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ABSTRACT 19 

The algorithm for Proven and Young animals (APY) efficiently computes an approximated 20 

inverse of the genomic relationship matrix, by dividing genotyped animals in so-called core 21 

and non-core animals. The APY leads to computationally feasible single-step genomic Best 22 

Linear Unbiased Prediction (ssGBLUP) with a large number of genotyped animals, and was 23 

successfully applied to real single breed or line datasets. This study aimed to assess the 24 

quality of genomic breeding values (GEBV) when using the APY (GEBVAPY), in comparison 25 

to GEBV when using the directly inverted genomic relationship matrix (GEBVDIRECT), for 26 

situations based on crossbreeding schemes, including F1 and F2 crosses, such as the ones for 27 

pigs and chickens. Based on simulations of a three-way crossbreeding program, we compared 28 

different approximated inverses of a genomic relationship matrix, by varying the size and the 29 

composition of the core group. We showed that GEBVAPY were accurate approximations of 30 

GEBVDIRECT for multivariate ssGBLUP involving different breeds and their crosses. 31 

GEBVAPY as accurate as GEBVDIRECT were obtained when the core groups included animals 32 

from different breed compositions, and when the core groups had a size between the numbers 33 

of the largest eigenvalues explaining 98% and 99% of the variation in the raw genomic 34 

relationship matrix. 35 

 36 

Key words: single-step, genomic evaluation, APY 37 
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INTRODUCTION 39 

Single-step genomic Best Linear Unbiased Prediction (ssGBLUP) is currently the method of 40 

choice to predict genomic breeding values in many species (Legarra et al., 2014). The main 41 

reason is that ssGBLUP enables simultaneous use of phenotypes from genotyped and non-42 

genotyped animals by combining genomic and pedigree relationship matrices. An 43 

inconvenience of ssGBLUP is that the inverse of a dense genomic relationship matrix (𝐆) is 44 

required, leading to a soft limit of approximately 100,000 genotyped animals for the currently 45 

available computers (Misztal et al., 2014). 46 

Recently, Misztal et al. (2014, 2016) proposed the so-called Algorithm for Proven and Young 47 

animals (APY) to compute an approximated inverse of 𝐆 (𝐆𝐴𝑃𝑌
−1 ) for a large number of 48 

genotyped animals. The computation of 𝐆𝐴𝑃𝑌
−1  involves the inversion of a genomic relationship 49 

submatrix among a limited number of genotyped animals, called core animals, and the 50 

recursive computation of other coefficients for non-core animals. The APY  was successfully 51 

applied on (large) real datasets with animals originating from a single breed or line 52 

(Fragomeni et al., 2015; Lourenco et al., 2015; Masuda et al., 2016; Ostersen et al., 2016; 53 

Pocrnic et al., 2016b; Strandén et al., 2017). However, several livestock production systems, 54 

such as the ones for pigs and chickens, are based on well-structured crossbreeding schemes, 55 

generating production animals with a specific breed composition. In these cases, the 56 

ssGBLUP may include non-genotyped and genotyped animals from different breeds, as well 57 

as their crossbred progeny. Using the APY with such datasets is desirable for implementing 58 

ssGBLUP in crossbreeding schemes efficiently. 59 

The aim of this study was to assess the quality of genomic estimated breeding values (GEBV) 60 

when using 𝐆𝐴𝑃𝑌
−1 , in comparison to GEBV when using the direct inversion of 𝐆 ( 𝐆𝑑𝑖𝑟𝑒𝑐𝑡

−𝟏  ), for 61 

situations based on well-structured crossbreeding schemes that include genotyped animals 62 



4 
 

from a few different breeds and their F1 and F2 crosses. Influence of the selection strategy of 63 

the core animals and of the number of core animals, were also investigated. All analyses were 64 

based on simulated data.  65 

 66 

MATERIALS AND METHODS 67 

Single-step genomic Best Linear Unbiased Prediction 68 

The ssGBLUP method replaces the inverse of the pedigree relationship matrix for all animals 69 

(𝐀−1) with the inverse of the combined pedigree-genomic relationship matrix (𝐇−1), defined 70 

as (Aguilar et al., 2010; Christensen and Lund, 2010): 71 

𝐇−1 = 𝐀−1 + [
𝟎 𝟎
𝟎 𝐆−1 − 𝐀22

−1]        (1) 72 

where 𝐀22 is the pedigree relationship matrix for the genotyped animals, 𝐆 = (1 − 𝑤)𝐆𝑎 +73 

𝑤𝐀22  with 𝐆𝑎 being a genomic relationship matrix adjusted to be on the same scale as 𝐀22, 74 

and 𝑤 being the weight on the pedigree relationship matrix. Several approaches for 75 

computing 𝐆𝑎 by adjusting a raw genomic relationship matrix 𝐆∗ towards 𝐀22 were proposed 76 

in the literature (Powell et al., 2010; Vitezica et al., 2011; Christensen, 2012; Lourenco et al., 77 

2016). 78 

Highest computational costs for creating 𝐇−1 are the creation and the inversion of the dense 79 

matrices 𝐆 and 𝐀22. Additional computational costs also appear during solving of the mixed 80 

model equations due to an increase of non-zero elements in 𝐇−1, increasing the number of 81 

operations per iteration, e.g., of the preconditioned conjugate gradient used to solve the mixed 82 

model equations (Ostersen et al., 2016). 83 
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Sparse inversion of 𝑮 84 

