previous

one, if a partition is lost, the RDD has enough information about how it was derived

from other RDDs to be able to rebuild just that partition.

Figure 2.5: Spark Architecture

Spark architecture [Karau et al., 2015] automatically manages the distribution of

the computation allowing users to only worry about the transformations that need to

be done to datasets. Developers write a driver program using the SparkContext class.

This driver is the master node and splits the application into tasks and schedules them

to run on executors. It runs the cluster manager that communicates with the workers

coordinating them for the execution of tasks. The workers are the compute nodes in

Spark, they are Spark instances that run the executors. The executors are responsible

for running the parallelized tasks.

Spark provides a standalone mode that allows developers to replicate this architec-

ture on a single machine to test the basic features of Spark distributed computation

having in mind that Spark relies on hardware scalability.

The use of RDD result in Spark is outperforming Hadoop MapReduce 10x in itera-

tive Machine Learning jobs and can be used to interactively query a large dataset with

sub-second response time.



Chapter 3

State of the art

To follow the better path, we research the previous work on the field and we sum-

marize the most promising works that introduces key aspects to solve the problem.

Deep learning refers to Machine Learning algorithms that work with artificial neural

deep networks. The general idea presented in the brief introduction to Machine Lear-

ning, can also be applied. Algorithms implement an objective function that has to be

minimized in order to make predictions based on the learning data. There is a need

to optimize the training algorithms used in this networks and a promising path comes

with distributed computing.

The motivation for the search of distributed optimization solutions that scale up the

training of deep networks is the observation that the scale of deep learning, according

to the number of training examples, the number of model parameters, or both, can

drastically improve ultimate classification accuracy.

The use of GPUs was a significant advance but has some limitations such as the

small training speed-up when working with training sets that are larger than GPU

memory or the need to reduce data and parameters in order to avoid bottlenecking in

CPU-to-GPU transfers. These constrains make this option not optimal for large scale

problems, with large number of examples and dimensions.

Another approach to the problem revolves around distributed computing using large-

scale clusters of machines. One of the early references was presented in [Dean et al.,

2012] as DistBelief, a software framework that enables model and data parallelism

14
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within a machine via multithreading and across machines via message passing. With

this framework two main findings were reported. The distributed optimization approach

implemented can greatly accelerate the training of modestly sized models, and on the

other hand it can train models that are larger than could be contemplated otherwise.

Each statement was supported with a use case, for the first one, a cluster of machines

was used to train a modestly sized speech model to the same classification accuracy in

1/10th of the time required with a GPU. On the other hand, the framework was used

to train a large network of more than 1 billion parameters that allowed to drastically

improve performance in computer vision.

This approach looks for a way of implementing distributed optimization that allows

the use of a cluster of machines asynchronously without requiring that the problem be

either convex or sparse. The focus is to scale deep learning techniques to train very large

models, combining model parallelism with clever distributed optimization techniques

that leverage data parallelism.

Model parallelism is supported in the way that the user may partition large models

for neural networks across several machines, while the framework automatically mana-

ges communication, synchronization and data transfer between machines. Models with

large number of parameters or high computational costs tend to benefit from access to

more CPUs or memory to the point that communication costs dominate.

Figure 3.1: Example of model parallelism from [Dean et al., 2012]

Models with local connectivity structures as the one shown in the figure 3.1 benefit

more from extensive distribution given their lower communication requirements. Only
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those nodes with edges that cross partitions will need to have their state transmitted

between machines and even if a node has multiples edges crossing, the state is only sent

once. On each machine, the computation for individual nodes will be parallelized across

all available CPU cores. Combining it with distributed optimization algorithms that

use multiple replicas of the entire model is possible to achieve significant reductions in

overall training times.

In order to train such large models in a reasonable amount of time, another level

of parallelism that distributes training across multiple model instances is introduced.

Two large scale distributed optimizations are compared. Both leverage the concept of

a centralized parameter server sharded across many machines and take advantage of

distributed computing. Each shard of the parameter server is responsible for storing

and updating a reduced amount of the parameters. But most importantly, both met-

hods tolerate variance in the processing speed of different replicas avoiding idle waiting

times in the faster ones. The general idea is to simultaneously process distinct training

examples and periodically combine results.

Figure 3.2: Left: Downpour SGD. Right: Sandblaster L-BFGS. From [Dean et al., 2012]

The first optimization procedure, named Downpour SGD, works with Stochastic

Gradient Descent(SGD), probably the most common algorithm used to train deep neu-

ral networks. The traditional formulation for this algorithm is sequential making it

impractical when working with large amount of data. The variation developed for this

algorithm that allows it to be applied to large data sets, consists on dividing training

data into subsets and running a copy of the model on each of them as it can be seen in

3.2. Each model communicates updates through a centralized parameter server which
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keeps the current state of all parameters for the model. Each model replica asks the

parameter server service for an updated copy of its parameters, then it processes a

batch of data to compute the gradient and send it back to the parameter server which

applies the gradient to the current value of the parameters.

The second procedure looks forward to apply batch methods to large models and

large datasets. This procedure uses a coordinator process, represented in the figure 3.2,

where the core of the L-BFGS optimization algorithm resides, and for that the pro-

cedure gets the name Sandblaster L-BFGS. This mentioned coordinator process issues

commands from a small set of operations that can be performed on each parameter ser-

ver shard independently, with the results being stored locally on the same shard. This

allows running large models with billions of parameters without incurring the overhead

of sending all the parameters and gradients to a single server. To avoid waiting for the

slower machines, the load is balanced in the following way. The coordinator assigns

each model a small portion of the work, much smaller than the batch, whenever they

are free, letting faster model replicas do more work than slower ones, without the need

to wait for them. In this procedure workers only fetch parameters at the beginning of

the batch, when they have been updated by the coordinator, and only send gradients

every few completed portions of the batch.

