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Directing projective modules

By

Dieter HAPpeL and CLaus MICHAEL RINGEL

Let A be an Artin algebra. The 4-modules which we consider are always left modules
of finite length. If X, Y, Z are A-modules, the composition of maps f: X — Y and
g: Y — Zisdenoted by fg: X — Z. The category of (finite length) A-modules is denoted
by A-mod. If X, Y are indecomposable 4-modules, we denote by rad (X, Y) the set of
non-invertible maps from X to Y. A path in A-mod is a sequence (X, ..., X,) of (isomor-
phism classes of} indecomposable A4-modules X, 0 £ i < s such that rad (X;_;, X;) £ 0
forall 1 £i < s We will say that (X, ..., X,) is a path from X, to X, of length s, and
we write X < X', or X <, X’ to indicate that a path from X to X' exists. If s > 1, and
X, = X, then the path (X, ..., X,) is called a cycle. A indecomposable A-module is
called directing if X does not occur in a cycle.

Our first aim will be to extend the definition of a directing module to decomposable
modules. We show that an indecomposable projective A-module P is directing if and only
if the radical of P is directing. In case the top of P is injective it follows that P is directing
if and only if the radical of P is directing as a module over the factor algebra of 4 by the
trace ideal of P.

The authors are grateful to the referee for helpful comments.

1. Directing modules. Let t = 7, be the Auslander-Reiten translation on 4-mod. The
kernel of a map f will be denoted by Ker f, its image by Im f.

Lemma. Let 1 X — Y,and g: Y — Z be maps with fg = 0, and assume that there is no
direct summand Y' of Y with Im f € Y’ € Kerg. Then there exists an indecomposable
non-projective module W such that Hom (X, tW) % 0, and Hom (W, Z) += 0.

Proof. Recall that a map g: Y — Z is called right minimal provided Ker g does not
contain a non-zero direct summand of Y.

First, let us show that we may assume that both f, g are non-zero and that g is right
minimal. For, let Y, be a maximal direct summand of Y contained in the kernel of ¢, and
let X, =f"1(Y;). Incase X, = X, wehaveIm f € ¥; ¢ Kerg, with ¥, a direct summand
of Y, contrary to our assumption. Thus X, is a proper submodule of X. Let Y = Y, ® Y,

let f=][f;./,],and g = l:glJ, where f;: X —» Y, g, Y, > Z. By definition, both f, and
2

g, 4Ire NOn-Zero, g, is right minimal, and f, g, = 0. Thus, we replace f, g, Y by f5, g5, V5.
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Let K = Kerg, with inclusion map u: K — Y. Since Im f is contained in K, and f = 0,
there is an indecomposable direct summand K; of K with Hom(X, K,) = 0. Let
my: K, — K be the inclusion map. Since g is right minimal, K, is not a direct summand
of Y, in particular we see that K, cannot be injective. Let 0 - K, - E - W — 0 be an
almost split sequence, and denote the map K, — E by h, the map E — W by e. Since m, u
is not a split monomorphism, there exists v: E — Y with hv = m, u, and therefore also
v W > Z with ev’ =vg. We claim that v’ % 0. Otherwise, vg = 0, thus there is
v": E — K such that v"u = v. But hv"u = hv = m, u yields that ho" = m,, since u is a
monomorphism. But with hv” = m, also h is split mono, impossible. This contradiction
shows that Hom (W, Z) & 0. Thus, we have found an indecomposable non-projective
module W with Hom (W, Z) + 0, and Hom (X, W) = Hom (X, K,) + 0.

Corollary, An indecomposable module X is directing if and only if there does not exist
an indecomposable non-projective module W such that X < tW and W < X.

Proof. If there exists an indecomposable non-projective module W such that
X X tWand W < X, then we have a cycle containing X. Conversely, assume there exists
acycle (X,, ..., X )with X = X, = X, say with non-zero maps f;: X;_; — X, and write
f;= f;in casej = i(mod s). There is some ¢ = 1 with f, -+ f, & 0, but f;--- f,,; = 0. We
apply the Lemma to f = f,--- f,, and g = f,,, and conclude that there exists an inde-
composable non-projective module W such that X = X, <tWand W< X, ,, and, of
course, X,,, < X.