The matrix 𝐆 can be divided into four submatrices as: 85 

𝐆 = [
𝐆𝑐𝑐 𝐆𝑐𝑛

𝐆𝑐𝑛
′ 𝐆𝑛𝑛

] 86 

where the subscript c refers to a group of genotyped animals called hereafter “core animals”, 87 

and  the subscript n refers to a second group of genotyped animals called hereafter “noncore 88 

animals”.  89 

Following Misztal (Misztal et al., 2014; Misztal, 2016), the inverse of 𝐆, 𝐆−1, can be 90 

approximated using the APY as follows: 91 

𝐆𝐴𝑃𝑌
−1 = [

𝐆𝑐𝑐
−1 + 𝐆𝑐𝑐

−1𝐆𝑐𝑛𝐌−1𝐆𝑐𝑛
′ 𝐆𝑐𝑐

−1 −𝐆𝑐𝑐
−1𝐆𝑐𝑛𝐌−1

−𝐌−1𝐆𝑐𝑛
′ 𝐆𝑐𝑐

−1 𝐌−1 ] 92 

where the matrix 𝐌 is a diagonal matrix of size of the number of noncore animals and with a 93 

diagonal element for the ith noncore animal equal to 𝐌𝑖𝑖 = 𝑑𝑖𝑎𝑔(𝐆𝑛𝑛𝑖𝑖
− 𝐆𝑐𝑖

′ 𝐆𝑐𝑐
−1𝐆𝑐𝑖) with 94 

𝐆𝑐𝑖 being the ith column of 𝐆𝑐𝑛. It is worth noting that the matrix 𝐌 is an approximation of the 95 

Schur complement of  𝐆𝑐𝑐, i.e., 𝐒 = 𝐆𝑛𝑛 − 𝐆𝑐𝑛
′ 𝐆𝑐𝑐

−1𝐆𝑐𝑛. Replacing 𝐌 by 𝐒 in the formula of 96 

𝐆𝐴𝑃𝑌
−1  would lead to the computation of the inverse of 𝐆, 𝐆−1. 97 

The APY only requires the computation of the submatrices 𝐆𝑐𝑐, 𝐆𝑐𝑛 and of the diagonal 98 

elements of 𝐆𝑛𝑛 , in addition to the inversion of the submatrix 𝐆𝑐𝑐. Thus, the computational 99 

costs of the APY are reduced in comparison to the setting up and the direct inversion of 𝐆. 100 

Also, the memory costs of the APY are reduced because only submatrices,  𝐆𝑐𝑐 and 𝐆𝑐𝑛, 101 

must be stored and the matrix 𝐆𝐴𝑃𝑌
−1   is sparse thanks to the diagonal matrix 𝐌−1.  102 
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Simulated data 103 

Populations. The assessment of the quality of the genomic predictions from  a sparse 104 

ssGBLUP in crossbreeding schemes was achieved by simulating a three-way crossbreeding 105 

program with random selection (Figure 1). Simulations of historic, purebred and crossbred 106 

recent populations were performed using the QMSim software (Sargolzaei and Schenkel, 107 

2009). For the historic population, 70 discrete random mating generations (i.e., generations 1 108 

to 70) with a constant size of 18,840 individuals with equal number of individuals from each 109 

sex  were simulated, followed by 10 generations (i.e., generations 71 to 80) in which the 110 

effective population size was gradually reduced to 390 individuals. The next 20 generations 111 

(i.e. generations 81 to 100) were simulated to gradually expand the population size to 18,840. 112 

The last generation (i.e. generation 100) included 90 males and 18,750 females. Matings for 113 

all generations were based on the random union of gametes, which were randomly sampled 114 

from the pools of male and female gametes. To simulate the three breed populations (hereafter 115 

referred to as breeds A, B, and C), three random samples were drawn from the generation 100 116 

of the historic population, each including 30 males and 6,250 females. Subsequently, within 117 

each breed, 100 generations (i.e. generations 101 to 200) of random mating were simulated 118 

before starting the three-way crossbreeding program (Figure 1). In each of the simulated 100 119 

generations of random mating, each female had one male and one female offspring.  120 

In the second step, a three-way crossbreeding program was simulated (Figure 1). Purebred 121 

(i.e., A, B, and C) animals that were used as founders of the pedigree (i.e., the first generation 122 

of the pedigree) were from generations 200. For each breed, A, B, and C, the next 9 discrete 123 

generations (i.e. generations 201 to 209) of purebred animals were simulated by means of 124 

random selection and matings while maintaining a constant size of 30 males and 6,250 125 

females. For mimicking a three-way crossbreeding program, from the generation 205 until the 126 
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generation 208, B and C purebred animals were randomly crossed to produce four generations 127 

(i.e. generations 206 to 209) of F1 animals, that is 30 BC crossbred males and 6,250 BC 128 

crossbred females. These BC crossbred animals were then randomly mated to males from 129 

breed A to produce four generations (i.e. generations 206 to 209) of F2 animals, called A(BC) 130 

crossbred animals. For each generation, 6,280 A(BC) crossbred animals were simulated 131 

(Figure 1). Purebred animals that were used as parents of crossbred animals could also be 132 

parents of purebred animals in the next generation. A total of 5 replicates were simulated 133 

using the QMSim software. 134 

Genotypes. The genome was simulated using the QMSim software, simultaneously with the 135 

simulation of the historic, purebred and crossbred recent populations. The genome consisted 136 

of 18 chromosomes designed to resemble the Sus Scrofa genome with a SNP density that was 137 

comparable to that of a 60k SNP chip. The SNP positions were randomized across the 138 

genome and a recurrent mutation rate of 2.5x10-5, as well as 1 mean crossover per 1 Morgan, 139 

were assumed. All SNPs that segregated in the last historical generation (i.e., generation 100) 140 

and with a minor allele frequency (MAF) higher than or equal to 0.05 were selected and used 141 

to simulate the genotypes of the purebred and crossbred animals. In addition to the SNPs, 142 

4,500 QTL were simulated, and their positions were also randomized across the genome. 143 

Mutation rate and MAF of the QTL were the same as the ones for the simulated SNPs. 144 

Phenotypes. For all purebred and crossbred animals, phenotypes for the breed composition to 145 

which they belonged were simulated under additive gene action using a custom Fortran 146 

program. This resulted in five traits: one trait for each of the purebred performances A, B and 147 

C, and one trait for each of the crossbred performances BC and A(BC). Genetic correlations 148 

between traits were randomly sampled in the range [0.2-0.8] from a uniform distribution. 149 

Simulated genetic correlations between purebred and crossbred traits were in the lowest range 150 
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of reported values in the literature as reviewed by Wientjes and Calus (2017) (Table 1).  151 

