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Directing projective modules 

By 

DIETER HAPPEL and CLAUS MICHAEL RINGEL 

Let A be an Artin algebra. The A-modules which we consider are always left modules 
of finite length. If X, Y, Z are A-modules, the composition of maps f :  X ~ Y and 
g : Y ~ Z is denoted by f 9  : X ~ Z. The category of (finite length) A-modules is denoted 
by A-mod. If  X, Y are indecomposable A-modules, we denote by rad (X, Y) the set of 
non-invertible maps from X to Y. A path in A-mod is a sequence (X o . . . . .  Xs) of (isomor- 
phism classes of) indecomposable A-modules X i, 0 < i < s such that rad (Xi_ 1, Xi) @ 0 
for all 1 _< i < s. We will say that (Xo, . . . ,  Xs) is a path from Xo to X~ of length s, and 
we write X ~= X ' ,  or X ~ a  X '  to indicate that a path from X to X '  exists. If s > 1, and 
X o = Xs, then the path (Xo, . . . ,  X~) is called a cycle. A indecomposable A-module is 
called directing if X does not occur in a cycle. 

Our  first aim will be to extend the definition of a directing module to decomposable 
modules. We show that an indecomposable projective A-module P is directing if and only 
if the radical of P is directing. In case the top of P is injective it follows that P is directing 
if and only if the radical of P is directing as a module over the factor algebra of A by the 
trace ideal of P. 

The authors are grateful to the referee for helpful comments. 

1. Directing modules. Let z = z A be the Auslander-Reiten translation on A-rood. The 
kernel of a map f will be denoted by Ker f ,  its image by Im f. 

Lemma. Let  f :  X ~ Y, and 9 : Y ~ Z be maps with f 9  = 0, and assume that there is no 
direct summand Y' o f  Y with Im f ~ Y' = Ker g. Then there exists an indecomposable 
non-projective module W such that Horn(X, z W )  4= O, and Horn(W, Z) 4= 0. 

P r o o f. Recall that a map 9 : Y --' Z is called right minimal provided Ker g does not 
contain a non-zero direct summand of Y. 

First, let us show that we may assume that both f,  g are non-zero and that g is right 
minimal. For, let I11 be a maximal direct summand of Y contained in the kernel of g, and 
let X1 = f - 1 (I(1). In case X1 = X, we have I m f  ~ Y1 ~ Ker g, with Y1 a direct summand 
of Y, contrary to our assumption. Thus X 1 is a proper submodule of X. Let Y = I11 �9 Y2, 

[ gl ] ,  where f i : X  ~ Yi, gi: Yi --~ Z. By definition, both f2 and let f = [fi, f2], and g = g2 
k _  

g2 are non-zero, g2 is right minimal, and f2 g2 = 0. Thus, we replace f,  9, Y by f2, 92, Y2. 
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Let K = Ker 9, with inclusion map u : K - ,  Y. Since I m f  is contained in K, and f 4: 0, 
there is an indecomposable direct summand K1 of K with H o m ( X , K  0 4= 0. Let 
m 1 : K1 -~ K be the inclusion map. Since g is right minimal, KI  is not a direct summand 
of Y, in particular we see that K 1 c a n n o t  be injective. Let 0 ~ K,  ~ E --, W -~ 0 be an 
almost split sequence, and denote the map K~ --, E by h, the map E --, W by e. Since mt u 
is not a split monomorphism, there exists v : E ~ Y with hv = m~ u, and therefore also 
v':  W ~ Z with e v ' =  vg. We claim that v '4:  O. Otherwise, vg = 0, thus there is 
v" : E -+ K such that v" u = v. But hv" u = hv = m~ u yields that hv" = m, ,  since u is a 
monomorphism. But with hv" = ml also h is split mono, impossible. This contradiction 
shows that Horn(W, Z)4= 0. Thus, we have found an indecomposable non-projective 
module W with Horn (W,, Z) 4: 0, and Horn (X, ~W) = Horn(X, K1) 4: 0. 