We use this characterization of indecomposable directing modules in order to extend
the definition as follows: an arbitrary (not necessarily indecomposable) module M will be
called directing provided there do not exist indecomposable direct summands M, , M, of
M, and an indecomposable non-projective module W such that M, < tWand W =< M,.
(General directing modules have been considered already by Bakke in [1]; directing
modules which are in addition sincere have been called partial slice modules in [3]).

Remark. We may define the notion of a directing object in any abelian category o/
which has almost split sequences: we say that the object M of & is directing if and only
if there do not exist indecomposable direct summands M, M, of M, and an almost split
sequence 0 — U — V - W — O such that M, < U and W < M, . If we want to empha-
size that we consider paths in of, we may write <, instead of <. Assume that &/ is
an exact abelian subcategory of A-mod which also has almost split sequences. If M
is a directing A-module which belongs to &/, then M is directing when considered as
an object of /. For let M, M, be indecomposable direct summands of M, and let
00— U-V - W - (bean almost split sequence in &7 such that M, S Uand W= M,.
Since we assume that o7 is an exact subcategory, the given almost split sequence shows
that Extl (W, U) 0, thus Hom (U, t,W) % 0. Altogether we see that M, < U <1, W
and W <X M, in A-mod, thus M cannot be directing as an A-module.

Directing modules are very special. The main properties can be found in the following
three Propositions. Given any module M, its support algebra is the factor algebra of 4
modulo the ideal generated by all idempotents which annihilate M.
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Proposition 1. Let M be directing, and let B be the support algebra of M. Then End (M)
is hereditary, Ext* (M, M) = 0, and M, as a B-module, is a partial tilting module.

Proof. Given indecomposable direct summands M;, M; of M, then Ext* (M, M)
= 0, since otherwise Hom (M, t M;) # 0, contrary to the assumption that M is directing.
Thus we have Ext' (M, M) =

Since B-mod is an exact abelian subcategory having almost split sequences, we see that
M is also directing as a B-module.

We claim that the projective dimension of any indecomposable summand M; of M as
a B-module is at most 1. Otherwise, there is an indecomposable injective B-module I with
Hom(I, 1y, M) # 0. Since B is the support algebra of M, there exists some direct sum-
mand M; of M with Hom (M, I) & 0, thus we obtain M; < I < 15 M,;, impossible. This
shows that M as a B-module is a partial tilting module. In the terminology of [3], the
B-module M is a partial slice module, thus End M is hereditary.

The next proposition collects the information on paths (X, ..., X|), where the X are
direct summands of a directing module.

If(X,,..., X,)is a path, we say that a path (Y;, ..., Y,) is a refinement of (X, ..., X;)
if there is an order-preserving function 7: {0, ..., s} — {0,..., ¢} such that X, = Y, and
n(0)=0,n(s) =1t.

We recall that for indecomposable A-modules X, ¥, the set rad?(X, Y) consists of all
finite sums of maps of the form fg, where f e rad (X, C), g e rad (C, Y), with C indecom-
posable.

Proposition 2. Let (X, ..., X) be a path, and assume that there does not exist an

indecomposable non-projective module W with X, <tW and W= X,. Let X = C—B X;.
Then the following assertions hold:
(a) The module X is directing.

(b) If fi: X,_y — X, are non-zero maps, for 1 Si<s, then f;--f,+0.

{c) Hom(X, tX;)=0, foralli,].

(d) The number s is bounded by the number of isomorphism classes of simple A-modules.
(e) The path can be refined to a path (Y,,...,Y,) such that rad®*(Y,_,, ¥} =0 for

1<igt.