These optimization procedures were evaluated by applying them to the use cases

mentioned before, speech recognition and visual object recognition. After studying the

results, the conclusion reached was that Downpour SDG was dominant when working

with a computational budget meanwhile Sandblaster L-BFGS and its more efficient use

of network bandwidth enables it to scale to a larger number of concurrent cores for

training a single model.

This work used the concept of the parameter server to manage communication of

parameters. This concept has been developed further in later works. For example, in

[Li et al., 2014] another parameter server framework for Machine Learning problems

is proposed. In this elaboration, both data and workloads are distributed over worker

nodes, while the server nodes maintain globally shared parameters, represented as dense

or sparse vectors and matrices. When large models are shared globally by all worker

nodes which must frequently access the shared parameters as they perform computation
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to refine the model, three challenges are imposed. Accessing the parameter requires

an enormous amount of network bandwidth. Many Machine Learning algorithms are

sequential, resulting barriers that hurt performance when the cost of synchronization

and machine latency is high. And third, at scale, fault tolerance is critical.

To overcome those challenges an open source implementation of a parameter server

that focus on the systems aspects of distributed inference is presented. It provides five

key features. Efficient communication optimized for Machine Learning tasks to reduce

network traffic and overhead. Flexible consistency models that allow the designer to ba-

lance algorithmic convergence rate and system efficiency to reduce synchronization cost

and latency. Elastic stability by adding new nodes without having to restart the run-

ning framework. Fault tolerance and durability by ensuring well defined behavior after

network partition and failure. And finally, ease of use, representing shared parameters

as vectors and matrices to facilitate development of Machine Learning applications.

Several algorithms were used to evaluate the work. The main findings confirm so-

me essential aspects of this framework. The efficacy of reduced network traffic and the

relaxed consistency model permitted the parameter server to outperform other solu-

tions when running Sparse Logistic Regression. For Latent Dirichlet Allocation, a topic

modeling algorithm, the parameter server showed a significant speedup in convergence

that also scales well when increasing the number of machines.

The idea of working with several replicas hosted on different workers that share

parameters in a parameter server was further developed until TensorFlow [Abadi et al.,

2015] was introduced. This open-source framework is the current state of Google’s

development and simplifies distributed Machine Learning to the public. It supplies with

prebuilt functions, algorithms and optimizers based on the ideas previously exposed that

provide a higher level working framework that is easier to use for less experimented

users.

Previously cited works rely on custom implementations. It is worth noting that

before this framework was released, there were attempts of solving the problem using

most common distributed computation frameworks.

Batch processing frameworks such as MapReduce or Spark have been gaining popu-

larity because of the great simplification they bring to large scale data analytics tasks.
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And even though they are not designed to support the workloads of existing deep lear-

ning systems, some implementations, as for example [Moritz et al., 2015], introduce a

way for training deep networks using these frameworks, in this case, Spark.

The formulation comes with the name SparkNet and implements a scalable, dis-

tributed algorithm for training deep networks that lends itself to batch computation

frameworks and works well in bandwidth limited environments.

Since much of the difficulty of applying Machine Learning has to do with obtaining,

cleaning and processing data, training models with batch frameworks benefits from

the existing data processing pipelines that have been engineered in todays distributed

computational environments. Moreover, this approach allows data to be kept in memory

from start to finish avoiding writing to disk between operations. In addition, hardware

requirements are minimal, the framework gracefully handles bandwidth limited settings

while also takes advantage of clusters with low latency communication. This is achieved

by providing a simple algorithm for parallelizing SGD that involves minimal commu-

nication and permits straightforward implementation in batch frameworks. The goal

is set in suggesting a system that can be easily implemented and performs nearly as

well as custom frameworks, instead of attempting to outperform them. In SparkNet,

training a deep network on the output of a SQL query, or a graph computation, or a

streaming data source is direct due to its general purpose nature.

To perform well in bandwidth limited environments, a parallelization scheme for

SGD that requires minimal communication is presented. Spark consists of a single

master node and a number of worker nodes. The data is split among Spark workers. In

every iteration the master node broadcasts the model parameters to each worker, that

runs SGD on the model with its subset of data for a fixed number of iterations. Then

the resulting parameters on each worker are sent to the master and averaged to form

the new model parameters.

Although it works on a different platform, the idea behind the distribution of the

computation is based on the same concepts. Several replicas of the model, train with

different batches of data and submit gradients to a server were parameters are averaged

and hosted. Currently the focus is diverting to deploying TensorFlow over a Spark

cluster, but this path is on its first steps of development.
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Since both works rely on the same ideas and TensorFlow is in a higher state of

development due to the extensive use it gained since release, we think it provides better

tools and a much robust framework to distribute the training of a deep neural network.
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Design and development

4.1. Problem Analysis

The problem we are addressing is the parallelization of the computation needed for

training deep neural networks in order to reduce the time it takes to achieve the expected

results. The main challenges that appear are related with the gradient based algorithms

used to train this kind of networks. These algorithms have an iterative nature meaning

that the previous step is needed to compute the next one. This conception collides with

distributed computation and since redesigning them is way complicated, we are looking

for a way to parallelize the computation.

