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Neural encoding of behaviourally
relevant visual-motion information in

the fly

Martin Egelhaaf, Roland Kern, Holger G. Krapp, Jutta Kretzberg, Rafael Kurtz and
Anne-Kathrin Warzecha

Information processing in visual systems is constrained by the spatial and
temporal characteristics of the sensory input and by the biophysical properties
of the neuronal circuits. Hence, to understand how visual systems encode
behaviourally relevant information, we need to know about both the
computational capabilities of the nervous system and the natural conditions
under which animals normally operate. By combining behavioural,
neurophysiological and computational approaches, it is now possible in the fly
to assess adaptations that process visual-motion information under the
constraints of its natural input. It is concluded that neuronal operating ranges
and coding strategies appear to be closely matched to the inputs the animal
encounters under behaviourally relevant conditions.
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The goal of neuroethology is to explain behaviour in
terms of the activity of nerve cells and their interactions.
This can only be achieved if the experimental animal
can be analysed at different levels ranging from
behaviour to individual neurons. Cellular mechanisms
underlying processing of neuronal information are
frequently analysed using in vitro preparations where

artificial stimulation replaces the natural sensory input.

Although such studies provide fascinating insights into
the complex computational abilities of neurons [1], the
results may not be extrapolated easily to in vivo
conditions, where the range of response amplitudes of
neurons and their temporal activity patterns may differ
considerably from artificially induced activity. In
systems such as the retina of the horseshoe crab

Limulus[2], and various brain areas of pigeons [3],
cats [4] and monkeys [5,6], itis now feasible to analyse
the neuronal representation of visual input as it is
experienced during behaviour (reviewed in Refs [7,8]).
Until now, however, in most systems the underlying
neuronal mechanisms have been difficult to unravel.

In the fly it is possible to employ both quantitative
behavioural approaches as well as in vivo
electrophysiological and imaging methods to analyse
how behaviourally relevant visual input is processed
[9-20]. Although the latter techniques are mainly
employed in the blowfly, which is relatively big, they
are complemented by studies of the smaller fruitfly,
Drosophila, where a broad range of genetic
approaches can be applied to dissect the visual
system in an increasingly specific way [21,22].

We review recent progress on the encoding of
optic-flow information in the blowfly. Optic flow is an
important source of information about self-motion
and the three-dimensional layout of the environment,
not only for flies but for most moving animals
including humans (Box 1, [4,23-25]). Flies exploit
optic flow to guide their locomotion [13] and to control
compensatory head movements [26], and
understanding the computational principles
underlying optic-flow processing in flies could provide
insights into visual-motion analysis in general.
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Box 1. Processing of optic flow in the fly visual system
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During locomotion the entire retinal image is continually displaced. This optic
flow depends on the particular type of self-motion and on the three-dimensional
layout of the environment (Fig. la) [a,b]. Optic flow is characterized by global
rather than local features. This imposes constraints on the neuronal
mechanisms that evaluate optic flow as measurements of local motion from
large areas of the visual field need to be combined. Accordingly, in animal taxa
from insects to primates, neurons sensitive to optic flow were found to have
large receptive fields (reviewed in Ref. [c]).

In the fly, the combination of local-motion measurements takes place in a
strictly retinotopic way on the extended dendritic trees of a set of so-called
tangential cells (TCs) (Fig. Ib). About 50 TCs of different individual morphology
and functional properties have been identified in each half of the brain and
found to respond to different aspects of optic flow [d-g]. Spatial pooling of
local motion information is highly nonlinear. This computational feature is the
consequence of both the input organization of TCs and their biophysical
properties [f,h-I].

