UNIVERSIDAD POLITECNICA DE MADRID

——

-\
unversidas | ETS| SISTEMAS
de Maara | INFORMATICOS

ProyECcTO DE FIN DE GRADO
GRADO EN INGENIERIA DE SOFTWARE

PARALLELIZED OPTIMIZATION FOR GRADIENT-BASED MACHINE LEARNING

ALGORITHMS IN DEEP NETWORKS

AUTOR: IGNACIO BASARTE FERNANDEZ

ESCUELA TECNICA SUPERIOR DE INGENIERIA DE SISTEMAS
INFORMATICOS

11

UNIVERSIDAD POLITECNICA DE MADRID

——

-\
unversicad | ETS| SISTEMAS
de Maara | INFORMATICOS

ProyECcTO DE FIN DE GRADO
GRADO EN INGENIERIA DE SOFTWARE

PARALLELIZED OPTIMIZATION FOR GRADIENT-BASED MACHINE LEARNING

ALGORITHMS IN DEEP NETWORKS

AUTOR: IGNACIO BASARTE FERNANDEZ

TUTORES:
ALBERTO M0ZO VELASCO

SANDRA GOMEZ CANAVAL

ESCUELA TECNICA SUPERIOR DE INGENIERIA DE SISTEMAS
INFORMATICOS

11

II1

Resumen

Los algoritmos de Machine Learning se benefician de la gran cantidad de datos
disponible. Cuanto mayor sea el conjunto de datos que se utiliza, mejor sera el entre-
namiento. Sin embargo, ésto implica que se requieran cada vez mas tiempo y recursos
para obtener resultados.

Una forma de paliar esta limitacién es buscar formas alternativas para optimizar
algunas tareas realizadas por algoritmos de Machine Learning. Otra forma de optimizar
estos procesos consiste en recurrir a las plataformas de computacién distribuida que
ofrecen la posibilidad de escalar recursos para afrontar la necesidad de un alto consumo
de recursos computacionales.

Sin embargo, ante ésta ultima posibilidad surge un problema que esta relacionado
con los algoritmos que se utilizan para la fase de entrenamiento de los datos. Estos
algoritmos son de naturaleza iterativa, es decir, cada paso depende del anterior y por
lo tanto no hay una forma natural o directa de paralelizar estos pasos.

En este Trabajo de Fin de Grado se abordara el problema de la paralelizacion de
algunas tareas dentro de los algoritmos de Machine Learning. En particular, se hara un
estudio del arte sobre el problema abordando las distintas aproximaciones y soluciones
que se han planteado en la literatura, estudiando su viabilidad y probando las mas
prometedoras para paliar las limitaciones existentes. Adicionalmente, en este Trabajo
se implementado una aplicaciéon con Keras sobre TensorFlow Distribuido, con el fin
de codificar las soluciones seleccionadas y comprobar, de forma practica, la viabilidad
de un enfoque paralelo y distribuido para solucionar las limitaciones antes menciona-
das. Finalmente, se introduce un analisis sobre los resultados obtenidos, las soluciones

implementadas y las conclusiones obtenidas.

v

Abstract

Machine Learning algorithms benefit from the large amount of data available. The
larger the datasets used, the better the training. However, this implies a growth in the
time and resources required to obtain results.

One way to alleviate this limitation is to look for alternative ways to optimize
some tasks performed by Machine Learning algorithms. Another way to optimize these
processes is to resort to distributed computing platforms that offer the possibility of
scaling up resources to meet the need for high consumption of computational resources.

However, against this last possibility, a problem related to the algorithms that are
used for the training phase of the data arises. These algorithms are iterative in nature,
that is, each step depends on the previous one and therefore there is no natural or direct
way to parallelize these steps.

In this Final Project, the problem of the parallelization of some tasks within the
Machine Learning algorithms will be addressed. In particular, a study of the art on the
problem will be made by addressing the different approaches and solutions that have
been raised in the literature, studying their feasibility and testing the most promising in
mitigating the existing limitations. Additionally, an application with Keras over Distri-
buted TensorFlow was implemented in this work, in order to test the selected solutions
and check, in a practical way, the viability of a parallel and distributed approach to
solve the aforementioned limitations. Finally, an analysis on the results obtained, the

implemented solutions and the conclusions obtained is introduced.