Deep neural networks usually use very large datasets for training. Training consists

on going over the full dataset to predict results, compare them with the expected ones

and tuning the weights of the parameters of network depending on the quality of the

prediction. This job is dependent of the size of the dataset.

So, we have a fixed algorithm, a model and a large dataset. We are going to try to

replicate the training using slices of the dataset. The idea represented in the figure 4.1

is that if the network takes a certain time to train over a dataset, it will take a third of

the time to train with a dataset a third of the size. This approximation is made keeping

away of the equation every non dataset size dependent factors.

With this idea we need a distributed computation system that allows us to parallelize

the training with model replication and data parallelism. If we can divide the training

21
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Figure 4.1: Aproach representation.

between three model replicas that run at the same time and update the gradients

together, we can reduce the time it takes to achieve the same precision.

After researching we decided to use Keras over TensorFlow to build our network but

we need to test how this works on the existing distributed computation frameworks.

4.1.1. First approach: to address the problem with Spark

We decided to start with Spark because it greatly simplifies working with large

datasets and it automatically manages distribution. Also, it is one of the most extended

frameworks of distributed computation in Big Data and Machine Learning projects,

consequently a solution built on this framework can be easier to add.

We used an ongoing project of adapting Keras library for Spark. This library is

restricted to data parallelization in account of the difficulties to split up models with

Spark.

We build a Spark standalone cluster with three workers to replicate a real cluster

on a single machine. This permits us to test our applications before tuning and scaling

to a high workload.
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Figure 4.2: Standalone cluster with 3 workers.

Datasets were prepared using Spark DataFrames and the model was created in the

same way as any other Keras model. For the computation we used the customized Spark

Estimator to call the methods from Keras library but after some testing we discard this

approach due to the problems we found during execution.

Figure 4.3: Error traceback.

We run the code with a spark-submit command using as parameters the address of

the master node and the path where the script is located. The specific bug that stopped

us was a known bug that is pending to solve. Our execution encounters the following
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exception: Exception: It appears that you are attempting to reference SparkContext from

a broadcast variable, action, or transformation. SparkContext can only be used on the

driver, not in code that it run on workers. For more information, see SPARK-5063.

In short, what this means is that the code is referencing the SparkContext from a

worker and this cannot be done because Spark serializes objects to send them to the

workers and due to SparkContext is not serializable it can only be accessed from the

master node.

Figure 4.4: Application register.

After delving into this bug, we found that it was pending to solve and since this is

not in the scope of our problem we considered trying other approaches.

Summarizing, Spark simplifies work with large datasets and hides distribution to the

end user but the inconvenient of keeping the entire model on the master node without

distribution may be incompatible with the solution to our problem. This approach needs

further development to the point that different working solutions can be built enabling

testing and benchmarking to conclude if this is a promising path to solve our problem.
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4.1.2. Second approach: to address the problem with Distri-

buted TensorFlow

Considering TensorFlow was born as a result of the development of the idea of

optimizing deep network training and that almost every article we found relates with

it on each or other way, naturally, the next step is moving to TensorFlow.

We want to deploy our solution using Distributed TensorFlow. This framework

allows the user to distribute computation by assigning operations to different workers

and variables to different parameter servers while automatically handling the process

of communication between workers and parameter servers. It is extensible to any pre-

viously working cluster in virtue of it only needs the IP address of the nodes where we

want to assign tasks. It also allows the user to use different ports from the local host to

replicate a distributed execution. We leverage the local deployment to test our solution.

The focus is the same, to build a model, and replicate it on different workers in

order to train with smaller pieces of the dataset at the same time.

The first step is to set the cluster specifications. The program needs to know the

number of nodes from the beginning and it will not start until every node is operative.

Then we must build the model. Although TensorFlow brings great tools for building

Machine Learning models, these methods are still complex for the inexperienced user,

hence this was the most problematic step of this approach.

At this point, we considered using Keras for the model even if we obtain a working

solution only with TensorFlow since it adds higher level tools that are easier to use.

After building the model, we have to distribute computation between the nodes. We

are using one parameter server and three workers. Because we only have one parameter

server, variables are assigned straightaway. We divide the training dataset in three slices

and assign each of them and the training operations for the entire model to each of the

three workers achieving the desired model replication and data parallelism.

We have now three replicas of the model that go over a different training set. Each

worker takes the values of the parameters to compute gradients, then it updates the

parameters on the parameter server by averaging the values existing on the server and

the worker results as seen in the figure 4.5. Then it repeats for the next iteration. The

parameters are upgraded by averaging to allow asynchronous training between the three
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Figure 4.5: Asynchronous data parallelism from [Abadi et al., 2015]

workers.

To run Distributed TensorFlow programs the script must be run on every node that

is included in the cluster specification done in the code. Each execution waits until

every node is running and then, workers start computation asynchronously.

With this approach we managed to build a working solution. Distributed TensorFlow

handles communication and most of the work behind distributing the computation and

gives the user the chance of dividing operations at will. The downside comes in the

complexity of the instructions needed to build the model, set the cost function and the

optimizer algorithm. They are hard to use for non-expert users and increase mistake

probability and difficulty for debugging when working with large models.

Although it is a working solution, before tuning and benchmarking the implemen-

tation, we are attempting to achieve the same solution but using Keras to build the

model.