Heritabilities (ℎ𝑖
2) were randomly sampled in the range of [0.2-0.4] from a uniform 152 

distribution. Residual covariances were set to zero, as they would be in practice, because each 153 

animal has a phenotype for one of the five traits only. The same genetic correlations and 154 

heritabilities were used in all replicates, and are reported in Table 1.  155 

For each animal and for each of the five traits, a true breeding value (TBV) was simulated by 156 

summing a polygenic effect and the multiplication of the simulated allele substitution effects 157 

with the genotypes of the 4,500 QTL coded as 0, 1 and 2. This genotype multiplication 158 

allowed different genetic levels across breeds for the same trait because QTL allele 159 

frequencies differ across breeds. For each trait, the polygenic effect of each individual was 160 

equal to the sum of the average of polygenic effects of the parent and a Mendelian sampling 161 

term. The Mendelian sampling terms for the five traits were sampled from a multinormal 162 

distribution with means of 0 and variances equal to the Mendelian sampling variances 163 

(Mrode, 2005). Correlations between the simulated Mendelian sampling terms were assumed 164 

to be equal to the genetic correlations. The variance of the polygenic effect of each ith trait 165 

was assumed to be equal to 5% of the total additive genetic variance (𝜎𝐴𝑖
2 ).  166 

The allele substitution effects of QTLs were sampled from a multinormal distribution with 167 

means of 0, and variances of 1. The correlations between allele substitution effects of the QTL 168 

underlying the 5 traits were equal to the genetic correlations. For each trait, the genetic 169 

variance explained by all QTLs was computed as the sum of the variances across all QTLs, 170 

assuming no correlation between the QTLs. The simulated additive genetic variance of each 171 

jth QTL was calculated as 𝜎𝑔𝑗
2 = 2𝑝𝑗(1 − 𝑝𝑗)𝑎𝑗

2, where 𝑝𝑗 is the allele frequency and 𝑎𝑗 is the 172 

allele substitution effect of jth QTL. For each trait, the allele substitution effects were rescaled 173 

to obtain an additive genetic variance explained by the QTLs (𝜎𝑔
2) equal to 1. The part of the 174 
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total additive genetic variance explained by the QTLs was assumed to be equal to 95% for 175 

each ith trait. Finally, the phenotypes for each trait for each animal were generated by 176 

summing the TBV and a residual error sampled from a normal distribution with a mean 0 and 177 

a variance equal to (
1

ℎ𝑖
2 − 1) ∗ 𝜎𝐴𝑖

2 . 178 

Datasets. For all the analyses, the pedigree included all the animals simulated for the creation 179 

of the three-way crossbreeding program. The phenotype dataset included 126,000 records. 180 

Among all records, 100,000 records were associated with purebred (i.e. A, B, and C) animals 181 

randomly sampled among all purebred animals from generations 204 until 208.  A total of 182 

16,000 records were associated with A(BC) crossbred animals randomly sampled among all 183 

A(BC) crossbred animals from generations 206 until 209. Finally, 10,000 records were 184 

associated with BC crossbred dams. Average numbers of purebred and crossbred animals per 185 

generation with a phenotype are given in the E-Supplements Table S1. 186 

The genotype dataset included 89,000 genotypes. This included all 26,000 phenotyped BC 187 

and A(BC) crossbred animals. A total of 48,000 genotypes were from purebred (i.e. A, B, and 188 

C) animals randomly sampled among all purebred animals from the generations 205 until 208, 189 

regardless whether they had a phenotype or not. A total of 15,000 genotypes were from 190 

purebred (i.e. A, B, and C) animals randomly sampled among all purebred animals from 191 

generation 209. These 15,000 animals did not have phenotypes and are hereafter considered 192 

as selection candidates. Average numbers of purebred and crossbred animals per generation 193 

with a phenotype and a genotype are given in the E-Supplements Table S2. 194 

 195 

Model and scenarios evaluated 196 
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Five-trait ssGBLUP was performed. The model for the ith trait (i = A, B, C, BC, A(BC)) was 197 

as follows: 198 

𝐲𝑖 = 𝟏𝜇𝑖 + 𝐖𝑖𝐚𝑖 + 𝐞𝑖 199 

where, for the ith trait, 𝐲𝑖 is the vector of records, 𝜇𝑖 is the general mean, 𝐚𝑖 is the vector of 200 

additive genetic effects, 𝐞𝑖 is the vector of residuals, the vector 𝟏 is a vector of 1’s relating the 201 

records to the general mean, and 𝐖𝑖 is an incidence matrix relating the records to the animals. 202 

The variance components used for the simulations were used for the five-trait ssGBLUP. The 203 

vector of additive genetic effects 𝐚 = [𝐚𝐴
′ 𝐚𝐵

′ 𝐚𝐶
′ 𝐚𝐵𝐶

′ 𝐚𝐴(𝐵𝐶)
′

]′ followed a multivariate 204 

normal (MVN) distribution 𝑀𝑉𝑁(𝟎, 𝐇−𝟏⨂𝚪) where ⨂ is the Kronecker product, 𝚪 is the 205 

additive genetic (co)variance matrix, and the vector of residuals 𝐞 =206 

[𝐞𝐴
′ 𝐞𝐵

′ 𝐞𝐶
′ 𝐞𝐵𝐶

′ 𝐞𝐴(𝐵𝐶)
′

]′ followed a MVN distribution 𝑀𝑉𝑁(𝟎, 𝐈⨂𝐑) where 𝐑 is the 207 

residual (co)variance matrix. 208 

Using all the 89,000 genotypes, the matrix 𝐆 required for the computation of  𝐇−𝟏 was 209 

computed without breed-specific adjustments, as suggested by Lourenco et al. (2016). This 210 

matrix was equal to 𝐆 = 0.95𝐆𝑎 + 0.05𝐀22 with the adjusted genomic relationship matrix 𝐆𝑎 211 

computed as follows: 212 

𝐆𝑎 = (1 − 𝑓𝑝̅)𝐆∗ + 2𝑓𝑝̅𝐉 213 

where 𝐆∗ is a raw genomic relationship matrix computed following the first method of 214 

