
On the Use of Tunable Power Splitter for Simultaneous Wireless
Information and Power Transfer Receivers

Quddious, A., Abbasi, M. A. B., Haroon Tariq, . M., Antoniades, M. A., Vryonides, P., & Nikolaou, S. (2018). On
the Use of Tunable Power Splitter for Simultaneous Wireless Information and Power Transfer Receivers.
International Journal of Antennas and Propagation, 2018, [6183412]. DOI: 10.1155/2018/6183412

Published in:
International Journal of Antennas and Propagation

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Aug. 2018

https://pure.qub.ac.uk/portal/en/publications/on-the-use-of-tunable-power-splitter-for-simultaneous-wireless-information-and-power-transfer-receivers(ee8837d0-375e-43b0-875b-199cf431f8c6).html


Research Article
On the Use of Tunable Power Splitter for Simultaneous Wireless
Information and Power Transfer Receivers

Abdul Quddious ,1 Muhammad Ali Babar Abbasi ,2 Muhammad Haroon Tariq,1

Marco A. Antoniades,3 Photos Vryonides,1 and Symeon Nikolaou 1

1Department of Electrical Engineering, Frederick University, Nicosia, Cyprus
2Centre for Wireless Innovation (CWI), The Institute of Electronics, Communications and Information Technology (ECIT),
Queen's University Belfast, Belfast BT3 9DT, UK
3Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus

Correspondence should be addressed to Abdul Quddious; abdulquddious@gmail.com

Received 13 October 2017; Accepted 27 March 2018; Published 29 April 2018

Academic Editor: Ana Alejos

Copyright © 2018 Abdul Quddious et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The use of a tunable power splitter (PS) as a constituent component of a simultaneous wireless information and power transfer
(SWIPT) system is discussed. Two varactor diodes are used to achieve a tunable output power ratio P2 : P3 varying from 1 : 1 to
1 : 10 under good matching conditions. The SWIPT system that operates at 2.4GHz consists of a typical patch antenna,
cascaded with the tunable PS, and a voltage doubler rectifier. The constituent components were implemented and tested as
stand-alone devices and were subsequently combined in a measurement system using interconnectors. The effect of the tunable
PS was explored with respect to the SNR measurements on the port that is intended for the information decoding receiver and
the DC voltage measurements on the termination load of the rectifier that is connected directly on the energy harvesting port of
the tunable PS. A spectrum analyzer is used for the SNR measurements while the input power is controlled using a signal
generator. Both wireless power transmission and on-board measurements verify that the harvested energy can be maximized by
using the minimum SNR at the information decoding branch at the expense of DC power consumption required for the biasing
of the varactor diodes.

1. Introduction

Simultaneous wireless information and power transfer
(SWIPT) systems became appealing because of their pro-
spective in prolonging the lifetime of energy-constrained
wireless networks. Utilizing a radio signal to transfer energy
as well as information has the potential of providing signifi-
cant advantages to future communication systems, especially
for the mobile users. The idea of transmitting an energy and
information signal simultaneously was proposed for the first
time in [1], where the assumption that a (smart) receiver
would be able to harvest energy and decode the information
signal simultaneously was made. The assumption did not
have practical applications because energy harvesting circuits
did not have the capability of decoding an information signal;
therefore, two core solutions, namely, time switching and

