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ABSTRACT

Because of increasing antimicrobial resistance and the shortage of new antibiotics, there is a growing need to
optimize the use of old and new antibiotics. Modelling of the pharmacokinetic/pharmacodynamic (PK/PD)
characteristics of antibiotics can support the optimization of dosing regimens. Antimicrobial efficacy is de-
termined by susceptibility of the drug to the microorganism and exposure to the drug, which relies on the PK and
the dose. Population PK models describe relationships between patients characteristics and drug exposure. This
article highlights three clinical applications of these models applied to antibiotics: 1) dosing evaluation of old
antibiotics, 2) setting clinical breakpoints and 3) dosing individualization using therapeutic drug monitoring
(TDM). For each clinical application, challenges regarding interpretation are discussed. An important challenge
is to improve the understanding of the interpretation of modelling results for good implementation of the dosing
recommendations, clinical breakpoints and TDM advices. Therefore, also background information on PK/PD
principles and approaches to analyse PK/PD data are provided.

Population pharmacokinetics
PK/PD

Therapeutic drug monitoring
Individualized dosing

1. Introduction

Increasing antimicrobial resistance and the shortage of new anti-
biotics have emphasized the importance of optimizing dosing regimens
of old and new antibiotics in order to improve clinical outcomes of
infections [1]. Modelling of the pharmacokinetic and pharmacody-
namic (PK/PD) characteristics of antibiotics can support the optimiza-
tion of dosing regimens. PK/PD of antibiotics describe the relationship
between efficacy, the in vitro susceptibility of a drug to the micro-
organism (usually expressed as MIC, minimal inhibitory concentration)
and the in vivo exposure to the drug, which relies on the PK and the dose
(Fig. 1) [1]. From this relationship follows that if the MIC is known, the
microbiological and clinical outcome of treatment is determined by the
individual PK profile and dose. To predict that exposure, population PK
models can and are being used. The quality of the model used will
determine the value of the estimated exposure.

During new drug development, population PK models of antibiotics
are recommended to use for optimizing dosing regimens [2]. Popula-
tion PK models are also used to improve dosing regimens of old anti-
biotics in current use and to individualize treatment in the clinical
setting. Many currently used antibiotics were developed and approved
decades ago when PK/PD principles were largely unknown and so-
phisticated population PK modelling techniques did not exist [3].
Nowadays, some of these old antibiotics are studied again and an in-
creasing number of population PK models are published with new
dosing recommendations for specific populations.

Sufficient understanding of the interpretation of modelling results is
essential for good implementation of these dosing recommendations.
Therefore, this article provides background information on the PK/PD
principles of antibiotics (Section 2) and the different approaches of
analyzing PK/PD data (Section 3) with the objective to understand the
published population PK models and their clinical applications. Section
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Fig. 1. Relationship between MIC, PK, dose and drug effects.

4 discusses the clinical applications of population PK models of anti-
biotics (dosing evaluation of old antibiotics, setting clinical MIC
breakpoints and therapeutic drug monitoring) including challenges
regarding the interpretation of modelling results.

2. PK/PD principles of antibiotics
2.1. PK/PD indices

PK/PD indices describe exposure-response relationships. A PK/PD
index represents the relationship between a PK measure of exposure to
the antibacterial agents (such as AUC, area under the concentration-
time curve, or Cn.y, maximal concentration) and a PD measure of
bacterial susceptibility to the drug (usually the MIC).

Only the non-protein-bound fraction of an antibiotic is micro-
biologically active and can penetrate into the extravascular space [4].
Therefore, PK/PD indices are based on unbound concentrations.

For each antibiotic, different PK/PD indices (such as AUC/MIC,
Cmax/MIC and T > MIC, Fig. 2) are tested in preclinical studies to
identify which PK/PD index is most likely to be associated with effi-
cacy. PK/PD indices are different for each antibacterial class [5]. For
example, the PK/PD index of beta-lactams is the percentage of the
dosing interval that the unbound (free) antibiotic concentration is
above the MIC (%fT > MIC) [5] and the PK/PD index of vancomycin is
fAUCo.24/MIC [6].

