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ON DISCRETIZATIONS OF BIFURCATION PROBLEMS
Wolf-Jlirgen Beyn

It is well known that bifurcation points are usually
quite sensitive to perturbations. For example, introducing an
imperfection in a bifurcation problem may turn two intersecting
branches into two non-intersecting ones. In this paper it is
shown that discretizing a nontrivial bifurcation problem may have
the same effect. In particular, a sufficient criterion is given
which relates the effect to the discretization error of the
bifurcation point. The theory is developed in an abstract frame-
work in order to show the general applicability of the results.
In the applications the emphasis is on finite difference methods

from which also the illustrative and numerical examples are drawn.

1. Introduction and an elementary example

We consider operator equations
(1) T(A,u) =0 , AER, u €U

where T € Cz(I{xU,Y) and U,Y are Banach spaces. Let us further
assume that certain discrete problems

(2) Th()\,uh)=0 ’ A€R, u €U

h h

are given where T, € cz(leUh,Yh) and h € H is a discretizatio
parameter tending to zero. The relation between the Banach spaces
Uh,Yh (usually finite dimensional) and the spaces U,Y will be
expressed in terms of 'restrictions' or 'projections'

Pp 2 U~ Uy q = Y~ Yh(h € H).

The general problem may then be described as follows: given a
bifurcation point (Ao,uo) of (1), what is the structure of the
solution set of the discrete equations (2) in a neighboorhood

of O‘o’phuo) ?

In the simple case of a linear eigenvalue problem the
situation can be visualized as in figqure 1.
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broken lines indicate discrete solutions
fig. 1 and solid lines restrictions of con-

tinuous solutions, in this figure the
A-axis is also a broken line

The above picture represents the solution curves of the two-point

boundary value problem

(3) u" + auw = 0 in [0,1], u{(0) = u(l) =0
and the finite difference equations
2 — —3 =
(4) Dh u, + Auh =0 , uh(O) = uh(T) 0
where uy is a grid function on Jh = {0,h,...,1-h,1}, h==(M+1)-1
M € IN, and
2 -2 _ - ' _
(5) Dh uh(x) = h (uh(x—h) 2uh(x)+ uh(x+h)), X h,...,1-h .

The solutions to (3) and (4) are known to be

(A,0), » € R; (A,,c o ),c €R, where A = n2n2, wn(X) = sin(n 7 x)
{n € N) and
(A,0), xER; (A
Cnn = [mn]h (n=1,...,M .

Here p, = [ 1, denotes the restriction to the mesh J, .

Finally, we have for each fixed n € W

_ 2
(6) Ixn _Anﬂ = 0(h™) .
The qualitative -behaviour of fig. 1 remains valid for
eigenvalue problems of a very general type, e.9. if T is linear
in u and depends analytically on A (see [12,20] for finite



48 Beyn

difference methods and [14,15,25,26] for abstract results and
further references). Exceptional cases occur for multiple eigen-
values which can be splitted by the discretization into several

distinct eigenvalues each of which converges of lower order.

It has also been shown for non-linear problems that a
discretization method causes a shift of the solution diagram
(at least locally) if bifurcation from the trivial solution at
simple eigenvalues is considered, cf. [29] (finite difference
methods), [1] (collectively compact approximations), [30] (Galerki
methods), [18] (discrete approximations).

A typical picture in this case is

f
phu uh

¥

fig. 2

In all problems considered so far, the discrete
equations inherited a smooth solution branch from the continuous
problem - the trivial one. Although this may also happen for
equations with a certain symmetry (see [4,32]), a nontrivial
bifurcation point will in general be separated by a discretization
method. This has alréady been observed in [32] for finite element
equations associated with problems of nonlinear elasticity.

We can demonstrate the same effect for the simple
eguation (3) by making the transformation v =u+ ¢ where ¢ is-a fixed
C -function satisfying ¢(0) = ¢@(1) = O . We obtain the boundary
value problem

(7) v" + x(v-0)~¢" = 0 in [0,1]), v(O) = v(1) = 0O
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and the finite difference equations
2 " —— -— -—
(8) Dy vy + vy -A[(D]h - [o ]h = 0, Vh(O) = Vh(1) =0 .,

Let us write the restrictions {w]h,[@"lh in terms of the
eigenfunctions wnh, i.e.

