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Zueignung

Ihr naht euch wieder, schwankende Gedanken,
Die früh sich einst dem trüben Blick gezeigt.
Weis’ ich euch diesmal in die Schranken?
Sind Form und Inhalt recht bezeugt,
Wiewohl mein Herz dem wilden Ranken,
Ach! dem Mäandern zugeneigt?

Ihr drängt euch zu! nun gut, so mögt ihr walten,
Der Arbeit labyrinthisch irren Lauf
So rein und eben zu gestalten,
Dass man ihm folgen mag darauf.

(frei nach Goethe (1808))
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terstützung, Ralf Hofestädt für die Zusammenarbeit mit seinen Mitarbeitern und die zur Verf-
gung gestellte Hardware. Der European Science Foundation danke ich für ein Kurzstipendium
am Rothamsted Research Institute (RRI) in Harpenden, UK, und dem RRI danke ich für die
freundliche Aufnahme bei mehreren Besuchen in der Gruppe von Jacob Köhler. Nicht zuletzt
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Abstract

Cells in the human body communicate over long distances via two systems, the humoral sys-
tem and the neuronal system. The humoral system works via first messenger substances, such
as hormones, cytokines and neurotransmitters, which are released into the blood. Biomedical
knowledge on this kind of intercellular signaling is well established, but in contrast to signaling
processes inside cells, not much of this knowledge exists in a form that is easily accessible for au-
tomated approaches, such as databases or ontologies. Most of what is known about extracellular
signaling is stored in terms of natural language text in the scientific literature.

The present study aims at the reconstruction and analysis of cell-cell signaling pathways by ap-
plying automated approaches. Therefore, relevant data is extracted from molecular databases
as well as from biomedical literature by applying concept based text mining. For this purpose,
models and corresponding graph representations are developed to assemble intercellular signals
from partial information since available data sources are scattered and incomplete. The result-
ing information is finally applied to generate hypotheses on cell-cell signaling in the context of
neurodegenerative diseases.

More specifically, from the few molecular databases containing appropriate data, one database
is tested in a preliminary study and reconstruction approaches accessing the specific structure of
this database are developed. To reconstruct information from natural language text, ONDEX,
a framework for ONtological text inDEXing and data integration has been developed in a col-
laborative work. ONDEX supports concept based approaches, i.e. databases and ontologies are
integrated into a standardized graph-based framework, where biological entities as concepts are
linked by relations (i.e., ”is-a”, ”part-of” or ”synonym”). A major part of this thesis is the de-
velopment and the integration of concept based text indexing and concept based co-occurrence
searches into ONDEX. On this basis, MEDLINE abstracts are mapped to concepts of a number of
ontologies (e.g., Gene Ontology, MeSH terms and Cell Ontology) and mined for relevant parts of
intercellular signaling. From these relations finally, cell-cell signaling hypotheses are assembled.

Whereas the networks resulting from the database reconstruction are not sufficient for rea-
sonable analysis and further use, evaluations of the text mining results show that a significant
number of known facts can be found by applying concept based co-occurrences searches. Finally,
the text extraction results are reduced to a manageable amount of concept based co-occurrence
hits and hypotheses for cell types involved in neurodegenerative diseases. In this case a number
of known facts are reconstructed and suggestions for further improvements are made.

The text extraction results demonstrate the possibility to reconstruct relations between biological
entities from text by applying a concept based framework and thus, how a large text set can be
reduced to a number of hypotheses allowing manual examination.
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Chapter 1

Introduction

Intercellular signaling

Cells are complex biological systems controlled by the interaction of molecules (Cooper,
2000). The state of a living cell is sustained by biomolecular networks on several levels,
ranging from the regulation of gene expression to the control of energy consumption and
production by metabolic networks (Barabási and Oltvai, 2004). In multicellular organisms,
the actions inside single cells need to be coordinated and synchronized in order to shape
the organism as a whole, coherent system (Alberts et al., 2002). For example, immune
system cells send signals to repel dangerous external intrusions. Another example is during
ontogenesis: the cells need to “know” their special function and communicate for this
purpose with each other.

Therefore, intercellular or extracellular signaling comes into play to connect cells. In
contrast to intracellular signals inside a cell, an extracellular signal needs a messenger sub-
stance that is able to pass through the cell membrane, bridge a distance to another cell
and to dock there, either at the cell surface or inside the target cell. With this mechanism,
information can be transmitted between cells, and collective behavior can be initiated.
Different cell types in an organism are able to send a variety of signals and can likewise
react to signals in different ways. Thus, the cell types and their signaling capacities form a
network where the cell types are the nodes connected by their signaling relations. Further-
more, the intercellular network of cell communication connects the intracellular networks
and is hence an important mechanism to control cell function.

Networks are not only a metaphorical way to understand organisms as complex sys-
tems. A network perspective helps rather to organize knowledge on local interactions
into a systemic view. Biology in general can be seen as a science of interconnected net-
works (Barabási and Oltvai, 2004). Systems biology, as a recently emerged branch of
biological and life sciences, aims at assembling knowledge collected in specialized fields of
molecular biology (Kitano, 2002; Hiesinger and Hassan, 2005). Additionally, network sci-
ences attracted attention recently for the development of a theoretical base for a unifying
description of systems as diverse as social networks, the internet or molecular interactions
by using concepts from graph theory and statistical mechanics (Watts and Strogatz, 1998;
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Barabási and Albert, 1999; Albert and Barabási, 2002; Newman, 2003). A combination
of network sciences and the systematic assembly of already established partial biological
knowledge will help to complete our understanding of the functionality of whole organisms.

In an integrative model of mammalian organisms, the intercellular signaling network is
an important part. In order to gain such a system level view, the existing knowledge has to
be collected and combined. The present thesis contributes to this goal by the development
of methods for extracellular network reconstruction from databases and literature as well
as the analysis and application of the reconstructed data.

Relevant data for reconstruction

Surprisingly, although cell signaling is a well-established field in biomedicine, and knowl-
edge on cell signals has existed for more than 100 years, the amount of relevant data
accessible for automated software approaches is very low. Structured information on com-
plete cell-cell signals (i.e. comprising of sender and target cell types as well as the messenger
substances connecting them) is not available directly, but rather as partial information that
has to be combined into complete cell-cell signals. For this purpose, a cell signaling model
and corresponding graph representations that reflect the form of the available data are
developed in this thesis.

The first kind of data source applied to reconstruct intercellular signaling networks are
molecular databases. Here structured information on components of intercellular signals is
available. However, a major disadvantage of such databases that emerged after preliminary
studies is the non-specific definition of the locations of messenger and receptor substances.
In the few databases that specify molecular locations at all, there is usually no distinction
between e.g., cell types or organs. Furthermore, often cell types of interest for specific
problems are not contained in the databases.

A general problem in reconstructing cell-cell signals is that all reconstructed signals are
unvalidated hypotheses due to their generation from partial information. Validating these
hypotheses is complicated by the fact that many of them might hold true, but have simply
not yet been investigated experimentally. Additionally, the number of resulting hypotheses
due to combinatorial explosion of the available components of intercellular signals is very
large, even for only few cell types.

Since all these problems apply probably for any currently available database, a text
mining approach on abstracts of biomedical journal papers has been developed. Although
the cell-cell signals have to be reconstructed similarly by combining partial data, the ad-
vantage of text mining is that the entities of interest can be specified in advance. Thus,
search lists with cell types, messengers and receptors are applied. Additionally, text mining
results in a set of potentially relevant texts that would be difficult to find by manual search
queries.

Therefore ONDEX (Köhler et al., 2004), a system for data integration, text mining, net-
work extraction and visualization is developed in cooperation with Jacob Köhler (Rotham-
sted Research, Harpenden, UK) and Alexander Rüegg (Bioinformatics and Medical Infor-
matics Department, Bielefeld University). ONDEX is a general purpose framework and not



9

restricted to the reconstruction of cell-cell networks, but several ideas designed in the con-
text of the present thesis could be generalized and integrated in this system. In ONDEX,
concept based approaches are proposed in order to enable data handling on a semantic level.
For this purpose ontologies are used as background knowledge to identify concepts in the
texts. Then the annotated texts can be queried for concepts rather than searching only at
the string level. Hence, with the ONDEX framework it is for instance possible to detect
texts that contain synonyms, abbreviations or different spellings of the searched terms.

In this context, ONDEX is used to index selected MEDLINE abstracts by a set of
relevant concepts (i.e., cell types, messengers and receptors). Subsequently, a concept
based co-occurrence search is applied to identify relations between these concepts. Using
the resulting partial information on intercellular signals, cell-cell signaling hypotheses are
finally generated. Furthermore, sequentially applied refinement steps in the co-occurrence
searches serve as filter in order to reduce the amount of extracted information.

The reconstructed cell signaling network data is finally applied in the context of neu-
rodegenerative diseases. Specifically, biologists of the group of Thomas Schmitt-John at
Bielefeld University are conducting research on the Amyotrophic Lateral Sclerosis (ALS)
disease and its respective model organism, the wobbler mouse (Schmitt-John et al., 2005).
The question regarding intercellular signaling is to identify communication relations be-
tween four particular cell types of interest. For this purpose, the text mining results could
be used, whereas the available databases did not contain signaling information on the cell
types considered.

Thesis overview

The thesis is structured as follows: Section 2 introduces the necessary background, i.e. the
biological function of intercellular signaling, available molecular databases, text mining
methods for network extraction as well as a brief review of existing approaches for recon-
structing and analyzing intercellular networks. The background section concludes with a
discussion of implications that follow from the presented state of research and should be
considered for reconstructing cell-cell signaling networks. General intercellular signaling
models and corresponding graph representations which are used in all applied data sources
are defined in Section 3.

Sections 4 and 5 present the reconstruction approaches and results gained from the
preliminary database study and from text mining in biomedical abstracts, respectively.
Both sections describe the specific properties of the respective data source, the reconstruc-
tion approach following from these properties and its implementation. Exemplary results
are discussed. In Section 6 the reconstruction results from both types of data sources,
databases and text, are inspected to be applied for the search for signals between cell
types relevant in neurodegenerative diseases. The thesis concludes with a discussion of the
results and an outlook to future work (Section 7).

The appendix contains further information on existing network extraction tools, the
implementation of ONDEX as well as several lists with terms used for and resulting from
the presented network reconstruction approaches.
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This chapter is intended to give an overview of the biological background of intercellular
signaling (Section 2.1) and of the available electronic resources, such as molecular databases
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(Section 2.2) as well as the biomedical literature and the possibilities to extract networks
from text (Section 2.3). Existing approaches to reconstruct and analyze intercellular sig-
naling networks are reviewed in Section 2.4. The chapter concludes with implications for
this thesis resulting from the presented background (Section 2.5).

2.1 Intercellular signaling

According to the fossil record, sophisticated unicellular organisms resembling present-day
bacteria were present on earth for about 2.5 billion years before the first multicellular
organisms appeared (Alberts et al., 2002). One reason why multicellularity was so slow
to evolve may have been related to the difficulty of developing the elaborate cell com-
munication mechanisms required for a multicellular organization. Cells must be able to
communicate with one another in complex ways if they are to be able to govern their own
behavior for the benefit of the organism as a whole.

These communication mechanisms depend heavily on extracellular signal molecules,
which are produced by cells to signal to their neighbors or to cells further away. Each
cell depends on elaborate systems of proteins that enable it to respond to a particular
subset of signals in a cell-specific way. These proteins include cell-surface receptor pro-
teins, which bind the signal molecule, plus a variety of intracellular signaling proteins that
distribute the signal to appropriate parts of the cell. Using these mechanisms, intercellular
communication controls a variety of important cellular processes (Figure 2.1, left side)

In this section the basic principles of cell signaling are explained. Therefore Section 2.1.1
defines the general types of cell signaling that are of interest here. The sections that follow
present the different types of signals (Section 2.1.2), messenger substances (Section 2.1.3)
and receptors (Section 2.1.4) constituting intercellular signaling. All explanations in this
section only briefly describe the biological background necessary for the focus of the present
thesis. Further information can be found in Alberts et al. (2002) and Cooper (2000), on
which this introductory section is based1.

2.1.1 General principles of cell signaling

The general mechanisms of cellular communication can be compared with the electronic
transmission of information (as e.g. in telephone calls): The sender emits an electric im-
pulse which is transported through a medium (wire) and received by a target where the
message is decoded and, in some cases, causes responses. Translated to biological terms,
in multicellular-organisms cell signaling comprises of a sender and a target cell as well as
first messenger substances carrying the information. The messengers are finally decoded
and transformed by a receptor molecule on or inside the target cell into second messengers.

Cell signaling is therefore processed in two stages:

1All figures from Alberts et al. (2002) are reproduced by permission of Garland Science/Taylor &
Francis LLC
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Figure 2.1: Intercellular and intracellular signals. Left panel: Possible effects of intercellular communi-
cation. Each cell type displays a set of receptors that enables it to respond to a corresponding set of signal
molecules produced by other cells. These signal molecules work in combinations to regulate the behavior
of the cell. As shown here, an individual cell requires multiple signals to survive and additional signals to
divide or differentiate. If deprived of appropriate survival signals, a cell will undergo a form of cell suicide
known as programmed cell death, or apoptosis. Right panel: Growth signaling circuitry of the mammalian
cell as example of intracellular processes connected to extracellular signals. Genes highlighted in gray are
known to be functionally altered in cancer cells (Sources: left figure copyright ( c©2002) from Alberts et al.

(2002), right figure reprinted from Hanahan and Weinberg (2000) with permission from Elsevier).

1. Signal transmission: the target cell receives the information as first messengers (or
ligands2 released by a source cell). The first messengers bind to a specific receptor
on the target cell (number (1) in Figure 2.2, left side).

2. Signal transduction: the ligand-receptor binding activates an intracellular signaling
cascade of second messenger molecules (number (2) in Figure 2.2, left side). The
transduction process “translates” the external signal so that cellular responses can
take place.

The extracellular signaling molecules often act at very low concentrations, and the receptors
that recognize them usually bind to them with high affinity. In most cases, these receptors
are transmembrane proteins on the target cell surface. In other cases, the receptors are
inside the target cell, and the signal molecule has to enter the cell to activate them:
this requires that the signal molecules are sufficiently small and hydrophobic to diffuse
across the plasma membrane. At the end of each intracellular signaling pathway are target
proteins, which are altered when the pathway is active and change the behavior of the cell.
Depending on the signal’s effect, these target proteins can be for instance gene regulatory
proteins, ion channels, components of a metabolic pathway or parts of the cytoskeleton
(Figure 2.2, right side).

2both terms, ligand and first messenger, will be used interchangeably throughout this thesis
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Figure 2.2: Principle mechanisms of cell signaling. Left panel: Ligands (or first messengers) are released
by a source cell and bind to a receptor at a target cell (1). In the target cell the signal is transduced (2) and
second messengers are released inside the cell, causing certain cellular responses (3) or altering the gene
expression (4). Right panel: Schematic view of the same process. An extracellular signal molecule binds
to a receptor protein and over several stages of an internal signaling cascade several different processes are
activated or inhibited. (Sources: BioTeach (www.bioteach.ubc.ca) and copyright ( c©2002) from Alberts
et al., 2002).

The signaling cascade initialized by the ligand binding at the receptor is part of the com-
plex intracellular network that hierarchically combines the interactions of several classes
of molecules inside a cell (from the level of genetic regulatory networks to protein-protein
interactions and metabolic pathways, see Figure 2.1 (right side) as example).

2.1.2 Types of signals

Signal transmission between two cells differs mainly in respect to the cells’ distance. The
closest way of cell communication are cell junctions (see e.g. a gap junction in Figure 2.3,
top left side). These cell-cell junctions can form between closely apposed plasma mem-
branes and directly connect the cytoplasms of the joined cells via narrow water-filled
channels. The channels allow the exchange of small intracellular signaling molecules (in-
tracellular mediators), such as Ca2+ and cyclic AMP, but not of macromolecules, such as
proteins or nucleic acids. Thus, cells connected by gap junctions can communicate with
each other directly, without having to surmount the barrier presented by the intervening
plasma membranes. Such junctions, however, will not be further considered here, since the
present study focuses on cell signals based on ligand-receptor interactions.

In the closest ligand-receptor interaction based signaling type, the signal molecules
remain bound to the surface of the signaling cell and influence only cells in contact to
(Figure 2.3, left side, (A)). Such contact-dependent signaling is especially important dur-
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Figure 2.3: Types of cell signaling. Left panel: generally four different types of cell signals can be
discriminated, varying from short range (A) to long distances (D). All these cell signals differ from cellular
communication through direct junctions. For example, gap junctions (top) are specialized cell-cell junctions
that can form between closely apposed plasma membranes and directly connect the cytoplasms of the joined
cells via narrow water-filled channels. This way of cell communication is not based on ligand-receptor
interactions and therefore not considered in the present study. Middle and right panel: schematic view
of two selected signaling types for more than two connected cells. Whereas different endocrine cells (A)
must use different hormones to communicate specifically with their target cells, different nerve cells (B)
can use the same neurotransmitter and still communicate in a highly specific manner through the neuronal
architecture (Source: copyright ( c©2002) from Alberts et al., 2002).

ing development and in immune responses. In most cases, however, signal molecules are
secreted and bridge a distance to the target cell. The secreted molecules may be carried far
afield to act on distant targets, or they may act as local mediators, affecting only cells in
the immediate environment of the signaling cell. This latter process is called paracrine sig-
naling (Figure 2.3, left side, (B)). For paracrine signals to be delivered only to their proper
target cells, the secreted molecules must not be allowed to diffuse too far; for this rea-
son they are often rapidly taken up by neighboring target cells, destroyed by extracellular
enzymes, or immobilized by the extracellular matrix.

For a large, complex multicellular organism, short-range signaling is not sufficient on
its own to coordinate the behavior of its cells. In these organisms, sets of specialized
cells have evolved with a specific role in communication between widely separate parts
of the body. The most sophisticated of these are nerve cells, or neurons, which typically
extend long processes (axons) that enable them to contact target cells far away through
synaptic signaling. When activated by signals from the environment or from other nerve
cells, a neuron sends electrical impulses (action potentials) rapidly along its axon; when
such an impulse reaches the end of the axon, it causes the nerve terminals located there to
secrete a chemical signal called a neurotransmitter. These signals are secreted at chemical
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synapses, which are designed to ensure that the neurotransmitter is delivered specifically
to the postsynaptic target cell (Figure 2.3, left side, (C)).