VI

Index

Resumen
Abstract

Index

Index of Figures

1. Introduction

1.1. Specific Goals

1.2. Motivation and justification

1.3. Document structure .

2. Background
2.1. Gradient Descent . .

2.1.1. Stochastic Gradient Descent
2.1.2. Mini-batch Gradient Descent

2.2. Distributed and parallel computational frameworks

2.2.1. TensorFlow .
2.2.2. Keras
2.2.3. Apache Spark

3. State of the art

VII

ITI

VII

=W N -

© oo O Ot

10
10
12
12

14

VIII INDEX

4. Design and development 21
4.1. Problem Analysis 21
4.1.1. First approach: to address the problem with Spark 22
4.1.2. Second approach: to address the problem with Distributed Ten-
sorFlow 25
4.1.3. Third Approach: to address the problem with Keras over Distri-
buted TensorFlow 26
4.2. Selected approach Lo 28
5. Implementation 30
5.1. Implementation of the selected option 30
5.1.1. Environment setup oL 30
5.1.2. Running a Distributed TensorFlow script 32
5.1.3. Dataset specifications 34
5.1.4. Network Model and Prediction Model 36
5.1.5. Code specification and explanation 38
6. Experiments and results 44
7. Conclusions and future work 49
7.1. Conclusions 49
7.2. Social and Environmental Impact and Ethical and Professional Respon-
sability 20
7.3. Future work 51

Bibliography 52

INDEX

IX

Index of Figures

2.1.
2.2.
2.3.
2.4.
2.5.

3.1.
3.2.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

5.1
0.2.
2.3.
5.4.
2.5.
2.6.
0.7.

Machine Learning Process 5)
TensorFlow graph example. 10
Single machine and distributed system structure [Abadi et al., 2015] . 11
Send/Receive nodes insertion [Abadi et al., 2015] 12
Spark Architecture L 13
Example of model parallelism from [Dean et al., 2012] 15
Left: Downpour SGD. Right: Sandblaster L-BFGS. From [Dean et al.,

2012] .o 16
Aproach representation.o 22
Standalone cluster with 3 workers. L. 23
Error traceback.o 23
Application register. 24
Asynchronous data parallelism from [Abadi et al., 2015] 26
Keras deep neural network model., 27
Python 3.6.5 installation working. 31
TensorFlow 1.8.0 installation working. 31
Keras 2.1.6 installation working. 32
Parameter server running.o 33
Worker node waiting for the rest of workers. 34
Deep network representation. L. 37
Dropout technique. oL 37

X

INDEX OF FIGURES XI

6.1. First epochs of centralized training. 45
6.2. Last epochs of centralized training. 46
6.3. First 200 iterations in worker 1. 47
6.4. First iterations in worker 2. 47

6.5. Last iterations on one of the workers. 48

Chapter 1
Introduction

In recent years, technology that creates and collects data has become cheap and
accessible, and in consequence it is spreading everywhere. Devices like computers, smart-
phones, cameras, RFID (radio-frequency identification), sensors, etc., are capable to
collect a huge amount of different kind of data. This huge amount of data, known as
“Big Data” is characterized by not having a defined structure, it is being generated
fast and it is considered with a great value among others. Big Data is an inexhaustible

source of knowledge for scientists, industries and governments.

The growth of the technology supporting the storage and the extraction of value from
Big Data is already available. However, specific and more accurate tools and algorithms
to extract value of Big Data in an efficient way remain still a challenge. In particular, an
important factor is that the existing algorithms mostly have an iterative nature finding
trouble to take advantage of the massive and distributed parallel computing platforms

and frameworks.

Machine Learning techniques are, indeed, being applied in a variety of fields, and da-
ta scientists are being sought after in many different industries. With Machine learning,
we identify the processes through which we gain knowledge that is not readily apparent
from data, in order to be able to make decisions. Applications of Machine Learning
techniques may vary greatly and are applicable in disciplines as diverse as medicine,
finance, and advertising and also, in many scientific fields as Computer Vision, Natural

Language Processing, etc.

