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Abstract  

An Fe-17Mn-3Al-2Si-1Ni-0.06C wt.% steel was subjected to cold-rolling to 42% thickness reduction 

and isochronally annealed for 300 s between 500 and 850 °C. The high Mn steel was characterised via 

electron back-scattering diffraction, transmission electron microscopy and uniaxial tensile testing. The 

reversion of deformation-induced ε and α′-martensite to austenite (γ) was witnessed with the 

formation of fine twins in reverted/recovered γ grains after annealing to 650 °C. The nucleation of 

new γ grains at the boundary of reverted/recovered γ grains was also noted. Upon reversion, the γ 

orientations originated from the ε and α′-martensite orientations by phase transformation via the 

Shoji-Nishiyama and Kurdjumov-Sachs orientation relationships, respectively. Upon segmenting the γ 

grains, the recrystallised γ grains were observed to nucleate with orientations similar to those of the 

reverted/recovered γ grains. Uniaxial tension on a fully recrystallised γ microstructure showed that 

the initial γ grain size has a more significant effect on the yield strength than the ε and α′-martensite 

fractions. On the other hand, the initial ε and α′-martensite fractions affect the total elongation. 
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1. Introduction 

High strength steels containing 15-20 wt.% manganese possess low stacking fault energies (SFE) that 

enable the metastable face-centred cubic (fcc) austenite (γ) phase to accommodate deformation by a 

combination of perfect and partial slip, twinning and phase transformation to hexagonal closed packed 

(hcp) ε-martensite and/or body-centered cubic (bcc) α′-martensite [1-3]. Generally, steels with SFE 

less than ~21 mJ/m2 result in the formation of ε and α′-martensite whereas SFE between ~12-21 

mJ/m2 result in the formation of twins and ε and α′-martensite. The pathways to phase transformation 

are: (i) γ directly transforming to α′-martensite and (ii) γ transforming to α′-martensite via prior 

transformation to ε-martensite [1, 4].  

Upon annealing, the deformation-induced ε and α′-martensite revert to γ; with the latter phase 

undergoing subsequent recrystallisation [1, 3, 5-7]. The reverse transformation of ε-martensite occurs 

between 100 and 250 °C while the reversion of α′-martensite occurs between 500 and 700 °C for the 

high Mn steel used in the present investigation [8]. Lü et al. [3] reported the formation of highly 

dislocated, reverted γ when an Fe-21.6Mn-0.38C steel (all compositions in wt. % from here on) cold-

rolled to 50% thickness reduction was subsequently annealed at 630 °C. Kowalska et al. [7] observed 

fine twins in reverted γ along with remnant deformation-induced α′-martensite when an Fe-26Mn-

3Al-3Si steel cold-rolled to 57% thickness reduction was annealed at 500 °C. In that study, the onset of 

γ recrystallisation was noted at 650 °C.   

Upon annealing, the orientations of reverted γ are derived from the orientations of their deformation-

induced ε and α′-martensite counterparts via the Shoji-Nishiyama (S-N, {111}γ || {0001}ε, 〈110〉γ || 

〈112̅0〉ε [9]) and the Kurdjumov-Sachs (K-S, {111}γ|| {110}α′ , 〈110〉γ || 〈111〉α′ [10]) orientation 

relationships, respectively. In this regard, Lü et al. [3] showed the reversion of {011̅4}〈12̅12〉ε to 

{123}〈412〉γ  in an Fe-21.6Mn-0.38C steel cold-rolled to 50% thickness reduction and annealed at 630 

C. Kowalska et al. [7] observed reversion to the Brass (Brγ, {110}〈112〉γ), Copper (Cuγ, {112}〈111〉γ), 

Goss (Gγ, {110}〈001〉γ) and Sγ ({123}〈634〉γ) orientations from the {ℎ𝑘𝑖𝑙}ε –fibre orientations and 

{001}〈110〉α′ , (112)[11̅0]α′ when an Fe-26Mn-3Al-3Si steel cold-rolled to 57% thickness reduction 

was subjected to isochronal annealing at 500, 650 and 750 °C. 

Annealed high Mn steels are reported to possess ultimate tensile strengths (UTS) and total elongation 

greater than 1100 MPa and 0.55, respectively [11, 12]. A comprehensive collection of literature-based 

tensile properties of metastable high Mn steels has been presented by the authors in Ref. [13]. High Mn 

steels processed by cold-rolling and annealing after hot-rolling and solution treatment [14, 15] show 

slightly higher tensile strengths compared to steels processed by hot-rolling and solution treatment 

only [16-18]; primarily on account of the smaller γ grain size in the former case. In addition, multi-

phase high Mn steels [8] tend to possess higher yield strengths (YS) and UTS of 465 - 1231 MPa and 

856 - 1376 MPa compared to their single-phase counterparts (YS = 168-434 MPa, UTS = 698-822 