A second type of specialized signaling cell that controls the behavior of the organism
as a whole is an endocrine cell. These cells secrete their signal molecules, called hormones,
into the bloodstream, which carries the signal to target cells distributed widely throughout
the body. These target cells have receptors for binding a specific hormone, which the
cells “pull” from the extracellular fluid. This is called endocrine signaling (Figure 2.3, left
side, (D)). In synaptic signaling, by contrast, specificity arises from the synaptic contacts
between a nerve cell and the specific target cells it signals. Usually, only a target cell that
is in synaptic communication with a nerve cell is exposed to the neurotransmitter released
from the nerve terminal (although some neurotransmitters act in a paracrine mode, serving
as local mediators that influence multiple target cells in the area).

In complex animals, endocrine cells and nerve cells work together to coordinate the
diverse activities of the billions of cells. Whereas different endocrine cells must use different
hormones to communicate specifically with their target cells (Figure 2.3, middle), different
nerve cells can use the same neurotransmitter and still communicate in a highly specific
manner (Figure 2.3, right side).

All of the forms of signaling discussed so far allow one cell to influence another. Often,
the signaling cell and target are different cell types. Cells, however, can also send signals
to other cells of the same type, as well as to themselves. In such autocrine signaling, a cell
secretes signal molecules that can bind back to its own receptors. During development,
for example, once a cell has been directed along a particular pathway of differentiation, it
may begin to secrete autocrine signals to itself that reinforce this developmental decision.

2.1.3 Types of first messengers

According to the four general signaling types presented in the previous section, a possible
classification scheme for first messenger substances is:

• Contact-dependent signaling molecules: an example for a signal molecule in contact-
dependent signaling is delta, a transmembrane protein originating at prospective neu-
rons and various other embryonic cell types. This messenger inhibits neighboring cells
from becoming specialized in the same way as the signaling cell during development.

• Local mediators: in paracrine signaling, mainly growth factors act as messengers,
such as e.g. the epidermal growth factor (EGF) or the platelet-derived growth factor
(PDGF) that both stimulate many cell types to proliferate. A different example of a
local mediator is nitric oxide (NO), a dissolved gas that is able to cross the plasma
membrane of the target cell and directly binds to enzymes inside the cell in order to
regulate smooth muscle contraction.

• Neurotransmitters are the first messengers in synaptic signaling. They diffuse across
the synaptic cleft and bind to receptors on the target cell surface. Examples are



2.1 Intercellular signaling 17

acetylcholine and γ-aminobutyric acid (GABA) which act excitatory and inhibitory
respectively in the central nervous system.

• Hormones act as messengers in endocrine signaling. They can be divided in peptide
hormones that bind to receptors at the cell surface and steroid hormones that cross
the plasma membrane and bind to receptors inside the cell. Peptide hormones are for
example insulin (stimulates glucose uptake), glucagon (stimulates glucose synthesis)
and growth hormones (stimulation of several other substance and of the immune
system). Exemplary steroid hormones are the sex steroids testosterone, estrogen and
progesterone (induce and maintain secondary male/female sexual characteristics).

However, not any first messenger fits exactly into this scheme. Several signaling molecules
exhibit the properties of more than one class, as e.g. adrenaline that increases blood pres-
sure, heart rate and metabolism and acts as hormone as well as neurotransmitter.

A different way to classify extracellular signaling molecules is to divide them according
to the two different fundamental types of receptors. The first and largest class of signals
consists then of molecules that are too large or too hydrophilic to cross the plasma mem-
brane of the target cell. The receptor proteins for these signal molecules therefore have to
lie in the plasma membrane of the target cell and relay the message across the membrane
(Figure 2.4, top left side). The second and smaller class consists of molecules that are
sufficiently small and hydrophobic to diffuse across the plasma membrane. For these signal
molecules the receptors lie in the interior of the target cell and are generally either gene
regulatory proteins or enzymes (Figure 2.4, bottom left side).

Growth factors, neurotransmitters and peptide hormones belong to the first class of
signal molecules that bind only to surface cell receptors. Growth factors are also known
as cytokines which are mainly associated with hematopoietic (i.e., blood forming) cells
and immune system cells (e.g., lymphocytes and tissue cells from spleen, thymus, and
lymph nodes). Further members of this signaling molecule group are chemokines (a class
of chemotactic cytokines) and neuropeptides (secreted by some neurons instead of the
small-molecule neurotransmitters). The second group of signal molecules that bind to
intracellular receptor is constituted by steroid hormones and the simple gas nitric oxid
(NO).

2.1.4 Types of receptors

The main distinction that can be made for receptors is whether they are bound to the
plasma membrane or reside inside the cell (Figure 2.4, left side). Inside these two groups
further classifications can be shown:

Most cell-surface receptor proteins belong to one of three classes, defined by the transduc-
tion mechanism they use. Ion-channel-linked receptors, also known as transmitter-gated
ion channels or ionotropic receptors, are involved in rapid synaptic signaling between elec-
trically excitable cells (Figure 2.4, right side, (A)). This type of signaling is mediated by
a small number of neurotransmitters that transiently open or close an ion channel formed
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Figure 2.4: Receptor types in cell signaling. Left panel: the binding of extracellular signal molecules
to either cell-surface receptors or intracellular receptors. Most signal molecules are hydrophilic and are
therefore unable to cross the plasma membrane directly; instead, they bind to cell-surface receptors, which
in turn generate one or more signals inside the target cell. Some small signal molecules, by contrast,
diffuse across the plasma membrane and bind to receptors inside the target cell – either in the cytosol or in
the nucleus (as shown here). Right panel: three classes of cell-surface receptors. (A) Ion-channel-linked
receptors, (B) G-protein-linked receptors, and (C) enzyme-linked receptors. Although many enzyme-linked
receptors have intrinsic enzyme activity, as shown on the left, many others rely on associated enzymes, as
shown on the right (Source: copyright ( c©2002) from Alberts et al., 2002).

by the protein to which they bind, briefly changing the ion permeability of the plasma
membrane and thereby the excitability of the postsynaptic cell. The ion-channel-linked
receptors belong to a large family of homologous, multipass transmembrane proteins.

G-protein-linked receptors act indirectly to regulate the activity of a separate plasma-
membrane-bound target protein, which can be either an enzyme or an ion channel. The
interaction between the receptor and this target protein is mediated by a third protein (G
protein), called a trimeric GTP-binding protein (Figure 2.4, right side, (B)). The activation
of the target protein can change the concentration of one or more intracellular mediators
(if the target protein is an enzyme), or it can change the ion permeability of the plasma
membrane (if the target protein is an ion channel). The intracellular mediators affected
act in turn to alter the behavior of yet other signaling proteins in the cell. All of the G-
protein-linked receptors belong to a large family of homologous, seven-pass transmembrane
proteins.

Enzyme-linked receptors, when activated, either function directly as enzymes or are
directly associated with enzymes that they activate (Figure 2.4, right side, (C)). They are
formed by single-pass transmembrane proteins that have their ligand-binding site outside
the cell and their catalytic or enzyme-binding site inside. Enzyme-linked receptors are
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heterogeneous in structure compared with the other two classes. The great majority,
however, are protein kinases, or are associated with protein kinases, and ligand binding to
them causes the phosphorylation of specific sets of proteins in the target cell.

The intracellular receptors on the other hand all bind to specific DNA sequences adjacent
to the genes the ligand regulates. Some receptors, such as those for cortisol, are located
primarily in the cytosol and enter the nucleus after ligand binding; others, such as the
thyroid and retinoid receptors, are bound to DNA in the nucleus even in the absence of
ligand. The ligand binding also causes the receptor to bind to coactivator proteins that
induce gene transcription. The transcriptional response usually takes place in successive
steps: the direct activation of a small number of specific genes occurs within about 30
minutes and constitutes the primary response; the protein products of these genes in turn
activate other genes to produce a delayed, secondary response; and so on. In this way, a
simple hormonal trigger can cause a very complex change in the pattern of gene expression.

2.2 Molecular databases

The amount of biomedical data is increasing exponentially (Shatkay and Feldman, 2003).
This is not only reflected by the large number of published journal articles in the respective
research areas, but also by the accelerated growth of biomolecular databases. Furthermore,
new databases for different purposes are frequently introduced.

In our case – the reconstruction of signaling interactions between cells – the situation is
even more complex. After reviewing the contents of several available databases (Table 2.1),
it was clear that no data source contains complete information on cell signaling, i.e. infor-
mation of the form: cell type X sends messengers M to cell type Y . Instead, the most
useful database content that can be found for our purpose is information on ligand-receptor
interactions. From these interactions, cell-cell signals can be inferred by connecting the
locations of the the ligand and the receptor molecule (for the biological background see
the previous section). Therefore it is necessary that locations of the respective molecules
are known, i.e. in which cell types ligands are produced or receptors are expressed.

Thus, the available databases are checked whether they contain interactions of the
relevant molecules and their locations. The databases listed in Table 2.1 are selected
exemplary to demonstrate the criteria used for choosing a data source.

Table 2.1 lists the databases according to their size (numbers of molecules and reactions
contained, as far as current statistics are available). It should be noted that databases in
some cases list reactions between the molecules (sometimes, as e.g. in KEGG, as chemical
equations) and in some cases interactions. The exact chemical meaning could be different,
but in our case the only information of interest is whether two substances are able to
interact.

The databases differ not only in respect to their size, but also to their types: there are
sequence databases (as Swiss-Prot or KEGG), containing mainly genetic information for a
variety of organisms. Other databases focus on interactions (as the Biomolecular INterac-
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Database Mol. Int. Molecule locations? Reference and URL

Swiss-Prot 195 589 – Only as free text in the
molecule comments

Gasteiger et al. (2001)
http://www.expasy.org/sprot

Transpath 28 779 52 977 No locations given Schacherer et al. (2001)
http://www.biobase.de

HPRD 20 097 26 462 Expression sites given Peri et al. (2003)
http://www.hprd.org

DIP 18 827 55 393 No locations given Xenarios et al. (2002)
http://dip.doe-mbi.ucla.edu

KEGG
(LIGAND)

13 042 6 442 No locations given Kanehisa et al. (2004)
http://www.genome.jp/kegg

CSNDB 3 512 1 382 Given for a subset of
molecules

Igarashi and Kaminuma (1997)
http://geo.nihs.go.jp/csndb

BIND – 198 905 No locations given Bader et al. (2001)
http://bind.ca

Table 2.1: Statistics of molecular databases checked for information on intercellular signaling as of October
2005. The columns list the database name (1), the number of molecules (2) and interactions (3, in some
cases referenced to as reactions), a comment whether cellular locations of the molecules are given (4) and
the web address of the database (5). Further references are given in the text. The databases are listed in
decreasing order of their molecule numbers.

tion Database (BIND) or the Database of Interacting Proteins (DIP)), signaling pathways
(as Transpath or the Cell Signaling Network Data Base (CSNDB)) or on specific types of
molecules (as the Human Protein Reference Database (HPRD)). All these databases con-
tain molecules and interactions of interest regarding cell signaling, but they also exhibit
one or several of the following problems:

• Missing molecule locations: the molecules are not assigned to cell types, tissues,
organs or other anatomical locations, i.e. it is not known where they are synthesized.

• Missing location types: If locations are given, these locations are not further specified,
i.e. it can not be determined automatically, whether the location is a cell type, a tissue
or a different location type.

• Missing molecule and interaction types: Molecules and interactions are often not
explicitly assigned to a type, as e.g. “ligand”, “receptor” or “ligand-receptor binding”.
Thus, in such cases it can not be inferred only from the database which molecules
and interactions are to be selected. Lists with molecules of interest are then required.

The most prominent problem in many databases is that molecule locations are not con-
tained. The other two problems might be overcome by using additional data sources, as
e.g. ontologies containing anatomical information or manually created lists with molecules
of interest. Many databases contain also complete pathways, but except in the CSNDB
these are intracellular pathways. Another restriction is that if databases contain only
specific molecule types they might not cover all different first messengers of cell signaling.
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In the following the databases shown in Table 2.1 will be briefly introduced (ordered as in
the table). The focus of each description is the question whether and to which extent the
respective database contains information of interest in respect to intercellular signaling.
Further details of the databases are omitted here. Section 4 contains the reasons for
the selection of the CSNDB and a more detailed description of this database, as well as
the results of the applied reconstruction approaches. The present section closes with a
brief review about ontologies that could be used as additional data sources to complement
information missing in the molecular databases presented. Some of them are used later in
the text mining approach (Section 5).

Swiss-Prot

Swiss-Prot (Gasteiger et al., 2001) is a protein knowledge base established in 1986 and
maintained collaboratively, since 1987, by the Swiss Institute of Bioinformatics and the
European Molecular Biology Laboratory (EMBL). The database is part of the UniProt
knowledge base, a central access point for curated protein information. Swiss-Prot is freely
available and can be downloaded or accessed via a web interface. It is manually curated
and aims at providing a high level of annotation (such as the description of the function of
a protein, its domains structure, post-translational modifications, variants, etc.), a minimal
level of redundancy and a high level of integration with other databases (currently about
60).

The Swiss-Prot protein knowledge base consists of sequence entries, some intracellular
signaling pathways, but no reactions of the protein encoded in the sequences. Thus, al-
though Swiss-Prot is by far the largest database in our list (in respect to the number of
contained molecules), it can not be applied to reconstruct cell signals.

Nevertheless, it was checked whether Swiss-Prot might be exploited to add information
that is missing from other databases. However, Swiss-Prot is not of great use in this respect
either: tissue locations are listed sometimes in the literature references or as free text in
the comments of the molecule records. Also, all different kinds of locations (cell types etc.)
are regarded as “tissue” and are not further specified. A further problem is the level of
detail in Swiss-Prot. For example, if “insulin” is searched, the web engine lists 312 hits
which include entries for different organisms and different forms as e.g. insulin precursors
as well as receptors. Since the molecule types are not further specified (e.g. as “ligand” or
as “receptor”), a parsing process would only work for pre-defined lists of entities.

For these reasons, Swiss-Prot is not further applied.

Transpath

Transpath (Schacherer et al., 2001) has been developed and is supported as commercial
database by the company Biobase, Wolfenbüttel, Germany. The database comprises of
molecules participating in signal transduction and the reactions they undergo. Thus it
spans the intracellular signaling network and together with the software PathwayBuilder,
also developed and supported by Biobase, the overall intracellular network can be retrieved



22 2 Background

and displayed.

Compared to Swiss-Prot, Transpath and the other selected databases are relatively
small in respect to the number of molecules. But Transpath also contains reactions between
its molecules as well as sequence information. Unfortunately, the only location information
stored in Transpath are the intracellular locations of the molecules, not their tissues or cell
types. Therefore, it could not be applied for database reconstruction. However, it can used
as external data source and evaluation tool in the text mining approach (see Section 5.5).

HPRD

The Human Protein Reference Database (HPRD, Peri et al., 2003) represents a centralized
platform to visually depict and integrate information pertaining to domain architecture,
post-translational modifications, interaction networks and disease association for each pro-
tein in the human proteome. All the information in the HPRD has been manually extracted
from the literature by expert biologists. In only two years the database contents grew from
2 750 proteins and 10 534 interactions to currently 20 097 proteins and 26 462 interac-
tions, the third largest database in our list (Table 2.1). Additionally, the HPRD provides
an intuitive web engine to search and browse the contents and can be freely downloaded.

Although this database concentrates on intracellular signaling and proteins, it contains
many of the molecules and interactions of interest in the context of extracellular signaling.
Also, for each protein a list of expression sites is given, complemented by respective liter-
ature references. However, the exact type of the expression site (whether it is e.g. a cell
type or a tissue) is not further specified.

In summary: the HPRD is a well-curated database that includes information on molec-
ular locations in terms of expression sites. It might have been chosen instead of the CSNDB
(see below) if it were available at that time, however, this database does not contain all
necessary location information (especially the cell types needed for the application case in
Section 6). Furthermore, even a database containing correct location information would
not necessarily prevent the generation of very dense hypotheses networks, as demonstrated
by the preliminary studies with the CSNDB.

DIP

The Database of Interacting Proteins (DIP, Xenarios et al., 2002) is freely available and
the fourth largest in our selection (Table 2.1), but more than 80% of the proteins are from
non-mammalian organisms as Drosophila, S. Cerevisiae, E.Coli and C. Elegans. Only
about 1000 reported proteins are from human, mouse and rat. Also, no locations of the
molecules or interactions are stored. An example search for insulin returned the insulin
precursor and the insulin receptor, but not the actual insulin hormone. Thus, this database
is inappropriate for our purposes.
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KEGG

KEGG (Kyoto Encyclopedia of Genes and Genomes) aims at enabling the computational
prediction of higher-level complexity of cellular processes and organism behaviors from ge-
nomic and chemical information (Kanehisa et al., 2004). It is freely available for searching
and download. The sequence based part of the databases (GENES) contains more than one
million entries from nearly 300 organisms and is thus even larger than the abovementioned
Swiss-Prot. But in this context we refer to the LIGAND component of KEGG, containing
about thirteen thousand molecules and six thousand reactions between them (Table 2.1).
The reactions are denoted as chemical equations in text form as well as in graphical rep-
resentations. Also figures for a large numbers of intracellular pathways are available. For
these reasons, KEGG is one of the most frequently used sources for pathways, especially
for enzyme related pathways.

However, locations of the molecules are not stored and hence, this database could not
be applied in the context of extracellular signaling.

CSNDB

The Cell Signaling Networks Database (CSNDB) is designed as a data and knowledge
base for signaling pathways of human cells. It compiles the information on biological
molecules, sequences, structures, functions, and biological reactions which transfer the
cellular signals (Igarashi and Kaminuma, 1997). The contents of the CSNDB are manually
extracted from the scientific literature. It was freely available for searching, browsing and
download, but is currently not online and seems to be not further supported.

The reasons to choose the CSNDB as test case of a extracellular signaling network
reconstruction from a database are that molecular locations are defined and many rele-
vant molecules are contained. Additionally, a number of extracellular signals are defined
explicitly and molecules and interaction possess a type (as e.g., “hormone”, “cytokine” or
“ligand-receptor binding”). Furthermore, the CSNDB mainly refers to the human organ-
ism.

A detailed description of the content and organization of the CSNDB as well as of
the reconstruction results are the content of Section 4. A variety of cell signals could be
extracted and verified, but the problems of databases in the context of extracellular signals
(as listed above) remain.

BIND

The Biomolecular Interaction Network Database (BIND) is a collection of records docu-
menting molecular interactions (Bader et al., 2001). The contents of BIND include high-
throughput data submissions and hand-curated information gathered from the scientific
literature. BIND appears at the end of the database selection in Table 2.1 since it lists
only the number of about 3 600 protein complexes in the database statistics, but not of
the individual proteins contained.
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BIND contains a considerable amount of molecules and interactions, detailed informa-
tion are denoted in a new graphical notation called ontoglyphs, furthermore the database is
freely available for searching and download but, however, no molecule locations are stored
and thus, BIND can not be applied in our context.