4.1.3. Third Approach: to address the problem with Keras

over Distributed TensorFlow

Our third approach is based on the previous one. The difference is that this time

we are using Keras to build our model.
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Keras does not support Distributed TensorFlow so we cannot use model compile and

fit methods. Model compile method is used to set the cost function, the optimization

algorithm for the model and the metrics to monitoring the training. It is a straightfor-

ward method where the user only has to choose from a list of options the one that fits

better with the model. Model fit is another easy to use method where the user only has

to tell the training datasets and the number of epochs, then Keras starts and manages

training while showing real time state of the metrics chosen.

The reason we are using Keras is the methods that simplify the process of building

the model. This library includes methods that automatically create different kind of

layers for neural networks models by only telling the number of outputs and other

optional parameters as the number of inputs and activation. We are using the Sequential

model that automatically builds the model by joining together the layers created.

Figure 4.6: Keras deep neural network model.

Keras also has method that summarizes the model and shows it in an easy to

understand way. Our model can be seen in the figure 4.6. The information shown is the

type and number of layers, the output shape of each layer and the number of parameters

for each layer and the complete model.

Once the model is built, we distribute computation by assigning operations to the
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workers as we did on the previous example. And we run the script following the same

process.

In this approach we managed to get a working program that uses Keras layers to

build the model and Distributed TensorFlow to distribute the training over different

workers. It would be nice if in a future update of Keras they add support to Distributed

TensorFlow allowing compile and fit methods to be used for distributed training letting

the user just to choose between the kind of parallelism and the cluster specifications.

4.2. Selected approach

After researching and testing different approaches with different distributed compu-

tation frameworks we conclude that the most promising path to follow in our context

is Keras on top of Distributed TensorFlow.

Spark and Keras are not fully compatible yet and is not even proved that this

combination will be considerably faster. Spark nature collides with model parallelization

therefore some important ways of distributing training seem to be hard to achieve with

this framework. This approach is only recommended to use if the project is already

based on Spark and there is a real need to add distributed training using the same

framework.

On the other hand, Distributed TensorFlow was created to solve this problem and

allows the user to create almost any Machine Learning model and distribute it on a

cluster of machines. Distributed TensorFlow is also a project in development. Although

it already provides with the tools for distributing computation, to work with complex

models it requires a really deep knowledge about how TensorFlow graphs work and how

to distribute operations on the workers to achieve the better solutions. Keras simplifies

the process of building the model but there is still some work needed on developing

Distributed TensorFlow to a more robust state that allows to easily work with most

complex Machine Learning models in a parallelized way.

To summarize, we are using Keras to build our model in the most simple and direct

way. And we are using Distributed TensorFlow to distribute the training using three

model replicas that work with different slices of the training dataset. This is the most
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adequate path to follow given the reduced experience with TensorFlow and the resources

available to test our project.



Chapter 5

Implementation

5.1. Implementation of the selected option

This section will cover the implementation of our approach to the problem and every

step needed to set up the environment and the tools to run Distributed TensorFlow

scripts.

5.1.1. Environment setup

TensorFlow recommended programing language is Python. Although it supports

other languages as Java or C, libraries for them are not as extensive as Python APIs.

Consequently, the first step to set up our environment is to install Python. We chose

to install latest versions of everything to make sure we are using the supported imple-

mentations to approach distributed computation.

Installing Python is straightforward with the installer. This installer also includes

pip, a package management system that allows to install and manage software pac-

kages written in Python. Once it is finished installing, it is recommended to test the

installation and double check the version installed.

On a Windows CMD window just by typing python, we get access to the information

related with our installation and the Python shell to test if it is working correctly. In

the Figure 5.1 we can see that we installed Python 3.6.5.

Once Python and pip are installed, downloading and deploying TensorFlow and

30
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Figure 5.1: Python 3.6.5 installation working.

Keras libraries is simplified to just a single command. This automatically downloads

the latest version and installs the package. Once again it is recommended to test the

installation and check the version installed.

For TensorFlow we decided to use latest version for CPU-only. The GPU-version

allows the user to assign operations to GPU resulting in faster computation. The system

used for testing only holds one GPU and we are looking forward to using different

workers at the same time. CPU allows us to simulate a worker for each of the CPU

cores.

To install TensorFlow:

pip i n s t a l l −−upgrade t e n s o r f l ow

On the Python shell we are writing some basic TensorFlow instructions to check the

installation was correct.

Figure 5.2: TensorFlow 1.8.0 installation working.

For Keras, we install the latest version and use the Python shell to confirm that the

package is recognized.
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To install Keras:

pip i n s t a l l −−upgrade keras

Since Keras can be used over different Machine Learning frameworks, we have to

set its configuration parameters to use TensorFlow backend.

Keras configuration parameters in Keras.json file:

{
” f l o a t x ” : ” f l o a t 3 2 ” ,

” e p s i l o n ” : 1e−07,

”backend” : ” t en s o r f l ow ” ,

” image data format ” : ” c h a n n e l s l a s t ”

}

Figure 5.3: Keras 2.1.6 installation working.

At this point, we have installed everything we need to test our solution. To write

the scripts any code editor can be used.

5.1.2. Running a Distributed TensorFlow script

When writing a Distributed TensorFlow script, the cluster specification must be set

from the beginning. It can be coded on the script or it can be passed as parameters in

order to make the script more independent from the cluster.