MPa)[14].  
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The Fe-17Mn-3Al-2Si-1Ni-0.06C steel of this study was cold-rolled to 66% thickness reduction and 

subjected to isochronal annealing. Microstructure characterisation via transmission Kikuchi 

diffraction (TKD) by Gazder et al. [5, 6] revealed the formation of deformation-induced ε and α′-

martensite and a trace amount of γ upon cold rolling. Upon annealing at 625 °C, the microstructure 

comprised a predominant fraction of reverted and recrystallised γ (with the recrystallised γ grains 

containing stacking faults) along with untransformed α′-martensite and a trace fraction of ε-

martensite. In the case of the same steel cold-rolled to 42% thickness reduction and subjected to 

isochronal  annealing, an electron back-scattering diffraction (EBSD) study estimated an activation 

energy of 237.2 ± 17.3 (kJ/mol) for γ grain growth between 700 and 900 °C annealing; a value that 

suggests the operation of grain boundary diffusion [19]. In addition, the activation energy of γ grain 

growth in Fe-29Mn-0.06C high Mn steel during isothermal annealing at 1000 °C was estimated as 208 

kJ/mol [20]. In this regard, the activation energy for γ grain growth for Fe-1.51Mn-0.03Si-0.17C, Fe-

1.43Mn-0.03Si-0.12C and Fe-0.86Mn-0.03Si-0.11C plain carbon steels is estimated as ~262, 271 and 

272 kJ/mol respectively [21]; values that are slightly higher than high Mn steel. For C-Mn-V, C-Mn-Ti, 

C-Mn-Nb based micro-alloyed low carbon steels, the activation energy for γ grain growth is reported 

as 400, 437 and 435 kJ/mol respectively [22]; values that are almost double those compared to high 

Mn steels. Digital image correlation during room temperature, uniaxial tension after cold-rolling and 

isochronal annealing revealed strain localisation accompanying deformation-induced phase 

transformation all along the parallel gauge length [13].   

In this regard, the present study presents an overview of the effect of isochronal annealing on the 

microstructure, texture and mechanical properties of a 42% cold-rolled high manganese steel via a 

combination of EBSD, transmission electron microscopy (TEM) and room temperature uniaxial tensile 

testing. It details the orientations of deformation-induced ε and α′-martensite that lead to particular γ 

orientations upon reversion. Furthermore, this is the first study to segment the γ phase into its 

reverted/recovered and recrystallised fractions in order to catalogue the differences in morphology 

and micro-texture between them.  

 

2. Experimental and analytical procedure 

An Fe-17Mn-3Al-2Si-1Ni-0.06C steel was slab cast and reheated at 1100 °C for 7200 s. The slab was 

hot-rolled at 1100 °C to 52.5% thickness reduction in 4 passes to 516 (length) × 60 (width) × ~9.8 

(thickness) mm3. The hot-rolled specimens were subsequently cold-rolled to 42% thickness reduction 

in 11 passes to 759 (length) × 60 (width) × ~5.4 (thickness) mm3. 

Dog-bone shaped ASTM-EM8-04 standard subsize tensile samples of 35 (gauge length) × 6 (width) × 2 

(thickness) mm3 were wire-cut from the centre of the cold-rolled sheet parallel to the rolling (RD), 

transverse (TD) and normal (ND) directions, respectively. Similarly, 10 (length, RD) × 7 (width, TD) × 

~5.4 (thickness, ND) mm3 rectangular samples were wire-cut from the centre of the cold-rolled sheet. 

The dog-bone and rectangular samples were isochronally annealed at 500, 600, 625, 650, 700, 750, 
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800 and 850 °C for 300 s and immediately water quenched. In this regard, supplementary Fig. S1 

shows the schematic diagram for processing and subsequent sample preparation.  

The hardness of the cold-rolled and annealed rectangular samples was measured using a Struers 

EmcoTest Durascan-70 equipped with a Vickers indenter using a 10 kgf load on the ND-RD plane. Ten 

indents were undertaken on each sample and the average hardness reported along with the standard 

deviation. The softening fraction (X) was calculated from the hardness values using the equation [23]: 

X = (HR − HT)/(HR − H0)      (1) 

where, HR is the hardness after cold-rolling, HT is the hardness after annealing at temperature ‘T’  

between 500 and 800 °C and H0 is the hardness after annealing at 850 °C. 

The dog-bone samples were subjected to uniaxial tension at room temperature on a 100 kN Instron 

1341 universal testing machine operating with an initial crosshead speed of 0.035 mm/s at a strain 

rate of 0.001 s−1. 

Electron transparent thin foils for microstructural characterisation via EBSD and transmission 

electron microscopy (TEM) were prepared by punching 3 mm diameter discs from the ND-RD plane. 

The punched discs were ground using 2400 grit abrasive paper to achieve a final thickness of ~60-70 

µm and then twin-jet electropolished at -25 °C using a solution of 90% methanol and 10% perchloric 

acid in a Struers Tenupol-5 operating at 30 V (~150 mA). 

For texture characterisation, the RD-ND plane of the rectangular samples was ground using 2400 grit 

abrasive paper and electro-polished in a Struers LectroPol-5 operating at 50 V for 90 s with a solution 

of 330 ml methanol, 330 ml butoxyethanol and 40 ml perchloric acid. 

