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ederim

x



Declarations

I hereby declare that this thesis is my own work and effort and that it has not

been submitted anywhere for any award. Where other sources of information

have been used, they have been acknowledged.

I undertake not to quote or make use of any information from this thesis

without making acknowledgement to the author. I further undertake to allow

no-one else to use this thesis while it is in my care.

The material is based upon work supported in part by NASA under

award NNX12AK33A with the Universities Space Research Association. Any

opinions, findings, and conclusions or recommendations expressed in this ma-

terial are those of the author and do not necessarily reflect the views of the

National Aeronautics and Space Administration.

Parts of this thesis have been published by the author:

1. Poster presentation at WMG Research and Innovation Conference on

the 10th and 11th July 2014. A Framework for Performance Metrics

of Rotating Machinery Prognostics within Maintenance Free Operation

Period -Oguz Bektas

2. Conference Proceeding in The Twelfth International Conference on Con-

dition Monitoring and Machinery Failure Prevention Technologies CM2015

/ MFPT2015. A Degradation Prognostic Framework for Gas Turbine

xi



Engines -Oguz Bektas & Jeffrey Jones

3. Technical Presentation at WMG Research and Innovation Conference on

the 30th June and 11th July 2015. Narx Model in Gas Turbine Prognos-

tics -Oguz Bektas

4. Conference Proceeding in Third European Conference of the PHM So-

ciety - PHME16. NARX Time Series Model for Remaining Useful Life

Estimation of Gas Turbine Engines -Oguz Bektas & Jeffrey Jones

5. A journal article in Journal of Failure Analysis and Prevention. “Reduc-

ing Dimensionality of Multi-regime Data for Failure Prognostics - Oguz

Bektas, Amjad Alfudail, Jeffrey A. Jones

Oguz BEKTAS June 2018

xii



Abstract
The field of Prognostics and Health Management is becoming ever more

important in the modern maintenance era, with advanced techniques of automa-
tion and mechanisation becoming increasingly prevalent. Prognostic technology has
promising abilities to forecast remaining useful life and likely future circumstances of
complex systems. However, the evolution of data processing and its critical impact
on remaining useful life predictions continually demand increasing development so
as to meet higher performance levels. There is often a gap between the adequacy of
prognostic pre-processing and the prediction methods. One way to reduce this gap
would be to design an adaptive data processing method that can filter multidimen-
sional condition monitoring data by incorporating useful information from multiple
data sources.

Due to the incomplete understanding on the multi-dimensional failure mech-
anisms and the collaboration between data sources, current prognostic methods lack
the ability to deal effectively with complicated interdependency, multidimensional
condition monitoring information and noisy data. Further conventional methods
are unable to deal with these efficiently. The methodology proposed in this research
handles these deficiencies by introducing a prognostic framework that allows the
effective use of monitoring data from different resources to predict the lifetime of
systems. The methodology presents a feed-forward neural network filtering approach
for trajectory similarity based remaining useful life predictions. The extraction of
health indicators is applied as a type of dynamic filtering, in which the time se-
ries having full operational conditions are used to train a neural network mapping
between raw training inputs and a health indicator output. This trained network
function is evaluated by repeating condition monitoring information from multiple
data subsets. After the network filtering, the training trajectories are used as base-
lines to predict the future behaviours of test trajectories. The similarity between
these data subsets compares the relationship between the historical performance de-
terioration of a system’s prior operating period with a similar system’s degradation
behaviour.

The proposed prognostic technique, together with dynamic data filtering and
remaining useful estimation, holds the promise of increased prediction performance
levels. The presented methodology was tested using the PHM08 data challenge
provided by the Prognostics Centre of Excellence at NASA Ames Research Centre,
and it achieved the overall leading score in the published literature.

Keywords: Prognostics and Health Management, Remaining Useful Life,

Data Driven Prognostics, Artificial Neural Networks, Similarity-Based Predictions
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Chapter 1

Introduction

The focus of reliable systems community is on the basic principles of system

failures to explain how complex systems age and fail. Over the last decade,

Prognostics and Health Management (PHM) has been an emerging discipline

as a responding point to this focus, and it has established a connection with

failure mechanisms and system life-cycle management (Uckun et al., 2008).

PHM aims to maximise operational availability and safety by incorporating

functions of condition monitoring, prognostics, state assessment, diagnostics

and failure progression (Sheppard et al., 2008). Due to the constantly increas-

ing interest in PHM technologies, which has received great attention from the

industry at all levels, there has been a significant change in attitude towards

these functions.

As a steadily growing subject in PHM applications, prognostics are a

particularly well-known practice in a wide variety of applications (Lee et al.,

2014). The term “prognostics” in the context of PHM field refers to the es-

timation of a time at which a system (or a component) is at the end of its

useful life point and will no longer perform its desired functional requirements

(Saxena et al., 2014). Therefore, prognostic methods are mainly focused on

remaining useful life (RUL) predictions in terms that are beneficial to the main-

1



tenance decision making process (Sandborn and Wilkinson, 2007). Within the

last decade, these methods have advanced expertise in various disciplines and

an overall understanding of the predictions for health management has sub-

stantially improved. Many breakthroughs in prognostics and their ability to

predict RUL for maintenance purposes can be found in various areas, notably

in advanced engineering systems such as, gearboxes (Elasha et al., 2014a,c,

2015b,c, 2017), batteries (Pastor-Fernández et al., 2016; Saha et al., 2009;

Goebel et al., 2008a; Rezvani et al., 2011), actuators (Byington et al., 2004b),

fuel cells (Morando et al., 2013), turbofan engines (Wang et al., 2008; Heimes,

2008; Peel, 2008) and even NASA‘s launch vehicles and spacecraft systems

(Luchinsky et al., 2007).

Prognostic technology has also been used to design platforms with pre-

diction capacity as an integral feature of the overall system architecture (Uckun

et al., 2008), such as the Joint Strike Fighter Programme and the Future Com-

bat Systems Programme (Hess et al., 2004; Barton, 2007). As the technology

develops further, prognostics continue to play a prominent role in the evolution

of such complex systems. Introducing prognostic development to the earliest

stages of complex system design can highlight elements requiring reconsider-

ation earlier in the design stage and allows the process of testing, validating,

and refining to provide a higher quality design (Kramer and Tumer, 2009).

Many advanced modelling techniques exist for system design and significant

research have been related to the predictive capabilities for future operations,

and resulted in the development of notable prognostic applications. The ma-

jority of these applications concentrate on imposing alternative strategies for

maintenance, and have led to a huge and diverse literature on machinery prog-

nostics with a considerable number of papers, substantial theories and practical

models (Jardine et al., 2006a).
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1.1 Motivation

Today, many sophisticated sensors and computerised components are capa-

ble of delivering system’s performance data to prognostics that can contin-

uously track health degradation and extrapolate the temporal behaviour of

system’s health to predict risks of unacceptable performance over time as well

as synchronising necessary maintenance actions with the overall operation of

the system (Lee et al., 2006). Since the key point in maintenance actions is

the involvement of all operation-related activities (BSI, 1993), the prognostic

applications are directly related to the development of prediction-based main-

tenance actions required to keep systems at a desired level of maintenance

with minimum operational cost. The structure of maintenance, accordingly, is

highly interrelated with prognostics to reduce maintenance expenses. To gain

an appreciation for prognostic technology and amounts of maintenance expen-

diture, the global airlines market can be considered an illustrative example. In

2014, the worldwide airliner spending on maintenance, repair, and operations

(MRO) accounted for $62.1 billion, in which engine maintenance was about

40% of the total cost (IATA, 2011). Although the size of the MRO market

is expected to reach $90 billion in 2024, it is estimated that the developing

trends in such areas as prognostics, innovations and technologies will reduce

MRO costs by 15 to 20%, and predictive maintenance strategies are expected

to increase airliner availability by up to 35% (IATA, 2011).

As the predictive maintenance strategies develop, the ability to find

solutions to key challenges have become a crucial push towards developing

models that apply performance in maintenance. In this context, data pro-

cessing for maintenance decision making can be regarded a major step in a

successful maintenance programme (Tsang et al., 1999; Jardine et al., 2006a).

In order to avoid unnecessary maintenance tasks, data processing analyses

available condition information on which maintenance decision making is re-
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quired (Lee et al., 2014). However, unless the uncertainties in the predictions

are also considered, data processing may not be a sufficiently practical step

for decision makers to justify the need for prognostic actions (Goebel et al.,

2013). Since it is very unlikely to attempt to estimate the operating and

environmental conditions under which a given system operates, a systematic

framework for data processing is necessary to account for the uncertainties in

prognostics (Sankararaman and Goebel, 2015). Data processing should han-

dle and analyse the condition monitoring data for a better understanding and

interpretation of the system’s damage propagation, which characterises how

the damage is expected to grow in upcoming operational and environmental

conditions, along with any other effects that might have an impact on damage

(Goebel et al., 2013).

1.2 Problem Statement

Recent technological advances have resulted in increasingly complex systems

that pose considerable challenges in terms of successful operations and use over

their life cycles (Venkatasubramanian, 2005). Ensuring safety and performance

in complex and safety-critical systems is a major problem to be tackled, and

above all, complexity is one most prominent issue that must be addressed to

make theoretical models applicable to real-life applications (Boussif, 2016). A

complex engineering system is defined as a group of interrelated, interacting,

and/ or interdependent components (constituents) forming a complex whole

(Jamshidi, 2008).

Condition monitoring of such complex systems is usually based on var-

ious sensors of components to receive information on the system health status

and recognise any potential problems at an early stage so that corrective main-

tenance actions can be taken in a timely manner. However, evaluation and
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interpretation of sensor data from multiple elements is often a challenging as-

pect due to complicated interdependencies between monitored data and actual

system conditions (Günel et al., 2013).

As a result of operational conditions and regimes, some complex sys-

tem works under different superimposed operational margins at any given time

instant and the wearing process of such systems is not usually deterministic,

and commonly not one-dimensional (Saxena et al., 2008b). These multidimen-

sional and noisy data streams are measured from a large number of monitoring

channels from a population of similar components such as the operational or

environmental conditions, direct and indirect measurements that are poten-

tially related to the damage progress (Uckun et al., 2008). Therefore, a simple

model is mostly unable to present the wearing phenomena and one should con-

sider a more advanced decision-making process for the condition monitoring

data in multidimensional form (Cempel, 2009).

While the literature has recognised the importance of the multiple axes

of information and multidimensional data, there is still a lack of analysis in

such data, leaving the analysts with yet more information and data to process

through the complex systems (Tumer and Huff, 2003). This can be attributed

to two fundamental issues:

• Incomplete information on the multi-dimensional mechanisms failure and

fault modes;

• Lack of collaboration between different but similar data sources

When a prognostic model planned and tested under controlled experi-

ments, it has to face the challenges brought up by the complexity of real-world

systems (Wang, 2010). The models should reduce the future uncertainty of

operations according to the needs of system itself, and limitations of condi-

tion monitoring data. In conventional applications, the selection of a suitable
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prognostic algorithm for a successful and practical implementation in complex

systems depends on understanding of the challenges associated with the type

of applications (Zaidan et al., 2013). Therefore, the majority of prognostic

researches to date has been mostly disparate, theoretical and restricted to a

small number of cases, and there are few published examples of full prognostic

frameworks being applied in the field of complex systems where the moni-

tored condition data are exposed to a range of dynamic operating conditions

(Sikorska et al., 2011).

1.3 Research Question and Hypotheses

The key element to design prognostics for such complex systems is the data pro-

cessing for conditioning and feature extraction of acquired multidimensional

data. For RUL estimations, data processing capabilities are of greater signif-

icance for design and implementation point of view (Saxena et al., 2008a). If

condition monitoring data is not available sufficiently, the prognostic require-

ments cannot be met (Uckun et al., 2008). One way to satisfy the prognostic

requirements is to perform a data collaboration effort distributed across mul-

tiple suppliers, rather than using separate and self-contained sources. Collab-

oration, from this perspective, is the act of working together with one or more

sides in order to achieve the objective of higher accuracy (Soukhanov, 2001);

when used in intelligence-intensive activities, this may lead to increased and

improved results (Moyle, 2009).

Additionally, data processing can be understood as the conversion of

multidimensional and complex monitoring data to meaningful information for

RUL estimation. Because the effort needed to filter prognostic parameters

from multiple data can quickly make the prognostic approach applicable for

more applications, a collaborating data processing method which results in an

6



optimal, or near-optimal, filtering is very promising for RUL estimations.

The literature shows that because of the lack of understanding on the

multi-dimensional failure mechanisms and incomplete collaboration between

different but similar data sources, current prognostic methods are unable to

deal effectively with complicated interdependency (Günel et al., 2013), multi-

dimensional data (Saxena et al., 2008b) and noisy data (Uckun et al., 2008).

The traditional pre-processing models lack the ability to address this efficiently.

The method proposed in this research handles these issues by introducing an

adaptive data filtering model for RUL estimation.

The main focus in the research is to make an original contribution to

the development of prognostics by considering data filtering requirements on

multiple data resources. The point at issue is the modelling of such a concep-

tual prognostic framework to overcome the challenges presented by different

datasets and to increase prediction performance. The model should be based

on adaptation of complicated prognostic filtering algorithms for different exter-

nal input resources and satisfying the generic demands on the performance of

RUL predictions by using alternative trained functions. In this respective, an

effective method is necessary to approximate any filtering function arbitrarily

well.

In this work, the intention to use such an adaptive filtering function

is to visualise information from different but similar data sources, and get

this information to the right place, in the right arrangement, and in good

time to use it in making effective predictions. Then, a prognostic prediction

method can be swamped with data from multiple sources and investigate data

filtering and processing techniques, with the ultimate goal of improving RUL

predictions.

Research Question

The fundamental research question pertaining to the scope of this study is:
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”How can an adaptive data filtering model be designed as a part of multi-

step ahead remaining useful life predictions? ”

Research Aim

The aim of this research is to study the possibility of developing a prognostic

and health management prediction approach to complex machinery systems

under dynamic operating regimes. This prediction is based on the systematic

monitoring of multidimensional data and the filtered available information,

and it is in line with adaptable stages consisting of data processing and multi-

step ahead predictions. Therefore, the research aims to develop a multifaceted

prognostic approach that integrates data filtering and RUL estimation to en-

hance the prediction results and to increase the applicability of prognostics

and health management in machinery applications under a set of operational

cases with multi-regime operating conditions.

Research Objectives

The research has following key objectives that will help to satisfy the above-

mentioned issues and address the current gap indicated by the research ques-

tion.

• To develop an understanding of emerging concepts of prognostic use in

maintenance

• To design an adaptive prognostic model that can process filtering and

prediction modes

• To advance data filtering processes by structuring a training library in

which health of various operational cases can be calculated
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• To develop a merging process between data qualification and RUL esti-

mation

• To increase the performance of RUL estimations and provide more de-

tailed results in terms of maintenance planning

• To reduce excessive RUL prediction error rates for critical cases

• To minimise the gap between false positive or negative error rates of

life-time predictions

1.4 Significance and Contribution

The significance of this study can be found in the sense that it can introduce

a novel perspective to data filtering and prognostics accuracy by considering

multi-dimensional condition monitoring data from complex systems. A con-

sideration of operational requirements in terms of multiple data employment

has improved the prediction performance of prognostics. An adaptive prog-

nostic method is designed to introduce a sequential process from training to

prediction. A neural network-based data training function is presented to map

between a set of raw monitoring inputs and a set of targets. Then, external

datasets are applied to this function to allow for an adjustment from their raw

scales to a notionally common target scale. This allows for the fact that mul-

tiple data sources can be filtered separately and be used for RUL estimations.

The contribution of this study, as a response to the formulated research

question, is the introduction of a data-driven filtering process (feed-forward

neural network) into collaborative RULs (trajectory similarity-based prognos-

tics). In particular, the research investigates how pre-processing methods af-

fect algorithm performance. The algorithm will be tested by PHM08 data

challenge provided by the Prognostics CoE at NASA Ames Research Centre.
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1.5 Thesis Organisation

This thesis is composed of six chapters. The organisation of thesis is as follows:

Chapter 2 reviews the progress of the current literature and gives the

state-of-art on current prognostic applications as well as the various sources

and methods applied in complex system domains.

Chapter 3 includes the methodology sections. This chapter provides

the details of the multi-regime normalisation, data filtering and RUL predic-

tion frameworks. A feed-forward dynamic network relating to the raw input

time series with a target vector is introduced. Then, the similarity-based fore-

casting setup is summarised.

Chapter 4 applies the presented method to different case studies which

are then used as examples of how to gain a better understanding of the risks

posed by various conditions. Case studies contribute to more focused analyses

which, in the context of damage, demonstrate the effectiveness of prognostic

methods and metrics, and identify risks in multi-step ahead projections.

Chapter 5 brings forward the analysis, performance evaluation and

validation of the model, as based on true RUL parameters. The chapter also

deals with the issues of critical assessment of this study, contribution to knowl-

edge, and a comparison of this model with rival ones.

Chapter 6 presents further work, a summary and conclusions. It out-

lines the research and possible future work is made apparent.
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Chapter 2

Background and Literature

Survey

Maintenance has witnessed substantial changes, perhaps more so than any

other discipline in the industry as a direct result of an increase in the vari-

ety and quantity of complex systems requiring novel practices and progressive

views (Moubray, 1997). Due to the increasing awareness of high plant avail-

ability and reliability, maintenance strategies have been going through a stage

where there is a necessity to respond the rapidly changing expectations. There

is a significant risk that complex systems and their related interfaces would

not be satisfied by classic breakdown repairs; therefore, various approaches

in maintenance applications have been defined in an attempt to meet their

increasing requirements (Jardine and Tsang, 2013).

A classification of maintenance is shown in Table 2.1. Simply, the poli-

cies are divided into unplanned and planned categories according to the histor-

ical perspective of maintenance. These types are related to how a user would

like to approach repair procedures. Determination of the optimum schedule

for performing maintenance has been a long-standing challenge. Maintenance

strategies have evolved over time from run-to-failure, also known as breakdown
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Table 2.1: Classification of Maintenance (BSI, 1993; Jones, 2010)

Unplanned Maintenance: or “run to failure”, is an option of

“do nothing until it breaks”
Corrective

Maintenance
It is carried out after a failure has occurred

Emergency

Maintenance

EM is required where immediate action is necessary
to avoid serious consequences

Planned Maintenance: carried out and organised with

forethought

Preventative
Maintenance

PM performed at predetermined intervals.
It aims to reduce the probability of failure.

Scheduled
Maintenance

It attempts to forestall
breakdown by operating on
a predetermined interval of time

Condition-Based
Maintenance

CM is initiated as a result of
condition monitoring knowledge.
It seeks to determine actual
operating conditions

maintenance, to preventive maintenance (PM) schemes, and then to condition-

based maintenance (CBM) (Heng et al., 2009). Breakdown maintenance was

the earliest attitude taken, including the repair or replacement of equipment

when a failure occurs (Misra, 2008). This type of basic approach shifted to-

wards PM in order to prevent unscheduled downtime and avoid catastrophic

failures. However, each maintenance type has still its own unique advan-

tages that make each desirable for specific needs. For example, until the most

spectacular changes that occurred in maintenance after World War II (Brown

and Sondalini, 2014), corrective maintenance had been the only option for a

maintainer to fix or replace an item; that is after a failure had occurred. Nev-

ertheless, corrective maintenance is still in use for simple components in which

the failure consequences are less critical. Moreover, no matter how extensive a

maintenance programme is, there is always the possibility that critical systems
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may fail and corrective maintenance become necessary (Sheut and Krajewski,

1994). On the other hand, changing customer requirements demand planned

maintenance designs at all levels. From the 1950s, mechanisation and automa-

tion of systems have arisen due to an increasing intolerance of downtime and

labour costs, with the first planned maintenance practices introduced in the

form of preventive maintenance to avoid catastrophic failures and emergency

shutdowns (Heng, 2009).

In the case of PM, maintenance is carried out on a regular basis to

reduce the failure rate or performance decrease of given piece of equipment

(BSI, 1993). Preventive actions involve fixed scheduled servicing, inspections,

and repairs to reduce failures and costs. In such a procedure, maintenance

is considered where inspections and overhauls take place at different time in-

tervals without seriously considering the condition of a given system’s health

(Badıa et al., 2002).

Bazovsky (1961) laid the groundwork for the application of mathemat-

ical optimisation methods in PM plans and Jardine (1973) pioneered decision

models for assignment of optimal replacement and/or repair intervals by inves-

tigating historical breakdown measures and cost implications. In subsequent

years, Lee and Rosenblatt (1987) analysed the use of machine inspection in PM

for restoration purposes of economical manufacturing quantity, and Groenevelt

et al. (1992) studied the role of PM in an unreliable production system with a

constant failure rate and randomly distributed repair times. Other studies have

also shown that PM strategies can be an effective way to extend the lifetime of

several randomly failing production units and reduce operational costs (Barlow

and Proschan, 1996; Nakagawa, 1981; Nakagawa and Yasui, 1991). Under the

assumption of non-negligible maintenance restoration times, all these studies

addressed the use of planned maintenance that is regularly performed on a

system to lessen the possibility of failure. However, as a result of the increas-
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ing system complexity, these scheduled maintenance policies have financial

and safety implications that may result in labour-intensive and unnecessary

maintenance actions that can be associated with over-maintaining. While PM

strategies are robust enough to continue earlier and relatively simple routine

maintenance tasks to reduce component damage, they may have shortcomings

when dealing with catastrophic failures in complex systems. PM approach

can be costly when it is, or needs to be, performed frequently (Bohlin et al.,

2010), and fixed scheduled maintenance policies are not considered functional

by most practitioners (Kelly, 1989). This is why, it is necessary to invest in

monitoring efforts to maintain the correct item at the right time. Dynamic

planning using malfunction signs is required to reduce unpredictable events

and unnecessary maintenance tasks.

In recent times, the performance of PM has started to be questioned.

Wood (1999) and Moubray (1997) defended the idea that scheduled and time-

based PM often fails to make best use of the remaining service life; on many

occasions, units are replaced despite the fact that they have many hours of

RUL. The fixed repair intervals required by PM tasks waste a considerable

amount of resources (Tsang, 1995), such that systems or units are often un-

reasonably maintained (Ellis and Byron, 2008). These queries resulted in the

subdivision of CBM.

A properly and effectively established CBM programme can notably

decrease maintenance costs by dropping unnecessarily scheduled preventive

maintenance actions (Jardine et al., 2006a). CBM is similar to PM in the

sense that it aims to prevent abnormality in advance of an incident, but it

differs from the fixed time-oriented approach of scheduled maintenance (Shin

and Jun, 2015). Hence, CBM offers an alternative to PM considerations of

simple age-related failure modes.

The reduced time-based maintenance intervals of CBM are drawing at-

14



tention from maintenance service providers and end users who require higher

planned maintenance performance, and the reduction of unnecessary inspec-

tions (Chen et al., 2012; Ahmad and Kamaruddin, 2012; Gulati and Mackey,

2003). Use of CBM in industry, therefore, has been reported to be one of the

most substantial ways to decrease maintenance budgets (Bengtsson, 2004), and

have thus seen a considerable increase in their uptake over time. For example,

in 1981, domestic plants in the United States had spent more than $600 billion

in maintaining critical systems; by 1991, this cost increased to more than $800

billion, and exceeded $1.2 Trillion in 2000 (PlantServices, 2004). Considering

that the cost of ineffective maintenance constitutes around one-third of the

total maintenance cost, and there is a similar trend in many other countries,

there is a clear and immediate need to continuously progress and improve cur-

rent maintenance strategies (Heng et al., 2009). As a response to this need,

CBM allows maintenance service providers to avoid the inevitability of high-

cost maintenance due to the elimination of redundant maintenance activities

(Shin and Jun, 2015).

2.1 Condition Based Maintenance

Condition-Based Maintenance is a programme recommending maintenance ac-

tions based on condition monitoring data (Raheja et al., 2000); it attempts to

avoid redundant tasks by taking repair actions only when there is evidence of

unexpected operational issues (Jardine et al., 2006a). Certain signs, condition

changes, or malfunction indications can precede the vast majority of machine

failures (Pusey, 1999; Heinz P. Bloch, 2012), and maintenance actions based

on monitoring can be taken prior to a severe performance reduction in a given

system, with condition-based monitoring offering the ability of yielding accu-

rate prediction results for mechanical failures.
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According to Horner et al. (1997), the optimal time period for per-

forming maintenance could be decided by the actual monitoring of a given

system, and its subcomponents or units, and the condition monitoring assess-

ment could vary from basic visual checks to detailed automatic inspections.

Considering the continuous data related to the operational condition of criti-

cal systems, Knapp and Wang (1992) argued that CBM aims to minimise the

cost of repairs, and Knapp et al. (2000) noted that condition monitoring can

provide adequate warnings as to pending failures, which would thus allow for

more detailed planned maintenance actions as based on system degradation.

On the other hand, as stated by Ellis and Byron (2008), CBM in some

instances may not be cost-effective or sufficient data may not exist to justify

intervention. Raheja et al. (2006) also claimed that some current CBM ap-

proaches are extremely specific and a common structure for CBM is missing,

so that each domain has its own understanding that may not be well-suited for

the requirements of other applications. Although CBM may not be applicable

to all maintenance systems, it could be applied in instances where modules

of condition-monitoring are available and are well-integrated (Horner et al.,

1997)

Such typical modules of effective CBM implementation include the

stages of data acquisition (information collecting), data processing (informa-

tion handling) and maintenance decision-making (see Figure 2.1). These three

key elements provide the necessary conditional information on which the main-

tenance process can be based, and help to avoid unnecessary maintenance op-

erations. The data acquisition and processing modules in a CBM programme

are critical pre-processing stages that present and process monitoring data to

produce the information useful to the diagnostic and prognostic stages. After

the raw condition monitoring data is processed, organised and restructured,

diagnostics deal with fault and off-nominal condition detection, isolation, and
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identification, while prognostics deal with the prediction of the future lifetime

of a system over a fixed time horizon (Brotherton et al., 2000). These lifetime

estimation applications are key enablers of the CBM strategy (Byington et al.,

2008), and have significant value within complex system operations in terms

of maintenance scheduling thus the reduction of maintenance downtime and

costs (Brotherton et al., 2000).

Data
Acquisition

• Event Data

• Condition
monitoring data

Data
Processing

• Signal processing

• Feature extraction 

  & selection

Maintenance
Decision
Making

• Diagnostics

• Prognostics

Figure 2.1: Major Steps in CBM

CBM objectives are designed to determine the condition and the re-

maining life of in-service equipment. Diagnostics and/or prognostics can be

effectively used according to these objectives, and applied when developing

the decision-making stage of complex maintenance applications (Heng et al.,

2009). They are considered as significant procedures effecting a substantial

shift in the current manner of technology that can push the boundary of sys-

tems health management (Elattar et al., 2016).

2.1.1 Data Acquisition

In the data acquisition stage, useful information is collected and stored from

target physical assets in order to monitor the condition of systems, diagnose

faults, and predict the remaining lifetime of assets (Tran and Yang, 2012).

In parallel with the increasing development of advanced computer and sensor

systems, data acquisition facilities have become more powerful and less expen-
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sive technologies that could implement data for CBM in a more affordable and

feasible way (Jardine et al., 2006a).

Data acquisition for a CBM programme is mainly supported by condition-

monitoring data. For a complex mechanical system, condition monitoring in-

formation can be very diverse; superficially, it can constitute temperature,

acoustic, oil analysis, environment moisture or weather data, etc. Condition

monitoring of such systems in operation is generally multidimensional (Cem-

pel, 2003). The analysis and extraction of useful information from multidimen-

sional data is inevitably based on high-performance computing capabilities of

data processing (Baurle and Gaffney, 2008).

Although condition monitoring could provide sufficient information for

the development of data processing, there is still the requirement to collect

common datasets and a mutual comparison to validate the methods introduced

by different researchers. However, the nature of data acquisition has its own

challenges in terms of the availability of condition monitoring data (Eker et al.,

2012). To start the acquisition of raw monitoring data for effective lifetime

estimations, the first major issue is to find available data sources. A common

database is an important aspect for life estimation applications of maintenance

decision making (Kans and Ingwald, 2008). Considering that such a database

includes information from several but similar engineering domains, it can form

the basis for the stage of data acquisition and required actions (Simões et al.,

2011).

Use of the common database practice allows for the comparison of cur-

rent applications and potential areas of improvement with regard to other re-

searches in the literature (Bask et al., 2008), and since this type of a database

can provide easy access to relevant data, it can demonstrate the detection of

deviations at an early stage (Simões et al., 2011). However, Saxena et al.

(2008b) stated that the data acquisition stage faces the perennial challenge of
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a deficiency of common run-to-failure data sets, and that real-world data in

most cases includes fault signs for an increasing degradation but no or little

data capture for fault progress until failure. There have been synthetic data

generating methods that can closely match the characteristics of raw data

such as Eklund (2006); Zaidan et al. (2013); Bektas and Jones (2015) but

these methods were developed for individual cases and the common data sets

through which researchers can compare their approaches are required for an

effective data acquisition stage in CBM.

2.1.2 Data Processing

A major issue confronting condition monitoring is ability to handle the col-

lected data in terms of measurable machinery conditions. Data processing is

the most critical stage in CBM because it is not always clear during the col-

lection and manipulation of raw data from different sensors when meaningful

information useful to lifetime estimations is being produced (Vatani, 2013).

Condition monitoring data collected from the data acquisition stage

is versatile and falls into various categories such as value type (single value

collected at a specific time epoch ), waveform type (time series of a condition

monitoring variable) and multidimension type (multidimensional time series

acquired from multiple operating conditions) (Jardine et al., 2006b) .

In the case of complex systems under dynamic operating regimes, special

attention is given to multidimension type data as it requires more processing

and many techniques have been developed for its analysis and interpretation.

Raw multidimensional data acquired from sensors providing information under

multiple operating conditions are almost always processed before it is used for

further analysis.

A typical complex system is made of different interacting components

in which the collective actions are hard to deduce from those of the individ-
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ual components, system predictability is limited, and the responses do not

scale linearly (Bar-Yam, 2003). Additionally, the technological advancements

have resulted in easy and efficient generation of data sets, most of which are

multidimensional and/or multivariate (Seo, 2005).

A multidimensional database is composed of sets of vectors on rela-

tional elements constructed from hierarchies of dimension levels (Vassiliadis,

1998). Considering Ω as the space of all dimensions and Ψ as the space of all

dimension levels, for each dimension D there exist a set of regime levels and

there is a set of values belonging to it. Accordingly, a basic multidimensional

data set, Cb, can be defined as a 3-tuple < Db,Lb,Rb > (Vassiliadis, 1998),

where

Db =< D1, D2, · · ·Dn,M > (2.1)

is a list of dimensions (Di,M ∈ Ω) and M is a dimension that represents

the measure of Cb.

Lb =< DLb1, DLb2, · · ·DLbn,∗ML > (2.2)

is a list of regime levels (DLbi,
∗ML ∈ Ψ). ML is the multi-valued

dimension level of the measure of Cb. Rb is a set of cell data and formed of

x = [x1, x2, · · · , xn] (2.3)

Having specified this cell data, there is a possibility to assess the system

breakdown time, θb, by using the life dependence of observed sensor readings,

R, in terms of a function of some simplified health measure, H (Cempel, 2003).

H =
t

tb
, 0 ≤ H < 1 (2.4)
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where t is the current system life time and tb is the anticipated breakdown

time. A single observed sensor of order n points dependent on the health

measure, H, is expressed as:

Rn(t) = Rn

(
t

tb
· θ
)

= Rn(H · t), (2.5)

n = 1, 2, · · · , r (2.6)

Usually, the signal observations are over some life distance, ∆θ, in which

the condition of the operating system, hence the values of observed signals,

may substantially change (Cempel, 2003).

Rn(tm) = Rn(m∆t) = Rmn, (2.7)

n = 1, 2, · · · , r, m = 1, 2, · · · , p (2.8)

Condition monitoring data in such a multidimensional and multivariate

form needs to be processed to produce meaningful information. Appropriate

data characteristics are required to be calculated, selected and/or extracted

for effective life estimations of the monitored systems (Heng, 2009). In this

respect, data processing module carries out the functions of signal processing,

feature extraction and selection (Tran and Yang, 2012). The data in these

steps is processed to remove distortions and re-establish the actual form of

signals.

Raw signals received from sensors are also generally very noisy, have

very low signal-to-noise ratios and can be biased. Referring to equation 2.5,

the noise in data needs to be added to the single observed sensor dependent

on the health measure.

Rn(t) = Rn(H · t) + ε(t), 0 < t ≤ tb (2.9)
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where ε is a random variable accounting for noise and/or the measure-

ment uncertainties. Since the values in the term ε are identically distributed

and statistically independent (and hence uncorrelated), it is commonly as-

sumed that ε is drawn from a Gaussian white noise (It is called white in

analogy to white light which has uniform emissions at all frequencies in the

visible spectrum) (Li et al., 2000; Menezes and Barreto, 2008; Lam et al.,

2014). The probability density function (p) of such a Gaussian noise (ε) is

given by the normal distribution.

pG(ε) =
1

σ
√

2π
e−

(ε−µ)2

2σ2 (2.10)

where µ and σ represent the mean value and the standard deviation

respectively (Cattin, 2013). The relative power of ε in the channel of Rn is

typically described by the measure of “signal-to-noise ratio” (SNR) per sample

which is defined as the ratio of the power of a signal to the unwanted signal

(Ede et al., 2010).

SNR =
Psignal
Pnoise

(2.11)

where P is average power. Both the power of signals and noise are

measured at the same points, and within the same bandwidth.

To extract useful information from the data where the ε is high and SNR

is low, various signal processing methods have been developed to evaluate and

analyse the characteristics of noisy and multidimensional raw data (Jardine

et al., 2006a).