Corollary. An indecomposable module X is directing ij" and only if  there does not exist 

an indecomposable non-projective module W such that X ~= ~ W and W ~ X.  

P r o  of.  If there exists an indecomposable non-projective module W such that 
X -< z W and W ~ X, then we have a cycle containing X. Conversely, assume there exists 
a cycle (Xo, ..., Xs) with X = X 0 = X~, say with non-zero maps f/" X i_ 1 -~ X~, and write 
fj = f / i n  case j -- i (mod s). There is some t > I with f l ' "  ft 4: 0, but f l " "  f + l = 0. We 
apply the Lemma to f - - f l " ' "  f ,  and g = f~+ 1, and conclude that there exists an inde- 
composable non-projective module W such that X = Xo ~ z W and W ~ X~+ 1, and, of 
course, Xt+ 1 "< X. 

We use this characterization of indecomposable directing modules in order to extend 
the definition as follows: an arbitrary (not necessarily indecomposable) module M will be 
called directing provided there do not exist indecomposable direct summands M1, M2 of 
M, and an indecomposable non-projective module W such that M 1 ~ r W and W ~ M 2. 
(General directing modules have been considered already by Bakke in [1]; directing 
modules which are in addition sincere have been called partial slice modules in [3]). 

R e m a r k. We may define the notion of a directing object in any abelian category o~/ 
which has almost split sequences: we say that the object M of d is directing if and only 
if there do not exist indecomposable direct summands M, ,  M 2 of M, and an almost split 
sequence 0 -~ U --, V ~ W ~ 0 such that M 1 = U and W ~  M 2. If we want to empha- 
size that we consider paths in •,  we may write ~ instead of ~ .  Assume that sJ  is 
an exact abelian subcategory of A-rood which also has almost split sequences. If M 
is a directing A-module which belongs to d ,  then M is directing when considered as 
an object of d .  For  let M 1, M 2 be indecomposable direct summands of M, and let 
0 ~ U -* V ~ W --, 0 be an almost split sequence in ~r such that M 1 -< U and W ~ M z. 
Since we assume that ~4 is an exact subcategory, the given almost split sequence shows 
that Ext ,(W, U) 4: 0, thus Horn(U, zAW)  4= O. Altogether we see that M t ~ U ~___ z A W  
and W ~ M2 in A-mod, thus M cannot be directing as an A-module. 

Directing modules are very special. The main properties can be found in the following 
three Propositions. Given any module M, its support algebra is the factor algebra of A 
modulo the ideal generated by all idempotents which annihilate M. 
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Proposition 1. Let  M be directing, and let B be the support algebra of  M. Then End(M)  
is hereditary, Ext 1 (M, M) = 0, and M, as a B-module, is a partial tilting module. 

P r o o f. Given indecomposable direct summands Mi, Mj of M, then Ext I (Mi, M j) 
= 0, since otherwise Horn (M j, zM~) #: 0, contrary to the assumption that M is directing. 
Thus we have Ext 1 (M, M) = 0. 

Since B-mod is an exact abelian subcategory having almost split sequences, we see that 
M is also directing as a B-module. 

We claim that the projective dimension of any indecomposable summand Mg of M as 
a B-module is at most 1. Otherwise, there is an indecomposable injective B-module I with 
Hom (I, z B Mi) =# 0. Since B is the support algebra of M, there exists some direct sum- 
mand Mj of M with Hom (M;, I) # O, thus we obtain Mj. =~ I ~ rB M~, impossible. This 
shows that M as a B-module is a partial tilting module. In the terminology of [3], the 
B-module M is a partial slice module, thus End M is hereditary. 

The next proposition collects the information on paths (XI . . . . .  X~), where the Xi are 
direct summands of a directing module. 

If (Xo . . . . .  X~) is a path, we say that a path (Yo . . . .  , Yt) is a refinement of (Xo . . . . .  Xs) 
if there is an order-preserving function 7c: {0 . . . . .  s} - .  {0 . . . . .  t} such that Xi = Y~(~) and 
rc (0)  = 0 ,  7c(s) = t. 