2.2. PK/PD targets

The PK/PD target is the minimal PK/PD index value that ensures a
high probability of successful treatment [1]. There is no unique PK/PD
target value per antibiotic. PK/PD target values vary between the

Concentration

Time

Fig. 2. Concentration-time curve showing the pharmacokinetic parameters
Cmax (maximal concentration) and AUC (shaded area) and the PK/PD index
Time > MIC.

chosen endpoints such as stasis, maximal kill or resistance suppression
(for preclinical studies) and microbiological or clinical cure (for clinical
studies) [7,8].

To attain a specific PK/PD target, the exposure of the micro-
organism to the antibacterial agent needs to be adequate. This exposure
is dependent on the dose and PK properties of the drug.

2.2.1. Challenge: PK/PD target values

The optimal PK/PD target value is still not clearly defined for all
antibiotics [9], in part because this depends on its clinical indication or
use. For example, for beta-lactam antibiotics, used targets vary between
40-100% fT > MIC and 50-100% fT > 4xMIC [7,10,11]. Currently,
there is a trend towards the use of more conservative targets for criti-
cally ill patients than for the less critically ill. However, it may be
possible that this assumption is the consequence of variation in MIC
measurements [12]. More research in this area is clearly required. It is
also important to realize that preclinical derived PK/PD target values
differ from clinical derived values in critically ill patients [7].

2.2.2. Challenge: protein binding

PK/PD indices and targets are (almost) always defined as free (un-
bound) concentrations whereas many assays measure total (unbound
and protein bound) concentrations [4,13]. However, protein binding is
often highly variable and hypoalbuminemia occurs frequently in criti-
cally ill patients [14,15], which might lead to unreliable outcomes if a
free concentration is calculated using a literature value for protein
binding. In addition, protein binding can be concentration dependent
and even nonlinear [16-18].

2.2.3. Challenge: site of measurement

Most PK/PD targets are based on blood levels. However, other body
sites may be important as well, although the interpretation for these
body sites still remains uncertain [2]. If there is a good correlation
between plasma levels and body site levels this is not a major problem,
as this is just a shift in target values. If the correlation is less predictable
this may become a major issue [19]. For instance in the very obese
patients, tissue concentrations can be much lower than expected [20].

2.3. Clinical breakpoints

Information about the PK/PD target, PK characteristics, exposure,
variability and dosing regimens is needed to set clinical breakpoints.
Clinical breakpoints are MICs that define microorganisms as suscep-
tible, intermediate or resistant to specific antibiotics [21]. Clinical
breakpoints determine the antibacterial choice during empirical and
culture-driven therapy.



F. de Velde et al.

Pharmacological Research 134 (2018) 280-288

Non-compartmental
(software examples:
Phoenix WinNonLin, PKSolver)

Concentration

Individual PK methods

Time ]?
Compartmental §
(software examples: ;,
Phoenix WinNonLin, PKSolver)
Time [ Time b

PK analyses

Population PK methods

Parametric Maximum likelihood
\\\\\\\\ (software examples: Monolix,
g “\\“\\\ NONMEM, Phoenix NLME)
Al
\}“‘\\\\\\“\\\\‘ : >
v = Ke [e] Bayesian

(software examples: MWPHARM
KinPop, Pmetrics/ITB)

Concentration

Nonparametric Maximum likelihood

(software example: Pmetrics/NPAG)

Bayesian

(currently not available as a software
package)

Fig. 3. Overview of PK analysis methods. a) Non-compartmental analysis: connection of individual concentrations by linear interpolation; b) and ¢) Compartmental
analysis: fitting of individual concentrations into a compartmental model equation (b: linear y-axis, oral administration, 1 distribution compartment. c: logarithmic y-
axis, intravenous administration, 2 distribution compartments); d) Population PK data; e) Parametric and f) Nonparametric analysis of population PK data with 2
subpopulations of slow (low Ke, elimination constant) and fast (high Ke) metabolizers. The parametric method assumes that the data are normally distributed
whereas the nonparametric method identifies the 2 subpopulations. e) and f) Reprinted with permission of the Laboratory of Applied Pharmacokinetics [36].