The common techniques used those of Fourier Transform (Schoen and

Habetler, 1993; De Almeida et al., 2002; Liu et al., 2004) and Wavelets Trans-

form (Staszewski and Tomlinson, 1994; Wang and McFadden, 1996; Rubini

and Meneghetti, 2001) are studied for signal processing. Typically, these meth-
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ods transform a time-domain signal into another domain, with an attempt to

extract the useful information embedded within the time series that is other-

wise not readily understandable in its raw form. Although these techniques

are widely applied in the waveform type time series, further signal processing

methods are needed to extract information from multidimensional data.

In later signal processing studies, Kalman filter (Peng et al., 2012a),

principal component analysis (Liao and Sun, 2011) and Gaussian kernel smooth-

ing (Wang, 2010) are used to perform dimension reduction and data filtering.

The main advantage of these methods is the ability to reduce noise in raw

signals; however, when a common data source is available and different oper-

ational trajectories are included, the population of the entire dataset should

be considered for signal processing. To that end, Wang et al. (2008) and Peel

(2008) introduced the multi-regime data normalisation technique, which per-

forms a standardisation method based on the population parameters of the

entire dataset. Different operational trajectories can be filtered into a com-

mon range with respect to their initial wear levels and failure points. The main

drawback in such dimension reduction methods is the introduction of novel tra-

jectories that change the population characteristics and force the repetition of

dataset standardisation.

Alternatively, the neural network based prognostic approaches are pro-

posed (Heimes, 2008; Greitzer et al., 1999; Fink et al., 2014; Wu et al., 2016;

Loutas et al., 2017; Elforjani, 2016; Yang et al., 2016; Zheng et al., 2017) and

these could filter the data sets even though novel trajectories are introduced.

The network function is able to standardise various trajectories without re-

quiring population characteristics but these trajectories have distinct initial

wear levels which should be considered with the entire dataset. Taking into

account the associated merits and drawbacks, multi-regime data normalisa-

tion and neural network filtering can be merged to provide a signal processing
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method that can produce desired outcomes with due consideration to dataset

population parameters and wear-level characteristics.

2.1.3 Decision Making

After the data is collected and processed, the maintenance decision is made

to provide sufficient and efficient support in terms of maintenance personnel’s

judgements on maintenance actions. This support within a CBM process can

be further analysed by diagnostics and the prognostics (Jardine et al., 2006a).

Diagnostics deal with the detection, isolation and identification of the

system state, while prognostics are concerned with the prediction of its future

behaviour and the remaining life time of the system (Efthymiou et al., 2012).

The main distinction between them is the nature of their analyses. Prognostic

applications are based on prior event analysis, whilst a diagnostic application

is concerned with posterior and current event analysis (Butler, 2012). Prog-

nostic use of CBM can prevent faults or failures, and avoid further unplanned

maintenance costs. These features help prognostic applications to gain ad-

vanced practice qualifications in maintenance but, as some faults and failures

cannot be predicted in any way, prognostics cannot fully substitute for diag-

nostic use (Jardine et al., 2006a). Both of the applications can be practised in

similar machinery domains and such successful implementations can be seen

in the literature such as Elasha et al. (2014a,d, 2015a,c, 2016, 2014b).

2.2 Prognostics and Definitions

The ability to perform accurate and reliable prognostic estimations is a key

concept in CBM management, and is additionally of critical value to improv-

ing safety, maintenance scheduling, mission planning and lowering costs and

down time (Peng et al., 2010). Prognostics addresses the use of automated
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procedures to detect, diagnose, and analyse system degradation, and to esti-

mate RUL within the bounds of acceptable operating conditions before the

occurrence of a failure or intolerable performance degradation levels. In order

to provide sufficient lead time to maintenance personnel, the success of a CBM

strategy is subject to these automated procedures of prognostics, which are

responsible for sending out prior notices about the pending equipment failure

(Butler, 2012).

In the development of a prognostic method, the main objective is to

predict the failure time, at which a component or a system cannot complete

its desired functions (Pecht, 2008). Predictions can be made by understanding

the current system condition processes and the historical conditions that will

affect the future behaviour of the system (Goebel et al., 2013). Thereupon,

prognostics are always associated with other components of CBM.

Since a prediction is a statement about an uncertain event, the main

prognostic approaches are concerned with basic assumptions regarding the

characteristics of system degradation, and the science of prognostics is based

on the following fundamental notions (Uckun et al., 2008):

• All systems deteriorate as a result of time, usage, and environmental

conditions.

• Accumulation of damage and ageing are monotonic processes that dis-

close themselves in the physical and chemical composition of the systems.

• Ageing symptoms are detectable prior to system failure.

• Correlation of ageing symptoms is attainable with a model of system

degradation and, therefore, the RUL of individual systems can be pre-

dicted.

Regarding these notions, Figure 2.2 represents a typical initial fault

to failure progression timeline of a system (Hess et al., 2005). The timeline
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Figure 2.2: Failure progression timeline (adapted from Hess et al. (2005))

explains the role of prognostics and how the connection between prognostics

and diagnostics can be achieved. At the beginning of a system’s lifetime, all

components are in proper working order and maintenance is not necessary.

Each operational trajectory has its own specific initial health level, which is

generally stable during the early stages of use. This continues until a critical

period where an early incipient fault condition occurs. As time progresses and

operation continues, the risk of system failure, which can cause a system dam-

age and eventually a catastrophic failure, grows with time. Note that system

failure and catastrophic failure are two different points in time. The initial de-

tection of these failures and damage is always crucial to the estimation of RUL.

The detection of state changes and fault characteristics requires interactions

between prognostics and diagnostics. The goal in the timeline is improving

state awareness detection as close as possible to the point of the first incipient

fault occurrence.
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In Figure 2.3 (Lewis, 2017; Goode et al., 2000), the system health con-

tinues to decrease due to the degradation process from an initial problem in

the system, and eventually reaches a critical state that causes functional fail-

ure. The system starts with a certain level of initial health and manufacturing

variation that can be considered normal, i.e., it is not representative of a fault

condition.
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Figure 2.3: System life model (adapted from (Lewis, 2017; Goode et al., 2000))

The potential failure point defines the transition from stable zone to

functional failure point. Stable zone is the time from initial machine instal-

lation to the potential failure point. This interval contains largely condition-

monitoring measurements which are randomly varying around the higher sys-

tem health limit. When the health index derived from condition monitoring

readings exceed the alarm limit of potential failure, it is assumed that the sys-

tem has entered the failure zone and will deteriorate, at an exponential rate,

towards a functional failure Goode et al. (2000). Based on the location of these
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zones and failure points, prognostics relate to the task of making multi-step

ahead life prediction.

The prognostic prediction is practised between the initial detection of

the failure and the progression to actual failure conditions (Lee et al., 2014).

Since the lifetime estimation is applied within the CBM domain, it includes

similar stages regarding data acquisition, signal processing and diagnostics.

For example, a typical prognostic application is a sequential process with the

following major stages in which the applications of various other CBM appli-

cations can be found (Tobon-Mejia et al., 2010; ISO-13381, 2015).

• Pre-processing describes any type of processing performed on raw data

and pre-evaluation of existing failure modes. This step identifies the

symptom relations regarding the performance and determines the po-

tential impending failure modes.

• Existing failure mode is a step-by-step approach to identifying all

existing failures in the processed data.

• Future failure mode estimates the most likely future modes, and their

influence factors. Additionally, the estimated time to failure is calculated

in this mode.

• Post-action prognostics proposes the maintenance actions that need

to be done. To avoid the effects of undesired failure modes, the post-

action prognostics are applied with consideration to the recommended

actions.

Figure 2.4 demonstrates the above-mentioned basic stages of prognosis.

The pre-processing phase receives the machinery information from sensors and

identifies important failure features that are useful for determination of any

fault conditions. Then, in the existing failure mode, failure mode analysis is
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applied for feature extraction and fault classification. Considering the current

fault level in the system, multi-step prediction is performed to calculate the

fault evolution in the future failure mode. After receiving an estimated time-

to-failure, the maintenance scheduling is performed to keep the prognostic

application as reliable as possible.

Figure 2.4: A Typical Prognostic Application (adapted from (Vachtsevanos
et al.))

2.2.1 Prognostic Definitions

Common terms used in prognostic practice and their definitions have been

reported in several studies (Wang et al., 2004; Muller et al., 2008; Lebold and

Thurston, 2001; Byington et al., 2002). Apart from the terminology differ-

ences, these definitions mostly agree regarding the prediction aspect and RUL

estimation of the system failure (Tobon-Mejia et al., 2012). Some of these

prognostic terms are demonstrated in Figure 2.5 (Jones et al., 2001), where
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Figure 2.5: Prognostic Terms

the definitions are presented for a continuous time. The terms given here are

used interchangeably with similar expressions by different researchers. It is

worth noting that this section aims to reduce the uncertainties through giv-

ing the following terminology rather than introducing a new set of prognostic

standards.

Actual time-to-failure (ATTF), or True Remaining Useful Life, is

an unknown variable of prognostics that can only be known after a failure

occurs in the system (Jones et al., 2001). The deviation between this variable

and the estimation is of critical importance to prognostic prediction accuracy.

Estimated time-to-failure (ETTF) is the amount of time from the

current moment to the point when the system is predicted to fail in its func-

tions (Medjaher et al., 2013). Industry standard ISO-13381 (2015) defines

prognostics as ETTF and risk of failure modes. Accordingly, in the prognostic

literature, ETTF is generally the principal centre of studies, and the main
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approaches to it are mostly concerned with the estimation of RUL (Efthymiou

et al., 2012).

RUL, as a random variable based on the current age of the system, is

expressed by (Jardine et al., 2006a):

X − t|X > t, Z(t), (2.12)

where X is the variable of RUL and Z is the preceding condition profile

until current age (t). RUL is stated in the time units used in the principal

measurement of the overall system. For example, the measurement correlat-

ing with operations in commercial aircraft is cycles, hours of operation in jet

engines, kilometres or miles in automobiles or number of pages in printers

(Uckun et al., 2008).

The conditional variable of RUL corresponds to ETTF, and it is re-

garded as a basic prognostic measure representing the expected time until the

occurrence of the first failure of a system.

E [X − t|X > t, Z(t)] (2.13)

A key concept in the RUL framework is the failure probability density

function (PDF) (Roemer et al., 2006) which defines the relative likelihood for

the random variable of RUL in prognostic applications.

PDF, in a prognostic estimation, defines the density of a continuous

time variable whose value at any given point in the sample index can be

interpreted as providing a relative likelihood for the RUL. Defining Xt as the

RUL variable at time t, the PDF of life estimation is conditional on observed

condition monitoring or the history of operational profiles, θ (Si et al., 2011).

f (Xt|θt) = f (Xt) =
f (t+Xt)

Rt

(2.14)
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where Rt is the survival function at time t and f (t+Xt) is the prob-

ability distribution of remaining life at t + Xt. The calculated PDF can be

used to specify the probability of the RUL falling within a particular range of

values, as opposed to taking on any single ETTF value.

Prognostic Horizon (PH) is a measurement that calculates the fore-

sight capability limits and the accuracy of a prediction algorithm for prognostic

applications. PH can be formulated as the difference between the time index

“t” when the predictions are first performed to meet the intended performance

criteria and the time index for “end of prediction” (Saxena et al., 2009a).

PH = EOP − t (2.15)

2.3 Review of RUL Prediction Methods

Originating from the initial concept of RUL prediction, a wide variety of prog-

nostic techniques with many tools and methodologies have been described in

the literature, and they continue to evolve in effectiveness of their predictions

in different domains (Lee et al., 2014). In general, the current prognostic meth-

ods can be categorised into three main classes according to the way that they

participate in prediction and forecasting: physics-based, knowledge-based and

data-driven approaches (Peng et al., 2010; Zaidan, 2014; Eker, 2015).

2.3.1 Physics-Based Models

Physics-based models (PbM) consider the physical processes and interactions

between the equipments and the failure mechanism in a system (Eker et al.,

2014). The main assumption of this definition is that a physical model can de-

fine the evolution of degradation, and for this reason, PbM is often stated as a

degradation model (Kim et al., 2017). Comprehensive mathematical models,
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such as differential equations, are used to represent the degradation of sys-

tem performance and physics-of-failure (Zaidan, 2014). These models require

specific knowledge and theories relevant to a particular monitored system.

Table 2.2: Physics Based Models

Merits Limitations
Paris & Erdogan Law Models (Li et al., 1999, 2000): Uses Paris’
Law (Paris and Erdogan, 1963) for crack growth modelling.

Least-square scheme provides
adaptation of model parameters
to condition changes.

Assumes that defect size is lin-
early correlated to vibration.
Constants of materials are deter-
mined empirically

Forman Law (Oppenheimer and Loparo, 2002): Crack growth is mod-
elled by using the Forman law of linear elastic fracture mechanics
It can relate monitoring data with
crack growth

Simplifying assumptions in the
model

Paris crack modelling with FEA (Li and Choi, 2002; Li and Lee,
2005): Finite Element Analysis is used with Paris & Erdogan Law to
calculate stress and strain fields

It enables stress calculation
Performance is based on the ac-
curacy of estimated crack size

Yu-Harris Models (Orsagh et al., 2003, 2004; Kacprzynski et al., 2004)
:Uses Yu-Harris bearing life equation to predict spall initiation
Based on cumulative damage
with consideration to operating
conditions

Uncertainty in different factors
limits reliability

Contact analysis (Marble and Morton, 2006): Uses Finite Element
Analysis for material stress field calculation
It uses principles of damage me-
chanics

Different physics parameters are
needed

Table 2.2 contains various important methods in the field of PbM prog-

nostics. The presented mathematical models of degradation are typically em-

ployed in applications that are tied to health levels. PbMs are designed to

have a combination of fault growth formulas and knowledge of the principles

of damage mechanics. These models assume that an accurate mathematical

model for component degradation can provide adequate knowledge for prog-
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nostic outputs.

Crack growth modelling has been a common approach in PbM. The

Paris and Erdogan Law (Paris and Erdogan, 1963) is used in several applica-

tions to relate the stress intensity factor range to crack growth under a fatigue

stress regime.
da

dN
= C∆Km (2.16)

where a a is the crack length, C and m are constants (that depend

on the material characteristics, environment and stress ratio), da
dN

is the crack

growth rate, and ∆K is the range of stress intensity factor during the fatigue

cycle.

Li et al. (1999, 2000) modelled defect growth rate of rolling element

bearings using a variation of Paris’ Law, which states that the rate of defect

growth is correlated to the effected area. The predicted defect size is com-

pared to the actual defect size, and a recursive least-square scheme is applied

to provide an adaptive prognostic model to the difference in defect growths.

As presented in their numerical simulation tests, a slight parameter difference

might cause large prediction errors. Similarly, Li and Choi (2002) and Li and

Lee (2005) introduced a Paris’ Law crack growth modelling with Finite Ele-

ment Analysis (FEA), which enables material stress estimation based on defect

size, bearing geometry, load and speed. The performance of their method re-

lies on the accuracy of crack size calculation based on vibration data, and the

calculations performed by the model are computationally-intensive in order to

evaluate the probability of an observation.

Another growth model used in PbM is the Forman law of linear elas-

tic fracture. Oppenheimer and Loparo (2002) related condition monitoring

data and Forman law crack growth physics to life models. Since the instan-

taneous defect area size is identified during operations, the application might

be impractical in some settings; thus, this crack growth modelling is based on
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the direct estimation of defect area size from vibration data. In their study,

the simplification of certain assumptions may need to be examined and the

model parameters must be determined before application to specific machinery

(Jardine et al., 2006a).

Orsagh et al. (2003, 2004) employed a stochastic version of the Yu-Harris

life equation for fatigue spall initiation and the Kotzalas-Harris model to es-

timate failure progression and time-to-failure. After sensed data aggregation

has taken place, current bearing health is estimated by calculating the time-

to-spall initiation, after which the future bearing health module is predicted.

Therefore, their fatigue model parameters were received from data using both

physics-based and empirical models. Kacprzynski et al. (2004) improved this

model by integrating material-level models, system-level data by merging algo-

rithms and parameter tuning techniques, and proposing a framework for PbM

for the spiral bevel pinion gear of a helicopter gearbox. The uncertainty in

model factors such as gear geometry and the properties of contact, load and

material might limit the reliability of prognostic applications. Different data

forms, such as variation in fatigue and fracture or compressive stresses, have

a particular influence on prediction accuracy.

An alternative PbM in spall progression was introduced by Marble and

Morton (2006). They described a comprehensive experimental study of bear-

ings by using FEA to estimate spall size, material stress surrounding the spall,

rolling element load and speed. The model predicts the remaining cycles-to-

failure with consideration to damage mechanics principles.

Although there are multiple application domains and the presented

models differs from each other, the above-mentioned models have common

features that make them suitable for specific purposes. In general, PbM ap-

proaches are relatively conventional and use pre-defined mathematical methods

to understand component failure mode progression (George et al., 2006). They
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show high accuracy compared to data-driven approaches in cases where a rep-

resentative mathematical model is available; however, this type of approach

may not be effective for RUL estimation in complex systems because the fault

prediction in PbM provides a characteristic model for specific components

rather than complex systems as a whole (Heng et al., 2009).

PbMs also suffers from the drawback that models are computationally

expensive to develop, because the specific domain experts are required to be

involved and the parameters in model need be validated by large sets of real-

life data (Zaidan, 2014). Since PbMs are component specific and cannot be

applied to other domains without re-assessing the parameters, most prognostic

problems that can be solved by the physics-based approaches are at component

level or subsystem level (Brotherton et al., 2000). For prognostics at system

level (particularly for a complex system working under multiple operational

conditions and producing multidimensional and multivariate signals from its

sensors), it is difficult to construct an efficient PbM strategy that can mimic

the dynamics of system’s long-term degradation (Zaidan, 2014). Besides, it is

almost impossible to describe the behaviour of each component of a complex

system with a unique mathematical equation. The identification of failure

modes under different operating conditions and model parameter recognition

requires extensive experimentation which is often built on a case-by-case basis

(Liao and Köttig, 2014). Hence, a certain PbM method designed for a specific

system is not generally applicable to a different system without a significant

amount of effort.

2.3.2 Knowledge-based Models

In the absence of an accurate mathematical model for a complex system with

prior principles, the knowledge-based models (KbM) requiring no physical

model appear to be promising in real-world applications (Peng et al., 2010).
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Knowledge (or experience) based prognostics are simple and easy to perform

applications where the historical failure information of systems are available

for RUL prediction (George et al., 2006). They evaluate the similarity between

an observed phenomena and a library of previously defined failures and deduce

RUL expectancy from previous events (Sikorska et al., 2011). Table 2.3 shows

the major applications of KbM in prognostics.

Table 2.3: Knowledge Based Models

Merits Limitations
Expert Systems (Butler, 1996; Biagetti and Sciubba, 2004): algorithms
mimicking the human expert to solve problems
Effective on particular domains
where there is sufficient informa-
tion available

Unfavourable in novel cases where
there in not sufficient knowledge

Fuzzy Logics (Feng et al., 1998; Satish and Sarma, 2005; Dmitry and
Dmitry, 2004): a form of multivalued logic system

Applicable for imprecise data
Needs rule definition for complex
cases

Similarity-based Predictions (Wang et al., 2008; Wang, 2010; Eker
et al., 2014; Lam et al., 2014; Ramasso, 2014a,b; Bektas et al., 2017):
Based on the pairwise distance evaluation defined on two degradation
trajectories
High prediction accuracy and
ability to reduce prognostic risks

Requires multiple run-to-failure
data to estimate RUL

A typical example of KbM is the expert systems (ES) which can be

defined as an automated representation of a computer system that is pro-

grammed to exhibit how a human expert solves a particular domain problem

(Liao and Köttig, 2014; Peng et al., 2010). They are based on the rules ex-

pressed in the form of ‘IF-THEN ” statements acquired from collections of real

experiments (Sikorska et al., 2011). These rules can be either heuristic rules or

specific domain rules, and they can be chained together using logical operators

(Garga et al., 2001). As an example, Butler (1996) introduced an ES for incipi-

ent failure detection and predictive maintenance system to assess the integrity
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of a power distribution system component and predict the maintenance re-

quirements. Their system includes an expert system engine, a knowledge base

model, mathematical and network models of equipment ageing and historical

readings. Biagetti and Sciubba (2004) also designed an ES based prognostic

and intelligent monitoring expert system that can produce real-time informa-

tion about the existence of faults, estimate future time for detected and likely

faults, and provide suggestions on problem controlling. However, there is no

RUL information provided with their method.

Although the outputs of ES methods are comprehensible and reasoning

can be evaluated with respect to a particular result, it is not always practical

to acquire domain knowledge and convert it to rules, especially when novel sit-

uations are not covered explicitly or the system complexity increases (Zaidan,

2014)

Similar to ES, fuzzy logic (FL) is a problem-solving model that provides

a simple way to arrive at a definite conclusion based upon imprecise inputs

(Peng et al., 2010). A fuzzy system consists of a knowledge base variables to

provide intuitive and human-like representation and reasoning with incomplete

information. One of the earliest applications of FL in KbM prognostics was

used in a chemical pulp mill for incident prevention and real-time process

condition monitoring (Feng et al., 1998), and extended into prognostics of

bearing faults in induction motors (Satish and Sarma, 2005). Dmitry and

Dmitry (2004) also developed such a FL process. Their model maps inputs

into fuzzy variables (fuzzification) and uses functions to de-map these variables

into numerically precise outputs (defuzzification). Majidian and Saidi (2007)

conducted a comparison of FL with a data-driven prognostic model for RUL

prediction of boiler tubes and suggested that data-driven model performed

better where its applicability is favourable compared to FL model.

FL has become an effective KbM for certain cases in which there is
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inaccurate input information and/or no mathematical model is available to

implement; however, it greatly depends on the availability of an expert to

define the rules underlying system behaviour and design the fuzzy sets to

present each variables characteristics (Zaidan, 2014; Sikorska et al., 2011).

The challenges of FL implementation becomes more apparent in the case that

experts require to define the rules for a complex system which potentially

includes numerous interrelating components.

An alternative KbM is similarity-based prognostics. Despite this ap-

proach is categorised under data-driven models by several studies (Liao and

Köttig, 2014; Eker et al., 2014; Mosallam et al., 2016), it follows the character-

istics of KbMs such as similarity evaluation between monitored cases and using

the library of degradation patterns for RUL estimations. However, similarity-

based prognostics do not model the experience of a domain expert.

Wang et al. (2008) introduced the use of a similarity-based approach for

RUL estimation for the International Conference on Prognostics and Health

management data challenge, and received the leading score in the competition.

Their systematic method includes the calculation of a health indicator for

each unit and using the library of degradation patterns from the training

units. The approach is particularly suitable for cases where a sufficient number

of complete run-to-failure operational data is accessible. Trajectories from

multiple units of the same system are used in a collaborative manner to create

a library of degradation patterns. In order to predict the remaining lifetimes

of the test units, the filtered degradation patterns for the test trajectories

are matched to the pre-filtered training patterns in the library. The pairwise

distance between pairs of training and test patterns is used to find the best

matching position. The actual remaining life of those matched units is then

used as the basis for estimation. The distance can be expressed as the average

Euclidean distance over multiple trajectories between full degradation models
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(training trajectories, q) and a test instance (test trajectory,p).

distancei =

√√√√ l∑
i=1

(qi − pi)2 (2.17)

Use of similarity based prognostics was extended by Wang (2010); Eker

et al. (2014); Lam et al. (2014); Ramasso (2014a,b); Bektas et al. (2017) into

RUL prediction of complex systems. The proposed algorithms are shown to be

very effective in performing RUL prediction but they require a systematised

data-processing method. Therefore, the above-mentioned similarity-based al-

gorithms are used along with data-driven approaches for data processing.

2.3.3 Data-driven Models

Data-driven models are designed by processing monitoring data rather than by

building mathematical models on broad system behaviours or using predefined

system formulas (Schwabacher and Goebel, 2007). A typical data-driven model

involves the determination of precursors to failure and remaining time by tak-

ing into account past records and estimation outputs from monitoring data

(George et al., 2006). Data-driven approaches are calculated by regularly anal-

ysed periodic condition-monitoring data from system indicators (Peng et al.,

2010). Such prognostic models, as trained by stored data, have been found

to be more effective in numerous practical cases because of their simplicity in

data discovery and consistency in complex processes (Heng et al., 2009). They

can be carried out by automatic algorithm processing of historical degradation

patterns in order to estimate future degradation (Pecht, 2008). These features

of data-driven models allow the integration of innovative and conventional ap-

proaches to generate an inclusive prognostic method over wide-ranging data

series (Byington et al., 2004a). As a result, the physical modelling of a sys-

tem is no longer necessary, the algorithms’ run-times become faster and the
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collaboration between operations would become more practical.

Data-driven prognostics are based upon learning techniques which come

from the theory of machine learning and pattern recognition. They range from

conventional numerical methods of stochastic and statistical approaches, to

black-box methods based on advanced machine learning techniques such as

the neural networks (Sikorska et al., 2011). An ideal data-driven framework

uses one or more of these learning techniques to perform fault detection (recog-

nising an inadequate feature), fault isolation (identifying the fault location),

fault identification (determining inadequate feature and the fault mode), and

fault prognostics (estimating when a failure will happen) (Schwabacher and

Goebel, 2007). Table 2.4 lists the existing major data-driven prognostic mod-

els and summarises their merits and limitations.

Table 2.4: Data-driven Prognostics

Merits Limitations
Stochastic Models

Bayesian Networks (Jensen, 1996; Zhang et al., 2007) : Also called as
Belief Networks. A probabilistic model that represents a set of random
variables and their conditional interdependency relations
Requires less parameters to calcu-
late

Lack of accuracy in complex sys-
tems

Particle Filter (Orchard and Vachtsevanos, 2009; Orchard et al., 2005;
Saha and Goebel, 2009; An et al., 2013; Miao et al., 2013; Wang and
Gao, 2014): A set of Sequential Monte Carlo (SMC) methods to solve
filtering problems in data processing and Bayesian statistical inference
Ability to combine reliability and
monitoring information

Poor accuracy performance with
high-dimensional data

Kalman Filter (Hu et al., 2012a; Julier and Uhlmann, 1997; Swanson,
2001): Also known as linear quadratic estimation (LQE). Use conditional
information and produces estimates of unknown variables
Tend to give more precise estima-
tions than those based on a single
measurement alone

Limited to linear cases. Poor
accuracy performance with high-
dimensional data
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Hidden Markov (Bunks et al., 2000; Camci, 2005; Baruah and Chin-
nam, 2005; Dong and He, 2007; Ramasso, 2009) : It is modelled as a
Markov process with unobserved (hidden) state recognition in various
modes

Simplicity in design
Require large amount of data for
accurate modelling

Statistical Models
Trend Extrapolation : (Batko, 1984; Kazmierczak, 1983; Cempel,
1987)

Multi-step-ahead time series pre-
diction

Poor performance when the
degradation process is not
mature enough

ARMA(Yan et al., 2004; Galati et al., 2008): Auto-Regressive Moving-
Average
Require small amount of histori-
cal data

Short-term prognostic horizon

Multi-regime Normalisation
Reduce high dimensional data Available only for data processing
Principal Component Analysis (Guo et al., 2002; Wang, 2010): A
dimensionality reduction model by transforming the original features
Reduces data sets to lower dimen-
sions

Lack of population standardisa-
tion as a whole

Multiple Linear Regression (Ramasso, 2014a,b; Juesas et al., 2016;
Bektas et al., 2017)
Applicable on multi-dimensional
data

Difficulties in specifying individ-
ual trajectory characteristics

Artificial Neural Networks
Artificial Neural Networks (Heimes, 2008; Li, 2002; Bektas and Jones,
2016; Bektas, 2015; Rigamonti et al., 2017): Simulation of biological
neural network functions. It learns the complex relationships between
input and output data

Ability to work on filtering, fit-
ting, clustering, classification and
prediction applications

Lack of standard methods. Low
performance on multi-step ahead
predictions of exponential time
series

2.3.3.1 Stochastic Algorithms

Data-driven prognostics based on stochastic approaches provide a probability

distribution of RUL that may be analysed statistically but may not be esti-
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mated precisely. These methods are, in general, Bayesian-based approaches,

which predict the state of a process by a minimum prediction covariance ob-

tained from measurements. They can estimate both current and future states

of nonlinear systems, and they can predict RUL by tracking the trends of

growing deterioration before the asset hits a prearranged threshold (An et al.,

2013).

In Bayes’ theorem, the probability of an event is described by prior

knowledge of conditions related with that event. This relation forms a reference

point for updating estimations with due consideration of relevant evidence

(Bayes et al., 1763).

P(A|B) =
P(B|A)P(A)

P(B)
(2.18)

where A and B are two different observable events and P (B) 6= 0 .

• P (A) and P (B) are the probabilities of A and B respectively.

• P (A|B), conditional probability, is the probability of A given that con-

dition B is true.

• P (B|A) is the probability of B given that condition A is true.

When there is useful condition monitoring data available, a Bayesian

network can model the degradation changes over time and provide results for

prognostics which are invariably undertaken using time series forecasting. The

most common variants of such Bayesian networks used in prognostics include

Particle filters (Orchard and Vachtsevanos, 2009; Orchard et al., 2005; Saha

and Goebel, 2009; An et al., 2013; Miao et al., 2013; Wang and Gao, 2014),

Kalman filters (Hu et al., 2012a; Julier and Uhlmann, 1997; Swanson, 2001)
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and Markov models (Bunks et al., 2000; Camci, 2005; Baruah and Chinnam,

2005; Dong and He, 2007; Ramasso, 2009)

Particle filtering (PF) is known to be a powerful tracking technique

based on sequential Monte-Carlo methodology for sequential signal process-

ing. Orchard and Vachtsevanos (2009) pioneered this approach in prognostic

estimations, and carried it out by the approximation of the conditional state

probability distribution using a swarm of points called “particles”. It is stated

that the model can provide results in long-term predictions, and it is suitable

for on-line implementation.

In PF, the Bayesian theorem is used in a sequential way with samples

(particles) which have probability information of unknown parameters. This

process is mainly based on a state transition function fs and a measurement

function fm.

ẍt = fs(ẍt−1, p̈t, ε̇t) (2.19)

z̈t = fm(ẍt, ε̈t) (2.20)

where ẍ is the damage state, p̈ is a vector of model parameters, z̈ is

measurement data, ε̇ and ε̈ are respectively process and measurement noises,

and t is time (Orchard et al., 2005). The filtering problem includes the esti-

mation of ẍt, given all the measurements up to time “t” (z̈(1:t)). Considering

the Bayesian theorem, this estimation can be formalised as the calculation

of the distribution P(ẍt|z̈(1:t)), which can be done recursively in estimation

and update stages where the computations are carried out by Monte Carlo

sampling.

In prognostics, the state transition function is referred to a damage

model (An et al., 2013). If this model is accurately defined to represent the
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governing system dynamics, PF can be applied into nonlinear systems. How-

ever, in a linear system, the Kalman filtering (KF) is optimal since they have

lower computational requirements than particle filters. In the case of KF, the

state and measurement equations reduce to the following forms (Orhan, 2012).

ẍt = Fsẍt−1, p̈t, ε̇t (2.21)

z̈t = Fm ẍt, ε̈t (2.22)

where ε̇ and ε̈ are Gaussian noises, and Fs and Fm are respectively the

state evolution and measurement matrices which are assumed to be known.

With these equations, KF estimates the state of a process and minimises es-

timation covariance by including the measurement related to the state. This

filtering model can correct the estimations with the latest measurements to

minimise state error covariance.

Since both PF and KF methods are based on time series and their rela-

tionship with prior conditions, their application is limited in complex systems

operating under various conditions. A damage state at any given time instant

may not match with the upcoming conditions. Additionally, it is difficult to

describe the behaviour of damage model for multiple sensor data.

A simpler Bayesian network, Hidden Markov Model (HMM), is also

applied in the field of prognostics by Bunks et al. (2000), Camci (2005), and

Baruah and Chinnam (2005). Accordingly, Zhang et al. (2005) investigated

the use HMMs in bearing fault prognosis and applied to obtain the degrada-

tion index of bearings. Dong and He (2007) and Ramasso (2009) extended

the use of HMMs in prognostics as an estimation tool for representing prob-

ability distributions over sequences of observations. In these applications, it

is assumed that the observation at “t” is generated by some process whose

state P(ẍ) is hidden from the observer and the state of this hidden process
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satisfies the Markov property (in which future behaviour is predicted from the

current or present behaviour) (Ghahramani, 2001). These applications can be

used to recognise different fault types and states, but they might have prac-

ticability issues in physically observing a defect in an operating unit (Heng

et al., 2009). Similar to the PF and KF method, HMM also has difficulties

with multi-dimensional data and requires accurate degradation modelling.

2.3.3.2 Statistical Algorithms

Statistical data-driven models estimate the damage progression based on con-

dition monitoring information on similar machines. Their main difference from

stochastic approaches is that they commonly provide precise estimations rather

than a probability distribution. They are often used as an alternative or sup-

plement to artificial neural networks when a suitable model is available to

account for the dynamics of a system (Sikorska et al., 2011).

One of the earliest time series prediction and forecasting prognostics is

the trend extrapolation methods (Batko, 1984; Kazmierczak, 1983; Cempel,

1987). The degradation pattern is associated with a single time series (either

monitored or calculated) which is assumed to follow a monotonic trend. This

single degradation parameter is plotted as a function of time and a threshold

level is pre-established to decide the end of life point. The major advantage of

such forecasting methods is the simplicity in their calculations which can be

carried out on a basic programmable algorithm. However, their main draw-

back is that operating conditions are stable and/or do not have any affect on

monitored time series.