M

[o"], = £ n_ o

n nh ’* h n=1 B nh ’

then the solutions of (8) are readily computed from the ansatz

M
v. = X u_ ¢ as
h n=1 @I nh
-1

=()~€+n)(>\—>~ ) r A F A ’
b, (1) {. noml o mh nh (n=1,...,m

€ IR arbitrary s A= Anh if Anh En + n, = o .
In case Ajh Ej + “j + 0O for some j =1,...,M, there is no

solution to (8) for i = Ajh and the j-th bifurcation point

(Aj,m) of (7) is separated. If ¢ = ¢, , for example, the bi-

furcation point (A1,w1) is separated by the difference equations

while the bifurcation points (An,w1), n > 2, are shifted to
1

A | f
IU]h ay : ‘
| [
! {
/ |
’ i
[o,] === I
‘~P1 h oAt —— —
- |
Vi |
i : .
“nlfh kzq A,
' l
1
! ]
fig. 3

We note that the solution branch
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can be regarded as a hyperbola with centre (A1h’w1h) and semi-
- - 1/2
oy = (2|)\1h A1|)

and (1,0) . Moreover, the distance (measured in some norm) cof

axis in the space spanned by (O,w1h)

the discrete branch (9) from the restriction (11,w1h)0f the
bifurcation point (A],w1) is at most O(h). This is half the
order of convergence obtained for the shifted bifurcation points
(cf. (6)).

Let us return to the case of a general ¢ EC2 where
the n-th bifurcation point (xn,w) was separated if and only if

(10) 2 # 0

nh ta ¥ n
This is a generic condition; it may be further elucidated by
noting that the discretization error of (An,w) in the equations
(8) is given by

M
Ripss*n3) 04y

i=1

Hence (10) means that this discretization error has a nonzero

component with respect to the n-th discrete eigenfunction.

In section 3 we will prove an abstract theorem which
generalizes our observations for the simple example (7),(8) to
the abstract setting of equations (1) and (2). The result will
be developed within the framework of discrete approximations.
The basic tool is a quantitave theorem on perturbed bifurcation
which will be given in section 2. Finally, the general results
are applied to finite difference equations in section ¢ and
numerical examples are treated in section 5

.



Discretizations of Bifurcation Problems 51

2. Perturbed bifurcation

From fig. 3 it is obvious that there is a close
relation between discrete and perturbed bifurcation diagrams.
There are guite a few approaches to perturbed bifurcation in the
literature (see e.g. [7,11,16,22]). However, these results are
not sufficient in our situation for various reasons: usually the
knowledge of a primary branch is assumed, sometimes only parts of
the perturbed branches are constructed [16] or the branches are
parametrized by * which leads to unnecessary nondegeneracy con-
ditions [7]. Moreover, we need a quantitative theorem which
applies to a family of perturbed bifurcation problems (depending
on the mesh parameter h) and which ensures neighbourhoods of

parameter independent size.

We will follow Crandall, Rabinowitz [9] who suggest
to treat (1) in the joint wvariable z = (A ,u).

Therefore, we consider an equation
(11) T(z) = 0, z € Z

where T ¢ CZ(Z,Y) and 2,Y are Banach spaces.

Definition 1

zZ, € Z 1is called a hyperbolic point of T if

(1) T(z) = 0,

(ii) dim N(T;(zo)) = 2, codim R(T'(z ) = 1
(N = null space, R = range),

(1ii) there exist linearly independent r,,r, € N(T'(z,)) such that
[ 1] 2
r € N(T'(zo)),T (zo)r € R(T'(ZO)) S

r=cr1 or r =cr, for some ¢ € IR .

. 3
As is shown in [28] under the assumption T € C~ (see
[9,17,27,32] for related results), the solutions of (11} in a
neighbourhood of a hyperbolic point 2z of T consist of two

intersecting branches
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Zj(t) =1z, * trj + twj(t) , el < p 4 3
where Wy € C1((-o,p),Z)

and wj(O) =0 (j =1,2).

The vectors rj = z{ (0) fig. 4

are the bifurcation

directions. It can easily

be seen that this result

also holds under the weaker assumption T € C2 .

Usually, condition (iii) above is expressed as the indefinite-
ness of the quadratic form

(12) g(x,y) = ax? + 28xy + vy°
where ¢ = <¢,T“(zo)p2>, B = <w,T“(zo)pq>, Y ='<w,T“(zo)q2> v
N(T'(zo)) = gpan{p,q} and ¢ €Y* 1is a continuous linear

functional such that R(T'(zo)) = N(y) .

Let us now consider a perturbed problem
(13) T(z,x) =0 , TECHZ x R,Y)

where z, € Z 1is a hyperbolic point of T(-,0).

Then the following assumption is basic in perturbed bifurcation
theory {(cf. [16])

(14) T° ¢ R(T®) .
T Z

Here lower indices denote partial derivatives and the upper
index 'o' indicates the argument (z_,0), e.g. T: =T (2,,0)
T; = T,(2,,0) etc. . It will be convenient to normalize the bi-

furcation directions r,,r, and the functional y € Y* with
N(y) = R(T;) in such a way that

[¢]
(15) <P,T,, Tx> =1, <¢,T:> = -1

Finally, we will only consider the case 1 > 0 since the results

for 1t < O can be obtained from the equation T(z,=1) =0
after redefining yory and r, .
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A first approximation to the solutions of (13) is given by the

hyperbolas zo-i—tls where

-1 2
tls = t(sr1+s r2), s >0 ,t =1t (t € R).

1 2
Clearly, <¢f5T§zls> = <¢,ngr1r2> = —<w,T$> and hence
(16) S 1° 12 4+ 1% € R(T®), 5 > o
2 “zz"s T z"!