3. PK analyses and simulations

PK describes the behaviour of drugs and their metabolites in the
body in terms of absorption, distribution, metabolism and elimination.
Concentration-time courses are related to the dose received and subject
characteristics. PK analysis methods can be distinguished between in-
dividual (paragraph 3.1) and population approaches (3.2), which can
be further classified as parametric, nonparametric, maximum likelihood
and Bayesian methods (Fig. 3).

Population PK models can be used to perform simulations (3.3) to
evaluate models (internal or external validation) and dosing regimens.
For the latter purpose, the probability of target attainment (PTA, 3.3.1)
can be calculated.

3.1. Individual PK methods

Individual PK methods analyse concentration-time courses per in-
dividual subject. Examples of individual PK methods are the non-
compartmental analysis and the standard-two-stage method.

Non-compartmental analysis (NCA) is the simplest individual PK
method. NCA applies no model to the data but connects the observed
individual concentrations by linear interpolation.

The standard two-stage (STS) method fits the data of each in-
dividual separately into a compartmental model equation and then
combines individual parameter estimates to generate mean (popula-
tion) parameters and standard deviations [22].

Individual PK methods are relatively simple techniques and useful
to explore datasets and calculate PK measures as AUC and Cpax.
However, they don’t provide detailed information (e.g. covariates) on
variation of PK parameters in a population. Another disadvantage is
that these methods require intensive sampling. Examples of individual
PK software packages are Phoenix WinNonlin and PKSolver [23]. In
addition to NCA and/or STS methods, some of the individual PK
packages also offer population PK methods.
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3.2. Population PK methods

Population PK methods analyse concentration-time courses of a
population as a whole. During the modelling process, several models
with different numbers of compartments, types of elimination and
variability are evaluated. The final model provides mean population PK
parameters (e.g. volume of distribution, clearance) and describes
variability between subjects (inter-individual or between-subject
variability, BSV) and variability between the doses of an individual
subject (intra-individual or between-occasion variability, BOV). The
observed variability is explained by covariates (subject characteristics
as body weight, renal function or age). Residual variability (e.g. assay
variance or sampling uncertainties) is also taken in account [22,24].

Thorough model evaluation and validation is important to deliver a
robust and reliable model. Examples of model evaluation/validation
methods and techniques are objective functions based on likelihood
(e.g. AIC, Akaike Information Criterium), graphical plots, bootstrapping
to estimate parameter precision, simulation-based diagnostics (e.g.
VPC, Visual Predictive Check, or NPDE, Normalized Prediction
Distribution Error) and external validation, when the developed model
is applied to a new dataset [24,25].

Traditionally, population PK parameters were estimated by the
standard two-stage “individual” approach, which cannot describe and
explain the types of variability. More sophisticated population PK
methods involve the development of nonlinear mixed-effect models.
These models are called “nonlinear” because PK equations are non-
linear. “Mixed-effect” implies the description of fixed effects (which are
the same for each individual) and random (individual-specific) effects.

Population PK modelling methods can be statistically classified as
either parametric or nonparametric. The parametric and nonparametric
classifications can both be divided into maximum likelihood or
Bayesian approaches [26,27]. The different modelling approaches will
be briefly described here.
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Fig. 4. (a) PTA for various amoxicillin dosing regimens to reach the target 40%
fT > MIC for a range of MICs. Modified from [35]. (b) %fT > MIC displayed
as a function of the MIC for amoxicillin 250 mg q8h. Modified from [35].

3.2.1. Parametric maximum likelihood methods

Parametric maximum likelihood methods assume that the popula-
tion parameter distribution is known with unknown population para-
meters [27]. These methods estimate the set of parameters that max-
imize the joint likelihood of observations. Most of the current software
packages for population PK modelling are parametric maximum like-
lihood methods (e.g. Monolix, NONMEM and Phoenix NLME). Each
package offers one or more mathematic algorithms to facilitate max-
imum likelihood modelling, such as FOCE, SAEM or QRPEM [28].