In the statistical analysis of time series, autoregressive moving average

(ARMA) models are widely used for modelling and forecasting time series

(Box et al., 2015). The main idea of ARMA is to fit the data to a parametric

time series model and extract features based on this model. It consists of
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two parts: the auto-regressive part and the moving average part. The damage

progression is obtained with curve fitting in moving average part, and added to

the autoregressive model output to predict the future values (Liao and Köttig,

2014). For a time series x = 1 : t, the ARMA model with autoregressive model

of order P and the moving average model of order Q takes the following form.

ẍt = c+ εt +
P∑
i=1

φiẍt−i +

Q∑
i=1

Θiεt−i, (2.23)

where φ and Θ are respectively auto-regressive and moving average

terms (Whitle, 1951). This representation is effective for short-term predic-

tions, however, cannot provide reliable long term predictions due to the model’s

sensitivity to initial system conditions and systematic errors in the predictor

(Box et al., 2015). Although, this problem can be minimised by avoiding past

estimations for future predictions and being reliant on condition monitoring

data (Wu et al., 2007), ARMA models are limited for non-stationary and dy-

namic processes.

The review of data-driven models in this section shows that due to the

incomplete understanding on the multi-dimensional failure mechanisms, time

series prediction and forecasting methods lack the ability to deal effectively

with complicated multidimensional and noisy data. Further data processing

methods are needed to deal with this efficiently.

The raw values of multi-dimensional time series, which are inconsistent

with each other and operates under various conditions, need a feature extrac-

tion transformation of the multi-regime data in the high-dimensional space to

a space of single health level dimension (Bektas et al., 2017). This transfor-

mation can reduce the dimensionality of the time series from their original

scales to a notionally common scale that will include meaningful information

for prognosis.

Such feature extraction and dimension reduction can be combined in one
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step by using regression models which perform a mapping of the multi-regime

data to a lower-dimensional space in such a way that the variance of the mea-

surements in the low-dimensional finding is maximised. Ramasso (2014a,b)

applied a multiple linear regression model for complex systems operating un-

der different conditions. Their model could standardise the multi-regime data

into a common space for further time series prediction and forecasting prog-

nostics. In similar complex system domains, Juesas et al. (2016); Bektas et al.

(2017) extended the approach and applied into alternative estimation models.

Multiple linear regression calculates the relationship between different

explanatory variables and a target variable by fitting a linear equation to

observed data (Chatterjee and Hadi, 1986; Freedman, 2009). This model is

based on:

y = xβ + ε (2.24)

where y is a n× 1 vector of values of the target variable, x is an n× p

matrix of observed responses and β is a n × 1 vector of coefficient estimates

for a multiple linear regression of the responses.

y = β1x1 + β2x2 + β3x3 + · · ·+ βnxn (2.25)

More complex models may include multiple observations (multivariate time

series) and the equation is modified by considering x as a matrix instead of a

vector.

yi = β1xi,1 + β2xi,2 + β3xi,3 + · · ·+ βpxi,n, (2.26)

for i = 1, 2, · · · , p (2.27)
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y =


y1

y2

· · ·

yn

 x =


x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p
...

...
...

xn,1 xn,2 · · · xn,p

 (2.28)

When datasets represent multiple instances and cover various realistic

and difficult cases including different operating conditions and fault modes

with unknown characteristics, the “regression” can tackle the problem of fea-

ture feature extraction and standardisation (Ramasso, 2014a). After the co-

efficients, β, are estimated for a specific case, they can be applied into similar

matrix of observed responses. The major limitation in this model is that the

coefficient estimation is a supervised method that requires pre-defined tar-

get variables. Although there are mathematical definitions are used to define

these variables, the calculation of characteristic damage progression in indi-

vidual complex systems and initial health level (or wear level) is a major issue

to be considered.

Principal component analysis (PCA) is another statistical dimensional-

ity reduction procedure that uses an orthogonal transformation to convert a

set of correlated inputs possibly into a set of linearly uncorrelated principal

components. In PCA, these components are obtained from singular value de-

composition of rectangular matrices, x (Holland, 2008). To standardise these

multi-dimensional data, the first principal components are used as the health

indicator for prognosis (Ramasso, 2014a,b; Juesas et al., 2016; Bektas et al.,

2017).

y1 = β11x1 + β12x2 + β13x3 + · · ·+ β1pxp = βT1 x (2.29)

Similar to the regression model, β is a matrix of coefficients that is

determined by PCA. This dimensionality reduction method is not a super-
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vised model and does not require a pre-defined target variables. However, the

method can only be applied into individual run-to-failure trajectories. Consid-

ering a dataset with multiple component-wise cases, the damage progression

and initial health level of individual cases cannot be standardised into a com-

mon scale.

In order to provide a common scale across all the characteristics of a

dataset, normalisation is a common well-known pre-processing step to perform

component-wise standardisation before the prognostic analysis. A standard

method to achieve this is to use the standard score (Peel, 2008; Wang et al.,

2008; Wang, 2010; Lam et al., 2014; Ramasso, 2014a,b; Malinowski et al., 2015;

Rigamonti et al., 2016):

N(xd) =
xd − µd

σd
, ∀d (2.30)

where xd are the original data values (data set) for feature d (regime),

and µd and σd are respectively the mean and standard deviation of the regime.

Peel (2008); Wang et al. (2008) proposed such a component-wise “multi-regime

normalisation” method to standardise the multi-regime sensor readings accord-

ing to each other within the same domain. Unlike the regression analysis and

PCA, their methodology can deal with the damage progression in complex

systems and consider the population characteristics (µ, σ). They could stan-

dardise the entire dataset together with its all components and preserve the

characteristic damage progression and initial health levels of multiple trajec-

tories.

However, for the case considered in the works of Peel (2008); Wang et al.

(2008), all trajectories were available at the same time. The “normalisation at

once” has therefore not been a major issue. Nevertheless, it would be rather

unlikely to find such data in a real-life scenario due to the restrictions on data

proprietary considerations and confidentiality (Ramasso and Saxena, 2014).
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In a real-world scenario, the “multi-regime normalisation” should be repeated

for each novel incoming trajectory in order to calculate the changed population

characteristics.

2.3.3.3 Artificial Neural Networks

One of the most commonly used data-driven approaches in the prognostic

literature is the Artificial Neural Networks (ANNs) (Goebel et al., 2008b).

ANNs are biologically inspired programs that are loosely analogous to the

behaviour of the neural networks of the brain, and they are used as machine

learning systems made up of data processing neurones which are the units of

neural networks (Bishop, 1995; Kozlowski et al., 2001). The neurones establish

a set of interconnected functional links between input series and a desired

output where the connections can be calculated and trained for the optimal

performance (Byington et al., 2004a). This connection is typically achieved

by exposing the network to a set of input samples, training the network, and

re-adapting the network to minimise errors (Bishop, 1995).

The computational model of ANN is a set of multiplication, summa-

tion and transfer functions (Krenker et al., 2011). The neurons practice the

multiplication by weighting the inputs in the first step and then summing all

weighted inputs. The sum of these weighted inputs is exposed to the transfer

function. In this process, the weights used at the neurons are automatically

changed to increase the compliance of the model with the data (Bishop, 1995).

These connections and organisation of ANN are the key features in establish-

ing a set of interconnected functional relationships between numerous input

series and a desired outputs where the relationship can be trained for optimal

performance (Byington et al., 2004a).

Neural networks are practical tools for effectively modelling engineering

systems consisting of a broad category of non-linear dynamical systems, dimen-
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sion reduction methods, regression analysis and discriminant models (Sarle,

1994). In certain complex engineering applications, the observations from a

system may not include precise data, and the desired results may not have a

direct link with the input data; in such cases, ANNs are a competent applica-

tion to model the system without knowing the exact relationship between input

and output data series (Murata et al., 1994). ANNs, therefore, are suitable for

complex system prognostic algorithms and are faster and easier to calculate

compared to various other prognostic methods. For all these reasons, ANNs

have been widely employed as one of the most popular data-driven prognos-

tic methods, and a significant number of studies across different disciplines

have stated the merits of artificial neural networks through the introduction

of numerous different methodologies.

Such an advanced neural network training is designed by Heimes (2008)

to classify the difference between healthy and degraded condition monitor-

ing time series of a complex system. Their network is designed with back-

propagation through time gradient calculations and developed to solve the

issues in adaptation, filtering and classification. Initially, a Multi-Layer Per-

ceptron (MLP) neural network design is undertaken to determine whether the

difference between a healthy system and a failed system can be classified ef-

fectively. MLP function predicts the number of cycles remaining before the

failure. It is assumed that the earliest samples in each time series characterise

a healthy time line, while the latest samples correspond to a degraded time

line. The condition monitoring data is then clustered into two different parts:

a healthy unit and a degraded unit. An MLP-based classifier could distinguish

these units with 1% error rate. To handle the filtering within non-linear time

domain dynamic system modelling, a recurrent neural network (RNN) struc-

ture with internal memory and feedback components is used to learn complex

non-linear dynamic mappings. The RNN structure utilises all sensor data and
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operating conditions as input series for estimation.

Peel (2008) also constructed a similar Multi-Layer Perceptron and Ra-

dial Basis Function networks as the regression models for prognostics. A

Kalman filter method is combined with a proper selection of these networks.

Their designed algorithm delivers a mechanism for fusing the Kalman filter and

multiple neural network model predictions over time. Peel (2008) discussed

that the data pre-processing and data exploration are essential initial stages

of a successful prognostic framework for complex systems which operate under

multiple operational conditions. They concluded that these stages result in

the identification of different regimes from sensors.

Peng et al. (2012a) and Rigamonti et al. (2016) provided the echo state

network-based prognostic model, which is an architecture and supervised learn-

ing principle for recurrent neural networks. This network model drives a ran-

dom, large and fixed recurrent neural network via the input signal, thus in-

ducing each neuron within the network to act as a non-linear response signal,

and then combines a desired output through a trainable linear combination of

all of the response signals. Abbas (2010) developed a further multilayer feed-

forward neural network architecture using an error back propagation algorithm

in which they employed to develop the creep damage predictive models for

different regime phases, i.e., take-off, climb, and cruise. Wang (2010) also ex-

panded the earlier trajectory similarity-based prediction method (Wang et al.,

2008) with a Radial Basis Function Neural Network (RBFN) based RUL pre-

diction method. It has been stated that the similarity-based model has shown

considerable advantages in their predictive performance over ANN-based pre-

diction methods.

In the field of complex systems with multi-dimensional condition mon-

itoring data, Jianzhong et al. (2010) and Riad et al. (2010) extended the

use of ANNs in an attempt to achieve better performance within the learning
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methodology regarding RUL estimation of test trajectories. Javed et al. (2012)

emphasised the neural networks in the feature selection procedure for prognos-

tics with the intention of showing that feature selection should be performed

according to the predictability of features. For multi-step ahead predictions,

Bektas and Jones (2016) introduced a non-linear autoregressive neural net-

work prognostic model as a form of dynamic filtering in which past values of

a time series are used to predict future values. However, it was observed that

this type of neural network has issues predicting the exponential behaviour

of damage propagation. Therefore, a recurrence relation model was used to

transform input and output data for network training.

In Table 2.5, ANN prognostic approaches applied in complex domains

are described. Although the most attractive feature of these neural network

applications is the accomplishment of their learning ability, it is not always

possible to train the network as desired. The networks used at different phases

of prognostics may not be as effective as expected, and this is generally more

evident in time series showing complex degradation growth or decay. In such

cases, the ANN structure behaves as an autonomous system which attempts to

recursively imitate the dynamic system behaviour that caused the non-linear

time series (Haykin and Li, 1995; Haykin and Principe, 1998). The multi-step

ahead predictions of ANN applications can be quite challenging when only a

few time series or a little previous knowledge about the degradation process

is available and the failure point is expected to happen in the longer term

(Menezes and Barreto, 2008).

ANNs, which are designed for one-step-ahead prediction models, include

only actual sample points of the initial time series used in network modelling;

the prediction tasks are modelled to estimate the next value of time series,

without feeding externally back to the models’ input values (Zemouri et al.,

2010). In a longer multi-step-ahead prediction horizon, ANN model output
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Table 2.5: ANN-based Prognostics in Complex Systems

Parker Jr
et al.
(1993)

A neural network pattern recognition model that uses a con-
strained, minimum-logistic-loss criterion for multi-class prob-
lems

Brotherton
et al.
(2000)

A classification model for complex systems that are difficult
to model physically. The approach provides novelty detection
capability in sensor data and thereby statistical state mod-
elling of the complex system with respect to known faults.

Bonissone
and
Goebel
(2002)

A systematic framework for building a model to estimate
time-to-fail. Hybrid models of neural, fuzzy and evolutionary
computation methods are applied to classification, prediction,
and control problems.

Heimes
(2008)

Applied to multidimensional dataset. MLP based classifier
and RNN based structure for filtering within non-linear time
domain of turbofan systems

Goebel
et al.
(2008b)

ANN is applied to learn the damage state of relatively sparse
training sets with very high noise content (a rotating equip-
ment in an aerospace setting)

Peel
(2008)

The method involves the estimation of RUL of an unspecified
complex system using a data-driven model combination of
Multi-Layer Perceptron Radial Basis Function networks with
a Kalman filter method

Baraldi
et al.
(2013)

A trained bagged ensemble of Artificial Neural Networks is
embedded in the Particle Filtering method as an empirical
measurement model

is required to be externally fed back to the initial time series for a fixed but

finite number of steps; the regressing components of these input series, which

are previously formed of actual sample points of the initial time series, are

progressively replaced by already predicted values (Sorjamaa et al., 2007).

Such a replacement might cause an imbalance in exponential curve predictions

and the multi-step predictions can overly imitate the training data (Bektas and

Jones, 2016).

However, in data filtering models for prognostics, ANNs provide a ro-

bust computational mapping between the raw data and a desired output to be

used in network prediction (Demuth et al., 2008). Such neural network filtering
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models have been applied in multidimensional data, and showed high perfor-

mance in prognostic performance (Parker Jr et al., 1993; Brotherton et al.,

2000; Heimes, 2008). Considering that the multi-step ahead predictions and

dynamic modelling in ANNs are complex tasks, and play a challenging and

significant role in ANN structure (Principe et al., 1999; Menezes and Barreto,

2008), a combination of ANNs with alternative methods is generally necessary

in order to achieve better prognostic performance. Some of these various meth-

ods are shown in literature such as Parker Jr et al. (1993); Brotherton et al.

(2000); Bonissone and Goebel (2002); Peel (2008); Baraldi et al. (2013); Bek-

tas and Jones (2016). Each combination in these applications can be regarded

as a hybrid model for prognostic frameworks.

Learning in a typical network is associative since the network learns

an association between one type of data (input) and another (output) (Cross

et al., 1995). When the network training is supervised by the target data,

it knows the desired response and the actual outcome. Such supervised-type

classification techniques tend to be more accurate since each classifier is trained

by a representative data trajectory known as a corpus. In contrast, the unsu-

pervised learning does not employ prior training to process the classification

(Chaovalit and Zhou, 2005). In various prognostics models such as Ramasso

(2009); Ramasso and Gouriveau (2010); Sarkar et al. (2011); Xue et al. (2011);

Yu (2013); Lin et al. (2013); Tamilselvan and Wang (2013); Bektas and Jones

(2016); Mosallam et al. (2016), the supervised classification stages is used for

health indicator detection.

The generalised time-varying health index equation introduced by Sax-

ena et al. (2008b) is commonly used as an additive term to yield supervised

classifications for complex systems.

h(t) = 1− d− exp(atb) (2.31)
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where d is an arbitrary point in the wear-space, a and b are model

parameters and t is time. This health index can also be used for different

phenomena within a system. As an example, health can be described by the

trajectories for flow (f) and efficiency (e) that might differ for various fault

modes. Thereby, they are required to be as separate health-related indexes.

e(t) = 1− de − exp(ae(t)tbe(t)) (2.32)

f(t) = 1− df − exp(af (t)tbf (t)) (2.33)

These terms are then aggregated to form the overall health index;

H(t) = g(e(t), f(t)) (2.34)

where the function g corresponds to the minimum of all operative mar-

gins.

The main challenge in supervised prognostic approaches (as well as the

neural network fitting approaches) is the identification of data characteristics.

When a common dataset is available and used for predictions, a predefined

model might show complications when attempting to define characteristics in

different instances in the dataset. The most obvious examples of these com-

plications are the initial wear levels and failure points. Since each operating

trajectory would have a case-specific starting performance level and a mu-

tual threshold level, the operational health level should be standardised by

regarding these levels.

Alternative unsupervised learning algorithms for classification are used

in the publications of Wang et al. (2008); Wang (2010); Peng et al. (2012a);

Sarkar et al. (2011); Javed et al. (2013); Lam et al. (2014); Mosallam et al.

(2016); Rigamonti et al. (2016) in order to perform dataset partitioning into
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the operating regimes. These methods could be regarded as cluster analysis,

which is used for exploratory regime analysis to identify hidden patterns in

data trends. As these methods regard with the population parameters in

the entire dataset, the characteristic trajectory features such as initial wear

level and failure point could be standardised into a common scale. Since the

supervised training stage are trained by the representative data trajectory, the

identification of population parameters is disregarded. However, one can apply

the unsupervised learning to take the population parameters into account and

then use the outcomes in a more effective supervised model as an output data

in a neural network filtering model.

2.3.3.3.1 Neural Network Architecture:

The structure of neural networks covers a broad area of study and it would

be impractical to discuss all types of neural networks in this work (Hagan and

Demuth, 1999). Instead, the common tools of neural network architecture for

filtering and the multilayer perceptron will be concentrated on in the following

sections. This architecture returns a common neural network fitting function

with a hidden layer (Beale and Demuth, 1998). Similar neural network appli-

cations in prognostics can be found in the works of Greitzer et al. (1999); Fink

et al. (2014); Wu et al. (2016); Loutas et al. (2017); Elforjani (2016); Yang

et al. (2016); Zheng et al. (2017). Based on these works, this section defines a

network model that uses the unsupervised HI outputs in the network training

stage and generates a network function to fit the raw data trajectories.

The most essential building block in neural networks is the single-input

neuron structure (Demuth et al., 2008), such as that shown in Figure 2.6. In

this sample neuron, there are three definite functional operations, namely the

weight function, the net input function and the transfer function (Demuth

et al., 2008). The scalar input x is first multiplied by the scalar weight, w,
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Figure 2.6: A single neuron

to form another scalar product, wx. The weighted input, wx, is added to the

bias, b, to form the net input, n, in the second functional operation. The bias

is such as a weight with the exception that it has a constant input of “1”.

In the final operation, n penetrates through the transfer function, f , which

results in the output, y. The basic idea of a neuron is to adjust parameters

x, w and b such that the network demonstrates the desired behaviour. Hence,

the network can be trained to do a particular task by adjusting the weight and

bias parameters.

For the neurone output, the general equation can be denoted by the

following formula (Lippmann, 1988):

y = f(wx+ b) (2.35)

As ANNs are complex structures, a neuron typically has more than a

single input. A network illustration with multiple inputs is demonstrated in

Figure 2.7. All inputs, x(1), x(2), x(3), · · · , x(r), are weighted by their cor-

responding elements, w(1, 1, ), · · · , w(1, r) in the weight matrix, W (Hagan

et al., 2002).

n = w1,1x1 + w1,2x2 + · · ·+ w1,rxr + b (2.36)

59



Figure 2.7: A single neurone with multiple inputs

This equation, in matrix form, can be expressed as:

n = Wx+ b (2.37)

where the weight matrix has a corresponding element for each input

entering the network.

W =


w1,1 w1,2 · · · w1,r

w2,1 w2,2 · · · w2,r

...
...

...

ws,1 ws,2 · · · ws,r

 (2.38)

and the scalar output of a neurone can be formulated as

y = f(Wx+ b) (2.39)

y = f

(
n∑
i=1

wixi + b

)
(2.40)

where the fixed real-valued weights, (wi), are multiplied by state vari-
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ables, (xi), with the addition of bias, b. The neuron’s output, y, is obtained as

a result of the nodes and the transfer function of the neurons f (Barad et al.,

2012; Krenker et al., 2011).

Figure 2.8: A multiple-layer neural network

Generally, one neuron, even if structured with many inputs, is not suffi-

cient for training, and multiple neurones operating in parallel layers are instead

necessary (Hagan and Demuth, 1999). In Figure 2.8, a multiple-layer neural

network model is shown. Each layer here is formed of its own weight matrix,

bias vector, transfer functions, and inputs and outputs. The demonstrated

structure is formed of a feed-forward model that takes a set of input vectors

(raw data) as columns in a matrix, and then arranges another set of output

vectors (HI) into a second matrix.

Neurons, which are the building blocks of neural networks, evaluate

these input state variables. This definition can be denoted by the following

equation:
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y(t) = f
[
x(t)

]
= fo

{
b+

nh∑
h=1

whfh

(
bh +

n∑
i=1

wihx(i)

)}
(2.41)

where the network used for fitting function is a two-layer feed forward

network with a sigmoid transfer function, fh, in the hidden layer and a linear

transfer function in the output layer, fo (Demuth et al., 2008).

fh(n) = 1
1+e−n

, fo(n) = n (2.42)

2.3.3.3.2 Neural Network Regularisation:

In the training of multilayer neural networks, overfitting and compu-

tational overheads might lead to poor network calculations, especially when

the data is excessively complex and the parameters relating to the number of

observations are outnumbered (Srivastava et al., 2014). In such cases, the net-

work could memorise the samples for the training data, but it cannot properly

generalise the upcoming testing cases (Lawrence et al., 1997).

One common network training approach to avoid overfitting is Bayesian

regularisation (BR) method. Other well-known regularisation alternatives to

this method are the “Levenberg-Marquardt” and “scaled conjugate gradient”

practices (Demuth et al., 2015). In the case of the Levenberg-Marquardt

model, the network training typically requires more memory but less time

and it automatically terminates when generalisation stops improving, as de-

fined by the increase in the mean squared error value of the validation samples.

The main drawback of the Levenberg-Marquardt algorithm is that it requires

the storage of some matrices that can be quite large for certain problems.
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The “scaled conjugate gradient” needs less memory and can be used when the

training data is short. Bayesian regularisation typically requires more time in

comparison to other regularisation algorithms due to the adaptive weight min-

imisation, but it is able to provide satisfactory generalisations from difficult

and/or noisy datasets (Demuth et al., 2008).

The function in the Bayesian regularisation method stands on the Gauss-

Newton approximation to the Hessian matrix. The algorithms updates the

network weights and biases in accordance with Levenberg-Marquardt optimi-

sation. The regularisation reduces a compound of squared errors and weights

in pursuant of diminishing the computational overhead, and then identifies the

correct compound so as to provide a practical network generalisation. This

definition of Bayesian regularised neural network is formed by the extensive

works of MacKay (1992b) and Foresee and Hagan (1997). Based on their

works, the detailed application of the Bayesian rule to neural network train-

ing structure and to optimising regularisation will be detailed in the following

subsections.

2.3.3.3.3 Bayesian Regularisation Algorithm

In the network training process, the weights are calculated and adjusted

with the objective of minimising the error function, ED (Bui et al., 2012). The

aim of this training is to produce a network that produces only small errors

with the training data, but will also respond properly to any novel inputs that

might be presented. When a network can perform as well on novel input data

as on training inputs, it is accepted that the network generalises well.

To achieve the optimum generalisation, until the error function gives

acceptable results, the errors are fed backwards through the neural network

to adjust the weights. ANN uses this back-propagation training method to

combine the sum of the least squares error function with a further term called
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regularisation (Bui et al., 2012).

F(w) = (βED + αEw)

Ew =
∑nw

i=1w
2
i

(2.43)

where Ew is the penalty term, and the terms α and β are objective

function parameters, also called regularisation parameters. Their relative size

is used to dictate the network learning emphasis.

• For α << β, the learning algorithm continues to allow the errors to

become smaller

• For α >> β, learning interferes and emphasises weight size diminution

at the expense of network errors, so that the network response becomes

smoother, and the algorithm can generalise well.

The goal of implementing regularisation is that of defining accurate values for

the objective function parameters (Foresee and Hagan, 1997). This is where

the Bayesian method finds use.

To apply the Bayes’ theorem in the neural network training process,

the weight function, regarded as a prior distribution, can be turned into a

posterior distribution (Bishop, 1995).

P (w|D,α, β,M) =
P (D|w, β,M)P (D|w, α,M)

P (D|α, β,M)
(2.44)

Where;

• D corresponds to the data set

• M represents the neural network model used

• w is the vector of weights in the network

• P (w|D,α, β,M) is the conditional probability
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• P (D|w, β,M) is the likelihood function corresponding to the probability

of error

• P (D|w, α,M) is the prior density representing initial knowledge in the

weights before the data is collected

• P (D|α, β,M) is the normalisation factor that ensures that the total prob-

ability equals 1 (MacKay, 1992b; Foresee and Hagan, 1997) .

Assuming that the data noise and the prior distribution generated for

the weight are Gaussian, the above-mentioned probability densities can be

expressed by the following equations (Foresee and Hagan, 1997; Burden and

Winkler, 2009; Bui et al., 2012).

• Prior probability of weights

P (D|w, β,M) =
1

ZD(β)
exp(−βED) (2.45)

• Likelihood as the probability of errors

P (w|α,M) =
1

Zw(α)
exp(−αEw) (2.46)

where:

ZD(β) = (π/β)n/2 (2.47)

and:

Zw = (π/α)N/2 (2.48)
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After these probabilities are substituted into equation 2.44, it becomes

the following form:

P (w|D,α, β,M) =

1
Zw(α)

1
ZD(β)

exp(−(βED + αEw))

P (D|α, β,M)
(2.49)

and since P (D|α, β,M) is the normalisation factor, the posterior prob-

ability becomes:

P (w|D,α, β,M) =
1

ZF (α, β)
exp(−Fw) (2.50)

The optimal weights are compelled to maximise the posterior probabil-

ity and to minimise the regularised objective function.

F = (βED + αEw) (2.51)

Then, Bayes’ rule is applied for the optimisation of the objective func-

tion parameters.

P (α, β|D,M) =
P (D|α, β,M)P (α, β|M)

P (D|M)
(2.52)

When a uniform prior density, P (α, β|M), is assumed for the regularisa-

tion parameters, the maximisation of the posterior is achieved by maximising

the likelihood function, P (D|α, β,M). On the other hand, it is worth to noting

that this likelihood function is the normalisation factor for equation 2.44. As

all probabilities have a Gaussian form and equation 2.49 shows the form for

the posterior density, equation 2.44 can now be solved for the normalisation

factor:

P (D|α, β,M) =
P (D|w, β,M)P (D|w, α,M)

P (w|D,α, β,M)
(2.53)
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P (D|α, β,M) =

[
1

ZD(β)
exp(−βED)

] [
1

Zw(α)
exp(−αEw)

]
1

ZF (α,β)
exp(−Fw)

(2.54)

P (D|α, β,M) =
ZF (α, β)

ZD(β)Zw(α)
· exp(−βED − αEw)

exp(−Fw)
(2.55)

P (D|α, β,M) =
ZF (α, β)

ZD(β)Zw(α)
(2.56)

where ZD(β) and Zw(α) are known constants from equation 2.61. ZF (α, β)

is the only unknown part and a Taylor series expansion can be used to esti-

mate it. As the objective function is formed in the shape of a quadratic in

a small area surrounding a minimum point, Fw can be expanded around the

minimum point of wMP ,the posterior density, where the gradient corresponds

to zero (MacKay, 1992b,a; Foresee and Hagan, 1997).

ZF ≈ (2π)N/2(det((HMP)−1))1/2exp(−F (wMP)) (2.57)

Here, H (second derivatives of the performance index at the current

values of the weights and biases) is the Hessian matrix of the objective function

and is represented by:

H = β∆2ED + α∆2Ew (2.58)

If this is placed into equation 2.56, the optimal values of α and β at the

minimum point can be solved by taking the derivative with respect to each

log and setting them to zero (Burden and Winkler, 2009). This results in the

following equations:
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αMP =
γ

2EW (wMP)
(2.59)

βMP =
n− γ

2ED(wMP)
(2.60)

The quantity γ is the effective number of parameters. It measures how

many network parameters are effectively used in the reduction of the error

function and can range from zero to the total number of parameters in the

network, N .

γ = N − 2αMPtr(HMP)−1 (2.61)

To optimise the Bayesian regularisation parameters, the calculation of

the Hessian matrix of F (w) at the minimum point wMP is an essential step

in the framework. Foresee and Hagan (1997) proposed the Gauss-Newton

approximation to the Hessian matrix. The iterative procedure steps in their

method are as follows:

1. Initialisation of β and α and the weight values.

2. Extract one step of the Levenberg-Marquardt algorithm to find the

weights minimising the objective function (Hagan and Menhaj, 1994;

Foresee, 1996; Hagan et al., 1996).

3. Computation of the effective number of the quantity γ.

4. Gain new estimates for the objective function parameters, α = γ
2EW (w)

and β = n−γ
2ED(w)

.

5. Iterate steps 2 through 4 until convergence is achieved.
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2.3.4 Comparison of Prognostic Models and Hybrid Ap-

plications

As hypothesised by the impossibility theorem of optimisation (no free lunch

theorem - NFLT), a general-purpose universal strategy of optimisation is im-

possible and a strategy can outperform another when it concentrates on the

structure of a specific case under consideration (Ho and Pepyne, 2001; Kop-

pen, 2004). Particularly in prognostics, no prognostic algorithm is ideal for

every problem (Coble, 2010). A variety of models in the literature have been

introduced for application to certain situations or specific domains.

It is a challenging task to estimate the trends of all characteristic pa-

rameters by using a single prognostic model since the associated parameters

are diverse in real-world applications (Peng et al., 2010). Therefore, it is very

common that a prognostic model is integrated with alternative methods based

on the system characteristics and the measured condition data at run time;

this essentially becomes a hybrid application.

The hybrid category consists of the combination of different prognostic

applications (Lee et al., 2014). Table 2.6 describes the extent to which these

approaches are compared to each other, and applied in different domains. A

hybrid prognostic approach may have more general significance when the de-

sired merits are included, and the drawbacks are removed. Also, it can leverage

the strengths of the methods by leading to improved prognostic results.

In addition to the advantages of the approaches that they are based

on, the hybrid prognostic approaches include the following several advantages

(Eker, 2015).

• The inadequacies caused by individual approaches could be compensated

• A higher prediction accuracy and prognostics performance can be achieved

• The complexity of computations can be reduced
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Table 2.6: Comparison of Prognostic Approaches (Eker, 2015; Liao and Köttig,
2014; Sikorska et al., 2011)

Merits Limitations

Physics
Based
Models

Less (or no) data require-
ment

High precision and ac-
curacy (if a representa-
tive mathematical model
is available to model the
degradation)

Suitable to use in design
phase of simple systems

Component (or system)
specific

Difficulty in system mod-
elling (particularly for
complex systems working
under multiple operational
conditions)

Confined to the material
(and design) properties
due to the requirements
for characteristic com-
ponent information and
failure mechanism

Knowledge
Based
Models

Simplicity in design and
modelling
No model is required

Computationally less ex-
pensive

Ability of dealing with
multi step ahead remain-
ing useful life estimations

Limitations in obtaining
domain knowledge of new
situations (The models
mimicking the expert
behaviour are more likely
to reflect this)

Requires a data library
and multiple training
cases to feed the model

Data
Driven
Models

Easy for implementation
(less system information is
required)

Flexibility and adaptabil-
ity for different cases

Suitable for complex sys-
tems

Need to be combined with
alternative approaches

High computational com-
plexity

Risks on inaccurate esti-
mations due to change in
time
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In the field of complex system prognostics, it is anticipated that a spe-

cific method is not always accurate or effective for systems formed of inter-

related components, and therefore a hybrid method or a fusion approach to

prognostics will greatly improve prediction accuracy and capability (Sun et al.,

2010). Complex system work under superimposed operational margins and the

damage progress of such cases is not deterministic, and usually multidimen-

sional (Saxena et al., 2008b). Therefore, a simple model is unable to present

the damage progress and one should consider more advanced techniques (Cem-

pel, 2009).

One of the most prominent of such advanced methods for complex do-

mains is neural networks (Parker Jr et al., 1993; Brotherton et al., 2000; Bonis-

sone and Goebel, 2002; Heimes, 2008; Goebel et al., 2008b; Peel, 2008; Baraldi

et al., 2013). These applications are practical for complex engineering sys-

tems formed of non-linear dynamical systems and they can model prognostics

without knowing the exact relationship between input and target data series.

However, a network model requires a target output since the ANNs train it-

self by the association between input and target data (Cross et al., 1995).

The network function can only estimate the desired response and the actual

outcome if the network training is supervised by an output representing the

degradation model.

To form a supervised network model, there is a need for the feature

extraction transformation of data from high-dimensional space to a space of

single health level dimension (Bektas et al., 2017). Although the single health

level (or alternatively the damage progress) can be produced by pre-defined

models such as the generalised time-varying health index equation introduced

by Saxena et al. (2008b), there is always a risk to fail in identifying character-

istic of individual cases with these models. Statistical feature extraction and

dimension reduction models such as linear regression (Chatterjee and Hadi,
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1986; Freedman, 2009; Ramasso, 2014a), principal component analysis (Ra-

masso, 2014a,b; Juesas et al., 2016; Bektas et al., 2017) and multi-regime

normalisation (Peel, 2008; Wang et al., 2008; Wang, 2010; Lam et al., 2014;

Malinowski et al., 2015; Rigamonti et al., 2016) can standardise multidimen-

sional data to a space of single health level dimension for the use of network

target assignment.