Let us write 2 = N(T;)e V.Then T : V » R(T;) is a haneamorphism
and by (16) there is a uniquely determined Vg € V such that

2.0 1 .0 2 o _
ng T, vy +3 7T, 15 +T =0,s>0,

(s+s”)) provides two-sided bounds for 11l by

=1
where nS =5

2n_ inf llor

+(1-0)r,ll < 1 1t < 2Max ( llr, W, lr,ll)ng , s > o .
o<o<1

1

Now =z = zo+tls+(tns)2vS is a 'better; appgoximation t03the
solutions of (13) since T(zo+tls+(tns) vs,t ) =0 (Itnsl ) by
a Taylor expansion. In general, the solutions of (13) can be

obtained from a nonlinear correction to zo+tlS as described

in the following

Theorem 1:

Let T € C2(Zxﬂz,Y) and let %DE Z be a hyperbolic point of
T(-,0) such that T: ¢ R(Tg). Then there exists a & > 0O and
solutions of (13) of the form

2
(17) =z(t,s) = zo+tls+ (tns)¢(t,s), T =t ((t,s) € Mg t#0)

where Mg = {(t,s) € ]Rz: s > o,ltlnS < 8} and ¢ : Mg = Z is

a continously differentiable function satisfying ¢(0,s)= 0, 8>0.
Moreover, there is a 6'>0 such that every solution of (13)

in llz-z_ll < 8', 0 <t < &' is given by (17).

A complete proof of theorem 1 is given in [4]. For
our purposes it is important to note from the proof that the
quantities & and &' depend on the following 'data':



54 Beyn

{(18) a positive lower bound for inf Hcr1-+(1—o)rﬂ '
0505‘1

upper bounds for llr,(l, llr Il , NT2Il, HT Il , [IT; ]I and
(19) |
for HTZTII, HTTTH in a neighbourhood of (zo,m,

the modulus of continuity of T at (z_,0), i.e.
(20) z2Z o}
_— — o - -
w(e) = sup{lszz(z,r) TZZII. {2 zollf e , Itl<e},

the constant « 1in the stability inequality
(21)
livil <  lIT) vII  for all v €V .

If these data can be estimated uniformly for a family of
operators T and of spaces U,Y then there are common values
of 6§ and 6' for the whole family. Moreover, for each

T >0 there is a & = &(t), independent of the family, such that

(22) lglt,8)ll< & if Iting < & .

3. Discrete approximations of bifurcation problems

In this section we consider the relation between
(1) and (2) in the framework of discrete approximations
(cf£. [13,24,25,26]). We will use the notations of [26].
To simplify matters we make the following assumptions:

U 1is separable, dim U, = dim Y « (h € H) ,

h nh <

p, € L(U,U;),q, € L(Y,Y,) are bounded linear operators such that

Hpbu!i - |[lull (heH) for every u € U ,

Hauyli - liyll theH) for every y € Y .

Let us briefly review some standard definitions ([26,§1,21).
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P-convergence Uy E u(h € H) o= IIuh - phull - 0 (heH),

Q-convergence Yy gy(hEH) pe= Ilyh - qhyll -+ O (h€H),

P-compactness : a sequence uhE Uh(hE H)} 1is called P-compact,
iff every subsequence has a P-convergent sub-

sequence.

For bounded linear operators A€ L(U,Y), Ay € L(Uh,Yh) we have

PQ-convergence : Ap }:QA(hEH) 1= IIAhH < C (h€H) and
Ay pu 8 authen) for all u€v

(in the special case Yh = R ,Y = R the operators Ah,A are

linear functionals and the PQ-convergence is written as Ah——‘A(hEH)),

regular convergence: Ah—>A regular :+= Ah E-,oQA and

(IIuhHSC(h€H),Ahuh is Q-compact = u, is
P-compact) ,

stable convergence: Ah-'A stable &= Ah P->QA and A}_11 exists

for almost every h€H and !|A)';1 <c .

First we derive a result on the convergence of simple eigenvalues
which may be of interest in itself since we do not require
analyticity with respect to the eigenparameter. The proof has
some similarities to the methods used in [31] for asymptotic

expansions.

Definition 2: Let A © IR be an open set and let A : 4 = L(U,Y)
be continuously differentiable. P«OE A is called a simple eigen-
value of A iff N(A(Ao)) = span{¢} for some @ € U,¢ *# O ,
and A' ()xo)tD ¢ R(A(Ao)).

We do not adopt here the notation of an A’ (AO)-simple eigen-
value which is common in bifurcation theory (e.g. [ 10]), since
the above definition is a straightforward generalization of

simple eigenvalues for analytic operators A (e.g. [ 26,§4]).
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Lemma 1:

Let A €EACR be a simple eigenvalue of A € C1(A,LﬂLY))
and let operators 1H1€C1(A,L(Uh,Yh)) be given such that

1] PQ L]
(23) Ah(AO) - A(Ao) regular, Ah (Ao) > A (lo) .