2 CHAPTER 1. INTRODUCTION

The Gradient Descent Algorithm (GDA) is one of the most important optimization
techniques used in many Machine Learning applications. Specifically, GDA is an al-
gorithm used to perform multidimensional optimization. The objective is to reach the
global minimum. It is used to improve or optimize the model prediction included in the
Machine Learning applications. Optimization involves calculating the error value and
changing the weights of the parameters to achieve that minimal error. The direction
of finding the minimum is the negative of the gradient of the loss function. The GDA
implementation is iterative and its performance results are very good. Currently, the-
re are not many parallelized adaptations of this algorithm that are able to work over
parallel and distributed computational platforms.

In this work, we study and analyze the GDA and its performance. We go over most
used GD algorithms focusing on the advances made on distributed implementations. We
also study and test the better frameworks for Deep Learning and distributed compu-
tation. With the global view obtained we design and test a use case with the objective

of training a deep neural network over a given data set using distributed computation.

1.1. Specific Goals

In order to reach this main goal, we have defined a set of specific goals supporting it,

namely:

1. Research and study gradient-based algorithms used to train deep networks.
2. Study the logic behind distributed computing.

3. Investigate previous work on the field of distributed optimizations for deep net-

work training algorithms.
4. Parallelize an iterative algorithm over a distributed computing framework.

5. Evaluate the parallelized implementation running over simulated cluster of ma-

chines.

6. Compare results between iterative and parallelized implementations.

1.2. MOTIVATION AND JUSTIFICATION 3

7. Become familiar with the Python programming language, TensorFlow library and

Apache Spark cluster-computing framework.

1.2. Motivation and justification

It is common to hear about Machine Learning in any recent publication related
with information technology field. This is in consequence of the wide field of application
that this technology covers. Within its varied uses we can find some that play a very
important role in modern society. In a fully connected world were new data is being
generated every minute, including sensitive personal data, data security gains vital
importance. Machine learning is used to predict if certain files contain malware software
or even to detect anomalies when accessing sensitive information that can become
security breaches. There are many other uses apart from cybersecurity, some of them
are computer vision, speech recognition, anomaly detection in network traffic, it is also
used in healthcare to detect patterns that can facilitate diagnosis of severe diseases like
cancer, natural language processing or even smart vehicles.

One specific field inside Machine Learning is Deep Learning, where complex compu-
ting systems called Neural Networks (NN) are used to reach the goal of the problem. NN
is a model offering excellent results in classification problems, but it is computationally
expensive. Therefore, it is important to find more efficient versions of each component
within this kind of models.

The problem that motivates this work comes with optimization. With modern hard-
ware, software and networks the size of data is growing exponentially every minute. This
has a good point because having more data to train our systems will produce more accu-
rate predictions, but it also shows a bad point when talking about performance. When
Machine Learning systems try to process that huge quantity of data, performance falls
taking long execution times that could result in late predictions, that in other words
are useless predictions.

A possible solution to this problem comes with modern distributed computing fra-
meworks. This kind of platform convey great computing power that allows managing

this enormous data quantity.

4 CHAPTER 1. INTRODUCTION

Summarizing, in this work we are studying the way algorithmic components of Deep
Learning applications are optimized over distributed computing frameworks in order to
work with larger datasets that will lead to better accuracy when finding the solution
to a given problem.

We are going to focus on the algorithms behind Deep Learning, more specially on
the algorithms used to train deep networks. This is because since these algorithms are
usually iterative, they take very long when working with large scale data, so there is
need for optimization and in addition Deep Learning covers some of the most promising
uses of Machine Learning, as for example, real time computer vision. In particular, we

address the Gradient Descent Algorithm.

1.3. Document structure

This Final Project is structured as follows. In the Background chapter, the theore-
tical framework supporting this work is introduced. State of Art chapter introduces the
previous work on the topic. It will be studied over different publications in order to set a
complete and current framework about the solutions proposed. Everything related with
the design and implementation of the algorithms involved and every framework and
technology that plays an important role in the solution of the problem will be covered
in this chapter.