VanRaden (2008) using current allele frequencies computed from all genotyped animals, 𝐉 is a 215 

matrix of ones, and 𝑓𝑝̅ is the average pedigree inbreeding coefficient across (core) genotyped 216 

animals. The matrix 𝐇−1 was constructed in two different ways. First, the complete 𝐆 was 217 

directly inverted to obtain 𝐆𝑑𝑖𝑟𝑒𝑐𝑡
−𝟏 . Second, 𝐆𝑑𝑖𝑟𝑒𝑐𝑡

−𝟏  was replaced by 𝐆𝐴𝑃𝑌
−1 . Because the APY 218 



11 
 

relies on the size and the composition of the set of core animals (Misztal et al., 2014), we 219 

investigated different numbers of core animals and different strategies to select the core 220 

animals. For all the strategies, the selection candidates were allowed to be considered as core 221 

animals. The number of core animals were 4,000, 6,000, 8,000, 10,000, and 13,000. For each 222 

size, four different strategies were applied to select the core animals. The core animals were 223 

randomly sampled 1) among all breed A genotyped animals (called “Breed A”), 2) among all 224 

purebred genotyped animals (called “Purebred”), or 3) among all purebred and crossbred 225 

genotyped animals (called “Purebred + Crossbred”). For the fourth strategy, a QR 226 

decomposition with pivoting of the transposed genotype matrix was applied to the animals. 227 

The QR decomposition with pivoting returns a permutation matrix such that the diagonal 228 

elements of the upper triangular matrix 𝐑 are decreasing (Golub and Van Loan, 1996). The 229 

genotyped animals corresponding to the highest diagonal elements of the matrix 𝐑 were 230 

chosen as core animals (called “QR”). The aim of this fourth strategy was to select core 231 

animals such that the conditioning of the mixed model equations was improved, resulting in 232 

faster convergence, in comparison to the other three strategies (Fernando et al., 2016). All 233 

computations and analyses were run using our own custom programs for QR decomposition 234 

and statistical analyses, calc_grm (Calus and Vandenplas, 2016) for the computation of the 235 

different relationship matrices (i.e., 𝐆𝑑𝑖𝑟𝑒𝑐𝑡
−𝟏 , 𝐆𝐴𝑃𝑌

−𝟏 , and 𝐀22
−1), and MiXBLUP (ten Napel et al., 236 

2016) for predicting the different GEBV. The matrices (𝐆𝑑𝑖𝑟𝑒𝑐𝑡
−𝟏 − 𝐀22

−1) and (𝐆𝐴𝑃𝑌
−𝟏 − 𝐀22

−1) 237 

were provided to MiXBLUP as external matrices. 238 

Criteria 239 

We evaluated the prediction of GEBV of genotyped selection candidates for the purebred A, 240 

B, and C performances and the crossbred A(BC) performances, for each set of core animals 241 

and each breed separately. Three criteria were computed from the GEBV of the selection 242 
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candidates. First, the ratios between the accuracies of GEBVAPY from alternative core groups 243 

and the accuracies of GEBVDIRECT (i.e., from 𝐆𝑑𝑖𝑟𝑒𝑐𝑡
−1 ), were computed. Accuracies were 244 

computed as the Pearson correlation between GEBV and TBV.  A ratio of accuracies smaller 245 

than 1 means that GEBVAPY is less accurate than GEBVDIRECT. Second, regression 246 

coefficients of TBV on GEBVAPY and on GEBVDIRECT (hereafter called bias) were computed. 247 

Third, ratios between mean squares errors (MSE)  of GEBVAPY and MSE of GEBVDIRECT, 248 

were computed. The MSE were computed as the mean of the squared differences between 249 

GEBV and TBV. All results were averaged across five replicates. Tukey’s honest significant 250 

difference test (Tukey, 1949) was used to assess significance of differences between scenarios 251 

at a 5% significance level. 252 

For situations with single breeds, the number of required core animals that gives accurate 253 

GEBV, can be determined as the number of largest eigenvalues explaining 98-99% of the 254 

variation in 𝐆∗ (Misztal, 2016; Pocrnic et al., 2016a; b). For investigating this relationship in 255 

situations involving multiple breeds and their F1 and F2 crosses, we computed the numbers of 256 

eigenvalues that explained 98% and 99% of the variation in 𝐆∗ that included all the 89,000 257 

genotyped purebred and crossbred animals. Computations were performed with calc_grm 258 

(Calus and Vandenplas, 2016). For each scenario, the number of eigenvalues were compared 259 

to the number of core animals needed such that the accuracies of GEBVAPY were equal to or 260 

higher than 99% of the accuracy for GEBVDIRECT for both purebred and crossbred 261 

performance traits.  262 

 263 

RESULTS 264 

Characteristics of simulated data 265 
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The simulation yielded  three breeds, A, B, and C, that were highly separated, as shown by the 266 

projections of genomic relationships into the two first eigenvectors for the first replicate 267 

(Figure 2). The estimated global Wright’s Fst statistics, that is a measure to quantify the level 268 

of genetic differentiation between the breeds, was equal to 0.35 on average across the five 269 

replicates. The global Wright’s Fst statistics were estimated from the genotypes of all purebred 270 

animals of the generation 204 with the software Genepop (4.2) (Raymond and Rousset, 1995; 271 

Rousset, 2008). The mean absolute difference in allele frequencies between breeds was about 272 

0.34 on average across the five replicates. All these observations suggest three genetically 273 

divergent populations. The average linkage disequilibrium, expressed as r2 (Hill and 274 

Robertson, 1968), between adjacent SNP pairs with MAF > 0.05 and across chromosomes, 275 

was 0.25  for the three breeds on average across the five replicates. Genomic relationship 276 

matrices required for the singular value decomposition and genomic predictions were based 277 

on 52,518 SNPs on average across the five replicates. 278 

Composition of the core groups 279 

Four selection strategies were applied to compose the core groups: (1) the core animals were 280 

randomly selected among only breed A animals, (2) the core animals were randomly selected 281 

among purebred animals of breed A, B, and C, (3) the core animals were randomly selected 282 

among purebred animals of breed A, B, and C, and crossbred BC and A(BC) animals, and (4) 283 

the core animals were selected based on a QR decomposition of the genotype matrix. For the 284 

four selection strategies, Figure 3 shows the proportions of core animals across the 285 

generations and across the breed compositions of a randomly chosen replicate for the scenario 286 

with 8,000 core animals. Similar results were obtained for the other replicates and sizes of 287 

core groups. Proportions of core animals were similar across the generations, and across the 288 

breed compositions for the first three selection strategies. For the selection strategy based on 289 
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QR decomposition, core animals were unequally spread across all generations and breed 290 

compositions: the highest proportions of core animals selected within a generation and a breed 291 

composition were observed among the crossbred A(BC) animals and the first generation of 292 

genotyped purebred animals (Figure 3). 293 

Quality of GEBV with 𝑮𝒅𝒊𝒓𝒆𝒄𝒕
−𝟏  294 

On average 5,000 genotyped selection candidates per breed were considered for computing 295 

accuracy, bias, and MSE (Table 2). For purebred performance, the accuracies were between 296 