Ontologies

In philosophy, ontology is the discipline considered with the study of being or existence.
Therefore, an ontology defines basic categories that describe the nature and the organiza-
tion of the world in an as much as possible objective way (in opposite to the subjective
perspective of epistemology). In terms of computer science though, an ontology can be
seen as “an explicit specification of a conceptualization” (Gruber, 1993), i.e. as a system
for knowledge representation. Similar to expert systems they can be used to store facts
about the world in a knowledge base and to define rules for inferring knowledge from the
stored facts.

Ontologies can be briefly described as an extension of simple term collections or con-
trolled vocabularies since ontologies additionally define relations between the entities (e.g. a
limb can be characterized as part-of a tree). For detailed definitions of controlled vocab-
ularies and ontologies see Section 5.1.1. Here we will only briefly mention some ontologies
that could potentially be used to add information missing in the previously mentioned
databases (as e.g. molecule types or specific information about the location of molecules).
However, currently no single ontology provides sufficient information to completely recon-
struct extracellular signals.

The Medical Subject Headings (MeSH) are part of the the Unified Medical Language System
project (UMLS, Bodenreider, 2004) by National Library of Medicine (NLM) in the USA
and used as controlled vocabulary for indexing articles in the MEDLINE database of journal
abstracts. Each article contained in MEDLINE is manually assigned with a number of
MeSH terms in order to characterize it and to improve database searches. Thus, the
MeSH terminology aims at providing a consistent way to retrieve information that may
use different terminology for the same concepts.

By using the hierarchical structure of the MeSH ontology, molecule names could be
further characterized (as e.g. hormones or cytokines). In the context of text mining we
used the MeSH terms in the opposite way to manually extract lists with the entities of
interest (names of cell types, first messengers and receptors) that are to be searched in the
texts (Section 5.2.1).

Ontologies reflecting the anatomical hierarchy in the human body could be considered
in order to characterize missing molecular locations. A very comprehensive source in
this context is the Foundational Model of Anatomy (FMA, Noy et al., 2004, available
at sig.biostr.washington.edu/projects/fm/index.html), a freely available domain
ontology that represents a coherent body of explicit declarative knowledge about human
anatomy in a form that is understandable to humans and is also navigable by machine-based
systems. However, the main assignments that could be made using the FMA are mappings
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Figure 2.5: Schematic overview of approaches for network extraction from text.

to the major systems of the body, as e.g. the respiratory system or the cardiovascular
system.

A further extensive anatomical ontology is the publicly available eVOC ontology (Kelso
et al., 2003, available at www.evocontology.org). eVOC is a controlled vocabulary that
is based on molecular data and therefore unifies gene expression data by facilitating a link
between the genome sequence and expression phenotype information. As a further source,
Cytomer (Wingender, 2004) is a database describing a hierarchical classification structure
for physiological systems, organs and cell types in order to enable the accurate description
of regulatory events and expression patterns in organism, biological space and time. It is
freely available from the Biobase company (www.biobase.de).

To conclude this section, the Open Biomedical Ontologies initiative should be men-
tioned (obo.sourceforge.net). Here a comprehensive and up-to-date list of controlled
vocabularies and ontologies in the biomedical research is maintained.

2.3 Network extraction from text

Biology can be regarded as a science of networks: interactions between various biological
entities (e.g. genes, proteins, metabolites) on different levels (e.g. gene regulation, cell
signaling) can be represented as graphs and thus, analysis of such networks might shed
new light on the function of biological systems (Barabási and Oltvai, 2004).

Such biological networks can be obtained from different sources. Especially the biomed-
ical literature provides extensive and detailed information. Hence, the extraction of bio-
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logical networks is an emerging text mining task, which requires the integration of a wide
range of text mining techniques to support systems biological approaches in modeling,
analysis and simulation of biological systems (Christopher et al., 2004). Furthermore,
network extraction is also important for other fields, such as database curation and anno-
tation (Hofmann and Schomburg, 2005). Some databases such as Transpath (Schacherer
et al., 2001) are in fact networks, while others compile interactions between biological enti-
ties such as proteins, transcription factors or enzymes and metabolites, e.g. BIND (Bader
et al., 2001), DIP (Xenarios et al., 2002), BRENDA (Schomburg et al., 2002). Further-
more, extracted networks can be used to analyze and interpret experimental results, i.e. to
support research and discovery (Werner, 2005). Another application is to exploit implicit
information for generating new knowledge by combining extracted information into a set
of hypotheses (Swanson, 1986; Srinivasan and Libbus, 2004; Wren et al., 2004; Chen and
Sharp, 2004; Eijk et al., 2004).

The extraction of biological networks requires a combination of several different com-
putational disciplines. Rather than presenting a comprehensive overview of each involved
discipline or the whole relation mining field, this section aims at introducing key aspects
and selecting examples that represent the different possible approaches.

Figure 2.5 introduces the main steps required for reconstructing biological networks
from free text and serves also as guideline for this section: first the texts to be searched
have to be chosen. Then entities (e.g. genes, proteins, metabolites) have to be identified
and their (potential) relations are to be inferred from the selected texts. Finally, the
entities and relations can be combined as nodes and edges into a network. The result
produced in each step serves as input of the next step. Extracting structured information
from unstructured natural language sources can not yet be expected to produce accurate
results which can be used immediately and without further consideration. Therefore, the
intermediate results of each step also deserve separate validation and their performance
can be evaluated separately.

In the following, Section 2.3.1 introduces validation measures, the Sections 2.3.2 to 2.3.5
are organized along the steps presented in Figure 2.5. Section 2.3.6 closes this overview
on network extraction from text with a summary. A brief survey about tools covering one
or several steps of the workflow can be found in the appendix, Section A. This section
is based on the publication “Extraction of biological interaction networks from scientific
literature” (Skusa et al., 2005). Further details can be found there.

2.3.1 Validation measures

For each step of the workflow (Figure 2.5), the performance is dependent on the previous
steps. To quantify the performance of text mining results, three major metrics are normally
used: recall, precision and effectiveness (Ding et al., 2002). The recall is the fraction of
correctly identified entities (texts, gene names, protein interactions, etc) in the set of
relevant (i.e. true-positive) entities, whereas the precision is the proportion of extracted
relevant entities to all entities retrieved. Precision and recall are sometimes also referred to
as specificity and sensitivity. In simple words, the recall shows how much of the searched
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information could be extracted and the precision reflects the quality of the method. From
this it follows that in order to calculate the recall usually more information about the
searched texts is needed in advance. On the other hand, in order to estimate the precision,
one only has to validate a representative subset of the results obtained. For this reason,
often the precision is reported without a recall. However, to provide a balanced estimate of
the performance of a text mining approach, both values are combined in the effectiveness
measure, which is the reciprocal of the mean of precision and recall.

2.3.2 Texts

The first decision to be made for the extraction of biological networks from scientific litera-
ture is the selection of the text sources. One drawback that can not be avoided is that even
if relation mining would be 100% successful in retrieving all information from the respective
literature, these networks would reflect mostly the current state of the literature, i.e. they
might suffer from both the incompleteness and the biases of the current research efforts
in molecular biology and genetics. In effect, networks extracted from scientific literature
are not fully connected, and stronger connected subnetworks might stem from research ac-
tivities concentrating on a couple of interesting genes or substances (Krauthammer et al.,
2002).

Although in principle any text source can be used for text mining, in practice abstract
collections of scientific publications and full text journal publications are normally used.
Abstract collections have the advantage of the relatively high information density. Fur-
ther, they are often already manually annotated and categorized in a structured way that
can be exploited for pre-filtering. Whereas MEDLINE (Bachrach and Charen, 1978) is
the largest and most widely used bibliographic resource in the biological domain, other
abstract collections and indexing services should also be considered, since MEDLINE does
not necessarily provide the best domain coverage for a specific type of network to be ex-
tracted (Stone et al., 1998). However, in most text mining approaches, MEDLINE is used,
which is probably due to the fact that MEDLINE is freely available for noncommercial
purposes.

Recently, an increasing number of text mining approaches also utilize full text journal
publications (Friedman et al., 2001; Huang et al., 2004; Plake et al., 2005), and the suc-
cess of the open access model (Suber, 2002) will remove the financial hurdle for getting
hold of a reasonable number of electronic full text publications. Yet dealing with full text
publications is also more challenging on a technical level as one has to deal with a range
of different formats (pdf, HTML) in which the publications are provided. The more de-
manding aspect is that the substructure is not always the same. However, since the typical
sections of scientific publications (abstract, introduction, methods, results, discussion, fig-
ure captions, tables etc.) largely differ in their information density (Schuemie et al., 2004),
it is not surprising that those text mining applications applied on full texts perform best
which take the substructure of the paper into account (Yeh et al., 2003).

Once appropriate text sources are identified often the next step is to filter the text
sources. In many cases, this is a simple need to reduce the amount of data into a man-
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ageable subset: Mirroring and indexing all 15 million MEDLINE abstracts into a local
database requires several days on a modern computer (Oliver et al., 2004). The other
reason for filtering is to improve the precision of the subsequent text mining steps by
removing ”obviously” irrelevant text sources. Often, simple methods (keywords, year of
publication) are used for filtering. Yet there is the danger that such a simple approach may
discard relevant texts. In order to define an organism specific filter for mice, a naive filter
would be to only consider abstracts that contain the words ”mouse” or ”mice” or ”mus
musculus”. However, such a filter will miss the 18000 MEDLINE abstracts with ”murine”
as the only word that indicates that they also refer to the same taxonomical entity. In
other words, naive keyword filters may easily miss relevant information and thus already
reduce the recall of the whole text mining process by filtering out relevant texts too early.
For such reasons, advanced statistical and machine learning methods can be applied for
pre-filtering (Blaschke et al., 1999; Marcotte et al., 2001).

In summary, the selection of the text sources and the definition of appropriate filters
have a significant influence on subsequent steps – in the worst case, by selecting the wrong
text sources or by applying the wrong filters even the best named entity recognition (NER,
see ”Entities”, Section 2.3.3) and relation mining (see ”Relations”, Section 2.3.4) methods
are deemed to fail.

2.3.3 Entities

Before relations can be searched for in texts, the entities of the relations have to be iden-
tified. Entities represent objects of the real world as e.g. proteins, genes, diseases etc.
Usually these objects do not match simply to one name or symbol in natural language.
Thus, many different words or symbols (as synonyms, abbreviations, acronyms or different
spellings) have to be considered when a real world entity is searched in texts.

Named Entity Recognition (NER) is a longstanding NLP (Natural Language Process-
ing) discipline on which a wide range of techniques exists. The different approaches and
applications in bioinformatics are very well reviewed by Cohen and Hersh (2005) as well
as by Krauthammer and Nenadic (2004). In the following, we will outline the basic ideas
and principles.

According to Krauthammer and Nenadic (2004), NER consists of 3 steps: term recogni-
tion, term classification and term mapping, although term classification is not an important
step for the purpose of network extraction from scientific literature.
For term recognition, the following approaches can be used:

• keywords: in the simplest case, lists of keywords are used to identify relevant entities.

• rules and regular expressions: for example entities such as fungal gene symbols,
Arabidopsis gene symbols or enzyme numbers follow a standardized distinct syntax,
that can reliably be extracted and identified by regular expressions (i.e. a string that
describes or matches a set of strings, according to certain syntax rules). Yet, unfor-
tunately not all taxonomical entities apply sensible genome nomenclature guidelines.
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• dictionaries and ontologies: whereas dictionaries usually are used as simple term
collections, ontologies also store typed relations between the terms, as e.g. ”is a” or
”part of” relations. Terms in ontologies are usually regarded as concepts. Entries in
dictionaries and concepts of ontologies often contain several synonyms for the same
entities. Dictionary based approaches can achieve a balanced precision and recall >
80% (Hanisch et al., 2003; Ono et al., 2001; Nenadic et al., 2003). Thus, terminology
and lexicon extraction from free text (Yu and Agichtein, 2003; Rindflesch et al., 1999;
Hatzivassiloglou and Weng, 2002) or from scientific databases (Chen et al., 2005) are
important disciplines in their own right. Another advantage of using dictionary
based approaches is that the non-trivial task of term mapping (see below) becomes
obsolete, and some dictionary based approaches can also be used for discriminating
between different word senses (e.g. mouse as a pointing device versus an organism,
see Hofmann and Schomburg, 2005; Ruch et al., 2003). The ondex system, presented
by Köhler et al. (2004) and in this thesis (Section 5.1) has been developed for this
purpose as an integrated approach where ontologies and databases are mapped in
order to perform concept based term identification and text indexing.

• machine learning: one of the most commonly used techniques is machine learning.
Here, Support Vector Machines (Shi and Campagne, 2005; Kazama et al., 2002) as
well as Hidden Markov Models (Collier et al., 2000; Shen et al., 2003) are broadly
and successfully applied.

Depending on the NER method used, equivalent entities are not always recognized as
the same real world entity since, for most proteins and genes, several synonyms exist.
Consequently, relationship mining methods that are developed on top of such NER methods
would generate a good deal of redundancy. Such problems can be overcome by selecting
an appropriate NER technique, or by subsequent computational or manual linkage of the
equivalent entities (term mapping, see Wren et al., 2005).

At the end of this step, the distinct entities (including in one entity all respective names,
synonyms etc.) can be used as the nodes of the finally resulting network.

2.3.4 Relations

If the entities are defined and localized in the texts, relations between them can be inferred.
Usually, the relations to extract are binary. They may or may not be directed or weighted
with additional information. Furthermore, it is often required to determine the type of
the relation (Smith et al., 2005), e.g. whether they link proteins that interact, or whether
they connect transcription factors that regulate genes. Most current efforts in relationship
mining deal with protein-protein interactions: yet, also in these cases the different kinds
of interactions (activation, binding etc.) need to be characterized.

Relation mining approaches range from applying simple statistical heuristics (e.g. by
considering co-occurrences of search terms or estimating term frequency distributions)
to syntactical and semantical sentence analysis (e.g. syntactical or semantical parsing)
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using natural language processing (NLP) methods (Shatkay and Feldman, 2003). In Rule-
based approaches a set of additional rules, that for example reflect prior experiences with
the considered relation mining task, are added to improve the search (Yeh et al., 2003).
Furthermore, machine learning methods can be used to e.g. adapt patterns from text or to
discriminate significant words (Plake et al., 2005; Hatzivassiloglou and Weng, 2002).

Co-occurrence approaches

One of the most straightforward relation mining approaches is the co-occurrence search.
The basic assumption here is that for describing a relation between two entities their
names usually occur in the same text or part of the text. Thus, for co-occurring entities a
relationship can be assumed.

Very basic approaches work with lists of keywords: For example a co-occurrence ap-
proach on the sentence level to search for nuclear receptors, their binding proteins and an
interaction verb resulted in a precision of 22% when all extracted relations were examined
manually (Albert et al., 2003).

Another co-occurrence approach is applied in the PubGene database (Jenssen et al.,
2001) which contains gene-gene relations and was created by searching for pairs of gene
names in MEDLINE abstracts. The extracted relations are weighted by the number of
articles in which they were detected. Manual examination of two sets with each 500
randomly selected relations resulted in a precision of 60% for relations found in only 1
article and 71% for those found in 5 articles (recall not reported). Further evaluations
were conducted by comparing the results with known gene-gene interactions from databases
(DIP (Xenarios et al., 2002), OMIM (Hamosh et al., 2005)). Between 45% and 51% of the
interactions in the database were also found by PubGene.

The performance of co-occurrence searches also depends on the part of the text in
which co-occurrences are considered. Ding et al. (2002) compared recall, precision and
effectiveness in single phrases, sentences or the whole abstracts. Interestingly, some relation
types can best be extracted at the sentence level, whereas others perform better when whole
abstracts are considered. Therefore, as a further enhancement, co-occurrence searches can
be combined with a set of simple rules that determine the context size and order of the
co-occurrence. For example, to extract protein-protein interactions (Blaschke et al., 1999)
in Drosophila the texts were divided into fragments (i.e. sentences or part of sentences).
Then only co-occurrences of protein names and an interaction verb (all taken from pre-
defined lists) possessing the form ”protein A - verb - protein B” are extracted from these
fragments.

Natural language processing approaches

Whereas in co-occurrence approaches only simple rules or patterns are applied to a small
set of two or three extracted entities and additional words, natural language processing
(NLP) techniques parse and analyze the sentences in greater detail (Manning and Schütze,
1999).



2.3 Network extraction from text 31

Shallow parsers (sometimes referred to as partial parsers) are used to identify the
syntactic information that is assumed to be the most important. Here, mainly part-of-
speech (POS) taggers are used for tagging each word in a sentence with its most likely
grammatical function (e.g., noun, verb etc., see Manning and Schütze, 1999). This can then
be used to infer the relations described (Leroy et al., 2003; Sekimizu et al., 1998). Deep
parsers try to reconstruct the complete sentence structure as a tree structure (Daraselia
et al., 2004; McDonald et al., 2004) and apply a grammar, such as e.g. the combinatory
categorial grammar (CCG, see Park et al., 2001), which first localizes target verbs to
scan afterwards the neighborhood for the entities of the relations. Generally, full sentence
parsers can be distinguished into such reconstructing the syntax or the semantics of a
sentence, or a mixture of both. A review by McDonald et al. (2004) introduces both
approaches and mixtures of them and gives an overview on applications in the biomedical
text mining field and the resulting performances, advantages and drawbacks: Whilst syntax
based approaches need no further domain specific information, they can easily be applied
in different domains, but suffer from a lower precision than semantic parsers. For biological
relation mining with one exception (Leroy et al. (2003) report 90%) no higher precision
rates than 83% are reported. The only reported recall was about 47% (Yakushiji et al.,
2001). Contrarily, semantic grammars apply domain specific resources and thus result in
an increased precision (up to 91% and 96%), but are often evaluated in a smaller sample of
documents. Consequently, balanced or hybrid approaches have been developed, which try
to exploit the benefits of both syntactic and semantic full parsing. The precision of such
hybrid systems is high (e.g., 89% (McDonald et al., 2004) or 91% (Daraselia et al., 2004)),
but the recall is still relatively low (35% (McDonald et al., 2004) and 21% (Daraselia et al.,
2004) respectively).

Comparing NLP approaches with simple co-occurrence assumptions shows that NLP
results in some cases in a higher precision, as one could expect from intensive grammar
analyzes, but at the cost of speed and recall. On the other hand, NLP methods produce
knowledge that can be exploited in steps which have to be performed separately when
using co-occurrence searches. The POS tagging information can be, for example, used in
the named entity recognition and the direction or the type of the relation can be easier
inferred using the exact structure of the sentence.