Spatial pooling of local-motion information from one eye is not usually
sufficient to analyse the various types of optic flow with a high specificity. For
instance, during forward translation the optic flow across both eyes is
directed backwards (Fig. la). In contrast, during a pure rotation about the
vertical axis, optic flow is directed backwards across one eye, but forwards
across the other eye. Hence, translational and rotational self-motion can be
distinguished by taking into account motion information from both eyes, a
computational strategy used by many animals with lateral eyes, such as
pigeons, rabbits and many insect species [m-p]. In the fly, specificity for
certain types of optic flow is achieved by synaptic interactions between TCs in
the ipsi- and/or contralateral half of the visual system (Fig. Ib) [d,e,g-t]. Asa
consequence, some TCs respond best to the optic flow induced when an
animal turns about one of its body axes. Other TCs are tuned to relative
motion between an object and its background [e,f].
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To understand the significance of the mechanisms
involved in optic-flow processing, we should consider
the behavioural context in which optic flow is
generated. In the following, we summarize: (1) the
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Fig. I. (a) Optic-flow field elicited when approaching an objecton a
straight course (forward translation). The arrows indicate
schematically the velocity vectors of image points on the retina.
During forward translation, velocity vectors point backwards from a
focus of expansion in the middle of the visual field. (b) Schematic of
the visual motion pathway of the fly (caudal view). The compound
eyes are indicated in orange. The visual system is organized ina
retinotopic way by columnar elements. Synaptic interactions within,
as well as between, columns lead to motion-sensitive responses (for
details see Refs [11,28]). The outputs of such small-field motion-
sensitive elements are pooled spatially by the large dendrites of
tangential cells (TCs). Two types of TC (the HSE cell and H2 cell) are
shown. The HSE cell receives additional input from the H2 cell and
from the H1 cell (not shown), and thus integrates visual-motion
information from both eyes. Reconstructions of HSE- and H2 cells
courtesy of K. Hausen.

o Ibbotson, M.R. (1991) Wide-field motion-sensitive neurons
tuned to horizontal movement in the honeybee, Apis
mellifera. J. Comp. Physiol. A 168, 91-102
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hummingbird hawk moth, Macroglossum stellatarum L.: 1.
Electrophysiological analysis of neurons sensitive to wide-
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724-734
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Calliphorid flies: GABAergic organization in heterolateral
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sophisticated organization of retinotopic inputin
neurons processing optic flow; (2) the combination of
optic-flow information from both eyes; (3) the accuracy
with which motion information can be evaluated; and
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Fig. 1. Retinotopic input organization of tangential cells (TCs). (a) Self-motion generates panoramic
optic flow over the eyes. The green arrows represent the local motion vectors on the eye when the
animal rolls around its longitudinal body axis. The local response properties of a TC, the VS6 cell, are
adapted to detect this particular self-rotation. It is assumed that with its large dendrite the cell
integrates signals from local input elements whose preferred directions (blue arrows) correspond to
the direction of local motion vectors in roll-induced optic flow. (b) Head of a female blowfly
(Calliphora vicina). White lines over the right eye indicate the course of ommatidial rows in the
hexagonal eye lattice. (Photograph courtesy of R. Hengstenberg.) (c) Organization of the receptive
field of a VS6 cell. Orientation and length of arrows at different angular positions indicate the neuron’s
local preferred direction and motion sensitivity in the right visual hemisphere. 0° azimuth and 0°
elevation corresponds to the point directly in front of the animal. f, c, d, and v refer to the frontal,
caudal, dorsal and ventral aspects of the visual field. Black lines in the upper-left quadrant indicate the
course of ommatidial rows, which are orientated vertically in the equatorial region of the eye (v-row).
The direction of visual motion is thought to be analysed mainly by interactions between ommatidia
along the rows in the hexagonal eye lattice (c.f. orientation of rows and arrows). In the dorso-frontal
eye region the course of the v-rows strongly shifts towards a horizontal orientation. This change in
orientation is reflected by the change in local preferred directions of VS6 cells in corresponding
regions of its receptive field. Experimental data from Refs [29,32].

(4) the neuronal performance under stimulus
conditions that occur during active locomotion.

Exploiting global features of optic flow by spatial
pooling of retinotopic inputs

The motion vectors describing the local image
displacements on the retina are not constant across
the visual field, but change in a characteristic way
depending on self-motion (see Box 1). Flies can exploit
the global features of optic flow to gain neuronal
representations of self-motion [12,27]. This is
accomplished by the organization of the spatial input
of the tangential cells (TCs, see Box 1). The large
dendritic trees of TCs pool the outputs of many
retinotopically organized small-field elements,
which are thought to estimate the direction of local
retinal-image shifts [11,28]. The preferred directions
of the small-field elements that synapse onto a given
TC appear to coincide with the directions of the
velocity vectors characterizing the optic flow induced
during particular types of self-motion (Fig. 1a)
[27,29,30]. The sophisticated global patterns of
preferred directions do not depend on visual
experience and thus represent phylogenetic rather

than developmental adaptations to optic-flow
analysis [31].