EBSD was undertaken on a JEOL JSM-7001F field emission gun-scanning electron microscope 

operating at 15 kV accelerating voltage, ~6.5 nA probe current. The working distances for electron 

transparent foils and rectangular samples were 12 and 15 mm, respectively. For microstructure 

characterisation, a step size of 0.03 μm was used for the cold-rolled, 500, 625 and 650 °C annealed 

samples. A step size of 0.1 μm was used for the 700-850 °C annealed samples. For bulk texture work, 

step sizes of 1 µm was used for the cold-rolled and 500-650 °C annealed samples, 2 μm for the 700 and 

750 °C annealed samples and 2.5 µm for the hot-rolled, 800 and 850 °C annealed samples. 

Post-processing of the EBSD maps for microstructure characterisation was undertaken using the 

Oxford Instruments (OI) Channel-5 software suite. In brief, it involved the removal of wild spikes and 

cyclic extrapolation of zero solutions up to five neighbours followed by thresholding the band contrast 

to delineate the unindexed regions. The band contrast map was superimposed on the phase maps such 

that the red, green, blue and white colours denote the γ, ε, α′-martensite phases and unindexed 

regions, respectively. Boundary misorientations of 2°-15° and greater than 15° comprise low (LAGBs) 

and high (HAGBs) -angle grain boundaries, respectively.  As per the Palumbo-Aust criterion (Δθ ≤15° 

Σ−5/6), Σ3 γ-twin boundaries have a maximum angular deviation of 6.03° from the ideal misorientation 

angle-axis of 60°/〈111〉γ [24]. {101̅2}〈1̅011〉ε extension twins denoted as ~86°/〈12̅10〉ε are shown 
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using a 5° deviation limit [25]. The orientation distribution functions (ODFs) are plotted using JTex 

[26] after exporting the orientation data from OI Channel-5.  

After hot-rolling, the microstructure consists of coarse γ grains containing plate like ε-martensite and 

lenticular α′-martensite with the area fractions 68%, 12% and 20%, respectively [27]. The EBSD maps 

of the 600, 625 and 650 °C annealed samples were segmented into reverted/recovered and 

recrystallised γ grain fractions by modifying the modifying the procedure developed by Gazder et al. 

[28, 29]. A threshold based on internal misorientation was first applied to segment  grains into two 

subsets comprising lower and higher internal misorientations. A sub-grain aspect ratio threshold [29] 

was applied to the lower internal misorientation subset in order to further segment the recrystallised 

and recovered grains. The recovered grains were merged with the higher internal misorientation γ 

grains in order to return the reverted/recovered γ grain fraction. It follows that the recrystallised γ 

fraction comprises grains with lower internal misorientations and sub-grain aspect ratios.  

Conventional TEM was undertaken on a LaB6 JEOL JEM-2010 operating at 200kV. For each of the cold-

rolled, 500, 600, 625 and 650 °C conditions, bright-field and selected area electron diffraction patterns 

were collected on 2-3 thin foils per condition. The thickness of the twins (w) in the TEM  micrographs 

was estimated from the measured spacing (wL) using the equation [30]: 

w = (2wL)/π        (2) 

 

3. Results and discussion 

3.1 Changes in microstructure upon isochronal annealing 

The variation in hardness (and the softened fraction calculated using Eq. (1)) and the evolution of 

microstructure with annealing temperature are shown in Figs. 1 and 2, respectively. The hardness 

curve can be sub-divided into three regions comprising: (i) a small decline between cold-rolling and 

annealing at 500 °C (Figs. 2a, 2b), (ii) a relatively large decrease upon annealing between 600 and 650 

°C (Figs. 2c-2e) and (iii) a gradual reduction upon annealing between 700 and 850 °C (Figs. 2f-2i).  

 

Figure 1: Variation in hardness and the softened fraction with annealing temperature. 
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The cold-rolled microstructure comprises elongated, fragmented α′-martensite as the major phase 

fraction along with remnant ε-martensite and a trace amount of untransformed γ (Fig. 2a). Similar 

results are obtained when the same steel was cold-rolled to 66% thickness reduction [5, 6, 19]. During 

cold-rolling, the γ grains undergo subdivision and phase transformation to ε-martensite and α′-

martensite. Furthermore, the thick ε-martensite plates carried over from hot-rolling also transform to 

α′-martensite [27]. The delayed transformation of unfavourably oriented γ grains to ε-martensite and 

the sub-division of thick ε-martensite plates by α′-martensite leads to the presence of γ and ε-

martensite pockets in the cold-rolled sample (Fig. 2a). 

Annealing at 500 °C shows that the process of reversion back to γ is underway (Fig. 2b); with Σ3 twins 

observed in some reverted/recovered γ grains (see inset in Fig. 2b). Annealing at 600 and 625 °C 

returns a microstructure comprising approximately equal fractions of α′-martensite and 

reverted/recovered and recrystallised γ (Figs. 2c and 2d). Annealing at 650 °C results in a mix of 

recrystallised and polygonised γ grains along with some reverted/recovered γ and remnant α′-

martensite (Fig. 2e).  