We recall that for indecomposable A-modules X, Y, the set rad 2 (X, Y) consists of all 
finite sums of maps of the form fg ,  where f ~ rad (X, C), 9 ~ rad (C, Y), with C indecom- 
posable. 

Proposition 2. Let  (X o . . . .  , Xs) be a path, and assume that there does not exist an 

indecomposable non-projective module W with X 0 ~ z W and W ~ X~. Let  X = + X i. 
Then the following assertions hold: i=o 
(a) The module X is directing. 
(b) I f  f : X i_ 1 --" Xi  are non-zero maps, for i <- i <_ s, then f1" " " f~ # O. 
(c) Hom(X~, rX i )  = O, for all i,j. 
(d) The number s is bounded by the number of  isomorphism classes of  simple A-modules. 
(e) The path can be refined to a path (Yo, . . . ,  Yt) such that rad2(yi_l ,  Yi)= 0 for 

l <_i<<_t. 
(f) Assume we have rad2(Xi_l ,  Xi) = 0, for I <_ i <_ s, and let 0 + f i e  rad(Xi_l ,  Xi). 

I f  f l . . . f ~  = gh for some maps g: Xo -~ Z, h: Z --, X~ with Z indecomposable, then 
there exists some i with 0 <_iN s and an isomorphism t l :Z  ~ X~ such that 

g~ = L f ~ .  
P r o o f. (a) Assume there exists an indecomposable non-projective module W such 

that X i ~ v W and W ~= X;, for some i,j. Then X o ~ X i -< ~ W and W ~ Xj ~ X~, con- 
trary to the assumption. 

(b) This is a direct consequence of Lemma 1. 
(c) If  Hom (XI, zX;)  =# O, then Xo ~= Xi "< rW, and W-< Xs, with W = X~, contrary to 

our assumption. 
(d) This follows from Proposition 1. 
(e) According to (d) there exists a refinement which cannot be further refined. But if 

(I10 . . . . .  Y~) is a path which cannot be refined, then necessarily rad2(yi_l ,  Yi) = 0. 



240  D. HAPPEL and C. M. RINGEL ARCfI. MATH, 

(f) Let us assume that tad z (X i_ ~, X~) = 0, and let 0 + f~ ~ rad (Xi_ z, Xi) for ! _< i -< s. 
Let us assume that f~.- . f~ = gh for some maps 9: Xo--* Z, h: Z- - ,  X~, where Z is 
indecomposable. If h is an isomorphism, let i = s, and r /=  h. Thus let us assume that h 
is not an isomorphism. We use induction on s. For  s = 1 the map g has to be an 

isomorphism, thus let r / =  9 - i .  Consider the case s > 2. Let [ ~ , 1  be a sink map for X~, 

thus h = uf~ + vf~', for some maps u, v. Then f~ . . . f~  = gh --- 9uf~ + 9vf~' shows that the 
v - ~  -'1 

map [fl " " f ~ - i - g u ,  gv] factors through the kernel K o f [ Y f ~ , [ .  However, either X~ is 

projective, and K = 0, or else X~ is non-projective, and K = TX~. In the latter case, the 
basic assumption gives Hom(Xo,  TX~)= 0, thus always [ f l "  "f~-i - 9 u ,  gv] = O, and 
therefore f~. . . f~_ 1 = 9u. The assertion now follows by induction. 

Proposition 3. Let M be a directing A-module. Let M i (i ~ I) be a complete set (one from 
each isomorphism class) of  indecomposable A-modules M~ such that there are indecompos- 
able direct summands M~, M[' of M with M[ "< Mi ~ M['. Then I is finite and )fI -= @ Mi 
is directing. ~I  

P r o o f. Let M~, Mj belong to the set. Assume there is some indecomposabte non- 
projective module W with Mi~=~W, and W ~ M ; .  Then we obtain a path 
Mi ~ M~ ~ T W -< W ~ Mj ~ Mj', where Mj, Mj' are direct summands of M, impossible. 
It follows by Parts (e) and (d) of Proposition 2 that I is finite, since the Auslander-Reiten 
quiver of any Artin algebra is locally finite. Also we see that ~r is directing. 