For our example, we decide to set the cluster configuration on the code, so to run

the script we have to use two parameters. The first one tells TensorFlow which kind of

node is running the script and the second one is the task index.

So, we have the following command:

python s c r i p t . py −−job name=”node” −−t a sk index =( i n t va lue )
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With the cluster specification we set, the program already knows the address of each

node and the number of workers and parameter servers, and it will not start running

until every node in the cluster is active. We are using local implementation so, for our

example the addresses are just local host ports. The configuration is one parameter

server and three worker, so we assign task index 0 to the parameter server, and task

index 0, 1 and 2 to the workers. Our script is called keras distributed.py

To run the script in local mode, we need four command prompt windows, one for

each node, and we will run each the following commands on each terminal:

To start the parameter server:

python k e r a s d i s t r i b u t e d . py −−job name=”ps” −−t a sk index=0

To start the three workers:

python k e r a s d i s t r i b u t e d . py −−job name=” worker ” −−t a sk index=0

python k e r a s d i s t r i b u t e d . py −−job name=” worker ” −−t a sk index=1

python k e r a s d i s t r i b u t e d . py −−job name=” worker ” −−t a sk index=2

The expected behavior for the parameter server is to stand idle. This process runs

on the background hosting the variables and does not show any screen information

aside form successful start confirmation.

Figure 5.4: Parameter server running.

In the Figure 5.4 we can see the cluster specification with a parameter server in
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localhost:2222 and three workers, in localhost:2223/2224/2225. The parameter server

was correctly started and is now waiting of the operations.

When running the workers nodes, we can see in the Figure 5.5 that once we ran

the first one, it tells it is waiting for response from the other workers specified on the

cluster.

Figure 5.5: Worker node waiting for the rest of workers.

When the script is run on every worker, each of them start to compute operations

asynchronously. This implementation is fault tolerant, we need every node to start

running but if during the execution any worker is stopped, the remaining workers will

continue with their jobs.

This kind of implementation is easy to scale up to a larger or real cluster. We only

have to change the addresses and add desired new ones to the cluster specification.

When working with real clusters, TensorFlow must be equally installed on ever node of

the cluster, and the script has to be run on each server in the same way we did on our

command prompt windows.

5.1.3. Dataset specifications

The training dataset that we used to test our implementation contains network

information that identifies the app from which the activity was generated. It is a labeled

dataset, this means we have features and the corresponding labels. The labels are the

targets related to each register of the dataset. Having the labels, the predictions can be

compared to the targets in order to compute the gradients and train the algorithm for

better accuracy.

The dataset has 761.179 different examples for training and another 761.179 exam-

ples for validation. Since obtaining the best prediction accuracy is not the goal for

this implementation we are going to reduce the number of training examples to 300K
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and then we are dividing the dataset in 3 sections giving 100K to each worker. We do

not have information about if the dataset is ordered, so to prevent this affecting our

predictions we are selecting 300K random examples and not the first ones.

This dataset includes the following 49 features:

cli pl header

cli pl body

cli cont len

srv pl header

srv pl body

srv cont len

aggregated sessions

bytes

net samples

tcp frag

tcp pkts

tcp retr

tcp ooo

cli tcp pkts

cli tcp ooo

cli tcp retr

cli tcp frag

cli tcp empty

cli win change

cli win zero

cli tcp full

cli tcp tot bytes

cli pl tot

cli pl change

srv tcp pkts

srv tcp ooo

srv tcp retr

srv tcp frag

srv tcp empty

srv win change

srv win zero

srv tcp full

srv tcp tot bytes

srv pl tot

srv pl change

srv tcp win

srv tx time

cli tcp win

client latency

application latency

cli tx time

load time

server latency

proxy

sp healthscore

sp req duration

sp is lat

sp error

throughput
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The targets are 20 different types of applications identified with numbers from 0 to

42. Usually class 0 is used for unknown examples.

For classification we need to transform the targets to a binary array. This is an array

of zeros and a single one to identify the value. Since the labels go from 0 to 42 we set

the length of the array to 43.

[3] =⇒ [0, 0, 0, 1, 0, 0 · · · 0, 0]

We already have a working installation and a dataset that is ready to use, now we

have to implement our model to start training.

5.1.4. Network Model and Prediction Model

The objective of this work is to distribute the training for a Machine Learning model

to reduce execution times. Since our focus is not to improve predictions we are using a

simple model that lets us test Distributed TensorFlow implementations.

From the dataset we know we are facing a classification problem were the focus is

to identify to which of a set of categories a new observation belongs. To achieve this,

we are building a deep neural network.

The network built has an input layer of 49 neurons, one for each feature, and an

output layer of 43 neurons, one for each of the possible categories in our classification.

We also include two hidden layers of 512 neurons with rectified linear unit activation

function. This is a mathematical function used to choose and output from a number

of inputs. It is one of the most common activation functions used in Deep Networks.

The activation function for the output layer is softmax function, also known as nor-

malized exponential function, that reduces a K-dimensional vector of real values to a

K-dimensional vector of values in the range (0, 1) which all entries add up to 1. The

values stored in the softmax output are the predictions in the form of the probabilities

that each index is the correct value.

We used a fully connected model meaning every neuron is directly connected with

all the neurons in the next layer. We also add two dropout layers to avoid overfitting.
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Figure 5.6: Deep network representation.

Overfitting in Machine Learning models refers to thoose with great accuracy on the

training that fail on the validation set. Dropout technique deactivates a number of

neurons from a layer for during an iteration of training forcing the model to learn the

same concept with different neurons.