(hH  Assume we have rad®(X,;_,,X;) =0, for 1 <i<s, and let 0+ f,erad(X,_,, X;).
If fi--f,=gh for some maps g: Xog — Z, h: Z — X, with Z indecomposable, then
there exists some i with 0 Zi=<s and an isomorphism n:Z — X, such that
gn =1 f

Proof. (a) Assume there exists an indecomposable non-projective module W such
that X; <tW and W =X X, for some i,j. Then X, < X, =<tWand W= X,; < X, con-
trary to the assumption.

(b} This is a direct consequence of Lemma 1.

(cj) fHom(X;, tX;) =+ 0,then X, < X, <tWand W < X, with W = X, contrary to
our assumption.

{(d) This follows from Proposition 1.

(e} According to (d) there exists a refinement which cannot be further refined But if

(Y, ..., Y;) is a path which cannot be refined, then necessarily rad?(Y,_,, ¥;) =
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(f) Let us assume that rad*(X,;_,, X;) = 0,and let 0 # f;erad(X,_,, X,)for 1 €i <.
Let us assume that f,---f, = gh for some maps g: X, > Z, h: Z - X, where Z is
indecomposable. If / is an isomorphism, let i = s, and # = h. Thus let us assume that 4
is not an isomorphism. We use induction on s. For s =1 the map ¢ has to be an

isomorphism, thus let n = g~ *. Consider the case s = 2. Let [fs,] be a sink map for X,

thus h = uf, + vf,, for some maps u, v. Then f, -+ f, = gh = guf, + gv f, shows that the
s

map [f; - f_1 — gu, gv] factors through the kernel K of | *° |. However, either X is

5

projective, and K = 0, or else X is non-projective, and K = tX,. In the latter case, the
basic assumption gives Hom(X,, 1 X,) = 0, thus always [f} " f,_; — gu. gv] = 0, and
therefore f, - f,_, = gu. The assertion now follows by induction.

Proposition 3. Let M be a directing A-module. Let M, (i € I) be a complete set {one from
each isomorphism class) of indecomposable A-modules M, such that there are indecompos-
able direct summands M|, M| of M with M{ < M, < M!. Then I is finiteand M = @ M,
is directing. tel

Proof. Let M;, M; belong to the set. Assume there is some indecomposable non-
projective module W with M, =<tW and W XM, Then we obtain a path
M{ZM, X tW=xW=XM,; <M/, where M, M} are direct summands of M, impossible.
It follows by Parts (e) and (d) of Proposition 2 that I is finite, since the Auslander-Reiten
quiver of any Artin algebra is locally finite. Also we see that M is directing.

2. Indecomposable projective modules and their radicals.

Theorem 1. Let P be an indecomposable projective module. Then the jollowing are
equivalent:
(a) P is directing.
(b) rad P is directing.
(¢) Each indecomposable direct summand of rad P is directing.

Proof. Clearly, if (X,, ..., X,) is a cycle with P = X, = X, then we can factor any
non-invertible map X, — X, = P through rad P, thus we can refine the path in order
to contain some indecomposable summand M of rad P, thus M, is not directing. This
shows that (c) implies (a). Trivially we have (b) implies (c).

In order to consider the missing implication, we will use the following Lemma.

Lemma. Let f:radP - Y, g: Y — Z be non-zero maps with fg = 0, and assume that
Z is indecomposable, and g is right minimal. Then P < Z.

Proof. Since we assume that g is right minimal, the restriction of g to any non-zero
direct summand of Y is non-zero.

If Hom (P, Y) = 0, then any indecomposable direct summand Y; of Y with Hom (P, Y,)
+0yields PXY, X Z.
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Thus we can assume that Hom(P, Y) = 0. Let S = P/rad P. The map f:radP - Y
induces from the canonical exact sequence 0 »rad P - P — S — 0 an exact sequence
0->Y—> E-> S -0 and we denote the map Y — E by m, the map E — S by p. Since
Hom (P, Y) = 0, the induced exact sequence cannot split, and alsoc Hom (Y, S} = 0.