There is one further aspect that should be mentioned, and this is di-

rectly attributable to the RUL estimation. After the multidimensional data

is filtered into amore appropriate form for prognosis, the multi-step ahead

prediction needs to be obtained for RUL estimation. In such cases, the pre-

dictions are typically faced with growing uncertainties arising from various

sources and time series forecasting methods struggle to provide accurate esti-

mations on such problems. The multi-step ahead estimations by ANN models

can be quite challenging when little historical data is available and the failure

is expected to happen in the longer term (Menezes and Barreto, 2008). The

stochastic approaches such as Bayesian networks (Jensen, 1996; Zhang et al.,

2007), Particle Filtering (An et al., 2013; Miao et al., 2013; Wang and Gao,

2014), Kalman Filtering (Hu et al., 2012a; Julier and Uhlmann, 1997; Swanson,

2001) and Markov models (Camci, 2005; Baruah and Chinnam, 2005; Dong

and He, 2007; Ramasso, 2009) or the statistical time series forecasting models

such as trend extrapolation (Batko, 1984; Kazmierczak, 1983; Cempel, 1987)

and auto regressive models (Yan et al., 2004; Galati et al., 2008) can contribute

to this issue and provide multi-step ahead predictions. However, the issue of

historical data shortage is also a problem for these cases and when the prog-

nostic performance along with the risk of catastrophic failures is considered,

there is always a requirement to achieve higher prediction performance.

One well-known approach capable of achieving high prediction accuracy

is the trajectory similarity-based prognostic approach. The method made the
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multi-step predictions over the pairwise distance similarity between filtered

outputs (health indicators - a space of single health level dimension). Since the

estimation is exclusively based on best-matching past operations and known

failure times, the similarity-based model demonstrated significant improve-

ment in performance over other approaches (Wang, 2010). Furthermore, if

the method is merged with alternative methods (such as ANN filtering and di-

mensionality reduction models) to assign health indicators for similarity-based

predictions, there would be a noteworthy potential to improve prognostic per-

formance.

To decide the best practice for a hybrid approach, the prognostic per-

formance plays a vital role. Performance evaluation methods help understand

the differences and similarities between various methods and what may or

may not be borrowed. Further, they may be useful in deciding upon a suitable

hybrid approach for a specific application (Saxena et al., 2008a).

2.4 Performance Evaluation

Today, the maintenance management is under pressure to advance their capac-

ities to introduce value-based improvement for the operations (Tsang, 2002).

As more research communities start adopting prognostics for maintenance ap-

plications, it becomes more necessary to use standardised prognostic tech-

niques (Uckun et al., 2008) as well as the performance measurement metrics

(Goebel et al., 2011a). On the other hand, prognostics is a developing field and

there are major issues in modelling a prognostics method that can be deployed

in field applications (Schwabacher, 2005). This is mainly due to the basic defi-

ciencies on the metrics to properly evaluate the prediction performance (Leao

et al., 2008). Therefore, there is always a requirement for prognosis certifica-

tion in successful deployment of a prognostic system (Saxena et al., 2008a).
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This allows to analyse the literature and identify the most suitable algorithm

among several. Also, users might have different requirements in their appli-

cations; hence the metric can be adopted for each end user for a customer

based verification (Jolliffe and Stephenson, 2003). Although this might pose

a conflicting need to the idea of generalisation, the metrics can be tailored to

model for how to choose metrics for specific cases and also compare a model

with other competing ones in the literature (Saxena et al., 2008a).

Prognostic metrics are regarded as a standardised method of communi-

cation by which the developers and users demonstrate their results and com-

pare findings (Goebel et al., 2011a; Bektas, 2014). This communication sup-

ports the suitable expression of requirements and scientific information. Over

the years, as a result of various prognostic implementations in a wide variety

of disciplines, the prognostic field has established various sets of metrics to as-

sess forecasting performance such as the works of Saxena et al. (2008a, 2009b),

Leao et al. (2008) and Goebel et al. (2011a). These metric sets principally aim

to validate the performance of prognostics applications. Since they are mostly

focused on applications where run-to-failure data is available and true RUL is

initially known, their usage is of particular importance at the model develop-

ment stage where the metric feedbacks can be used to integrate the prognostic

procedures (Goebel et al., 2011a).

Before presenting the mathematical definitions of these metrics and

their relationship to the stages of prognostics design, the following terms and

notations relating to following equations are defined here to reduce ambiguities

that may arise in subsequent sections.

- e is the error term between predicted RUL and actual-time-to failure.

- t is the time index.

- n is the number of RUL estimations.
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- EOP (End-of-Prediction) is the earliest time after the prediction value

crosses the failure threshold.

- P is the time index at which the first multistep ahead prediction is made

by the prognostic model.

• Error (George et al., 2006) Error is basically stated as the deviation

from a desired target. Most accuracy-based metrics used in this work is

derived directly or indirectly from the error term.

Error = ei = yi − ŷi (2.62)

where ŷi is the estimated value (estimated time to failure - ETTF) and

yi is the desired output value (actual time to failure - ATTF). According

to this definition, the absolute error is given by:

AE = |ei| = |yi − ŷi| (2.63)

• MAE (Hyndman and Koehler, 2006)

Considering that there is more than one instance, the mean absolute

error (MAE) calculates an average of the absolute error terms. This

quantity is used to measure how close estimations are to the eventual

outcomes.

MAE =
1

n

n∑
i=1

|ei| =
1

n

n∑
i=1

|yi − ŷi| (2.64)

• Average Bias (AB) (George et al., 2006; Saxena et al., 2008a)

AB is a prognostic metric that averages the prediction errors that occur

at all subsequent times after the first prognostic calculation is made. To
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establish an overall bias measurement, it can be extended to all opera-

tional units under test.

AB =

∑EOP
i=P yi − ŷi

(EOP − P + 1)
(2.65)

• Mean Square Error (MSE) or mean squared deviation (MSD), (Hyn-

dman and Koehler, 2006)

MSE is a risk function that calculates the average of the squares of the

errors. When the vector of predictions is obtained and the vector of

known true RUL values is available, the MSE can be estimated by:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 =
1

n

n∑
i=1

ei
2 (2.66)

• False Positive Rate (FP) and False Negative Rate (FN) (Goebel

et al., 2011a)

FP is the ratio where a fault is predicted in spite of the asset performing

within desired conditions. Conversely, a negative rate is the ratio of

unanticipated predictions when the engine would fail.

Both metrics are at the heart of error-based metrics, and they deserve

special consideration in terms of performance validation (Goebel et al.,

2011a). Users are required to set acceptable ranges for predictions ac-

cording to their operational standards. While early in time predictions

result in excessive lead time, which may lead to unnecessary corrections,

a late in time prediction is a more critical threshold time unit, which

might cause catastrophic consequences during the occurrence of any fail-

ure.

Mathematically, they are defined as

76



FP (i) =

1 error > tFP

0 otherwise
(2.67)

and

FN(i) =

1 −error > tFN

0 otherwise
(2.68)

where tFP , and tFN are the user-defined acceptable early or late predic-

tion limits. FP and FN both vary between 0 and 1, where 1 represents

the direction of rate score. Their percentage can be compiled to measure

the consistency and reliability of prognostic models.

• Mean Absolute Percentage Error (MAPE), or mean absolute per-

centage deviation (MAPD), (Makridakis et al., 1982; Saxena et al., 2008a)

MAPE is a measure of prediction accuracy which averages the absolute

percentage errors in the predictions of multiple RUL calculations at the

same prediction horizon. It addresses accuracy as a percentage.

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (2.69)

Median, in a similar way, could be used to compute the median absolute

percentage error (MdAPE).

• Standard deviation (Hyndman and Koehler, 2006; Saxena et al., 2008a)

Standard deviation expresses by how much the members of a group devi-

ate from the mean value. It is used to calculate the amount of variation

from a set of data. With this definition, a low standard deviation corre-

sponds to those data points being closer to the mean of the set, while a

high standard deviation corresponds to the data points expanding over
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a broader range of values.

Considering that y takes sequential values from a finite calculated data

set y1, y2, ..., yn, the standard deviation is expressed by:

σ =

√√√√ 1

n

n∑
i=1

(yi − µp)2 (2.70)

where µp is the mean of population.

µp =
1

n

n∑
i=1

yi (2.71)

This type is called the population standard deviation and divided by n

to calculate the variance

Sample standard deviation, on the other hand, measures the deviation

of the error with respect to the sample mean of the error value, and it is

restricted to the assumption that the error has a normal distribution.

S =

√√√√ 1

n− 1

n∑
i=1

(yi − µe)2 (2.72)

The deviation is divided by n − 1 when calculating the variance. The

sample mean of the error in this equation corresponds to;

µe =
1

n

n∑
i=1

ei (2.73)

• Mean absolute deviation from the sample median (MAD) (Sax-

ena et al., 2008a)

This measurement is a resistant estimator of the variability of the pre-

diction error. It refers to the population parameter, which is estimated
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by the mean of the median absolute sample deviations calculated from

a data sample.

MADi =
1

n

n∑
i=1

|ei −M | (2.74)

M = median(e) (2.75)

The corresponding formula for median values separating the upper half

of the input variables in the same time step from the lower half can be

expressed by the following equations (Hogg and Craig, 1995).

According to the order statistics:

xf 1 = minj ỹtj, xf 2, , xfN−1, xfN = maxj ỹtj (2.76)

The statistical median of the input variables at time step j is defined by:

ytj =



xf (n+1/2) if n is odd

1
2

(
xfn/2 + xf 1+n/2

)
if n is even

(2.77)

• Median absolute deviation from the sample median (MdAD)

(Saxena et al., 2008a) In a similar way to the MAD equation, MdAD

calculates the median deviation from the sample standard deviations

calculated from a data sample.

MdAD = median (|ei −M |) (2.78)
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M = median(e) (2.79)

• Score Function (Saxena et al., 2008b)

Performance evaluation is mainly concerned with using accurate metrics

that help assessing whether the prognostic algorithms meet requirements

for the task at hand. For a critical degradation scenario, an early or late

prediction may be preferred over another. The “Score Function” is de-

signed to satisfy this requirements. It is a metric score of estimated

calculations and a weighted sum of RUL errors (Saxena et al., 2008a),

Goebel et al. (2011a). In either an early or late case, the penalty grows

exponentially with increasing error. The asymmetric preference is con-

trolled by user-defined acceptable early and late parameters, a1 and a2,

in the scoring function described below:

s =


∑n

i=1 e
−
(
d
a1

)
for d < 0

∑n
i=1 e

(
d
a2

)
for d ≥ 0

(2.80)

where s is the computed score, n is the number of predicted units, and

d is the error term.

In prognostics context, the key aspect is to avoid catastrophic failures

and it is intended to predict the RUL early as compared to predict-

ing late. However, in certain cases where the failures may not pose

catastrophic or life-threatening situations and early predictions may in-

stead result in undesired economic costs. Accordingly, the asymmetric

preference of the “Score Function” may change and one may not pre-

fer conservative predictions. Therefore, a performance evaluation model

based on this equation should reflect such preferences to meet specific
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requirements (Saxena et al., 2008b).
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Figure 2.9: Characteristic of Scoring Function

Figure 2.9 shows different score scenarios as a function of the error. In

Case 1 and 2, the parameters a1 and a2 are equal and the preference

is symmetric. However, both cases increases exponentially with error

rate. Exponential growth of the score is exhibited when the rate of

error change measured in operational time index of the equation 2.80 is
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proportional to the function’s current value, resulting in the scoring value

at any time being an exponential function of time index, ie, a scoring

function in which the error value is a part of the exponent. As this error

value is divided by user-defined acceptable early and late parameters,

the magnitude of score is dependent on the relation between the length

of operational time index and the exponent term.

The important aspect to include here is the magnitude of user-defined

parameters. If the length of condition monitoring time series is short, the

exponent term should be assigned with higher values and accordingly,

the user-defined parameters should be assigned with lower values. How-

ever, when the time series is relatively large, the parameters should be

assigned higher to increase the performance evaluation. Otherwise, the

score might be biased to error growth as in Case 2. A further demonstra-

tion of the relationship between user-defined parameters and the error

size is shown in Case 3 and 4. Considering that the time index is mea-

sured by operational cycles and time series are short (say less than 300

units), the user-defined parameters assigned to “a1 = a2 = 30” as in

Case 3 cannot exactly exhibit the non-linear results desired from the

scoring function in which lower error rates are preferred to higher ones.

Conversely, if the time index is measured by more frequent cycles such

as days or weeks, and time series are longer, the function over scores the

results as in Case 4.

Saxena et al. (2008b) first introduced this function for cases where each

data point is a snapshot of an entire operational cycle so that the run-

to-failure time series are mostly less than 300 time steps and the late

predictions are considered more punishable than the early predictions.

Case 5 shows their scenario with an asymmetric preference; however

one may instead require to consider the undesired economic costs (early
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predictions) as in Case 6.

The prognostic performance metrics explained in this section are com-

monly applied to provide an accurate validation of RUL estimation models.

Since a correct evaluation is required to feed the prediction design, their use

could significantly contribute to the structure of the prognostics. In complex

systems particularly, the accuracy measured by metrics represents the close-

ness of prediction measurements to the true value of system health conditions.

2.5 Challenges of Prognostics

It was reported by Wang (2010) that successful prognostic applications are still

rare in complex engineering systems, even though many algorithms have been

proposed and experimented for RUL calculations. Multiple misconceptions

and issues encountered during the development of such algorithms are chal-

lenging to prognostic applications in complex systems. Moreover, the complex

data characteristics exhibit the immensely stochastic and nonlinear degrada-

tion patterns that make the system difficult to model accurately (Eker, 2015).

Prognostics, therefore, are considered the Achilles’ heel of PHM systems and,

since they entail large-grain uncertainty, the prognostic discipline presents ma-

jor challenges to the condition-based maintenance applications (Roemer et al.,

2006).

The prognostic challenges, and their potential requirements, observed

in the current literature are given in the following subsections.

2.5.1 Lack of Common Data Sources

The development of advanced prognostic techniques is an area of active re-

search, and a successful model requires continuous collection of data during
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the lifetime of an asset. As operations progress, there will be evolving, chang-

ing classes of asset faults and hence accompanying estimations in prognostic

systems are needed to detect them (Brotherton et al., 2002). A barrier to

prognostic methodology studies is the availability of common case studies and

data sets for the development and validation of algorithms (Pecht, 2008).

As mentioned in section 2.1.1, the common data sets, by which re-

searchers can develop and compare their methods, are necessary for a success-

ful data acquisition stage in CBM and are an important part of prognostics in

general.

2.5.2 Data Characteristics

For prognostic applications, it is almost impossible to comprehend and model

every detail of the behaviours in a complex system, and what is presented is

generally limited to the overall operating system mechanism and some micro-

level physics models of critical system components (Wang, 2010). Therefore,

the calculations and projections are prone to substantial uncertainty across

a large number of operational inputs. Since each instance in a dataset has

characteristic features such as initial wear level, failure mode and operating

conditions (Saxena et al., 2008b), the population of entire cases should be taken

into account when the signal processing is applied in order to receive useful

health information for projections. A dataset standardised into a common

scale can provide higher accuracy but, when novel data is introduced, the

population parameters of the dataset change and the signal processing needs

to be repeated to consider any new instances.

2.5.3 Uncertainty in Predictions

Operational conditions and different regimes have a considerable impact on

system degradation behaviour, noise, uncertainty and errors in multidimen-
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sional data. The common data-driven prognostics are based on the assump-

tion that historical operational conditions can facilitate a reasonable model

for RUL estimation, whereas future operational conditions are unknown and

need be projected. It is, therefore, accepted that a system’s future opera-

tional behaviour or usage will follow an estimated pattern found from histori-

cal training data. However, when the test data length is short and long-term

projections are necessary, the prognostic accuracy may fail to provide desir-

able results. Even if the future of short test data actions can be projected,

the error between actual time-to-failure and estimated time-to-failure could be

catastrophic in terms of CBM requirements. Therefore, prognostic prediction

requires a solution that has a high probability of identifying training failure

degradation and representation of future steps.

2.5.4 Validation Issues

RUL prediction is different from future behaviour predictions that are vali-

dated after the system has experienced a whole life cycle and come to a real

failure point; this process can take a very long time for many engineering

systems. If the actual time-to-failure is known initially, the prediction perfor-

mance can be validated by the different metrics introduced in section 2.4. Met-

rics developed in the context of prognostics are a common validation method

and users can compare their findings and results. Moreover, these metrics

can address any primary assessment of algorithmic performance in prognostic

applications, and they are mainly focused on tackling offline performance eval-

uation methods for applications where true RUL is known a priori. Therefore,

they are especially useful at the algorithm development stage in which met-

ric feedbacks can be used to fine-tune prognostic algorithms (Goebel et al.,

2011a). However, short length test data instances are particularly risky in

terms of error-based metrics. If an operation is interrupted by an unexpected
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fluctuation caused by operational conditions, the projection is prone to devi-

ations which affect overall results.

2.6 Expected Contributions to the Literature

As discussed in section 2.3, different prognostics approaches have various re-

quirements to capture the degradation process and estimate the RUL of a

system. Each prognostic method has its own merits and limitations, and a

hybrid approach can integrate any desired advantages whilst avoiding charac-

teristic disadvantages.

This research intends to identify a multifaceted prognostic model con-

sisting of data processing and multi-step ahead predictions. The model is

particularly based on prognostics of complex systems, and seeks an adaptive

solution for multidimensional data under various regimes. The model will

firstly adapt the common dataset resources and prognostic methods described

in the literature, and then it will develop an adaptive filtering and prediction

model with due consideration to prognostics metrics, which make the prog-

nostic performance and accuracy more effective.

A framework for neural network based filtering and trajectory similarity-

based estimation will be introduced to calculate the RUL estimations. Then,

the model can be applied to well-known prognostic datasets, and the perfor-

mance with these datasets could then be compared to existing models in the

literature.

The review of the literature in this chapter shows that the current meth-

ods lack the ability to deal effectively with the multi-dimensional data and

lack of collaboration between different but similar data sources. Further tra-

ditional pre-processing is unable to deal with this efficiently. This research

addresses these shortcomings and contributes to the literature by introduc-
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ing an adaptive filtering model that can standardise different trajectories in a

dataset without requiring population parameters. The standardised outputs

are on a common scale and can be used for collaborative multi-step projection.

Since the data characteristics of different trajectories are taken into account,

the model proposes a generic prognostic integration scheme where multiple

models are integrated into the different phases of prognosis.
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Chapter 3

Methodology

This chapter first provides background information on prognostics require-

ments for complex systems working under different operational conditions.

The framework of practised methods is then justified, and the development

of a hybrid approach for the multidimensional data and complex systems is

laid out. The architecture and working procedures of the proposed techniques

and theories are described in detail. The approaches are discussed under three

main categories: dimensionality reduction, network filtering modelling and

RUL estimation.

3.1 Motivation behind the Methodology

The difficulties in accurately and precisely predicting RUL have led to a wide

variety of methodologies and algorithms in the prognostic literature, which

were discussed in Chapter 2. However, the review of the literature reveals that

the existing prognostics development methods have not always well thought

out when dealing with complicated interdependency (Günel et al., 2013), mul-

tidimensional failure mechanism (Saxena et al., 2008b) and noisy data (Uckun

et al., 2008). Due to the lack of understanding in these issues, the current
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literature is not able to fully utilise condition monitoring histories and to in-

tegrate population reliability information into RUL prediction, and to derive

the relationship between the health index and condition measurements (Heng,

2009).

This chapter presents a novel prognostic framework to address these un-

resolved shortcomings. The work particularly focuses on the issues of prognos-

tics of specific complex systems which operates under various conditions and

provides condition monitoring histories with multidimensional failure mecha-

nism and data. The main motivation is to provide a data processing-oriented

RUL prediction method by using various system indicators and sensor mea-

surements. The fundamental research inquiry to be analysed in the method-

ology is the interpretation of data pre-processing techniques to aid the perfor-

mance of prognostic applications. The methodology has developed a concep-

tual prognostic model to overcome the challenges presented by multi-dimensional

data.

3.2 Problem Definition

Multidimensional data (and also multidimensional failure mechanism) are rep-

resented in terms of data dimensions, which are arranged in dimension hier-

archies Vassiliadis (1998). To model the space of such multidimensional data,

let Ω be the space of all dimensions. An operational case (T) in this space is

formed of a set of time t, operating conditions (or more commonly known as

regimes) r and the multidimensional condition monitoring data x.

T(i) = 〈ti, ri,xi〉 , (3.1)

i = 1, 2, · · · , n, and,T, t, r,x,∈ Ω (3.2)
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This is written in matrix form as follows:

T =

〈


t1

t2

t3

· · ·

tn





r1

r2

r3

· · ·

rn





x1

x2

x3

· · ·

xn


〉

(3.3)

where t follows a sequential order and each time index variable is unique.

t = (t1, t2, t3 · · · tn) (3.4)

θ(t) = {ti}iε{1,2,3,··· ,n} (3.5)

|θ(t)| = n (3.6)

where θ(t) represents the number of unique time index variables and n

is the number of steps in the time series of the operational trajectory (T).

On the other hand, the complex system under dynamic working regimes

operates at superimposed operational margins at any given time instant and

the variable of operating conditions, r, can only have certain values (Goebel

et al., 2007; Rareshide et al., 2009; Uluyol et al., 2011; Goebel et al., 2011b).

Therefore, the unique values of the operating conditions vector, θ(r), can only

have certain numbers and are limited to the regimes, np.

r = (r1, r2, r3, · · · rn) (3.7)

θ(r) = {ri}iε{1,2,3,··· ,n} (3.8)

θ(r) = (1, 2, · · · , np) (3.9)

and
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∀ri, ri ∈ θ(r) = (1, 2, · · · , np) (3.10)

The sensors under different operating conditions provides similar in de-

gree readings with those in the same operating condition (Diallo, 2010). Con-

sidering these similarities, the vector, x = (x1, x2, x3, · · ·xn), would cluster in

certain operating condition domains, ϑri , which are bounded by upper limits

uri and lower lri .

ϑri = (lri , uri)⇒ {xi ∈ Ω : lri ≤ xi ≤ uri)} , (3.11)

where, i = (1, 2, · · ·n) and ∀ri, ri ∈ θ(r) = (1, 2, · · · , np) (3.12)

Due to the environmental conditions and the characteristics of condition

monitoring, such raw data generally contains noise and measurement uncer-

tainties, w, along with the health information, H. Considering the regimes

and domains in which the systems operates, the condition monitoring vector

is redefined as:

xrn = Hr
n + wrn (3.13)

r = (1, 2, · · · , np) (3.14)

∀Hr
n, Hr

n ∈ ϑr & lr ≤ Hr
n ≤ ur (3.15)

∀wpn, wpn ∈ ϑp & lp ≤ wpn ≤ up (3.16)

where it is commonly assumed that wpn is drawn from a Gaussian white

noise that gives a constant power spectral density (Li et al., 2000; Menezes

and Barreto, 2008; Lam et al., 2014).

Figure 3.1 shows a sample of such multidimensional trajectory. The
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data represented here is only for illustration and it is formed of a randomly

generated set of cell data, x, and randomly sorted np regime levels. The sensor

measurements aligns in various operating conditions (regimes) and condition

monitoring measurements.
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Figure 3.1: Multidimensional Data

Since the science of prognosis is predicated on system ageing and mono-

tonic damage accumulation, it should be possible to correlate sensor behaviour

with signs of ageing to estimate the RUL of systems (Uckun et al., 2008). How-

ever, the multi-dimensional data such as the one shown in Figure 3.1 could

not provide useful information to measure the monotonic damage accumula-

tion. Further applications are needed to provide useful information for RUL

predictions.

When it is supposed that the system is instrumented at a certain time

index through its life cycle, the reading of the feature vector xi is timestamped

by the time index ti (Wang, 2010). Let tcurrent is the time stamp of the

92



current measurement index and tend is the ending time stamp. Then, the RUL

estimation problem for a system can be defined as:

RUL = tend − tcurrent (3.17)

In the case that the run-to-failure data is available from training in-

stances, it is desirable to include their historical condition monitoring data

for RUL estimation of test instances which have only instrumented up to the

current measurement index tcurrent.

- The run-to-failure time index of condition monitoring feature vectors

from the test instance includes:

ttest = [t1, t2, · · · , tcurrent] (3.18)

- The run-to-failure time index of condition monitoring feature vectors

from the test instance includes:

ttrain = [t1, t2, · · · , tend] (3.19)

The prognostic problem in such cases is to effectively use the training

instances for RUL estimation of test instances. As for the specific domains for

this research (complex systems operating under variable operating conditions),

it is indispensable to employ data filtering on the operating conditions of both

the training instances and test instances.

3.3 Justification for the Methodology

As prognostic technology advances to anticipate and respond to real-life ap-

plications, the desire for using advanced data-driven processing methods has
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considerably risen. Data-driven prognostics are mainly practised for modelling

of the desired system target with the available historical condition data Kan

et al. (2015). Nevertheless, there is an issue of data filtering in data-driven

processing methods and it arises when a set of operational cases with multi-

regime operating conditions and different initial health levels is inserted into

the same data-driven filtering model. This is more evident in a common data

in which there are multiple operational cases involved.

Ensuring performance in such cases is a major prominent problem and it

requires the theoretical frameworks more applicable to real industrial domains

Boussif (2016). As mentioned in section 3.1, in addition to RUL prediction for

such systems, a multi-class data processing framework needs to be defined for

a multidimensional feature space.

To define such a framework and produce meaningful information from

multidimensional space, Peel (2008); Wang et al. (2008) introduces a component-

wise “multi-regime normalisation” method to normalise the multidimensional

according to each other within the same domain (regime). In their works,

the normalisation is applied into a common data which is formed of multiple

operational cases with distinct health levels (and also initial performance lev-

els) that can be found in the condition monitoring data. The health levels in

these operational cases evolve with exponential characteristics (Saxena et al.,

2008b).

h(t) = 1− d− exp
{
atb
}

(3.20)

where d is a case specific initial wear level point in the wear-space (each

case is observed with some non-zero initial wear degradation that is unique for

each observation), a and b are model parameters which are also case specific.

In such a situation, each operational case starts at a distinct operational per-

formance level, “d”, and maintains a distinctive “h” pattern. As one should
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consider multiple cases and trajectories in a real-life scenario, the entire data

with its all components needs to be normalised together to preserve the char-

acteristics of the operational cases.

For the conditions considered in the works of Peel (2008); Wang et al.

(2008), all operational cases were available at the same time and provided

before the design of the methodologies. The “normalisation of all operational

cases at once” has therefore not been a problem to be tackled. However, it

would be improbable to follow such a scenario in a real-life application due

to the confidentiality and restrictions on data (Ramasso and Saxena, 2014).

When the “multi-regime normalisation” is considered in a real-world appli-

cation, it should be reiterated for each incoming novel operational case to

calculate the changing population parameters and the operational case char-

acteristics of h and d.

In other statistical feature extraction and dimension reduction models

such as linear regression (Chatterjee and Hadi, 1986; Freedman, 2009; Ra-

masso, 2014a), principal component analysis (Ramasso, 2014a,b; Juesas et al.,

2016; Bektas et al., 2017) and z-test (Daigle et al., 2010; Rigamonti et al.,

2016, 2017), the multidimensional data could be normalised to a space of sin-

gle dimension. However, similar to the “multi-regime normalisation”, these

also lack the ability to deal with standardisation with regard to all existing

operational cases and potential novel ones.

An approach that can be a challenging alternative to the “multi-regime

normalisation” and other feature extraction and dimension reduction models

is the “neural network filtering” model (Heimes, 2008; Greitzer et al., 1999;

Fink et al., 2014; Wu et al., 2016; Loutas et al., 2017; Elforjani, 2016; Yang

et al., 2016; Zheng et al., 2017). Unlike the above-mentioned regime nor-

malisation and dimensionality reduction methods, a neural network function

which is trained for a single operational case can filter the necessary degra-
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dation information for other existing and novel cases. This network function

forms a set of interconnected functional relationships between many input se-

ries and a desired unique target where the relationship can be trained for

optimal performance (Byington et al., 2004a). Since a complex system is

formed of interacting components (Jamshidi, 2008), there are multiple sensors

for constituents to receive condition monitoring information on the system

health or any potential problems (Günel et al., 2013) and these multiple cor-

responding measurements can be used to train the neural network function

with multi-input series. Therefore, the multidimensional condition monitoring

data defined in equation 3.2 and 3.3 becomes to multivariate data and there

are multiple sensor readings at each time step (say ns sensor readings at t for

the following example) .

x = [x1, x2, x3, · · · , xt, · · · , xn] (3.21)

xt = [xt,1, xt,2, xt,3, · · ·xt,ns] (3.22)

Since the monitoring data is not defined as a vector any more, it is

written in the matrix form as follows:

x =



x1,1 x1,2 x1,3 · · · x1,ns

x2,1 x2,2 x2,3 · · · x2,ns

x3,1 x3,2 x3,3 · · · x3,ns
...

...
...

...
...

xn,1 xn,2 xn,3 · · · xn,ns


(3.23)

A simple model would be unable to present the damage progress in

such multidimensional and multivariate input, and one needs to consider more

advanced non-linear dynamical systems which can model prognostics without
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knowing the exact relationship between input and target data series (Cempel,

2009). Therefore, neural networks have become the most used model in prog-

nostics (Parker Jr et al., 1993; Brotherton et al., 2000; Bonissone and Goebel,

2002; Heimes, 2008; Goebel et al., 2008b; Peel, 2008; Baraldi et al., 2013).

An ANN is a convenient algorithm for modelling complex system without un-

derstanding the complete relationship between the raw condition monitoring

input, x, and the desired target data, y (Murata et al., 1994).

y = fNN(x) (3.24)

However, this function can only estimate the desired outcome if it is

initially supervised by an output representing the target data. This super-

vised learning task of inferring the function from “labelled historical condition

data” also carries the potential risk of failing to identify data population char-

acteristic such as initial wear levels “d” and “h” pattern. Without accurately

specifying these with regard to each operational case, the network filtering

may be thrown off because the initial bias may disrupt the sensitiveness of

RUL estimations.

By considering both the population-wise multi-regime normalisation

methods and the neural network models, an initial unsupervised pre-training

phase that estimates hidden system degradation behaviour can be employed

in a more generic filtering process. In this way, the characteristic degrada-

tion parameters in the multidimensional (and also multivariate) data can be

identified as desired, and the “normalisation of all operational cases at once”

issue can be resolved by a supervised neural network data filtering approach.

The RUL of an operational test case can be estimated via the known life-time

of similar complete examples so that the final life-time estimations can be

collaboratively performed by using multiple historical operational cases.

The novelty presented in the methodology is to perform the target pa-
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rameters assignment (unsupervised learning) and data filtering (supervised

learning) steps sequentially. The proposed hybrid filtering model standardises

operational cases to form an output, y, for the network filtering. The main

hypothesis for the proposed framework is that there is the possibility that the

novel operational cases can be filtered independently even after the training

the network function. In accordance with this hypothesis, it is also expected

that the proposed hybrid model will be more efficient for the multi step RUL

estimations.

Following the feature extraction from multidimensional data for prog-

nosis, the last aspect of the methodology is about multi step ahead prediction.

RUL estimations should be able to deal with time series forecasting to provide

accurate results. The physics-based models would be inadequate for estima-

tions as they are component specific, computationally expensive to develop

and the specific domain experts are needed (Zaidan, 2014). The availability of

an expert is also an issue for the most of knowledge-based prognostics such as

fuzzy logics (Feng et al., 1998; Satish and Sarma, 2005; Dmitry and Dmitry,

2004) and expert systems (Butler, 1996; Biagetti and Sciubba, 2004). This is

more evident especially when there are novel operational cases that are not

covered explicitly by an expert.

The data-driven prognostics can provide the multi-step ahead time se-

ries forecasting and estimate the RUL such as Bayesian networks (Jensen,

1996; Zhang et al., 2007), Particle Filtering (An et al., 2013; Miao et al.,

2013; Wang and Gao, 2014), Kalman Filtering (Hu et al., 2012a; Julier and

Uhlmann, 1997; Swanson, 2001), Markov models (Camci, 2005; Baruah and

Chinnam, 2005; Dong and He, 2007; Ramasso, 2009), ANN (Bektas and Jones,

2016), trend extrapolation (Batko, 1984; Kazmierczak, 1983; Cempel, 1987)

and auto regressive models (Yan et al., 2004; Galati et al., 2008)). However, it

can be quite challenging when there is only little previous condition monitor-
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ing data available, the degradation is not mature enough to be predicted, and

the failure is expected to happen in the longer term. One other major prob-

lem in data-driven prognostics is to avoid the imbalance in multi-step ahead

predictions for exponential time series in which the models overly imitate the

training data (Bektas and Jones, 2016).

In complex engineering conditions where typical prognostic methods

are hard to implement and inefficient, a well-known approach for its ability of

achieving high prediction accuracy is the similarity-based prognostics (Wang

et al., 2008; Wang, 2010; Eker et al., 2014; Lam et al., 2014; Ramasso, 2014a,b;

Bektas et al., 2017).

The method makes the multi-step predictions over best-matching past

operations and known failure times. Unlike other knowledge-based methods,

the similarity-based approach does not need a specific domain expert but

it requires sufficient run-to-failure data to form a library to estimate RUL.

Since the pre-processing stages of “multi-regime normalisation” and “ neural

network” filtering can provide estimation from multiple historical operational

cases within the same domain, a library of run-to-failure trajectories can be

formed for similarity estimation. In the case that these trajectories include suf-

ficient information, the model can be altered to calculate the best-matching

stages at any point in their history rather than calculating the initial similar-

ities. Therefore, if the method is merged with alternative methods of regime

normalisation and ANN filtering, there would be a noteworthy potential to

estimate the RUL of complex systems which works under multiple operational

conditions.