Let AH be equicontinuous at Ao' i.e. for each E >0 there
: 8 : ] - U s : - 3

is a & > O with [IA] (}) A2 E Af IA-2 1 <8, h €H
Then there exists a 60 > O such that Ah has exactly one

simple eigenvalue 1, in [AO~60,AO-+6O] for a.e. h€¢ H .

Moreover there is a corresponding eigenfunction @y satisfying
(24)  Ixg-A + llpwp-o, Il <C IIAh(AO)phm-th(Ao)wll .
Finally, we can define functionals ¢ € Y*,wh € VX by

h
VRO = (0}, <y,z>=1 , =200,

b (R (A))) = (0}, <py, 50> = 1,5, = AL (A )0,

and for these — Y (h €H) holds .

¥n

Proof: Let U = span{¢} ® W and define g € U* by g(W = {0}
and <g,¢> =1 . As U is separable there exists a sequence

£, € Uﬁ such that £, g([26,81(37)]) . Hence <fh,pﬁp> -1
and the functionals 9y = <fh,phw>"1fh satisfy gh—*g,*ghlpﬁ‘mi
Now we define the auxiliary operators

B:AXxU>=>RXY , B(A,u) = (<g,u>-1, A(A)u)

B : A x U ~R th,Bh(A,uh) = (<gh,uh>—1 .Ah(A)uh)
and apply the local convergence theorem [26,§3(14)] to the
nonlinear equations B(A,u) = O and

(25) B, (A,u) =0 .

For that purpose we use the projections Eh:nzx U -» Rx Uhr
By (A,u) = (A,ppu) and g :RxY + Rx Y09, (A0 = (hguu)
The main steps in the proof of the conditions of [26,§3 (14)] are:
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(i) B(AOI(D) =0,
(1i) B'O_®) = © 9 | and N(B'(\_ @) = {0} from
A‘(Ao)w A(Ao)
the simplicity of the eigenvalue Ao ’
(iii) B/ (A _,p.®) = 0 9h - B'(A_,9) regular
h*o’"h Al (X )pe A (A ) ©
h**o’Pn¥ “n''o

which is a consequence of (23) .

Therefore, (25) has a unique solution (Ah,wh) for a.e. h € H
in some neighbourhood [x- AOI-F Huh-phwﬂ < 61 . Moreover, from
[26,§3(15)1 we have {a, -A_l+ lip @0 -@ li<CilB O ,p)Il =

= - ; ; P
CIIAh(AO)phm th(AO)wH which yields (24) and Ah - Ao'wh 9 .

Also, Ah
lx-—xolg 60 . Let us assume to the contrary that there exists a

is the only eigenvalue of Ah(k) in some neighbourhood

subsequence H'c H and sequences N €A Uy € Uh(h € H') with

(26) ]Jh - Xol Ha, [l =1 ’ Ah(uh) uh = 0

h

such that uyp ¥ A, or uy ¢ span{y, !
Then we have '
- 1 4
(27) HAh(Ao)uhH < lIAh(AO) Ah(uh)ll Huhll -+ 0 (h € H")
and uy 4 u (h€EH"cH') for some u € U, llull =1 .
Hence A(Ao)u =0 by (23),(27) and u = c¢ for some c # O .

-1 P n 3
Moreover, vy = <gh,uh> u, >0 (h € H") and (uh,vh) is a

solution of (25) as well as Iuh-xol-+ thw-vh1|5 51 for a.e.

h € H" . Therefore =)+ vy, = @, which is a contradiction.

Finally, we obtain from conditions (ii) and (iii) that
B}'l()\o,phtp) - B'(Ao,cp) stable, R(B'(A #)) = R x¥Y(cf. [26,§2(60)1])
and also Bﬁ(xh,wh) - B'(Ao,w) stable by the Banach lemma.

Hence we have a stability inequality
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(28) 1Al +llug Il < € Ulgyp () 1+ Mgy +2ap Gydup IE o () € RxDy

for a.e. h € H. (28) shows that 2N 3 R(Ah(kh)) so that Ah
is a simple eigenvalue of Ah . Moreover,
Y, = R(Ah(xh))e span{ch} , Y = R(A(Ao))e span{z}
and wh—é ¢ follows upon noting that
-1
<Yy e ¥y> is the first component of (Bﬂ(Ah'wh)) —(O,yh),th Yh
and <y,y> is the first component of (B'(ko,w)) (0,y), y € ¥ .
g.ed

Let us return to equation (1) and assume that

(VT) (A ,uo) is a simple bifurcation point of T ¢ Cz(Ih Uu,Y).

o
By definition this means that z, = (Ao,uo) is a hyperbolic point
of the operator T and 1  is a simple eigenvalue ofTu(-,uo)-

Recalling definition 1 and 2 the explicit meaning of (V1) is:
T(ko,uo) =0,

N(T;) = gpan{¢} for some ¢ % O where TZ = T (A

Q oluo) ’

N o}
codim R(Tu) =1, say R(Tg)

I

N{y) , ¢ € Y*,
4] 0
Th“w ¢ R(Tu) ,

Ti € R(T&) ;r €.9.