Figure 5.7: Dropout technique.

With the model already built, we have to set the loss function and the optimization

algorithm. After researching classification models, we set the recommended loss function

for this kind of problem which is categorical cross entropy function. The optimization
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algorithm chosen was RMS prop. This is an optimized adaptation for Gradient Descent

algorithm. It is mainly the same algorithm but with an adaptive learning rate that

becomes useful when working with large numbers of parameters.

5.1.5. Code specification and explanation

Once the solution is designed the only step left is to write the script. This section

covers our implementation explaining the structure of our code and focusing on the

most important parts related with distributed implementations.

In the script we defined four functions and the main program. The functions are

built to implement specific functionality making the code easier to maintain and debug.

We will start by explaining these functions and then we will go over the main program

to see how the operations are distributed.

Function: load data

This function is used to read the csv files that contain the dataset. We created three

files with 100K examples from the main dataset and each of the three slices is loaded

on each of the workers. We have a separate file for the features and the labels. As we

explained before in 5.1.3 we apply a transformation to the labels dataset to get the

values as binary vectors. To achieve this we used the following Keras function:

from keras . u t i l s import n p u t i l s

l a b e l s = n p u t i l s . t o c a t e g o r i c a l ( l a b e l s , 43)

The datasets are loaded as global variables, accessible from every point of the pro-

gram.

Function: create model

This is the function used to generate the deep neural network. Keras sequential

model allows to add the desired layers to the model with simplified methods as follows:

from keras . models import Sequent i a l

from keras . l a y e r s import Dense , Dropout
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model = Sequent i a l ( )

model . add ( Dense (512 , a c t i v a t i o n=’ r e l u ’ , input shape =(49 , ) ) )

model . add ( Dropout ( 0 . 2 ) )

model . add ( Dense (512 , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( Dropout ( 0 . 2 ) )

model . add ( Dense (43 , a c t i v a t i o n=’ softmax ’ ) )

This code creates the model that is shown in the Figure 4.6 and explained in the

previous Section 5.1.4. This funtion returns the model that can be used later to create

operations that depend on its structure.

Function: create optimizer

This function creates the operations needed to compute the gradients. It depends on

a model and a targets tensor that are passed as parameters. A tensor is a TensorFlow

unit with a defined type, size and dimensions. Operations are built using tensors and

they are executed later when they receive data that fits the tensor’s shape. For the

following instructions predictions is the model output tensor and targets is the labels

tensor.

First, we set the loss function and optimizer algorithm that were defined in the

previous section. We set categorical cross-entropy using Keras package. Since we are

implementing mini-batch gradient descent, each step of training computes the algorithm

using a batch of examples. To obtain the loss function for the batch we add a reduce

mean operation that obtains the average of a value over all the dimensions of a given

tensor. We used TensorFlow implementation of RMSprop algorithm.

l o s s = t f . reduce mean (

keras . l o s s e s . c a t e g o r i c a l c r o s s e n t r o p y (

ta rge t s ,

p r e d i c t i o n s ) )

opt imize r = t f . t r a i n . RMSPropOptimizer ( l e a r n i n g r a t e )
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The learning rate used for the algorithm was 0.001 as it is recommended for RMS-

prop.

To make sure that the gradients are computed before the loss function is calculated

we set control dependencies. These dependencies generate special edges on the Ten-

sorFlow graph that prevent an operation to be executed without meeting the correct

conditions. In our code, train operation is dependent on the gradient updates that de-

pend on a barrier operation that is only executed when the previous model update is

already done.

with t f . c on t r o l d ependenc i e s ( model . updates ) :

b a r r i e r = t f . no op (name=” u p da t e b a r r i e r ” )

with t f . c on t r o l d ependenc i e s ( [ b a r r i e r ] ) :

grads = opt imize r . compute gradients (

l o s s ,

model . t r a i n a b l e w e i g h t s )

grad updates = opt imize r . app ly g rad i en t s ( grads )

with t f . c on t r o l d ependenc i e s ( [ grad updates ] ) :

t r a i n o p = t f . i d e n t i t y (

l o s s ,

name=” t r a i n ” )

The barrier is a no op, this kind of operation just activates itself to unlock dependen-

cies when the conditions are met. The optimizer implements the methods to compute

and apply gradients. The compute gradients method runs the algorithm to minimize

the previous value of the loss function that depends on the trainable weights of the

parameters of the model. The apply gradients method update the parameters with the

computed gradients. Finally, train op is an identity operation, that just returns a ten-

sor with the same shape and contents as the input, so when train op is executed, loss

function is calculated.

The last operation created in this function is the accuracy metric. This metric from

the TensorFlow metrics package calculates how often predictions matches labels. Since
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we have a Softmax layer as output of our model, we need to do some transformations.

This is because Softmax layers return a vector of values of the probability for each index

to be the predicted value. Comparing it with a binary vector result on wrong values for

the metric since predictions never match labels. To obtain the right values of accuracy

we used the argmax function on both targets and predictions. This function returns

the index of the higher value in a vector, hence we will be comparing the label with the

most probable value of our prediction.

t a r g s = t f . argmax ( ta rge t s , 1)

preds = t f . argmax ( p r ed i c t i o n s , 1)

accuracy = t f . met r i c s . accuracy ( targs , preds )

Function: train

This function gives the values to run the operations implemented in the previous

one. It takes a batch from the training set and calls the operations using TensorFlow

Session. This function depends on the step of the training epoch. The step is used to

calculate the next batch used to train. This function also logs useful information related

to the training to monitor execution.