Different relation mining strategies were compared in the ”KDD Challenge Cup” (Yeh
et al., 2003). Despite the differences in their approaches, all winning teams have in common
that they take the order of words into account rather than considering a text simply as a
”bag of words”. The fact that the winning team applied a purely rule based approach, and
that the other top performing approaches also used a rule based component in their systems,
indicates that machine learning approaches cannot yet compete with rules developed by
experts.

Hypotheses generation

Relation mining as described so far can be characterized as reconstructing established
knowledge, whereas other approaches try to generating de novo hypotheses by combining
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extracted relations. Wren et al. (2004) and Srinivasan and Libbus (2004) both extend
and improve the open discovery approach originally proposed by Swanson (1986). The
basic assumption is that pairs of terms found in different texts and sharing the same
”intermediate” terms can be linked.

An important improvement is to establish a robust and meaningful score for the ex-
tracted potential relations. Combining even only a few co-occurrence pairs usually results
in a high number of possible implicit links. Wren et al. (2004) propose to use fuzzy logic
methods and compare extracted networks with random networks. Srinivasan and Libbus
(2004) use combined weights that rank the importance of each identified term (similar to
the abovementioned scoring proposed by Stephens et al. (2001). In both papers hypotheses
could be found that have not been reported in a single paper before and which led to new
directions for experimental validation. Eijk et al. (2004) introduce the associative concept
space (ACS) as metric for weighting the distance between pairs of terms according to the
length of the chain of intermediate terms which connect them. Using this method, clusters
of functionally related genes could be identified (Jelier et al., 2005). In Chilibot (Chen
and Sharp, 2004, see also the appendix, Section A) the whole extracted network is used to
generate a network with hypothetical new interactions. Though, experimental validation
is in most cases still the only way to prove the hypothesis.

As a result of relation mining, links of the network to be created can be gained. They
might directly consist of a relation between two entities or consist of two or more combined
relations.

2.3.5 Networks

Finally, the nodes and links created in the steps ”Entities” and ”Relations” can be inte-
grated into a network. Yet such networks are incomplete and may contain incorrect entities
and relations. As already discussed, in each of the different steps a range of methods can be
applied that vary significantly in their precision and recall. Therefore, currently only very
few approaches are published where networks extracted from texts are used for analysis
and further investigations.

One possibility to deal with the uncertainty in the resulting networks is to apply a score
that represents the quality of the extracted relations. Such a score can be used as an edge
weight to visualize the likelihood of the correctness of relations. New discovered relations
could be drawn in a different way (Blaschke et al., 1999) and thus the network visualization
can be used for manual comparison with existing knowledge by experts (Friedman et al.,
2001; Jenssen et al., 2001; Yao et al., 2004; Rzhetsky et al., 2004).

In principle, extracted networks can be used for answering specific biologic questions
or to provide deeper insights into the general structure of biochemical network topologies.
In some cases the resulting network topologies have been investigated (Chen and Sharp,
2004; Blaschke and Valencia, 2001). Some topological characteristics of the network can
be attributed to the bias of scientific literature (trendy topics and terms resulting in waves
of publications on related genes, proteins etc., see Krauthammer et al., 2002). But so
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far, topological properties of hypothetical networks were mainly used for validating and
analyzing the correctness of the extracted networks.

Rather than analyzing the topological properties, the extracted networks can also be
used in context with experimental data in order to validate the extracted network as well
as to evaluate the experiments. For example Jenssen et al. (2001) could show that their
extracted co-occurrence gene networks reflect biologically meaningful relationships from
three large-scale experiments. The resulting PubGene database and tool allows analysis of
gene expression data in the context of extracted networks (see also the appendix, Section
A). Karopka et al. (2004) apply their extraction approach on lists of gene names from
experiments to compare extracted with experimentally determined relations. Albert et al.
(2003) searched for protein interactions of nuclear receptors and compared these text min-
ing results with data from yeast two-hybrid screens. Here they found similarities of the
nuclear receptors regarding their connectivities. Also properties of some specific proteins
were investigated and could be experimentally validated. Another example for the use
of extracted networks is the curation of specific pathways, e.g. the Wnt pathway (Santos
et al., 2005).

2.3.6 Summary

Which presented extraction method performs best obviously depends highly on the specific
types of networks to be extracted, and on the typical structure of a publication that contains
a relation. For example, protein-protein interactions are often dealt with at the sentence
level and achieve a good precision (up to 95%), but low recall in those few cases where
the recall is also reported (Huang et al., 2004; Daraselia et al., 2004; Donaldson et al.,
2003). The type of networks to be extracted might also determine whether it is sufficient
for the actual relation mining to use simple heuristics (as e.g. approaches based on co-
occurrences of search terms in the same context) or whether there is a potential benefit in
using advanced methods (such as e.g. syntactic or semantic parsing of sentences).

Although several systems exist that can be used for certain types of networks (mainly
gene-gene and protein-protein interactions), a coherent ”all-in-one” solution for extracting
biological networks from text does not exist, nor is it appropriate to address the different
types of problems in the same way.

An overview table (Figure 7.1) and more details about tools for network extraction and
text mining that are applicable for all or individual steps of the workflow can be found in
the appendix (Section A). Unfortunately, for several reasons none of these tools seem to
be appropriate to use for the extraction of intercellular signals from text. In many cases
the tools either are not available or require an additional database installation. Often the
tools are specialized for the domain for which they have been developed. In other cases the
tools are only available as web applications or are commercial. Hence, to develop ONDEX
as a suite for concept based data integration, network extraction and visualization seems
to be worth the effort. ONDEX and its application will be presented in Section 5.
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2.4 Approaches to reconstruct and analyze intercel-

lular signaling networks

The objective of this thesis is to reconstruct and analyze intercellular signaling networks.
Most research conducted so far on biological networks concentrated mainly on intracellular
networks, such as genetic regulatory networks (Bower and Bolouri, 2000), metabolic net-
works (Ma and Zeng, 2003), protein-protein interaction networks (Schwikowski et al., 2000)
and signal transduction networks (Steffen et al., 2002). Contrary, intercellular signaling
networks are in the focus of only a small number of research projects. Therefore we will
introduce in the following such approaches.

2.4.1 Bioinformatics and cellular signaling

The general requirements to reconstruct and analyze cellular signaling networks are re-
viewed by Papin and Subramaniam (2004) and Papin et al. (2005). Here, cellular signaling
is understood as integral combination of intra- and extracellular signals and thus, of events
that happen at diverse spatio-temporal scales. Modeling cellular networks ranges from
biochemical equations representing quick intracellular responses (< 10−1 seconds, such as
e.g. protein modifications and changes in Ca2+ concentrations) to slow responses (from
minutes to hours) over large distances, such as in endocrine signals. The networks can be
modeled in varying degrees of detail to understand their complexity and to make quan-
titative predictions. But a whole-network reconstruction at the most detailed level of
differential equations or stochastic simulations is certainly out of reach. Thus, different
kinds of modeling approaches have to be combined in order to gain a systemic view on
cellular signals between cells.

In addition to the details on intracellular networks, on which the review by Papin et al.
(2005) mainly concentrates, combinatorial calculations are presented that elucidate the
complexity that a complete intra-to-extracellular signaling network would exhibit. Even if
all intracellular elements that can influence the signaling processes are not considered, the
variety of the possible ligand-receptor interactions is large. For example, 367 variants of
the G-protein-coupled receptor (GPCR) could be identified in the human genome and the
expression profiles of 100 GPCRs in the mouse genome also indicate that most receptors
are expressed in various tissues. Hence, many different receptors probably exist concur-
rently in the same cell or tissue. If one assumes that a mere 1% of the estimated 1 543
different receptors in the human genome (i.e. 15 receptors) can be independently expressed
in any give cell type, then a cell could potentially respond to 215 = 32 768 different ligand
combinations (for two independent ligand states: bound and unbound). This gives a good
illustration of the general complexity of cellular signaling.

To finally reach the goal of an integrated model of the human cell signaling, efforts are
needed that go beyond single research projects. For this purpose, several research initiatives
have been formed to build the base for a human whole signaling network as well as for
the integration of data at several physiological levels. There is for example the Alliance
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for Cellular Signaling (Gilman et al., 2002, available at www.signaling-gateway.org),
which is a large-scale collaboration designed to answer global questions about signaling
networks. But although this initiative addresses cell signaling in general, the effort is mainly
restricted to intercellular signaling and there on pathways of two cells, B lymphocytes and
cardiac myocytes. Further projects in this context are the Database of Quantitative Cellular
Signaling (DOQCS, a repository of models of signaling pathways at the level of chemical
reactions, Sivakumaran et al., 2003, available at doqcs.ncbs.res.in) and the portal of
the Science journal, the Signal Transduction Knowledge Environment (STKE, available
at stke.sciencemag.org) . The STKE includes Connection Maps, the database of cell
signaling. The integration of different and separately stored pathways at the intracellular
level has been shown by Hsing et al. (2004). For this purpose they used semantic networks
which are similar to ontologies (Section 5.1).

As systems biology emerged as a discipline with the goal to integrate existing knowledge
from different levels of molecular biology (Kitano, 2002), an integrative modeling of all
physiological levels in the human organism is achieved in two ambitious projects, the
Physiome Project located at the University of Washington, USA (Bassingthwaighte, 1995,
available at www.physiome.org), and the IUPS Physiome Project at the University of
Auckland, New Zealand (Hunter et al., 2005, available at wwww.bioeng.auckland.ac.

nz/physiome/physiome_project.php). The physiome projects are worldwide efforts to
define and describe the physiome quantitatively through the development of databases
and models which will facilitate the understanding of the integrative function of cells,
organs, and organisms. The aim is to develop integrative models at all levels of biological
organization, from genes to the whole organism via gene regulatory networks, protein
pathways, integrative cell function, and tissue as well as whole organ structure-function
relations. Thus, these projects are not focused on only cellular signaling, but cell signaling
is an important part of physiology and in near future the data collected and integrated by
these projects might be possible to use to reconstruct intercellular signaling networks.

2.4.2 Reconstruction by spatial gene expression analysis

Beside the attempt of a complete integrated modeling of cellular signaling in humans, Di-
ambra and da F. Costa (2005) present an example how intercellular signaling networks can
be reconstructed from Drosophila data. The main purpose of their study is to improve the
analysis of spatial gene expression patterns by means of complex networks. Images of small
volumes of the organism show the gene expression intensities in a number of neighboring
cells. An image is then transformed into a network of cells and two cell nodes are con-
nected by an undirected edge if they have a similar expression intensity and are not further
apart than a maximum distance. The basic assumption here is that cell signaling drives
and coordinates gene expression at least in a local area. The analysis of the node degrees
and clustering coefficients of the resulting networks could be used to characterize different
stages in developmental dynamics and to identify abnormalities. Although this has been
done for Drosophila, this approach can in principle be applied in any organism where im-
ages of gene expression intensities on the cellular level can be obtained. This shows how the
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analysis of cellular signaling networks can be reasonably used to understand the function
of organisms at a systemic level.

2.4.3 Reconstruction of nuclear receptor interactions

Considering human intercellular signaling again, the reconstruction of the signals from the
available data as first step remains a problem. For this reason Albert et al. (2003) access
the biomedical literature with an automated approach to generate a database of protein
interactions with nuclear receptors. Therefore, a subset of MEDLINE texts is selected that
contains terms from a dictionary (protein and nuclear receptor names as well as keywords
like “bind” or “associate”). The dictionary is hierarchically organized (comparable to an
ontology) and initially manually created, but subsequently extended by the achieved text
mining results. The selected texts are decomposed into their sentences and that are then
searched for co-occurring triples of protein, receptor and keyword terms. Finally stop lists
containing rules that describe known false-positive results are applied and the resulting
extracted interactions are stored in a database.

With this process, about 15 thousand co-occurrence triples were retrieved automatically
from about 4 thousand abstracts. After manual curation of all results, about 3 thousand
co-occurrences were classified as true-positive, which equals a precision (i.e. ratio of true-
positives among all results) of about 20%. Interestingly, the number of detected interactions
correlates with the number of published papers for a given receptor. Comparisons with
yeast two-hybrid screen results suggest that such a correlation cannot be confirmed by
experimental data. Thus, beside the problem of the uncertainty of automatically generated
results from fuzzy natural language texts, it turns out that also text mining reflects the
bias in the literature (see also the review on network extraction from text in Section 2.3.5).

This study shows how partial knowledge of intercellular signaling can be reconstructed
from text. However, the locations (cell types or tissues) of the extracted protein and their
receptors are not considered here. Thus, although the text mining approach is similar to
the approach we will apply here (see Section 5 and the discussion in Section 5.5), the data
gained by Albert et al. (2003) is not sufficient to reconstruct entire cell signaling networks.

2.4.4 Analysis of the human immune cell network

If a network of intercellular signals could be reconstructed, the next challenge is its analysis
since such a network typically consists of a relatively low node number compared to a
much larger number of connections. Especially the fact that any node pair might obtain
a principally unlimited number of multiple edges (modeling the different first messenger
relations between two cell types) is not considered in usual network or graph analysis.
Therefore, Tieri et al. (2005) show how such a network can be analyzed by considering the
number of different interactions as edge weight for shortest path calculations.

The network that Tieri et al. (2005) focus on is the human immune cell network, i.e. a
subset of the whole intercellular communication network consisting of 19 cell types as nodes
and a total of 316 connections, including autocrine self-loops. The data is taken from the
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textbook based Cytokine Reference Database (Oppenheim et al., 2000, not downloadable,
but online available) and thus a curated subset of intercellular signals is used.

The high density of the network (the maximum number of edges is only 192 = 361)
shows that an analysis is only possible if the network is viewed from a different perspective.
Therefore Tieri et al. (2005) propose measuring the efficiency of pathways between the
nodes by taking the number of different connections between the cells into account. This
is done by restricting each node pair to one edge at most per direction, combined with an
edge weight that reflects the number of multiple edges. Now the weighted shortest path
length between all node pairs can be calculated and models the distance between two cells.

The assumption here is that the more distinctive pathways between two cells, the more
closely connected they are. Then, the efficiency of the whole network can be calculated
by averaging the efficiencies of all node pairs. The influence of the mediators (i.e. first
messengers in the immune system) that establish the communication between two cells is
measured by comparing the efficiencies of the whole network including and excluding the
mediator. The larger the drop in efficiency for a specific mediator, the more important is
probably the respective substance.

From that approach, individual mediators can be compared regarding their importance
on the communication efficiency of the network. Here it turned out that the most im-
portant mediators according to the network analysis are the same substances that have
emerged in the last years as central components of the capability of the immune system.
Thus, the results confirm the state of current knowledge. Additionally, the distribution of
mediator relevances can be calculated. In this case it could be shown that a part of the
relevance distribution shows a power-law behavior and thus, the mediators of the immune
cell communication network might be connected in a scale-free manner.

2.5 Resulting implications

The objective of the present thesis is to reconstruct and analyze intercellular signaling
networks in the human body. Cell signaling is understood here as the process of signal
transmission between two cells, a source and a target cell. Through a ligand-receptor
interaction, a ligand (or: first messenger molecule) is released from the source cell and
transported to the target cell. The ligand finally binds to a complementary receptor at the
surface or inside the target cell, initiating a signaling cascade inside the cell and causing
cellular responses.

At the most detailed level, the nodes of the intercellular signaling network are the
cell types sending and retrieving the first messengers. Depending on the data source the
nodes might also represent entities of different anatomical levels, such as organs or tissues.
Directed edges between the nodes represent the ligand-receptor interaction through which
the respective connection is established. Multiple edges in the same direction are allowed
since often more than one signal between two cells is existing.

The available data sources for network reconstruction are databases and the biomed-
ical literature. For both kinds of sources it turned out that they do not contain explicit
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information on complete cell signals. Instead, cell signals can be combined from partial
knowledge, i.e. the sites of ligand and receptor molecules with known interaction relations
are connected. A consequence from this general approach is that the resulting networks
will mainly contain potential interactions or in other words, hypotheses about possible
interactions.

A further consequence is that due to the combinatorial nature of such a reconstruction
approach, the number of signals and thus the number of edges in the network might increase
drastically. This is a challenge for visualization, validation and analysis of the reconstructed
networks. Therefore, not only general cellular interaction models based on the biological
components of a cell signal are developed, but also corresponding graph representations
that allow a compact presentation of networks with high edge numbers.

Compact visualization supports the inspection and hence, the validation of the gen-
erated hypotheses. However, validation remains a problem since a number of hypotheses
might be existing in reality, but have simply not yet been experimentally studied and
reported. Additionally, a high number of edges compared to a relatively low number of
nodes (there are approximately only about 200 different cell types in the human body, see
Papin et al., 2005) renders the analysis, i.e. the search for structures in such networks is
more difficult, because it is likely that nearly any node may be connected with any other
node.

For these reasons as first step a pilot study with the database CSNDB is conducted
since it is one of the few structured sources that contain locations of ligand and receptor
molecules at all. With this database the initial presumptions on the outlined problems of
reconstructed cell-cell networks are examined. The development of a text mining approach
is the next accomplished step, because already the initial inspection of the database showed
that only few cell type locations are contained in CSNDB.

Both kind of data sources are finally applied to a specific task, the reconstruction of cell
signaling especially between cell types relevant in neurodegenerative diseases. With such
a restriction to a small set of cell types, the subset of hypotheses is small enough for more
extensive validation and possibly providing new insights into the communication behavior
of these cell types.
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Data structures for modeling cell-cell
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In this chapter, different ways to capture the biological process of intercellular signaling
in models and graph representations are presented. First, three templates are introduced
that model a single cell-cell signal with different granularity (Sec. 3.1). On the basis of
these three biological models, three corresponding graph representations are developed
(Sec. 3.2). This is done for two main reasons: to enable the use of partial information
from databases or texts and to reduce the number of edges that would emerge if all signals
were modeled separately. Fig. 3.1 summarizes the three templates and their corresponding
graph representations.

3.1 Templates for single interactions

Intercellular signals can be represented by directly connecting two cells (column 1-comp,
upper part of Fig. 3.1). In this case, information on the messenger and its receptor that
establish the connection is not modeled explicitly. The different entity types are considered
here as components, therefore 1-comp consists only of one component. Note that the cells
on the left and the right side in Fig. 3.1 are not explicitly named as “source” and “target”
cell respectively for simplifying the presentation.