power splitting, were proposed and studied in detail in the
following years [2]. The main difference between time
switching and power splitting is that with time switching,
the receiver performs either energy harvesting (EH) or
information decoding (ID) depending upon the precoder
timeslot allocation. On the other hand, with power splitting,
the RF signal received by an antenna is split into two signal
streams, and one stream leads to the EH unit while the other
one to the ID unit [3]. The applications of time switching and
power splitting systems have been studied with a number
of wireless systems mainly with orthogonal frequency divi-
sion multiplexing (OFDM) systems [4, 5], multiple-input
single-output (MISO) systems [6, 7], and multiple-input
multiple-output (MIMO) systems [8]. Power splitting and
time splitting approaches were studied on cooperative
networks, and their throughputs and outage probability were
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analyzed in [9]. In [10, 11], game theory approaches were
proposed for multiple source-destination pairs which com-
municate through their dedicated energy harvesting relays
and relayed multiuser cooperative network, respectively
(game theory approaches were proposed for a decode-
and-forward (DF) and relayed multiuser cooperative net-
work, resp.). In a more theoretical and mathematical
approach, power splitting and time switching methods
have been investigated and compared under different sce-
narios like the network-coded two-way networks in [12]
or the MIMO-ODFM relay networks [13] where power
splitting presented some advantages. In another occasion,
improved effective transmission rate was achieved using
hybrid protocols [14] utilizing a combination of the two
concepts. From a more practical perspective, SWIPT
systems with high-power on-demand electromagnetic
radiation have also been discussed to potentially charge
batteries of low-power sensor networks with high-energy
constraints, like implantable biomedical sensors and smart
wearable devices [15, 16], structure monitoring sensors
[17], remotely located wireless nodes [18], and so on. It
has been shown that the information transmission time
and the spectral efficiency of power splitting-based SWIPT
are better than the counterparts using time switching-
based SWIPT [11, 19]; however, the power loss associated
with microwave power splitting systems has not been ade-
quately discussed. The use of the Talbot effect for power
splitting that was presented in [20] has limited throughput
losses; nevertheless, it is difficult to be implemented for
SWIPT systems. Another study investigated the arbitrary-
shaped discrete input signals considering peak and average
power constraints and their impact on PS-SWIPT systems
[21, 22], while a nontrivial trade-off has been pointed out
between maximizing the information rate and maximizing
the power rate in a transmission signal [23]. With the ongoing
rapid interest in SWIPT systems, it is probable to segment
future 5G communication, which aims to connect most
devices in order to support the Internet of Everything (IoE).
The current manuscript discusses the implementation of a
tunable power splitter and its potential use for power splitting
SWIPT systems though extensive experimental testing. The
tunable power splitter (PS) uses two varactor diodes, and it
was tested as a constituent component for a SWIPT experi-
mental system. The experimental SWIPT system consists of
a microstrip patch antenna, the tunable PS, and a voltage dou-
bler rectifier. Three-port S parameter measurements indicated
that the proposed tunable PS could achieve wide K = (P2 :P3)
values ranging from 1 : 1 to 1 : 10 with good matching at the
three ports. The wide span of K values was exploited to use
the tunable PS as a constituent component in a SWIPT system
in an attempt to maximize the harvested energy while simulta-
neously maintaining the minimum acceptable SNR at the
information decoding receiver unit. Both wireless power mea-
surements and on-board measurements verified that a tunable
PS can control the received SNR at the information decoding
receiver, and at the same time the harvested energy level on
the EH unit, and therefore can potentially maximize the
harvested energy of a SWIPT system while maintaining
adequate SNR and the information decoder.

2. SWIPT Topology

There are different protocols for simultaneous wireless infor-
mation and power transfer (SWIPT) communications
depending on the preferred method for separating the
received signal: (a) time switching, for which the received
power is connected either to the ID unit or to the energy
harvesting (EH) unit; (b) spatial switching, for which a differ-
ent antenna is used for the ID and a different one for the EH
path; and (c) power splitting (PS), for which the single
antenna is connected to a power splitter (or a power divider)
and the two portions of the received power are directed to
either the ID receiver or the energy harvester. Probably, the
most popular method has been the use of a power splitter
(PS). While, depending on the channel conditions, an opti-
mum power splitting ratio can be theoretically calculated,
these conditions are rarely constant. Therefore, often this
ratio has to be changed for the SWIPT method to remain
optimum. The power splitting technique requires higher
receiver complexity and also the optimization of the power
splitting factor α; however, it achieves instantaneous wireless
and power transfer, as the signal received in just one time slot
is used for both information decoding and power transfer.
Therefore, it is more suitable for applications with critical
information/energy or delay constraints and closer to the
information theoretical optimum [15]. Generally and consid-
ering that nowadays receivers have very high sensitivity
(operate successfully for very low received signal power
levels), effective communications can be established with
fairly low signal to noise ratio (SNR). If the absolutely mini-
mum power portion is used for the ID, the remaining maxi-
mized power can be allocated to the EH path for the
rectification and exploitation of the RF input power. The
SWIPT concept using a power splitter (PS) can be seen in
the schematic representation of Figure 1. A typical system
consists of a single antenna connected directly to a 3-port
power splitter (or power divider). Port1 or the input port is
the RF input power port, and ports Port2 and Port3 are the

1 − 𝛼

𝛼

Power splitter

Harvesting

Rx
antenna

Information
decoding

Figure 1: Schematic diagram of a SWIPT receiver using a power
splitter (PS) component.