3.2.2. Nonparametric maximum likelihood methods

In contrast to parametric methods, nonparametric methods make no
assumption about the shapes of the underlying parameter distributions,
which is theoretically an advantage to detect subpopulations.
Nonparametric methods use an exact likelihood function while para-
metric methods use an approximation. A drawback of nonparametric
methods is that confidence intervals about parameter estimates are not
easily determined [26,27]. An example of a nonparametric maximum
likelihood method is the NPAG algorithm in the software package
Pmetrics (former MM-USCPACK / USC*PACK, previously based on the
NPEM algorithm) [29].

3.2.3. Bayesian methods

The parametric iterative two-stage Bayesian (ITB) method uses
mean parameter values and their standard deviations (obtained from a
STS method or any reasonable initial guess) as Bayesian priors.
Subsequently, individual patient data are examined to obtain Bayesian
posterior parameter values based on the maximum a posteriori prob-
ability (MAP) Bayesian procedure. The mean parameter values can
again be calculated and used as Bayesian priors to obtain new Bayesian
posterior values. This iterative process is repeated until the difference
between population and estimated values reaches a minimum value
[30,31]. Examples of software packages including the ITB method are
the KinPop module in MWPHARM [31] and the ITB algorithm in
Pmetrics, which is mainly used to estimate parameter ranges to be
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passed to NPAG [29].
A nonparametric Bayesian approach is currently not available in a
software package [26].

3.2.4. Challenges: population PK approaches

It is still unknown which population PK approach (e.g. parametric
vs nonparametric) is most suitable for specific research questions. More
studies comparing both methods are warranted.

A drawback of many modelling studies is that the sample size is
usually small and that sample size calculation is lacking [7,32].

3.3. Simulations

For clinical applications, simulations using population PK models
are generally performed for two purposes: 1) model evaluation and 2)
dosing evaluation [22]. For model evaluation, concentration-time data
are simulated and compared with a subset of the original dataset (in-
ternal validation) or new data (external validation). For dosing eva-
luation, concentration-time data are simulated for several dosing regi-
mens to study the exposure and probability of target attainment (PTA,
see 3.3.1), for example in specific subpopulations such as ICU-patients
or patients with renal impairment [22,33], or during the process of
setting breakpoints [21].

Stochastic simulating from population PK models with fixed-effect
and random-effect parameters is more complex than non-stochastic si-
mulating from simple fixed-effect models. The stochastic Monte Carlo
simulation (MCS) can handle random variability and is therefore the
most used simulation type for population PK models [33,34].

3.3.1. Probability of target attainment (PTA)

MCS based on population PK models can be used to calculate the
PTA of specific PK/PD targets for several dosing regimens and a range
of MICs [21,33]. Different methods are used to present the PTA results.
One option is to plot (Fig. 4a) or tabulate the PTA of a specific PK/PD
target as a function of the MIC. Several dosing regimens can be included
in such a graph (or table). A disadvantage of this approach is that only
one PK/PD target value can be included per graph. Since the optimal
PK/PD target values are not defined for all antibiotics and indications
(see 2.2.1), it may be useful to display several target values in one
graph. The latter is possible in the graph shown in Fig. 4b: the PK/PD
target (here: %fT > MIC) is plotted as a function of the MIC for a
specific dosing regimen. By including the mean (or median) of the
population and the confidence interval (CI) estimations (percentiles) in
the graph, the PTA’s for several PK/PD target values can be read. The
lower boundary of a CI of 95% corresponds to a PTA of 97.5%. For
example, in Fig. 4b, the PTA for 40% fT > MIC is 97.5% for 250 mg
q8h and an MIC of 0.25 mg/L. EUCAST (European committee on anti-
microbial susceptibility testing) uses such graphs to determine break-
points [21].