2. Indecomposable projective modules and their radicals. 

Theorem 1. Let P be an indecomposable projective module. Then the jbilowing are 
equivalent: 
(a) P is directing. 
(b) rad P is directing. 
(c) Each indecomposable direct summand of  rad P is directing. 

P r o o f. Clearly, if (X o . . . . .  Xs) is a cycle with P = Xo = X~, then we can factor any 
non-invertible map X s_ ~ ~ X~ = P through rad P, thus we can refine the path in order 
to contain some indecomposable summand M1 of rad P, thus M 1 is not directing. This 
shows that (c) implies (a). Trivially we have (b) implies (c). 

In order to consider the missing implication, we will use the following Lemma. 

Lemma. Let f : rad P -~ Y, 9" Y ~ Z be non-zero maps with f g = 0, and assume that 
Z is indecomposable, and 9 is right minimal. Then P ~= Z. 

P r o o f. Since we assume that 9 is right minimal, the restriction of 9 to any non-zero 
direct summand of Y is non-zero. 

If Horn (P, Y) :I: 0, then any indecomposable direct summand I11 of Y with Horn (P, Yt) 
:t: 0 yields P ~ Y1 ~ Z. 
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Thus we can assume that  H o m  (P, Y) = 0. Let S = P / rad  P. The map  f :  rad P ~ Y 
induces from the canonical  exact sequence 0 --, rad P ~ P --, S --, 0 an exact sequence 
0 ~  Y ~ E ~ S ~ 0 ,  and we denote the map Y ~ E b y m ,  t h e m a p E ~ S b y p .  Since 
H o m  (P, Y) = 0, the induced exact sequence cannot  split, and also H o m  (Y, S) = 0. 

Take an indecomposable  direct summand E'  of E with H o m ( P , E ' ) # : 0 ,  say 
E = E'  | C, with inclusion map  u" E '  ---, E. The restriction up  of p to E'  is non-zero, 
whereas the restriction of p to C is zero. Let m'" Y '  ~ E '  be the kernel of up  : E '  -~ S, thus 
Yis i somorphic  to Y '  | C, and there is an inclusion map  v: Y' ~ Ywith vm = m'  u. Note 
that  Y' 4: 0, since otherwise the sequence 0 ~ Y ~ E -* S -~ 0 would split. Since Y' is a 
non-zero direct summand of Y, we see that  vg 4= O. 

Now we consider the exact sequence 0 ~ Z ~ F - ~  S - ~  0, induced from 
0 ~ Y ~ E ~ S ~ 0 by the map g: Y ~ Z, and we denote the map Z -~ F by m'. Since 
our sequence is in fact induced via the zero map  f g ,  it follows that  m'  is a split monomor -  
phism. Thus, there exists a map g ' :  E ~ Z with rag' = g. Note  that  the restriction ug '  of 
g '  to E'  is a non-zero map, since m'  ug '  = v m g '  = vg  4= O. 

Altogether,  we see that  H o m  (E', Z)  4: 0, thus P ~ E '  ~ Z. This completes the proof  of 
the Lemma. 

In order  to complete the proof  of the Theorem, let P be an indecomposable  projective 
module,  and assume there are indecomposable  direct summands  M1, M2 of rad P and 
an indecomposable  non-projective module W such that  M1 ~ ~ W and W ~ M 2. Let 
( X  o . . . . .  X s )  be a path  with X o = M~, and X s = r W ,  and take non-zero maps 
f i :  Xi_ 1 ~ Xi,  for 1 < i < s. If f l " " f ~  = 0, take t maximal  with f = f ~ . . . f  4: O, and 
g = f i+ l .  The Lemma yields P ~ X t + l ,  thus P ~ X~+~-< r W-< W. If f~ . . . f~  4: 0, let 
m : z W --. V be the source map  for r W, and g : V --+ W its cokernel. In  this case, we apply 
the Lemma to f = f l  " ' f ~  m, and g, in order  to conclude that  P "< W. Always, we have 
P ~ W-<  M2 ~( P, thus P is not  directing. This completes the proof  of Theorem. 