However, this most straightforward representation has several disadvantages: first, any
pair of cell types can be connected by a number of different signals (i.e., different messenger-
receptor interactions). In the comp-1 representation, the actual signals connecting the cells
are not visible, but hidden in the properties of the interaction. Even more important, if
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Figure 3.1: Schematic overview of different intercellular signaling representations. In the upper part of
the figure (Biological process templates) a single interaction is modeled in three different granularities,
named after the number of the different components (cell, messenger, receptor) the templates consists of.
The number of components also reflects the number of partial relations into which an interaction can be
decomposed (e.g. cell → messenger). The lower section (Graph models) shows the corresponding graph
representations for single as well as for several interactions (i.e., the last row shows exemplary how the
number of edges is reduced when different cells are connected by the same messenger-receptor interaction).

all interactions between a pair of cells are considered separately the number of interactions
might increase strongly, resulting in very dense graphs. Furthermore, information inferred
from the combination of partial data is not modeled adequately by the template comp-1.

For these reasons, two further templates representing single intercellular signals in
greater granularity are developed and serve also as base for corresponding graph models.
These two templates split up a cellular interaction and consist of two and three components
respectively (2-comp and 3-comp, see also Fig. 3.1, upper part), by applying additionally
the entities messenger and receptor as components.

The number of components corresponds also to the number of partial relations into
which a signal representation can be decomposed. So, for example, the 2-comp template
consists of two components, cell and messenger, and can be decomposed into two sub-
relations, cell → messenger and messenger → cell. That means, partial information avail-
able on these relations could be gathered from different sources and afterwards combined
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into a (potential) cell-cell signal.

The 3-comp template extends this furthermore by explicitly modeling the receptor
to which a released messenger is able to bind (Fig. 3.1, upper part). In this template, all
relevant biological entities are included, i.e. all constituting elements of a single interaction
can be immediately seen. Also this representation allows greater flexibility as well as a
reduction of links when in the corresponding graph model several interactions are combined
(Sec. 3.2).

3.2 Graph representations to combine single interac-

tions

For each single interaction template (upper part of Fig. 3.1) a corresponding graph repre-
sentation can be specified (lower part of Fig. 3.1). A graph G = (V, E) consists of nodes
vi ∈ V modeling the cells and edges eij ∈ E connecting a node pair (vi, vj). In all graphs
used here the edges are directed, i.e. if no multiple edges are allowed (see below) for any
node pair two edges can be defined at maximum (one per direction).

Starting with the simplest graph model, the 1-comp template can be straightforward
converted into the direct graph model. “Direct” refers to the fact that the two cells, each
represented as individual nodes (circles in Fig. 3.1), are directly connected, i.e. without
considering any other component explicitly.

The direct graph model for signaling interactions can be further divided into a direct
multiple and a direct unique model, employing multiple or single combined links between
the cell type nodes respectively. In the direct multiple model, all different interactions that
might exist between the same pair of cell types are represented as separate edges, whereas
in the direct unique model all different interactions of the same direction between a pair of
cell types are collapsed into one edge. That means in the direct multiple graph the number
of edges can be arbitrarily large, whereas in the unique model this number is restricted
to n2 edges at maximum (self-loops are allowed to allow autocrine signals). Each edge in
the direct unique model can be additionally equipped with the number of the contained
interactions and further information.

To translate the other two single interaction templates (2-comp and 3-comp respectively)
into a corresponding graph model, r-partite graphs are applied. A graph G is called r-
partite if the set of nodes V can be divided into r partitions such that all node pairs satisfy
the condition (vi, vj) /∈ E with vi, vj ∈ Vk and 1 ≤ k ≤ r. That means, a graph is called
r-partite if the graph can be divided into r distinct partitions where the nodes inside a
partition are not connected and edges exist only between nodes of different partitions (see
Chapter 1.6 in Diestel, 2000, and Fig. 3.2 for examples of 3-partite graphs).

It follows that nodes belonging to distinct partitions of the graph can be seen as pos-
sessing different types. In the bipartite and tripartite models used here (bi and tri are used
as prefix instead of 2- and 3-partite), these different node types are expressed by different
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Figure 3.2: Two undirected 3-partite graphs as examples to demonstrate the definition of r-partite graphs.
Each of the two graphs can be divided into three partitions. The nodes inside a partition are not connected,
only edges between nodes of different partitions occur (figure adapted from Diestel, 2000).

symbols, i.e cells are still represented by circles, messengers and receptors as rectangles
and diamond shapes respectively (Fig. 3.1, lower part).

Thus, by extending the set of node types in that way, both remaining templates for
single cell-cell interactions (2-comp and 3-comp) can be converted immediately into a
corresponding graph representation. Beside the already mentioned advantages that an
explicit modeling of messengers and receptors has (as e.g. for combining information from
different data sources, see Sec. 3.1), another major benefit of these representations becomes
visible when several interactions are combined into a network (Fig. 3.1, bottom section):
any group of cells connected by the same messenger or messenger-receptor interaction
can be combined into a bipartite representation in which the messenger (or the complete
messenger-receptor interaction) is represented by a separate node. For a group of s source
and t target cells that is completely connected by the same interaction, the number of
edges decreases from s · t in the direct multiple graph representation to only s + t in the
bipartite model.

The addition of explicit receptor nodes in the tripartite model might further decrease
the number of edges, though not as much as this is case for the transition from the direct
to the bipartite representation. This further reduction is due to the fact that some mes-
sengers might share the same receptor. Then each messenger needs only to be linked to
one receptor, which in turn contains all edges to the target cells, instead of linking each
messenger to all target cells repeatedly.

Note that any single interaction can be converted into a bi- and tripartite representation.
In the extreme case of only different messengers or messenger-receptor interactions nothing
could be combined and the edge number would even increase, since any single interaction is
then converted into a chain of two or three nodes (in the bi- or tripartite case respectively).
But this can be neglected in our case as the results show (see Sec. 4.2.2 and Sec. 4.2.4).

The transformation between the three graph models is possible in both directions: mes-
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senger and receptor nodes in the tripartite model can be combined into a single messenger
node of the bipartite representation, which then can be resolved into all single interactions
of the direct multiple model.

In bipartite and tripartite representations, however, adding and removing single inter-
actions can not be performed easily. One possibility is to add or delete single interactions
in the direct model and then to recalculate the bi- and tripartite representation. To per-
form the transformation in the other direction (from tripartite to direct representation) all
interactions in the tripartite representation need to be stored separately. Then individual
operations on single interactions can also be performed and the transformation process into
the tripartite and bipartite model with combined messenger and receptor nodes performed
afterwards. So, for any direction, if equal messenger or receptor nodes have been collapsed
in order to reduce the amount of edges, operations on single interactions need recalculation.
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This chapter presents how the Cell Signaling Networks Database (CSNDB) is applied to
reconstruct cell-cell signals and to combine them into a network. As shown in Section 2.2,
there are few databases available that contain relevant information that can be utilized.
The CSNDB provides information on interactions of signaling molecules and their locations
in the human body. This data can be assembled to reconstruct complete intercellular
signals.

Therefore, in the following section the data scheme of the CSNDB is shown and how
it is applied to the extraction of intercellular signals (Section 4.1). Subsequently, two
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Class Signal Molecule Cell Signaling ExtraCell Signaling

Gene Expression

Fields Endogenous/Exogenous From molecule From tissue

Other Name To molecule To tissue

Is Synonym Interaction Signal Molecule

Species

Type

Cell Signaling

Tissue

Synthesis

Target

Table 4.1: Class definitions in CSNDB. Only classes and fields used for the cell-cell signaling reconstruction
are shown.

reconstruction approaches are then performed: in the first approach only information is
accessed that can be directly detected as relevant, complemented by a second approach
which is designed to exploit as much information from the CSNDB as possible. Both
approaches and the resulting networks are shown in Section 4.2.

In Section 4.3 the subnetwork of organ-organ interactions resulting from the second
reconstruction approach is used as an example how such networks can be used for further
analysis. Section 4.4 briefly describes the implementation of the CSNDB extractions and
finally, a discussion in section 4.5 closes this chapter.

4.1 Content and organization of CSNDB

The CSNDB (Igarashi and Kaminuma, 1997) is an object-oriented database designed ac-
cording to the ACEDB format (a specialized genome database system developed by the
Sanger Institute, see Walsh et al. (1998)) and applying the common Lisp language CLISP
as inference engine. The contents of the CSNDB are generated by manual examination of
biomedical research papers. Each entry in the CSNDB refers to the MEDLINE ID of the
paper from which the information is taken.

Although the actual focus of the CSNDB is on intracellular pathways, additional in-
formation is stored about molecules linking such pathways to extracellular signals. This
information will be accessed by the extraction rules we present in this chapter. Therefore,
the description of the CSNDB is mostly restricted to the data and structures relevant for
intercellular signaling.

The CSNDB was accessible through a web-interface (see Table 2.1 in Section 2.2) which
allowed the user to search for specific molecules and interactions as well as to visualize
selected pathways. For the purpose of the present work, a flat file of the CSNDB was
downloaded (in July 2000) and used. Since then, no updates could be found. Currently
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Signal Molecule : "GH"

Endogenous

Other Name "growth hormone"

Other Name "hGH"

Cell Signaling "GH-RH -> GH"

Cell Signaling "somatostatin -> GH"

Cell Signaling "GH -> IGF-1"

Cell Signaling "GH -> GH receptor"

Cell Signaling "GHS -> GH"

Type Hormone

Tissue "brain"

Tissue "Aorta"

Tissue "Placenta"

Synthesis "hypophysis"

Signal Molecule : "GH receptor"

Endogenous

Other Name "growth hormone receptor"

Other Name "hGHbp"

Cell Signaling "GH -> GH receptor"

Type Receptor

Tissue "brain"

Tissue "breast"

Tissue "heart"

Cell Signaling : "GH -> GH receptor"

From molecule "GH"

To molecule "GH receptor"

Interaction "ligand-receptor binding"

Table 4.2: Example for a definition of a signaling entity and its corresponding molecules in the CSNDB
flat file. Only fields used for reconstructing cell-cell signals are shown here. Field values enclosed by
double quotes references to other fields. References to other classes are realized by exact string matches
of descriptors instead of identification numbers.
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(i.e., autumn 2005) both the web-interface and the flat file are unavailable.
Several difficulties had to be solved in order to utilize the CSNDB. For example, the

data is organized as mutually referencing objects, however, the flat file generated from the
database contains only user-defined descriptor strings as identifiers. Since these descriptors
can have typos or could otherwise be ambiguous, referenced objects often cannot not be
identified. This is additionally worsened by the fact that some objects do not exist in
the database. Such inconsistencies had to be resolved manually. Furthermore, the data
structure definition is not in XML or in another format suitable for an automated data
access. Thus, an automated processing of the flat file is not easily possible, and during the
parsing process many other errors and problems had to be resolved.

4.1.1 Relevant classes

The CSNDB data structure consists of classes which contain objects implementing the
class scheme. Therefore, each object consists of a name and a number of fields. The object
names are used in the flat file to establish references between objects. So the fields of an
object can contain values, references to other objects, or are used as boolean flags. In the
latter case, the appearance of such a field means that its value is set to “true”. References
are enclosed by double quotes. A field might appear several times for different values or
references (e.g., a molecule that appears in several different tissues) or is completely left out
if no values are set (i.e., there are no empty fields). Table 4.1 shows the classes and fields
mainly accessed in the present context to reconstruct intercellular signaling networks and
Table 4.2 presents the objects GH (growth hormone) and GH receptor as typical example
objects of the CSNDB.

Considering the relevant fields of a Signal Molecule, such a molecule can be marked
as Endogenous or Exogenous. Using this, exogenous molecules as pathogens, viruses or
drugs can be excluded in the present context. Synonym molecule names are linked by
the fields Other Name and Is Synonym. Sometimes the name of the Species containing
this molecule is specified. Values of type might be e.g., Hormone, Neurotransmitter or
Cytokine. A molecule can be assigned to more than one type. The field Cell Signaling

of a Signal Molecule references all signaling interactions in which this signal molecule
takes part.

The fields Tissue, Synthesis and Target are of special importance since they contain
the names of the locations where the Signal Molecule has been found, where it is produced
or received, respectively. Here it turned out that although the field name Tissue suggests
the use of a specific type of location (i.e. a tissue), this field can contain locations of very
different kinds, as e.g. cell types, organs or organ systems, which are not all regarded
as tissue in a biomedical sense and subsist on various levels of the anatomical hierarchy.
Hence, in the following we prefer the term location (instead of tissue), which refers in the
remainder of this chapter to entries in the fields Tissue, Synthesis and Target. In order
to access the locations by their types, all locations finally used in the network are manually
assigned to a location type (as e.g. cell type, tissue or organ, see Section 4.3).

In a Cell Signaling object the two interacting molecules are specified in the fields
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From molecule and To molecule and the type of the interaction is defined in the field
Interaction. The type can be e.g., phosphorylation, protein-protein interaction

or ligand-receptor binding.

Molecular interactions are also stored as Gene expression, a class similar to
Cell Signaling, i.e. a Gene expression object possesses all features of Cell Signaling.
Gene expression is additionally considered here in order to capture events from steroid
signaling where hormones bind to a receptor inside the cell and influence gene expression
directly (Section 2.1). Further information about locations linked by intercellular signals
is explicitly stored in ExtraCell Signaling objects where two locations (in From tissue

and To tissue) are directly connected through a Signal Molecule. In some cases this
information is also captured by the information in Cell Signaling and its respective sig-
naling molecules. Since the number of ExtraCell Signaling objects in the CSNDB is
considerably low, most reconstructed signals are inferred from interacting molecules and
their locations.

4.1.2 Assembly of intercellular signals

Finally it has to be derived how intercellular signals can be extracted from the presented
data scheme: from a Cell Signaling objects the nodes and the links of the network
can be inferred by connecting the locations of the interacting molecules From molecule

and To molecule. With this information the templates that model a cell-cell signal (Sec-
tion 3.1) are filled with the signaling molecules (ligand and receptor) and their locations.
Hence, the locations as the nodes of the network include in case of the CSNDB reconstruc-
tions not only cell types, but also, for instance, tissues and organs.

As an example consider the growth hormone signaling GH -> GH receptor in Table 4.2:
here the four locations of the GH molecule (brain, Aorta, Placenta and hypophysis) can
be connected to three locations of the GH receptor (brain, breast and heart).

Thus, the directions of the links between the locations are determined by the
From molecule as source and the To molecule as target nodes of the Cell Signaling.
The different semantics of the location fields (Tissue, Synthesis or Target) is in one
reconstruction approach considered more specifically. Some fields of the Cell Signaling

and Signal Molecule classes (as e.g. Endogenous/ Exogenous and Species, see Table 4.1)
are used for filtering purposes.

Although the CSNDB flat file contains even more information about the molecules
and their signals, the cell signaling reconstruction tasks use only the fields described here.
Since most of the additional information does not appear very frequently in the selected
molecules and signals, we would expect few changes in the accuracy or topology of ex-
tracted networks given further information. The two extraction runs on the CSNDB which
are described in the following Sections 4.2.1 and 4.2.3 differ mainly in the selection of
appropriate Cell Signaling classes and in the handling of the different location fields.
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Reconstruction I Reconstruction II
Selected database objects

Entity CSNDB Total Locations Total Locations

Cell Signaling 1 382 169 74 180 106

Signal Molecule 3 512 264 120 262 160

Gene Expression 83 - - 0 0

ExtraCell Signaling 15 - - 8 8

Resulting graphs

direct direct

Locations CSNDB mult uniq bip trip mult uniq bip trip

All
Nodes 172 85 159 205 94 215 287

Edges - 3 584 1 614 1 069 935 3 214 1 551 1 222 1 102

Organs
Nodes 88 29 74 107 57 155 213

Edges - 1 243 430 481 451 2 117 871 884 831

Table 4.3: Summary of CSNDB extraction results. The upper part of the table shows for the relevant
database entities the number of appearance in the CSNDB and the numbers selected by the two applied
reconstruction approaches. For both approaches the total number of selected entities (Total) and the
number of entities for which locations are specified (Locations). The entities with locations could be used
in the subsequent graph constructions. Note that the classes Gene Expression and ExtraCell Signaling

are not accessed in the first reconstruction approach. The dimensions of the graphs resulting from the two
approaches are shown in the lower part of the table (for all locations as well as for the subset of organ
locations). The CSNDB column shows the total number of available locations and organs, whereas the
other columns in the lower part of the table contain the node and edge numbers resulting for each available
graph representation: direct multiple (mult) and unique (uniq), bipartite (bip) and tripartite (trip).

4.2 Reconstruction approaches and results

In this section two complementing reconstruction approaches applied on the CSNDB
database are presented. In the first one (Section 4.2.1) only binary interactions that are
explicitly typed as ligand-receptor binding are accessed. With this first approach it is
tested how many and which kind of intercellular signals can be extracted from the CSNDB
by the most simple filter. The second task (Section 4.2.3) is designed to exploit as much
information from the CSNDB as possible, i.e. any type of Cell Signaling is accessed
and filtered for relevant molecules and their locations. Therefore, new extraction rules are
designed in order to access relevant data that is missed by the previous approach.

Both approaches access the 3512 different molecules and 1382 signaling interactions
contained in the CSNDB (Table 4.3):

M := {all Signal Molecule entries}, |M | = 3512 (4.1)

S := {all Cell Signaling entries}, |S| = 1382. (4.2)

Regardless of the chosen reconstruction approach, the general form of a Cell Signaling

s ∈ S in the CSNDB is
s : m1 + ... + mk → ml + ... + mn, (4.3)
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with mi ∈ M and i ∈ [1...n]. Further the conditions k ≥ 0, l = k + 1, n > k and n ≥ 2
are met which means that the CSNDB signals consist of at least two molecules and a non-
empty right side. The left side is in some cases empty. Some signals in the CSNDB contain
an equilibrium symbol (<->) instead of the right arrow. This is not explicitly covered by
Definition 4.3, but such signals are treated in the same way as the others.

Only signals that define locations for the relevant signaling molecules can be used. Since
some of the molecules in the selected signals have no locations assigned, not all relevant
signals are applied and thus, not all of the 172 available locations (Table 4.3) could finally
be connected to other locations. Table 7.1 in the appendix (Section B) lists the locations
for which connections could be inferred in either of both reconstruction approaches.

Both of the reconstruction approaches described in the remainder of this chapter se-
lect a subset of relevant Cell Signaling interactions, determine two molecules of the
signaling that contain the source and target locations and define how the locations are to
be connected. At this point it is important to remember that the resulting links between
the locations are potential intercellular interactions inferred from partial information in the
CSNDB. That means, the information on the molecules and their interactions is taken from
a validated database and the construction of the intercellular pathways follows biological
plausible rules, but the resulting extracellular signals are still hypotheses.

