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Summary  19 

Invasive parasites can spill over to new hosts in invaded ecosystems with often unpredictable 20 

trophic relationships in the newly arising parasite-host interactions. In European seas, the 21 

intestinal copepod Mytilicola orientalis was co-introduced with Pacific oysters (Magallana 22 

gigas) and spilled over to native blue mussels (Mytilus edulis), with negative impacts on the 23 

condition of infected mussels. However, whether the parasite feeds on host tissue and/or stomach 24 

contents is yet unknown. To answer this question, we performed a stable isotope analysis in 25 

which we included mussel host tissue and the primary food sources of the mussels, 26 

microphytobenthos (MPB) and particulate organic matter (POM). The copepods were slightly 27 

enriched in δ15N (mean Δ15N ± SD; 1.22 ± 0.58‰) and δ13C (Δ δ13C 0.25 ± 0.32‰) with respect 28 

to their host. Stable isotope mixing models using a range of trophic fractionation factors 29 

indicated that host tissue was the main food resource with consistent additional contributions of 30 

MPB and POM. These results suggest that the trophic relationship of the invasive copepod with 31 

its mussel host is parasitic as well as commensalistic. Stable isotope studies such as this one may 32 

be a useful tool to unravel trophic relationships in new parasite-host associations in the course of 33 

invasions. 34 
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Key findings  41 

• New parasite-host relationships can arise by parasite invasions 42 

• The invasive parasite Mytilicola orientalis spilled over to native blue mussels  43 

• Stable isotope analysis revealed an enrichment in δ15N and δ13C of the parasite compared 44 

to the host 45 

• Mixing models indicated hosts to be main resource with additional contributions of algae 46 

consumed by hosts  47 

• M. orientalis has a parasitic as well as a commensalistic relationship with blue mussels 48 

  49 



Introduction 50 

Predation and parasitism are important trophic interactions that shape ecological communities 51 

and food webs. The key differences between predators and parasites are their relative size 52 

compared to their victims (parasite < host and predator > prey), the number of victims made 53 

during a life-history stage (one for a parasite, but more than one for a predator; Lafferty and 54 

Kuris, 2002) and the duration of the interaction (very short in the case of prey-predator systems 55 

and much longer in the case of parasite-host relationships; Dubois et al., 2009).  Additionally, in 56 

food webs, predators practically always have a higher trophic position than their prey, while the 57 

trophic position of parasites can be more complex. Firstly, parasites with complex life cycles 58 

involving multiple hosts may feed on different trophic levels across distinct life cycle stages, 59 

making it difficult to determine a single trophic level for all parasite life cycle stages (Lafferty et 60 

al., 2008). Secondly, some parasites feed on various host tissues and some may not feed directly 61 

on the host at all, but rather on the host’s stomach contents or specific pre-digested biochemical 62 

compounds (Iken et al., 2001; Lafferty et al., 2008). Hence, some endoparasites living inside a 63 

host’s intestine may not necessarily be true parasites living strictly on host tissue, but may rather 64 

live in a (partially) commensal relationship with their host.  65 

To address the latter problem, traditionally an analysis of parasite stomach contents was used to 66 

confirm a parasite-host relationship, but recently stable isotope analysis (SIA) has been proven to 67 

be a valuable method to determine the trophic position of parasites (e.g., Pinnegar et al., 2001; 68 

Deudero et al., 2002; Dubois et al., 2009) and other consumers (e.g., Inger et al., 2006; Dubois et 69 

al., 2007). This method uses the differences (Δ) between isotopic ratios of naturally occurring 70 

stable isotopes of nitrogen (δ15N) and carbon (δ13C) between consumers and their diet to 71 

reconstruct trophic relationships (Post, 2002). The δ13C discrimination factor (Δδ13C) is used to 72 



determine the diet source of carbon (e.g., terrestrial vs marine primary producers; Hobson, 1986) 73 

with a standard discrimination factor of 1.0‰, while trophic enrichment (Δδ15N) is used to 74 

estimate the trophic position (Vander Zanden et al., 1997), in which a fixed value (also known as 75 

the trophic fractionation factor) of 3.4‰ is most commonly used to analyse relative species 76 

trophic levels (Minagawa and Wada, 1984; Vander Zanden et al., 1997; Post, 2002). However, 77 

studies which compare isotopic signatures of parasites with their hosts indicate that parasites do 78 

not always fit with the commonly accepted consumer-diet discrimination patterns seen in free-79 

living species (e.g. Iken et al., 2001; Power and Klein, 2004; Neilson and Brown, 1999; O’Grady 80 

and Dearing, 2006; Xu et al., 2007; Dubois et al., 2009; Navarro et al., 2014, Behrmann-Godel 81 

and Yohannes, 2015). 82 

In this study, we analyse the trophic relationship between the invasive endoparasite Mytilicola 83 

orientalis and its new host in European seas, the native blue mussel Mytilus edulis in the Dutch 84 