{29) Taw = -Tg where w € W and U = span{¥}le W ,

2
oy -8 <0 where a = <¢,Tguw2> , B

<w,T;uw—+T3u WS,

o 2

Au

Y = <p,T], +2r) w4 T WO
The last condition refers to the quadratic form g of (12)
which is determined by ¢ and the basis p = (0,9),

d = (1,w) of N(T'?) .

Our next two assumptions relate the operators T
and T to each other.

h

T° o] 0 Q Lo o 0

h 81, Thor 3T ¢ Th 0 ™ Ty
T

0 0 PQ 0 o PxP,Q .0
T
" “h,Au iua ’ Th,uu. —b Tuu ’

reqgular,

)
2 o Q
Th,AA i TAA
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T, is equicontinuous at (Ao,phuo), i.e. for each ¢ >0

(V3) there is a & > o such that HTH‘(A,uh) - Tﬁollf £ if

Ix=agl +lluyy -pu tl <6 (h €H .

Here we have used the abbreviations Tﬁ = Th(Ao,phuO),

0 - _ .
Th,u Th'u()\o,phuo) etc. and a P xP,Q convergence defined
by

o} 0 0 o} .

“Th,uuH < C (h€H) and Th,uuphuphv 5 T ,uv for all u,veu,
By (V1)—(V3) we can apply lemma 1 to A = Tu(-,uo),
A = Th'u(-,phuo), and we will use the notations of lemma 1
throughout.

Our main idea in the treatment of Th(x,uh) = 0 is to

find an auxiliary operator S, : IRx U, = ¥, with the properties

h
(1) (A rpyu ) is a simple bifurcation point of s, ,

(ii) S, 1is a small perturbation of T,

As we will show this can be achieved by setting
- O _ (y- - (T° - ' -
(30) s, (A,up) = T (,up) =Ty = (=adepey = Ty 7 T (g B ) (- ppu)

where are given by lemma 1 and

Ah,wh
= 0 =

G op = <0 Th,0> 7 2 = Th,u OnrPr%'n -

The stability inequality (28) now reads

(32) a1l +llap I < Cllgy (up) |+ Ihegy + Ty | Gpepu )y iy, ()€ Rx Uy

and there is a unique w, € N(g, ) such that Th,u()‘h'phuo)wh=°hch_T1?1,)\'

If we put a = = PpW ~ Wy T <Gy (P WOy in (32), with w from

ph'uh
(29), then

loy | +11p,w = w, -<g, ,p w>®, Il < CIITh'u(Ah,Phuo)phw~ng'AH

0

W+Th,)\

I +IAO-AhI) .

< C( ”Tf],uph
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Combining this with (24) yields

(33) lphl <Cc(HT h uPnY - a,T, ‘wll +IIT ha~ %h AI|+IITh PR th ql)

and Py > O by (V2). Moreover <g,,p, W> - <g,w> = 0

and hence wh E w .

Lemma 2: Let (V1) (V ) be satisfied. Then (A o'PrY% )} is a simple

bifurcation point of Sh for a.e. h € H .

In particular, we have a decomposition IRxU,_ = N(SAO)B‘V and

Yh h
linearly independent vectors r1h,r2hEiN(SﬁU such that for a.e.

heH

3 o]
(34) iAP+Huh|lf CIISﬂ (A,uh)n for all (A,uh) € Vh'
wo 2 - 2 — no —
(35) <¢h,Sh rjh>- 0(3=1,2), <¢h,sh T 1,
(36) r hl|< c (3j=1,2), 0 < C <01nf1ucr1h4-(1—0)r2hu .
<0<

Proof: By lemma 1 and the definition of Sh we have

[¢] o
Sh =0, N(Sh,u) = N(T ( h,phu )) = span{wh} ,
0 _ 0 — - 0
(o] 0 N
Sh’Au N ¢ R(Sh,u) since

(o] [0} (o]
<wh’sh,lu 0> = <wh'Th,Au 0> = <w’Tku(p> + 0 .

Furthermore N(Sﬂo) = span{(o,mh),(1,wh)} and we can choose

Vh = {O};:N(gh). (34) then follows directly from (32).
It remains to show (35) and (36), since (35) also yields the
condition (iii) of a hyperbolic point.

Now the bifurcation directions P (see (15)) can be repre-

sented as rj = Gj(O,(p) + oj(1,w) (3=1,2). If we define

r

(37) %, = 0 4(0,0) + o5 (W) (3=1,2)

then <‘i’h'si‘10;j2h> = YTy 32h> ~» <y, T"°r§> =0 (=1,

and <‘I’h.Sh }1h Loy > = <Y, T° r,r,>=1,
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Because 0f these relations it is easy to find a transformation

Tip = (8T v dpTons Ton = epfon* fhTn

such that (35) is satisfied and dh - 0, e, 1, fh - 0 .