Then, the next chapters introduce the development of the use case proposed in
this work. First, we will analyze the problem and choose the adaptation of the algo-
rithm that fits better supported by its design and the reasons for its choice. Next,
our implementation is presented together with the details about its deployment into
a computational architecture used. A set of experiments are going to defined in order
to prove the evaluation of the results obtained by the solution. These experiments also
can be able to show the performance results and its suitability to be adapted into Deep
Learning applications.

The document will end with the conclusions and future work chapter based on

experiment results.

Chapter 2
Background

Machine learning systems automatically learn models from examples known as trai-
ning data. Typically, these systems consist of three components, feature extraction, the

objective function and learning.

Feature Cost function [l Learning Testing

Trainin _
& extraction l Optimization process

dataset dataset

Figure 2.1: Machine Learning Process

Feature extraction processes the raw training data to obtain the feature vector,
where each feature captures an attribute of the training data. The objective function is
the expression of Machine Learning algorithms goal, and it captures the properties of
the learned model. The learning algorithm minimizes this objective function to obtain
the model. This kind of algorithm iteratively refines the model by processing training
data until an optimal solution is found, considering that the model has converged.

The two main variants of Machine Learning problems are those related with risk
minimization and those referred as unsupervised learning. The first main group, risk
minimization, works with labeled data, meaning each training example is associated
with a label. Models generated with this kind of data, try to predict the value of the

label for a future example, with the prediction depending on the parameters.

6 CHAPTER 2. BACKGROUND

In any learning algorithm there is an important relation between the amount of
data and the model size. Un balanced situations may result in overfitted models that
fail predictions or underfitted models that will fail to capture relevant attributes of the
training data.

Regularized risk minimization is a method to find a model that balances model
complexity and training error. The risk, that is the prediction error, is used to penalize
model complexity in order to find a better balance that fits the problem in a way that
it increases prediction accuracy.

In the second major class of Machine Learning algorithms, the label to be applied to
the training examples is unknown, and for that they are called unsupervised algorithms.
These procedures attempt to find the underlying structure in the data, with different
approaches such as clustering or topic modeling.

The Gradient Descent Algorithm (GDA) is one of the most important optimization
techniques used in many Machine Learning applications. Specifically, GDA is an al-
gorithm used to perform multidimensional optimization. The objective is to reach the
global minimum. It is used to improve or optimize the model prediction included in the
Machine Learning applications. Optimization involves calculating the error value and
changing the weights of the parameters to achieve that minimal error. The direction
of finding the minimum is the negative of the gradient of the loss function. The GDA
implementation is iterative and its performance results are very good. Currently, the-
re are not many parallelized adaptations of this algorithm that are able to work over

parallel and distributed computational platforms.

2.1. Gradient Descent

This goal of this algorithm [Ng, | is to find the global minimum of a function using a
given set of examples. Each example comes labeled with a value. The function tries to
predict values for each example. The objective is to find the parameters of the function
that minimize the error, which is the difference between predicted and actual values.

So we have an hypothesis function hy (:L"(i)) that gives the predicted value for an

example 2, being £® the ith example. Using this function and the actual value for

2.1. GRADIENT DESCENT 7

the example y(¥) we can write down the function to minimize as the summed squared

error. The total number of examples is noted as m.

0= 255 06 -

=1

Gradient descent will iteratively update parameters 6 given a learning rate o and
cumputing the partial derivative term for the function, being j the n number of para-

meters.

0]- = Gj — Oéa—ejj<9)

Puting everything together as an algorithm implementation we have the folowing

pseudocode.

Algorithm 1 Gradient Descent
repeat

0;:=0; —al > (he (V) —y) xg-i) (for every j=0, 1, 2, ..., n)

until converged

It is worth mentioning the convenience to add some gradient checking implementa-
tion that tell if the algorithm is converging to the minimum or if there is a need to set
a better learning rate «. Also vectorized implementations are recommended to reduce
the workload of every iteration.

The iterative nature of the algorithm leads to very long execution times when wor-
king with large sets of training data m because it has to go over every single example
to take one step forward. This limitation lead to some optimizations that reduce the

workload, being Stochastic Gradient Descent the most used one.