Wadden Sea. This parasitic copepod has been recently co-introduced with aquaculture imports of 85 

the invasive Pacific oyster (Magallana (previously Crassostrea) gigas) (Elsner et al., 2011) and 86 

is known to spill over to native bivalves such as blue mussels and to a lesser extent to common 87 

cockles (Cerastoderma edulis) and Baltic tellins (Limecola (formerly Macoma) balthica; 88 

Goedknegt et al., 2017). Mytilicola orientalis was first described in the Sea of Japan (Mori, 89 

1935) and has a direct life cycle with a short non-feeding free-living stage, after which it lives in 90 

the intestines of its host. Here, the parasite is either feeding directly on the host tissue or 91 

indirectly on host gut content, resulting in a reduction in body condition of infected blue mussels 92 

(M. A. Goedknegt, unpublished results). As the exact diet source of the parasite is yet unknown, 93 

we performed a SIA to clarify the trophic relationship between the parasite M. orientalis and its 94 

new blue mussel host. Field samples of mussel hosts and parasites were analysed as well as the 95 



two principal food sources of mussels, being particulate organic matter and microphytobenthos 96 

(Dubois et al., 2007). This approach allowed us to determine the relative contributions of host 97 

tissue and host food to the diet of the invasive copepod and to identify the trophic relationship of 98 

this new parasite-host association that has resulted from the recent co-introduction of the 99 

copepods with their oyster hosts.  100 

 101 

Material and methods 102 

Collection of samples  103 

Suspended particulate organic matter (POM) samples (n = 17) were collected on the 2nd and 4th 104 

of July 2013 at nine locations in the subtidal Marsdiep channel (Wadden Sea, The Netherlands, 105 

Fig. 1). At high tide, water from this channel feeds a small intertidal bay in the south of the 106 

island of Texel (Mok, The Netherlands) and therefore we assumed that POM originating from 107 

this channel is a major food source for blue mussels (Mytilus edulis) living in the bay where we 108 

sourced the mussels and parasites for the SIA (Fig. 1; see below). At each sampling point, water 109 

samples were collected with a Niskin bottle from approximately 1 m below the water surface. 110 

Samples were then sieved through a 200 µm mesh to exclude larger zooplankton from the sample 111 

and subsequently filtered onto pre-combusted 25 mm GF/F filters using a 25 mm filter cartridge 112 

mounted on a 60 mL syringe. Between 80 and 250 mL of water was filtered depending on the 113 

amount of suspended matter in the water column. Filters were then stored at -20 °C until further 114 

analysis.  115 

Microphytobenthos (MPB; n = 4 samples within an area of 50 m2; Fig. 1) was sampled in the 116 

beginning of July 2013 at an intertidal area south of the Marsdiep (Balgzand, Wadden Sea, The 117 



Netherlands, Fig. 1) by collecting sediment from diatom mats into plastic bottles that were put on 118 

ice and brought to the research facility. Extraction of microphytobenthic diatoms in the 119 

laboratory was done by following the method of Riera and Richard (1996), slightly modified by 120 

Herlory et al. (2007). The sediment was spread in a tray, covered by three layers of nylon mesh 121 

(2 x 100 µm, 1 x 50µm) that was kept moist by repeatedly spraying filtered seawater on top. The 122 

samples were then left in a temperature-regulated room overnight at 20ºC. The next morning, the 123 

algae were washed into a beaker with filtered seawater. This solution was centrifuged (10 min at 124 

103 G) and the remaining pellet was collected and stored at -20 °C.  125 

Blue mussel and parasite (Mytilicola orientalis) samples were collected about three months later 126 

than the POM and MPB samples (26 September 2013), to cover the minimum time it takes for 127 

the diet to be incorporated into consumer tissue (Dubois et al., 2007; Phillips et al., 2014). 128 