But then also (36) is obvious from {37) and the linear indepen-
dence of r, and I, « q.e.d.

We now proceed to the basic assumption on the dis-
cretization error Th(lo,phuo) of the bifurcation point. The
following condition is in some sense the generalization of
condition (10) from the introduction

(V4) Tg = hmqhe+-0(hm) for some m €R, m>0 and some e¢ R(Tg).

(V4) requires that the principal error term has a coefficient
which is not in the range of Ta . If bifurcation from the trivial
solution is considered then normally Tﬁ = 0O and (V4) is violated.

Let T™h = —<¢h,Tﬁ >,

then from yp— ¢ and (V4) we have

(38) Ty, = —hm<¢,e> + o(h™ # 0O for a.e. h € H .-
We will apply theorem 1 to the operator

R xU xR =Y
h

(A,uh,T) - Sh(}\,uh) + '};—h

Fh :
(Th(x,uh) - Sh(k,uh)).

By lemma 2, (Ao,phuo) is a hyperbolic point of rh(-,-,o)=sh(-,o)

0 _ =1 0 _ &9y — _
and <wh,rh'1> = 1y <wh’Th sh> 1.
Moreover, with the exception of HF;_JIand IlFRZTH the data
14
from (18)-(20) can be estimated uniformly in h . This follows

from lemma 2, (VZ)’(V3) and the formulas

_ "o, o _ |°= o _ , = .
Th,zz(trt) = T )’Fh,z Sy ‘ﬁyx ¢hch.Th’u(xh.phuo)) Th,zc - ©

Finally, T, Il = |~ch|'1 T2l < ¢ by (V,),(38), and
’ .
o= It

0

T
I h,zt

"1 o 1 O —
hl HTﬁ 8 1l
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-1 0 -1 _
Lt b HTh'u"Th'u(lh:Phuo)iP*HDhChII)5 Clry 1 (IAg Ayl oy 1)

is uniformly bounded if we assume
o o] o _ (o] o] _ 0 = m
(V) Ty o Pp¥ = I Ty WIlHITy y = apTy [+ 1Ty (Pe ~ 9pTyeli= O(hT)

(compare (24),(33),(38)).

(V5) requires that certain discretization errors caused by the
linearizations Th u'Th , are at least of the same ordexr as the
! ’
. . . 0 = 0 -
discretization exror Th Th qh
applications (see section 4).

T° . This is quite nmatural in

On the whole we have shown that the values of § and §' in
theorem 1 can be chosen independently of h . If <y,e>< O

then 0 < Ty, € 5,6'" for a h € B, and the operator rhbyth)=ThV)
is covered by theorem 1.

Therefore, the discrete equations (2) have solutions

{39) (A,uh)(s) = (Ao,phuo)t thl lhs-k/[Th['ns ¢h;s)(s £ Mhé)

where Mhé = {8 >0: »/lth;ns< 6}, ¢ht€C (Mha' ]RXUh) p

=1

¢,:{1) - O and lg =8ty +ts r s >0 .

2h '

If <yp,e> > O then Toh has to be replaced by

—r2h .

Moreover, for each & > O there is a § > O , independent of h,
such that

(40) lép, ()l <& if Vg in, < 38

(see(22)).

Theorem 2:

Let (V1)—(V5) be satisfied. Then the discrete equations
Th(A,uh) = O have two solution branches (39) for a.e. h € H
and there is a §'> O such that all solutions in

IA-—AOI-+ Huh-phuollf 8' belong to these branches.

In the vicinity of (lo,phuo) the two branches can be written as
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1/2 m/2)

o m/2 - "1_
(41) (Ao,phuo) T h [<y ,e>| (s P, Ty ts phrz) + of(h
where 0<s_<s< s, - In (41) the vectors r; = (Aj,uj)(j=1,2)
are the bifurcation directions, ﬁh15-=‘(kj,phuj) are their
projections and the normalization

(42) <¢,T“°r1r2> =1, <yp,e>< 0

is assumed.

The proof of the representation (41) follows imme-
diately from (39) and (40) since O«< Cosng = %—(s+s“])5(:1 for
some constants CO,C1 independent of h . Note, however, that
(41) only represents a portion of the two branches which is close
to (Ao,phuo). The situation for the solution set of (2) can be

visualized as in fig. 5

fig.

A simple estimate using (39) and (40) also shows that the

distance of the discrete branches from (Ao,phuo) behaves like

hm/2’ i.e.

(43) 0<c B2 <inf {11 O ppug) - (owy) ()1 ¢ s €M g3 © n™2

for some 0<C<C .

4. An application to finite difference equations

Due to its general nature, theorem 2 has far reaching
applications to many approximation methods of numerical analysis.
For example, we could use theorem 2 for approximations of bi-
furcation problems which involve'Galerkin or finite element
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methods [30,32] or - more generally - cellectively compact
operators [1]

In what follows we will demonstrate the application of theorem2
to second order systems

(44) u"+f(x,u,r) = 0 in [a,b]l, u(a) = u_, u(b} =

a Yy,

N+1

N
where uECZ([a,b],IRN), f ECZ([a,b] x R

N
I]R ) r ua'ube R .