4. Clinical applications of population PK models

Population PK models are not only used during new drug develop-
ment [2], but also have various clinical applications after the drug
becomes available to the market. From the perspective of antibiotics,
three main clinical applications can be specified: 1) dosing evaluation
of old antibiotics, 2) setting clinical breakpoints and 3) therapeutic drug
monitoring. The applications will be described in paragraphs 4.1-4.3
including the most important challenges regarding their clinical inter-
pretation (Table 1).

4.1. Dosing evaluation of old antibiotics
As described in paragraph 3.3, simulations using population PK

models can be performed to evaluate dosing regimens and subsequently
predict PTAs for different dosing regimens and MICs. Dosing
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Table 1

Challenges per clinical application of population PK models. The degree of
importance is scored with + + (highly important), + (important), - (not ap-
plicable). The most important challenges are further clarified in the text (the
respective paragraph is indicated between brackets).

Challenges Clinical applications of population PK models
1. Dosing 2. Setting 3. Therapeutic
evaluation of old  clinical drug monitoring
antibiotics breakpoints
PK/PD targets ++ (2.2.1, ++ (2.2.1) ++ (2.2.1)
4.1.2)
Protein binding + (2.2.2) ++ (2.2.2) ++ (2.2.2)
Site of measurement + (2.2.3) + (2.2.3) + (2.2.3)
Clinical validation ++ (4.1.1) + ++ (4.3.9)
PTA interpretation ++ (4.1.3) + + -
Population PK model + + + + (4.3.5)
selection
Assay availability + + + + (4.3.6)
MIC accuracy and + + ++ (4.3.7)

variation

recommendations based on such PTA simulations are increasingly
published by several research groups [37-42]. Although these pub-
lications are filling knowledge gaps for dosing in specific subgroups,
their recommendations should be carefully considered because clinical
validation is often lacking (4.4.1) and the choice of the PK/PD target
value (4.4.2) and PTA acceptance levels (4.4.3) might be questionable.
The latter does not belong to the EUCAST rationale documents for
which an exhaustive procedure is published [21].

4.1.1. Challenge: clinical validation

The most important concern is that clinical validation of the new
dosing recommendations is often lacking. It is desirable that future
clinical validation studies not only focus on target achievement, but
also relate the exposure to clinical outcomes. A recent review about the
PK/PD of gentamicin and other aminoglycosides [32] found that only 1
study prospectively evaluated model-based dosing recommendations to
see what exposure actually was achieved in clinically practice [43].

Another example of a dosing recommendation which was hardly
prospectively validated, is ciprofloxacin, which is illustrated in para-
graph 4.1.1.1.

4.1.1.1. Example: ciprofloxacin. Ciprofloxacin is a frequently prescribed
fluoroquinolone. The pharmacodynamic target of AUC0-24/
MIC > 125 (or fAUC0-24/MIC > 100) for Pseudomonas aeruginosa is
well established in in vitro, animal and clinical studies [44-46].
According to the manufacturer, for most indications, the
recommended dosing regimen of intravenous ciprofloxacin is 400 mg
twice or three times daily in patients with normal renal function
[47,48], which implies that the dosing frequency can be chosen by
the prescribing physician. However, an increasing number of
simulation studies using population PK models show that a dosing
regimen of 1200 mg/day is necessary to attain the pharmacodynamic
target of AUC0-24/MIC > 125 (or 100 for unbound drug) for Gram-
negative pathogens with an MIC = 0.5 mg/L [46,49-52].

A major drawback of these studies is that the dosing re-
commendations of 400 mg q8h for MICs = 0.5mg/L were based on
simulations and not prospectively validated. The majority of the study
population received a daily dose of maximally 800 mg/day.

Despite the fact that these studies resulted in the same conclusion,
the study designs were remarkable different. Some study populations
were only ICU patients [49,51] while other study populations also in-
cluded general ward patients [46,50,52]. Some studies reduced the
dose in patients with impaired renal function, each using a different
dosing algorithm [46,50,52], while in other studies dose reduction was
not applied [49,51]. Translation of these recommendations to clinical
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practice is therefore difficult. Even the EMA and FDA provide different
dosing recommendations for ciprofloxacin in patients with impaired
renal function [47,53].