Mussels (n = 150) were collected from a mixed oyster and mussel bed located in the Mok (Fig. 129 

1) and checked for presence of M. orientalis parasites under a magnification glass (magnification 130 

3 - 8×). Mussels infected with at least two female parasites (n = 28 mussels), which can be more 131 

than twice as large as males (Mori, 1935), were selected for the analysis, as a minimum of 0.4 132 

mg dry weight of each pooled parasite and corresponding mussel sample (the adductor muscle of 133 

the mussel) were required for the SIA. In these selected mussels, the mean M. orientalis intensity 134 

(± SD) was 3.6 ± 1.8 and ranged between 2-9 copepods, with an average (± SD) ratio of 0.78 ± 135 

0.21 females per infected mussel. Both parasite and matched mussel samples (each n = 28) were 136 

then stored at -20 °C. 137 

 138 

Stable Isotope Analysis (SIA) 139 



Prior to the SIA, all samples were freeze-dried for 48 hours at -60 ºC to remove water content. 140 

Additionally, as M. orientalis is a crustacean, parasite samples were treated with 1 M HCl to 141 

remove inorganic carbonate and dried for another 24 h at 60 ºC. Isotope ratios of δ15N and δ13C 142 

in all samples were determined with a Thermo Scientific Delta V Advantage Isotope Ratio Mass 143 

Spectrometer equipped with a Flash 2000 Organic Element Analyser at the Royal Netherlands 144 

Institute for Sea Research, Texel, The Netherlands. In addition, mean total organic carbon (TOC) 145 

and mean total nitrogen (TN) content and the carbon-to-nitrogen ratio (C:N) were determined for 146 

hosts and parasites, but due to logistical constraints this was not possible for the POM and MPB 147 

samples.  148 

The standard reference materials acetanilide (SD: δ15N 0.3‰, δ13C 0.1‰) and urea (δ15N 0.2‰, 149 

δ13C 0.1‰) were respectively used as a correction and control of the isotope ratios found in the 150 

samples. Isotope ratios of δ15N and δ13C were then expressed as permille (‰) differences from a 151 

standard reference material using the formula X = ((Rsample/Rstandard) – 1) * 1000, with R being the 152 

ratio between the heavy and light isotopes of nitrogen (15N:14N) and carbon (13C:12C). The 153 

reference material used for 15N was atmospheric nitrogen N2 and for 13C Vienna Peedee-154 

Belemnite Limestone (vPDB). 155 

 156 

Statistical analysis 157 

Normality and homoscedasticity of the data were checked with histograms, qqplots and boxplots 158 

(Zuur et al., 2010). Subsequently, differences in isotope ratios (δ13C and δ15N) among the trophic 159 

groups (POM, MPB, hosts, parasites) were analysed with ANOVA’s and post-hoc Tukey tests. 160 

Furthermore, comparisons and relationships between stable isotope data of parasites and 161 



corresponding hosts (Δδ13C and Δδ15N) and parasite intensity within the host were made using 162 

paired Student’s t-tests and Pearson correlations, respectively. All statistical analyses were 163 

performed in the statistical software environment R (R Development Core Team, 2015).   164 

 165 

Isotope mixing models 166 

The relative contribution of diet sources in the consumers’ diet can be determined by the use of 167 

stable isotope mixing models (i.e., Phillips and Gregg, 2003; Inger et al., 2006). In this study, we 168 

used an isotope mixing model to determine the relative contributions of host tissue (blue mussel) 169 

and host gut content (represented by POM and MPB) to the diet of the parasitic copepod M. 170 

orientalis. The package simmr (Parnell, 2016) was used to solve mixing equations for stable 171 

isotopic data within a Bayesian framework in R (R Development Core Team, 2015). This 172 

package allows the use of multiple diet sources with adjustable source specific trophic 173 

fractionation factors. In the mixing model, individual δ15N and δ13C values of the parasite 174 

samples were used as the consumer data. Diet source data included the mean (± SD) δ15N and 175 

δ13C values of the sources POM, MPB and blue mussel, and were corrected for trophic 176 

fractionation. This correction for trophic fractionation was done in two different ways: first, we 177 

used the standard trophic fractionation factors of 3.4‰ for δ15N and 1.0‰ for δ13C for all diet 178 

sources (Minagawa and Wada, 1984; Vander Zanden et al., 1997; Post, 2002), as controlled diet 179 

studies and thus taxon-specific fractionation factors are not (yet) available for the parasite. 180 