Take an indecomposable direct summand E’ of E with Hom(P, E') + 0, say
E = E'® C, with inclusion mapu: E' — E. The restriction up of p to E’ is non-zero,
whereas the restriction of p to Cis zero. Let m': Y’ — E’ be the kernel of up: E’ — S, thus
Yisisomorphic to Y' @ C, and there is an inclusion map v: Y’ — Y with vm = m’u. Note
that Y’ = 0, since otherwise the sequence 0 - ¥ — E - § — 0 would split. Since Y’ is a
non-zero direct summand of Y, we see that vg =+ 0.

Now we consider the exact sequence 0 > Z —» F - § — 0, induced from
0>Y—>E—>S—>0bythemapyg:Y — Z, and we denote the map Z — F by m’. Since
our sequence is in fact induced via the zero map fg, it follows that m’ is a split monomor-
phism. Thus, there exists a map ¢g': E — Z with mg’ = g. Note that the restriction ug’ of
g’ to E’ is a non-zero map, since m’ug’ = vmg’ = vg + 0.

Altogether, we see that Hom (E', Z) + 0, thus P < E' < Z. This completes the proof of
the Lemma.

In order to complete the proof of the Theorem, let P be an indecomposable projective
module, and assume there are indecomposable direct summands M, M, of rad P and
an indecomposable non-projective module W such that M, <tW and W= M,. Let
(Xo,...,X,) be a path with Xo=M,, and X, =1W, and take non-zero maps
X o X, for1Si<s If f,-- f, =0, take ¢ maximal with f = f;---f # 0, and
g = fi+1. The Lemma yields P=<X,,,, thus P= X, S <cWXW If f,---f,+0, let
m:tW — V be the source map for W, and g: V — W its cokernel. In this case, we apply
the Lemma to f = f, - f,m, and g, in order to conclude that P < W. Always, we have
P=W=XM,<P,thus P is not directing. This completes the proof of Theorem.

Remark. Let X be an indecomposable directing module and let E — X be the sink
map. Then E need not to be directing. Consider for example the simple injective module
I(4) in example 1 (see Section 4).

3. An inductive criterion. Let P an indecomposable projective A-module, let § =
P/rad P. There are two possible ways of replacing A-mod by a related module category
B-mod deleting P. First of all, we may factor out the trace ideal I of P, thus I is the sum
of all images of maps P — ,A4. Let B = A/I, thus we may identify B-mod with the full
subcategory 2 of A-mod given by all A-modules M with Hom (P, M} = 0. Note that we
have Hom (P, M) = 0 if and only if S is not a composition factor of M. Also, we may
consider some projective module P’ such that P and P’ have no indecomposable direct
summand in common, but every indecomposable projective module is a direct summand
of P@® P'. Let C = End P’. Then the category C-mod is equivalent to the full subcategory
% of all A-modules M such that S does not occur as a composition factor of soc M or
top M. Note that always & € #.

The abelian subcategory & (but usually not %) is an exact subcategories and it is closed
under extensions. By the remark in Section 1, we see that a directing 4-module which
belongs to Z, is directing also as an object of Z.

Archiv der Mathematik 60 16
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In case P is directing, End (P) is a division ring, thus obviously rad P belongs to 2. In
addition, for P directing, rad P will be a directing object of Z. We are interested to know
under what conditions an indecomposable projective module P with End (P) a divison
ring, and such that rad P is directing as an object of Z, is directing itself.

We will present a positive answer in case S is injective, so that £ = %. (In this case, the
algebra A is sometimes said to be a one-point extension A = B[N] of B by the B-module
N =radP).

But first we show in an example that in general the conditions above are not sufficient
to ensure that P is directing.