The finite difference equations under consideration are

2 _ . Q — =
(45) Dy + KhFh(uh'M = O in Iy v uh(a) = ua,uh(b) u,

where Jh = {a,a+h,...,b-h,b},h = (Jb-a) (M+1)“1 , MEN, and

= {a+h,...,b-h}. u,_€U,_ := (R is the unknown gri
§, = fa+h b~h}. u_ €U, := (R)"h K a
function and Dkzl is the second difference quotient as in (5).

Moreover Fy is the nonlinear operator

Fh(uh’)\) (%) f(x,uh(x),l) , X €J u, €U

A h ' “h h
0 0 J
and KhEL(Uh,Uh) . U = (IRN) h

h , is a matrix such that either

o]
Kh uy (x) = uh(x) , X € Jh , case I (O(hz)-method)
or

Kh uy (x) = 1-1—2 (uh(x—h) + 10uh(x) + uh(x+h)), case 1I

(Hermitian 0(h%)-method [81) .

It can be shown that our theory applies to more general boundary
value problems and further finite difference methods [4], for
example to the higher order schemes of [5] and to the linear
schemes in the sense of {3] if some standard assumptions from
the theory of convergence are satisfied ([2,12,20]).

Our equations (44), (45) can easily be subjected to the abstract
setting of section 3 if we define:

v = c¢®(la,b],RY) with the norm Mall = guil  + (e + ™l -

" e, alwaysdenotes the maximum norm for continuous functions:
grid functions, vectors etc. . Further, let
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Y = c(la,b], B ) xR?N with the norm v I =dvll g+ vl
PLu = [u]h = restriction of a function u : [a,b] -+:RN to the

. 2N .
grid J,, ¥, = 8h x R°" with the norm’|(vh,y)|[= thlhn+ il »
q (vey) = (K lvly,y) for (v,y) € Y.

1 2

I? u, we us?1the norm |fay [} = |fuy |l + IIDpuy Hl, + [IDfu, |1, where
Dhuh(x) = h (uh(x+h) - uh(x)), X = a,...,b-h.

The operators T and T, are given by

T(A,u) = (u"+ £(-,u,2),u@) - u ,uld) - u)

Th(x,uh) = (Diuh + Khthuh,A),uh(a) - ua,uh(b) - ub).
With these definitions the assumptions (V2),(V3) are satisfied
for an arbitrary (Ao,uo) € R x U. The regular convergence

Tﬁ 0 Ta can be proved as in [26,§6] by using the theorem of

Arzela and Ascoli.

Let us now assume that (A ) is a simple bifurcation

u
o'"o
point of the boundary value problem (44). Then (X ,u,) is a so-
lution of (44) and there exists an eigenfunction ¢ of the line~

arized equation

e+ Aom = 0 in [a,bl, w(a) = ¢(b) =0, where A = fu(',uo,lo)
and also an eigenfunction ¢* € U of the adjoint equation

O*" + ATg* = 0 in [a,b], w*(a) = e*(b) = O.

The range R(Tg) can then be written as the nullspace of a

functional
v : cla,b]l, ) x RN o R,
(46) 2N N b
<P, (V,y)> = <p*,v> + ,z1°{Yi' <p*,v> = iE1 iw{(x)vi(x)dx
i= =

for some properly chosen cf €R.
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Finally, there exists a w € C2([a,b],'mN) such that
(47) w" + Aow = - fA(-,uo,xo), w(a) = w(b) = 0,

The principal error term in (V4) is obtained from the remainder
of the above difference formulas (see [8]) as

. _ 1 (4) . 4
case I : m= 2, e = Tf(uo ,0,0) if u, € c'[a,b],

. = _ 1 {6) . 6
case II : m =4, e = 5?6(uo ,0,0) if u € C'[a,b].

With these values of m one easily verifies condition (V) if
w,9p € C4[a,b] in case I ( € C6[a,b] in case II ). Our smoothness
assumptions on U W and ¢ follow from f € C3 in case I { £ € C5
in case II' ). Thus we have proved

Theorem 3:

Let (Ao,uo) be a simple bifurcation point of the boundary value
problem (44) and let £ € C° in case I (f € C° in case I).
Assume that

1 (4)

—_— * i
I 12<¢ ,uo > in case I,
- _ 1 x . (6)_ .
526<w ,uo > in case II

is different from zero.

Then the finite difference equations (45) have two solution
branches for sufficiently small h

Oorlugly & 0" VoInl (s, lugdy) + 87 (. [uy)) + ofh™),

2]h)
0 <8, <8 <5,
where m = 1 in case I, m = 2 in case I and ().,u.) (j=1,2) are

the bifurcation directions of the boundary value problen
at (A, su)).