Second, we varied the trophic fractionation values used for δ15N between 1 and 4‰ to determine 181 

how much the estimated relative contribution of all diet sources changed with the fractionation 182 

factor. This second approach served as a sensitivity analysis to account for the unknown ‘real’ 183 



trophic fractionation factor of the parasites (see discussion for more details). Finally, we ran a 184 

third mixing model approach where we used mussel, POM and MPB data from four seasons 185 

from the long-term monitoring at our sampling site to identify whether seasonal changes of 186 

mussel, POM and MPB isotope signals would change our results.  187 

 188 

Results 189 

All trophic groups 190 

The four trophic groups (POM, MPB, mussel, parasite) differed significantly in δ15N (ANOVA; 191 

F3,73 = 588.16, p < 0.001) and δ13C (F3,73 = 200.41, p < 0.001). Values of δ15N were highest for 192 

the parasitic copepod and lowest for POM, while for δ13C MPB and POM had the highest and 193 

lowest values, respectively (Table 1; Fig. 2).  194 

 195 

Parasites and hosts 196 

Parasitic copepods were significantly enriched in δ15N and δ13C with respect to their host, the 197 

blue mussel (Student’s paired t-test; δ15N: t = 11.178, df = 27, p < 0.001; δ13C: t = 4.071, df = 27, 198 

p < 0.001; for means see Table 1). However, the levels of enrichment were relatively small 199 

(mean ± SD; 1.22 ± 0.58‰ for δ15N and 0.25 ± 0.32‰ for δ13C; Fig. 2). This minor enrichment 200 

of the parasite in relation to its host was not reflected in the differences in mean total nitrogen 201 

(TN) and total organic carbon content (TOC) in both tissues (Student’s t-test; TN (%): t = -1.361, 202 

df = 27, p = 0.185; TOC (%): t = -0.741, df = 27, p = 0.465; for means see Table 1).  203 

 204 

Furthermore, there was a significant positive correlation for δ13C between host and parasite 205 

(Pearson correlation, r = 0.63, p < 0.001; Fig. 3A), but this relationship did not exist for δ15N (r = 206 



-0.13, p = 0.509; Fig. 3B). Consequently, parasite enrichment (Δδ15N: parasite δ15N – mussel 207 

δ15N) scaled negatively with mussel δ15N mussel (Pearson correlation, r = -0.75, p < 0.001; Fig. 208 

4), while this relationship was not significant for δ13C enrichment (r = -0.29, p = 0.130). In 209 

addition, there was no relationship between the enrichment of the parasite (Δ15N: parasite δ15N – 210 

mussel δ15N) and the C:N ratio of the mussel (Pearson correlation, r = 0.06, p = 0.743). Finally, 211 

in our dataset parasite intensity in infected hosts did not affect the δ15N (r = 0.35, p = 0.064) nor 212 

δ13C (r = 0.07, p = 0.708) signals of the parasites and neither those of the hosts (δ15N: r = -0.07, p 213 

= 0.719, δ13C: r = -0.19, p = 0.334).   214 

 215 

Isotope mixing models 216 

In the first mixing model, we used standard trophic fractionation factors of 3.4‰ for δ15N and 217 

1.0‰ for δ13C for all diet sources (POM, MPB, mussel host). Results of this model showed that 218 

mussel tissue was the main contributor to the parasites’ diet (95% confidence interval; 45-52%), 219 

with lower contributions by POM (30-35%) and MPB (15-25%). When we varied the δ15N 220 

fractionation factors in the second run of the mixing models, the relative contributions of all diet 221 

sources changed (Table 2; Fig. 5) but for fractionation factors between 0 and 3.4‰ for δ15N this 222 

did not affect the dominance of mussel host tissue in the parasites’ diet. Only for a fractionation 223 

factor of 4‰ for δ15N, the model showed higher proportions of POM (37-42%) and MPB (26-224 

37%) in the diet of the parasite relative to blue mussel tissue (24-35%; Table 2; Fig. 5). Finally, 225 

using isotope values of mussels, POM and MPB from four seasons/months at our sampling site 226 

(March, June, September and December 2014) in the main mixing model (3.4‰ for δ15N and 227 