3.4 Research Procedures

The research process follows a hybrid framework of prognostic techniques

which are particularly developed to overcome the challenges presented by
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multi-dimensional condition monitoring data and RUL estimation problem

of complex systems. As shown in Figure 3.2, the methodology includes two

main sequential stages:

- Feature Extraction (Existing Failure Mode): identifies the symptom

relations regarding the health index. A step-by-step approach is pro-

posed to identify the existing damage progress in multidimensional data.

- Multi Step Ahead Prediction (Future Failure Mode): estimates the

RUL, most likely future health index, and its influence factors.

Training Data
Data Pre-
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Neural Network
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Multiple
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Figure 3.2: Stages of the Methodology

This framework includes a transition from unsupervised regime normali-

sation to neural network fitting and multi-step-ahead RUL calculations. There
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are three major points supporting and assessing the performance of the prog-

nostic structure: multi-regime normalisation, feed-forward neural network and

similarity-based estimation. While the multi-regime normalisation and neural

network filtering mainly focus on obtaining useful degradation information,

the similarity-based estimation deals with the multi-step-ahead prediction of

RUL.

One further aspect that can be added to these major points is the post

prognostic actions and performance evaluation metrics. While the prognostic

algorithm is designed through the application of different procedures for multi-

step-ahead RUL predictions, the prognostic metrics in section 2.4 are used

dynamically to measure the performance of the model. These metrics and their

impact on the technical prognostic requirements have a particular importance

in the way that they complement each other. Therefore, this research will

be based on both the modelling and performance evaluation of prognostics in

terms of technical metrics.

3.4.1 Identifying Existing Failures

Designing a successful prognostic implementation on complex systems requires

careful consideration of identification of existing failures as well as the system

functionality and operational conditions. Owing to its ability to analyse con-

dition monitoring data, this feature of existing failure mode is a particularly

useful analytical tool for development and testing of methodology. It can affect

all phases of the prognostic lifecycle prediction and a data analysis that has

not been carefully partitioned can produce misleading outcomes. Therefore,

the identification of existing failures in multidimensional data is the first and

foremost step required before running the RUL calculations. Starting from the

initial raw condition monitoring information as described in section 3.2, the

following sections describe a mechanism of data processing that, when exe-
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cuted properly, produces useful health indicators for neural network filter and

similarity-based prediction.

3.4.1.1 Data Pre-processing

Pre-processing of raw data is an essential step to any study relying on any type

of data-driven techniques (Diallo, 2010). In the context of this work, in or-

der to develop the multi regime normalisation method and to achieve a useful

health index for prognosis, a data processing is applied for an understanding

of feature extraction, data cleaning and feature selection. Feature extraction

starts from the initial raw data and builds derived values intended to be in-

formative and non-redundant for prognosis, facilitating the subsequent RUL

estimations. Feature extraction is related to data cleaning which is the pro-

cess of identifying and possibly correcting corrupt or inaccurate measurements

from the data and requires to gather knowledge on the field to identify inac-

curate or irrelevant parts for modification or standardisation (Milano et al.,

2005). Then, the process of feature selection is performed to select the relevant

features for use in RUL estimation construction.

In real-world data, it is unlikely to find the best attainable high preci-

sion model without a validation process (Hernández and Stolfo, 1998). Such

data are often inconsistent, incomplete and lacking in certain behaviours, and

are likely to contain many errors. Data preprocessing involves transforming

these data into an understandable format. Therefore, the methodology first

deals with the issues relating to organising the condition monitoring infor-

mation such as to reduce data redundancy and improve data integrity. The

sensors operating under different operational conditions are related to each

other, and so the common behaviour of each sensor can be observed and in-

vestigated. Then, a health index provides comparable, relevant and actionable

information about the sensor population health, as well as tracking progress
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and performance over time. At this stage, one is only concerned with training

data because they are formed of full operational periods and can demonstrate

their initial wear levels together with the failure points. The test data, on the

other hand, is limited and will present difficulties in model identification.

3.4.1.2 Multi-regime Normalisation

Considering the condition monitoring data as described in equation 3.11, 3.12

& 3.23, the raw values are multivariate, inconsistent with each other and op-

erating under different regimes. The data need to be adjusted from their

original scales to a relatively common scale. A normalisation method (for ex-

ample the z-score) can carry out these adjustments by returning raw values

into a single domain. Z-score standardisation results in a single dimension

quantity achieved by subtracting the population mean from each raw value

in the same population and then dividing this difference by the population

standard deviation (Jain and Dubes, 1988).

The calculation of a z-score for each working regime needs to consider

the mean and standard deviation of the regime to which a value point belongs.

The equation to calculate the z-score (standard score) of a raw value in a

particular regime is given as:

N (xr) =
xr − µr

σr
,∀r (3.25)

where, xr is the raw data at regime r, µ is the population mean, σ is the

population standard deviation at the same regime feature. Since the data (at

the regime r) are formed by nr scalar observations, the population standard

deviation (of r) is:

σr =

√∑nr

i=1(x
r
i − µri )2
nr

(3.26)
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and the population mean (of r) is:

µr =
1

nr

nr∑
i=1

xri (3.27)

After this equation is applied to all regimes separately, the standardised

sensors are used to reassemble the normalised dataset with due consideration

to the sensor positions at the initial stage so as to allow them to be assigned

on a common scale while maintaining the initial wear characteristics within

each trajectory. If the raw time series were reformatted in a given array such

as a unity-based feature scaling normalisation method, all values would be

transformed into a pre-arranged range (Aksoy and Haralick, 2001). The main

risk in such a method that there cannot be a healthy consideration of the

initial wear levels and the regime differences. The standard score is, therefore,

a robust tool to normalise the data with characteristic features and errors

when population parameters are known.

Figure 3.3 shows a sample z-score grading method in a normal distri-

bution and compares it with standard deviations, cumulative percentages and

percentile equivalents. A key point in “multi regime normalisation” and “iden-

tifying existing failure” modes is that calculating “the standard score” needs

the determination of each regime’s unique population mean and standard de-

viation, not merely the entire time series’ parameters. Therefore, a function is

required to apply the z-score normalisation to all sensors in the same regime

instead of the sample sensors drawn from individual trajectories. This will

allow for the entire dataset’s simultaneous normalisation.

In certain cases where it is possible to measure every sensor in a trajec-

tory, the standard score normalisation is computed by:

x̂(c) =

np∑
i=1

x(c) − µ(c)

σ(c)
(3.28)
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Figure 3.3: A sample demonstration of z-scores in a normal distribution

where c = argk=1,...np find(x(1:end,:) = k) (3.29)

where np is the number of operational regimes and c is cluster variable.

This equation can further be extended into the following form.

x̂(c) =

np∑
i=1

xc −
(

1
nc

∑nc
j=1 xcj

)
√

1
nc−1

∑nc
q=1

∣∣xcq − µcq)∣∣2 (3.30)

c = argk=1,...np find(x(1:end,:) = k) (3.31)

Common alternative approaches to the integration of multiple regression

computing environments include robust regression (Ramasso, 2014a), Kalman
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filter (Peng et al., 2012a) and principal component analysis (Liao and Sun,

2011; Zhao et al., 2011). Although these approaches can tackle the feature se-

lection and health indicator estimation issues, their main shortcoming is that

the proportionality of raw engine sensors may not be satisfied by the processed

data if the dimensions of the operational conditions for the underlying dynam-

ical system are large. Furthermore, if the time series of the raw engine data

becomes noise-corrupted, the number of states and the complexity of these

methods might rapidly increase, and therefore the data processing may incor-

rectly calculate initial wear levels. Multi-regime normalisation can accomplish

the identification of data proportionality and wear level characteristics, but

it can only process the standardisation when the training and test data are

available at the same time. Thereby, the theoretical significance of this section

is to provide multi-regime normalisation, as performed on raw data, in order

to assign the health indicator as an output for the neural network filtering

function. Data pre-processing is only used to transform the raw data into an

understandable format for the automated filtering process of neural network

training.

In Figure 3.4, the standardised sensors after multiple regime normalisa-

tion are shown for a single vector (ns=1). The regime differences are eliminated

here, and the data is transformed into a form that allows for only one valid

regime for all sensors. The process is applied to all regimes separately and the

standardised sensors are reassembled to form the normalised dataset.

3.4.1.3 Health Indicator Assessment

The normalised data form a population which is homogeneous in terms of

regimes but they are still multivariate in terms of number of sensors. Although

all sensors can be regarded as working in a single operating condition and

the dimensionality is reduced into a common scale, these multiple sensors
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Figure 3.4: Normalisation of Multidimensional Data

may contain operational noise and perform poorly in terms of identifying the

system’s health degradation. This noise in the literature is commonly defined

as Gaussian (Li et al., 2000; Menezes and Barreto, 2008; Lam et al., 2014) and

its probability is given by the normal distribution (Cattin, 2013).

pG(N(ε)) =
1

N(σ)
√

2π
e
− (N(ε)−N(µ))2

2N(σ)2 (3.32)

where N(ε) represent the normalised noise while N(µ) and N(σ) rep-

resent the normalised mean value and the standard deviation.

In order to evaluate how well the sensors represent the degradation pat-

tern, it is essential to eliminate those signals that do not adequately represent

continuous normalised values exhibiting a monotonic exponential trend dur-

ing the operational lifetime of the training units (Rigamonti et al., 2016). For

this purpose, the prognostic parameter-choosing measures, “Monotonicity”,

“Prognosability”, and “Trendability” (Coble, 2010), are used in this study to

107



assign the useful (and also meaningful) sensors to be used in further stages.

Suitability metrics and identification of prognostic parameters from

data are used to characterise the lifetime of a system in its specific envi-

ronment. Such an identification of suitable parameters is vital to accurate

and precise RUL estimation. Three different parameter suitability metrics

(proposed as monotonicity, prognosability, and trendability) are all important

measure that should be considered in selecting the fitness of a parameter in

RUL estimation (Coble and Hines, 2009). Therefore, these suitability mea-

sures are weighted to give the desired zero to one scale in which the measure

outcome close to 1 demonstrates that the sensor is useful for RUL estimation,

whereas an outcome close to 0 demonstrates that the sensor is a non-useful sig-

nal and not suitable for further prognostic consideration. As they are weighted

into a common scale, the sum of their measures can determine the “fitness” of

a candidate prognostic parameter.

fitness = monotonicity + prognosability + trendability (3.33)

As the data is collected from a complex system, it is important to reduce

the dimensionality of data to achieve accurate estimates of the derivatives.

Monotonicity is a straightforward measure used to understand whether

a sensor always has the same underlying positive or negative trends which are

necessary for prognosis. This measure characterises a sensor’s general increas-

ing or decreasing nature which indicates the degradation process in the system.

It is defined by:

Monotonicity = mean

(∣∣∣∣∣#pos d
dx

n− 1
−

#neg d
dx

n− 1

∣∣∣∣∣
)

(3.34)

where n is the number of trajectories in a particular history. The mono-
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tonicity measure of a sensor population is computed by the average difference

of the fraction of positive and negative derivatives for each trajectory. As the

system degradation follows monotonic patterns in all trajectories in a dataset,

this metric detects whether there is a characteristic underlying positive or

negative trend of the sensor.

Prognosability is computed as the deviation of the failure threshold

points for each trajectory divided by the average variation of the sensor during

its entire operational cycles. The main purpose of this metric is to measure

the spread of a sensor’s failure value (or commonly known as threshold point)

for a population of trajectories. If the failure points cluster in similar domains,

the sensor is accepted as useful in terms of prognosability metric. The measure

is exponentially weighted by the following equation to provide the desired 0

to 1 scale:

Prognosability = exp

(
− σfailure
µfailure − µhealthy

)
(3.35)

Prognosability measures close to 1 suggest that the failure points in all

trajectories are similar domains and the sensors are practical for prognosis,

whereas the measures close to 0 indicates that the failure thresholds do not

match with each other and the sensors are not capable of giving meaningful

the prognostic calculations.

Trendability is calculated by the minimum absolute correlation com-

puted among all the trajectories. The metric mainly detects whether the sensor

for a population of trajectories have the same underlying trend pattern, and

hence can be defined by the same parametric function. The mathematical

expression for this is represented by:

Trendability = min (|corrcoeffij|) (3.36)
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where corrcoeffij is the correlation coefficients computed among all the

training trajectories (ntr), i 6= j and i, j = 1, · · · , ntr.

According to the results of these prognostic parameter choosing mea-

sures, the useful sensors are selected for prognosis and employed in the health

indicator assessment. However, it is necessary to emphasise the noise varia-

tions in the dataset and bring out strong patterns in the population. Assuming

that the damage accumulation in data is monotonic and reveals itself in the

system readings (Penna et al., 2012), a smoothing method can be set for the

entire population. The noise and the random fluctuations that occur in a

single trajectory can be removed or dissipated.

An often-used technique for such smoothing is that of the moving aver-

age (MA) method which reveals the underlying trend by taking the mean of

a window size at each time index (Wei, 1994). Common alternatives to signal

averaging for noise reduction in prognostics are the Z-Test (Daigle et al., 2010;

Rigamonti et al., 2016), kernel smoothing (Wang et al., 2008; Wang, 2010) or

polynomial fitting (Bektas and Jones, 2016). In these cases, the sensors are

first fitted individually, and then the averaging is performed. By using such a

means of processing, possible fluctuations in the sensors may not be dissipated

and a closer estimate of the variability around the mean within the population

might not be obtained. Also, similar to the modified moving average method,

the principal component analysis can be used as a dimension-reduction tool to

reduce a large set of sensors to a single HI that still contains data character-

istics (Liao and Sun, 2011; Zhao et al., 2011). However, since the trajectories

start at normal operating conditions and fail at a point with higher values,

this approach can only be used in a unique trajectory rather than the en-

tire dataset. Thereby, the assignment of health indicators (HI) may not be

provided on a common scale.

For a random variable vector x made up of n scalar observations, the
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moving average is defined by the following equation (Wei, 1994):

si =
1

n

n∑
i=1

xi (3.37)

where x is a random variable vector made up of n scalar observations.

In a similar way, the equation can be modified to represent the nor-

malised condition monitoring data. The multivariate readings x(1 : n, 1 : ns)

are used to produce a single HI by taking the mean of all sensors at each time

step.

si =
n∑
i=1

1

ns

ns∑
j=1

x̂ji (3.38)

where n is the number of sensors instead of the observations.

3.4.2 Neural Network Filter

Since the multi-regime normalisation considers the overall population charac-

teristics of data, ensuring integrity in the health index can be achieved with

the population-based data standardisation. However, in the instance that new

data is expected to be normalised, this process must be repeated and the

entire algorithm might need re-arrangements. To avoid such a situation, a

data-driven prognostic technique based on feed-forward neural networks with

multiple regime normalisation is presented to calculate the asset performance

levels with time. The multi-regime normalisation can be done once and then

the health indicators can be used in the network training structure. The net-

work function after training could filter any of the trajectories regardless of

whether the data population characteristics change or otherwise.

The basic method for using neural networks is that data must be re-

ceived from a representative population of cases and the output must be known

by some well-confirmed method (Cross et al., 1995). According to this defini-

tion, the initially calculated HIs define the system outputs for a feed-forward
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neural network model. The data filtering is designed to assume a role in dy-

namic modelling task by behaving as a normalisation and fitting system.

The ANN algorithm in this study uses the bias and weight objects of

a network to store all the information that defines a neural network and the

relation between input and output series. Then, these memory objects could

describe filtered health indicators for any operational case applied into the

trained network function.

3.4.2.1 Feed Forward Neural Network

In neural network filtering, ANN function takes the measurement of uncer-

tainty bounds into account. Data from the multiple regimes are handled by

a network mapping process between the raw values and the assigned HI. It is

critical to choose an adaptive filtering method that can account for standard-

isation issues in addition to providing effective damage information.

This section offers a Bayesian regularised multilayer perceptron feed-

forward neural network architecture that uses the defined HI outputs in the

network training stage and generates a network function to fit the raw data

trajectories into filtered health indicators. This stage includes arranging the

network in such a manner that it is compatible with the multidimensional data

case to be solved. The weights and biases are required to be tuned so that

the network performance is optimised (Demuth et al., 2008). The governing

equations for such a network function is denoted as:

y(t) = f
[
x(t)

]
= fo

{
b+

nh∑
h=1

whfh

(
bh +

n∑
i=1

wihx(i)

)}
(3.39)

where the fixed real-valued weights, (wi), are multiplied by the raw mul-
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tidimensional condition monitoring data, (xi), and the bias, b, is added. The

neuron’s output, y (which is calculated from the previous mode), is achieved

as a result of the nodes and the transfer function of the neurons (Barad et al.,

2012; Krenker et al., 2011).

In Figure 3.5, the multiple-layer neural network model of the methodol-

ogy is shown. Each layer here is formed of its own weight matrix, bias vector,

transfer functions, multidimensional condition monitoring data as input and

calculated HI as output. The demonstrated structure is formed of a feed-

forward model that takes a set of input vectors (raw data) as columns in a

matrix, and then arranges another set of output vectors (HI) into a second

matrix. Neurons, which are the building blocks of neural networks, evaluate

these input state variables.

Figure 3.5: Feed-forward neural network with multidimensional input data
and HI output

One major point in neural network training is that overheads might lead

to poor network generalisation for the testing. To avoid such over-fitting, the
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proposed feed-forward neural network model uses a common network train-

ing approach (Bayesian regularisation as discussed in section 2.3.3.3.3). This

regularisation method typically needs more time in comparison to other meth-

ods due to the adaptive weight minimisation, but can result in satisfactory

generalisations from difficult or noisy datasets (Demuth et al., 2008).

3.4.2.2 Network Library

While a network function trained with a particular data can provide the in-

tended results, there may be the risk that if the network is trained with alter-

native inputs and outputs, the network results might come up with undesired

estimations due to the changed weight and bias values. By considering this,

alternative neural networks (fNN) with different (but from similar domains)

input and output values are trained for parallel problems. These networks

form an artificial neural network library (L) for multiple calculations for each

raw input.

L{i} = fNN{i} , i = 1, 2, · · · , nl (3.40)

where nl corresponds to the number of trained functions in the network library.

The proposed network library is a source of data filtering and normali-

sation, which implements multilayer feed-forward artificial neural networks in

different operational cases with support for both fully trained network memory

elements. The network HI generation for both training and test trajectories

is maintained by integrating different knowledge sources to build a network,

so that a collaborative estimation in different domains could be carried out to

provide multiple results for each input data. The library includes a framework

to allow for straightforward handling of raw data sets. It is adaptive to use

this method with different trajectories, versatile for sensors, and compatible

with the collaborative RUL calculations.
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3.4.2.3 Filtered Health Indicators

Due to the reason that the library formed of multiple network functions pro-

vides multiple estimations for a single input, a final HI assignment similar to

that in section 3.4.1.3 is necessary for reducing dimensionality and receiving a

single target for RUL estimation. For the following stages of similarity based

multi step ahead prediction, the moving average of all these library estima-

tions (referring to equation 3.37 and equation 3.38) is carried out to filter the

final HI.

sr =
1

p

r+p∑
q=r

1

nl

nl∑
j=1

ajq (3.41)

where the sequence sr is the total mean of p-moving average of nl num-

ber of HIs. The window size (p-moving average) is defined as a numeric du-

ration scalar for the upcoming time instants and the average contains the

parameters in the current location as well as the p number of following neigh-

bours. The window is also widened prior to the sr and the centred moving

average equation is denoted as:

sr =
1

2p+ 1

r+p∑
q=r−p

1

nl

nl∑
j=1

ajq (3.42)

For an example of a two-point average, the matrix with a window size

of 2 and n HIs is defined as:



sr−2,1 sr−2,2 · · · sr−2,nl

sr−1,1 sr−1,2 · · · sr−1,nl

sr,1 sr,2 · · · sr,nl

sr+1,1 sr+1,2 · · · sr+1,nl

sr+2,1 sr+2,2 · · · sr+2,nl


(3.43)

or, for a three-point average, a matrix with a windows size of 3 is as:
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sr−3,1 sr−3,2 · · · sr−3,nl

sr−2,1 sr−2,2 · · · sr−2,nl

sr−1,1 sr−1,2 · · · sr−1,nl

sr,1 sr,2 · · · sr,nl

sr+1,1 sr+1,2 · · · sr+1,nl

sr+2,1 sr+2,2 · · · sr+2,nl

sr+3,1 sr+3,2 · · · sr+3,nl


(3.44)

This is a directional window formed by a temporary duration matrix.

Its size depends on two different elements, the number of library estimations

“nl” and the scalars of moving average windows size “p”. Considering both

posterior and prior values, as well as the sequence itself, the exact size of the

window is (2p + 1) × nl. The calculation includes nl elements in the current

location, p×nl elements before the current location, and p×nl elements after

the current location.

Regarding the initial starting and the final ending points, this moving

average method for a full matrix of library estimations is modified as:

si =



si = 1
p+i

∑p+i
q=1

1
nl

∑nl
j=1 ajq if i− p < 0

si = 1
p+(l−i+1)

∑p+(l−i+1)
q=i

1
nl

∑nl
j=1 ajq if i+ p > l

si = 1
2p+1

∑r+p
q=r−p

1
nl

∑nl
j=1 ajq if i− p >= 0

and if i+ p <= l

(3.45)

where l is the length of the operational case. The insufficient dimensions

(i− p < 0 and i+ p > l ) are defined either as a positive scalar for the starting
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points or a scalar smaller than the length of matrix for the ending points. The

rest have can have full dimensions of the moving average and operate along

with the direction of the specified window move. Accordingly, the modified

moving average method is able to filter both ending and starting points of

time series.

3.4.3 Multi Step Ahead Prediction

In the future failure mode, the filtered health indicators are stored to calculate

the pairwise distance relations for the life time predictions. A similarity-based

RUL estimation model identifies the best matching training units for each test

case and makes future multi-step predictions over filtered health indicators. A

particular issue encountered when attempting to make meaningful long-term

predictions is that of taking account of different kinds of uncertainties arising

from various sources.

3.4.3.1 Pairwise Distance Relation

The similarity-based prediction algorithm proposed in this research estimates

the future behaviour of the systems only when sufficient training data to map

out the damage space is present and has been examined by comparison with

a robust standardisation. The filtered health indicator derived from the data

must give a realistic representation of system performance and manage entire

trajectories correctly. For example, when more information about historical

damage propagation becomes available, the filtering should be devised to nar-

row the errors in identification of trajectory characteristics, and the results

should demonstrate the relationships between the historical performance de-

terioration of initially trained subsets and RUL predictions of test subsets.

RUL prediction of test data is calculated through the best-matching
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training units that have a run-to-failure history (Wang et al., 2008; Lam et al.,

2014; Ramasso, 2014a; Eker et al., 2014; Peng et al., 2012b). Distance matri-

ces are used in similarity-based estimation for pairwise distance estimations.

These distances are then used to measure the similarity between training and

test HIs.

Each training curve is accepted as a baseline for the degradation pattern

for prediction. The pairwise distance between the pairs of training and test HIs

can be regarded an error rate for each corresponding point. According to this

error rate, the similarity between the degradation trajectories of two diverse

instances can be calculated first; then, the failure threshold point of the test

trajectory is estimated based on the actual failure point of the corresponding

training trajectory. Finally, the RULs estimated from multiple training data

can be fused to compute a final RUL estimation.

Euclidean distance is used to measure the ordinary distance between the

points of two corresponding trajectories in Euclidean space. Although various

distance-based methods can be used in the model, since the trajectories are

in a continuous space where all dimensions are properly scaled and relevant,

the Euclidean is an appropriate choice for the distance function. With this

method, Euclidean space becomes a metric space and calculates the distance

between pairs of objects in a data matrix that represents the similarity of

corresponding parts.

The Euclidean distance between the vector of the test (p) and cor-

responding part of the training trajectory (q) is the length of the line seg-

ment connecting both vectors (p̄q). In Cartesian coordinates, when “p =

(p1, p2, · · · , pn)” and “q = (q1, q2, · · · , qn)” are two vector points in Euclidean

n-space, the distance (d) between p and q, or the reverse, is calculated by

Pythagoras’ theorem, which can be written as an equation relating the lengths

of the sides p, q and d (Sally, 2007).
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d(p,q) = d(q,p) =

√
(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2

=

√√√√ n∑
i=1

(qi − pi)2 . (3.46)

Figure 3.6 shows pairwise distance calculations between a particular

test sample and two sets of training sample observations which include run

to failure degradation progress. As seen in this example, the best-matching

training units for the test data can be located in the ongoing parts of the

curve rather than being in the initial stages. The testing curve is moved in

a step-by-step manner throughout the base curve to identify the minimum

pairwise distance between the trajectories. This illustrates the fact that the

relation between the test and training samples is calculated and stored at each

step in order to find the possible best-matching part of the training domain.

Given the measure of the distance between each pair, the matching locations

are used as feedback to complete the missing parts of the test trajectories, and

the algorithm continues to the next training time units by repeating the same

process. The pairwise distance over each time unit is given by the following

equation:

d(te, tr, j) =
ntr∑
j=nte

√√√√ nte∑
i=1

(tei − tri+j)2 . (3.47)

where nte is the length of test trajectory and ntr is the length of training

trajectory (the base curve).

3.4.3.2 RUL Estimation

Once the testing curve has been moved throughout the baseline, the minimum

of the stored pairwise distance values is identified as the best-matching part
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Figure 3.6: Similarity Methodology

between the test data and the training baseline, Mn(te,tr).

Mn(te,tr) = min
(
d(te,tr,1), d(te,tr,2), · · · , d(te,tr,ntr−nte)

)
(3.48)

The location of the best-matching time instant at the training baseline,

Lte,tr, is determined by:

Lte,tr = arg find
(
d(te,tr,j) = Mn(te,tr)

)
; j = 1, 2, · · · (ntr − nte) (3.49)

A presentation of minimum distance and the estimated RUL are shown

in Figure 3.7. The baseline data before this location is accepted as non-useful

information to be removed, and the remaining part is used as a representation

of the test trajectory’s future behaviour.
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By using the calculated location of the minimum Euclidean distance, a

RUL matrix for each test trajectory at each training baseline can be calculated

by the following formula.:

RULte,tr = ntr − (nte + Lte,tr) (3.50)

The length of time series after the identified location of best matching

time instant, Lte,tr, gives the estimated RUL of the test trajectory. However,

a single RUL prediction with a single training baseline can be extended to a

collaborative group of best matching training trajectories and the estimations

with more training samples can increase prediction performance in multi-step

ahead RUL estimations. In other words, the data collaboration effort can be

performed from multiple suppliers with a wide variety of degradation cases

rather than using separate and self-contained sources.
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3.5 Summary

This chapter presents a prognostic framework which combines three advanced

approaches: multi regime normalisation, feed-forward neural network and

similarity-based prediction. These approaches are proposed to be implemented

on multidimensional condition monitoring data to evaluate RUL of complex

systems operating under different conditions.

First contribution in the methodology is reducing the dimensionality

of condition monitoring data by using a health indicator filtering method of

feature extraction which can standardise the entire data population with re-

gard to the characteristics of individual operational cases. This is a hybrid

method which uses multi regime normalisation to assign target outputs for

feed forward neural network and can filter the HI’s of different operational

cases with regard to each other or any potential novel cases. Consequently,

the proposed methodology can preserve operational features when applied to

actual condition monitoring data, exhibiting health degradation.

Another contribution is in demonstrating the strengths of collaboration

in RUL estimation. In practice, a single dimension reduction method can

be applied to extract the operational features or the above mentioned multi

regime normalisation and neural network approaches can be used individually

to filter health indicators. However, such an individual application would

have drawbacks on the future failure mode. Since the hybrid method can

preserve operational features regarding to existing operational cases in a data

or the novel ones, the RUL prediction can be made through the similarities

between different existing or novel samples which can be standardised into

a common scale. Therefore, the similarity-based prediction that receives the

filtered health indicators from the hybrid feature extraction model is promising

to be applied in complex system prognostics, where the regimes occurring in

degradation signals are multidimensional.
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In terms of practicability, the proposed methodology will beconsidered

in a complex system domain and the framework will be applied into multidi-

mensional data. In the next chapter, these scenarios will be discussed and a

case study will be introduced.
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Chapter 4

Case Studies

In Chapter 3, a prognostic framework has been demonstrated for dealing with

prognostic prediction problem in complex systems. In this section, the benefits

of using the proposed methodology will be demonstrated in a case study, where

it can account for life cycle uncertainties in degradation to deal with challenges

associated with complex systems, including multidimensional regimes occur-

ring in degradation signals.

The discussion of major points of the prognostic algorithm will be pre-

sented and their subsequent extensions will be described with a particular

focus on their developments in the field of complex systems. As in section

4.1, an application of the proposed methodology in gas turbine engine will be

defined as well as a further discussion on why gas turbines are an appropri-

ate case study for the model and how they exemplify a complex system and

research objectives.

A discussion is provided as to the nature of the gas turbine data required

to run the model both in terms of training data and test data. Subsequently, a

critical discussion of the methodology and its application to alternative cases

is laid out.
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4.1 Application: Gas Turbine Engine Case

Gas turbine engines are widely used in propulsion systems (particularly in

aircraft propulsion) and in power generating systems (Meier and Pettit, 1989).

Their monopoly is connected with their ability on high power, thrust and

efficiency. However, gas turbine engines are very complex and sensitive systems

which have to operate safely and efficiently over a range of extreme operating

conditions (Patel et al., 1996). Due to this necessity, engine manufacturers

(e.g. General Electric, Pratt & Whitney and Rolls-Royce) have performance-

based plans in which their compensation is directly related with the product

availability (Marinai et al., 2004; Kim et al., 2007). This relation gives priority

to the health monitoring applications of gas turbine engines to reduce life-cycle

costs, improve engine reliability as well as availability (Marinai et al., 2004; Li

and Nilkitsaranont, 2009).

Engine health monitoring has been in existence for decades and tech-

nological advancements have improved the availability of the monitored mea-

surements and the use of data (Mazdiyasni, 2008). Using these condition

monitoring measurements for engine degradation forecasting or engine prog-

nostics is very challenging because of the great uncertainty associated with gas

turbine complexity and operating conditions (Li and Nilkitsaranont, 2009).

Such engineering systems operate under different operational margins

and are composed of various subsystems, each of which is embodied by a

particular set of sub-subsystems or components (Zaidan, 2014). The engine

behaviour is not one dimensional due to the flight changes in recurrent phases:

taxi, take-off, climb, cruise, descent, etc. (Lacaille and Bellas, 2014). The

measured sensors in condition monitoring have accordingly superimposed op-

erational margins at any given time instant. Therefore, an application of the

methodology in gas turbine engine prognostics is considered as an appropriate

case study for complex systems operating under different operational condi-

125



tions and comprising multiple interacting subsystems.

Aircraft engine condition monitoring provides early warning of ongoing

or impending failures, and allows the operators to initiate preventative main-

tenance tasks to reduce reliability risks, unscheduled delays and other more

serious system failures (Tumer and Bajwa, 1999). The main objective in such

maintenance tasks is to use signal information as a reliable indicator of grow-

ing faults and impending potential failures that may be noticed and repaired

during inspection; however, engine condition monitoring requires the man-

in-the-loop to analyse the data and correlate with other information sources

(Volponi, 2014). Therefore, they overly depend on the ground power plant

analyst, and cannot define the performance level simultaneously. Moreover,

the majority of fielded systems are not properly instrumented for relevant data

collection and/or are highly restricted in their ability to share such data due to

proprietary and confidentiality constraints (Ramasso and Saxena, 2014). For

these reasons, the nature of the prognostics problem has its own challenges in

terms of dataset availability and monitoring data (Eker et al., 2012)

In the absence of primary operating engine data, it is necessary to use

data sources based on gas turbine performance simulations (Kurzke, 2017;

GPA, 2013; Visser and Broomhead, 2000; MentorGraphics, 2013; Liu et al.,

2013a; Frederick et al., 2007) and/or various other sources such as compo-

nent models, maintenance histories and sensor measurements (Volponi, 2005).

Although these gas turbine simulations can provide sufficient information for

prognostic algorithm development, there is still the requirement to collect com-

mon datasets and a mutual comparison to validate the methods introduced

by different researchers. In order to perform prognostic prediction effectively,

the researchers are expected to develop their methods using common datasets

of a minimum sample size (Eker et al., 2012). The lack of shared data sets to

validate the methods has been the greatest obstacle to improved progress in
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the prognostic literature (Ramasso and Saxena, 2014). To overcome this issue,

several simulations have been introduced and, most notably, a variety of prog-

nostic datasets have been published through the NASA Prognostics Center

of Excellence (PCoE) data repository (PCoE, 2014). These publicly available

datasets have been used by many researchers to develop and compare their

algorithms. The most applied and used datasets in these are the “Turbofan

Engine Degradation Simulation Data Set” and “PHM08 Challenge Data Set”.

Both are gas turbine simulations and are modelled in a similar way to each

other. Their high application rates have resulted in the introduction of a sig-

nificant number of methods in the literature. Besides, the score leader board

provided by PCoE (2008) is an effective method for validation with existing

methods in the literature.

4.1.1 C-MAPSS Simulation and Datasets

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) is

a NASA developed tool used to simulate a realistic large commercial turbo-

fan engine. The software was coded in MATLAB (The MathWorks, Inc.)

and Simulink (The MathWorks, Inc.) environments with a number of ed-

itable input parameters that allow the users to enter values specific to their

own applications regarding environmental conditions, operational profile, etc.

(Frederick et al., 2007).