Figure 2: Implemented combination of the constituent modules for
a SWIPT receiver for testing measurements.
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output ports which are connected to either the EH unit or the
ID module. For the two output ports and their related subse-
quent components, the figures of merit are different. The EH
unit requires as large as possible power while the informa-
tion decoder requires a large signal to noise ratio (SNR).

For the assessment of a SWIPT receiver under different
power splitting conditions (different power ratios at the two
output ports), the combined module presented in Figure 2
was used. It was designed to operate at the popular 2.4GHz
band (used for WLAN applications), and it consists of a
microstrip-fed rectangular patch antenna, a PS module, and
a voltage doubler RF-to-DC rectifier. For SNR measure-
ments, a spectrum analyzer (Anritsu MS2668C) was con-
nected directly on one of the two output ports while the
second output port was connected directly to the rectifier.
The RF-to-DC rectifier was terminated with a 3.3 kΩ load,
and the rectified voltage VDC was measured across this
3.3 kΩ load. During testing, the receiver antenna and the rec-
tifier were kept the same, while different PS modules were
used. Figure 3 displays the three types of power splitters that
were used: a Wilkinson divider using microstrip lines of
different characteristic impedances, a divider with lumped
capacitors, and a tunable power splitter using two varactor
diodes. In order to investigate the effect of different power
ratios under different biasing conditions on the performance
of the SWIPT receiver, power splitters with different features
were used, and their results were compared with the results of
the tunable PS. S parameter measurements presented in a
subsequent section demonstrate that the tunable PS showed
a good response for six different output power ratio combina-
tions, namely, 1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 5, and 1 : 10. The tunable
PS achieved additional power ratios at the two output ports,
ranging from 1 : 16 (P2 :P3) up to 4 : 1 as they were measured
using a spectrum analyzer although with varying percentage
of loss. P2 is the RF power measured at Port2, and P3 is the RF
power measured at Port3.

3. RF-to-DC Rectifier

The voltage doubler topology, which is preferred for its sim-
plicity and fairly high efficiency, was used for the implementa-
tion of an RF-to-DC rectifier on a Rogers RO4003C substrate
with εr = 3 55 and substrate thickness of 0.508mm. The volt-
age doubler topology consists of two diodes and two capaci-
tors, and for the implemented prototype, two Skyworks
Schotkky diodes SMS7630-079LF were used while the

capacitor values were C01 = 150 pF and C02 = 150 pF.
Figure 4 presents the fabricated prototype, and its detailed
dimensions are listed in the caption. The most important
design feature of a rectifier intended for energy harvesting
is the high RF-to-DC efficiency calculated by (1) where Pin
and Pout are the input RF power and the output DC power
values in (W), respectively, and VDC is the voltage across
the load resistance RL.

η = Pout
Pin

= V2
DC/RL
Pin

1

Designing a high-performance voltage doubler rectifier is
a challenging task mainly because of the nonlinear nature of
the diodes used. The rectifier’s most important parameter is
the efficiency η that depends nonlinearly on the input power
Pin and on the termination load RL. The nonlinear depen-
dency of the efficiency with respect to the aforementioned
parameters is evident in the simulated results presented in
Figure 5. Within the scope of the current manuscript, the
design of the highest efficiency rectifier was not of paramount
importance since the rectifier was terminated with an indica-
tive termination load of 3.3 kΩ, and there was no subsequent
power management unit (PMU) which is usually necessary
in order to preserve the optimum load for maximum effi-
ciency conditions. On the other hand, good matching with
the 50Ω characteristic impedance of the preceding power
splitter was a strict requirement, and S parameter measure-
ments on the stand-alone device were taken to ensure the
good matching condition. The measured and simulated
reflection coefficient for the implemented rectifier is pre-
sented in Figure 6. For the S parameter and rectified voltage
measurements, the rectifier’s input port was directly

(a) (b) (c)

Figure 3: Implemented power splitters: (a) constant ratio-fixed characteristic impedances PS, (b) fixed lumped capacitor PS, and (c) tunable
PS using varactor diodes.