Annealing at 700 °C marks the end of γ recrystallisation along with the formation of annealing twins 

(in yellow, Fig. 2f) and plate-like ε-martensite on quenching. Further annealing between 750 and 850 

°C results in ever larger γ grains (Figs. 2g-2i) and a proliferation of plate-like ε-martensite and 

lenticular/plate-like α′-martensite forming on quenching (Figs. 2c, 2d, 2f-2i). The increase in ε and α′-

martensite fraction is ascribed to the higher number of nucleation sites for their formation and the 

availability of large γ grain area for growth in coarser γ grain sizes. Also, the low γ-stacking fault 

energy of the present high Mn steel (SFE = 14.5 mJ/m2 [31]) favours the formation of ε and α′-

martensite. Similar trends increases in ε and α′-martensite volume fraction with γ grain size have been 

observed in Ref.  [32].  

 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

  

(g) (h) 
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(i) 

Figure 2: Superimposed band contrast and phase maps after (a) cold-rolling and subsequent 

annealing at (b) 500 °C, (c) 600 °C, (d) 625 °C, (e) 650 °C, (f) 700 °C, (g) 750 °C, (h) 800 °C and (i) 850 

°C. Red = γ, green = ε-martensite, blue = α′-martensite, white = unindexed areas, silver = LAGBs, black 

= HAGBs, yellow = γ twin boundaries. Rolling direction (RD) = horizontal. Inset in Fig. 2b shows twins 

in reverted/recovered γ grain. White arrows in Fig. 2a show the sub-division of α′-martensite grains. 

 

Figs. 3a-3c depict the γ grains segmented using the procedure described in section 2 into 

reverted/recovered (in green) and recrystallised (in fuschia) fractions after annealing at 600, 625 and 

650 °C, respectively. The average grain size of the recrystallised γ fraction increased from 0.21 ± 0.1 

µm to 0.23 ± 0.11 µm to 0.33 ± 0.25 µm upon annealing at 600, 625 and 650 °C, respectively. Fig. 3d 

records a decreasing trend in the low-angle boundary population of the reverted/recovered and 

recrystallised fractions. On the other hand, small decreases and increases in the high-angle boundary 

population are noted for the reverted/recovered and recrystallised fractions, respectively. As one 

EBSD map was undertaken per condition, error bars are missing in the segmented γ LAGB and HAGB 

fractions in Fig. 3d.   

 

  

(a) (b) 

  

(c) (d) 
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Figure 3: γ grains segmented into reverted/recovered (in green), recrystallised (in fuschia) fractions 

after annealing at (a) 600 °C, (b) 625 °C and (c) 650 °C, (d) the variation of γ low angle and high angle 

grain boundaries percentages with annealing temperature. White regions in Figs. 3a-3c indicate ε and 

α′-martensite as well as unindexed pixels. 

 

In Fig. 4, representative bright field micrographs provide more details on the changes occurring in the 

cold-rolled microstructure upon annealing at 500, 600, 625 and 650 °C.  The cold-rolled micrographs 

show elongated α′-martensite grains (Fig. 4a); ε-martensite grains containing stacking faults (green 

arrows, Fig. 4b) along with untransformed γ (red arrows, Fig. 4b). In this regard, in-situ neutron 

diffraction and combined TEM/TKD results by Saleh and Gazder et al. [5, 6, 33] showed the feasibity of 

deformation accommodation in ε-martensite. In an following detailed TEM study, ε-martensite was 

found to accommodate deformation via the formation and change in stacking fault character when the 

steel is progressively cold-rolled up to 42% thickness reduction [27]. A mechanism enabling the 

change in stacking fault character was proposed which involves the motion of Shockley partial 

dislocations on every plane below the stacking fault plane. 

Upon annealing between 500 and 650 °C, the formation of fine twins of ~6.5 ± 4.2 nm thickness in 

reverted/recovered γ grains is noted; with verification provided by the top left inset diffraction 

pattern in Fig. 4c. Twins in reverted γ grains were previously reported in an Fe-26Mn-3Si-3Al steel 

cold-rolled to 52% thickness reduction and annealed at 500 °C for 30 min [7]. However, in that study, 

no reasons were put forward for their formation.  

In this regard, a TEM-based in-situ heating investigation of the present 42% cold-rolled steel observed 

twin formation in reverted/recovered γ grains and attributed the phenomenon to the subsequent 

recovery of the γ grain after it reverts from ε-martensite [34]. Similar recovery-induced twins were 

observed in γ grains reverted from twinned α′-martensite during the annealing of a Fe-33.5Ni alloy 

[35]. The nucleation of new γ grains at the boundary of reverted/recovered γ grains is observed after 

600 °C annealing and shown in the top right inset in Fig. 4d.  