4.1.2. Challenge: PK/PD targets

As discussed in 2.2.1, the PK/PD targets for some antibiotics and
populations are still unclear [3]. Some authors use two or more targets
and give different dosing recommendations depending on the target
[37]. The previously mentioned review about gentamicin [32] showed
that the chosen targets in 7 simulation studies in adults varied between
Cmax = 8 IIlg/L, Cmax > lomg/L7 Cmax =22 mg/L’ Cmax/MIC > 8’
Cumax/MIC = 10, AUC,, 70-120 mg*h/L and AUC,g > 140 mg*h/L.

4.1.3. Challenge: PTA interpretation

Another problem is that PTA interpretation is not standardized.
Used PTA acceptance levels vary between 90-100% and are sometimes
not even mentioned. However, it is important to realize that a PTA of
90% means that 10% of the patients do not attain the target for a
specific MIC, which implicates that the probability for successful
treatment is diminished. For new antimicrobials, the EMA indicates a
PTA of 90% for dose selection [2].

The chosen MICs for the dosing recommendations should always be
weighed against the internationally published MIC clinical breakpoints.
EUCAST uses the MIC values based on PTA’s of 97.5% and 99% for
setting breakpoints [21].

4.2. Setting clinical breakpoints

The EUCAST provides species-related and PK/PD (non-species re-
lated) clinical breakpoints. The EUCAST procedure for setting PK/PD
breakpoints includes MCS using population PK models to estimate ex-
posure of an antimicrobial agent in the target patient population for
commonly used dosing regimens [21]. Following the simulations, the
PTA is determined for different PK/PD targets. Subsequently, the PK/
PD target is plotted as a function of the MIC for the mean of the po-
pulation and 95% and 99% CI estimates (corresponding to 97.5% and
99.5% PTA). EUCAST uses the MIC values resulting from both PTAs to
determine a PK/PD breakpoint [21].

4.3. Therapeutic drug monitoring (TDM)

Therapeutic drug monitoring is the measurement of drug con-
centrations to optimize dosing regimens for individual patients with the
objective to maximize efficacy and minimize toxicity [54]. Criteria for a
drug to be appropriate for TDM are: large between-subject variability,
small between-occasion variability, defined concentration-effect re-
lationship, small therapeutic range, available analysis method and no
clearly defined clinical parameter that allows dose adjustments (e.g.
glucose or INR levels) [55].

4.3.1. TDM approaches

TDM can be applied by evaluating whether the drug concentrations
are in the therapeutic range, but in case of deviating concentrations, or
when the therapeutic target is not just a concentration but e.g. an AUC,
it is difficult to provide a dosing recommendation manually. A more
robust approach to individualize dosing by TDM is the maximum a
posteriori probability (MAP) Bayesian fitting procedure [30] (see
3.2.3), which is implemented in various TDM software programs [7,56]
(see 4.3.2). The library of these TDM software tools include population
parameters, SD’s and covariates based on population PK models.

4.3.2. TDM software programs

Several TDM computer tools are available. In 2012, a review of 12
software tools was published [56]; they differ in the number of drugs
offered in the library (from 2 to 180). Eight of these programs provide
the option to add new drug models. Other differences are the
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availability of MAP Bayesian dosage adaptation (10/12 tools, see 3.2.3
for background information) and the proposal of a priori dosage regi-
mens based on certain covariates (9/12 tools). The authors of the re-
view recommend that most TDM software tools can be improved, more
specifically the interface, user friendliness, data storage capability and
report generation.

4.3.3. TDM in clinical practice

TDM is applied to many antibiotic classes. For aminoglycosides (e.g.
gentamicin, tobramycin and amikacin) and glycopeptides (e.g. vanco-
mycin and teicoplanin), TDM has become standard clinical practice to
balance efficacy and toxicity [57,58]. For other groups, such as beta-
lactams and fluoroquinolones, TDM is not yet commonly employed
[57,58]. The most important reasons that TDM is not commonly used
for all antibiotic classes are unclear therapeutic targets (see 2.2.1), the
lack of clinical outcome studies (4.3.4) and the unavailability of an
assay in the hospital (4.3.6) [57-63].