C-MAPSS programme was used to implement the simulation of the

PHM08 Challenge Data Set and Turbofan Engine Degradation Simulations

(Saxena and Goebel, 2008a,b). All data sets differ from each other and were

simulated under various combinations of regimes, operational conditions and

fault modes. It is recorded that several sensor channels characterise fault

evolution during operation. The data sets are made publicly available for the

model training and the validation of results (Saxena and Goebel, 2008b).
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Figure 4.1: A simplified diagram of an engine sim-
ulation modelled in C-MAPSS (Frederick et al.,
2007)

Figure 4.2: Subroutines of
a model (Frederick et al.,
2007; Saxena et al., 2008b)

The engine diagram in Figure 4.1 demonstrates the fundamental parts

of an engine simulation, and the flow chart in Figure 4.2 demonstrates how the

different subroutines are assembled in the simulation. The comprehensive con-

trol systems illustrated in these figures are formed of the following fragments

(Frederick et al., 2007):

- A fan-speed controller for the specification of throttle-resolver angle

- Three high-limit regulators to avoid the engine from exceeding its own

design limits of engine-pressure ratio, core speed, and high-pressure tur-

bine exit temperature

- Four limiting regulators to avoid static pressure at the high-pressure

compressor exit from going off too low

- Core speed acceleration and deceleration limiters

- A comprehensive logic structure integrating the control-system frag-

ments in a similar manner to real engine controllers

- A power-management system allowing engine operation over a wide

range of thrust levels covering the full range of flight conditions.
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- In addition to the engine model, an atmospheric model is included with

the capability of operation at

– altitudes from sea level to 40,000 ft

– Mach numbers from 0 to 0.90

– temperatures from 60 to 103 ◦F

C-MAPSS aero engine degradation simulations possess the following

characteristic features that make them both convenient and suitable for the

development of prognostic algorithms on multi step ahead RUL estimations

(Ramasso and Saxena, 2014; Saxena and Goebel, 2008a,b):

- Each data set contains multivariate and multidimensional time series

representing sensor magnitudes over time and three operational settings that

have a significant effect on engine performance and variations within opera-

tional regimes. Therefore, the data sets can closely imitate real systems by

exemplifying multidimensional operations of complex non-linear systems.

- Data sets are divided into training and test trajectories, the latter

being individual subsets. In the training trajectories, operational cases of

complete run-to-failure data are formed, which are supposed to be used to

train multi step ahead life prediction algorithms. The test trajectories, on the

other hand, can only set up via shorter instances with data up to a certain

time prior to adopting system failure.

- The sensors are contaminated with operational regimes and noise to

simulate instability within parameter readings during operation. Also, each

trajectory is assigned a distinct degree of initial wear and manufacturing vari-

ation, which is considered normal and unknown to the user.

-The fault effects are hidden on account of operational conditions and

regimes, which is yet another common feature of most real-life operational

systems.
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-Raw values at each time point in data are regarded as a snapshot of

the parameters taken during a single cycle, and each column corresponds to a

different variable (see Table 4.1).

Table 4.1: PHM08 challenge data set parameters available to participants as
sensor data Saxena et al. (2008b)

Parameters Symbol Description Unit
Unit — — —
Time — — t
Setting 1 — Altitude ft
Setting 2 — Mach Number M
Setting 3 — Sea-level Temperature ◦F
Sensor 1 T2 Total temperature at fan inlet ◦R
Sensor 2 T24 Total temperature at LPC outlet ◦R
Sensor 3 T30 Total temperature at HPC outlet ◦R
Sensor 4 T50 Total temperature at LPT outlet ◦R
Sensor 5 P2 Pressure at fan inlet psia
Sensor 6 P15 Total pressure in bypass-duct psia
Sensor 7 P30 Total pressure at HPC outlet psia
Sensor 8 Nf Physical fan speed rpm
Sensor 9 Nc Physical core speed rpm
Sensor 10 epr Engine pressure ratio —
Sensor 11 Ps30 Static pressure at HPC outlet psia
Sensor 12 phi Ratio of fuel flow to Ps30 pps/psi
Sensor 13 NRf Corrected fan speed rpm
Sensor 14 NRc Corrected core speed rpm
Sensor 15 BPR Bypass Ratio —
Sensor 16 farB Burner fuel-air ratio —
Sensor 17 htBleed Bleed Enthalpy —
Sensor 18 Nf dmd Demanded fan speed rpm
Sensor 19 PCNfR dmd Demanded corrected fan speed rpm
Sensor 20 W31 HPT coolant bleed lbm/s
Sensor 21 W32 LPT coolant bleed lbm/s

LPC/HPC=Low/High Pressure Compressor - LPT/HPT= Low/High Pressure Turbine

Each trajectory in a dataset is from a different operational instance of

a complex aero engine system under dynamic operating regimes. The data
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sets can be regarded as a fleet of the same type of aircraft. Since data can

be collected from numerous samples, it is possible for algorithms to extract

the behaviours of each trajectory and make collaborative calculations for the

different courses of system actions.

Table 4.2: Number of trajectories and regimes in C-MAPSS data sets

Dataset: Training Trajectories Test Trajectories Regimes

FD001 100 100 1 (sea level)

FD002 260 259 6

FD003 100 100 1

FD004 248 249 1 (sea level)

PHM08 Test
218

218 6

PHM08 Final Test 435 6

Table 4.2 summarises the fundamental differences between datasets. In

all subsets, the test sets have a corresponding training set. FD002 and FD004

are formed of six different operational regimes, while FD001 and FD003 in-

clude only one operational condition. FD003 and FD004 also include an extra

fault mode (fan degradation). Since each data set has a particular number of

operational conditions and fault modes that can have a direct impact on their

performance, only the trajectories in the same data set can be regarded being

from an identical system. On the other hand, PHM08 Challenge Data Set only

includes one corresponding training set for two different test sets. The devel-

opers are expected to model their algorithms using this single set of training

data for both ’test’ and ’final test’ sets provided in the same package. Also,

unlike the Turbofan Engine Degradation Simulation, the true RUL values are

not provided for the challenge participants. Instead, users are asked to upload

their “test” results on the repository page to receive their scoring function re-

sults (Saxena and Goebel, 2008a). Since the true RULs are not given, it is not
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possible to validate the results with any other prognostic metrics. For the “fi-

nal test”, the users can only send their results once, and therefore this subset

does not allow a test-and-trial type of submission and can only be validated

by a third party.

The validation uses the taxonomy of RUL performance measures and

prognostic metrics presented in the Literature chapter (section 2.4). In Ap-

pendix A, a comparison of the well-known publications is provided. The met-

ric results obtained by particular works are summarised in table A.1 and the

leader board for the PHM08 data challenge is presented in table A.2.

4.2 Preparing Multidimensional Data

The performance of a gas turbine engine degrades over time. To identify such

performance degradations, it is necessary to apply a prognostic data analysis

that uses historical health information provided by the engine parameters (Li

and Nilkitsaranont, 2009).

Figure 4.3 shows a flowchart representing data processing starting from

the initial raw turbofan engine data to multi-step ahead RUL estimations.

These instructions describe an application of the methodology that, when

executed properly, can ensure a case study for gas turbine engine data.

For multiple regression aircraft engine data, different flight operational

conditions are comprised of a range of values for operational conditions such

as altitude, Mach number or throttle resolver (Saxena et al., 2008b). These

operational condition margins change as system degradation takes place, and

each includes several noise factors, characteristic initial wear levels and lack

of information on the operational regime effects. The application, thereby,

needs to deal with the uncertainty problem at various levels of the prognostic

modelling.
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Figure 4.3: Flowchart representing data processing and multistep ahead re-
maining useful life calculation

Figure 4.4 provides the characteristic features of raw sensor values in a

sample training engine trajectory (from PHM08 Challenge Data Set). As it is

shown in this figure, raw data is demonstrated as it is collected from an engine

source and has not been subject to any processing or cleaning methods. Also,
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the data has not been manipulated by any other algorithm, and the sensor

values are not standardised or regulated.

8000
8500
9000

Time, in Operational Cycles 

R
aw

 S
en

so
r 

R
ea

d
in

gs 2000
2200
2400

1200
1400
1600

200
400
600

0 50 100 150 200 250
0

50

100

...

...

...

...

Altitude
Mach Number
Sea-level 
Temperature
T2
T24
T30
T50
P2
P15
P30
Nf
Nc
epr
Ps30
phi
NRf
NRc
BPR
farB
htBleed
Nf dmd
PCNfRdmd
W31
W32

Figure 4.4: Raw Data Characteristics

The range of raw engine sensors at their maximum and minimum val-

ues is very wide and requires an organisation to reduce data redundancy and

improve data integrity. For example, a given sensor may have a range of 8000

to 9000 while the range of others may span many orders of sensor magnitudes.

Regardless of their range, these sensors represent complicated system condi-

tions, and some of them are directly related to the system degradation (Saxena

and Goebel, 2008a,b). Further observations are applied to check data integrity

across the multiple sensors and to identify the regimes and degradation pat-

terns in sensor measurements.

Figure 4.5 represents the processing behaviour of a single raw sensor

(sensor 11 - Static pressure at HPC outlet). The plot illustrates that the data

is highly scattered, multidimensional and it is difficult to plot a line of best
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Figure 4.5: Sensor 11 - Static pressure at HPC outlet

fit representing the system degradation. A meaningful observation and/or

understanding from the raw sensor is not possible without the identification

of the degradation pattern from the multidimensional and noisy sensors. In

pursuance of achieving a useful HI for target achievement in neural network

training, a complex data processing approach is needed for feature extrac-

tion and selection. The characteristic features of multidimensional raw data

under multiple system conditions need to be extracted, and then the useless

and misleading information caused by the noise during operation need to be

removed.

From the observations obtained from the single raw sensor monitoring

shown in Figure 4.5, it is noticed that certain sets of data points cluster in sim-

ilar domains than those in other regimes. When the plot is set by certain axis

limits and aspect ratios, an exponential behaviour indicative of the monotonic

system degradation can be observed in the plot. In Figure 4.6, the axis index

for Sensor 11 is limited so that the “y-axis” ranges from 41.6 to 42.8 instead of

36 to 50, as in Figure 4.5. The raw sensor values in this range (or domain) can
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Figure 4.6: Sensor 11 - Static pressure at HPC outlet (y-axis limited)

be regarded as lying within a certain operational regime in which understand-

able prognostic behaviour is available for identifying the engine health levels.

This behaviour follows a predictable/sequential degradation pattern similar

to the aircraft engine damage propagation model of Saxena et al. (2008b).

When the selected groups of data points are monitored in various trajectories

to assess their response, it can be concluded that the response is uniform over

the entire range of trajectories. However, the number and magnitude of axis

limits and aspect ratios differ at different sensors.

On the basis of the using axis-related evidence as a starting point for

further investigation, the identification of the data alignment characteristics

is proposed as an explanation for the degradation phenomenon. The first

step of data processing is, therefore, to classify these particular regimes in all

trajectories.

The operational settings given in the engine data have a direct impact

on the sensors, and the multiple regimes can be found by finding the optimum

number of clusters in these settings. However, clustering cannot be regarded
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as one specific method to the operational settings, but a general task to be

resolved.

It is unlikely that all operational settings in different data will respond

in similar manners to a clustering method. Some will respond better than

others, and some may fail to respond at all. For example, different data

sets of the C-MAPSS Turbofan Engine Degradation Simulation have different

characteristics in operational settings and a clustering method developed on

a single dataset may not work on others without a further modification of its

parameters.
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Figure 4.7: Operational settings in different regimes

The clustering methods can be obtained in alternative ways that most

notably differ in their concept of what actually establishes a cluster and how

to effectively detect them (as like in Figure 4.7). For complex cases, as in the

PHM08 challenge dataset, the common notion of multiple regime clustering

can be arbitrary, such as k-means (Lam et al., 2014), fuzzy c-means (Sugeno

et al., 1993), Gaussian mixture models (McLachlan and Peel, 2004), nearest-

neighbour clustering (Ramasso, 2014a) or neural network clustering (Ultsch,

1993) etc. Although these methodologies appear different, their result in the C-

MAPSS dataset match with each other. This is mainly because the centres of
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three operational settings (altitude, Mach Number and sea-level temperature)

indicates the regimes in data as can be seen in Figure 4.7.

Clustering can also be applied by using particular sensors that have

unique and constant values within each regime. Sensor 1, shown in Figure 4.8,

is formed of six different fixed values in the course of all trajectories. It is

accepted that the quantity of regimes in the dataset corresponds to the unique

values in these fixed sensors.
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Figure 4.8: Sensor 1 with constant values at each regime domain

Table 4.3: Corresponding values for regimes

Regime
Operational

Setting 1

Operational

Setting 2

Operational

Setting 3
Sensor 1

#1 10.0047 0.2501 20 489.05

#2 0.0015 0.0003 100 518.67

#3 34.9986 0.8401 60 449.44

#4 20.0031 0.7005 0 491.19

#5 42.0041 0.8405 40 445

#6 25.0051 0.62 80 462.54

138



Table 4.3 represents the consistency in the corresponding values for all

regimes. Unlike for Sensor 1, operational settings 1 and 2 have slightly different

values at each regime recurrence, but they are nevertheless gathered on certain

boundaries. Operational setting 3, on the other hand, has six fixed values for

PHM08 datasets but it differs in other C-MAPSS datasets and includes fewer

numbers.

In this research, instead of developing a complex clustering method, a

simple clustering function returns the unique values for “Sensor 1” for regime

assignment. All sensors are classified in such a way that the sensors in the

same row with the assigned unique values operate in the same regime. It is

observed that this clustering function is valid for all C-MAPSS datasets and

can be used as a common method across different applications.
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Figure 4.9: Clustered Regimes for Sensor 11 - Static pressure at HPC outlet

An illustrative example of the “raw sensor 11” after classification is

given in Figure 4.9 (for further observations, see Appendix A.2 - Figure A.1).

Compared to Figure 4.6, in which the plot’s axis is limited to a certain data

range, all six regimes are grouped effectively, and each regime is able to provide

more meaningful information on system degradation.
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As seen on the raw values from clustered time series, data are inconsis-

tent and need to be adjusted from their original regime scales to a relatively

common scale. The “multi-regime normalisation” method proposed in the

methodology (section 3.4.1.2) adjust the data by bringing the all probability

distributions of values into an alignment.
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Figure 4.10: Normalised Sensors

In Figure 4.10, the standardised sensors after multiple regime normal-

isation are shown for a full operational period of a training trajectory. The

regime differences are eliminated here, and the data is transformed into a

form that allows for only one valid regime for all sensors. To evaluate how

well these sensors show the useful degradation patterns, the prognostic pa-

rameter choosing measures of monotonicity, prognosability, and trendability

reported in section 3.4.1.3 are applied to all training trajectories in this case

study.

In accordance with the results of these metrics in Table 4.4, the ten

sensors 2 (T24), 3 (T30), 4 (T50), 7 (P30), 11 (Ps30), 12 (phi), 15 (BPR), 17
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(htBleed), 20(W31) and 21(W32) are considered meaningful for prognosis and

will be employed in the following sections.

Table 4.4: Results of Prognostic Parameter Suitability Metrics

Sensor Mon. Prog. Trend. Sum Mon. Prog. Trend. Sum

1 0.25923 0.47787 5.00E-05 0.73715 12 0.7908 0.7853 0.71302 2.28912

2 0.81147 0.82162 0.84246 2.47555 13 0.47782 0.42358 8.00E-05 0.90148

3 0.79834 0.81355 0.8238 2.43569 14 0.58089 0.28385 0.00014 0.86488

4 0.86291 0.86741 0.91356 2.64388 15 0.85703 0.8139 0.87213 2.54306

5 0.24526 0.44186 0 0.68712 16 0.31476 0.47926 2.00E-05 0.79404

6 0.34362 0.53064 4.00E-05 0.8743 17 0.82813 0.83043 0.84071 2.49927

7 0.78159 0.74244 0.70277 2.2268 18 0 0 0 0

8 0.49842 0.42204 0.0001 0.92056 19 0.286 0.44186 1.00E-05 0.72787

9 0.55239 0.3148 0.00037 0.86756 20 0.73925 0.76531 0.7017 2.20626

10 0.25824 0.18214 1.00E-05 0.44039 21 0.74419 0.76612 0.74673 2.25704

11 0.90393 0.89343 0.92564 2.723
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Figure 4.11: Useful sensors in all train-
ing trajectories
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Figure 4.12: Non-Useful sensors in all
training trajectories

Samples of useful and non-useful sensors are shown in Figure 4.11 and

Figure 4.12. With respect to the fitness function as a sum of these mea-

surements, the determined suitable sensors can also be visually observed and

compared. In Appendix A.2, further sensor observations are provided for a
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comparison between the prognostic parameter-choosing measures and the sen-

sor behaviours.

Figure 4.13 demonstrates the (normalised) useful sensors to be applied

in further stages. All these sensors show an exponential increase starting from

an initial wear level and ending at a threshold point. Signals do not have

smooth curves as they are contaminated with noise, but their quality can be

improved by a suitable filtering method.
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Figure 4.13: Useful Normalised Sensors

The normalised useful sensors are in a single homogeneous domain.

However, as seen in Figure 4.13, these sensors are noisy and could perform

poorly in terms of identifying the system’s health degradation. It is necessary

to emphasise the noise variations in the dataset and bring out strong patterns

in the population. A smoothed and averaged version of an initial HI with

respect to the normalised sensors is calculated. This filtering does not include a

sliding window size to determine means. Instead, the mean over all population

at the same time index (as described in the methodology chapter - section
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3.4.1.3) is used to receive smoother curves.

The features extracted from the standardised sensor data are still con-

taminated with noise, and during the development of the methodology, it has

been observed that there is always a risk that a neural network might learn

from this noise in the training stage. In order to minimise this risk, a regression

model is used to describe the relationship between the adjusted cycle index

and health indicator so that the degradation curve is a smooth line and does

not include errors. A two-term power series model, as given by the follow-

ing equation is used to describe the final smooth HI parameter (MathWorks,

2002).

y = asb + c+ ε (4.1)

where an approximation to a power-law distribution sb has the two

fitting terms of “a” and “c”, which can represent uncertainty in the observed

values. The main reason behind employing this fitting model is that the fitted

HIs, y, for the run to failure trajectories demonstrate only increasing values

and the initial operational stages behave in such a way that the fitting has

stable wear levels with minimal increase. Assuming that the failure occurs at

a certain stage of operation and the system degradation before this point is

relatively steady (Heimes, 2008), the two-term power series model is able to

define the hypothetical degradation effectively. Hence, to preserve the original

degradation pattern, the two-term power series fitting model is used to identify

a standard HI.

In Figure 4.14, a comparison of adjusted trajectory (mean at each time

point) and fitted HI is illustrated. As can be seen from the blue curve, the

degradation is stable up to a certain point, and the fit does not include any

type of fluctuation.
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Figure 4.14: Adjusted Trajectory and HI
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Figure 4.15: Alternative Fitting Functions

Alternative functions to power law model are shown in Figure 4.15.

This example demonstrates how to fit the adjusted cycle curve to a set of

fitting functions using Polynomial, Fourier transform, Gaussian and Exponen-

tial models (MathWorks, 2002). The fitted curves could help to identify the

degradation level with time, but none of them is capable of defining the early

stages of the HI as stable or steady.
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4.3 Network Configuration

After the useful health features are extracted from raw data, the first step

towards training the network is the configuration of input and output series.

Inputs are situated as “10×t” cell of a matrix in which the dynamic data from

10 different variables of raw useful sensor data is represented. The target series

is a “1×t” cell array of a matrix and only represents “t” time steps of an output

variable which is the calculated HI from multi regime normalisation and feature

extraction. The goal of this configuration is to provide the neural network

mapping between a raw data set of numeric inputs and a set of calculated

health indicators.

With an attempt to increase the deployment performance of the network

configuration between trained inputs and targets, the multiple feed-forward

networks are modelled in a double loop design over an increasing number of

hidden layer of an outer loop and continuous weight initialisation of an inner

loop. In other words, the hidden layers are not set to a default number. In-

stead, an outer loop of network training is arranged with an increasing number

of hidden layers. Both loops terminate when a minimum desired error occurs

with the overall generalisation. The optimum layer size is accepted according

to the mean squared difference between the initial output series and the esti-

mate. After these loops, the least erroneous network configuration is used to

choose the best open loop design mode for validation.

In Figure 4.16, the configuration of network training stage is shown.

The inputs are the raw sensor values for a single trajectory while the target is

the calculated HI for the same trajectory. It is expected that function will be

generated from the network structure that can map between these variables.

To prove that the trained Bayesian regularised neural network is capa-

ble of achieving high accuracy for an output estimation, the same raw data is

added into the obtained network function to receive a neural network predic-
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Figure 4.16: Neural Network Learning Stage

tion. There is no network training at this stage, and the same raw data used

in training is applied to the network memory elements to receive an estimated

output. Figure 4.17 represents the trained network functions rather than the

network training and, accordingly their connection is marked with (1), rather

than (0) as in Figure 4.16. According to the network estimation, one can con-

firm whether the proposed network model is accurate or if the network fitting

meets the needs of prognosis.

As seen in Figure 4.17, the results show a pattern that is very similar to

the fitted HI used in network training (see Figure 4.16) but as expected, it is

contaminated with noise due to the generalisation of Bayesian regularisation

algorithm. Both patterns follow exponential growth curves and their scales

match each other. The initial wear level and threshold point of the estimation

are coherent with the HI fit, and the output is normalised onto a common

scale. The curve starts at HI ≈< 0 and reaches the failure point at HI ≈> 2.

Comparing to the network training output in Figure 4.16, the result matches
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Figure 4.17: Neural Network validation with the same input

what might well be expected in a degradation model. Thus, it can be concluded

that the network can effectively filter the raw data and standardise the outputs

without requiring all the trajectories in the dataset. This achievement removes

one of the major limitations of multi-regime normalisation of requiring all data

at once. It will also lead to individual data filtering and normalisation for both

training and test trajectories. Although the noise could be seen as the biggest

variation between the initial training output and the network estimation, it

could be regarded as a result of good generalisation for a novel input series to

be submitted to the same trained network function.

In the case that the estimation is made for the same data used for train-

ing in Figure 4.17, it can be noticed that the response is satisfactory. However,

as clarified in the literature chapter (section 2.3.3.3.3), overfitting and compu-

tational overheads might lead to poor network calculations in the training of

multilayer neural networks. To validate that Bayesian regularisation algorithm
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Figure 4.18: Neural Network estimation with a different input

in the feed forward neural network structure can memorise the samples for the

training data and properly generalise the upcoming testing cases, the trained

network function needs to be put to use on new inputs. The regularisation

analysis of the network response could be performed with an alternative tra-

jectory. In Figure 4.18, a raw test input with shorter instances and different

degradation characteristics is used for estimation. Although the length and

characteristic trajectory features (such as initial wear level and degradation

pattern) are not the same, the model was able to accurately define the HI

curve of the inserted data. In this instance, the curve starts at HI ≈> 0 and

reaches a final point at HI ≈> 1. As the input data change, the HI output

estimation is adapted to an appropriate time series, depending on the range

of input sensor values. The neural network function trained with Bayesian

regularisation, regardless of the data used in its training, could provide the

intended results of HI estimations for different test trajectories, generalise the
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upcoming novel cases with regard to their characteristics, and avoid overfitting

and computational overheads.

The demonstrated Bayesian regularised network function is trained with

a particular trajectory and could provide the intended results as seen in Fig-

ures 4.17 and 4.18. However, the regularisation and network training can also

be further validated for the risk that if the function is regularised and trained

with other raw input measurements and HI outputs, the estimations might re-

sult in different scale due to different weight and bias values. For this purpose,

alternative neural network functions trained with different trajectories (inputs

and outputs) are applied in the same raw training trajectory. They form a

library for multiple calculations for each raw input.

0 50 100 150 200 250 300

Time, in Operational Cycles 

-1

0

1

2

3

N
o
rm

a
lis

e
d

 D
im

e
n

s
io

n
s
 o

f

T
ra

in
in

g
 T

ra
je

c
to

ry

ANN Estimation 1

ANN Estimation 2

ANN Estimation 3

ANN Estimation 4

ANN Estimation 5

ANN Estimation 6

ANN Estimation 7

ANN Estimation 8

ANN Estimation 9

ANN Estimation 10

0 50 100 150 200 250 300

Time, in Operational Cycles 

-1

0

1

2

3

N
o
rm

a
lis

e
d
 D

im
e

n
s
io

n
s
 o

f

T
e
s
t 
T

ra
je

c
to

ry

ANN Estimation 1

ANN Estimation 2

ANN Estimation 3

ANN Estimation 4

ANN Estimation 5

ANN Estimation 6

ANN Estimation 7

ANN Estimation 8

ANN Estimation 9

ANN Estimation 10

Figure 4.19: Neural Network Library Results

149



A graphical illustration of multiple network library results is given in

Figure 4.19. The plot shows the network library estimations for a single train-

ing data with a full operational time index, while the lower plot shows the

estimations for test data with a shorter time index. Each ANN estimation

represented in the plots is a calculated output of the same input. The net-

work library presents a set of network functions that are highly configurable

and extendable. The results of distinct network instances are similar to each

other, and the filtering library trained with Bayesian regularised feed-forward

networks is found to assign the HI outputs adequately. It is worth noting that

the neural network library used in the data filtering process must be trained by

using different data from a similar source as in the C-MAPSS simulations. If

the data sources are from different and unrelated domains, the neural network

structures in the library are more likely to fail to provide high-accuracy results

for data filtering.

As the library results in multiple ANN estimations for a single input

(trajectory), the final HI estimation is estimated by the modified moving av-

erage model as described in the methodology (section 3.4.2.3).

In Figure 4.20, in accordance with the directional window of a tem-

porary duration matrix, the moving average filtering is applied by moving

horizontally over all network estimations. The mean is computed over the

neighbouring elements at each time. Then, the window moves to the following

time steps and repeats the computation. This sliding process continues until

all time units are exhausted. If the matrix of network estimations is required

to produce a smoother filtering output, the moving window size must be in-

creased in order to provide an increased number of elements in the matrix, so

that the noise factor caused by individual sensors is reduced. However, it has

been observed that smoother curves can still be affected by fluctuations and

may overfit the HIs.
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Figure 4.20: Moving Average Applied in Network Library Estimations

A further assessment of the Bayesian regularised network application

and the moving average filtering method is achieved by interrupting the raw

training input trajectories. Both full and interrupted data sets are inserted

into the trained network functions separately, and then the moving average is

applied to the network estimations from the library.

Figure 4.21 demonstrates a comparison of the first six raw trajectories

in the dataset with their shorter forms. The concordance between the full

and interrupted data demonstrate that the network library, even after moving

average method has been applied, could map the raw data elements to the

target vector in an organised sequence. Although full and short raw input series

are inserted into the network function separately, the network estimations that

can be achieved for the matching parts are nearly identical and only minor

differences, which cannot cause major statistical deviations at the prediction

stage, exist between the filtered outputs.
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Figure 4.21: Comparison of Full and Interrupted Data

4.4 RUL Estimation

Once the neural network library provide a competent generalisation of the

input-output relationship, the trained network functions can be used to filter

all HIs for both training and test trajectories within the same domain. In the

evaluation of many test instances, it is challenging to determine the likelihood

of a failure point and the RUL. Test subsets have ended some time prior to

the occurrence of any failure. When the operational length of data is sufficient

and the degradation has matured enough to provide necessary information for

RUL calculations, it can be observed in the experiments that the prediction
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performance is satisfactory in terms of prognostic metrics. However, the short

test instances, particularly the ones with less than 50 operational cycles, are

at high risk of catastrophic failures.

Range of length
(operational cycles)

≤ 50 >50& ≤ 100 >100& ≤ 150 >150& ≤ 200 >200& ≤ 250 ≥ 250

Number of Test
Trajectories

46 122 107 109 42 9

Table 4.5: Distribution of PHM08 Final Test Trajectories According to Oper-
ational Length

Table 4.5 classifies the PHM08 final test trajectories according to their

length. Superficially, it could be argued that the prediction performance in-

creases from the right to the left of the table. The main reason for this high risk

at shorter sets is mostly related to the data interruption during a fluctuation

caused by noise or other environmental settings. Although this fluctuation

can be tolerated for mature instances, it is very likely to cause catastrophic

failures in short instances.

With a lack of future data steps in the test data, the training subsets,

which have demonstrated full operational life-times of engines and failed at a

threshold point, is used to replace the missing future values of the test targets.

In such a case, the multistep-ahead estimation method needs to determine

which of the historical training data patterns is more likely to represent the

test data.

When C-MAPSS data is considered, the functional mapping-based mod-

els (Heimes, 2008; Peel, 2008; Abbas, 2010; Rigamonti et al., 2016; Bektas

and Jones, 2016) and the extrapolation-based models (Coble and Hines, 2011;

Siegel, 2009; Liu et al., 2013b; Bektas and Jones, 2015) are the major RUL

estimation alternatives to similarity-based prognostics (Ramasso and Saxena,

2014). Using a functional mapping process may result in difficulties in adapting

to new situations, and it would thus be necessary to adapt model parameters
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if the process evolves, as opposed to maintaining the use of static mapping.

Methods within this category are mostly based on neural networks with dif-

ferent architectures. ANN multi-step predictions in prognostic applications

can be quite challenging when only a few time series or little previous knowl-

edge about the degradation process is available, and where the failure point is

expected to occur in the longer term (Bektas and Jones, 2016). This is gener-

ally more evident in the time series showing exponential growth or decay. In

extrapolation-based models, RUL is made by the estimations beyond the orig-

inal observation range on the basis of its relationship with training data. The

predictions of mature and long trajectories can be effectively made between

known observations, but extrapolation is subject to a degree of uncertainty

and the risk of significant deviations in cases where available observations are

low. Considering the short test time series in Table 4.5 and the exponential

characteristics of the engine data, the similar-based prediction model, which

only uses the real degradation pattern, is applied for RUL estimations. Addi-

tionally, since the complete trajectories of a known dataset and the novel ones

could be filtered by the network function, a collaborative estimation of RULs

can be carried out by multiple participating instances.

In Figure 4.22, a pairwise distance between the training and test sets is

initially measured at the first time step and the testing curve is moved to the

end of base curve to find the minimum pairwise distance between these sets.

The measure of distance between each pair is stored at each time index

and the best matching location is used as feedback to complete the future

degradation progress of test trajectory. Figure 4.23 shows the location of min-

imum pairwise distance value as well as the non-useful information to be re-

moved, and the remaining part to represent test trajectory’s future behaviour.
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Figure 4.22: Pairwise Distance Calculation
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Figure 4.23: Minimum Pairwise Distance Position and Best Matching Location

A single similarity based RUL estimation with a single training baseline

might be biased and produce an undesired result, no matter how similar it is

to the test trajectory. However, this estimation model can be expanded to
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other training trajectories and a data collaboration effort can be performed

from multiple suppliers with a wide variety of degradation cases rather than

using separate and self-contained sources. The calculations with more training

data samples can increase prediction accuracy in multistep-ahead estimation.

Therefore; a final RUL is estimated by the mean of corresponding RUL calcu-

lations of the minimum ten distances. In PHM08 challenge dataset, there are

218 training trajectories to be taken as baselines. Assuming that a test data is

shorter than these baselines, the RUL fusion could be derived from the entire

training dataset.
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Figure 4.24: Top similarities and RUL calculation

Figure 4.24 shows the best matching trajectory parts for a single test

instance. The degradation of test data here has grown so that the similarity-

based estimation distribution is narrow enough to provide accurate calcula-

tions. All ten different baselines to be counted for RUL fusion follow relatively

similar trends and their RULs are not different than each other. As one can

assume, the error between the true RUL and the mean of these estimations will
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Figure 4.25: Test trajectories resulting in a wide range of RUL estimations

be small enough that the prediction is reliable in terms of prognostic metrics.

However, as seen in Figure 4.25, the shorter test trajectories, or those that do

not demonstrate a mature degradation pattern, are prone to providing wider

distributions that can result in major deviations from the true RUL. The main

reason for RUL fusion is to minimise the risk of such instances. Although some

of the predictions made by the model cannot provide the intended results, the

remaining will be of greater accuracy, and the mean of the population will

avoid any potential catastrophic failure rate in the prognostic metrics.

4.5 Testing with Synthetic Data

Proposed framework could filter the C-MAPSS dataset trajectories into expo-

nential health indicators and perform multistep ahead predictions. However,
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degradation can occur in different forms and follow various patterns in differ-

ent domains. To validate whether the framework could perform in such cases,

the filtering method is tested with alternative synthetic datasets that follow

different degradation patterns than the C-MAPSS dataset. Additionally, a

synthetic target similar to the fitted health indicator in the Methodology (sec-

tion 3.4.1.3) is used for an alternative network training.

Synthetic data in this section is primarily designed to correlate multiple

sources of raw data derived from the C-MAPSS dataset with a predefined

degradation curve. The neural network data filtering model is designed to

identify any potential correlation that could provide alternative applications

to multi-regime normalisation. Secondly, synthetic data is used to re-generate

the subsets to evaluate the different wear conditions that can be found in

various cases. This is particularly useful for understanding the performance

of the network model’s application to different degradation scenarios. It also

allows one to account for unexpected conditions and to have a basic solution in

any case where multi-regime normalisation might prove to be unsatisfactory.

Once a mathematical model for the synthetic data has been established,

this is available for production of an adaptive target data for both training

and validation. Since the exact behaviour of degradation change is known, the

network with synthetic data could be evaluated with regards to the model,

and the differences caused by the noise between the network estimation and

the inserted target could be precisely identified.

With reference to the generalised time varying health index function

(equation 2.31) introduced by Saxena et al. (2008b), Ramasso (2014a) set the

following equation for synthetic HI for a corresponding target assignment:

sHIt = exp

(
log(0.05)× (l − t)

0.95× (l − 1)

)
(4.2)

where t is the time unit, and l is the length of time series representing
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the full sets of operations. This function forces the health indicator index to

increase from pre-defined levels ( such as 0, healthy to 1, faulty ). Since there

is no component-wise z-score normalisation applied for this equation as defined

in chapter 3, the range of pre-defined levels cannot be known and therefore

the synthetic HI (used for benchmarking) has a different range for the ones in

previous sections of 4.2, and 4.4.