The bottom inset diffraction pattern in Fig. 4b depicts the S-N orientation relationship between 

neighbouring deformation-induced ε-martensite and remnant γ grains after cold-rolling. Alternatively, 

the bottom inset diffraction patterns in Figs. 4c-4e show the K-S orientation relationship between 

neighbouring remnant α′-martensite and reverted/recovered γ grains upon annealing. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4: Representative (a-f) bright-field transmission electron micrographs after (a, b) cold-rolling and 

annealing at (c) 500 °C, (d) 600 °C, (e) 625 °C and (f) 650 °C. The bottom left inset diffraction patterns in 

Figs. 4a-4f are from the regions delineated by white circles. The top left inset diffraction pattern in Fig. 

4c is from the red circular region. Zone axes are [111]α′ in Fig. 4a, [21̅1̅0]ε, [110]γ in Fig. 4b, [011̅]γ, 

[111̅]α′ in Figs. 4c-4e and [110]γ in Fig. 4f. 

 

3.2 Changes in texture upon isochronal annealing 

Figs. 5-8 are selected ϕ2 sections of the orientation distribution functions (ODFs) of α′ and ε-

martensite and γ after cold-rolling and annealing. Since α′ and ε-martensite constitute the 

predominant the phases in the cold-rolled sample, their ODFs are presented first followed by ODFs of 

the γ-phase that forms on reversion during annealing.  
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The ODFs of γ, ε and α′-martensite for the hot-rolled sample are shown in supplementary Fig. S2. 

Furthermore, the discussion in the following paragraphs is limited to conditions that are 

representative of significant changes in the microstructure. In this regard, the ODFs after cold-rolling 

and annealing at 650 °C and 850 °C were selected and correspond to points (1-3) in Fig. 1. They are 

representative of microstructures comprising: (i) deformation-induced ε and α′-martensite and 

remnant γ after cold-rolling (Fig. 2a), (ii) remnant α′-martensite and recovered/recrystallised γ after 

annealing at 650 °C (Fig. 2e) and, (iii) polygonised γ, plate-like ε-martensite and plate/lenticular α′-

martensite after annealing at 850 °C (Fig. 2i). The 650 °C map (Figs. 2d and 3b) was chosen as 

representative of γ grain segmentation in order to compare the micro-texture of the 

reverted/recovered and recrystallised fractions. 

The reader is provided with the complete set of ODFs for all annealing conditions and segmented maps 

in the supplementary section in Figs. S3-S7. The ε-martensite ODFs after annealing at 500 and 650 °C 

are not shown on account of their low area fraction. 

Fig. 5 depicts the ϕ2  = 0° and 45° ODF sections of α′-martensite. Fig. 5a is a schematic with the ideal 

α′-martensite orientations and fibres shown in blue. The α′-martensite orientations that form upon 

phase transformation of particular γ and ε-martensite orientations via the K-S and Burgers ({0001}ε || 

{110}α′ , 〈112̅0〉ε || 〈11̅1〉α′) orientation relationships are shown in red and green, respectively. Similar 

bcc ODF sections correlating fcc to bcc orientations formed upon phase transformation by the K-S 

orientation relationship have been reported [36, 37]. Indexing the selected area diffraction patterns 

(Figs. 4c-4e) showed the prevalence of the K-S orientation relationship between reverted/recovered γ 

and α′-martensite. Thus, only the K-S orientation relationship was chosen for the texture analysis of γ 

and α′-martensite. 

Figs. 5b-5d comprise ODF sections of α′-martensite after cold-rolling and annealing at 650 and 850 °C, 

respectively. The deformation-induced α′-martensite after cold-rolling (Figs. 2a and 5b) and the 

remnant α′-martensite after annealing at 650 °C (Figs. 2e and 5c) return relatively stronger intensities 

along the ideal bcc α-fibre (〈110〉α′ || RD) centred around (001)[110]α′ and weaker intensities along 

the ideal bcc γ-fibre (〈111〉α′  || ND) spread around the (111)[1̅1̅2]α′ and (554)[2̅2̅5]α′ orientations. 

The plate-like/lenticular α′-martensite formed on quenching after annealing at 850 °C (Figs. 2i and 5d) 

return texture intensities exclusively centred around the (001)[110]α′ and (110)[001]α′ orientations. 

The development of similar orientations has been previously reported in the case of Fe-17Mn-3Al-2Si-

1Ni-0.06C steel cold-rolled up to 66% thickness reduction and subsequently annealed at 625 °C [6]. 
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(a) (b) 

  

(c) (d) 

Figure 5: ϕ2  = 0° and 45° orientation distribution function sections of α′-martensite showing the (a) ideal orientations (in blue) and after (b) cold-

rolling, annealing at (c) 650 °C and (d) 850 °C. In Fig. 5a, particular γ (in red) and ε-martensite (in green) orientations are provided for the K-S and 

Burgers orientation relationships respectively. Contour levels = 0.5×. 
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The (001)[110]α′ orientation forms upon phase transformation of the ideal Cγ and Brγ orientations via 

the K-S orientation relationship or the transformation of {011̅2}〈11̅01〉ε via the Burgers orientation 

relationship. The spread around (111)[1̅1̅2]α′ and (554)[2̅2̅5]α′ forms upon phase transformation of 

the ideal Brγ orientation (K-S orientation relationship) or {112̅0}〈1̅010〉ε (Burgers orientation 

relationship). Alternatively, the (110)[001]α′ orientation forms on the phase transformation of 

{123̅1}〈0001〉ε via the Burgers orientation relationship. 