Example 1. For this let 4 be given as the path algebra over the field & of the
following quiver modulo the ideal generated by all paths of length two:

2 3

O——Q
1 / \4
>0

We denote by e, e,, ¢5, ¢, the idempotents of A corresponding to the vertices of the
quiver. We denote by 5(i) the simple module corresponding to the vertex i, by P (i) its
projective cover and by I (i) its injective hull. Note that we consider left modules, thus S (1)
is simple projective. We consider the indecomposable projective 4-module P(3). Note
that End(P(3)) = k and rad P(3) = S(2). Let e=¢, + ¢, + ¢,. Then C=ede= B =
AJ/Aey A is a hereditary algebra with quiver

2 1 4
O¢—0—0

In particular we see that S(2) is a directing B-module.

We denote the indecomposable A-modules by their dimension vectors. The Auslander-
Reiten quiver is given as follows, where the horizontal dotted lines indicate the Auslan-
der-Reiten translation, while identification is along the vertical dashed lines.

10 01

So we see that P(3) is not directing, since we have a path

P(3)—P@) - I(1)—>S2)— P(3).
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Theorem 2. Let P be indecomposable projective, and assume S = P/rad P is injective.
Let I be the trace ideal of P in A, and B = A/I. Then P is directing if and only if rad P
is directing as a B-module.

Proof. If P is directing, then rad P is directing as an A-module, thus as a B-module.

Before we consider the converse implication, let us recall the following: Given an
A-module X, we denote by 1 X the maximal B-submodule of X, thus X/1X is a direct sum
of copies of S. Note that if X is an indecomposable A-module and 1 X + X, and Y is an
indecomposable direct summand of 1 X, then Hom(rad P, Y) + 0. (For, Hom (rad P, Y)
maps onto Ext* (S, Y), and the latter group has to be non-zero.)

Now, let rad P be a directing B-module. First, we show: Let X be an indecomposable
B-module, let X' — X be its sink map in A-mod, and assume X <, Z for some indecom-
posable direct summand Z of rad P. Then X’ is a B-module. For the proof, we distinguish
two cases: If X 1s a projective B-module, then X’ = rad X is a submodule of X, thus also
a B-module. 4s second case, we assume that X is non-projective as a B-module, thus also
non-projective as an A-module. Then 171, X =1, X (see [4] or [5]). We claim that
174X =714 X. Otherwise Hom (rad P, 15 X) *+ 0, by the preceeding remark. Let Z’ be an
indecomposable direct summand of rad P with Hom (2, 13 X) = 0, then we obtain the
path Z' <p1; X <z X < Z, contrary to our assumption that rad P is directing in B-
mod. But 17, X = 7, X means that 7, X is a B-module, and therefore also X .

Let us assume that there exists a path (X,,..., X,,,), where Xo=P=X_,,. We
may assume that X, is a direct summand of rad P, therefore s = 2. Note that if
Hom (P, X,) # 0, for some 2 £ ¢ < 5, we may delete X ,, ..., X,_, from the path, thus we
can assume that Hom (P, X,) =0, for 2 i < s

First of all, we show that the length s + 1 of such paths is bounded. Let f: X, —» X,
be a non-zero map. Note that f cannot vanish on 1 X, since otherwise the image of f
would be a direct sum of copies of S, but § does not occur as a composition factor of X,.
Let ¥ be an indecomposable direct summand of 1 X ;, say with inclusion mapu: Y — X,
such that uf # 0. According to the remark above, there exists an indecomposable direct
summand M, of rad P such that Hom (M, Y) & 0. Then we see that we obtain a path
(M, Y, X,,...,X,) of length s in B-mod starting and ending in a direct summand of
rad P. According to Section 1, the length of such paths is bounded.

On the other hand, we claim that we may replace the path (X,,..., X,) by a similar
one with s increased by 1. Namely, let X} — X, be the sink map for X,. We can factor
S through X;. In particular, there exists an indecomposable direct summand Z of X}
such that Hom(X,, Z) % 0. Since there exists an irreducible map Z — X,, we have
rad (Z, X,) #+ 0. Also, since X, is an indecomposable B-module and a predecessor of the
direct summand X of rad P, we know that X} is a B-module, thus X, and Z cannot be
isomorphic, thus rad (X, Z) < 0. Altogether we obtain a path (P, X, Z, X,, ..., X,, P)
with similar properties as the given one, and with s being increased by 1. This contradic-
tion completes the proof.