0.79 and 0.81. For crossbred performance, the accuracies were between 0.63 and 0.71. All 297 

sets of GEBV were almost unbiased (i.e., values for bias were close to 1) and had values of 298 

MSE close to 0 (Table 2). 299 

Quality of GEBV with only breed A core animals 300 

When the core groups included only breed A animals, GEBVAPY were predicted as accurately 301 

as GEBVDIRECT for the breed A selection candidates for both purebred and crossbred 302 

performance traits, as shown by the ratios between the accuracies of GEBVAPY and of 303 

GEBVDIRECT (Figure 4). In addition, GEBVAPY were unbiased, and MSE was close to 0 304 

(Figure 4; Table 3; Table 4; E-Supplements Tables S3-S6). However, GEBVAPY were less 305 

accurate and more biased than GEBVDIRECT for the breed B and breed C selection candidates, 306 

as shown by low ratios of accuracies, and  high values for bias and ratios of MSE of 307 

GEBVAPY (Figure 4; Table 3; Table 4; E-Supplements Tables S3-S6). Across core groups, 308 

GEBVAPY were from 18% to 40% less accurate than GEBVDIRECT, and  MSE of GEBVAPY 309 

were between 16 and 81% higher than the corresponding MSE of GEBVDIRECT.  310 

Quality of GEBV with core animals of different breed compositions 311 
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Based on the three performance criteria, ratios of accuracies, bias, and ratios of MSE, the 312 

scenarios with core animals of different breed compositions outperformed the scenarios with 313 

only breed A core animals for both purebred and crossbred performance traits. Use of core 314 

groups with core animals of different breed compositions allowed the prediction of GEBVAPY 315 

that were unbiased, and (almost) as accurate as GEBVDIRECT, for all selection candidates and 316 

performance traits. Indeed, the regression coefficients of TBV on GEBVAPY were close to 1 317 

(Table 3); the ratios of accuracies were higher than 0.97 for the purebred performance trait, 318 

and higher than 0.94 for the crossbred performance trait (Figure 5; Figure 6; E-Supplements 319 

Table S3); and the MSE of GEBVAPY were similar to MSE of GEBVDIRECT (Table 4; E-320 

Supplements Table S6). Ratios of accuracies close to, or higher than, 0.99 were then obtained 321 

for both traits when at least 8,000 core animals were used. The corresponding Pearson 322 

correlations between GEBVAPY and GEBVDIRECT, which is usually used as criteria in studies 323 

on real datasets (e.g., Ostersen et al., 2016; Strandén et al., 2017), were about 0.995 (E-324 

Supplements). It is worth noting that the core size of 8,000 animals is between the numbers of 325 

eigenvalues that explained 98% and 99% of the variation in 𝐆∗, that is about 6,498 and 9,213 326 

eigenvalues on average across the five replicates, respectively (Figure 4-Figure 6). 327 

Comparison of the three performance criteria for the purebred performance trait showed no 328 

difference among the three core selection strategies involving core animals of different breed 329 

compositions (Figure 5;Table 3; Table 4; E-Supplements Tables S3-S6). For the crossbred 330 

performance trait, the scenarios with purebred and crossbred core animals, either randomly 331 

chosen or chosen based on a QR decomposition, slightly outperformed the scenarios with 332 

only purebred core animals (Figure 6). However, these outperformances were not always 333 

significant (E-Supplements). 334 

Quality of GEBV for core and non-core selection animals 335 
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Table 5 shows ratios of accuracies and of MSE, and the regression coefficients for the 336 

scenario using 8000 core animals randomly selected among purebred and crossbred animals. 337 

The regression coefficients and ratios of MSE for GEBVAPY of core selection candidates and 338 

of non-core selection candidates were similar. Ratios of accuracies for non-core selection 339 

candidates were slightly lower than the corresponding ratios for the core selection candidates, 340 

meaning that GEBVAPY of non-core selection candidates were slightly less accurate than those 341 

of core selection candidates, in comparison to GEBVDIRECT. However, the differences 342 

between accuracies of GEBVAPY of core and of non-core selection candidates were not 343 

significant following a Welch’s t-test (Welch, 1947) with a 5% significance level. 344 

Convergence of ssGBLUP with alternative core groups 345 

Convergence of ssGBLUP with alternative core groups of 8,000 animals were compared 346 

against ssGBLUP using 𝐆𝑑𝑖𝑟𝑒𝑐𝑡
−1 . Number of iterations of ssGBLUP using 𝐆𝐴𝑃𝑌

−1  were 347 

expressed as the ratio to the number of iterations of ssGBLUP using 𝐆𝑑𝑖𝑟𝑒𝑐𝑡
−1 . Average values 348 

of this ratio across the 5 replicates (SD within brackets), were 0.85 (0.39) using breed A core 349 

animals, 1.05 (0.33) using purebred core animals, 0.95 (0.31) using purebred and crossbred 350 

animals, and 0.94 (0.30) using core animals selected based on a QR decomposition of the 351 

genotype matrix. In comparison to ssGBLUP with 𝐆𝑑𝑖𝑟𝑒𝑐𝑡
−1 , use of the APY led to similar 352 

number of iterations to reach convergence. The selection strategy based on the QR 353 

decomposition led to similar convergence as the other selection strategies. 354 

 355 

DISCUSSION 356 

In this study, we showed that GEBVAPY were accurate approximations of  GEBVDIRECT for 357 

multivariate ssGBLUP involving multiple breeds and their crosses. GEBVAPY as accurate as 358 
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GEBVDIRECT were obtained when the core groups included animals from different breed 359 

compositions, and when the core groups had a size between the numbers of the largest 360 

eigenvalues explaining 98% and 99% of the variation in the raw (i.e., before blending with the 361 

pedigree relationship matrix) genomic relationship matrix (𝐆∗).  362 

Composition of the core groups and selection strategies 363 

The quality of the GEBVAPY for both purebred and crossbred performance traits was close to 364 

the GEBVDIRECT as long as all classes of purebred and crossbred animals were well 365 

represented in the core group. This was not the case if not all breeds were included in the core 366 

group. Such a situation where core animals are only from one breed, could be obtained with a 367 

naive random selection strategy on a large genotype dataset that is dominated by one breed.  368 