4.2.1 Reconstruction I: Accession of binary ligand-receptor in-
teractions

The first reconstruction approach applied on the CSNDB is the most simple one. Only
binary ligand-receptor signals are selected since they certainly contain relevant cell signaling
information. For this purpose, from all signals s ∈ S only those possessing the form

s : m1 → m2, with m1, m2 ∈ M (4.4)

are retrieved and checked for the following conditions:

(1) s.interaction = "ligand-receptor binding"

(2) m2.type = Receptor.

Further, the species field of both molecules should either be Human or missing. Since most
molecules lack of a species entry and only a very few are marked as Human we decided to
consider all molecules which are not explicitly assigned to non-mammalian species. Note
that in the first reconstruction approach only Cell Signaling objects are accessed, not
Gene Expression or ExtraCell Signaling.

The last step in the reconstruction process is to draw the links between the locations
of the ligand and receptor molecules. In this first and simple reconstruction approach
the Target field of a Signal Molecule is omitted and only the fields Tissue and the
Synthesis are considered. Thus, all ligand molecule locations defined either in Tissue or
in Synthesis are connected with all locations of the same fields in the receptor molecule.
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4.2.2 Reconstruction I: Resulting interactions and networks

Figure 4.1: Different cell-cell interaction network visualizations resulting from the simple CSNDB recon-
struction approach. Here only the unlabeled subset of the 29 organ locations is shown in the direct unique
(left), bipartite (middle) and and tripartite (right) graph model (see also Table 4.3). All models possess a
significantly lower edge number (about 430 to 480) compared to the simple direct multiple graph (about
1 200), which is not shown here. The locations are black circles, the ligand-receptor nodes in the bipartite
graph are white boxes and in the tripartite graph the ligands are white boxes, whereas the receptors are
shaped as gray diamonds. All figures are created using yEd from the yFiles library (www.yworks.com).

By applying the filter rules defined in the previous section on the CSNDB data, 169
signals consisting of 264 different molecules are selected (Table 4.3). If only the signals
that contain locations for all relevant molecules are taken into account, 74 signals with a
total of 120 different molecules remain which connect 85 locations (a complete list of the
74 remaining signals can be found in the appendix, Section B, Table 7.2).

From these selected signals and molecules, the graphs are constructed by adopting the
different available models (Section 3.2). In the simplest case (direct multiple model) the
resulting graph consists of 3 584 edges. The edge number can be reduced to 1 614 if only
one edge is drawn at maximum between each node pair (direct unique model). Further
reductions are obtained by using the bipartite and the tripartite graph model (1 069 and 935
edges respectively). Thus, the original number of edges can be reduced in some cases down
to less than a third of the original amount, although the number of nodes increases due to
the additional nodes required. However, in this reconstruction approach the connectivity
of the locations, stays the same for all three different graph representations, i.e. locations
linked in the direct model stay linked and no additional links emerge.

The edge reduction mainly has an impact on the visualization of the resulting graphs.
Figure 4.1 shows the organ subnetwork of the complete network extracted from the CSNDB,
comprising of 29 organ nodes. The organ subnetwork is chosen since it is the largest one
in the CSNDB with entities at the same anatomical level. For the same reason the organ
network is used for the sample application that will be presented below (Section 4.3).
Although the different representations of the organ subnetwork in Figure 4.1 (direct unique,
bipartite and tripartite from left to right) have similar edge numbers, they all show a great
reduction compared to the simple direct multiple model (Table 4.3).
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Cell Signaling : "renin -> angiotensin II"

Cell Signaling : "angiotensin II -> aldosterone"

Signal Molecule : "renin"

Type Hormone

Tissue "kidney"

Tissue "colon"

Synthesis "glomerulus"

Target "blood vessel"

Signal Molecule : "angiotensin II"

Type Hormone

Tissue "blood vessel"

Signal Molecule : "aldosterone"

Type Hormone

Target "kidney"

Table 4.4: The renin/angiotensin system as it is contained in the CSNDB as an example of a set of signals
consisting only of ligands, but relevant in respect to intercellular interactions. Here only the different
location fields and the molecule type are shown.

Not only visualization benefits from the conversion into bipartite and tripartite model,
but the extracted potential signals could be for example listed completely, sorted by ligands
or ligand-receptor interactions and would be easier to search and to review by biomedical
experts.

4.2.3 Reconstruction II: Accession of any molecular interaction

The main problems resulting from the first extraction task (Section 4.2.1) are:

1. Not all interesting molecular signals in the CSNDB are binary or possess the type
ligand-receptor binding.

2. The different location fields (Tissue, Synthesis and Target) are not considered
appropriately.

In the following, these two problems are discussed. Additional extraction rules for signaling
selection and location connection are presented and finally complemented by the definition
of a template that unifies all different location interactions which are filtered and assembled
from the CSNDB with the new rules.

Problem 1: Accession of any type of Cell Signaling

The question here is mainly whether it is possible to access more information in the CSNDB
when all signals of the general form (Definition 4.3) are considered. This might sound
surprising since the number of potential interactions extracted by the first approach is
already very large. However, manual examinations of the cell signals in the CSNDB showed
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that the database contains information that is not selected with the first reconstruction
approach.

An example of such a relevant cell signaling is NGF + TrkA -> CREB. Here the interest-
ing ligand-receptor interaction is on the left side, with the nerve growth factor NGF binding
to the receptor tyrosine kinase TrkA. This produces a transcription factor CREB (a cAMP
response element-binding protein), which is of no further interest for our purposes. But
the interaction of NGF and TrkA should be selected.

A further example of interesting database content that has not yet been detected is a
part of the renin/angiotensin system that is covered by the CSNDB. The respective sig-
nals are renin -> angiotensin II and angiotensin II -> aldosterone (Table 4.4).
Although both signals are binary, they could not be found with the previous approach,
because all molecules are hormones, i.e. these signals are not ligand-receptor interactions,
but rather “ligand-ligand” signals. The biologically most plausible explanation for signals
containing two ligands is that there are “hidden” interactions or other processes in be-
tween, i.e. renin is not directly interacting with angiotensin II, but rather causes the
secretion of this ligand. In fact, in this case the underlying physiological mechanism is
that renin is being produced in the kidneys and cleaves a molecule angiotensin I from
its precursor Angiotensinogen which is synthesized in the liver. Angiotensin I is then
converted into angiotensin II by a angiotensin-converting enzyme. Angiotensin II in
turn causes the release of aldosterone in the adrenal gland.

Similar complex mechanisms are involved in all other ligand-ligand interactions in the
CSNDB. However, since all these molecules involved in this kind of signaling are of in-
terest, the ligand-ligand signals should be considered as “left molecule causes the produc-
tion/release of right molecule”.

Following these observations, a new extraction rule should be more flexible in selecting
the source and target molecules of the potential cell-cell interaction. For this purpose we
define in addition to the sets of molecules (Definition 4.1) and signals (Definition 4.2) two
sets of relevant molecule types:

L := {Hormone, Cytokine, Neurotransmitter} (4.5)

R := {Receptor, Ion Channel}.

Here, L contains all ligand molecule types of the CSNDB, whereas R consists of molecule
types with a receptor function which are the actual Receptor type, but also Ion Channel,
because ion channels can also serve as receptor for extracellular messengers (which
change the conductivity of the ion channel, see Section 2.1.4). Examples of relevant
interactions with ion channels in the CSNDB are estradiol -> Maxi-K channel or
L-glutamate -> GluR5.

Using the molecule type sets (Definition 4.5) the molecules mi of a signaling s can be
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assigned to different groups, depending on the molecule type:

Mleft := {mi, ...}, with mi.type ∈ L and 1 ≤ i ≤ k

Mright := {mi, ...}, with mi.type ∈ L and l ≤ i ≤ n (4.6)

Mlig := {mi, ...}, with mi.type ∈ L and 1 ≤ i ≤ n

Mrec := {mi, ...}, with mi.type ∈ R and 1 ≤ i ≤ n

Thus, Mleft and Mright contain only ligand molecules from the left or from the right side
of the signaling, respectively. Mlig and Mrec cover both sides of a signaling s, but contain
either only ligand or only receptor molecules. All sets can either be empty or contain any
number of molecules.

Finally, using these molecule groups, a filter function select : S → {0, 1} can be defined
that selects all signals s with a specific ligand-ligand or ligand-receptor combination:

select(s) := [ (|Mleft| > 0) ∧ (|Mright| > 0) ] ∨ [ (|Mlig| > 0) ∧ (|Mrec| > 0 ] (4.7)

This function filters two kind of signals: these with at least one ligand molecule on
each side of the signaling or those with at least one ligand and one receptor molecule
at any position of the signaling. Hence, the first part of this filter would find signals like
renin -> angiotensin II since both molecules are ligands. The second part of the filter
accesses signals like NGF + TrkA -> CREB, because NGF and TrkA match the ligand and
receptor condition.

After selecting a relevant Cell Signaling object, two molecules with the respective
source and the target locations to be connected have to be chosen, because the filter rule
in Definition 4.7 might select a signal with more than two ligands or receptors. Manual
examination of all selected signals revealed that in any case the molecule that provides the
source locations is the first ligand and the target location molecule is either the second
ligand or the receptor molecule.

Problem 2: Assignment of appropriate locations

The different location fields (Tissue, Synthesis and Target) have so far been treated
uniformly, i.e., all locations in the fields Tissue and Synthesis of a ligand molecule are
connected to all locations of the same fields in a receptor molecule. The Target field
is completely omitted. A more accurate consideration should enhance the quality of the
extracted paths, because synthesis and target locations are explicitly defined and thus,
probably too many connections are drawn with the previous approach.

To illustrate this, consider again the Renin/Angiotensin system mentioned in problem 1
(Table 4.4). The molecule renin of the first signaling is located in the Tissue fields kidney
and colon as well as in the glomerulus as Synthesis location. The Target location is
blood vessel. The angiotensin II molecule of both interactions is reported as being
located in the blood vessel as the only Tissue (no Synthesis and Target is given here)
and aldosterone has a Target location in the kidney.
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Figure 4.2: Schematic overview of the location connection rules in the second CSNDB reconstruction
approach. The locations defined in different location fields of four abstract molecules (Mol1 to Mol4) are
connected according the new rules. The rule number that applies for each connection is denoted with
encircled numbers at the arrows. The arrows mean that all locations of the location field at the start
molecule are connected with all locations of the other location field at the end molecule.

Here it seems inappropriate to connect the Tissue and the Synthesis locations of
renin equally to the Tissue location of angiotensin II since then there would be no
difference between a synthesis location and other locations. The Synthesis location should
rather be considered as the source and the other locations as targets.

Furthermore, since angiotensin II is contained in both signals, the previous assump-
tion is supported, that such “ligand-ligand” interactions mean the induction of further mes-
senger substances (as supposed in problem 1), i.e. renin is not binding to angiotensin II

directly, but rather renin induces (by a mechanism not contained in the CSDNB) the pro-
duction of angiotensin II which in turn amplifies the production of aldosterone.

Therefore, new rules for drawing links between the locations of CSNDB molecules are
defined that reflect the biological reality more appropriate. These rules can be divided into
two parts. First, there is a rule for connecting locations defined inside a single molecule:

1. If a molecule provides at least one Synthesis location and at least one Tissue or
Target location,
then connect the Synthesis locations with all Tissue and Target locations of this
molecule.
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Second, there are four rules defining the links between the locations of two molecules,
depending on which location fields they provide (ligand and receptor molecules are here
also denoted as start and end molecules):

2a. If both molecules provide one or more Synthesis locations,
then only the Synthesis locations of the start molecule are connected to all
Synthesis locations of the end molecule.

2b. If only the start molecule provides one or more Synthesis locations,
then only the Synthesis locations of the start molecule are connected with all
locations in the end molecule.

2c. If only the end molecule provides one or more Synthesis locations,
then all locations in the start molecule are connected only to the Synthesis locations
of the end molecule.

2d. If there is no Synthesis location in any of the molecules,
then all locations of the start molecule are connected with all locations of the the
end molecule.

Figure 4.2 shows these rules in a schematic view: consider four molecules, Mol1 to Mol4,
that contain different location fields, where Mol1 and Mol2 contain locations of all three
location fields, Mol3 and Mol4 instead miss some location fields. For Mol1 and Mol2 first
rule 1 can be applied, i.e. all locations contained in each molecule are connected from
Synthesis to the other location types. Between Mol1 and Mol2 then only the respective
Synthesis locations have to be linked (rule 2a). The rules 2b and 2c are applied between
Mol1 and Mol3, and between Mol3 and Mol2 respectively since Mol3 does not contain any
Synthesis location. Last, if none of the molecules comprises a Synthesis field, then
the locations are connected similar to as it was performed in the previous reconstruction
approach. This is applied for the location links inferred for Mol3 and Mol4.

Regarding the quality of the links reconstructed by these rules it can be assumed that
entries in Synthesis and Target fields are more meaningful than entries in Tissue fields.
The reason is that entries in Synthesis and Target fields have a more specific semantic
(secretion and binding), whereas the appearance of a Tissue field in a Signal Molecule

object means only that the molecule has been “somehow” observed in the respective loca-
tion. Whether this substance is there since it is e.g. produced or consumed at this site is
not specified. Also there is no documentation explaining the semantic of the CSNDB fields.
Thus, the connection of synthesis and target location provides probably more certain in-
formation on intercellular signaling. However, in this context the main goal is to extract as
many potential signals as possible and hence, also the connections between Tissue fields
are considered.

Definition of a template for all extracted location interactions

The last problem to be solved arises through the application of the new rules defined
above in this section: there is now no simple way to generate bipartite and tripartite
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graph representations from the direct multiple model. In the previous reconstruction ap-
proach this was ensured by the fact that all locations specified in the molecule objects of
a ligand-receptor binding are connected completely and thus can be easily combined
with a new node in the bipartite model. In the second reconstruction approach however,
each group of locations associated by a Cell Signaling is not necessarily fully connected,
because the different location fields (Tissue, Synthesis and Target) are now treated
differently (see the description and solution of problem 2).

A further aspect that has not been considered yet is that it should be possible to remove
single location interactions if they are negatively evaluated. Such deletions of individual
interactions are not easy possible in a bipartite or tripartite model without affecting other
interactions.

A way to solve these problems is to start at the other side and to create for each single
location interaction an individual tripartite link, i.e. two location nodes are connected by
a ligand and a receptor node. Then all equal nodes can be merged and thus the same kind
of tripartite graph is generated as it has originated in the first approach from the direct
graph representation (Section 4.2.1).

Following these considerations, a more flexible way to combine the several objects of the
second reconstruction approach (i.e., locations, ligand and receptor molecules) is needed,
and therefore, a template to store different interactions between locations is defined:

Locsource → Ligsource → Rectarget → Loctarget → Ligtarget, (4.8)

meaning that a source location Locsource is connected to a target location Loctarget

via a ligand receptor-interaction. The respective molecules Ligsource and Rectarget are
filled with the available information. For example consider the abovementioned signal-
ing NGF + TrkA -> CREB. Among others, NGF contains the Tissue field lung and TrkA

the Tissue field liver. Thus, an exemplary location link obeying the template in Defini-
tion 4.8 is:

Loclung → NGF → TrkA → Locliver.

At this point another problem turns out: not for any reconstructed interaction the recep-
tor is known since some are “ligand-ligand” interactions (as described in the discussion
problem 1), i.e. a ligand molecule at the start site induces the production of another ligand
at the target site. For this purpose the template in Definition 4.8 contains the variable
Ligtarget. In case of a “ligand-ligand” interaction the receptor variable Rectarget is filled
with a label that marks this part of the interaction as unknown. The second ligand is then
stored in the Ligtarget field of the template.

For example, one of the location links based on the ‘ligand-ligand” interaction
renin -> angiotensin II (Table 4.4) is then

Locglomerulus → renin → ?R renin → Locblood vessel → angiotensin II.

Thus, ?R renin is the label to denote that this value is currently missing. Similarly, missing
ligands obey the form ?L ligandname .
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All connections found between pairs of locations generate single location links that
obey the template form shown in Definition 4.8. Finally all individual links are joined by
combining all equal ligand and receptor nodes in the tripartite graph representation (except
nodes representing unknown ligands or receptors). From this tripartite model, bipartite
and direct representations can be generated easily.

Workflow

Summarizing the steps described above, the workflow of the second reconstruction approach
is:

1. Selection of relevant Cell Signaling and Signaling Molecule objects

2. Connection of different location fields of the selected molecules

3. Generation of location-location interactions by applying a generic template

4. Merging of all equal nodes and creation of a tripartite graph

5. Generation of bipartite and direct representations

This second reconstruction process from the CSNDB was described for the class
Cell Signaling, but also the class Gene Expression (Table 4.1) has been accessed with
the same rules, since it is structurally similar to Cell Signaling. As in the previous ap-
proach, all molecules with the field Species set to Human or missing are considered. Also
unsuitable locations and impossible location pairs are ignored. Additionally, all molecular
interactions that contain molecules with the flags Exogenous or Endocrine Disruptor are
ignored.

Supplementary to the molecular interaction classes, the class ExtraCell Signaling is
accessed. The information stored here can be directly translated into the template form
(Definition 4.8) and does not need any further reconstruction. However, the number of
ExtraCell Signaling and Gene Expression objects in the CSNDB is considerably low
and thus, nearly all reconstructed signals are gained from accessing the Cell Signaling

objects.

4.2.4 Reconstruction II: Resulting interactions and networks

Applying the rules of the second reconstruction approach to the CSNDB results at first in
the selection of 180 Cell Signaling objects from which finally 106 can be used, because
all of their respective 160 molecules (ligands and receptors) have at least one location
entry (Table 4.3). Additionally, 8 of the 15 existing ExtraCell Signaling objects contain
information that is not covered by the Cell Signaling objects and thus, these extracellular
signals are also used. Unfortunately, no entry of the Gene Expression fields matched the
filter rules. Hence, information from Gene Expression is not further used. Complete
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lists of the 106 remaining cell signals and the 8 extracellular signals can be found in the
appendix (Section B, Tables 7.3 and 7.4 respectively).

Some locations which are not suitable for our purposes are explicitly removed, as
e.g. pooled or cell line as well as all locations related to ontogenesis, as e.g. embryo
or pluripotential stem cell (a list with all extracted locations is given in Table 7.1
in the appendix, Section B). Also some location links are generally excluded, as e.g. such
links that would connect male with female sex organs.

With the second reconstruction approach, 32 additional signals (compared to the pre-
vious approach) are found. Also the number of locations to be connected is higher. Inter-
estingly, the number of links between these locations is lower (see the direct multiple or
unique numbers for edges in Table 4.3). That is most likely due to the different connection
rules between Synthesis, Tissue and Target locations.

The largest part of the selected signals are still binary ligand-receptor interactions.
Most of the the newly acquired signals have no type defined and are found by the rule that
allows “ligand-ligand” signals. Two of the new signals are protein-protein interactions and
only a few of all relevant signals are not binary (for details see the complete list in Table 7.3
in the appendix, Section B).