1.0‰ for δ13C) did not change the results qualitatively (Table S1). 228 

 229 



Discussion 230 

Our stable isotope analysis (SIA) showed that the intestinal parasitic copepod Mytilicola 231 

orientalis is enriched in δ15N and δ13C with respect to its blue mussel (Mytilus edulis) host. Yet, 232 

for both isotopes, the observed enrichment of the parasite compared to its host (1.2‰ for Δδ15N 233 

and 0.25‰ for Δδ13C) was considerably lower than the standard trophic fractionation factor of 234 

3.4‰ for Δδ15N and the standard discrimination factor of about 1‰ for Δδ13C, which are 235 

commonly used to distinguish between trophic levels (e.g. Minagawa and Wada, 1984; Vander 236 

Zanden et al., 1997; Post, 2002). Given that these values are also appropriate for the parasites, 237 

this would indicate that this intestinal parasite does not only feed on host tissue, but also on host 238 

gut content, suggesting a complex mix of a parasitic and commensal relationship in this new 239 

parasite-host association. Such a mixed diet was also indicated by the results of the stable isotope 240 

mixing modelling, a statistical method that is increasingly used by ecologists (reviewed by 241 

Phillips et al., 2014). Generally, the results of our mixing models (using standard fractionation 242 

factors) demonstrated that host tissue dominated with suspended particulate organic matter and 243 

microphytobenthos contributing to the parasites’ diet. However, alternatively, the relatively 244 

small signals of enrichment may not result from mixed diet contributions but could also suggest 245 

parasite specific lower trophic fractionation patterns. Indeed, smaller than standard enrichment 246 

patterns have previously been found in other parasite-host systems (O’Grady and Dearing, 2006; 247 

Dubois et al., 2009; Yurlova et al., 2014; Behrmann-Godel and Yohannes, 2015; Demopoulos 248 

and Sikkel, 2015), including parasites with a strict parasitic way of life such as trematodes 249 

(Dubois et al., 2009). To investigate the effect of potentially lower and higher than usual trophic 250 

fractionation factors, we conducted a second run of mixing models using a variation of trophic 251 

fractionation values (0-4‰). These models showed that mussels were still the dominant food 252 



source in all but the highest fractionation value (4‰). In addition, the positive correlation in 253 

carbon signatures between parasite and host suggests that the host represents a major carbon 254 

source for the parasitic copepod. All these results confirm that the parasite has, at least to a large 255 

extent, a parasitic trophic relationship with its host. This would also explain the negative effect 256 

of the parasite on host body condition which has been previously observed in controlled 257 

laboratory experiments (M. A. Goedknegt, unpublished results). However, in all the scenarios of 258 

the mixing models developed in our study, host tissue (M. edulis; proportions of 24-99%) was 259 

never the only resource of M. orientalis but host gut content, represented by suspended 260 

particulate organic matter (POM; 0 - 42%) and microphytobenthos (MPB: 0-37%), consistently 261 

contributed to the parasite’s diet. This suggests that the trophic relationship of the parasite with 262 

its new host is also partly commensalistic. The exact contributions of the diet under different 263 

environmental conditions as well as the resulting diet specific trophic fractionation factors 264 

remain to be experimentally studied (although this will be logistically challenging, see below).   265 

 266 

Our findings differ from the results of a stable isotope analysis of a congeneric species of M. 267 

orientalis, the copepod M. intestinalis, which also lives in the intestine of M. edulis. Gresty and 268 

Quarmby (1991) found δ15N values of the parasite that were, on average, 2.8‰ higher than for 269 

the blue mussel and suggested a parasitic trophic relationship between the parasite and its host. 270 

In their study, infected mussels (collection season unknown) were kept in aquaria that were filled 271 

with estuarine water and mussels were fed with the diatom Phaeodactilym trycornutum 2-3 272 

weeks prior to dissection, after which the mussel intestine was used in the SIA analysis. 273 

Methodological differences may underlie the diverging trophic fractionation factors in the two 274 

parasite species but it is also possible that the feeding behaviour of both congeneric copepods is 275 



different. Although M. intestinalis may not directly feed on host tissue but rather on sloughed-off 276 

cells of the intestine or on mucus produced by the host (Gresty and Quarmby, 1991), it may still 277 

mainly feed (indirectly) on its mussel hosts. In contrast, the much lower trophic enrichment 278 