Due to the properties of the simulated datasets, e.g, similar numbers of genotyped animals per 369 

breed and per generation, a random selection of core animals across the full dataset led to 370 

similar proportions of core animas per breed composition and per generation. Based on a 371 

study involving single breed ssGBLUP, Ostersen et al. (2016) advised that core groups should 372 

represent all generations. Including animals from each generation in the core group was also 373 

recommended by Bradford et al. (2017), especially when genotyped animals had incomplete 374 

pedigree, such as unknown parents. Incomplete pedigree could be common in crossbreeding 375 

schemes, because pedigree data for crossbred animals in field conditions is difficult to collect 376 

(Ibánẽz-Escriche et al., 2009). From our results with the selection strategy based on QR 377 

decomposition with pivoting, it seems that all generations, and all breed compositions, do not 378 

have to be similarly represented in core groups. Indeed, in comparison to a random selection, 379 

the selection strategy based on QR decomposition included higher proportions of crossbred 380 

A(BC) animals and of the first generation of genotyped purebred animals selected as core 381 

animals. One possible explanation is that genotypes of the crossbred A(BC) animals and of 382 
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the first generation of genotyped purebred animals include a large proportion of the 383 

independent chromosome segments from all the genotyped purebred and crossbred animals. 384 

However, core groups including animals that were randomly selected and that represented 385 

similarly all generations and all breed composition gave results similar to the numerical 386 

strategy based on QR decomposition, which is computationally expensive. Therefore, a 387 

random selection of core animals by ensuring that core animals represent similarly all 388 

generations and all breed compositions is advisable for the implementation of the APY in 389 

well-structured crossbreeding schemes as investigated in this study. More complex situations, 390 

such as multibreed (beef) cattle populations with a large variation in the observed breed 391 

compositions, would probably benefit from more advanced APY core selection approaches 392 

(Mäntysaari et al., 2017), such as the proposed numerical strategy based on QR 393 

decomposition. 394 

Size of the core groups 395 

For single breed ssGBLUP, Pocrnic et al. (2016a; b)  showed that the size of the core groups 396 

required to predict GEBVAPY at least as accurate as GEBVDIRECT was related to the 397 

dimensionality of the genomic information. In their studies, the most accurate GEBVAPY were 398 

obtained when the core size was at least equal to the number of largest eigenvalues that 399 

explained 98% of the variation in the raw genomic relationship matrix 𝐆∗. In this study, 400 

GEBVAPY as accurate as GEBVDIRECT (i.e., with correlations between them  ≥0.995) were 401 

obtained when the core sizes were between the numbers of largest eigenvalues that explained 402 

98% and 99% of the variation in the raw genomic relationship matrix 𝐆∗, provided that the 403 

composition of the core group represented the variation in all the breeds and crosses. Using a 404 

multibreed beef cattle population, Mäntysaari et al. (2107) also showed that a core size larger 405 

than the number of largest eigenvalues that explained 98% of the variation in 𝐆∗ was needed 406 
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to get correlations between GEBVAPY and GEBVDIRECT close to 1. Furthermore, Mäntysaari et 407 

al. (2107) observed that the correlation between GEBVAPY and GEBVDIRECT depended on the 408 

composition of the core groups, even with a core size close to the number of largest 409 

eigenvalues that explained 98% of the variation in 𝐆∗. All these results suggest that the core 410 

size involving multiple breeds and crosses can be also approximated based on the 411 

dimensionality of the genomic information of all breeds and crosses together to ensure that 412 

the core size is optimal. It should be noted, however, that in crossbreeding situations 413 

relationships between the core size, the dimensionality of the genomic information, and some 414 

population parameters (e.g., number of independent segments, effective population size) is not 415 

as straightforward in as in single breed situations (Pocrnic et al., 2016a; b).  416 

 417 

CONCLUSIONS 418 

We showed that the APY algorithm gives results equivalent to those obtained with the direct 419 

inversion of the genomic relationship matrix when genotyped animals belong to a few 420 

different breeds and their F1 and F2 crosses, such as commonly observed in pig and poultry 421 

breeding programs. For such situations, we suggest that core animals could be randomly 422 

selected among all purebred and crossbred genotyped animals, while ensuring that they  423 

represent all generations and all breed compositions. It was also shown that selecting a 424 

number of core animals equal to the number of largest eigenvalues needed to explain 98-99% 425 

of the variation on the raw genomic relationship matrix, is sufficient to achieve good quality 426 

of GEBV in crossbreeding schemes. 427 

  428 
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E-Supplements 516 

Table S1 Number of purebred and crossbred animals with a phenotype per generation 517 

(average for the 5 replicates; SD within brackets). 518 

 519 

Table S2 Number of purebred and crossbred animals with a phenotype and a genotype per 520 

generation (average for the 5 replicates; SD within brackets). 521 

 522 

Table S3. Relative accuracies (average for the 5 replicates; SD within brackets) of GEBV 523 

from alternative core groups for the purebred (PB) and crossbred (CB) performance for 524 

genotyped selection candidates. 525 

 526 

Table S4. Pearson correlations (average for the 5 replicates; SD within brackets) between 527 

GEBV for genotyped selection candidates from alternative core groups1 and GEBV from the 528 

direct inversion of G. 529 

 530 

Table S5. Regression coefficients (average for the 5 replicates; SD within brackets) of TBV 531 

on GEBV from alternative core groups and the direct inversion of G for genotyped selection 532 

candidates. 533 

 534 
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Table S6. Relative mean squares errors (average for the 5 replicates; SD within brackets) of 535 