The application of a target generated from a synthetic HI function and

the corresponding raw data trajectory from the PHM08 training set is config-

ured and trained in a feed-forward neural network filtering model as explained

in section 3.4.2. Since the HI output is generated by the network function,

the clustering, regime identification, multi-regime normalisation, re-assembling

and HI fitting steps described in existing failure mode (section 3.4.1) are re-

placed with the synthetic HI. After the network training is complete and all

network memory parameters have been determined, the network can be de-

ployed to estimate the target documents for filtering.

Figure 4.26 shows the comparison between the network estimation and

the synthetic target. Although it is not expected that the synthetic target

could precisely demonstrate the engine degradation behaviour, it could effec-

tively help the neural network to filter the data. For initial stages of the

operation, the network estimation could identify a relatively linear pattern

despite the fact that the function has a constant exponential increase through

the operational time units.

Developing a network library with synthetic targets, however, has ap-

parent obstacles regarding initial wear level identification and final threshold

point identification. Since all targets have to be assigned with a predefined

range ([0,1] rather than the component-wise normalisation range in existing

failure mode), each training would be designed by an output with the same

range and the estimations based on these trainings would be standardised in
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Figure 4.26: HI Estimation from a Network Trained using a Synthetic Target

an irregular manner due to the mismatching memory elements in the differ-

ent networks. To overcome this issue, it can be argued that either an addition

initial wear level identification model with feature scaling for the synthetic tar-

get can be applied, or the estimations can be based on a single network rather

than a library with multiple networks. These applications can be particularly

useful when the dataset is highly complex and thus not applicable for regime

identification. In such cases, a population-based normalisation process may

not satisfy the requirements of a meaningful HI identification, or the opera-

tional settings to identify the regimes may be intertwined. Since the synthetic

HI does not require any data pre-processing steps, the neural network model

with synthetic data training can be applied to fit the HIs for the purposes

prognosis.

As demonstrated in Figure 4.26, obtaining the network filtering using

synthetic data has provided a robust validation for the network adaptabil-

ity. The target could be accurately estimated, and the network can identify
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degradation behaviour differences between the raw data characteristics and

the output of the function. On the other hand, the synthetic targets will lack

the ability to form a network library in most cases where the regime clustering

is available and component-wise z-score normalisation is easy to apply.

4.5.1 Network Training with Synthetic Data

The second application of synthetic data is used to re-generate the raw data

values with alternative degradation patterns so the developed network model

can be tested under different scenarios. These synthetic data models are gen-

erated to simulate particular conditions that may not be found in the PHM08

data sets. The produced dataset represents the authentic data and allows al-

ternative baselines to be set. This enables the network model to learn from

distinct behaviour profiles for filtering. The produced synthetic data is used

to train the faulty system itself; thus, this application makes the required

adaptations to the system required for distinct degradation environments.

In complex systems degradation, it has been observed that some pat-

terns of degradation are linear (Li and Nilkitsaranont, 2009). To form such a

baseline for data re-generation, equation 4.2 is first modified to model a linear

decrease as:

sHIt = 1− l − t
l − 1

(4.3)

and secondly, a damage model similar to the exponential decreasing

degradation pattern proposed by An et al. (2013) is formed as:

sHIt = exp

(
− log(0.05)× (l − t)

0.95× t

)
/max(sHI) (4.4)

In order to apply these functions to the dataset, the sensors are clustered

for each regime. Then, a model is used to plot an arbitrary curve that identifies
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the performance of sensor within the same regime. Due to the environmental

settings and snapshot representation of the system, the exponential growth

of the wear over the time series is very noisy. A filtering process is needed

to simulate the scattered information that would be otherwise ineffectual or

confusing to the performance index. To this end, a polynomial fitting model is

used to identify the nonlinear relationship between the noisy raw values and the

corresponding dependent variables. Comparing to other fitting methods such

as Fourier transform, Gaussian and exponential models (MathWorks, 2002),

the Polynomial method could more accurately identify the fluctuations in the

time series, and therefore can provide less biased and more precise conclusions

regarding noise factors.

The general polynomial regression model, when generalising from the

standardised vectors to a kth degree polynomial, is represented by the following

equations (Anderson, 2011):

yf i = a0 + a1xzi + a2x
2
zi

+ + akx
2
zi (i=1,2,...,k) (4.5)

where y is dependent variable, xz is independent variable and a is re-

sponse vector. This can be expressed in matrix form as:



yf 1

yf 2

yf 3
...

yfn


=



1 xz1 x2z1 · · · xkz1

1 xz2 x2z2 · · · xkz2

1 xz3 x2z3 · · · xkz3
...

...
...

...

1 xzn x2zn · · · xkzn





a0

a1

a2
...

ak


(4.6)

The equation in pure matrix notation is also written as:

~yf = X~a (4.7)
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A smoothed, filtered and cleaned degradation curve is achieved after

the polynomial regression is received. The clustered regime parameters are

subtracted from this curve to preserve the noise factors which have a signifi-

cant effect on the realistic simulation. If a higher or lower degree polynomial

regression is used, the scale of the noise might be misrepresented. Thus, a

fourth-degree polynomial is applied to represent an arbitrary curve of the per-

formance index.

The synthetic outputs of the functions are scaled according to the max-

imum and minimum of the arbitrary curve, and the subtracted noise factors

are added to this scaled output. This is applied to all sensor clusters in each

regime to change the main degradation pattern in all sensors. Figure 4.27

shows an example of the regenerated data. Although it is hard to observe the

change in the raw data form, the regime clusters provide a better illustration

of the regenerated data characteristics.
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Figure 4.27: Synthetic Raw Data with a Linear Decrease

The exponential wear growth can be assumed to be equivalent to the

parameters of aircraft engine modules such as efficiency and flow levels, and
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can be generally linked with the performance of the main engine components.

However, the failure mode characteristics for a different system might be dis-

tinct from this form of degradation. To assess the performance of the method

developed in Section 3.4.2.1, the neural network filtering model is applied to

regenerated synthetic raw datasets to provide a final validation. The initial

function outputs are accepted as the target values for the network output.

The generated training data sets that correlate with the wear growth pattern

of the target are accepted as input series. The relationship between the syn-

thetic outputs and network estimations are shown in Figure 4.28. The model

convincingly filtered the datasets formed with various performance degrada-

tion patterns. Although the noise factors were added back into the data,

the network estimation gave intended results for the outputs. In both plots,

estimations match with their initial synthetic degradation patterns and the

network filtering were capable of filtering data in alternative HI environments.
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Figure 4.28: Network Estimations for Synthetic Data

In Appendix B, various data generation code fragments required for a

realistic synthetic data generation process are provided. All can be viewed as

prototypes for synthetic pattern formation and data modification.
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4.6 Performance Pre-Evaluation Using Secondary

Datasets

Before the results are sent for performance evaluation, in order to pre-validate

the dataset with true RUL values, the algorithms are tested on secondary

datasets derived from the noisy degradation patterns of original trajectories.

Secondary data in this research refers to data that was collected from the

training trajectories. Its use provides a robust validation of the model devel-

oped for the PHM08 data challenge that would otherwise be ambiguous due

to the high risk of one-time submission. In the case of performance evaluation

in particular, secondary data could provide increased knowledge that could

feasibly allow for any re-assessment and re-development of algorithm steps.

Furthermore, the developed model could be tested in terms of whether its

application is compatible with different datasets representing different types

of degradation. For example, the leading score (calculated by the score func-

tion metric in 2.4) for the PHM08 “test” data to date stands at 436.84, but

the high performance in the “test” score does not guarantee the same perfor-

mance level in the “final test” set. The model with the best test score, for

instance, only ranked 22nd on the final test leader board (Saxena and Goebel,

2008a). Since the full operational periods for the training data are known and

its true life time can be calculated, secondary data can be applied to generate

many realistic test scenarios for prognosis, and it can also provide a robust

performance evaluation method for the validation of the accomplishments of

designed algorithms prior to testing on the “final test” submission.

The total test trajectory unit number and each unit’s length in the

secondary data are identical to those of the original data set. For each sec-

ondary test unit produced, randomly selected original training data have been

assigned as a base case. A randomly designated location from this base data
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is then taken off and stored in the secondary dataset file. This means that

there is no modification in the data and all values are originally sourced from

the C-MAPSS simulation.

There are twenty different secondary datasets generated and used in the

pre-validation of the final test subset for both filtering and prediction. Since

they are produced from real training data, their failure point and, therefore

their exact true RUL, is known. They contain real multidimensional and noisy

sensor values within multiple regimes, and moreover, they are very practical

and suitable for the developed model.

0 20 40 60 80 100 120 140 160 180 200

Time, in Operational Cycles

0

200

400

600

800

1000

1200

1400

1600

1800

R
aw

 M
ea

su
re

m
en

t 
D

im
en

si
on

s

Original Data

True RUL

Secondary Test Data

Secondary
Data
Generation

T24
T30
T50
P30
Ps30
phi
BPR
htBleed
W31
W32

Figure 4.29: The principal start and end margins of secondary data

Figure 4.29 shows a sample of the secondary data location: the start

and end margins for a test trajectory. This implementation aims to illustrate

a further case study for the proposed model by using real degradation data

from the C-MAPSS simulation. Based on the true RUL and full operational

behaviours in the plot, the prognostic-related behaviour could be observed by
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using the complete degradation pattern for each test unit. The continuation

of selected location is available from the base training data and has already

been sourced from the same supplier, making it convenient to carry out further

research.

The location selection process for secondary datasets should be reli-

able and performance-efficient: the data was originally collected by someone

other than the researcher, and the datasets may cover both larger and shorter

samples of the population. In terms of prognostic metrics, a clear benefit of

selecting training data with a random operational index is that it limits the

effect of the participant and the validation work needed before submission

can be carried out in multiple complex cases. The randomly selected location

illustrates the possible high-risk factors, and the potential range of perfor-

mance scores for the final test subset can be estimated by using pre-evaluated

datasets. However, it was observed in the original data that the short “final

test” trajectories were always found in the early stages of the degradation. To

be sure that a short secondary data instance could provide a baseline for pri-

mary research design, a maximum ending point for random selection was set

to determine the location accurately. Thus, the short test trajectories might

have a pre-established level of reliability.

MATLAB code with a step-by-step explanation of secondary data gen-

eration procedures is given in Appendix C.

4.7 Critical Discussion of Model to Other Data

Sources

A prognostic data source is expected to include a minimum sample size to

allow an effective modelling on condition monitoring information of systems.

The methods use the degradation patterns of sufficient samples representing
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system failure progression. This is the major challenge in prognostics as it is

often not possible to have multiple samples at once and industrial systems are

not allowed to operate until failure due to the catastrophic consequences in

critical systems (Eker et al., 2012). However, a variety of condition monitoring

datasets have been published such as bearing data set of Lee et al. (2007) ,

battery data set of Saha and Goebel (2007) , turbofan degradation simulation

data set (Saxena and Goebel, 2008b), thermal overstress accelerated ageing

data set (Insulated Gate Bipolar Transistors - IGBT) of Celaya et al. (2009),

bearings’ accelerated life tests provided by FEMTO-ST Institute (Nectoux

et al., 2012) and Virkler crack growth data set (Virkler et al., 1979).

It would be challenging to develop a data-driven model in the cases

where run-to-failure sets of samples are limited such as in the bearing dataset

with three sets of run-to-failure simulations Lee et al. (2007), battery data set

with four set of samples under the same operating and environmental condi-

tions Saha and Goebel (2007), IGBT with five run-to-failure samples under

same conditions (Celaya et al., 2009), FEMTO bearing data set with six run-

to-failure datasets (Nectoux et al., 2012). Limited training sets are not enough

to apply data-driven prognostics in an effective way and one should consider

the physics-based modelling for such cases (Eker et al., 2012). However, as

mentioned in the literature review (section 2.3.1), the physics-based prognos-

tics are mainly designed for a specific domain and are not generally applicable

to a different applications without a significant amount of effort. Besides,

they are computationally expensive, component specific and difficult to ap-

ply in complex systems operating under multiple operational conditions and

producing multidimensional and multivariate signals from its sensors.

To generalise the proposed application, the datasets with sufficient run-

to-failure sets of training samples, such as Virkler data set with 68 (Virkler

et al., 1979) specimens and turbofan data with at least 100 degradation simu-
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lations for each set (Saxena and Goebel, 2008b) are major alternatives. These

information sources are eligible for data-driven prognostics, as there are suffi-

cient samples to train the models (Eker et al., 2012). A minor issue in these is

the lack of third-party validation of results as like the case of PHM08 (Saxena

and Goebel, 2008a).

In this section, the discussion of the proposed framework to other data

sources can be further expanded by the assumptions on the feasibility of po-

tential condition monitoring data which is summarised as below:

- The monitored system is a group of interrelated and interacting con-

stituents forming a complex whole.

- Condition monitoring is based on various sensors of components and

provides information on the system health status.

- Sufficient amount of training data to is available to allow an effective

prognostic modelling.

- Data is monitored at discrete time such as operational cycles. The health

status of the system degrades over measurement cycles.

- The system’s health degradation can be estimated from the existing run-

to-failure training instances.

Considering a data source has these characteristics, the proposed method-

ology has a potential to estimate an unknown RULs effectively and to predict

the health degradation in multi-step long-term cycles. The deficiencies exhib-

ited by multi regime conditions can be removed through the hybrid model of

regime normalisation and neural network data filtering.

As this adaptive filter model is applied in trajectory similarity-based

multi step ahead estimations, the framework can provide a collaborative RUL

estimation model with high performance results.
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4.8 Summary

This chapter presents how the prognostic framework proposed in methodology

chapter can be applied in a complex system domain with multidimensional

condition monitoring data under multiple regimes.

A case study of the presented methodology is defined in gas turbine

engine domains. Considering the main reasons why gas turbines are appropri-

ate applications for the framework and how they exemplify a complex system,

the chapter introduces the characteristics of gas turbine systems and engine

health monitoring. Due to the prognostic requirements for common datasets

and a mutual comparison to validate the methods introduced by different

researchers, “PHM08 Challenge Data Set” is used in the case study. The pro-

posed methodology proved its dimensionality reduction and RUL estimation

capabilities through the use of simulation data. Furthermore, the filtering

framework is first benchmarked with a synthetic HI adaptation model, and

then it is tested with re-generated raw data with alternative degradation pat-

terns so that the developed network model can be applied under different

scenarios. A final validation is suggested through secondary datasets which

refer to test data that was collected from the training trajectories. Use of

secondary data could provide increased knowledge that could feasibly allow

for the application.

In conclusion, the proposed prognostic concept in methodology chapter

proves to be promising to be applied in a complex system operating under

multiple regimes. The framework was able to identify the failure degradation

in multiple domains at any time index of the operational cycles. The challenge

was to normalise these failure information from multiple regime domains into

a single domain as well as preserving the characteristics of trajectories with

regard to each other and allowing the system to operate in novel cases without

a system restart. The framework could overcome these challenges and provide
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filtered HIs for a collaborative RUL estimation.
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Chapter 5

Results & Discussions

This chapter presents the results obtained from the prognostic framework and

case studies mentioned in the previous chapter. RUL estimation results are

mainly analysed for the final test subset of the PHM08 data challenge (Saxena

and Goebel, 2008a) and twenty different secondary datasets derived from orig-

inal training data. Although the validation can be expanded to other datasets

of the C-MAPSS simulation and potentially to other multidimensional con-

dition monitoring data, this research compares the results for the “final test

data”. This is mainly because the true RUL is not provided for the PHM08

data challenge and the metric evaluation can only be completed by the NASA

PCoE (rather than the author). Therefore, a model validation with this data

is much less likely to be biased toward a single individual dataset case and can

confirm whether the methodology can be expanded to other complex systems

operating under different regimes.

The following sections present pattern of performance results and anal-

yses them for their relevance to the research objectives. The results reveal that

the proposed data filtering processes for collaborative RUL estimation is able

to increase the performance of RUL estimations. As compared to the published

works, it achieved the overall leading score in the published literature.
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5.1 Prognostic Metrics for Analysis

Most prognostics concepts lack a general agreement as to a universal set of

metrics that can be employed to assess the performance of prognostic systems

(Vachtsevanos et al.). This lack of agreement is mostly due to the various user

requirements for different applications such as time scales, available system

information, domain dynamics etc. (Saxena et al., 2009a). However, as given

in chapter 2, the research community has introduced a variety of metrics to

evaluate critical aspects of RUL predictions before they are applied in real-life

domains. These metrics form a standardised method of communication by

which the users can be demonstrated and compares findings (Goebel et al.,

2011a). Considering that such communication allows the suitable expression

of scientific information, the metrics given in section 2.4 are adapted for per-

formance analysis of this research (see table 5.1).

A particular importance between these metrics is given to scoring func-

tion due to its exponential characteristic on penalising high error rates more

than lower ones. For a degradation scenario of complex systems such as gas

turbine engines, it is more critical to assess the performance of RUL estima-

tions. Considering the increasing risk with error rate, the scoring function is

applied to evaluate the RUL estimations. In the case studies, each data point

is a snapshot so that the run-to-failure time series are mostly less than 300

time steps. As mentioned in the literature chapter (section 2.4), the user-

defined parameters of scoring function should be assigned in accordance with

the length of condition monitoring time series so that the results are not biased

against the error growth.

One further aspect is that the late predictions in gas turbine engines

are more risky than the early predictions due to the potential catastrophic

rates (Saxena et al., 2008b). Therefore, the scoring algorithm for performance

evaluation is specified to be asymmetric around the true RUL such that late
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Table 5.1: Prognostic Metrics (Saxena et al., 2008a; Goebel et al., 2011a;
Hyndman and Koehler, 2006)

Metric Formula

Mean Absolute Error MAE =
1

nte

nte∑
i=1

|Ti − Pi| T=true (known) RUL
P=predicted RUL
nte=number of
test trajectories

Mean Absolute
Percentage Error

MAPE =
100

nte

nte∑
i=1

∣∣∣∣Ti − PiTi

∣∣∣∣
Mean Square
Error

MSE =
1

nte

nte∑
i=1

(Ti − Pi)2

Scoring Function s =


∑nte

i=1 e
−
(
Ti−Pi
a1

)
for Ti − Pi < 0

∑nte
i=1 e

(
Ti−Pi
a2

)
for Ti − Pi ≥ 0

a1,a2= user-defined
acceptable early and
late parameters

Sample Standard
Deviation

S =

√√√√ 1

nte − 1

nte∑
i=1

((Ti − Pi)− µe)2
µe=sample mean
of error (T-P)

False Positive
Rate

FP (i) =

{
1 (Ti − Pi) ≥ tFP
0 otherwise tFP , tFN=0

False Negative
Rate

FN(i) =

{
1 −(Ti − Pi) > tFN
0 otherwise

Mean Absolute
Deviation from
Sample Median

MADi =
1

nte

nte∑
i=1

|(Ti − Pi)−M | M = median(e)
median is n+1

2
th

order statisticMedian Absolute
Deviation from
Sample Median

MdAD = median (|(Ti − Pi)−M |)

estimations are more heavily than early predictions. Considering these points

as well as the lack of standardisation and common comparing analyses, the

”user-defined parameters” are specified according to the works of Saxena et al.

(2008a) as to be a1 = 10 and a2 = 13 . This allows the benchmarking of the

presented methodology with rivals who commonly use the same parameters to

validate and compare their works.

5.2 Performance Evaluation

The purpose of performance evaluation is to interpret and describe the sig-

nificance of developed model in light of what was already known about the
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prognostic problem, and to explain any novel understanding or insights gained

towards the problem after the findings are taken into consideration. To that

end, the results from secondary datasets are first used for a pre-evaluation

of the model. Since true RULs are known from the original run-to-failure

data, error based prognostic metrics can be applied and the performance of

the framework can be assessed by using known life-time.
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Figure 5.1: Comparison of True and Predicted RULs

Figure 5.1 provides a comparison of true and estimations RULs for the

first fifteen trajectories of secondary dataset #1 (SD#1). These box plots

illustrate a graphical depiction of groups of numerical RUL estimation data

through their quartiles. They display the distribution of estimations based on

three main outlines: lower RUL estimation quartile, median RUL estimation

and upper RUL estimation quartile. The plots also have estimations extend-

ing vertically from the boxes indicating outside variabilities. The box plots

demonstrate the variations in a statistical RUL prediction population without

making any assumptions as to the potential underlying distributions. The

change of spacing between the dimensions of box designates the degree of dis-

persion in the best matching RUL predictions. Most of the true RULs are
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within the range of upper and lower whiskers, whereas a considerable number

are actually between the upper and lower quartiles. Trajectories #3 and #6

are the only exceptions, and they are even beyond all outliers. These cases

are particularly dangerous for the performance evaluation made by prognostic

metrics because their high error rates are detrimental to the performance level

of the entire dataset.
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Figure 5.2: Demonstration of density estimations of predicted RULs

The estimated probability density functions of the first three trajectories

of SD#1 are shown in Figure 5.2. The estimated density at any given point

in the set of possible RUL values can be interpreted as a relative likelihood of

remaining life. As the RUL probability is described over multiple estimations,

the graph specifies RUL likelihood within a range of values, as opposed to

taking on any single RUL value. It has been observed from Trajectory #3

that the likelihood of potential high error rate is wider and less peaked so that

the estimations are distributed over a wide range unlike the low prediction

errors. This proves that the high error rates can be initially identified and more

inclusive precautions can be taken to avoid catastrophic results in terms of

RUL estimation. As seen on previous box plot sample, the estimations on this
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trajectory were not clustered on a particular region and the mean was not close

to true RUL. Therefore, one can assume that if the RUL likelihood is within

a relatively wider range, there is more risk to get higher error rates. With

regards to the maintenance decision process after prognosis, the probability

density estimate at these instances can be used to reduce the associated risks.

As an example, the likelihood at any point through Trajectory #3, which has

a high error rate, is relatively low, and the graph provides a wide range of

estimations that need to be accounted for in further stages.

Table 5.2: RUL estimation range for the units with lowest performance

Trajectory Unit Index 48 421 3 382 139

True RUL 189 195 61 73 195

Predicted RUL (Mean) 96.8 99.2 141.7 163 119.2

Estimation 1 85 91 167 111 113

Estimation 2 81 87 103 178 144

Estimation 3 56 62 186 139 72

Estimation 4 106 133 119 176 115

Estimation 5 111 77 155 154 125

Estimation 6 133 117 72 196 121

Estimation 7 86 139 179 103 101

Estimation 8 127 112 190 171 85

Estimation 9 71 93 103 210 188

Estimation 10 112 81 143 192 128

Table 5.2 shows the RUL estimations of the least accurate instances in

SD#1. All estimations here show that there is a wide range of RUL estimations

and the probability density function of these can be used to provide more

comprehensive knowledge regarding prognostic risks.

Table 5.3 extends this comparison and lays out the score function results
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Table 5.3: Secondary Dataset#1 RUL estimations with lowest performance

Score Unit Length A. Error Score Unit Length A. Error
1533.404 48 69 92.2 116.919 54 84 42.1
1189.408 421 65 95.8 100.026 34 32 60
623.322 3 32 69 100.026 43 113 60
297.867 382 43 57 100.026 100 51 60
217.026 139 37 75.8 100.026 105 54 60
167.282 411 43 65 95.544 28 65 44.5
166.335 337 52 58.7 94.265 107 48 40.9
163.021 6 57 71.5 85.620 328 48 58
149.405 99 32 55 84.626 125 44 40.8
133.289 68 33 49 80.450 279 83 44

for these least accurate cases. As seen from here, only a few undesired RUL

estimation can overly impact the performance of the entire measures in a

dataset. To avoid such undesired failures in a real world application, the

distribution of the estimation can be further considered in the post prognostic

actions.

As only one catastrophic failure in RUL estimation would be compelling

for the validation of the proposed prognostic framework, this research uses 20

secondary dataset + 1 original data (all with 435 test trajectories) to prove

that the algorithm can perform in many diverse cases. Considering that there

are prognostic researches developed and tested by a single case, the proposed

model holds the promise for validation with all 9.135 (21 × 435) different op-

erational cases. Within all, least performance in terms of the scoring function

is for Unit 48 at #SD1 and the rest demonstrate higher performance levels.

A comparison of absolute error rates and test data unit lengths for

SD#1 is provided in Figure 5.3 (and also the highest rates in Table 5.3). The

error rates show an exponential increase as the unit lengths decrease. Assum-

ing that the longer test trajectories are mature enough to adequately represent

system behaviour, associated RUL predictions are generally consistent and do

not result in high error rates.
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Figure 5.3: Comparison of Absolute Error and Unit Test Length for SD#1

During the case studies, it was noticed that the consistency of mature

trajectories is a direct result of the grown patterns, which are not affected by

undesired fluctuations in the data. For short trajectories, on the other hand,

the variance in data fluctuations is a major concern as they might result in

catastrophic failures in the overall accuracy of the data set.
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Figure 5.4: Risky positions with respect to the data fluctuation

Figure 5.4 illustrates two points within a full operational trajectory. If
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the final time index of a test trajectory equals “Point A”, the multi-step-ahead

prediction is prone to erroneous early in time predictions due to an upper

fluctuation that occurred during operation. A test trajectory terminating at

“Point B” witnesses a lower fluctuation and therefore, it is prone to late in

time predictions. The early and late prediction speculations for both points

are demonstrated in the plot. If these predictions were applied to prognostic

metrics, particularly to the scoring function, the performance of the entire

data-set would, consequently, be heavily degraded.
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Figure 5.5: RUL calculation for
Unit #421
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Figure 5.6: RUL calculation for
Unit #3

In Figure 5.5 and Figure 5.6, the real late-in-time and early-in-time

estimations for unit #421 and #3 (the ones with highest error rate in SD#1)

are shown. Due to the unexpected interruption of data, the prediction cannot

provide accurate RUL estimations despite the fact that the matching units

still represent high levels of pairwise similarity between the test and training

trajectories. However, the risk of such an unexpected interruption of data can

be reduced by increasing the number of similarity based estimations since some

run-to-failure training trajectories might have similar trends (fluctuations) in

their earlier operational periods.

In Figure 5.7, the comparison of absolute error rate with scoring func-
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Figure 5.7: Comparison of Absolute Error and Scoring Function for Secondary
Dataset #1

tion calculation for SD#1 is given. It is obvious from the graph that the re-

lation over both metrics is asymmetrical. This is because the scoring function

is calculated by an error-based exponential equation. Both plots are sorted by

the number of metric measurements. Although they have a constant increase

in their “y” axis, if they were sorted by a common order, the display would

change due to the early and late prediction difference in the scoring function.

As the prediction error rate exceeds 60 cycles, the scoring function leads to a

catastrophic failure. Considering instances with high error rates and scoring

function-based ranking, it can be concluded that only a few large deviations

among the many predictions could noticeably escalate the metric score.

Since the well-known methods in the literature use scoring function in

which the lower scores achieve higher positions, the performance evaluation of

secondary data sets is initially based on this metric to benchmark the perfor-

mance of presented methodology. The remaining prognostic metrics in Table

5.1 have also been applied in order to determine whether or not the designed

algorithm or multi-step prediction results can show practical results. Neverthe-

less, these metrics are error-based measurements between a single prediction
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Figure 5.8: Demonstration of density estimation of predicted RULs

and a true RUL. As seen in Figure 5.8, the potential risk of high error pre-

dictions can be reduced by the short peak level of the probability index of

estimations. The deviation from mean or highest probability might be rela-

tively high for these data sets, but the true RUL calculations are generally

either within lower probability rates or in a close time index region.

Table 5.4: Prognostic metrics for Secondary Data set #1 with different window
sizes used for HI moving average filtering

Dataset &
Window Size

Scoring
Func.

FPR FNR MAPE MAE MSE

DS 1 #a 8280.807 52% 48% 24.639 13.018 410.058

DS 1 #b 7489.328 51% 49% 24.17 12.743 394.345

DS 1 #c 7396.534 49% 51% 23.552 12.398 387.982

DS 1 #mean 7298.195 50% 50% 23.685 12.541 388.8

In order to minimise the risk caused by the asymmetric characteristics

of the scoring function, three different moving average window sizes for HI fil-

tering were separately applied to the similarity-based estimations. In general,

the mean of these three estimations has provided lower results for error-based

prognostic metrics (see Table 5.4).
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Table 5.5: Prognostic metrics for Secondary Data set #12 with different win-
dow size used for HI moving average filtering

Dataset &
Window Size

Scoring
Func.

FPR FNR MAPE MAE MSE

DS 12 #a 2452.792 48% 52% 24.118 11.076 260.71

DS 12 #b 2229.2 49% 51% 23.605 10.932 253.722

DS 12 #c 2137.85 47% 53% 23.27 10.878 250.864

DS 12 #mean 2123.455 49% 51% 23.4 10.86 248.391

Appendix D.1 provides an expanded version of Table 5.4 for all twenty

secondary data sets. Among all these data sets, in terms of scoring function

performance, dataset #1a showed the highest rate (8280.807, see Table 5.4)

while dataset #12c showed the lowest rate (2123.455 see Table 5.5). Therefore,

the application of the developed model to secondary dataset #12 exhibits more

promising results for multi-step long-term time series predictions compared

with the other secondary datasets used in case studies. This is mainly because

there are not excessive error rates (|Ti− Pi| � 60) in the application of

proposed model in secondary dataset #12.

Table 5.6: Secondary Dataset#12 RUL estimations with lowest performance

Score Unit Length A. Error Score Unit Length A. Error
329.29 417 55 58 43.01 239 33 49.2
131.95 380 93 48.9 40.71 193 76 48.5
130.22 139 37 63.4 37.86 112 82 36.6
98.48 255 69 46 32.115 95 92 35
63.66 352 51 54.2 31.13 93 99 34.7
63.07 103 105 41.06 29.66 34 32 44.5
59.34 17 32 41 29.56 137 44 34.2
57.06 3 32 52.8 28.08 134 43 43.9
53.05 242 72 39.9 26.9 161 58 33.3
50.33 346 88 51.2 25.04 349 86 32.6

Table 5.6 demonstrates that when the lowest performance trajectories

have minor error rates so that they could not affect the overall data set sig-
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nificantly, the remaining scoring function level notably decreases. Therefore,

it would be fair to conclude that the scoring function is based on a precision

ranking in which even a few poor estimations could result in a catastrophic

outcome.

The maximum absolute error rate in dataset #12 is 63.4 for test unit

139 with a length of 37 (see Table 5.6). However, the relatively lower scoring

function level of 99.25 indicates that this is an early prediction rate. Maximum

scoring rate, on the other hand, is 163.02 for test unit 139 with a length of 37

and an error rate of 58. These relatively lower error rates result in significantly

lower scoring function estimations and higher performance rates for the overall

data set. Assuming that none of the randomly selected test data locations falls

within a critically high fluctuation rate, as in data set #12, the training of the

network and the similarity-based prediction can accomplish learning as desired

while training performance is substantially increased by collaborative data use.
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Figure 5.9: Comparison of Absolute
Error and Unit Length for
Secondary Dataset #12
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Figure 5.10: Comparison of Absolute
Error and Scoring Function for
Secondary Dataset #12

In Figure 5.9, the comparison of absolute error rates and unit lengths

for test trajectories in SD#12 is provided. As in the case of SD#1 (Figure 5.3),

there is also an exponentially increasing error rate. However, the main differ-

ence between dataset #1 and #12 is their top absolute error rates. This could
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provide a less asymmetric comparison between the rates of absolute error and

scoring function in SD#12 (see Figure 5.10).
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Figure 5.11: Top Matching
Similarities and RUL calculation for
Dataset #12, Trajectory Unit #421
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Figure 5.12: Top Matching
Similarities and RUL calculation for
Dataset #12, Trajectory Unit #3

Poor performance in the calculations may happen randomly because fu-

ture prediction can never be absolutely estimated, especially when the dataset

is very noisy, complex and ends during an abnormality. In Figure 5.11 and

Figure 5.12, Trajectories #421 and #3 have resulted in more accurate estima-

tion rates in comparison to the fluctuation inadequacy of the same trajectories

in dataset #1. Despite seeming like outliers, some of the estimations in these

figures appear to contribute a significant improvement in the RUL fusion. The

outliers, for this reason, are considered at the RUL fusion stage, and the fi-

nal RUL life is accepted simply as the mean of the top ten best matching

estimations without removing the outliers.

Performance evaluation of the developed model for all secondary datasets

is shown in Table 5.7. Regarding the results achieved, the quantifiable prog-

nostic metrics assessing the performance of the datasets show promising re-

sults. It is important to note that prognostic metrics are employed to address

pre-evaluation before the final test subset is sent to NASA PCoE.