R e m a r k. Let X be an indecomposable  directing module and let E ~ X be the sink 
map. Then E need not  to be directing. Consider  for example the simple injective module 
I (4) in example 1 (see Section 4). 

3. An inductive criterion. Let P an indecomposable  projective A-module,  let S = 
P / rad  P. There are two possible ways of replacing A-mod by a related module category 
B-rood deleting P. First  of all, we may factor out the trace ideal I of P, thus I is the sum 
of all images of maps P -~ A A. Let B = A/ I ,  thus we may identify B-mod with the full 
subcategory ~r of A-mod  given by all A-modules  M with H o m  (P, M)  = 0. Note  that  we 
have H o m  (P, M)  = 0 if and only if S is not a composi t ion factor of M. Also, we may 
consider some projective module P '  such that  P and P '  have no indecomposabte  direct 
summand in common,  but  every indecomposable  projective module is a direct summand 
of P Q P ' .  Let C = End P' .  Then the category C-mod is equivalent to the full subcategory 
~ / o f  all A-modules  M such that  S does not  occur as a composi t ion factor of soc M or 
top M. Note  that  always 2 '  =~ oy. 

The abelian subcategory ~r (but usually not  ~ )  is an exact subcategories and it is closed 
under extensions. By the remark  in Section 1, we see that  a directing A-module  which 
belongs to Y', is directing also as an object of Lr. 

Archiv der Mathematik 60 1 6 
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In case P is directing, End (P) is a division ring, thus obviously rad P belongs to ~'. ~n 
addition, for P directing, rad P will be a directing object of.2". We are interested to know 
under what condit ions an indecomposable  projective module P with End (P) a divison 
ring, and such that  rad P is directing as an object of .~, is directing itself. 

We will present a positive answer in case S is injective, so that  ~" = ~ .  (In this case, the 
algebra A is sometimes said to be a one-point  ex tens ion  A = B [N] of B by the B-module 
N = rad P). 

But first we show in an example that  in general the condit ions above are not  sufficient 
to ensure that P is directing. 

E x a m p 1 e 1. Fo r  this let A be given as the path  algebra over the field k of the 
following quiver modulo  the ideal generated by all paths of length two: 

2 3 
O )0  

1 / ~ 4  
o" ~.o 

We denote by el ,  e>  e3, e 4 the idempotents  of A corresponding to the vertices of the 
quiver. We denote by S(i)  the simple module corresponding to the vertex i, by P(i)  its 
projective cover and by I (i) its injective hull. Note  that  we consider left modules,  thus S (1) 
is simple projective. We consider the indecomposable  projective A-module P (3). Note 
that  End(P(3))  ~ k and r adP(3 )  = S(2). Let e = e 1 + e 2 + e 4. Then C = e A e  ~- B = 

A / A  ea A is a hereditary algebra with quiver 

2 1 4 
o~ o ~o 

In part icular  we see that  S (2) is a directing B-module. 
We denote the indecomposable  A-modules by their dimension vectors. The Auslander-  

Reiten quiver is given as follows, where the horizontal  dot ted  lines indicate the Auslan- 
der-Reiten translation,  while identification is along the vertical dashed lines. 

10 Ot 
/ 0 0 1 

O0 / 11 
! 0 1 i 0 1 

1 1 1 t 

01 O0 10 0l 
0 0 1 1 0 0 0 0 

, \ V '  r 
i " ~ 1 1  / i 

0 0 

So we see that P(3) is not directing, since we have a path  

P(3)  -,- P(4)  -,, I ( 1 )  ~- S(2) -,- P (3 ) .  
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Theorem 2. Let P be indecomposable projective, and assume S = P / rad  P is injective. 
Let I be the trace ideal of P in A, and B =A/ I .  Then P is directing if and only if rad P 
is directing as a B-module. 