Fig. 6 shows the ϕ2 = 0° and 30° ODF sections of ε-martensite plotted using the [101̅0]ε || RD and 

[0002]ε || ND convention. Fig. 6a is a schematic with some of the ideal ε-martensite orientations and 

fibres shown in green. The ε-martensite orientations that form upon phase transformation of 

particular γ orientations (in red) via the S-N orientation relationship are also shown. 

Figs. 6b, 6c comprise ODF sections of ε-martensite after cold-rolling and annealing at 850 °C, 

respectively. The deformation-induced ε-martensite after cold-rolling (Figs. 2a and 6b) shows 

relatively strong intensities along the {ℎ𝑘𝑖𝑙}ε –fibre centred around the  {1̅21̅5}〈12̅12〉ε and 

{011̅4}〈13̅23〉ε orientations and relatively weaker intensities around the {101̅0}〈0001〉ε, 

{112̅0}〈0001〉ε and {1̅21̅3}〈101̅0〉ε orientations. The {ℎ𝑘𝑖𝑙}ε –fibre comprise orientations with their 

{0001}ε poles deviated by ~24°-26° towards the RD. The formation of this fibre was reported in the 

Fe-17Mn-3Al-2Si-1Ni-0.06C and Fe-21.6Mn-0.38C steels cold-rolled to 66% and 50% thickness 

reductions respectively [3, 6]. The plate-like ε-martensite (Figs. 2i and 6c) formed upon quenching 

after annealing at 850 °C shows intensities around the {011̅2}〈11̅01〉ε and {1̅21̅3}〈101̅0〉ε orientations. 

The {1̅21̅5}〈12̅12〉ε, {011̅4}〈13̅23〉ε, {101̅0}〈0001〉ε, {112̅0}〈0001〉ε, {1̅21̅3}〈101̅0〉ε and {011̅2}〈11̅01〉ε 

orientations form upon phase transformation of the  (213)[02̅1]γ, (011)[31̅1]γ, Cu, A, ~S and A γ 

orientations via the S-N orientation relationship respectively.  

Fig. 7 comprises the ϕ2  = 0°, 45° and 65°  ODF sections of γ. Fig. 7a is a schematic with the ideal γ 

orientations and fibres shown in red. The γ orientations that form upon phase transformation of 

particular ε and α′-martensite orientations via the S-N and K-S orientation relationships are shown in 

green and blue, respectively. 

Figs. 7b-7d comprise the ODF sections of γ after cold-rolling and annealing at 650 and 850 °C, 

respectively. The untransformed γ after cold-rolling (Figs. 2a and 7b) and the reverted, recovered and 

recrystallised γ after annealing at 650 °C (Figs. 2e and 7c) shows relatively strong intensities along the 

ideal αγ-fibre (〈110〉γ || ND) centred around the Brγ orientation with weaker intensities around the 

Cuγ, Sγ and (213)[02̅1]γ orientations. The recrystallised γ formed after annealing at 850 °C (Figs. 2i 

and 7d) returns weak intensities centred around the ideal Cube (Cγ, {001}〈100〉γ), Aγ, Cuγ and Sγ 

orientations. Similar orientations have been reported in an Fe-17Mn-3Al-2Si-1Ni-0.06C steel subjected 

to cold-rolling up to 66% thickness reduction and subsequent annealing at 625 °C [6]. Higher 

intensities near the ideal Sγ orientation have been reported upon the reversion of ε-martensite to γ 

after annealing at 630 °C for an Fe-22Mn-0.4C steel cold-rolled to 50% thickness reduction [3].  
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The (i) Brγ, (ii) Cuγ, (iii) (213)[02̅1]γ and (iv) Sγ orientations form upon phase transformation of the: 

(i) (001)[11̅0]α′ , (111)[1̅1̅2]α′ and (554)[2̅2̅5]α′, (ii) (112)[11̅0]α′  , (iii) (112)[11̅0]α′ and 

(111)[1̅1̅2]α′ and (iv) (001)[11̅0]α′ orientations via the K-S orientation relationship. Alternatively, the 

Brγ, Cuγ, (213)[02̅1]γ and Sγ orientation can also form from the {112̅0}〈0001〉ε, {101̅0}〈0001〉ε, 

{1̅21̅5}〈12̅12〉ε and {1̅21̅3}〈101̅0〉ε orientations via the S-N orientation relationship, respectively. 