RL

wt3

ws2

wt2

lt3

C01 C02

lt2

ls1

ls2
Schottky diode:
SMS7630-079LF

lt1 wt1

ws1

Figure 4: Fabricated 2.4GHz rectifier. All length dimensions are
in mm: lt1 = 16.56, lt2 = 12.7, lt3 = 19.2, ls1 = 4, ls2 = 19.5,
wt1 = 1.18, wt2 = 0.59, wt3 = 1.18, ws1 = 1.76, ws2 = 0.79, RL = 3.3 kΩ,
C01 = 150 pF, and C02 = 150 pF.
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connected to an Agilent E8363B vector network analyzer
(VNA), and an unmodulated sine wave was used as the
RF input power. For the presented results in Figure 7,
the input power was varied from −20 to 10 dBm with a
step size of 5 dB. A digital multimeter (DMM) was used
for the measurement of the rectified DC voltage across
the selected termination load of 3.3 kΩ while the achieved
RF-to-DC efficiency was calculated from the set of DC
measurements using (1). The simulated and measured rec-
tified voltage and the RF-to-DC efficiency are presented in
Figures 7(a) and 7(b), respectively.

4. Tunable Power Splitter (PS)

4.1. Tunable Power Splitter Implementation. As mentioned in
Section 2, three different types of power splitters (PS) were
used for the experiments on the implemented combined
module (Figure 2) SWIPT receiver. As a first step, a conven-
tional Wilkinson divider using microstrip technology was
implemented. The well-known topology is limited to small
output ratios, (K = (P2 :P3)< 4), because of the impractical
narrow widths related with the required high-characteristic
impedance lines. Therefore, the use of lumped capacitors
was introduced. For the implemented lumped capacitor PS
topology (simulation model presented in Figure 8(a)), one
capacitor was connected on one of the legs of the PS and
the second one was connected along the bridge that connects
the two legs. Based on this topology, the implementation of a
tunable PS with two varactor diodes instead of the two
lumped capacitors was achieved. For the DC biasing of the
two varactors, DC biasing lines were needed, and because
of the high DC voltage, three DC-blocking capacitors were
integrated along each one of the three transmission lines that
form the 3-port power splitter. Two more were used at the
connection point of the biasing lines with the microstrip
lines. Additionally, on the feed lines, RF choke inductors
were used to prevent the RF signals from leaking into the feed

lines. The simulated tunable PS is presented in Figure 8(b),
and the dimensions used for the prototype fabrication are
listed in the caption. The varactors used (SMV2020-079LF)
depending on the applied differential voltage (from 0–20V)
can have capacitances varying from 0.4 to 3.2 pF. The combi-
nations of the varactor capacitances used give a large number
of operational conditions, for which parameters such as the
overall loss, the overall matching on all three ports, and the
output power ratio K =P2 :P3 need to be controlled. Using
lumped capacitor components, six different modules with
ratios (1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 5, and 1 : 10) were implemented,
and for the same ratios, the required varactor capacitances
with the related biasing conditions are summarized in
Table 1. By investigating all the possible varactor capaci-
tances’ combinations, the power ratio P2 :P3 is plotted in
Figure 9(a), and the power ratio P3 :P2 is plotted in
Figure 9(b), each as a two-dimensional graph. The resulted
power ratio of P2 :P3 spans the values from 1 : 1 up to 1 : 16,
and for the power ratio P3 :P2, the ratio can vary between
1 : 1 and 4 : 1.

4.2. S Parameter Measurements. Not all the biasing voltage
combinations and the related varactor values result in accept-
able loss and matching performance. However, for the set of
the six different combinations mentioned above, 1 : 1, 1 : 2,
1 : 3, 1 : 4, 1 : 5, and 1 : 10, S parameter measurements were
taken, and they were compared with the six fabricated mod-
ules for which lumped capacitors were used. The starting
values for the varactor capacitors were the values of the cor-
responding lumped capacitors, but additional tuning was
required since the addition of the RF choke inductors and
the DC-blocking capacitors caused perturbations. As a result,
the presented S parameter measurements conducted with a
two-port VNA while the third port was terminated with a
50Ω load to eliminate reflections present some differences
when the measured S parameters of the lumped component
PS are compared with the measured S parameters of the
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Figure 6: Simulated and measured reflection coefficient (S11) of
the rectifier.
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tunable PS. Six S parameter plots, one for each of the six fab-
ricated fixed lumped component PS, are presented in
Figure 10. For better clarity, only the magnitudes of S11, S31,
and S21 are presented to show the good matching at Port1,
and the output power ratio (K =P3 :P2) as it can be derived
indirectly from S31 and S21 indications, and can be calculated
after some mathematical processing. Despite the complicated

implementation of the tunable PS, with the necessity for DC-
blocking capacitors and RF choke inductors, its S parameter
measurements agree fairly well with the measurements for
the fixed ratio, lumped capacitor PS.