The computation of self-motion based on optic flow
is facilitated by the geometry of the compound eye
lattice (Fig. 1b). The orientations of ommatidial rows
along which directional motion is thought to be
computed coincide with the local preferred directions
of particular TCs, and thus with the direction of local
velocity vectors that occur during locomotion, for
instance, during forward translation or rotation
around the animal’s longitudinal body axis (Fig. 1¢)
[12,32,33]. Matching the geometrical properties of the
compound eye to the global structure of frequently
encountered optic flow allows the sophisticated input
organization of some TCs to be established by
interactions along the anatomical rows of the
compound eye in what is a rather simple wiring
scheme. Hence the geometry of the fly compound eye
appears to be a phylogenetic adaptation to
parsimonious processing of optic flow. Similarly, the
design of crab eyes is adapted to life in different
habitats [34] and the sensitivity distribution of
photoreceptors of bees and ants depends on the
celestial pattern of polarized light [35]. Moreover,
locomotion in primates is likely to be a phyologenetic
determinant of the topography of the visual system
[36]. These examples indicate that visual systems
make use of predictable sensory input to find low-level
computational solutions to seemingly high-level tasks.

Combining information on optic flow from both eyes
Integration of motion signals from one eye is often not
sufficient to yield a high specificity of TCs with
respect to particular types of self-motion, such as
rotation or translation. By combining motion
information from both eyes (Box 1) specificity may be
greatly enhanced. This is accomplished by TCs that
convey motion information gathered within the visual
field of one eye to the contralateral side of the brain
where they interact with other TCs [12,13,30,37-39].
Unless the intervening synapse is carefully adjusted
to the presynaptic activity levels that occur during
sensory stimulation, synaptic transmission may
distort the information being transmitted. This
hazard is particularly daunting because signal
transfer across synapses is inherently noisy and, in
many systems, is nonlinear (reviewed in Refs [40,41]).
Combined electrophysiological and optical-imaging
experiments (Figs 2a,b) reveal that, despite these
potential nonlinearities, the entire range of
depolarization levels that can be elicited by motion in
the ‘preferred direction’in the presynaptic terminal of
a TCis transformed approximately linearly into the
spike rate of the postsynaptic TC. The relationships
between presynaptic potential and presynaptic
Ca?* concentration (the latter representing a second
messenger involved in transmitter release) and
between presynaptic CaZ* concentration and
postsynaptic spike rate are also linear (Fig. 2c). Motion
in the antipreferred direction hyperpolarizes the
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Fig. 2. Transmission of optic flow information between a pair of tangential cells (TCs). (a) The V1 TC
receives input from VS (vertical system) TCs and transmits this motion information to the contralateral
visual system, where it forms an extended output arborization. Presynaptic membrane potential
changes (AEpre) and postsynaptic spike trains (occurrence of a spike indicated by a vertical line) are
recorded simultaneously in vivo. Visual motion in the preferred direction (grey horizontal bar) leads to
depolarization of the presynaptic cell and to an increase in postsynaptic spike rate. (b) Presynaptic Ca?*
accumulationin a VS cell filled with a Ca?*-sensitive fluorescent dye (raw fluorescence images of the
entire cell and of the presynaptic region, left diagrams) during presentation of preferred direction
motion (grey horizontal bar). Warm colours in the colour-coded images correspond to increases in Ca2*
concentration (measured as relative change in fluorescence: AF/F). The time course of the change in
presynaptic Ca2* concentration is plotted for variable stimulus strengths (coloured lines, upper right
diagram). The inset in the upper right diagram shows the outline of the terminal region (dotted line) as
seen on the raw fluorescence image and the region of the presynaptic terminal over which the
fluorescence change was spatially integrated (white area indicated by yellow arrow). (c) Linearity of the
transfer of preferred direction motion. Left: Postsynaptic spike rate (relative to resting activity) is plotted
versus the presynaptic membrane potential change (AEpre) for visual stimuli of variable strengths,
moving either in the preferred direction (black symbols) or in the null direction (green symbols). The
gain of signal transfer is approximately constant for the entire range of visually induced excitations,
resulting in a linear relationship between presynaptic potential and postsynaptic spike rate upon
motion in the preferred direction. A rectification is prominent for motion in the null direction. Linear
dependencies for preferred direction motion are also present in the relationship between changes in
presynaptic Ca?* and in presynaptic membrane potential (middle) and in that between postsynaptic
spike rate and changes in presynaptic Ca2* (right). Electrophysiological and optical recording data
reproduced from Ref. [42], cell reconstructions shown in (a) reproduced from Refs [13,29].