Fig. 8 are the ODF sections of the γ grains segmented into their reverted/recovered and recrystallised 

fractions after annealing at 625 °C (Fig. 3b). The reverted/recovered γ fraction shows relatively strong 

intensities around the (214)[1̅2̅1]γ orientation and relatively weak intensities around the ideal Gγ, Brγ 

orientations. The recrystallised γ fraction retains similar orientations with relatively weaker 

intensities compared to their reverted/recovered fraction counterparts. Similar γ recrystallisation 

behaviour was reported upon annealing of metastable austenitic steels [38, 39]. 

 

3.3 Changes in mechanical properties upon isochronal annealing 

Fig. 9 shows the engineering stress-strain curves of the cold-rolled and annealed samples with the 

tensile properties listed in Table 1. After cold-rolling and annealing at 500 °C, the yield stress (here, 

the 0.2% proof stress) is 1080 MPa and 1075 MPa, respectively, along with total elongations of ~0.02 

engineering strain. The low elongation is due to the inability of the α′-martensite fraction to 

accommodate further deformation due to prior cold-rolling and incomplete recovery upon annealing 

at 500 °C, respectively. 

In contrast, the engineering stress-strain curves after annealing at 625 and 650 C return entirely 

different shapes. These conditions comprise an initial microstructure of remnant α′-martensite and 

reverted/recovered and recrystallised γ; which upon tension, return yield stresses of 810 MPa and 

732 MPa, respectively. This is followed by an approximately linear rise in engineering stress-strain 

values up to ultimate tensile strengths of 1006 and 976 MPa after annealing at 625 and 650C, 

respectively. These results are similar to other high manganese steels comprising initial dual phase 

microstructures [40].  

After annealing at 700 and 800 °C, the initial microstructure comprises recrystallised γ with plate-like 

ε-martensite and plate/lenticular α′-martensite formed upon quenching. During uniaxial tension, these 

conditions return yield stresses of 465 MPa and 360 MPa, respectively, which are lower than to the 

previous annealing conditions. This is followed by a slow rising stress region (inflexion point) up to 

ultimate tensile strengths of 856 MPa and 827 MPa, respectively. An Fe-15Mn-3Al-3Si steel annealed 

at 1000 °C for 2h shows a very similar engineering stress-strain curve with the inflexion point 

correlated to the inception of deformation-induced phase transformations. The intersection of the 

linearly extrapolated elastic modulus and the tangent drawn from the slow rising stress region is 

defined as the triggering stress [41] and was estimated as ~518 MPa and ~419 MPa after annealing at 

700 and 800 °C, respectively.  
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(a) (b) 

 

 

(c)  

Figure 6: ϕ2 = 0° and 30° orientation distribution function sections of ε-martensite showing (a) ideal orientations (in green) and after (b) cold-

rolling, (c) annealing at 850 °C. In Fig. 6a, particular γ  orientations (in red) are provided for the S-N orientation relationship.  Contour levels = 0.5× 
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(a) (b) 

  

(c) (d) 

  

Figure 7: ϕ2  = 0°, 45° and 65° orientation distribution function sections of γ showing (a) ideal orientations (in red) and after (b) cold-rolling and 

annealing at (c) 650 °C and (d) 850 °C. In Fig. 7a, particular ε-martensite (in green) and α′-martensite (in blue) orientations are provided for the S-N 

and K-S orientation relationships respectively.  Contour levels = 0.5×. 
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(a) (b) 

Figure 8: ϕ2  = 0°, 45° and 65° orientation distribution function sections of γ grains segemeted into (a) reverted/recovered and (b) recrystallised 

fractions after annealing at (a, b) 625 °C. Contour levels = 0.5×. 
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The unique shape of the engineering stress-strain curves after annealing at 625 and 650 °C is due to 

the load partitioning between γ, pre-existing ε and α′-martensite [40] and the additional 

transformation of γ to deformation-induced ε and α′-martensite. The yield stress after annealing at 

800 °C is lower than after annealing at 700 °C due to γ grain coarsening from 1.9 ± 1.4 µm to 4.3 ± 2.7 

µm [19]. Tomota et al. [42] reported a higher yield stress for annealed samples having a relatively 

coarse γ grain size due to the higher fraction of plate-like ε-martensite formed on quenching. However, 

in the present study, annealing at 800 °C returns a higher fraction of ε and α′-martensite and a lower 

yield strength than after annealing at 700 °C.    

Alternatively, the total elongation is the largest after annealing at 700 °C. This due to the higher γ area 

fraction available for phase transformation to deformation-induced ε and α′-martensite leading to 

larger total elongation. The total elongation obtained after annealing at 800 °C is lower than the above 

condition on account of the relatively higher fractions of ε and α′-martensite and γ-ε-martensite and γ-

α′-martensite interfaces that contribute to the nucleation and coalescence of micro-cracks upon 

tension [43].  

The above results indicate that once γ is fully recrystallised and polygonised, the initial γ grain size has 

a more significant effect on yield strength than the ε and α′-martensite phase fractions. Alternatively, 

the initial ε and α′-martensite fractions tend to affect the total elongation.  