8 CHAPTER 2. BACKGROUND
2.1.1. Stochastic Gradient Descent

This algorithm shares the same goal as the previous one but with a main difference
in the way of reaching that goal. Instead of going through the entire training set in
order to take every step, we just need to look at a single training example to start
making progress towards moving the parameters to the global minimum.

To clarify, what this algorithm is going to do, is to compute the first example and
modify the parameters a little bit to fit just the first example a bit better. Then it will
do the same for the second example and so on until going over the full training set and
in case of need, starting all over again from the first one. Because of this procedure, it
is recommended to shuffle the training examples.

We have to set a mathematical formulation for the cost of modifying the parameters

for a single example.

Cost (6, (+,) = 3 (ho (29) —)’

DO | —

And the partial derivative term for this cost.

a%C’ost (6, (:B(i), y(i))) = (hg (x(i)> _ y(i)) 2®
J

We can now write the algorithm as pseudo-code, having in mind that two loops are
needed. An outer loop that relates with the times that the algorithm has to go over the
entire training set. It is observed that for many situations the algorithm can converge
when computing every example just once. It usually takes between one to ten times.

The second loop is used to compute every single example in the training set.

SGD algorithm may take a longer path to find the global minimum of the function,

but each step will be considerably faster resulting on notable shorter times.

2.1. GRADIENT DESCENT 9

Algorithm 2 Stochastic Gradient Descent

repeat

for i =1 tom do
0; :=0; — a (hg () — y@) 2@ (for every j=0, 1, 2, ..., n)
end for

until 1 to 10 repetitions (usually 1 if m is large)

2.1.2. Mini-batch Gradient Descent

A third variation worth noting is Mini-batch Gradient Descent. It takes something
from each previous algorithms. The main point is to work with reduced batches of trai-
ning examples. We can say that GD works with batches that include the whole training
set and SGD works with batches of only one training example. Working with slightly
larger batches brings the best of both implementations, reducing the time needed to

take each step and reducing the number of steps needed to converge.

Say that b = 10 is the batch size and m = 1000 we can write the following pseudo-

code for this algorithm.

Algorithm 3 Stochastic Gradient Descent
repeat

for i — 1,11,21.31,... to 991 do
0; =0, —as; ZHQ (ho () — y(k))) (for every j=0, 1, 2, ..., n)

end for

until 1 to 10 repetitions (usually 1 if m is large)

This third variation of the Gradient Descent algorithm is very promising for para-
llelization. Using vectorization, meaning you use a vector that contains the examples of
each mini-batch, you can try to parallelize and compute them at the same time reducing

the overall time for the algorithm.

10 CHAPTER 2. BACKGROUND

2.2. Distributed and parallel computational frame-

works

This section covers some of the most suitable tools to work with distributed deep
learning and test different optimizations of gradient based algorithms. TensorFlow to
implement and deploy Machine Learning models and Keras to build deep neural net-
works. We are also covering Apache Spark because it is one of the most used distributed
computation frameworks in Big Data environments and some of the latest works in the

field are related with attempts of deploying TensorFlow over Spark.

2.2.1. TensorFlow

TensorFlow [Abadi et al., 2015] is an open-source library published by Google for
expressing and executing Machine Learning algorithms. The focus of the project is to
allow and simplify the real-world use of Machine Learning by providing the tools for
implementation and deployment of large scale models over different hardware platforms
such as mobile systems, single machines or large scale clusters running specialized ma-

chines.

edges(tensors)

g A g SR ——

Nodes(operations)

Figure 2.2: TensorFlow graph example.

2.2. DISTRIBUTED AND PARALLEL COMPUTATIONAL FRAMEWORKS 11

To give some basis on how TensorFlow works, we are giving a brief description of the
basic concepts. A TensorFlow computation is described by a graph with several nodes
like in the figure 2.2. The graph represents data-flow computations. Each node instances
an operation and can have various inputs and outputs. Tensors are multidimensional
arrays that flow along normal edges of the graph. Special edges are used to control
dependencies between nodes. Variables handle persistent mutable tensors that survive
across executions of a graph. TensorFlow Session is used to run the whole graph or
some parts allowing to repeat some computations.