From all selected signals, 3 214 links between all different 94 locations are inferred and
checked for known interactions by biomedical experts, resulting in 452 reconstructed links
that are known to exist (about 14.06%). It has also been found that 12 of the reconstructed
links emerge from the use of a target ligand (i.e. the second ligand of a “ligand-ligand”
signaling) as separate node. Another difference to the previous results is that the number
of links between organs nearly doubled (for both direct representations as well as multiple
and unique graphs, see Table 4.3). With three of the graph representations (direct unique,
bipartite and tripartite) the edge number can be reduced by more than 50%. The organ
subnetwork is shown in its tripartite representation in Figure 4.3.

Figure 4.3 shows not only a tripartite visualization as it has been shown for the first CSNDB
reconstruction in Figure 4.1. Here, additionally, the strong components of the graph are
calculated and are represented by the color of the nodes. In graph theory, a component of
a graph G is a maximal connected subgraph of G, i.e. for any pair of nodes u and v in this
subset there is a path from u to v (Diestel, 2000). Sometimes this is also referred to as
strong component (Batagelj and Mrvar, 2003). A giant strong component (GSC) (or giant
component) therefore is the largest strong component in G (Ma and Zeng, 2003).

The graph in Figure 4.3 is dominated by a large GSC (gray nodes) and several small
components (black nodes) often consisting of only one location. In one case such a compo-
nent is a completely separated subgraph (the gastrointestinal tract with the ligand motilin
and its respective receptor in the upper right part of Figure 4.3). Many other compo-
nents are single nodes, i.e. either source nodes (e.g. the larynx in the lower right part) or
target nodes (e.g. the tongue, right above the larynx) with only edges into or from the
GSC respectively. Some components are subgraphs consisting of more than one node (as
e.g. the subgraph between hippocampus and melatonin at the lower left corner of the fig-
ure). Hence, the most important thing to note here is that the largest part of the network
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Figure 4.3: Tripartite organ graph resulting from the second CSNDB reconstruction approach. The
color of the nodes indicates whether it belongs to the giant strong component (GSC, gray) or to any
of the other components (black) of the graph. All nodes which do not belong to the GSC are placed
around the GSC. The shape denotes (as in Figure 4.1) the locations (circles), the ligands (boxes) and the
receptors (diamonds). The strong component calculation and the graph visualization are conducted with
Pajek (Batagelj and Mrvar, 2003).

is connected in a way that each node can be reached from any other node.

To detect the actual density of the networks and other statistical measures, the direct
unique graph representation should be used. Additional node sets and multiple edges
unnecessarily complicate a quantitative analysis. Figure 4.4 shows the direct unique repre-
sentation of the organ network derived from the tripartite (Figure 4.3) and bipartite (not
shown) graph (Definition 4.2.3).

The density of a graph is calculated as the ratio of the number of edges e and the
number of all possible edges: density = e

n∗n
, with n as the number of nodes. Here the

number of possible edges is n ∗ n since edges in both directions and also self-loops are
allowed. The organ graph has then a density of 871/522 ≈ 0.268. Further, the diameter
of the graph, which is defined as the longest of all shortest pathways, is 4 for the organ
network and the average distance among all reachable pairs is 1.764. These few numbers
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Figure 4.4: Direct unique organ graph resulting from the second CSNDB reconstruction approach. The
nodes represent the organ locations, the node color indicates whether the node belongs to the giant strong
component (GSC, gray) or to any of the other components (black) of the graph. All nodes which do not
belong to the GSC are placed at the left and bottom side of the figure. The strong component calculation
and the graph visualization are conducted with Pajek (Batagelj and Mrvar, 2003).

illustrate that not only the giant component connects nearly all nodes of the network, but
that also the connectivity inside this component is very dense and that it is therefore hard
to detect structurally different parts. The situation is similar for the complete network of
all locations.

A further kind of statistical analysis is the distribution of node degrees. As it can be
observed in Figure 4.4, there are nodes with only a few connections as well as nodes with a
very high degree. A network is called scale-free if the distribution of the node degrees fits
a power-law, i.e. decays linearly in a log-log plot (Barabási and Albert, 1999). That means
the graph consists of many nodes with few connections and a small number of nodes with
many connections, so-called hubs. This property makes the network scalable and more
error-tolerant. In our case, the organ network consists of nodes with very different degrees,
but no power-law could be found to fit this distribution (i.e., the respective correlation
coefficient r is only r ≈ 0.49, but a value close to 1 should be obtained). The same holds
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for the complete network. Thus, although the node degrees show differences they did not
fit to a known distribution.

4.3 Correlation of graph topology and biological be-

havior

It is a general problem of statistical network analysis in biology to relate graph topological
measures to the biological reality that is modeled by the network. Metabolic networks
of different organisms, for example, have been shown to be scale-free and to share other
global properties under certain conditions (Jeong et al., 2000). But it is still questionable
what such global network properties can tell about the physical or biological behavior of
the organism.

An example of such a relation is a study that shows correlations between the physical
wiring lengths and network topology measures (as e.g. the average shortest path length)
in cortical networks (Kaiser and Hilgetag, 2004). Inspired by this approach, we asked in
the context of intercellular networks whether there may be a correlation between physical
distances of organs in the human body and their signaling intensity, i.e. the number of
different signals existing between a pair of organs. Here organs are considered since these
are probably anatomical entities for which physical distance data might be found at all.
Furthermore, the most nodes in the network we extracted from the CSNDB are organs.

A similar attempt to analyze especially dense intercellular signaling networks has been
done by Tieri et al. (2005) for the human immune cell network (Section 2.4.4). In the fol-
lowing, the data resulting from the second CSNDB reconstruction approach (Section 4.2.3)
is used.

4.3.1 Definition of distances

The goal of this sample study is to find out whether the signaling properties between
organs differ depending on the anatomical distance between the organs. For example it
might be that organs located close to each other do share more signaling interactions than
far distant organs. For this purpose we need to define with which quantitative measures
the signaling behavior in the network and the organ distance can be modeled. First, as a
signaling property we define the signaling intensity between two locations loci and locj in
a signaling graph G:

signaling intensity(loci, locj) := |E(loci, locj)|, E ∈ G, (4.9)

which is simply the number of parallel edges of the same direction between a node pair in
the direct multiple graph representations.

The signaling intensity is then compared to a physical distance measure of the two
respective organs in the human body. Hence, the next question is how to define the
physical distance of organs. One possible source of organ distances are models used in
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Figure 4.5: Body quadrants scheme. To measure distances between organs the torso is divided into four
parts split by lines along the spinal column and the diaphragm. The organs are then assigned to one or
several quadrants, depending on their location in the body. Organs not located on the torso (as e.g. the
brain) are assigned to the upper two quadrants. The distances are finally chosen accordingly to the course
of the blood stream (boxes on the axes).

nuclear medicine and created to measure the influence of radiation on different parts of the
human body (Zankl et al., 2003). These models are very accurate, distances are usually
measured in millimeters, but, however, the data is not easy to obtain from the publications
and, most importantly, does not cover all organs of our data set. So we decided to introduce
another distance model, the body quadrant model.

Body quadrants are known from clinical practice. Here the torso is divided into four
equally sized fields (split up horizontally by the diaphragm and vertically by the spinal
column) and all organs can be assigned to one ore several of the quadrants (Figure 4.5). For
example, the stomach is only located in the lower right quadrant, but the lung is contained
in the upper two quadrants as well as all organs above the lung (brain, eyes etc.). Other
organs like muscles or blood can also cover all four quadrants. This classification is done
manually for all 57 organs in the CSNDB network.

Based on the body quadrant scheme, physical distances can now be defined according to
the course of the blood stream (values on the axes in Figure 4.5): adjacent quadrants above
and below the diaphragm (horizontal division) are closest and therefore organs located in
such quadrants have a distance of 1, followed by the vertically adjacent quadrants which
are set to a distance of 2. Finally, the diagonal distance between all quadrants is considered
as 3. Organs of the same quadrant have a zero distance.

Since some organs are located in more than one quadrant, the definition of distances
has to be extended. For example, the distance between the lung (located in both upper
quadrants) and the liver (in the lower left corner) could be 1 if their closest junction is



4.3 Correlation of graph topology and biological behavior 65

�

��

���

���

���

���

� � �� �� ��

�������������	����


�
�

�
�

�

� �� �� ��

��

���

���

���

���

����

� �� ��

�������������	����


�
��

��
�

��
�

��
��

�

	

�	
��� �	
��� �	
���

� �� �� ���

Figure 4.6: Results of the organ distance analysis. The left panel shows the distribution of the number
of connections (i.e. signaling intensity) among the organ pairs. A bar in this plot represents the number
of organ pairs connected by the respective number of edges. Each edge direction is therefore considered
separately. On the right panel the results for the correlations of the signaling intensity with the minimal

distances of organs are presented. Each bar shows the distribution of the three organ distances (0, 1 and
2; a distance of 3 was not observed) occurring among the organ pairs of a specific signaling intensity. Bars
are left out if no organ pair exhibits this signaling intensity.

considered and 3 otherwise. Thus, three different distance measures are possible:

• minimal distance: consider only the minimal distance of all distance values

• maximal distance: consider only the maximal distance of all distance values

• average distance: calculate the average of all distance values

In case of the lung and the liver this would be 1 for the minimal distance, 3 for the maximal
distance and 2 for the average distance.

4.3.2 Results

Figure 4.6 presents the results of this sample analysis. On the left side the distribution of
the signaling intensity among the organ pairs in the reconstructed network is considered.
Many pairs in the organ network are connected by only a few parallel signals, and the higher
the signaling intensity is, the lower is the number of node pairs exhibiting this intensity.
Thus, this decreasing distribution shows that there is a variety in the organ pairs in respect
to the signaling intensity, which is a prerequisite for further investigations. If all node pairs
would be connected by a similar numbers of links, then a search for correlation with other
measures would make no sense.

On the right plot of Figure 4.6 the results for one of the distance measures, the minimal
distance, is presented. From the four possible distance values (0, 1, 2 and 3) the distance 3
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does not occur and a distance of 2 occurs only a few times for low signaling numbers. The
two remaining distances are distributed in a nearly homogeneous way. There is no observed
tendency from which to draw conclusions such as e.g., highly connected organs are located
more closely than other organs. Even the organ pairs with the most connections (at the
right end of the figure) show both distances.

The other distance measures were also tested. Additionally, averages per signaling
intensity class are calculated and weighted by the size of the class. In all cases the results
are similar and no clear correlation of signaling intensity and physical organ distance could
be observed.

The reasons for this might be found on both sides. Both the abstract network mea-
sures and the distance measures are not based on biological reality. Physical distance might
not correspond to the time on average a hormone takes to travel between one tissue and
another. Also one must have in mind that this is only a network of hypotheses, i.e. of
potential interactions, and that with a more accurate network the distribution of the sig-
naling intensity could change. Furthermore, the resolution of the physical distance value is
probably not high enough. Many organs share a quadrant or are at least directly related
with distance 1. Hence, only two distance values mainly occur. Here it could be helpful to
try to apply finer granulated organ distances from nuclear medicine (Zankl et al., 2003),
even if such measures exist for only a part of the organ network.

Thus, an interdependency of a topological graph measure and a physical property could
not be shown, but however, the approach can be re-used and applied to more accurate data.

4.4 Implementation

The CSNDB is locally stored as an ASCII flat file in a proprietary format. This flat file
is parsed and the results stored in a relational SQL database (PostgreSQL 7.2.1). Also all
subsequent reconstruction and analysis processes access this database. The programming
language is Java (Version 1.4.1), the database accession uses JDBC. As graph library the
commercial yFiles library (www.yworks.com) is applied (Version 2.0.1.3). Graph analysis
is conducted using Pajek 1.0.9 (Batagelj and Mrvar, 2003) and the R 1.9 statistics software
(www.r-project.org) with the Bioconductor package (www.bioconductor.org).

4.5 Discussion

The approaches to reconstruct intercellular signaling from the Cell Signaling Database
(CSNDB) can be seen as a sample for the extraction of this kind of signals from molec-
ular databases in general. Although the CSNDB has a different focus compared to other
databases (Section 2.2), all reviewed molecular databases have in common that they do
not contain direct information on intercellular connections, but the signals have to be as-
sembled from partial information. Thus, two problems remain for probably most database
based reconstruction approaches: the molecules are often not properly assigned to a well-
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defined anatomical location and even if this is the case, the combination of source and
target locations into extracellular signaling pathways can easily result in great numbers of
unvalidated hypotheses.

The location problem might be resolved by applying other data sources containing
further information about the anatomical locations of the molecules. For this purpose
special anatomical ontologies, such as FMA, eVOC or cytomer (see also at the end of
Section 2.2), could be used to assign the type of locations (whether it is e.g., a cell type
or an organ) and their positions in the anatomical hierarchy (whether it is e.g., “part-of”
a tissue or an organ). Additionally, in case of the CSNDB the semantic of the location
fields is uncertain. Also the criteria for the selection of the incorporated papers are not
documented and hence it is hard to determine whether and in which direction the CSNDB
content is biased and whether it maybe lacks important cell signaling knowledge. The fact
that the CSNDB seems not to be supported anymore, the difficulties in parsing the flat
file and the general lack of documentation add to the uncertainties with this database.

But even if the same reconstruction approach would be applied to more accurate
databases, the second problem of combining partial information into large amounts of un-
validated hypotheses remains. Such hypotheses are not easy to evaluate since they could
be true, but simply might have not been experimentally investigated yet. For the recon-
structed networks and their quantitative analysis this means a great number of uncertain
edges resulting in dense networks that are difficult to analyze.

To support visualization and manual examination, different graph representations are
introduced that reduce the number of edges. It could be shown that a part of the
reconstructed cell interactions are valid, even if the underlying molecular interactions
are not explicitly labeled as relevant (e.g. “ligand-ligand” interactions in contrast to
ligand-receptor bindings). For this purpose new extraction rules are introduced that
access as much relevant information as possible. However, the extracted networks are still
too dense and uncertain for detecting structures by statistical analysis. Restrictions of
the data to a subset of valid interactions or to a set of locations interesting in a specific
application are possible strategies to make use of the extracted networks.

Thus, the presented preliminary database study shows exemplary the problems occur-
ring generally in intercellular signaling network reconstruction. Since all currently available
databases lack appropriate molecular location information and consist of partial informa-
tion, text mining was considered as a reasonable alternative to gain cell signaling networks.
Here the desired cell type locations can be defined in advance and are not restricted to
a specific database content. Although the resulting networks consist also in this case of
hypotheses, the number of considered cell types can be adjusted in order to allow more
extensive validations.
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Chapter 5

Reconstruction of cell-cell networks
from text
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Following the preliminary database reconstruction study, in this section it will be described
how a text mining approach is conducted in order to reconstruct intercellular interaction



70 5 Reconstruction of cell-cell networks from text

networks. Therefore, the ONDEX framework for data integration and network extraction
is developed as collaborative work and applied to cell relation mining (Section 5.1). An
ONDEX database containing relevant texts and background information (as biomedical
ontologies and databases) is created (Section 5.2) and used (Section 5.3). The chapter closes
with a brief summary of the implementation (Section 5.4) and a concluding discussion of
the results (Section 5.5).

5.1 ONDEX as text mining framework

ONDEX (Figure 5.1) means “ONtological inDEXing” and is a general framework to sup-
port database integration, text mining and graph analysis (Köhler et al., 2004). In different
tasks, ontologies and their basic data model serve as a tool for interpretation and unifica-
tion of different data. Although ontologies are often very differently defined in literature,
they can be generally regarded as data structures for storing knowledge by linking concepts
with different types of relations (Section 2.2).

The background knowledge stored in ontologies is applied to support data integration
and text mining on a semantic level. For this purpose, different databases and ontologies
are imported into ONDEX and converted into a standardized concept based data structure.
Then the concepts are aligned and indexed in the imported texts. This enables searches for
concepts in annotated texts. Hence, terms are not only found by their matching characters
in the texts, but their meaning as defined by the ONDEX ontology can be taken into
account. In the following, this approach will be termed as concept based approach since all
processes in the ONDEX system are based on concepts and relations gained from external
sources.

A further advantage of applying ontologies for data integration and text mining is
their graph based structure. Ontologies are usually implemented as directed acyclic graphs
(DAG) with the concepts as nodes and the relations as directed edges. The direction and
the type of an edge indicate the kind of relation.

In this sense, the graph based structure of ONDEX supports not only database inte-
gration and text mining, but in fact is able to reflect any kind of biologically meaningful
interactions. Thus, network extraction using ONDEX can be achieved in an integrative
manner: interactions of molecules or other entities can be extracted from text by applying
existing knowledge about the relations of the considered entities.

The development of the ONDEX system is a joint work together with Jacob Köhler
(Rothamsted Research, Harpenden, UK) and Alexander Rüegg (Bioinformatics and Med-
ical Informatics Department, Bielefeld University, Germany) based on original ideas of
Jacob Köhler and early implementations of student projects at Bielefeld University. My
own contributions to ONDEX take place mainly in the text mining part (development and
implementation of the indexing methods, including a scoring function for homonym detec-
tion, and of the actual information extraction methods). Additionally I developed parsers
for several databases, ontologies and also for the MEDLINE text import. ONDEX will be
further developed in the group of Jacob Köhler at Rothamsted Research. It has been also
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Figure 5.1: Schematic overview of the ONDEX system (adapted from Köhler et al. (2006)). The three
main parts are: data integration, text mining and graph analysis (ONDEX frontend). Steps 1 to 5 are the
parts of ONDEX used for extracting intercellular signaling from text.

extended towards graph analysis (ONDEX frontend, see Baumbach, 2005; Taubert, 2005)
and applied to a text mining problem on plants and fungi (Winnenburg, 2005; Winnenburg
et al., 2006). Currently it is being re-designed with the main goal of a better end-user con-
venience and a greater modularity. The system is already available as open source software
at Sourceforge (http://sourceforge.net/projects/ondex).

In order to extract intercellular signaling networks from text, five major steps are
performed (Figure 5.1): appropriate databases and ontologies are selected and imported
(step 1) and aligned (step 2); text sources are selected and imported (step 3) and indexed
by a selected number of concepts (step 4); finally several information extraction processes
(relation mining by concept based co-occurrence searches and hypotheses generation) are
performed (step 5) to reconstruct extracellular signaling pathways.