 

Figure 9: Engineering stress-strain curves after cold-rolling and annealing at 500, 625, 650, 700 and 

800 °C.  
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Table 1 Engineering tensile properties after cold-rolling and annealing at 500, 625, 650, 700 and 800 

°C. 

Tensile properties Sample condition 

Cold-rolled 500 °C 625 °C 650 °C 700 °C 800 °C 

Yield strength (MPa) 1080 1075 810 732 465 360 

Ultimate tensile strength (MPa) 1135 1150 1006 976 856 827 

Uniform elongation 0.02 0.02 0.24 ~0.28 ~0.36 ~0.3 

Total elongation ~0.07 ~0.07 ~0.3 ~0.32 ~0.41 ~0.33 

 

4. Conclusions  

A Fe-17Mn-3Al-2Si-1Ni-0.06C wt.% steel after 42% cold-rolling and isochronal annealing for 300 s 

between 500 and 850 °C was characterised via a combination of electron back-scattering diffraction, 

transmission electron microscopy and uniaxial tensile testing. Upon annealing to 650 °C, the reversion 

of deformation-induced ε and α′-martensite to γ is observed with the formation of fine twins in 

reverted/recovered γ grains. Subsequent nucleation of new γ grains at the boundaries of 

reverted/recovered γ grains is also noted. The γ orientations are obtained from the ε and α′-

martensite orientations upon phase transformations via the Shoji-Nishiyama and Kurdjumov-Sachs 

orientation relationships, respectively. The segmented γ grains indicate that the recrystallised γ grains 

nucleate with orientations similar to their reverted/recovered γ grain counterparts. Once γ 

recrystallisation is complete, the initial γ grain size has a more significant effect on the yield strength 

than the ε and α′-martensite fractions during uniaxial tension. Also, the total elongation upon tension 

is affected by the initial ε and α′-martensite fractions. 
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Supplementary Section 

 

Figure S1: Schematic showing the processing of the samples. 

 

The ODFs of the hot-rolled sample for the γ, ε and α′-martensite is represented in supplementary Fig. S2.  The γ in the hot-rolled sample shows weak 

αγ-fibre (〈110〉γ||ND) {110}〈223〉γ (ϕ1 = 42°, Φ = 90°, ϕ2 = 45°) orientation, along with Copper (Cu, {112}〈111〉γ), S ({123}〈634〉γ) and Cube 

(C, {100}〈001〉γ) orientations. The ε-martensite formed upon quenching after hot-rolling shows weak intensity along the {ℎ𝑘𝑖𝑙}𝜀-fiber 

~{1̅21̅5}〈12̅13〉ε (ϕ1 = 90°, Φ = 24°, ϕ2 = 0°) and  ~{011̅3}〈01̅12〉ε (ϕ1 = 88°, Φ = 34°, ϕ2 = 30°) orientations. The α′-martensite formed upon 

quenching after hot-rolling returns αα′-fibre (〈110〉α′||RD) (001)[11̅0]α′ orientation and  weak intensities around the γα′-fibre (〈111〉α′||ND) 

(111)[1̅1̅2]α′ orientation. 



  

(a) (b) 

 

(c) 

Figure S2: Orientation distribution function sections corresponding to sections (a) ϕ2 = 0°, 45° and 65° of γ, (b) ϕ2 = 0°, 30° of ε-martensite and (c) 

ϕ2 = 0°, 45° of α′-martensite for the hot-rolled sample. 

 



   
(a) (b) (c) 

Figure S3: ϕ2 = 0° and 45° orientation distribution function sections of α′-martensite  after annealing at (a) 500 °C, (b) 600 °C and (c) 625 °C. Contour 

levels = 0.5× 

 

   
(a) (b) (c) 

Figure S4: ϕ2 = 0° and 45° orientation distribution function sections of α′-martensite after annealing at (a) 700 °C, (b) 750 °C and (c) 800 °C. Contour 

levels = 0.5× 

 



   
(a) (b) (c) 

Figure S5: ϕ2 = 0° and 30° orientation distribution function sections of ε-martensite after annealing at (a) 700 °C, (b) 750 °C and (c) 800 °C. Contour 

levels = 0.5× 
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(c) (d) 

  
(e) (f) 

Figure S6: ϕ2 = 0°, 45° and 65° orientation distribution function sections of γ after annealing at (a) 500 °C, (b) 600 °C, (c) 625 °C, (d) 700 °C, (e) 750 

°C and (f) 800 °C. Contour levels = 0.5× 

 

 



  

(a) (b) 

  

(c) (d) 

Figure S7: ϕ2 = 0°, 45° and 65° orientation distribution function sections of γ grains segmented into (a, c) reverted/recovered and (b, d) 

recrystallised fractions after annealing at (a, b) 600 °C and (c, d) 650 °C. Contour levels = 0.5× 
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 Recrystallised γ grains have similar orientations to reverted/recovered γ grains. 

 After reversion, γ orientations are correlated to ε and α′-martensite orientations. 

 γ nucleation at the boundary of reverted/recovered γ grains.  
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