presynaptic neuron, whereas both the presynaptic
Ca?* concentration and the postsynaptic spike rate
decrease only slightly below their resting levels. Thus,
apart from this rectification, motion information is
transmitted largely undistorted to the contralateral
visual system [42] with a functional consequence that
the synaptic transfer does not affect the dependence of
the motion signals on the stimulus parameters, such
as the velocity of motion.

Accuracy of encoding of optic flow information

There are constraints to coding of stimuli imposed by
noise- and spike generation in any system. Noise
leads to variable neuronal responses to repeated
presentation of the same stimulus (Fig. 3a). Although
the variance in spike count across trials of fly TCs is
small compared to motion-sensitive neurons in the
primate cortex [43,45], variability in the neuronal
response constrains the precision with which
stimulus events can be encoded by the timing of
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spikes and, thus, the accuracy with which time-
varying optic-flow characteristics of behavioural
situations can be conveyed.

Analysis of spike trains shows that the precision of
spike timing depends on stimulus dynamics. Spike
generation per se does not limit the accuracy of
representing motion information, because spikes
time-lock to rapid fluctuations in membrane potential
with a millisecond precision [46-48]. As a
consequence, spikes are time-locked precisely to a
stimulus only if the stimulus-induced changes in
membrane potential are sufficiently fast and large,
relative to membrane-potential noise. In contrast,
slow stimulus-induced fluctuations in membrane
potential mainly affect the spike rate and normally do
not cause precise time-locking of spikes; the exact
timing of spikes is then determined by the high-
frequency components of the membrane potential
noise (Fig. 3b) [49]. Because computations that
underlie direction selectivity inevitably require time
constants of some tens of milliseconds [50], they
attenuate the neural responses to high-frequency
velocity fluctuations (Fig. 3¢) [51,52]. Hence, TC
depolarizations are sufficiently pronounced to elicit
spikes with a millisecond precision only when the
velocity changes are very rapid and large [17,18,53].
Otherwise, the exact timing of spikes is determined
mostly by membrane-potential noise and visual
motion is represented by the spike rate.

Key evidence for these conclusions is the finding
that spikes in pairs of TCs with largely overlapping
retinotopic input tend to be synchronized with a
millisecond precision. This implies that both TCs
share high-frequency signals originating from their
common input. As, on average, these TCs are time-
locked to velocity fluctuations with much less
accuracy, it is suggested that the synchronization is
attributable to high-frequency noise in their common
input and not to the stimulus (Fig. 3d) [49,52].
Although to what extent rapid- and slow velocity
changes, and thus the exact timing of spikes, are
functionally significant is still debated [17,18], it is
generally agreed that this issue can only be resolved
by taking into account the dynamics of retinal-image
displacements in different behavioural contexts.