(Δδ15N) of 1.2‰ observed in M. orientalis in our study might suggest a more complex mix of a 279 

parasitic and commensal relationship between this parasite and its new host. A direct comparison 280 

of the two parasites in future experimental stable isotope studies would be interesting and could 281 

help to identify potential differences in diet composition of the two related parasite species.  282 

 283 

In the present study, mussel diet sources were sampled at other sites (Marsdiep and Balgzand) 284 

than mussels and parasites (Mok). However, during flood the three areas are tightly connected, 285 

when water from the North Sea is feeding the intertidal areas of Balgzand and Mok via the same 286 

deep channel, the Marsdiep (Postma, 1954; Duran-Matute et al., 2014). Therefore, we assume 287 

that POM originating from this channel is incorporated in the mussel and parasite tissue 2-3 288 

months later (Dubois et al., 2007; Phillips et al., 2014). MPB samples were collected at the same 289 

time as the POM samples, but on a sampling site from a seasonal isotope monitoring study 290 

located on the tidal flats of Balgzand, on the opposite side of the channel feeding the Mok, where 291 

hosts with parasites were sampled. For the stable isotope mixing models, we considered the 292 

samples from Balgzand to be representative for the MPB available to the mussels. However, 293 

MPB is known to occur in higher abundances in the Mok than at Balgzand (4 g C m-2; Borsje, 294 

2006) and both areas are under the influence of different fresh water sources. The exact impact 295 

of these discharges on the mussels’ diet is yet unknown. Potential differences in the isotopic 296 

composition of MPB between the areas may introduce bias in our analyses, but given the 297 

relatively small range of isotope signals observed in MPB on local scales as observed in a recent 298 



large-scale isotope study along the entire Dutch Wadden Sea (Christianen et al., 2017; M. J. A. 299 

Christianen, pers. communications), we are confident that the spatial mismatch in sampling 300 

location is not adding a severe bias in MPB measurements. Besides spatial differences, 301 

seasonality may be another potential factor known to affect isotope signals over a wide range of 302 

trophic levels (Kang et al., 2006; Cabanellas-Reboredo et al., 2009; Ezgeta-Balić et al., 2014; de 303 

la Vega et al., 2016), and expected to affect δ15N and δ13C ratios of mussel diet sources, 304 

potentially confounding our mixing models. However, data from a seasonal isotope investigation 305 

in our study area from which the POM/MPB data originated, suggest a limited effect of 306 

seasonality on our results. Preliminary results of this seasonal study showed only small 307 

differences in isotope values between June and September for POM (Δδ15N = 0.01; Δδ13C = 0.9) 308 

and some larger differences for MPB (Δδ15N = 1.7; Δδ13C = 1.6; A. S.  Jung, pers. 309 

communications). These results demonstrate that the growing season of various phytoplankton 310 

species did not lead to strong changes in the isotopic signals of POM during the summer. For 311 

MPB on the other hand, the changes are larger and here a switch in microphytobenthos species 312 

composition may have caused a change of isotopic values during the summer. However, the 313 

seasonal change in isotopic values of these diet sources only affected the isotopic signal of the 314 

host Mytilus edulis to a small extent between June and September (Δδ15N = 0.1; Δδ13C = 0.9; A. 315 

S. Jung, pers. communications). As especially the δ15N values of mussels barely changed during 316 

the summer, we do not believe that seasonality effects are confounding our analyses, in particular 317 

with respect to our main focus of investigation, the trophic relationship of the parasite M. 318 

orientalis with its mussel host. Our inferences are further supported by stable isotope mixing 319 

models in which we used original data for POM and MPB from the isotope study of four 320 

different seasons to investigate how this would change the results. These analyses showed that 321 



mussels remain the main food source for the parasites, independent of the season (see electronic 322 

appendix Table S1). However, over the course of a year, the relative contributions of POM, MPB 323 

and mussel to the parasites’ diet may of course change with season and/or salinity and to what 324 

extend this actually happens should be a topic of future studies.  325 

 326 

For isotope mixing models, the use of appropriate discrimination factors is essential (Phillips et 327 

al., 2014) but, as mentioned above, parasites may show enrichments patterns different from free-328 

living species (O’Grady and Dearing, 2006; Dubois et al., 2009; Yurlova et al., 2014; 329 

Demopoulos and Sikkel, 2015) and we accounted for this using mixing models with different 330 

fractionation factors (see above). However, further diversion from standard enrichment patterns 331 

may arise from the universal pattern that trophic fractionation factors of consumers are known to 332 

scale negatively with the isotope ratio of their resource (Caut et al., 2009; Hussey et al., 2014). 333 