4. When are all indecomposable projective modules directing? Theorem 2 may be used
in order to construct algebras so that all indecomposable projective modules are direct-
ing. However, we should remark that starting with an algebra B such that all indecom-
posable projective B-modules are directing, and a directing B-module M, some of the

16*
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indecomposable projective B-modules may cease to be directing when considered as
modules over the one-point extension algebra 4 = B[M], as the following example
shows:

Example 2. Let A be given as the path algebra over the field k by:

3
O

y‘
2
a

o
1 / \4
F—30
with relation af = 0.

Let B be the support algebra of $(1), S(2) and S (3). Then ali indecomposable projective
B-modules are directing. But P (3) is not a directing A-module. This follows directly from
Theorem 2. In fact rad P(3) = S(2), and §(2) is a simple regular module over the tame
hereditary algebra C obtained from A4 by factoring out the trace ideal of P(3). So $(2) is
not a directing C-module. Note that rad P(4) is a directing B-module, so P(4) is a
directing A-module.

We point out that in the preceding example all indecomposable injective A-modules are
directing.

Given an Artin algebra 4, we may consider its quiver Q {A4). Recall that 0 (4) is defined
as follows: the vertices of Q(A4) are the isomorphism classes [S] of the simple A-modules
S, and there is an arrow [S’] — [S] provided Ext*(S, $') # 0. (In this way, for a finite-di-
mensional basic k-algebra 4 over an algebraically closed field k the path algebra of Q (4)
will map onto 4; note that some publications (for example [4]) call the opposite of Q (4)
the quiver of A.) We will label the vertices of Q(A4) by numbers or letters; given such a
label a, we denote by S(a) a representative of the isomorphism class a.

Note that an algebra A such that all indecomposable projective A-modules are direct-
ing, necessarily has a directed quiver Q (4).

Let A be an algebra with directed quiver Q (4). A labelling {a,, ..., a,} of the vertices
of 0(4) will be called admissible, provided Ext!(S(a;), S (a;)) # 0 implies that i > j.
Of course, any admissible labelling allows to reconstruct A as a succession of one-

{
point extensions: Let A4, = A(a,,...,a,) be the support algebra of @ S(a;). Then
N,=rad P(a,, ) is an A-module, and 4,,; = 4,[N,]. =1
We also consider a partial order on the vertices of Q (4) by defining a < b if thereis a
path in Q (4) from a to b. Let a be a vertex of Q(A4), then we define A? as the support
algebra of @ S(b). Then rad P(a) is an 4°module. Note that for vertices a, b of Q(4)

aXb
with a < b we have a path from P(a) to P(b) in A-mod, so P(a) =, P{b}.

Theorem 3. Let A be an algebra with directed quiver Q(A). Then the following are
equivalent:
() All indecomposable projective A-modules are directing.
(b) For any admissible labelling a,, ..., a, of the vertices of Q (A), the radical of P{a,. )
is a directing A(a,, ..., a,)-module.
(c) For all vertices a of Q(A), the A*-module rad P (a) is directing.
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Proof. To show that (a) implies (b) let P(g,,,) be a directing A-module, then it is
also a directing 4(ay, ..., a,,,)-module, thus rad P(q,, ) is a directing 4 (a,,...,q,)-
module.

Let a be a vertex of Q (A4). Then there exists an admissible labelling a,, ..., g, of the
vertices such that A%is of the form A4, for some t and a = @, . This shows that (b) implies
(c).

To show the missing implication assume that there exists an indecomposable projective
A-module P which is not directing. Let § = P/rad P. Let (X,, ..., X,) be a path in A-mod
with X, = P = X,. We can assume that for any sink [S'] in @ (A4), the simple module S’
appears as a composition factor of at least one of the X;. We claim that we can assume
that [S]is a sink in @ (4). For, if [S] is not a sink, let [S’] be a sink with a path from [S]
to [S']. Let P’ be a projective cover of §’, then P < P’. By assumption, Hom (P’, X,) £ 0
for some i, thus we obtain a path P’ < X, < P < P’, thus we may consider P’ instead of
P.