P r o o f. If P is directing, then rad P is directing as an A-module,  thus as a B-module. 
Before we consider the converse implication, let us recall the following: Given an 

A-module  X, we denote by ~X the maximal  B-submodule of X, thus X / z X  is a direct sum 
of copies of S. Note  that  if X is an indecomposable  A-module  and zX + X, and Y is an 
indecomposable  direct summand of tX, then H o m  (rad P, Y) 4= 0. (For, Horn (rad P, Y) 
maps onto Ext 1 (S, Y), and the lat ter  group has to be non-zero.) 

Now, let rad P be a directing B-module. First,  we show: Let X be an indecomposable  
B-module,  let X '  ~ X be its sink map in A-rood, and assume X ~ B Z  for some indecom- 
posable direct summand Z o f r a d  P. Then X '  is a B-module. F o r  the proof, we distinguish 
two cases: If X is a projective B-module,  then X '  = rad X is a submodule  of X, thus also 
a B-module. As second case, we assume that  X is non-project ive as a B-module, thus also 
non-projective as an A-module.  Then IrAX = z s X  (see [4] or [5]). We claim that  
~z A X = ~A X. Otherwise H o m  (rad P, ~BX) + 0, by the preceeding remark. Let Z '  be an 
indecomposable  direct summand of rad P with Horn (Z', r8 X)  4: O, then we obta in  the 
path  Z '  ~ 8  r8 X "<8 X "<8 Z, contrary  to our assumption that  rad P is directing in B- 
mod. But 1"tAX = "tAX means that  "tAX is a B-module,  and therefore also X' .  

Let us assume that  there exists a pa th  (X o . . . . .  Xs+l),  where X o = P = Xs+ ~. We 
may assume that  X s is a direct summand of r a d P ,  therefore s > 2. Note  that  if 
H o m  (P, Xt) 4: 0, for some 2 < t < s, we may delete X 1 , . . . ,  Xt_ I from the path,  thus we 
can assume that  Horn (P, Xi) -- 0, for 2 < i _< s. 

Firs t  of all, we show that  the length s + i of such paths  is bounded.  Let f :  X 1 ~ X 2 
be a non-zero map. Note  that  f cannot  vanish on ~X1, since otherwise the image of f 
would be a direct sum of copies of S, but  S does not occur as a composi t ion factor of X 2. 
Let Y be an indecomposable  direct summand of tX~, say with inclusion map  u: Y ~ X~ 
such that  u f  4: O. According to the remark  above, there exists an indecomposable  direct 
summand M i of rad P such that  Horn (M1, Y) 4: 0. Then we see that  we obtain a path  
(M~, Y, X 2 . . . . .  Xs) of length s in B-mod start ing and ending in a direct summand of 
rad P. According to Section i,  the length of such paths  is bounded.  

On the other hand, we claim that  we may replace the path  (X 0 . . . . .  Xs) by a similar 
one with s increased by 1. Namely,  let X ;  ~ X 2 be the sink map  for X 2. We can factor 
f through X ; .  In part icular,  there exists an indecomposable  direct summand Z of X ;  
such that  H o m ( X  1, Z ) 4 :  0. Since there exists an irreducible map Z - ~  X2, we have 
rad (Z, Xz) 4= 0. Also, since X 2 is an indecomposable  B-module and a predecessor of the 
direct summand Xs of rad P, we know that  X ;  is a B-module,  thus X~ and Z cannot  be 
isomorphic,  thus rad (X i ,  Z)  4= 0. Altogether  we obtain a path  (P, X1, Z, X 2 . . . .  , X~, P)  
with similar propert ies  as the given one, and with s being increased by 1. This contradic-  
t ion completes the proof. 