Every result in Table 5.7 has a specific performance significance that
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Table 5.7: Performance Evaluation of Secondary Datasets

#SD Score FPR FNR MAPE MAE MSE
1 7298.20 0.50 0.50 23.68 12.54 388.80
2 3104.18 0.53 0.47 23.17 11.71 312.21
3 4580.18 0.53 0.47 23.41 11.85 353.26
4 4189.98 0.52 0.48 22.46 11.14 299.88
5 3746.60 0.50 0.50 20.44 11.50 321.97
6 5779.51 0.50 0.50 24.22 12.21 354.53
7 4368.22 0.51 0.49 21.89 11.82 345.27
8 3406.43 0.46 0.54 24.29 11.50 304.79
9 5358.71 0.50 0.50 23.04 11.84 352.05
10 6523.67 0.53 0.47 22.81 11.75 366.86
11 4485.17 0.52 0.48 22.06 11.66 348.14
12 2123.46 0.49 0.51 23.40 10.86 248.39
13 5259.01 0.50 0.50 23.97 9.66 261.66
14 5238.38 0.48 0.52 24.52 12.35 336.80
15 4189.98 0.52 0.48 22.46 11.14 299.88
16 2745.90 0.51 0.49 22.75 11.23 279.71
17 3896.62 0.52 0.48 22.38 10.89 282.73
18 2189.90 0.48 0.52 21.60 10.28 236.47
19 3085.24 0.51 0.49 22.49 11.81 302.74
20 5668.86 0.44 0.56 24.42 11.60 326.57

should be monitored carefully. When any of the metrics have not been satisfied

with the desired performance, the overall prediction has probably been biased

by a risky effect. For example, if the scoring function is extremely high in

comparison to the mean absolute error, it is likely the calculations have been

biased in the direction of an early in time prediction. In a similar manner,

when the false positive and negative rates deviate significantly from 50%, it

can be argued that either RUL fusion is weighted in favour of a particular

direction or the algorithm has an undesired tendency. The consideration of

each metric is, therefore, necessary in the interests of risk reduction in terms

of predictive performance.

The biases in predictions are negative inclinations to present a sided

perspective in the model, often accompanied by ignoring any consideration of
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the possible merits of alternative algorithm points. The algorithms may de-

velop sided steps towards, or against individual characteristics of the datasets.

In such cases, the bias could be a systematic error resulting from an unfair

sampling or a prediction process that cannot provide accurate results. There-

fore, the identification of biases within performance metrics is of particular

importance in prognostic applications.

5.3 Benchmarking with Data Challenge

After more than 45,000 downloads since their first release in 2008 and more

than 70 major publications in the literature (Ramasso and Saxena, 2014), C-

MAPSS datasets have become one of the leading sources in the prognostic

field. Moreover, according to PCoE (2014), the total number of applications

using these data sets between the years of 2008 and 2014 was 134.

This research provides performance benchmarking for the developed

model with regards to the PHM08 data challenge winning entries. The al-

gorithm is applied to the PHM08 data challenge “final test” subset, which

contains 435 test trajectories. The RUL is calculated for each test subset,

and the results are sent to PCoE to be evaluated by a comprehensive set of

metrics to form a standardised communication by which the developers and

users demonstrate and compare their findings. These results are principally

aimed at the performance validations for prognostic applications. Since they

are based on true RULs and available run-to-failure data, their validation is

of particular importance in the model justification where the metric feedbacks

can be used to evaluate the proposed prognostic procedures.

The presented model in this research achieved a total score of 5530.12

(calculated by the “ scoring function”), which is currently the overall leading

score in the literature, as per Table 5.8 and 5.9. Since the ranking is estab-
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Table 5.8: Prognostic Performance of the Presented Model

Rank
Scoring
Function

MSE
FPR
(%)

FNR
(%)

MAPE
(%)

MAE
Std.
Dev.

MAD MdAD

1 5530.12 515.35 48.51 50.80 20.68 15.93 1.07 16.63 10.20

Table 5.9: Previous Leader board of the “final data set” of PHM08 (Ramasso
and Saxena, 2014)

Rank
Scoring
Function

MSE
FPR
(%)

FNR
(%)

MAPE
(%)

MAE
Std.
Dev.

MAD MdAD

1 5636.06 546.60 64.83 31.72 19.99 16.23 1.01 16.33 11.00
2 6691.86 560.12 63.68 36.32 17.92 15.38 1.03 16.29 8.08
3 8637.57 672.17 61.38 23.45 20.72 17.69 1.09 17.79 11.00
4 9530.35 741.20 58.39 39.54 34.93 20.19 1.22 20.17 15.00
5 10571.58 764.82 58.85 41.15 32.60 20.05 1.22 20.41 14.23
6 11572∗ - - - - - - - -
7 14275.60 716.65 59.77 37.01 21.61 18.16 1.17 18.57 11.00
8 19148.88 822.06 56.09 41.84 30.25 20.23 1.29 20.89 13.00
9 20471.33 1000.06 51.95 48.05 33.63 22.44 1.42 24.05 14.78
10 22755.85 1078.19 62.53 35.40 39.90 24.51 1.45 24.08 20.00
11 25921.26 854.57 34.25 64.83 51.38 22.66 1.36 21.49 16.00
∗ After 2008

lished based on the PHM Scoring function, there is not a penalty limit for

predictions, and thereby a high error rate among all predictions in the dataset

could affect the ranking of the model.

The lack of limitation is particularly risky for test units in which the

available condition monitoring history is short, and both early and late pre-

dictions are likely to happen. In order to avoid the risk of excessive error

punishment in terms of scoring function, the maximum threshold value for

RUL predictions is directly adjusted to be 135. As the data is explored, it is

found that the maximum RUL is 195 in the data sets where true RUL is pro-

vided (FD001 to FD004 which are simulated in operational cycles similar to

PHM08 challenge data). Even in the worst scenarios of maximum RULs, the

score that is adjusted to 135 would be ∼ 100 = exp(∼195−135
13

). However, in an

undesired event of late prediction for a short true RUL (say those of T = 100
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and P = 185), the unbounded prediction might result in catastrophic results,

∼ 4915 = exp(−100−∼185
10

), rather than having much less punishment with

bounded RUL, ∼ 33 = exp(−100−135
10

). Different threshold values are tested

by the secondary data sets and the value “135” is found to be optimal. This

number is only for limitation of high punishment and its exact effect cannot

be known since the true RULs are not provided to the developers. However,

it is observed that it can reduce the scoring function outcomes for most of the

secondary datasets.

According to the performance results reported in Table 5.9, the multi

step forecast performance over the long-term cycles appeared satisfactory as

the metric results are balanced. The developed model seems to exhibit promis-

ing results for multi-step long-term time series predictions for exponential wear

growth. The training of the network could accomplish learning as desired while

training performance is substantially increased by using different training data

trajectories. With the use of collaborative RUL prediction, there appears to

be a significant improvement in error-based metric measurements. The RUL

fusion can be effectively received by applying multiple training sets within a

specific test subset. It is important to note that some calculations might have

resulted in high error rates, but the performance of the overall algorithm still

results in an expected range with regards to the previous secondary dataset

findings.

One further point in Table 5.9 that deserves a special consideration for

final test validation is the distinguishing difference between False Positive (FP)

and False Negative (FN) rates. These percentages and their relation to each

other are descriptive measurements for assessing the consistency and reliability

of developed models. As is evident from the previous challenge leader board,

the negative rates are predominantly lower than the positive rates. This can be

attributed to the algorithm’s intentional weighted RUL selection because of the
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asymmetric high penalty scores for late in time predictions. This research did

not apply any weighting method because such an approach would be unrealistic

in real life scenarios and it is also observed in the secondary datasets that the

early in time predictions might also dominate the final score. That’s why, the

obtained FP and FN rates are close to each other, and the proposed framework

can be regarded as sustained and reliable in terms of these rates.

5.4 Summary

This chapter brings forward the performance evaluation, analysis and valida-

tion of the presented prognostic methodology, as based on the case studies

presented in the previous chapter. The chapter also deals with the issues of

critical assessment of how prognostic performance can be improved by using

the information from secondary datasets as well as including true RULs into

the validation.

A generic set of prognostic metrics are employed to form a standard-

ised communication and benchmarking with the literature. This allows the

prognostic algorithm to be validated with existing methods, and the minor

stages in its framework (such as using different windows size in neural network

estimation filtering or bounding the RUL to a maximum threshold) can be

reconfigured when there is an evidence of higher performance. The proposed

methodology and its application in secondary datasets prove its capability

through the prognostic performance metrics. However, when the literature is

considered, the performance analysis needs to be compared with other similar

studies and the results should be evaluated by a third party rather than any

party involved in the implementation.

In the cases where the true RULs are available, the test data sets allow

a trial-and-error type of validation, and therefore the methodologies might be
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biased in favour of the dataset. Such a misapprehension surrounding prog-

nostic actions would limit the application of the model to other scenarios.

To overcome these issues, the results from PHM08 data challenge “final test”

subset are sent to NASA PCoE to be validated by prognostic metrics and

the outcomes are compared with the winning entries in challenge leaderboard.

The metric results received from PCoE proves that the proposed method could

achieve the current overall top score recorded since the first release of dataset

in 2008.
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Chapter 6

Conclusions and Future Work

This chapter summarises the major contributions in the proposed methodol-

ogy and provides several comments for future research. The main motivation

behind this research is to design an adaptive data filtering model as a part of

multi-step ahead RUL estimations for complex systems working under various

regimes and operational conditions. A prognostic framework for multidimen-

sional and multivariate data is developed in an attempt to enhance the RUL

estimation accuracy and model robustness. This work not only introduce a

contribution to the concept of complex system prognostics, but also manifests

a hybrid dimension reduction model for condition monitoring data, standardi-

sation of multiple regimes into a common domain even for the upcoming novel

trajectories which are not found in the original condition monitoring data ,a

similarity-based estimation approached that is designed to make collaborative

RUL calculations owing to the data filtering model, and a number of mod-

ifications to improve the performance of the prognostic approaches in terms

of prognostics metrics. Additionally, the thesis introduces a comprehensive

literature review on the progress of the current prognostic applications as well

as the various sources and methods applied in complex system domains.
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6.1 Contributions

Selecting prognostic algorithms for a particular domain is crucial to the suc-

cess of a RUL estimation framework. Each prognostic method has specific

requirements to capture the degradation process and has its own merits and

limitations. The research developed a multifaceted prognostic model consisting

of data processing and multi-step ahead predictions to integrate any desired

advantages whilst avoiding characteristic disadvantages. To that end, a hybrid

prognostic framework of three advanced approaches (multi regime normalisa-

tion, feed-forward neural network and similarity-based prediction) is proposed

in the methodology section to overcome the issues presented by the multidi-

mensional condition monitoring of complex systems under dynamic operating

regimes.

In terms of the contributions of this hybrid model, this research pro-

posed a novel feature extraction model to normalise the entire data population

(and also upcoming novel data) with regard to the characteristics of the opera-

tional cases. This mode of the proposed methodology can preserve operational

characteristics and standardise health degradation into a common scale. This

is mainly crucial for demonstrating the strengths of collaboration in RUL pre-

dictions that can be made through the similarities between existing or potential

novel operational cases.

For the case studies, to analyse the integration of the methodology, the

proposed framework is considered in a gas turbine engine degradation scenario.

“PHM08 Challenge Data Set” is used to overcome the prognostic problems on

common datasets and mutual comparisons. Additionally, the framework is

tested with the synthetic HI adaptation model, re-generated raw data and

twenty different secondary datasets to provide increased knowledge that could

feasibly allow alternative applications.
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6.2 Comments

The application of suggested techniques shows that the designed algorithm was

able to detect an unknown RUL effectively and could predict the exponential

wear level of the system in multi-step long-term cycles. The deficiencies ex-

hibited by data restrictions and scattered operating conditions are removed

through neural network data filtering. The application of network filtering in

trajectory similarity-based multi-step-ahead estimation model has provided a

collaborative RUL estimation model, which resulted in significant performance

results. As the accuracy and understanding of data pre-processing have in-

creased, RUL forecast and future wear level predictions could also acquire

higher performance levels.

Regarding the research objectives defined within the Introduction chap-

ter, the conclusion can be drawn that the literature survey, methodology and

case studies of the thesis show an effective adaptive data filtering as a part

of multi-step ahead RUL estimation. The research first introduces an overall

understanding of emerging concepts in prognostics and analyses the potential

use of different prognostic methods in the maintenance of complex systems.

According to the merits and limitations of the current literature, a hybrid

prognostic model is introduced as a combination of feature extraction and

prediction modes. To that end, a data filtering processes is designed to model

a training library in which health of various operational cases (both existing

or novel ones) can be calculated separately. This allows to form a merging

process between qualification of raw data and life estimations. Consequently,

the results prove that the prediction performance is increased, excessive er-

ror rates for critical cases are reduced and the gap between false positive and

negative RUL error rates are minimised.

The prognostic algorithm introduced in the methodology chapter has

been effectively applied in complex system data sets and it could fill the re-
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search gap that motivated this study by acquiring the training data from a

larger group of suppliers and applying a collaborative estimation model. A hy-

brid data-driven filtering method could successfully deliver the desired health

indicator targets into similarity-based RUL estimations. As the multi regime

normalisation algorithm is applied with the trained neural network, there is

no longer a need to normalise the entire data set at once. On account of this,

both test and training trajectories can be processed individually by maintain-

ing their characteristics.

6.3 Implications and Limitations

The presented prognostic framework in the methodology chapter proves to be

promising to be applied in a engineering systems under dynamic operational

regimes. In the case studies, it is observed that the model can detect and

standardise the failure degradation in multiple domains at any time index

of the operational cycles. The main prognostic problem is to estimate the

RULs of complex systems along with normalising their failure degradation from

different regimes into a single domain and also preserving the characteristics

of operational cases with regard to each other a potential novel cases. The

proposed methodology could overcome these issues and provide filtered HIs

from a network library for a collaborative similarity based RUL estimation.

During the trial of methodology with synthetic data, it has been re-

vealed that a mathematically defined synthetic target could also perform ad-

equately in the proposed Bayesian regularised feed forward neural network

training. In consequence of the concerns regarding the filtering deficiencies,

scoring function, one-time limited submission for validation and variance in

initial wear levels, a step-by-step HI (output) data processing is preferred.

There is, however, a considerable potential for the developed network model
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to automate output selection and the normalisation of various failure mode

situations.

6.4 Further Work

The work carried out in this thesis has revealed many promising areas of

further work in prognostics field and the proposed framework prove to be

promising. A few of these areas worthy of potential research areas can assist

for the foreseeable future of prognostic research. The following suggestions

provide pointers towards a further research for future works.

As described in section 2.3.4, a prognostic strategy may perform less well

than expected when applied in different scenarios and an alternative method-

ology can outperform when it concentrates on the characteristics of a specific

domain. Therefore, an effective prognostic programme does not necessarily

rely on a particular algorithm and there are many other potential factors play-

ing a significant role in enhancing prognostic performance such as recognising

an inadequate feature, identifying the fault location, determining inadequate

feature and the fault mode and estimating when a failure will happen. How-

ever, when the potential of the presented network model of automatic output

selection and normalisation, the prognostic programme can be designed in a

way to allow generalisation into broader domains.

The key areas for further research will include the investigation of the

applicability of automatic output assignment. A smart target selection system

can be formed of a library of synthetic output models via various mathematical

models and selecting the best matching degradation model for the raw data.

For future work, a more advanced smart filtering model based on the presented

neural network algorithm can be applied to various prognostic applications. As

observed in section 4.5 (Figure 4.26), the proposed network function can effec-
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tively filter the data when it is designed with a synthetic target. Even though

the synthetic data cannot precisely demonstrate the degradation behaviour

and has a constant exponential increase through the operational time units

rather than having a constant linear increase in the initial stages, the network

estimation can identify a well-defined pattern and correct the misbehaviour

of training target. Therefore, one can argue that the target assignment for

network training can be automated in a way that the function performs self-

acting (or correcting) behaviour. Such an automated function would allow for

quick understanding of condition monitoring data to aid in RUL estimation.

It would also allow for more complex algorithm protocols that are impractical

using manual modelling.

Several improvements can also be made on the RUL estimation mecha-

nism such as adapting the similarity based prediction with the neural network

structure within the future failure mode. Along with a smart filtering model,

a further adaptation on the multi-step-ahead prediction for complex systems

will notably contribute to a potential development in methodology.

In the results (chapter 5, section 5.2), it is observed that the cases with

high prediction error are distributed over a wide range unlike the low prediction

errors. Thereby, the probability density at any given point of a high prediction

error is wider and less peaked. Since the prognostic metrics in the literature

are based on the error between a single RUL estimation and actual time to

failure, they cannot properly evaluate these cases. Therefore, the further work

can be extended to tailor the prognostic metrics with an attempt to provide

more functional and practical assessments for post maintenance actions.

Some further research can also be expected to explore additional sec-

ondary data collection mechanism by integrating it to the framework as a loop

allowing the method to find potential risky cases and the potential solutions.

These datasets can serve a purpose as a benchmark resource for prognostic

197



algorithms to be tested on. The empirical prognostic frameworks suffer from

the lack of the available condition monitoring data, and therefore, a potential

further research area to elicit prognostics development is dissemination of com-

mon data sets. Considering the industrys confidentially issues and shortage of

available data sets, the secondary data reconstruction can give clear degrada-

tion information and aid developers to improve their algorithms. Additionally,

the secondary data can be used as an internal feed back source from which

the algorithm can understand the potential risks and alternative degradation

patterns.

These potential research areas for future work can present an improve-

ment to proposed prognostic model and an automated method for identifying

appropriate prognostic modes from available data sources. Additionally, the

development of a self-acting methodology can be discussed for further prog-

nostic applications. Such a method, as well as the prognostic algorithms in

this research, will allow to aid in rapid prognostic model prototyping and full

health degradation feature extraction.
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Eker, Ö. F., Camci, F., and Jennions, I. K. (2012). Major challenges in prog-

nostics: study on benchmarking prognostic datasets. European Conference

of Prognostics and Health Management Society 2012.
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Appendix A
A.1 Data Challenge Leader Board and Perfor-

mance Metrics

Pub. Ref Metric FD001 FD002 FD003 FD004
PHM08

test

PHM08

final test

Ramasso (2014a)

PHM08

Score
216 2796 317 3132 752 11572

FPR&

FNR
56-44 51-49 66-34 49-51 - -

MAE 10 17 12 18 - -

MSE 176 524 256 592 - -

Wang et al. (2012)
PHM08

Score
- - - - 1139 -

Hu et al. (2012b)
PHM08

Score
- - - - 1134 -

Wang et al. (2008)
PHM08

Score
- - - - - 5636.06

Heimes (2008)
PHM08

Score
- - - - 519.8 6691.86

Peel (2008)
PHM08

Score
- - - - - 8637.57

Riad et al. (2010)
PHM08

Score
- - - - 1540 -

Peng et al. (2012a) MSE 3969 - - - - -

Liu et al. (2013b) MAPE 9 - - - - -

Coble and Hines (2011)
PHM08

Score
- - - - 2500 -

Table A.1: Performance of selected approaches
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A.2 Multi Regime Data
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Figure A.1: Clustered Regimes for Raw Sensors
239



Figure A.2: Sensor behaviours in different trajectories
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Appendix B

B.1 MATLAB Code for Synthetic Data Gen-

eration

1 f unc t i on [ data proc , y , yp]=SyntheticDataGen ( data raw , r e f , eq ,
eq2 )

2 %% SyntheticDataGen >>Synthet i c Data Generation
3 % This func t i on gene ra t e s s y n t h e t i c data
4 % % data raw >> b a s e l i n e data
5 % r e f >> the s enso r with constant va lue s
6 %[ data proc b , yb , ypb]=SyntheticDataGen ( data raw , r e f , ’ f=f / l og

( 0 . 9 5 ) ; ’ , ’ y=exp(−y/ f ) ; ’ ) ; c a l c u l a t e s an exponent i a l
b a s e l i n e curve

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 % Oguz BEKTAS
9 % The Un ive r s i ty o f Warwick

10 % The Warwick Manufacturing Group
11 % Coventry CV4 7AL, UK
12 % Last Update : 07/06/2016
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 unre f=unique ( r e f ) ;
15 %% Synthet i c Base l i n e
16 y=[ s i z e ( data raw , 1 ) :−1:1 ] ’−1;
17 f =95∗ l ength ( y ) /100 ; f=f /max( y ) ;
18 % eva luate the f i r s t equat ion >> ’ f=f / log ( 0 . 0 5 ) ’
19 eva l ( eq ) ;
20 y=y/max( y ) ;
21 % eva luate the second equat ion >> ’ y=exp(−y/ f ) ; ’
22 eva l ( eq2 ) ;
23

24 y=y/max( y ) ;
25
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26 f o r i =1: s i z e ( data raw , 2 )
27 yt=y ;
28 f o r j =1: l ength ( unre f )
29 % regime c l u s t e r i n g
30 c l u s t e r=f i n d ( r e f==(unre f ( j ) ) ) ;
31 % 4th degree polynomial i s used to f i t the data
32 expdata=Fun f i t ( data raw ( c l u s t e r , i ) , ’ poly4 ’ ) ;
33 % i d e n t i f y the no i s e to add back l a t e r
34 Noise=expdata−data raw ( c l u s t e r , i ) ;
35 % Normalise to [ 0 , 1 ] :
36 m = min( yt ) ;
37 range = max( yt ) − m;
38 yt = ( yt − m) / range ;
39 % Then s c a l e to [ x , y ] :
40 range2 = max( expdata ) − min ( expdata ) ;
41 %% Noise added
42 data proc ( c l u s t e r , i ) = ( yt ( c l u s t e r ) ∗ range2 ) + min (

expdata )+Noise ;
43 c l e a r c l u s t e r expdata m range range2 Noise
44 end
45 end
46 end
47

48

49 f unc t i on e x p o f i t v=Fun f i t ( array , expt )
50 e x p o f i t v=array ;
51 expo f i t v m=e x p o f i t v ;
52 sza2=s i z e ( array ) ;
53 Yeksn =(1: l ength ( array ) ) ’ ;
54 f o r i =1: sza2 (2 )
55 f 1 f = f i t ( Yeksn , array ( 1 : end , i ) , expt ) ;
56

57 e x p o f i t v ( 1 : end , i ) = f e v a l ( f 1 f , Yeksn ) ;
58

59 end
60 end
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Appendix C

C.1 MATLAB Code for Secondary Data Adap-

tation

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2 %% Secondary Data Generation
3 % Oguz BEKTAS
4 % The Un ive r s i ty o f Warwick
5 % The Warwick Manufacturing Group
6 % Coventry CV4 7AL, UK
7 % Last Update : 07/06/2016
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 % Data i s imported from the text f i l e

10 % t r a i n d a t a i n c l u d e s a l l ” t r a i n i n g ” t r a j e c t o r i e s
11 % t e s t d a t a i n c l u d e s a l l ” f i n a l t e s t ” t r a j e c t o r i e s
12 % The f i r s t column stands f o r the un i t number
13

14 %% Import data from text f i l e .
15 di sp ( ’ Please , choose PHM08 datase t d i r e c t o r y ’ )
16 DirectoryOfDataset= u i g e t d i r ( ’ . . . ’ , ’ Choose d i r e c t o r y

conta in ing CMAPSS data ’ ) ;
17

18 t r a i n d a t a=dlmread ( [ DirectoryOfDataset ’ / t r a i n . txt ’ ] , ’ ’ ) ;
19

20 t e s t d a t a=dlmread ( [ DirectoryOfDataset ’ / f i n a l t e s t . txt ’ ] , ’ ’
) ;

21

22 % Assign LongTrim , ShortTrim , ShortTrim2
23 produced data=SecondaryDataGen ( t ra in data , t e s t da ta , LongTrim

, ShortTrim , ShortTrim2 )
24

25 %% func t i on SecondaryDataGen
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26 f unc t i on produced data=SecondaryDataGen ( t ra in data , t e s t da ta
, LongTrim , ShortTrim , ShortTrim2 )

27

28 f o r i =1: s i z e ( unique ( t e s t d a t a ( : , 1 ) ) )
29 % c l u s t e r i n g the t r a i n i n g t r a j e c t o r i e s
30 t r=f i n d ( t r a i n d a t a ( : , 1 )==i ) ;
31 % c l u s t e r i n g the t e s t t r a j e c t o r i e s
32 te=f i n d ( t e s t d a t a ( : , 1 )==i ) ;
33 t ry % The t r a i n data has l e s s t r a j e c t o r i e s
34 % The f i r s t column i s the raw t r a i n i n g data
35 produced data { i ,1}= t r a i n d a t a ( tr , : ) ;
36 produced datas i z e ( i , 1 )=s i z e ( produced data { i , 1} , 1 ) ;
37 end
38 % The second column i s the raw t e s t data
39 produced data { i ,2}= t e s t d a t a ( te , : ) ;
40 produced datas i z e ( i , 2 )=s i z e ( produced data { i , 2} , 1 ) ;
41 c l e a r t r te s imple1 s imple x x1
42 end
43 f o r i =1: s i z e ( produced data , 1 )
44 c l e a r Kn BiggerTrain BaseTra ins i ze L1 Sta r tBaseTra in s i z e
45 % Length o f o r i g i n a l t e s t t r a j e c t o r y
46 Kn=s i z e ( produced data { i , 2} , 1 ) ;
47 % The long t e s t t r a j e c t o r i e s are trimmed
48 i f Kn>LongTrim Kn=LongTrim ; end
49 % Find t r a i n i n g samples l onge r than the t e s t
50 BiggerTrain=f i n d ( produced datas i z e ( : , 1 )>Kn+5) ;
51 % and random s e l e c t i o n
52 BaseTrain=randsample ( BiggerTrain , 1 ) ;
53 % Modify the un i t number ( f i r s t column )
54 BaseTra ins i ze ( 1 : s i z e ( produced data {BaseTrain , 1} ,1 ) , 1 )

=1: s i z e ( produced data {BaseTrain , 1} ,1 ) ;
55 % In the o r i g i n a l data , shor t samples was not fond in high

wear l e v e l s
56 i f Kn<ShortTrim
57 L1=round ( ( s i z e ( BaseTra ins ize , 1 )−Kn) ∗ (1/2) ) ;
58 % random l o c a t i o n
59 Sta r tBaseTra in s i z e=randsample ( BaseTra ins i ze ( 1 : L1) ,1 ) ;
60 e l s e i f Kn>=ShortTrim && Kn<ShortTrim2
61 L1=round ( ( s i z e ( BaseTra ins ize , 1 )−Kn) ∗ (2/3) ) ;
62 % random l o c a t i o n
63 Sta r tBaseTra in s i z e=randsample ( BaseTra ins i ze ( 1 : L1) ,1 ) ;
64 e l s e
65 L1=(( s i z e ( BaseTra ins ize , 1 )−Kn) ) ;
66 % random l o c a t i o n
67 Sta r tBaseTra in s i z e=randsample ( BaseTra ins i ze ( 1 : L1−5) ,1 ) ;
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68 end
69 % max RUL i s adjusted to 190
70 Max Value D=190;
71 i f s i z e ( produced data {BaseTrain , 1} ,1 )−( S ta r tBaseTra in s i z e+

Kn)>Max Value D
72 Sta r tBaseTra in s i z e=Sta r tBaseTra in s i z e +(( s i z e (

produced data {BaseTrain , 1} ,1 )−( S ta r tBaseTra in s i z e+
Kn) )−Max Value D ) ;

73 end
74 % Produced data to be used
75 produced data { i ,3}= produced data {BaseTrain , 1}(

S ta r tBaseTra in s i z e : S ta r tBaseTra in s i z e+Kn , : ) ;
76 % True RUL
77 produced data { i ,4}= s i z e ( produced data {BaseTrain , 1} , 1 )−(

S ta r tBaseTra in s i z e+Kn) ;
78 % Base l i n e t r a i n i n g data without trimming
79 produced data { i ,5}= produced data {BaseTrain , 1}(

S ta r tBaseTra in s i z e : end , : ) ;
80 end
81 end
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Appendix D

D.1 Score Table

Prognostic metrics for secondary data sets - The terms, a b and c, stand for

different window sizes used in the moving average filtering.

Dataset &

Windows Size

Scoring

Func.
FPR FNR MAPE MAE MSE

DS 1 #a 8280.807 52% 48% 24.639 13.018 410.058

DS 1 #b 7489.328 51% 49% 24.17 12.743 394.345

DS 1 #c 7396.534 49% 51% 23.552 12.398 387.982

DS 1 #mean 7298.195 50% 50% 23.685 12.541 388.8

DS 2 #a 3327.28 53% 47% 23.517 11.776 318.509

DS 2 #b 3313.39 53% 47% 23.485 11.841 319.656

DS 2 #c 3168.63 54% 46% 23.444 11.926 320.839

DS 2 #mean 3104.176 53% 47% 23.17 11.715 312.206

DS 3 #a 4632.998 50% 50% 24.242 12.206 363.185

DS 3 #b 5545.529 52% 48% 23.641 11.977 363.213

DS 3 #c 5143.634 54% 46% 23.241 11.788 352.588

DS 3 #mean 4580.182 53% 47% 23.412 11.854 353.256

DS 4 #a 4854.999 50% 50% 23.75 11.451 313.297

DS 4 #b 4187.894 53% 47% 22.812 11.191 302.759

DS 4 #c 4261.651 51% 49% 22.179 11.149 306.979

DS 4 #mean 4189.981 52% 48% 22.464 11.143 299.881
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Dataset &

Windows Size

Scoring

Func.
FPR FNR MAPE MAE MSE

DS 5 #a 4434.338 47% 53% 21.379 11.995 347.54

DS 5 #b 3669.566 51% 49% 20.894 11.571 323.214

DS 5 #c 3678.593 52% 48% 20.282 11.432 319.326

DS 5 #mean 3746.6 50% 50% 20.439 11.498 321.969

DS 6 #a 5365.458 49% 51% 25.509 12.738 368.69

DS 6 #b 6621.318 49% 51% 24.165 12.312 365.779

DS 6 #c 6538.401 51% 49% 23.902 12.106 354.481

DS 6 #mean 5779.512 50% 50% 24.216 12.213 354.53

DS 7 #a 5187.46 50% 50% 22.937 12.224 366.564

DS 7 #b 4214.101 52% 48% 22.178 11.929 347.125

DS 7 #c 4588.46 50% 50% 21.686 11.713 346.796

DS 7 #mean 4368.215 51% 49% 21.885 11.817 345.268

DS 8 #a 3863.144 46% 54% 25.109 11.692 313.279

DS 8 #b 3604.684 48% 52% 24.425 11.697 312.476

DS 8 #c 3585.884 47% 53% 24.334 11.704 314.924

DS 8 #mean 3406.429 46% 54% 24.29 11.503 304.79

DS 9 #a 5935.363 49% 51% 23.501 12 362.183

DS 9 #b 5449.336 50% 50% 23.147 11.818 357.478

DS 9 #c 5752.652 49% 51% 23.122 12.011 363.529

DS 9 #mean 5358.706 50% 50% 23.039 11.836 352.054

DS 10 #a 6666.386 51% 49% 24.066 11.956 367.766

DS 10 #b 6607.538 54% 46% 23.153 11.806 371.153

DS 10 #c 7378.55 52% 48% 22.565 11.849 385.884

DS 10 #mean 6523.669 53% 47% 22.812 11.749 366.863

DS 11 #a 5240.953 52% 48% 23.123 12.027 359.788

DS 11 #b 4954.653 52% 48% 22.174 11.646 352.448
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Dataset &

Windows Size

Scoring

Func.
FPR FNR MAPE MAE MSE

DS 11 #c 5572.072 51% 49% 22.215 11.73 360.785

DS 11 #mean 4485.173 52% 48% 22.061 11.664 348.143

DS 12 #a 2452.792 48% 52% 24.118 11.076 260.71

DS 12 #b 2229.2 49% 51% 23.605 10.932 253.722

DS 12 #c 2137.85 47% 53% 23.27 10.878 250.864

DS 12 #mean 2123.455 49% 51% 23.4 10.86 248.391

DS 13 #a 5094.571 48% 52% 25.376 9.958 266.519

DS 13 #b 5467.651 52% 48% 24.147 9.666 263.74

DS 13 #c 6668.547 50% 50% 23.913 9.709 271.603

DS 13 #mean 5259.011 50% 50% 23.968 9.662 261.662

DS 14 #a 5027.927 46% 54% 25.205 12.613 347.974

DS 14 #b 6117.644 48% 52% 24.757 12.588 351.446

DS 14 #c 5467.947 50% 50% 24.858 12.638 344.062

DS 14 #mean 5238.378 48% 52% 24.517 12.354 336.798

DS 15 #a 4854.999 50% 50% 23.75 11.451 313.297

DS 15 #b 4187.894 53% 47% 22.812 11.191 302.759

DS 15 #c 4261.651 51% 49% 22.179 11.149 306.979

DS 15 #mean 4189.981 52% 48% 22.464 11.143 299.881

DS 16 #a 3155.883 50% 50% 23.617 11.537 289.743

DS 16 #b 2959.411 51% 49% 22.867 11.147 280.844

DS 16 #c 2982.014 50% 50% 23.011 11.366 292.702

DS 16 #mean 2745.895 51% 49% 22.748 11.233 279.712

DS 17 #a 4511.288 50% 50% 23.691 11.24 298.833

DS 17 #b 3867.355 53% 47% 22.705 10.906 282.853

DS 17 #c 4001.487 51% 49% 22.091 10.894 289.533

DS 17 #mean 3896.616 52% 48% 22.379 10.892 282.734
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Dataset &

Windows Size

Scoring

Func.
FPR FNR MAPE MAE MSE

DS 18 #a 3139.819 45% 55% 22.842 10.929 262.942

DS 18 #b 2194.265 48% 52% 21.779 10.38 241.801

DS 18 #c 2217.07 48% 52% 21.139 10.031 230.706

DS 18 #mean 2189.902 48% 52% 21.601 10.281 236.468

DS 19 #a 3460.168 52% 48% 23.472 12.331 320.672

DS 19 #b 3338.779 53% 47% 22.895 11.938 309.028

DS 19 #c 3330.939 51% 49% 22.213 11.653 303.067

DS 19 #mean 3085.239 51% 49% 22.487 11.808 302.741

DS 20 #a 6377.481 43% 57% 25.231 11.867 341.93

DS 20 #b 6250.569 46% 54% 24.585 11.715 332.783

DS 20 #c 6225.134 45% 55% 24.34 11.616 330.66

DS 20 #mean 5668.858 44% 56% 24.418 11.598 326.571

Table D.1: Prognostic metrics for secondary data sets - The terms, a b and c,
stand for different window sizes used in the moving average filtering
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