Each worker takes the next batch from their training set. In our example we set 128

as batch size.

batch x = f e a t u r e s [ b a t c h s i z e ∗ s tep : b a t c h s i z e ∗( s tep +1)]

batch y = l a b e l s [ b a t c h s i z e ∗ s tep : b a t c h s i z e ∗( s tep +1)]

The the operations are executed using batch x as model inputs and batch y as

targets.

l o s s v a l u e , accuracy va lue = s e s s . run (

[ t ra in op , accuracy ] ,

f e e d d i c t={
model . inputs [ 0 ] : batch x ,

t a r g e t s : batch y })
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Main program:

At this point we have already implemented the operations needed for training. Now

we have to assign the operations to each worker in order perform parallelized training.

The first step is to set the cluster specification and start the nodes. We used the

train package from TensorFlow and set a cluster with one parameter server and three

workers. We are using local host ports to simulate a parallelized execution on the same

machine. As we explained earlier in Section 5.1.2, the same script is run on each node

of the cluster and we use two parameters to tell the job name and the task index for

each node.

c l u s t e r = t f . t r a i n . ClusterSpec ({
”ps” : [ ” l o c a l h o s t :2222 ” ] ,

” worker ” : [ ” l o c a l h o s t :2223 ” ,

” l o c a l h o s t :2224 ” ,

” l o c a l h o s t :2225 ” ] } )

s e r v e r = t f . t r a i n . Server ( c l u s t e r ,

job name=FLAGS. job name ,

ta sk index=FLAGS. ta sk index )

The train Server method uses the cluster specification, the job name and the task

index to start each node on the corresponding address.

All that remains is to assign operations to each worker. Distributed TensorFlow

manages the communications between workers and parameter servers. The parameter

server (ps) host the variables and stays listening to updates on the variables. The

operations are executed on the workers, so we have to use the device setter methods to

tell the program where to execute the following operations.

Since we are only using one parameter server, all variables will be hosted on it, but it

is possible to work with multiple parameter servers and distribute variables across them.

As we stated earlier, task index for workers goes from 0 to 2. In our implementation we

replicate all operations on every worker. TensorFlow device method is used to assign

operations to a given device. To identify the device, we used the replica device setter
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method from the train package. With this method we can choose to which worker are

the operations assigned and in which parameter server are the variables hosted. We also

have to pass the cluster specification for the program to manage communications.

i f FLAGS. job name == ”ps” :

s e r v e r . j o i n ( )

e l i f FLAGS. job name == ” worker ” :

with t f . dev i c e (

t f . t r a i n . r e p l i c a d e v i c e s e t t e r (

worker dev i ce=”/ job : worker/ task: %d” %FLAGS. task index ,

p s d ev i c e=”/ job : ps/ task : 0 ” ,

c l u s t e r=c l u s t e r ) ) :

#opera t i ons

When assigning operations, a TensorFlow graph is built on each worker. In our im-

plementation, the operations assigned are the operations created on the functions. Each

worker calls the create model function and once the model is created the create optimizer

function is called. Now that the graph is built, the variables are initialized. We used a

TensorFlow supervisor to manage the session and save check points.

The last step is to create two loops, one to go over the entire training set calling

the train function on every iteration and an outer loop to set the number of times the

training will go over the training set.
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Experiments and results

The focus of our work was to deploy a distributed solution for deep network training.

To test our implementation, we are going to set an experiment in which we compare the

results of distributed training with the results of centralized training. Having in mind

that since our distributed implementation is deployed on a single machine, results like

time are not those that can be achieved with a real cluster. So, we set the focus on

training the same network for the same number of epochs over the same dataset and

see if the accuracy achieved is similar.

Summarizing what we explained in previous sections, we are training with a dataset

that contains features for 300K examples and their correspondent labels. We are running

mini-batch implementation of the optimized version of gradient descent using a batch

size of 128 examples. We set the number of epochs to 100. The algorithm used is

RMSProp optimizer with recommended learning rate of 0.001 and the loss function for

our classification problem is categorical cross entropy.

To deploy the centralized solution for training we leverage Keras packages and met-

hods. We used the same dataset and build the same model that we did earlier on the

distributed implementation. To run the training, we used the Keras model compile and

fit methods that could not be used for distributed training.

44
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model . compile (

opt imize r=’RMSprop ’ ,

l o s s=’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,

met r i c s =[ ’ accuracy ’ ] )

model . f i t (

f e a t u r e s a ,

l a b e l s a ,

b a t c h s i z e =128 ,

epochs =100 ,

verbose =1)

Model compile is used to set the loss function, the optimizer algorithm and the

metrics. Model fit is used to set the training dataset, the batch size and the number

of epochs and then run the training. Vervose option is used to show the state of the

training.

Figure 6.1: First epochs of centralized training.
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We run the centralized training of our network using the dataset to set a baseline

of expected results. We can see that from the first few epochs the accuracy is already

fixed at 0.7570. This is not a good value for a classification network, but our focus is to

replicate training with distributed computation, no to obtain the best network for our

dataset, so tuning the network to get better results is out of the scope of our work.

Figure 6.2: Last epochs of centralized training.

In the Figure 6.2 we can see that the last epochs of centralized training obtained the

same 0.7570 accuracy. So now, we have a target accuracy to achieve with the distributed

implementation.