4.3. SNR Measurements. As discussed briefly in Section 2,
while for the EH path, it is important to have a high power,
and for the information decoding path, the most important
parameter is the SNR at the input of the information decoder
receiver. Therefore, in combination with the harvested power
at the end of the rectifier, a spectrum analyzer (Anritsu
MS2668C) was used to measure the SNR at the output of
the PS. The measurement setup is presented in Figure 11.
The implemented tunable PS is fed with the RF input power
generated from a signal generator (Rohde & Schwarz
SMF100A) through Port1. At the two output ports, namely,
Port2 and Port3, the rectifier module was connected using
connectors (Figure 12), and a spectrum analyzer was con-
nected directly to the tunable PS for power measurements
and SNR measurements. For several different power ratio
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Figure 7: (a) Rectified DC voltage versus RF input power simulations and measurements. (b) RF-to-DC efficiency versus RF input power
simulations and measurements.
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Figure 8: Full-wave EM simulation module of the fabricated (a) fixed ratio lumped capacitors PS and (b) tunable PS using two varactor
diodes; all dimensions are in mm: L= 35.5, W = 30, l1 = 7.7, l2 = 19.5, l3 = 12, l4 = 10, w1 = 1.18, w2 = 0.9, w3 = 1, C1 = pF, and C2 = pF.

Table 1

Power ratios
Capacitance (pF) DC biasing voltage (V)

Varactor 1 Varactor 2 Varactor 1 Varactor 2

1 : 1 3.2 3.2 0 0

1 : 2 1.0 0.45 6 13

1 : 3 0.45 1.35 13 4

1 : 4 0.45 0.65 13 9

1 : 5 0.35 1.75 20 2.5

1 : 10 0.20 1.1 20 6
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combinations, the measurements were repeated while the
ports connected to the rectifier and the spectrum analyzer
were interchanged. The measurements for a setup where
Port2 was connected to the rectifier and Port3 was
connected to the spectrum analyzer are presented in
Figure 12. At the same time when the rectified voltage
across the 3.3 kΩ load was measured, the SNR at Port3
was also measured. Since the rectifier is a nonlinear
circuit, three sets of measurements were taken for different
RF input power levels. The power levels at the signal gen-
erator were −10 dBm, 0 dBm, and +10 dBm. Before con-
necting the cable to the tunable PS, it was connected to
the spectrum analyzer, and the available power (after the
cable losses) at the input of the tunable PS was measured
as a manual calibration. For the previous set of measure-
ments, the rectifier was connected to the “low-power” leg
ending at Port2. As a result, as the power ratio P2 :P3
decreased from 1 : 1 to 1 : 10, the rectified voltage also
decreased. At the same time since more power was made
available at the information decoding port (“high-power”
Port3), with the noise remaining stable, the measured
SNR on Port3 increased nonlinearly. Figure 13 verifies
the observations. When the same measurements were
repeated (signal generator power set to 0 dBm) with the
rectifier connected to the “high-power” Port3, the rectified
voltage increased as the power ratio K =P2 :P3 decreased,
since more power was made available at Port3. Apparently,
the measured SNR at “low-power” Port2 decreased. The
two measurement setups with the rectifier connected to
the “low-power” Port2 (Figure 14(a)) and the rectifier
connected to the “high-power” Port3 (Figure 14(b)) are
presented in Figure 14.

4.4. Overall Loss and DC Power Consumption Considerations.
For the presented S parameter measurements, it can be
observed that there is good matching, accurate power ratios,
and relatively low loss. However, since there are many com-
binations of the varactor biasing values V1 and V2 that may
cause the same power ratio, unavoidably the loss and the
induced noise are different and they need to be carefully con-
sidered. For the calculation of losses on the 3-port tunable PS,
the power levels at Port1, Port2, and Port3 were measured
using the spectrum analyzer. For each output port power
measurement, the second output port was terminated with

a 50Ω load. Measurements were taken for all varactor capac-
itance combinations that caused power ratio 1 : 1. Figure 15
presents in color the DC biasing condition combinations
for which the power ratio is 1 : 1. The color scale indicates
the loss as a percentage normalized over the incident power
P1 at Port1. The formula for the presented loss percentage
is given by

Loss = P1 − P2 − P3
P1

% 2

For some biasing conditions and their resulting capaci-
tance combinations, the loss was unacceptably high; there-
fore, the preferred combination should be chosen based on
the total loss and also on the associated DC power consump-
tion required for the varactors’ biasing conditions.