4. When are all indeeomposable projective modules directing? Theorem 2 may be used 
in order  to construct  algebras so that  all indecomposable  projective modules are direct- 
ing. However,  we should remark  that  start ing with an algebra B such that  all indecom- 
posable projective B-modules are directing, and a directing B-module M, some of the 

16" 
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indecomposable projective B-modules may cease to be directing when considered as 
modules over the one-point extension algebra A = B [M], as the following example 
shows: 

E x a m p 1 e 2. Let A be given as the path algebra over the field k by: 

3 

with relation c~fl = 0. 
Let B be the support  algebra of S (1), S (2) and S (3). Then all indecomposable projective 

B-modules are directing. But P (3) is not a directing A-module. This follows directly from 
Theorem 2. In fact rad P (3) = S (2), and S (2) is a simple regular module over the tame 
hereditary algebra C obtained from A by factoring out the trace ideal of P (3). So S (2) is 
not a directing C-module. Note that rad P(4) is a directing B-module, so P (4) is a 
directing A-module. 

We point out that  in the preceding example all indecomposable injective A-modules are 
directing. 

Given an Artin algebra A, we may consider its quiver Q (A). Recall that Q (A) is defined 
as follows: the vertices of Q (A) are the isomorphism classes [S] of the simple A-modules 
S, and there is an arrow [S'] ~ [S] provided Ext 1 (S, S') 4= O. (In this way, for a finite-di- 
mensional basic k-algebra A over an algebraically closed field k the path algebra of Q (A) 
will map onto A; note that some publications (for example [4]) call the opposite of Q (A) 
the quiver of A.) We will label the vertices of Q (A) by numbers or letters; given such a 
label a, we denote by S (a) a representative of the isomorphism class a. 

Note that an algebra A such that all indecomposable projective A-modules are direct- 
ing, necessarily has a directed quiver Q (A). 

Let A be an algebra with directed quiver Q (A). A labelling {al . . . . .  a,  } of the vertices 
of Q(A) will be called admissible, provided Extl(S(ai),  S(aj))4= 0 implies that i > j .  
Of course, any admissible labelling allows to reconstruct A as a succession of one- 

point extensions: Let A t - - A ( a l  . . . . .  at) be the support  algebra of @ S(ai). Then 
Nt = radP(at+!) is an At-module, and A~+ 1 = At[Nil.  ~=l 

We also consider a partial order on the vertices of Q (A) by defining a ==_ b if there is a 
path in Q (A) from a to b. Let a be a vertex of Q (A), then we define A" as the support  
algebra of @ S (b). Then rad P (a) is an Aa-module. Note that for vertices a, b of Q (A) 

a;~b 
with a <= b we have a path from P(a) to P(b) in A-mod, so P ( a ) ~ A P ( b ) .  

Theorem 3. Let A be an algebra with directed quiver Q (A). Then the following are 
equivalent: 
(a) All indeeomposable projective A-modules are directing. 
(b) For any admissible labelling a 1 . . . . .  a, o f  the vertices of Q~ (A), the radical of  P(at+ 1) 

is a directing A (al, . . ., at)-module. 
(c) For all vertices a of  Q (A), the A<module rad P(a) is directing. 
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P r o o f. To show that (a) implies (b) let P (at+ 1) be a directing A-module, then it is 
also a directing A ( a  1 . . . .  , a t+0-module,  thus radP(a t+ l )  is a directing A ( a l ,  . . . ,  at)- 
module. 

Let a be a vertex of Q (A). Then there exists an admissible labelling a 1 . . . . .  an of the 
vertices such that A" is of the form At for some t and a = at+ ~. This shows that (b) implies 
(c). 

To show the missing implication assume that there exists an indecomposable projective 
A-module P which is not directing. Let S = P/ tad  P. Let (Xo, .. . ,  X~) be a path in A-mod 
with Xo = P = Xs. We can assume that for any sink IS'] in Q (A), the simple module S' 
appears as a composition factor of at least one of the X i. We claim that we can assume 
that [S] is a sink in Q (A). For, if IS] is not a sink, let [S'] be a sink with a path from [S] 
to [S']. Let P '  be a projective cover o r s ' ,  then P ~ P' .  By assumption, Horn (P', Xi) =t = 0 
for some i, thus we obtain a path P '  -< X~ ___ P ~ P' ,  thus we may consider P '  instead of 
P. 