Both local and distributed implementations are allowed. The main components of
a system are the client that uses Session interface to communicate with the master
and one or more worker processes responsible for executing graphs on one or more

computational devices.

single process

client master
......... —_—
process) ___..n | process

run

execute
subgraph

execute
subgraph

worker worker worker
process 1 process 2 process 3

Figure 2.3: Single machine and distributed system structure [Abadi et al., 2015]

For multi-device and distributed execution, two steps are necessary. First, is node
placement, deciding where to put each node of the graph, and then managing commu-
nication of data across devices or workers with send /receive node pairs that replace any
cross-device edge of the resulting distributed graph.

TensorFlow includes built-in support for automatic gradient computation using
many optimization algorithms like SGD. It also allows data parallel training. Assu-
ming that a model is being trained using SGD with mini-batches, we can speed up
training by parallelizing the computation for the gradient for a mini-batch. We can use

several replicas of the model to each compute the gradients for each mini-batch and

12 CHAPTER 2. BACKGROUND

(Device B (Device B

® © y ® © W
et 0% el

o & 9

Device A Device A

Figure 2.4: Send/Receive nodes insertion [Abadi et al., 2015]

then combine the gradients and apply updates. The update step can be made both

synchronously and asynchronously.

2.2.2. Keras

Keras [Chollet et al., 2015] is a high-level open-source neural networks APT developed
with a focus on enabling fast experimentation. It is written in Python and is capable
of running on top of TensorFlow simplifying the user experience when designing and
working with neural networks.

A Keras model is understood as a sequence of modules that can be joined toget-
her almost without restrictions. In particular, neural layers, cost functions, optimizers,
initialization schemes, activation functions and regularization schemes are standalone

modules that can be combined to create new models.

2.2.3. Apache Spark

Spark [Zaharia et al., 2010] [Zaharia et al., 2012] is a distributed computation fra-
mework that supports applications that reuse a working set across multiple parallel
operations while retaining scalability and fault tolerance of MapReduce.

Spark introduced Resilient Distributed Datasets (RDD) that are read-only collection
of objects partitioned across a set of machines that can be rebuilt if a partition is lost.
Once an RDD is generated with the working data, two kinds of operations can be made,

transformations and actions. When an RDD is transformed, a new modified RDD based

2.2. DISTRIBUTED AND PARALLEL COMPUTATIONAL FRAMEWORKS 13

on the original one is generated. Actions consist on operations over an RDD to obtain
a result value that depends on the kind of action.

Since RDD can only be transformed and the resultant RDD depends on the previous
one, if a partition is lost, the RDD has enough information about how it was derived
from other RDDs to be able to rebuild just that partition.

Worker
T _
SParkc'mte"t ‘. e Ma"ager
__ _J
Worker

Figure 2.5: Spark Architecture

Spark architecture [Karau et al., 2015] automatically manages the distribution of
the computation allowing users to only worry about the transformations that need to
be done to datasets. Developers write a driver program using the SparkContext class.
This driver is the master node and splits the application into tasks and schedules them
to run on executors. It runs the cluster manager that communicates with the workers
coordinating them for the execution of tasks. The workers are the compute nodes in
Spark, they are Spark instances that run the executors. The executors are responsible
for running the parallelized tasks.

Spark provides a standalone mode that allows developers to replicate this architec-
ture on a single machine to test the basic features of Spark distributed computation
having in mind that Spark relies on hardware scalability.

The use of RDD result in Spark is outperforming Hadoop MapReduce 10x in itera-
tive Machine Learning jobs and can be used to interactively query a large dataset with

sub-second response time.

Chapter 3

State of the art

To follow the better path, we research the previous work on the field and we sum-

marize the most promising works that introduces key aspects to solve the problem.

Deep learning refers to Machine Learning algorithms that work with artificial neural
deep networks. The general idea presented in the brief introduction to Machine Lear-
ning, can also be applied. Algorithms implement an objective function that has to be
minimized in order to make predictions based on the learning data. There is a need
to optimize the training algorithms used in this networks and a promising path comes
with distributed computing.