4.3.4. Challenge: clinical validation

Despite the fact that TDM is used extensively in clinical practice,
there is a paucity of prospective studies on the influence of TDM on
clinical outcomes [57,58,61-63]. Also for antibiotics which are already
in TDM programs, prospective studies are sparse [54].

Examples of prospective studies are highlighted in the next para-
graph 4.3.4.1.

4.3.4.1. Examples: aminoglycosides, vancomycin, fluoroquinolones, beta-
lactams. Two prospective controlled studies about aminoglycoside
TDM using Bayesian software showed that TDM significantly reduced
nephrotoxicity, hospitalization and costs [64,65]. However, these two
studies were performed before the introduction of extended-interval
dosing of aminoglycosides and might not reflect the current practice.

For vancomycin, two prospective controlled studies showed that
TDM significantly reduced nephrotoxicity [66,67].

A prospective controlled study including amikacin, ciprofloxacin,
levofloxacin, ceftazidime and cefotaxime showed that TDM improved
the probability of a good clinical outcome and pathogen eradication

[68]. In this study, Bayesian software was used only for amikacin and
the two fluoroquinolones, but not for the two beta-lactams [68].
Another prospective beta-lactam TDM study didn’t use Bayesian
software to adjust dosing, but manually adjusted the frequency or in-
fusion time [69]. Dosing was adjusted if the trough or steady state
unbound concentration was below 4-5x MIC or above 10x MIC, which
happened in 74.2% of the patients [69]. A main drawback of this study
was the calculation of free concentrations using measured total con-
centrations and literature values for protein binding, while protein
binding is often highly variable in critically ill patients [14]. Another
limitation was the unavailability of MICs for a major part of the study
population. By using ECOFFs (EUCAST epidemiological cut-off value)
when a pathogen was isolated but no MIC available, or a MIC based on
local epidemiology information of a potential pathogen (when no pa-
thogen was isolated), a worst case scenario was applied and dosing
adjustments might have been unnecessary [12]. In 2018, a prospective
Dutch study evaluating a Bayesian TDM software program of beta-lac-
tams  will begin (the DIABOLO study, https://www.
clinicaltrialsregister.eu/ctr-search/trial/2017-004677-14/NL).

4.3.5. Challenge: population PK model selection

An important aspect of reliable TDM programs is the choice of a
population PK model which must be suitable for the patient population
for which TDM is performed.

Neef and colleagues presented a case of vancomycin MAP Bayesian
adjustment where 4 different population PK models resulted in 4
strikingly different dosing schemes recommendations [70], see the ex-
ample in 4.3.5.1 below.

Another study evaluated different population PK models for ami-
kacin and also showed significant differences in model performance
(results not shown here) [71].

4.3.5.1. Example: vancomycin. This case [70] describes a 3-week-old
neonate (3.6kg, 50cm, serum creatinine 25pmol/L) receiving
vancomycin 70 mg every 12h with an infusion duration of 2h. Two
levels were drawn before and after the third dose. Fig. 5 shows the TDM
performance of 4 models (presented in Table 2) for 4 tested dosing


https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-004677-14/NL
https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-004677-14/NL
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Table 2
PK models of vancomycin, used in the TDM software presented in Fig. 5 [70].
Model Kelm (h™") Kelr (h~" (ml/min) ") V1 (L/kg) K12 (h™Y) K21 (h™h)
A: Neonate < 15 PNA 0.457 = 0.022 - 0.46 = 0.23 1.5 = 0.75 26 £ 1.3
B: Neonate > 15 PNA 0.053 + 0.025 0.003 = 0.021 0.41 = 0.21 1.88 + 1.21 3.6 = 2.0
C: KKGT pop model 0.01429 + 0.00286 0.00327 + 0.00109 0.21 * 0.042 1.12 + 0.028 0.48 = 0.12
D: Neonate AHZ 0.0086 =+ 0.0009 0.0022 *= 0.0002 0.633 = 0.060 1.4357 + 0.1400 2.5619 * 0.2500