If [S]=[S(a)] is a sink in Q(A4), then A = A%[rad P(a)]. According to Theorem 2,
rad P(a) cannot be a directing 4A“-module. This completes the proof.

Let us stress that Example 2 shows that it is not sufficient to know that for one
admissible labelling a,, ..., g, of the vertices of Q (4), the radical of P (a, ) is a directing
Alay, ..., a,)-modulein order to conclude that the indecomposable projective A-modules
are directing.

Let A be an Artin algebra. Then A is called representation-finite if there are only a finite
number of isomorphism classes of indecomposable 4-modules. A representation-finite
Artin algebra 4 is said to be representation-directed if all indecomposable A-modules are
directing, or equivalently if the Auslander-Reiten quiver does not contain an oriented
cycle. The following result is due to Bautista and Smale [2], we are going to present an
alternative proof.

Proposition 4. Let A be representation-finite. Then A is representation-directed if and
only if all indecomposable projective A-modules are directing.

Proof. Suppose that all indecomposable projective A-modules are directing and
assume that there is an indecomposable A-module X = X, which is not directing.
Let (X,, ..., X,) be a cycle, which we may assume to be a cycle of the Auslander-Reiten
quiver. Since there is no indecomposable projective on this cycle, also (t Xy, ...,7X,)
is a cycle. Since A is representation-finite we infer that X, is t-periodic. So we may
assume that the given cycle is of the form (X, E,, 7™ X, E,,..., E,, 17" X = X) for some
reN. Let P be an indecomposable projective A-module with Hom (P, X) % 0, and let
(P=Y,,Y,...,Y,=X) be a path from P to X, which we may assume to be a path
in the Auslander-Reiten quiver. We now construct inductively for all i= 0 a path
X =1Y,t" Y,_,,..,tY_, .y, Y,_) For i =0 there is nothing to show. Let
(X =1Y,7"'Y_,,...,1Y,_,,,, Y,_,) be the path from ' X to Y,_,. All modules on
this path are not directing. Thus there is no projective module on this path. Applying ©
to this path yields a path from t"*1 X to tY,_,. Combining this with the arrow
1Y,_; = Y4+ gives now the required path from t"*'X to Y,_;, . This shows
P <X Z1"X X P, a contradiction.

The converse implication is clear.
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The following example shows that in general the components of the Auslander-Reiten
quiver containing indecomposable directing projective modules may contain indecom-
posable modules which are not directing.

Example 3. Let 4 be given as the path algebra over the field k by
4 y 5 6 6

O——0——20
o
\2
0
p
1 3
0
with relations aff = y0 = 0.
Then all indecomposable projective A-modules are directing, as can be seen by using
Theorem 2. However the component of the Auslander-Reiten quiver containing P(6)
contains modules which are not directing. One may take for example S(2). Note that we

have irreducible maps from I(4) to S(2) and to S(5) = rad P(6).

Finally, let us add the following remark:

Proposition 5. The A-module A is divecting if and only if A is hereditary.

Proof. Incase 4 is hereditary, any indecomposable module X with X < P for some
indecomposable projective module P is projective itself, thus 44 is directing.

Conversely, assume that A is not hereditary. Then there exists an indecomposable
projective A-module P with an indecomposable submodule U which is not projective.
Since U is non-projective, we can form t U, and there is some indecomposable projective
module P’ with Hom (P’, tU) # 0. Since P, P’ are direct summands of 4, we see that ,A4
cannot be directing.

Added in proof.*) There is a recent preprint by A. Skowronski and M. Wenderlich: Artin
algebras with directing indecomposable projective modules. 1t contains parallel results and further
interesting investigations.
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