In addition to the voltage values for a given capacitance
mentioned in the data sheet, measurements were taken for
many more biasing voltage combinations for each varactor
diode from 0 to 21V. It was observed that several specific
power ratios could be obtained using a set of pairs of biasing
voltages instead of just one. In such a case, the choice of the
most suitable biasing conditions could be either (a) the
minimum DC power consumption for the specific power
ratio or (b) the minimum overall device loss, when the
specific power ratio was achieved. Figure 16(a) shows a
useful plot for the choice of biasing voltages while
Figure 16(b) demonstrates the overall device loss percentage
with the associated biasing conditions. In Figure 16(b), it can
be noticed that the overall device loss is rather high for
extremely high and/or lowbiasing voltages (red-circled areas),
while the device operates with lower loss for low V1(<12V)
and highV2(>9V) values (blue area).

4.5. Added Noise. Finally, in order to estimate the introduced
noise from the lumped components which are included in
the lumped capacitor PS module with power ratio 1 : 1 that
affects the SNR on the information decoding path, rectified
voltage and SNRmeasurements were taken when the rectifier
and the spectrum analyzer are interchanged between the two
output ports. The results were expected to be very similar;
however, the measurements which are presented in
Figure 17 indicate that while the rectified power remained
the same when the rectifier was connected to either port,
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Figure 9: All DC biasing voltage combinations for the resulting power ratios for (a) P2 : P3 (1 : 1–1 : 16) and (b) P3:P2 (1 : 1–4 : 1).
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Figure 10: Measured S parameters for lumped capacitor PS and tunable PS using varactor diodes for different power ratios: (a) 1 : 1, (b) 1 : 2,
(c) 1 : 3, (d) 1 : 4, (e) 1 : 5, and (f) 1 : 10.
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the SNR degraded significantly when it was connected on the
path that included the lumped capacitor (Port2). Figure 17(a)
that presents the measured power at both Port2 and Port3
shows identical behavior between the two cases. In
Figure 17(b) though, where the measured SNR is presented,
it is evident that the lumped components, which are neces-
sary for the tunability of the power ratio, introduced addi-
tional noise that degraded the SNR at the input of the
information decoding system. Consequently, when possible,

the noisy path should be occupied by the EH circuit to ensure
improved SNR along the ID path.

5. Combined Module Testing

For the combined module (antenna+ tunable PS+ rectifier),
an inset-fed microstrip rectangular patch antenna [24] on a
Rogers RO4003C, 0.508mm thick substrate with εr = 3 5
and tanδ=0.0027, was fabricated. The antenna has a 70%
radiation efficiency and a 4.86 dBi simulated realized gain at
2.4GHz. The photo of the fabricated prototype is presented
in Figure 18(a), and its dimensions are listed in the caption.
Simulated and measured reflection coefficient plots are pre-
sented in Figure 18(b). For the actual wireless power trans-
mission measurement, two rectangular patch antennas were
used in the laboratory setup presented in Figure 19(a). The
first was connected to a signal generator and acted as the
transmitter, and the second was connected to a spectrum
analyzer and was used as the receiver. For different transmis-
sion power levels and for different separation distances, the
received power at the antenna was recorded. This received
power is expected to be the input power at the tunable PS
neglecting the small mismatch. For those measured received
power levels, the delivered power P2 (at Port2 of the tunable
PS) and the rectified voltage at the termination load were
measured as shown in Figure 19(b). The measured results
are summarized in Table 2, for the lowest DC power con-
sumption varactor combination and for a 1 : 1 ratio, some-
thing that verifies the successful implementation of the
tested WPT system. The resulting rectified voltages and the
resulted SNR measurements for a SWIPT system that used
a tunable PS can be found in Table 2.

6. Conclusion

A tunable power splitter (PS) using two varactor diodes was
designed and fabricated and was tested as a constituent com-
ponent for a SWIPT experimental system that consists of a
microstrip patch antenna, the tunable PS, and a voltage dou-
bler rectifier. Both the microstrip patch antenna and the rec-
tifier were built and tested as stand-alone devices, and they
were combined in a SWIPT system for testing measurements
using interconnectors. Three-port S parameter measure-
ments indicated that the proposed tunable PS could achieve
wide K = (P2 :P3) values ranging from 1 : 1 to 1 : 10 with good
matching at the three ports. Additional power measurements
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Figure 11: Conceptual schematic of the experimental setup.
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Figure 12: Experimental setup for the validation of the
implemented SWIPT receiver.