GEBV from alternative core groups for genotyped selection candidates. 536 
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Figure 1. Schematic representation of the simulation. The crossbreeding program started at 555 

generation 200 (generation numbers in bold). The number of males (M) and females (F) per 556 

generation and per breed (A, B, and C), or per cross (BC, and A(BC)), are reported within 557 

brackets. Blue arrows denote the sires and dams of the next generation; red arrows denote the 558 

dams of the next generation; green arrows denote the sires of the next generation. 559 

 560 

Figure 2. Projections of genomic relationships for purebred (A, B, and C) and crossbred (BC 561 

and A(BC)) genotyped animals into the two first eigenvectors for the first replicate. 562 

 563 

Figure 3. Proportions of core animals per generation and breed composition of one replicate 564 

for the scenario using 8,000 core animals. Core animals were selected using four different 565 

strategies: 1) only from breed A animals (Breed A), 2) from purebred animals of breed A, B 566 

and C (PB), 3) from purebred animals of breed A, B and C, and crossbred BC and A(BC) 567 

animals (PB + CB), and (4) chosen based on a QR decomposition of the genotype matrix 568 

(QR). Darker colours represent higher proportions of core animals per generation and breed 569 

composition. 570 

 571 

Figure 4. Relative correlations of GEBV from different sizes of core groups with only breed 572 

A animals. Relative correlations for the purebred performance (PP) and crossbred 573 

performance (CP) traits are defined as the ratio between the accuracies of GEBV from 574 

alternative core groups and the corresponding accuracies of GEBV from 𝐆𝑑𝑖𝑟𝑒𝑐𝑡
−1 . Vertical 575 

columns depict the number of eigenvalues that explained 98% and 99% of the variation in 𝐆∗. 576 

Results are averages for the 5 replicates. 577 
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 578 

 579 

Figure 5. Relative correlations of GEBV from alternative core groups for the purebred 580 

performance traits. Core groups include randomly selected purebred and crossbred animals 581 

(Purebred + Crossbred core), randomly selected purebred animals (Purebred core), and 582 

animals selected based on a QR decomposition of the genotype matrix (QR core). Relative 583 

correlations are defined as the ratio between the accuracies of GEBV from alternative core 584 

groups and the corresponding accuracies of GEBV from 𝐆𝑑𝑖𝑟𝑒𝑐𝑡
−1 . Vertical columns depict the 585 

number of eigenvalues that explained 98% and 99% of the variation in 𝐆∗. Results are 586 

averages for the 5 replicates. 587 

 588 

Figure 6. Relative correlations of GEBV from alternative core groups for the crossbred 589 

performance trait. Core groups include randomly selected purebred and crossbred animals 590 

(Purebred + Crossbred core), randomly selected purebred animals (Purebred core), and 591 

animals selected based on a QR decomposition of the genotype matrix (QR core). Relative 592 

correlations are defined as the ratio between the accuracies of GEBV from alternative core 593 

groups and the corresponding accuracies of GEBV from 𝐆𝑑𝑖𝑟𝑒𝑐𝑡
−1 . Vertical columns depict the 594 

number of eigenvalues that explained 98% and 99% of the variation in 𝐆∗. Results are 595 

averages for the 5 replicates. 596 

  597 
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Tables 598 

Table 1. Heritabilities (diagonal) and genetic correlations (off-diagonal) among the five 599 

simulated traits. 600 

Trait Purebred A Purebred B Purebred C Crossbred BC Crossbred A(BC) 

Purebred A 0.28     

Purebred B 0.46 0.39    

Purebred C 0.27 0.80 0.22   

Crossbred BC 0.33 0.58 0.30 0.36  

Crossbred A(BC) 0.55 0.31 0.26 0.69 0.23 

  601 
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Table 2. Accuracies, bias, and mean square errors (MSE) of GEBV from the direct inversion 602 

of 𝐆 (average for the 5 replicates; SD within brackets). 603 

Selection 

candidates 

Number Purebred performance Crossbred performance 

 Accuracy Bias MSE Accuracy Bias MSE 

Breed A 
5010 

(24) 

0.81 

(0.02) 

1.04 

(0.05) 

1.11 

(0.69) 

0.68 

(0.04) 

0.98 

(0.08) 

0.68 

(0.51) 

Breed B 
4975 

(30) 

0.85 

(0.01) 

1.06 

(0.03) 

1.16 

(0.81) 

0.63 

(0.02) 

0.95 

(0.04) 

0.90 

(0.43) 

Breed C 
5016 

(45) 

0.79 

(0.04) 

1.04 

(0.03) 

1.42 

(0.74) 

0.71 

(0.04) 

1.04 

(0.07) 

1.35 

(1.18) 

  604 
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Table 3. Regression coefficients (average for the 5 replicates; SD within brackets) of TBV on 605 

GEBV from alternative core groups1 for genotyped selection candidates. 606 

Number of core 

animals 

Purebred performance Crossbred performance 

Breed 

A 

PB PB+CB QR Breed 

A 

PB PB+CB QR 

Breed A selection candidates    

4000 1.04 

(0.06) 

1.05 

(0.06) 

1.06 

(0.06) 

1.06 

(0.06) 

0.90 

(0.08) 

0.96 

(0.08) 

0.99 

(0.09) 

0.99 

(0.08) 

8000 1.04 

(0.05) 

1.05 

(0.06) 

1.05 

(0.06) 

1.05 

(0.06) 

0.92 

(0.08) 

0.97 

(0.08) 

0.99 

(0.08) 

0.99 

(0.08) 

13000 1.04 

(0.05) 

1.05 

(0.05) 

1.05 

(0.05) 

1.05 

(0.05) 

0.93 

(0.08) 

0.97 

(0.08) 

0.98 

(0.08) 

0.98 

(0.08) 

Breed B selection candidates    

4000 1.49 

(0.08) 

1.06 

(0.03) 

1.06 

(0.02) 

1.07 

(0.03) 

1.62 

(0.11) 

0.91 

(0.08) 

0.93 

(0.05) 

0.94 

(0.06) 

8000 1.46 

(0.08) 

1.06 

(0.02) 

1.06 

(0.03) 

1.06 

(0.03) 

1.58 

(0.13) 

0.93 

(0.06) 

0.95 

(0.05) 

0.95 

(0.04) 

13000 1.43 

(0.09) 

1.06 

(0.03) 