By (42) the normalization of ¢* and (Aj,uj) (§=1,2) is
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> <w*,u(4)> in case I
o/ 6
(48) l< <@*,ué )> in case II, and
- * £0 ] 0 o)
1 <w,ﬁmlhuthﬁ“1h+lzauu1+MA2ﬂA> .

Theorem 3 clearly shows that the assumptions (V2)(V3)(V5) in
theorem 2 are more of technical type while (V1) and (V4) play

the crucial role in the separation of bifurcation points.

5. Numerical results

Theorem 3 gives a general description of finite
difference solutions near nontrivial or secondary bifurcation
points of the boundary value problem (44). The crucial condition
n # 0 wusually cannot be checked explicitly since the bifurcation

point (Ao,uo) is unknown a-priori.

A simple example, however, where this can be done is the

following scalar boundary value problem
(49) u" +asin(u-9,)- ®y =0, u(0) = u(1) =0
where 0, (x) = sinmx, O0<x<1 .

(49) is obtained by the transformation u =v + ¢, from the

equation of the mathematical pendulum
(50) v" +rsinv= 0 in [0,1], v(0O) = v{1) =0

(compare the illustrative example in the introduction).
Note that equation (50) includes the solutions of

v" + Asinv= 0O in [%,1} ’ v'(%) =v(1) =0

which describes the buckling of a rod (see [6] for numerical
results and further references). The exact solutions of (50)
and hence those of (49) can be expressed in terms of elliptic

integrals [61].
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It is easily verified that (nz,wl) is a simple
bifurcation point of (49). Moreover, (—1,0),(O,w1) are the
bifurcation directions and with ¢* = -2@1 the normalization
(48) is satisfied.

The quantity n from theorem 3 is then computed as

4 6

=-T_ 4 = = J_ :
n = 13 in case I and n 330 in case II

Theorem 3 shows that the finite difference eguations (45)
associated with (49) have solutions in a neighbourhood of
2

2
h §7§'(—S'S_1[w1]h)+ o(h) in case I,
2 +{
(51) (w .[wah) z , 3 . ,
h —7:_(‘515 [w1]h)+ o{(h“) in case II
4v15

where 055055551 .
We have solved these finite difference equations numerically
by employing a continuation procedure (for details of the
method see [4,17]). Fig. 6 shows the exact solution branches
of (49) and the discrete solution branches for the OU&)-

method (h = =5 , Y
x1,5
u, ()
h=lo _
Sl - 11 A
(9,1) D —_———t———

————
——— -

-bO,S
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We have also computed the discrete solution branches
in case of the 0(h4)—method, but these branches are already
very close to the continuous ones and would not show up in fig.é6.
A close-up of the situation near the bifurcation point is given

in fig. 7 in the case of the O(h%)-method, h = 13-0.

fig. 7

Fig. 7 also shows that a continuation procedure starting on the
left upper branch would normally pass to the right lower branch
if the stepsize with respect to the continuation parameter is
not small enough. Following [17], the change of sign of a
certain determinant in this critical step'would then indicate

a bifurcation point although the solutions consist of two

separated branches.

It is worth noting at this point that the finite difference
equations of the example from [17] indeed have a nontrivial
bifurcation point. This follows from the fact that the example

in [17] has a primary branch (},q(X)u ) where u_ is a quadratic
polynomial. This branch is reproduced exactly by the finite
difference equations. In particular, the quantity n of our

theorem 3 is zero.

The next table contains the distances of the upper and the
2 .
lower branches from the restriction (m ,[w1]h) of the bifur-

cation point. The distances were measured in the maximum norm

H(A,uh)!l = Max{lkl,iluhﬂo}'.
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2 4
0(h") - method O(h”) - method
h lupper branch lower branch upper branch lower branch
%%T 0.278 0.302 0.0200 0.0201
=5 0.140 0.146 0.0050 0.0050
15 0.071 0.072 0.0012 0.0012

This clearly shows the halving of the order of convergence near

the bifurcation point. Moreover, from formula (51) we can
estimate these distances as
2 3 2 2
I h®2.849 h in case I, h* = 2.001 h® in case II
2/3 4/15

which is in good agreement with the numerical values.

A more realistic example with a secondary bifurcation
point is given by the Ginzburg-Landau equations for a super-

conducting slab of thickness 4 (cf. [19,21,23] )

ul’ = K211 (u2—1 +1u2) 4+ d
1M1 2 w (I 5 =0
. d d 1 2
1n["7:§31
no_ .2 v+ Ay _
uy = uju, uy (=5 =1
Here K2 is the Ginzburg-Landau parameter, u ig called the

1
order parameter and VX u, is one component of the potential

of the magnetic field. The bifurcation parameter A is the
square of the external field. This example not only exhibits
a bifurcation from the trivial solution u, = O,uz(x)= X
but also a secondary bifurcation. The separation of this
secondary bifurcation point by the finite difference method
depends on the formulas used for the boundary conditions.

For a detailed numerical study of this example we refer to [4].
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