Kelm: metabolic elimination rate constant, Kelr: renal elimination rate constant, V1: volume of distribution central compartment, K12: distribution rate constant from
central to peripheral compartment, K21: distribution rate constant from peripheral to central compartment, PNA: postnatal age (days), KKGT: Dutch Association for
Quality Assessment in TDM and Clinical Toxicology, AHZ: Central Pharmacy of The Hague Hospitals. Reprinted with permission from Therapeutic Drug Monitoring

[70].

regimens. It is clear that model D has the worst fit of the measured
levels. The other models have better fits, but model A predicts very high
levels, probably due to absence of clearance in the model parameters.
The conclusion of the authors is that model B best fit the data.

4.3.6. Challenge: assay availability

Obviously, the availability of an assay is a limiting condition for
TDM. However, the availability of assays differs per antibiotic and also
per hospital. Most hospitals have assays for aminoglycosides and van-
comycin [70], but assays for beta-lactams and fluoroquinolones are less
common [10,13]. Possible reasons preventing institutions to provide
TDM could be the absence of a prospective clinical outcome study or
the requirement of a chromatographic method instead of an im-
munoassay [10].

4.3.7. Challenge: MIC accuracy and variation

For dose adjustment of antibiotics based on TDM, both the measure
of the concentration of the drug itself and the MIC of the pathogen
responsible for the infection are necessary. However, most institutions
use a single MIC determination which is inappropriate and can poten-
tially cause underdosing of patients [12]. The accuracy and variation of
MIC measurements must be carefully considered during this process
[12].

5. Perspectives

The present review intended to provide background information on
the current clinical applications of population PK modelling of anti-
biotics. There is an abundance of published population PK models
which are used to evaluate dosing regimens, implemented in TDM
software programs or used to set clinical breakpoints. These applica-
tions can be helpful to optimize the efficacy-toxicity balance of anti-
biotics, but have some limitations and knowledge gaps for which future
research is needed.

5.1. PK/PD targets

More clarity about the optimal PK/PD target value of some anti-
biotics for specific clinical indications is required. Without a clear PK/
PD target value, dosing recommendations from modelling and simula-
tion studies are difficult to interpret and individualised dosing using
TDM is hard to implement.

5.2. Assays

Obviously, an assay to measure antibiotic concentrations is essential
to provide input for population PK models and to use them in clinical
practise. It is important to measure unbound concentrations of anti-
biotics with a large variability in protein binding. Currently, assays for
plasma concentrations are sufficient for clinical use because most cur-
rent PK/PD target values are based on the concentrations in the central
compartment, although the concentration at the infection site might
also be important. Research on this topic is ongoing.
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5.3. Population PK modelling and simulation

For reliable individual dosing recommendations in TDM programs
as well as general dosing recommendations for specific patient groups,
the choice of a population PK model suitable for that population is
crucial. The used PTA acceptance levels in published dosing re-
commendations should be carefully considered.

PBPK (Physiologically Based PK) modelling methods [63] and
joined clinical PK and PD modelling methods [61] are newer modelling
methods which need to be further explored.

5.4. Clinical validation

It is imperative that the beneficial effects of dosing individualisation
using TDM software be more prospectively studied. MIC accuracy and
variation should be carefully considered during this process [12].

5.5. Interpretation of population PK modelling studies

Little knowledge of PK/PD and modelling prevents a good under-
standing of dosing recommendations resulting from modelling and si-
mulation studies, clinical breakpoints and TDM. Therefore, good edu-
cation on these topics is essential to improve antibiotic dosing in
clinical practise.

6. Conclusions

Population PK models are extensively used in clinical practice to
optimize antibiotic dosing. However, more clarity about PK/PD targets
values, more clinical evaluation studies of model-based dosing re-
commendations and more clinical outcome studies of TDM are re-
quired.
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