1.06 

(0.03) 

1.06 

(0.03) 

1.54 

(0.14) 

0.93 

(0.05) 

0.95 

(0.05) 

0.95 

(0.04) 

Breed C selection candidates    

4000 1.69 

(0.15) 

1.05 

(0.04) 

1.06 

(0.04) 

1.05 

(0.03) 

2.41 

(0.30) 

1.07 

(0.08) 

1.09 

(0.07) 

1.08 

(0.07) 

8000 1.62 

(0.12) 

1.04 

(0.04) 

1.05 

(0.04) 

1.04 

(0.03) 

2.27 

(0.19) 

1.06 

(0.07) 

1.06 

(0.07) 

1.06 

(0.07) 

13000 1.58 

(0.11) 

1.04 

(0.03) 

1.04 

(0.04) 

1.04 

(0.03) 

2.14 

(0.14) 

1.06 

(0.07) 

1.05 

(0.07) 

1.05 

(0.07) 

1 Core groups include 1) randomly selected breed A animals only (Breed A), 2) randomly selected purebred 607 

animals (PB), 3) randomly selected purebred and crossbred animals (PB+CB), and 4) animals selected based on 608 

a QR decomposition of the genotype matrix (QR). 609 

610 
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Table 4. Relative mean squares errors1 (average for the 5 replicates; SD within brackets) of 611 

GEBV from alternative core groups2 for genotyped selection candidates. 612 

Number of core 

animals 

Purebred performance Crossbred performance 

Breed 

A 

PB PB+CB QR Breed 

A 

PB PB+CB QR 

Breed A selection candidates   

4000 1.09 

(0.33) 

1.05 

(0.08) 

1.05 

(0.04) 

1.04 

(0.06) 

1.14 

(0.29) 

1.14 

(0.20) 

1.04 

(0.04) 

1.03 

(0.04) 

8000 1.11 

(0.34) 

0.98 

(0.05) 

0.98 

(0.06) 

0.99 

(0.07) 

1.20 

(0.28) 

1.11 

(0.22) 

1.11 

(0.23) 

1.11 

(0.22) 

13000 1.12 

(0.33) 

1.04 

(0.19) 

0.98 

(0.06) 

0.98 

(0.06) 

1.20 

(0.28) 

1.11 

(0.22) 

1.12 

(0.22) 

1.10 

(0.23) 

Breed B selection candidates   

4000 1.75 

(0.93) 

1.12 

(0.16) 

1.05 

(0.06) 

1.08 

(0.08) 

1.34 

(0.30) 

0.99 

(0.15) 

1.04 

(0.08) 

1.02 

(0.07) 

8000 1.81 

(1.04) 

1.09 

(0.18) 

1.09 

(0.17) 

1.09 

(0.18) 

1.27 

(0.21) 

0.99 

(0.15) 

0.95 

(0.10) 

0.95 

(0.10) 

13000 1.77 

(0.95) 

1.15 

(0.23) 

1.08 

(0.18) 

1.08 

(0.18) 

1.24 

(0.21) 

1.00 

(0.14) 

0.93 

(0.11) 

0.94 

(0.09) 

Breed C selection candidates   

4000 1.29 

(0.43) 

0.97 

(0.08) 

1.02 

(0.05) 

1.00 

(0.05) 

1.20 

(0.44) 

1.00 

(0.16) 

1.00 

(0.08) 

1.02 

(0.07) 

8000 1.28 

(0.37) 

0.96 

(0.08) 

0.97 

(0.09) 

0.96 

(0.09) 

1.19 

(0.38) 

0.99 

(0.16) 

0.94 

(0.09) 

0.95 

(0.09) 

13000 1.24 

(0.34) 

0.88 

(0.16) 

0.96 

(0.08) 

0.96 

(0.09) 

1.16 

(0.35) 

1.00 

(0.16) 

0.95 

(0.09) 

0.95 

(0.08) 
1 Results are expressed as the ratio between MSE of GEBV from alternative core groups and MSE of GEBV 613 

from the direct inversion of 𝐆. 614 

2 Core groups include 1) randomly selected breed A animals only (Breed A), 2) randomly selected purebred 615 

animals (PB), 3) randomly selected purebred and crossbred animals (PB+CB), and 4) animals selected based on 616 

a QR decomposition of the genotype matrix (QR). 617 

  618 
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 619 

Table 5. Quality of GEBV using APY for the core and non-core selection candidates. 1 620 

Selection 

candidates 

Number Purebred performance Crossbred performance 

 Accuracy2 Reg. 

coef. 

MSE2 Accuracy2 Reg. 

coef. 

MSE2 

A core 453 (19) 0.999 

(0.001) 

1.02 

(0.05) 

0.960 

(0.058) 

0.997 

(0.001) 

0.98 

(0.07) 

1.087 

(0.203) 

A non-core 4557 

(32) 

0.990 

(0.003) 

1.06 

(0.06) 

0.980 

(0.066) 

0.990 

(0.006) 

0.99 

(0.08) 

1.112 

(0.232) 

B core 456 (23) 0.998 

(0.002) 

1.02 

(0.06) 

1.076 

(0.169) 

0.995 

(0.004) 

0.88 

(0.09) 

0.946 

(0.091) 

B non-core 4519 

(37) 

0.991 

(0.001) 

1.07 

(0.03) 

1.093 

(0.170) 

0.988 

(0.004) 

0.95 

(0.04) 

0.949 

(0.096) 

C core 322 (43) 0.998 

(0.001) 

1.07 

(0.07) 

0.961 

(0.082) 

0.999 

(0.004) 

1.03 

(0.06) 

0.939 

(0.089) 

C non-core 4694 

(27) 

0.994 

(0.001) 

1.04 

(0.04) 

0.966 

(0.087) 

0.996 

(0.003) 

1.06 

(0.07) 

0.942 

(0.093) 
1 Results (average for the 5 replicates; SD within brackets) are shown for the scenario using 8000 core animals 621 

randomly selected among purebred and crossbred animals. 622 

2 Results for accuracies and mean square errors (MSE) are expressed as the ratio between accuracies (MSE) of 623 

GEBV using APY and accuracies (MSE) of GEBV using the direct inversion of 𝐆. 624 

 625 