If [S] = [S (a)] is a sink in Q (A), then A = A a [rad P (a)]. According to Theorem 2, 
rad P (a) cannot be a directing A"-module. This completes the proof. 

Let us stress that Example 2 shows that it is not sufficient to know that for one 
admissible labelling a I . . . . .  a, of the vertices of Q (A), the radical of P (at+ 2) is a directing 
A (a s . . . . .  a0-module in order to conclude that the indecomposable projective A-modules 
are directing. 

Let A be an Artin algebra. Then A is called representation-finite if there are only a finite 
number of isomorphism classes of indecomposable A-modules. A representation-finite 
Artin algebra A is said to be representation-directed if all indecomposable A-modules are 
directing, or equivalently if the Auslander-Reiten quiver does not contain an oriented 
cycle. The following result is due to Bautista and Sma10 [2], we are going to present an 
alternative proof. 

Proposition 4. Le t  A be representation-finite. Then A is representation-directed i f  and 
only i f  all indecomposable projective A-modules  are directing. 

P r o o f. Suppose that all indecomposable projective A-modules are directing and 
assume that there is an indecomposable A-module X = Xo which is not directing. 
Let (Xo, .. . ,  X~) be a cycle, which we may assume to be a cycle of the Auslander-Reiten 
quiver. Since there is no indecomposable projective on this cycle, also (7 X o . . . .  , z X~) 
is a cycle. Since A is representation-finite we infer that X o is Y-periodic. So we may 
assume that the given cycle is of the form (X, E l ,  z -  X ,  E 2 . . . .  , E r, z - r X  = X) for some 
r e N. Let P be an indecomposable projective A-module with Hom (P, X) :4 = 0, and let 
(P = Yo, I11 . . . . .  Y~ = X) be a path from P to X, which we may assume to be a path 
in the Auslander-Reiten quiver. We now construct inductively for all i >  0 a path 
(z~ X = zi y,,  ~i-1 y~_ ~ . . . .  , z Y , - i+ l, Y,-~). For  i = 0 there is nothing to show. Let 
( z i X  = z~ Y,, z i -1  Y, -1  . . . . .  ~ Y,-~+I,  Y , - i )  be the path from z i x  to Y, - i .  All modules on 
this path are not directing. Thus there is no projective module on this path. Applying 
to this path yields a path from r~+IX to zY,_i. Combining this with the arrow 
zY,,,-i ~ Y,-(i+l) gives now the required path from z i + l x  to Y,_~+~). This shows 
P ~_ X ~_ z " X  -< P, a contradiction. 

The converse implication is clear. 
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The following example shows that in general the components of the Auslander-Reiten 
quiver containing indecomposable directing projective modules may contain indecom- 
posable modules which are not directing. 

E x a m p I e 3. Let A be given as the path algebra over the field k by 

4 7 5 6 6 

a 

with relations c~fl = 76 = 0. 
Then all indecomposable projective A-modules are directing, as can be seen by using 

Theorem 2. However the component  of the Auslander-Reiten quiver containing P(6) 
contains modules which are not directing. One may take for example S (2). Note that we 
have irreducible maps from I (4) to S (2) and to S (5) = r a d  P (6). 

Finally, let us add the following remark: 

Proposition 5. The A-module aA is directing if and only if A is hereditary. 

P r o o f. In case A is hereditary, any indecomposable module X with X ~ P for some 
indecomposable projective module P is projective itself, thus AA is directing. 

Conversely, assume that A is not hereditary. Then there exists an indecomposable 
projective A-module P with an indecomposable submodule U which is not projective. 
Since U is non-projective, we can form z U, and there is some indecomposable projective 
module P '  with Horn (P', z U) #: 0. Since P, P '  are direct summands of a A, we see that AA 
cannot be directing. 

A d d e d  in p roo f .* )  There is a recent preprint by A. Skowroflski and M. Wenderlich: Arlin 
algebras with directing indecomposable projective modules. It contains parallel results and further 
interesting investigations. 
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