The motivation for the search of distributed optimization solutions that scale up the
training of deep networks is the observation that the scale of deep learning, according
to the number of training examples, the number of model parameters, or both, can
drastically improve ultimate classification accuracy.

The use of GPUs was a significant advance but has some limitations such as the
small training speed-up when working with training sets that are larger than GPU
memory or the need to reduce data and parameters in order to avoid bottlenecking in
CPU-to-GPU transfers. These constrains make this option not optimal for large scale
problems, with large number of examples and dimensions.

Another approach to the problem revolves around distributed computing using large-
scale clusters of machines. One of the early references was presented in [Dean et al.,

2012] as DistBelief, a software framework that enables model and data parallelism

14

15

within a machine via multithreading and across machines via message passing. With
this framework two main findings were reported. The distributed optimization approach
implemented can greatly accelerate the training of modestly sized models, and on the
other hand it can train models that are larger than could be contemplated otherwise.
Each statement was supported with a use case, for the first one, a cluster of machines
was used to train a modestly sized speech model to the same classification accuracy in
1/10th of the time required with a GPU. On the other hand, the framework was used
to train a large network of more than 1 billion parameters that allowed to drastically
improve performance in computer vision.

This approach looks for a way of implementing distributed optimization that allows
the use of a cluster of machines asynchronously without requiring that the problem be
either convex or sparse. The focus is to scale deep learning techniques to train very large
models, combining model parallelism with clever distributed optimization techniques
that leverage data parallelism.

Model parallelism is supported in the way that the user may partition large models
for neural networks across several machines, while the framework automatically mana-
ges communication, synchronization and data transfer between machines. Models with
large number of parameters or high computational costs tend to benefit from access to

more CPUs or memory to the point that communication costs dominate.

— i <
= a
= =
g)
> N
I""'}: 3
Q]
£ S
=l =
& >
b N

Figure 3.1: Example of model parallelism from [Dean et al., 2012]

Models with local connectivity structures as the one shown in the figure 3.1 benefit

more from extensive distribution given their lower communication requirements. Only

16 CHAPTER 3. STATE OF THE ART

those nodes with edges that cross partitions will need to have their state transmitted
between machines and even if a node has multiples edges crossing, the state is only sent
once. On each machine, the computation for individual nodes will be parallelized across
all available CPU cores. Combining it with distributed optimization algorithms that
use multiple replicas of the entire model is possible to achieve significant reductions in
overall training times.

In order to train such large models in a reasonable amount of time, another level
of parallelism that distributes training across multiple model instances is introduced.
Two large scale distributed optimizations are compared. Both leverage the concept of
a centralized parameter server sharded across many machines and take advantage of
distributed computing. Each shard of the parameter server is responsible for storing
and updating a reduced amount of the parameters. But most importantly, both met-
hods tolerate variance in the processing speed of different replicas avoiding idle waiting
times in the faster ones. The general idea is to simultaneously process distinct training

examples and periodically combine results.

Parameter Server 'V =W "?ﬂw Parameter Server

Cocooog |-=—-0000000

o 11\ |l N\
e

e 00 100 100
=590 83 B9 |*~D0 od oo
s I e R

Data
Data

Shards
Figure 3.2: Left: Downpour SGD. Right: Sandblaster L-BFGS. From [Dean et al., 2012]

The first optimization procedure, named Downpour SGD, works with Stochastic
Gradient Descent(SGD), probably the most common algorithm used to train deep neu-
ral networks. The traditional formulation for this algorithm is sequential making it
impractical when working with large amount of data. The variation developed for this
algorithm that allows it to be applied to large data sets, consists on dividing training
data into subsets and running a copy of the model on each of them as it can be seen in

3.2. Each model communicates updates through a centralized parameter server which

17

keeps the current state of all parameters for the model. Each model replica asks the
parameter server service for an updated copy of its parameters, then it processes a
batch of data to compute the gradient and send it back to the parameter server which

applies the gradient to the current value of the parameters.