Evaluation of behaviourally generated optic flow

The dynamics of optic flow are largely determined by
the dynamics of the animal’s self-motion. The
direction of self-motion may change rapidly, such as
during saccadic turns during flight [54,55] or an
order of magnitude more slowly, such as during
walking [19]. Because it is not possible currently to
record from neurons in freely moving flies, indirect
approaches have been used to determine the
responses of TCs to behaviourally generated optic
flow. Recordings can be made from the brains of flies
that are oscillated with dynamics that mimic the
rotational self-motion component experienced in free
flight [20]. In another approach, the optic flow
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Fig. 3. Variability of neural responses and the accuracy with which
optic-flow information is signalled. (a) Variability of spike activity of a
tangential cell (TC), the H1 cell. Velocity profile of the motion stimulus. (i)
Velocities above the dashed line denote motion in the preferred
direction of the cell, velocities below the dashed line signal motion in the
antipreferred direction. (ii) Spike rate of the H1 cell as a function of time.
The response follows the overall time course of pattern velocity. (iii)
Individual responses to repeated presentation of the same motion trace.
Vertical lines denote spike occurrence. Although the overall pattern of
neuronal activity is similar from trial to trial, there is variability in the
temporal fine structure across trials (for details see Refs [44,52]).

(b) Time-locking of spikes to sinusoidal stimulus-induced fluctuations in
membrane potential (5 Hz or 80 Hz, green traces) in amodel cell. The
model is adjusted to fit the responses of a fly TC to motion stimuli. Noise
is added to the stimulus-induced component of the membrane potential.
The noise differs from presentation to presentation. Spike frequency
histograms (blue traces) illustrate that fast stimulus-induced membrane
potential fluctuations are needed to trigger spikes with a high temporal
precision. Slow stimulus-induced fluctuations lead to spike activity with
arate approximately proportional to the membrane potential (for details
see Ref. [49]). (c) Dynamic properties of membrane potential fluctuations
inafly TC (the HSE cell) elicited by band-limited white-noise velocity
fluctuations; power spectra of the motion stimulus (green), the motion-
induced response component (red) and the stochastic membrane
potential fluctuations (blue). The motion-induced-response component
was determined by averaging many individual response traces, thereby
attenuating stochastic membrane-potential fluctuations. It contains
most power below 20 Hz, although the stimulus contained higher
frequencies. In the low-frequency range, the motion-induced-response
component s larger than the stochastic-response component. At higher
frequencies this relationship reverses (for details see Ref. [52]).

(d) Cross-correlogram of the responses of two TCs (H1 and H2) with
common synaptic input to fluctuations in the velocity of band-limited
white noise. Either synchronously recorded responses were used (blue
trace) or responses that were not recorded synchronously but obtained
from repetitive presentation with the same motion stimulus (red trace).
Although TCs can generate spikes very precisely (blue trace), most
spikes time-lock to dynamic-motion stimulation on a much coarser
timescale (red trace) (for details see Ref. [52]).

experienced by moving flies was reconstructed and
replayed to a fixed animal during nerve-cell
recordings. This approach has been employed for
various behavioural situations during tethered
flightin a flight simulator [56,57] and during
unrestrained walking in a three-dimensional
environment [19,58]. The results indicate that

information obtained from optic flow about the
layout of the environment [57] or the animal’s self-
motion [19] is much less ambiguous than concluded
from earlier studies using conventional stimuli, such
as moving gratings.

This conclusion is exemplified in Fig. 4 by the
performance of a TC (the HSE cell) whose input
connections suggest a role in signalling turns of the
animal around its vertical axis [12,38,39]. Despite
this input organization the HSE cell also responds to
translation and to changes in the texture of
conventional stimuli [12,13,19]. Analyses using
conventional stimuli indicate that the cell’s response
is ambiguous. However, when challenged with optic
flow generated during walking, most of these
ambiguities disappear and the cell provides
information about the animal’s turning direction
largely independent of the translational optic-flow
component and the layout of the environment
(Fig. 4b) [19]. Model simulations indicate that the
computations underlying optic-flow processing are
well matched to optic flow experienced in behavioural
situations [59]. This is because: (1) natural stimuli are
characterized by a wide range of spatial frequencies,
in contrast to conventional grating patterns (see also
Ref. [60]); (2) the local-movement inputs of the TCs
operate in a range where velocity is no longer
represented linearly; and (3) the nonlinear spatial-
integration characteristics of TCs (see Box 1) make
their responses largely independent of texture
density.

The characteristics of motion computation may
differ in insect species that have different visually
guided orientation behaviours and thus may be
matched to the spatio—temporal properties of their
different retinal inputs [61,62]. Moreover, the
properties of fly TCs change as a result of stimulus
history [63—69]. Although the functional significance
of these adaptational processes is debated, they may
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