-10 dBM

10 dBM

0 dBM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
ou

t (
V

)

1 : 1
1 : 2
1 : 3

1 : 4
1 : 5
1 : 10

50 55 60 7565 70 80
SNR (dB)

Figure 13: Measured rectified voltage Vout at the output of the
rectifier which was connected to Port2 versus the measured SNR at
Port3, for three different power levels controlled at the signal
generator: −10 dBm, 0 dBm, and +10 dBm.

8 International Journal of Antennas and Propagation



1 : 1
1 : 2
1 :3 

1 : 4
1 : 5
1 : 10

54 58 60 62 64 6656
SNR (dB)

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

V
ou

t (V
)

(a)

1 : 1
1 : 2
1 : 3

1 : 4
1 : 5
1 : 10

6765 666463
SNR (dB)

0.2

0.3

0.4

0.5

0.6

V
ou

t (V
)

(b)

Figure 14: Measured rectified voltage Vout at the output of the rectifier which was connected to Port2 versus the measured SNR at Port3 for
the six power ratios (1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 5, and 1 : 10) when (a) the “high-power” leg is connected to the rectifier and (b) the “low-power
leg” is connected to the rectifier, while the input power at Port1 is 0 dBm.

0

10

20

30

40

50

60

5

10

15

20

V
2

10 15 205
V1

Figure 15: Loss percentage for varactor biasing conditions that cause power ratio P2 : P3 = 1 : 1.

Power at port2 (dBm)

−9
−8
−7
−6
−5
−4

Power at port3 (dBm)

−15

−10

−5

5

10

15

20

V
2

10 15 205
V1

5

10

15

20

V
2

10 15 205
V1

(a)

20
30
40
50
60
70

10 15 205
V1

5

10

15

20

V
2

(b)
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biasing voltages. (b) Calculated overall loss of the tunable PS for biasing voltage conditions ranging from 0 to 20V, for both varactor diodes.
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using a spectrum analyzer showed that even higher ratios up
to 1 : 16 could be achieved with the proposed topology, and in
addition, Port2 could be made the high-power port with

measured ratios (P3 :P2) from 1 : 1 to 4 : 1. The wide span of
K values was exploited to use the tunable PS as a constituent
component in a SWIPT system in an attempt to maximize
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Figure 17: (a) Vout versus output power and (b) Vout versus SNR showing the effect of lumped components on resulting SNR.
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the harvested energy while simultaneously maintaining the
minimum acceptable SNR at the information decoding
receiver unit. A series of measurements verified that the
SNR and the rectified voltage improved when most of the
incident input power was directed to the information decod-
ing unit or the energy harvester, respectively. Since several
power ratios could be achieved with more than one pair of
voltages on the two varactors, the preferred biasing condi-
tions could be chosen in order to satisfy both, or either, of
the following objectives: either minimum DC power con-
sumption (used for the varactor biasing) or minimum overall
loss of the tunable PS. Using the lumped capacitor PS with a
ratio of 1 : 1, a series of SNR measurements and rectified volt-
age measurements on both output ports, interchangeably,
indicated that the lumped components used for tunability
added noise to the signal that passed through them. There-
fore, it is preferred to connect the energy harvester on the
port that terminates the path with the noisy lumped compo-
nents, in order to ensure improved SNR at the information
decoding receiver path. For the wireless power transmission
measurements, two microstrip patch antennas were used:
one connected with a signal generator acting as the transmit-
ter and the second one connected to a spectrum analyzer to
measure directly the received power that was made available
at the input of the tunable PS. Both wireless power measure-
ments and on-board measurements verified that a tunable PS
can control and therefore tune the received SNR at the infor-
mation decoding receiver and the harvested energy level on
the EH unit at the expense of DC power consumption used
for biasing and some overall loss increase, which can be lim-
ited by choosing the most suitable biasing conditions. In
future work, the following topics will be investigated: the size
reduction of the tunable PS, the reduction of the DC power

consumption on the switches, and the integration of the con-
stituent modules into a compact single module. Furthermore,
the implementation of similar integrated modules for UHF
frequency will be investigated under the considerations of a
desired compact size system.
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