The second procedure looks forward to apply batch methods to large models and
large datasets. This procedure uses a coordinator process, represented in the figure 3.2,
where the core of the L-BFGS optimization algorithm resides, and for that the pro-
cedure gets the name Sandblaster L-BFGS. This mentioned coordinator process issues
commands from a small set of operations that can be performed on each parameter ser-
ver shard independently, with the results being stored locally on the same shard. This
allows running large models with billions of parameters without incurring the overhead
of sending all the parameters and gradients to a single server. To avoid waiting for the
slower machines, the load is balanced in the following way. The coordinator assigns
each model a small portion of the work, much smaller than the batch, whenever they
are free, letting faster model replicas do more work than slower ones, without the need
to wait for them. In this procedure workers only fetch parameters at the beginning of
the batch, when they have been updated by the coordinator, and only send gradients

every few completed portions of the batch.

These optimization procedures were evaluated by applying them to the use cases
mentioned before, speech recognition and visual object recognition. After studying the
results, the conclusion reached was that Downpour SDG was dominant when working
with a computational budget meanwhile Sandblaster L-BFGS and its more efficient use
of network bandwidth enables it to scale to a larger number of concurrent cores for

training a single model.

This work used the concept of the parameter server to manage communication of
parameters. This concept has been developed further in later works. For example, in
[Li et al., 2014] another parameter server framework for Machine Learning problems
is proposed. In this elaboration, both data and workloads are distributed over worker
nodes, while the server nodes maintain globally shared parameters, represented as dense
or sparse vectors and matrices. When large models are shared globally by all worker

nodes which must frequently access the shared parameters as they perform computation

18 CHAPTER 3. STATE OF THE ART

to refine the model, three challenges are imposed. Accessing the parameter requires
an enormous amount of network bandwidth. Many Machine Learning algorithms are
sequential, resulting barriers that hurt performance when the cost of synchronization

and machine latency is high. And third, at scale, fault tolerance is critical.

To overcome those challenges an open source implementation of a parameter server
that focus on the systems aspects of distributed inference is presented. It provides five
key features. Efficient communication optimized for Machine Learning tasks to reduce
network traffic and overhead. Flexible consistency models that allow the designer to ba-
lance algorithmic convergence rate and system efficiency to reduce synchronization cost
and latency. Elastic stability by adding new nodes without having to restart the run-
ning framework. Fault tolerance and durability by ensuring well defined behavior after
network partition and failure. And finally, ease of use, representing shared parameters

as vectors and matrices to facilitate development of Machine Learning applications.

Several algorithms were used to evaluate the work. The main findings confirm so-
me essential aspects of this framework. The efficacy of reduced network traffic and the
relaxed consistency model permitted the parameter server to outperform other solu-
tions when running Sparse Logistic Regression. For Latent Dirichlet Allocation, a topic
modeling algorithm, the parameter server showed a significant speedup in convergence

that also scales well when increasing the number of machines.

The idea of working with several replicas hosted on different workers that share
parameters in a parameter server was further developed until TensorFlow [Abadi et al.,
2015] was introduced. This open-source framework is the current state of Google’s
development and simplifies distributed Machine Learning to the public. It supplies with
prebuilt functions, algorithms and optimizers based on the ideas previously exposed that
provide a higher level working framework that is easier to use for less experimented

users.

Previously cited works rely on custom implementations. It is worth noting that
before this framework was released, there were attempts of solving the problem using
most common distributed computation frameworks.

Batch processing frameworks such as MapReduce or Spark have been gaining popu-

larity because of the great simplification they bring to large scale data analytics tasks.

19

And even though they are not designed to support the workloads of existing deep lear-
ning systems, some implementations, as for example [Moritz et al., 2015], introduce a

way for training deep networks using these frameworks, in this case, Spark.

The formulation comes with the name SparkNet and implements a scalable, dis-
tributed algorithm for training deep networks that lends itself to batch computation

frameworks and works well in bandwidth limited environments.

Since much of the difficulty of applying Machine Learning has to do with obtaining,
cleaning and processing data, training models with batch frameworks benefits from
the existing data processing pipelines that have been engineered in todays distributed
computational environments. Moreover, this approach allows data to be kept in memory
from start to finish avoiding writing to disk betwee