Now we run our distributed implementation by running the script on each of the

nodes as we explained in the Section 5.1.2. We can observe that the nodes work asyn-

chronously by looking at the first iterations on each worker. The first worker starts with

zero accuracy, but the following workers start the training with the current situation

set by the already running workers. This is because we have three replicas of the model

asynchronously updating the same parameters as represented in the Figure 4.5. The

following images show the first iterations on each of the workers.
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Figure 6.3: First 200 iterations in worker 1.

Figure 6.4: First iterations in worker 2.

Once each of the workers finished running the 100 epochs over each dataset slice,

we can see that the obtained results with our distributed implementation are the same

we obtained with the centralized training. We achieved the target accuracy of 0.7570

with a similar behaviour.

In the Figure 6.5, we can see differences in the loss value obtained earlier, this is

because in the centralized solution, what Keras shows is the average of the value of the

loss function over the whole training set. In our distributed implementation we print

the value of the loss function within each batch. If we average the values across all the

iterations of one epoch we obtain very close results.

With these results we can conclude that our distributed implementation is correctly

working. We achieved the same results as centralized training and with a similar beha-

vior. The future work we propose is to test the same solution using better networks
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Figure 6.5: Last iterations on one of the workers.

with larger datasets and real cluster with different machines. With that configuration

we could leverage the true benefit of parallelized computation that is a considerable

reduction in training times.
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Conclusions and future work

7.1. Conclusions

During the development of this work we achieved our main goal that was to design

and test a use case of parallelized computation to train a deep neural network. To

achieve this, we have to study the basic concepts of Machine Learning and the most used

versions of the gradient descent algorithm. Then, we researched different distributed

computation frameworks to build our solution and deployed a working implementation.

So, we can say that we successfully achieved our main goal by completing our specific

goals, such as it is mentioned as following.

We studied Machine Learning, Deep Learning, and different optimizations of gra-

dient descent. In addition, we studied distributed computation frameworks to decide

the better one for our solution. Spark and Distributed TensorFlow also was studied in

order to identify the best option to implement our solution.

Our solution have implemented a parallelized version of mini-batch gradient descent

which run on a simulated cluster on a single machine which was built using Python

programming language and and Keras in the top f TensorFlows. The results obtained

with our solution show that it is able to obtain similar results to the centralized iterative

implementations.

Other conclusions extracted from this work are all related with the early state of

development of the frameworks that allow to parallelize Machine Learning optimization

49
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algorithms.

The most important constraint we found is the design of the algorithm. Since it is

iterative it can not be parallelized allowing the user only to distribute the workload.

There are three main ways to achieve it, data parallelization, model parallelization or

both combined. Being limited from the algorithm design reduces the possibilities of

finding a successful solution.

The solutions found rely on Distributed TensorFlow. A high complexity application

programing interface that require high experience to distribute workload over workers

in an efficient way. Also, we found this solution is not compatible with most used

distributed computation frameworks such as Spark. This slows the extension of use

because it stops everyone that already has project using Spark or other machine learning

platform and wants to add TensorFlow to distribute the workload of their models. In

addition, the high learning curve requires long time to be familiar with the framework.

We reached a working solution that points at the correct path to follow when trying

to implement a distributed solution that relies on these algorithms. As nowadays the

size of available data is growing rapidly, this problem will grow when single machine

implementations extend the times required for training to a point that can not be

handled. Then this problem will be extended and the existing solutions will be improved,

resolving the limitations we found.

7.2. Social and Environmental Impact and Ethical

and Professional Responsability

Actually, the environmental impact of this Project is non-existent because the com-

puting application resulting does not involve the use of high consumption machines. It is

a well-known that high energy consumption is associated with Data Centers. This Pro-

ject does not make any use of them and therefore, we can state that the our application

does not require high energy consumption.

With regard to the social impact, the development of this Project has involved a

first exploration phase to address a set of challenges related with the migration of the

sequential algorithm to the parallel one and migrates it to the a distributed compu-
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ting platform. Since our project requires a couple of software process iterations to be

considered a commercial software project, we consider that the social impact only is

related with the preliminary results obtained that might allow a future development

with interesting results to attack real problems in several domains of application.

Finally, with regard the Ethical and Professional Responsibility, we state that the

development of this Project is not related with no one factor that contravenes with

these two aspects. On the other hand, we state that this Project was developed with

the highest respect for the pursuit of the profession and therefore have been considered

both Ethics and Professional Responsibility in a personal way.

7.3. Future work

During the development of this work we get the feeling that the best way to approach

the problem involves redesigning the algorithms used. This task needs to be approached

by mathematicians with high knowledge on the Machine Learning field and may involve

changes that impact more than just the algorithms.

Since this is not the focus of our work, we are going to expose what based on our

experience are the most promising ways if they are developed in the correct direction.

First, we think that a higher level library that allows less experienced users access

these frameworks is needed. This can be covered with Keras supporting distributed

executions of TensorFlow.

Second, another important limitation that we think is important to break, is to

allow Distributed TensorFlow to be deployed on most used distributed computation

platforms. We tested an unfinished implementation using Keras and Spark, and we

think that there is a need of development and improvement from both sides for this to

become an actual option.

Last but maybe most important pending work is to thoroughly test and benchmark

the optimizations made on the algorithms. These optimizations are approximations

made to the algorithm behavior, and there is a need to prove that the results are

actually the same as the ones obtained on single machine training.
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