The same negative scaling was observed in our data with the trophic enrichment in M. orientalis 334 

decreasing with host δ15N. Such a negative scaling relationship between resource δ15N and 335 

consumer trophic enrichment has also been observed within individual predators and their prey 336 

(Caut et al., 2009; Dennis et al., 2010) besides the general negative scaling relationship among 337 

species observed in comparative studies (Caut et al., 2009; Hussey et al., 2014). However, the 338 

underlying mechanisms of both scaling relationships are not well understood (Caut et al., 2009; 339 

Hussey et al., 2014). In the case of M. orientalis, the issue is further complicated by the fact that 340 

δ13C values of the parasite correlated positively, as expected for a trophic relationship, with those 341 

of their hosts, but that, surprisingly, this relationship did not exist for δ15N. Here, the variation in 342 

δ15N values among individual M. orientalis samples was larger than the variation among 343 

individual mussels, resulting inevitably in a negative scaling relationship between parasite 344 



trophic enrichment (Δδ15N) and δ15N values of hosts. This suggests that M. orientalis might be 345 

relatively decoupled from its host nitrogen sources. However, why this is the case we can only 346 

speculate. Ratios of stable isotopes may change between parasite and host due to differential 347 

digestion or fractionation during assimilation and metabolic processes.  For example, the parasite 348 

could selectively use alternative or depleted nitrogen compounds stored within the mussels 349 

(Barret, 1981), bacteria in the gut of the mussel could cause substantial changes in the nitrogen 350 

cycle within the host or specialized nitrogen turnover processes within the parasite could cause 351 

potential decoupling between host and parasite. Alternatively, our sample choice of selecting 352 

mostly larger females (which was necessary to obtain sufficient parasite tissue for the SIA 353 

analysis), could also have affected the relatively large variation in δ15N we have observed in 354 

parasite samples. Possibly, females exhibit different stable isotope composition than males due to 355 

differences in body size (growth rates) and feeding rates, as well as due to egg production by 356 

females. In addition, the natural variation in M. orientalis intensities in the selected hosts could 357 

have influenced the variation in nitrogen among parasites, but this correlation was not significant 358 

in our analyses. Controlled laboratory experiments may be needed to explore the exact 359 

mechanisms behind the stable isotope patterns observed in the new M. orientalis-mussel 360 

association. However, such experimental approaches with parasites are logistically challenging. 361 

In particular in the case of the parasitic copepod in our study, it will be difficult to 362 

experimentally disentangle the relative contributions of host mussel gut content (POM and MPB) 363 

and host tissue to the parasite’s diet, as the parasite inhabits the gut of the mussel host and has 364 

access to both resources at the same time. Hence, if one feeds mussels with a different dietary 365 

source, the parasite will have access to the mussel diet and at the same time feed on mussel 366 

tissue. Thus, the parasite acquires isotopes that are a mix of both food sources. Also conducting 367 



the usual diet switch studies with parasites is difficult, as the parasites cannot live without their 368 

hosts. Hence, letting parasites feed on algae without a host is impossible and due to host 369 

specificity changing hosts is also an issue. Such logistical complications due the natural history 370 

of parasitic organisms are probably the reason why most isotope studies of parasites so far have 371 

not used any experimental approaches. However, these studies still show that also samples from 372 

the field can give some insight into how isotopes reflect trophic relationships of parasites and 373 

their hosts. In our case, the combination of careful interpretation of the data and sensitivity 374 

analyses using stable isotope mixing models allow for valid inferences in absence of 375 

experimental data. 376 

 377 

In conclusion, our study indicates that the invasive parasite M. orientalis mainly feeds on tissue 378 

of its new mussel host, but, to a lesser extent, also on the gut content of mussels (represented by 379 

particulate organic matter and microphytobenthos). This conclusion was also supported by stable 380 

isotope mixing models which used various trophic fractionation values to account for potentially 381 

different isotope enrichment patterns in parasitic compared to free-livings species. We propose 382 

that stable isotope analysis combined with additional stable isotope mixing models promises to 383 

provide a useful tool to explore the trophic relationships of new parasite-host associations that 384 

result from the increasing co-introductions of parasites with their hosts into new ecosystems.  385 
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