In the following, after presenting basic definitions and the ONDEX database scheme
(Section 5.1.1), the general function of ONDEX will be described according to these steps
(Section 5.1.2 to Section 5.1.4), whereas the data integration part and the graph analysis
module (ONDEX frontend) are described only briefly since the main focus is on text mining
and network extraction.
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5.1.1 Basic definitions and ONDEX framework overview

Ontologies

Although ontologies are defined in many different ways in literature (Gruber, 1993; Köhler
et al., 2003, 2004; Smith et al., 2005), in the most basic and still widely used form an ontol-
ogy can be described as an extension of a controlled vocabulary CV , which is a collection
of well defined terms:

CV := named set of concepts c, (5.1)

with a concept c defined as

c := (identifier, names, definition). (5.2)

The symbols identifier, names and definition represent different data types and can be
implemented in various ways. The identifier can be a string or a number, but must be
unique, definition is usually a string and names a set of strings. A concept can consist of
more than one name, i.e. usually a term and its synonyms are stored here. There can be a
preferred or main term, but concepts are not identified by one of their names. This ensures
that a CV does not contain ambiguous concepts such as e.g. homonyms (terms that obey
the same name, but different definitions). A CV can still contain homonym names, but
the respective concepts have different identifiers and an unambiguous definition.

Thus, a concept can be uniquely identified and hence, a controlled vocabulary is not
only a loosely term collection. Each concept appears only once with one specific meaning.

An ontology O can then be defined as an extension of a controlled vocabulary (Köhler
et al., 2003):

O := Graph G(CV, E), with edges E ⊆ CV × CV. (5.3)

The types of the edges (i.e. the relation types) are given by a function t defined as:

t : E → T, with T := {set of possible edge types}, (5.4)

i.e. T describes the semantics of an edge in natural language and its algebraic relational
properties (transitivity, symmetry and reflexivity).

All ontologies have an edge type ‘is-a’ ∈ T . If two concepts c1, c2 ∈ CV are connected
by an edge of this type, the natural language meaning is “c1 is a c2”. For example, the
concepts “vertebrate”, “animal” and “organism” are connected by transitive ‘is-a’ relations,
i.e. vertebrate ‘is-a’ animal and animal ‘is-a’ organism. The transitive ‘is-a’ relations can
then be used to derive the fact that vertebrate ‘is-a’ organism. Furthermore, an ontology is
defined as an acyclic graph in respect to its ‘is-a’ relations, i.e. circular definitions regarding
the ‘is-a’ structure are not allowed. A further common relation type is ‘part-of’. Examples
for widely used ontologies are the Gene Ontology (GO, see Ashburner et al., 2000), the
Unified Medical Language System (UMLS, see Bodenreider, 2004) and WordNet (Fellbaum,
1998). Another ontology important in this context is the Cell Ontology (CL, see Bard et al.,
2005) that contains a hierarchy of cell types.
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A similar concept is that of a semantic network, with the difference that in a semantic
network the type of the relation between two concepts is not as strongly defined as in an
ontology. Also in a semantic network it is not a requirement that the ‘is-a’ relation must
exist. Thus, an ontology is a form of a semantic network, but not any semantic network can
be regarded as ontology. In computational biology semantic networks are used for example
to model intracellular signaling pathways (Hsing et al., 2004). Sometimes the UMLS is
also referred to as semantic network (McCray and Nelson, 1995).

ONDEX database scheme

Databases, ontologies and other sources are imported via specialized parsers into the ON-
DEX database by converting the data structure of the external source into the concept-
relation scheme of ONDEX. Figure 5.2 shows the main parts of the entity-relationship
diagram of the ONDEX database as far as they are concerned in this thesis. These parts
are the ONDEX core (left side of Figure 5.2), storing the data sources as one unified ontol-
ogy graph, and the text mining part (right side of Figure 5.2), containing selected texts and
concepts to be mined as well as the text mining results. A further part of ONDEX is the
generalized data structure (GDS) that allows to import data which has no pre-defined data
types in the ONDEX database (not shown in Figure 5.2). This allows greater flexibility
for importing and managing heterogeneous data, but is not used within this thesis.

The central table of the ONDEX core is CONCEPT. Here the identifier (field: id) and the
description (field: description) of a concept (according to Definition 5.2) are stored. Each
concept can consist of one or several names (synonyms) in the joined table CONCEPT NAME.
One of the names can be flagged as the preferred or main name (field: is preferred),
but this is not necessary for an unambiguous identification of concepts. So, synonyms
are not stored as related concepts, but rather as properties of the concept itself. The
field is unique is set to true if there are no other concepts carrying the same name
(homonyms) in the database. Since the concept names are processed with several natural
language processing (NLP) tools (see following Section 5.1.2, step 1) there are several fields
for storing the original name and different resulting names after the NLP processing. The
table CONCEPT ACC is used for storing different accession numbers of the same concept. An
accession number in this context is a reference that maps a database entry to entities in
other databases, i.e. a protein in Swiss-Prot for example can have links to corresponding
genes the Gene Ontology.

In this version of ONDEX relations defined in the imported data sources are distin-
guished from mappings created by algorithms in ONDEX. For this purpose, imported re-
lations are stored in RELATION and additional mappings between concepts derived by one
of the ONDEX mapping algorithms (see Section 5.1.2, step 2) are written into MAPPING.
Each relation and mapping is further characterized by a RELATION TYPE (e.g. is a) and a
MAPPING METHOD respectively. In a RELATION the direction is considered by discriminating
between the source (FROM CONCEPT) and the target (TO CONCEPT) whereas a MAPPING con-
sists simply of two concepts without any order. The re-designed ONDEX system currently
under development unifies relations and mappings into the RELATION table by assigning
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Figure 5.2: Entity relationship diagram of the ONDEX core and the text mining part.The generalized
data structure (GDS) part is not used in this thesis and therefore are left out.

appropriate types in RELATION TYPE. Undirected mappings will then be represented by
double entries (one for each direction) in the RELATION table.

A further central table of the ONDEX core is CV. CV means controlled vocabulary and
contains identifiers for all imported data sources, i.e. any concept and relation can be
queried for its origin. Internally derived mappings are also identifiable by a CV entry.

The CV table also reflects our basic understanding of ontologies implemented in the
ONDEX system: controlled vocabularies in the beginning contain concepts consisting of
an identifier, a description and a set of names. The concepts can then subsequently be
linked by relations (either imported or newly created) constituting altogether the ONDEX
ontology. Thus, ONDEX is able to import simple controlled vocabularies without any
pre-defined relations as well as ontologies and databases (at least those databases that can



5.1 ONDEX as text mining framework 75

CV Full name Content Concepts Relations

CL Cell Ontology Cell types 699 1 056
EC Enzyme Nomenclature Enzyme classification 4 502 4 496

Committee
DRA Drastic Insight Database Host-pathogen interactions 5 438 9 907
TF Biobase TransFac Transcription factor database 13 945 9 179
GO Gene Ontology Gene and gene product attributes in

any organism
17 427 25 337

AC AraCyc Biochemical pathway database for
arabidopsis

18 909 18 424

MC MetaCyc Metabolic pathway database for dif-
ferent organisms

21 345 34 384

MESHD Medical Subject Headings
(MeSH) Descriptors

NLM’s standard medical index
terms

22 995 40 525

TP Biobase Transpath Signal transduction database 45 243 59 825
WN WordNet Lexical reference system of English

nouns, verbs, adjectives and adverbs
115 424 213 335

TX NCBI Taxonomy Organism names and classification 220 927 220 927
BREND BRENDA database Enzyme information system 286 983 691 799
KEGG KEGG database Kyoto encyclopedia of genes and

genomes
2 170 188 3 073 502

Table 5.1: Overview of some of the ontologies and databases available for importing into ONDEX. The
gray lines mark the data sources imported and used within this thesis. “CV” is the identifier of the
database/ontology. The table is ordered by increasing numbers of concepts and relations provided by the
data source.

be interpreted as ontologies). The unified concept-relation structure supports the search
for additional mappings between concepts of the various imported data sources.

The text mining part of ONDEX consists mainly of the texts imported into the table
TEXT. There they are stored unchanged as well as processed by the same NLP tools used
for importing the databases and ontologies. In case of mining huge amounts of text, a
split into a number of text tables might be necessary (see step 3 in Section 5.1.3 for a
more detailed problem description and Section 5.2 for the specific procedure applied to the
MEDLINE texts imported in this context).

For each text mining task a PROJECT can be defined that specifies a subset of selected
concepts (CONCEPT SUBSET) and a subset of selected texts (TEXT SUBSET). The concept
based indexing algorithm (see Section 5.1.3, step 4) then assigns in IDENTIFIED CONCEPT

to each concept of CONCEPT SUBSET the texts where it is found.
With the table ANNOTATION, texts can be additionally annotated by entries of other

controlled vocabularies. The MEDLINE database for instance provides links to databases
and other external sources.
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5.1.2 Data integration

Step 1: Import of ontologies and databases

Each data source to be used in ONDEX (e.g. databases, ontologies, taxonomies etc.) re-
quires the implementation of a specific parser that converts structure of the data source
into the ONDEX database scheme. In ONDEX any data sources can be imported that
obeys the form of a controlled vocabulary (Definition 5.1).

The parsers apply natural language processing (NLP) tools to the concept names. These
are a word stemmer to restrict each word of the name to its linguistically main part and
a part-of-speech tagger to add to each word its grammatical function (for a description of
the specific tools used refer to Section C in the appendix). The results are used for the
mapping and the indexing algorithms (see next step (step 2) in this section and step 4 in
Section 5.1.3, respectively).

All parsers currently available in ONDEX are listed in Table 5.1. The parsers imported
and used within this thesis are highlighted in gray. Also generic parsers for ontologies in
the DAG-Edit and the OBO format are developed, where DAG Edit is the first attempt
to save ontologies in a standardized format. Meanwhile it has been replaced by a format
of the OBO (Open Biological Ontologies) initiative. As most important change the OBO
format is not recursive anymore, which makes OBO flat files better human-readable. Both,
the Gene Ontology (GO) and the Cell Ontology (CL) are in OBO format and imported by
applying the OBO parser.

Step 2: Ontology alignment

Having external data sources imported into the ONDEX database, they all possess the same
ontology based data format, i.e. all entities are stored as concepts linked by relations. For
this reason all imported data sources are referenced from now on as ontologies, independent
from the actual kind of imported data source.

This unified data format is exploited when the imported ontologies are aligned to each
other. An alignment is a mapping of concepts from ontologies O1 and O2. If an alignment
maps a concept c1 of an ontology O1 to a concept c2 of an ontology O2, then c1 and c2 are
said to be equivalent. The mapping between two ontologies might be partial, i.e. O1 and
O2 can obtain many non-equivalent concepts.

In ONDEX one concept of O1 is mapped to another concept of O2 according to the
following three methods:

1. Two-synonyms:
c1 ∈ O1 is equivalent to c2 ∈ O2, if they have at least two equivalent synonyms, i.e. if
they have two or more of their names in common.

2. Structalign:
c1 ∈ O1 is equivalent to c2 ∈ O2, if one of their ancestor nodes share the same name.
This may be restricted to a certain depth within the ontology graphs and holds only
for transitive relations.
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3. Transitive mapping:
c1 ∈ O1 is equivalent to c2 ∈ O2, if they are both mapped to the same concept of
another ontology O3, i.e. if (c1 ⇔ c3)∧ (c2 ⇔ c3), with c3 ∈ O3. Therefore, transitive
mappings exploit the mappings generated by the previous two methods.

For all string comparisons the word stems of the concept names are used which are gener-
ated by a NLP tool in step 1.

Additionally, manual mapping lists (e.g. from the Gene Annotation Project (GOA)
at www.ebi.ac.uk/GOA) can be used. An important feature of the alignment procedure
in ONDEX is that here new links between equivalent concepts are generated rather then
merging them into a new concept.

Further possible applications of the ontology alignment part of ONDEX are microar-
ray data analysis and integration or gene annotation. For this purpose it is possible to
use sequence analysis methods for the alignment of concepts that represent proteins and
enzymes. However, sequence based mappings are not applied within this thesis.

5.1.3 Text mining

The text mining part of ONDEX is separated from the other parts and thus needs its own
methods for text import, result generation and evaluation (Figure 5.1). However, the text
mining section is connected with the other ONDEX modules in order to annotate the texts
by concepts and to visualize text mining results using the ONDEX frontend (not applied
within this thesis).

Although ONDEX can be used with any kind of text, in biomedical research often
abstracts from the PubMed database MEDLINE are applied. These abstracts are freely
available and contain a broad range of biomedical knowledge (regarding the selection of a
text source see also Section 2.3.2). The MEDLINE abstracts are also used in this thesis
and therefore we will refer in the following only to MEDLINE as text source.

Step 3: Import of texts

Importing texts requires mainly three sub-steps: at first it might be necessary to reduce the
amount of texts by applying a pre-filter. Second, the text sources are parsed for the selected
texts and tab-delimited text files for the actual database import are created. Finally, the
texts are imported into the database and indexed by a full text indexing tool provided by
the database.

Pre-Filtering: whether it is necessary to apply a pre-filter depends on the amount of
texts to be mined and the available hardware resources. The MEDLINE 2005 database
contains about 15 million abstracts, which is about 3.4 million more than in the preceding
year. Considering all texts usually results in long database accessing times which make
a reasonable use of the indexed text tables often impossible. Hence, a tool has been
developed that processes the online PubMed query tool with a set of keywords and returns
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the PubMed IDs (PMIDs) of the texts found. For this purpose, all synonyms and mapped
concept names of the ONDEX ontology are used. The automated access of the Pubmed
query tool with the concept names returns the same results as manual searches at the
Pubmed search interface would do. The resulting HTML files are then parsed for the
PMIDs of the abstracts.

Input file parsing and import file creation: following the filtering process, the MED-
LINE files in the local repository are parsed for the selected texts and output files for the
database import are created. MEDLINE files are delivered in XML format and contain
additional information, as e.g. publication dates, author names, links to other databases
and manually annotated MeSH terms (Table 5.1) characterizing the abstracts. Especially
the MeSH terms are important since they are also imported as ontology into ONDEX and
used for identifying the relations between concepts and texts. Thus, the MEDLINE XML
files are parsed for the actual texts and useful additional information.

For each abstract parsed from the MEDLINE files (including the additional keywords) a
copy is created that is processed by the same NLP tools used when databases and ontologies
are parsed and imported (Section 5.1.2, step 1), i.e. each word is converted into its stem
(word stemming) and added by a symbol indicating its most likely grammatical function
(part-of-speech tagging).

Even if a filter is applied, the amount of text might still cause performance problems.
Since large amounts of text generate large index files (created by the subsequently applied
database text indexing tool), the time for searching especially common words in all texts
can increase drastically. Therefore, in some cases not only one import file is generated, but
rather this file is split into a number of smaller files. Correspondingly, in this case not only
one TEXT table exists in the database, but as many as text import files are created. The
information extraction algorithms accessing the texts are modified respectively, so that the
existence of more than one table is detected and handled automatically.

Text import and database indexing: lastly, all import files are copied into the
database and the text table is indexed using a full text indexing tool provided by the
database (for details see Section 5.4 and the appendix, Section C). This enables a fast key-
word search in all imported texts since applying regular expressions in the LIKE operator of
the SQL SELECT command would not result in sufficient performance. The user can choose
whether the original texts, the texts processed by the NLP tools or both are indexed.

Step 4: Concept based indexing

In this step, selected concepts are indexed in the texts, i.e. a list is created that maps
each of the selected concepts to the texts in which it is found. It is important to note
that this mapping is concept based : the ontology concepts including synonyms, different
spellings and related concepts are identified rather than performing only string matches.
The context of a concept can even be used to discriminate between different meanings of
the same word. Of course, there is no approach resulting in 100 per cent accuracy and
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there already exist many concurring algorithms. The concept based indexing approach
described here can be characterized as dictionary based named entity recognition (NER)
method (Section 2.3.3).

To index all imported concepts in all texts is only possible for small numbers of con-
cepts and texts. In most applications, there will be at least two or three major ontologies
imported (e.g. the MeSH terms, Gene Ontology and WordNet) and the MEDLINE ab-
stracts. A concept selection is in most cases required for using the concept indexing. For
this purpose, manually created lists containing the required ONDEX concept IDs can be
used or any other method that selects concepts according to pre-defined criteria.

In the following it will be described how the names of this concept subset are identified
in the texts (concept identification) and how the created mappings can be scored for
discrimination between names of the same meaning (homonym detection).

Concept identification: for each selected concept all names are at first determined,
i.e. all synonyms stored with the same concept ID and all names of all mapped concepts
generate a list of terms to be searched in the texts. Duplicate names are not removed though
they could be semantically different: a word sense disambiguation approach attempts to
resolve this (see below).

The indexing algorithm takes each name from the list and uses the full text index
created in the previous step 3 to retrieve IDs of all texts in which the word stems of the
considered concept name appear. If the name consists of several words, only such texts are
taken into further consideration where the words of the concept names appear consecutively
in the same order.

A further criterion for rejecting a text is if only semantically different concept names
are found, i.e. concept names that are not appearing on the search list. This might happen
when these different concepts contain the name of the searched concept as substring. For
example the concept “alpha amylase” appears as substring in the semantically different
concept “alpha amylase activity”. If “alpha amylase” is found in a text that solely deals
with “alpha amylase activity”, this text should be rejected. In order to prevent such wrong
mappings, all concept names are checked for substring appearances in all other concept
names.

Homonym detection: for each mapping a score for homonym detection is calculated
and stored. Homonyms (in Greek homoios = identical and onoma = name) are words
that have the same phonetic form (homophones) or orthographic form (homographs) but
unrelated meaning. Thus, here we refer to homonyms as words or terms with different
meanings, as e.g. “mouse” can be the animal or the computer device, and homonym de-
tection can be seen as special task of word sense disambiguation (Section 2.3.3).

The basic idea to detect the correct semantics of a concept is to compare the ontology
context of the considered concept with the context of the identified term in the text. The
ontology context of a concept is the set of all names linked to the considered concept up
and below in the ontology hierarchy until a certain depth. In contrast, the context of a



80 5 Reconstruction of cell-cell networks from text

text is the set of all words appearing in the text (since all texts we apply here are only
abstracts and rather short).

Then the resulting score is calculated as the ratio of the number of the words of the
considered concept context contained in the text compared to the size of the text context.
A score of 1 would mean that all words of the concept context appear in the text. The
assumption is that the closer the score is to 1, the more the text deals with content related
to the considered concept and hence, the more likely it is, that the text uses the considered
concept in this specific sense.

For several reasons it turned out that this rule of thumb does not lead to robust results.
The score depends strongly on the size of the texts and the chosen context depth. Some
abstracts consist of only one or two sentences and thus are too short to contain enough
context words for sufficient discrimination. The context depth on the other hand is also
critical and depends on the size and the granularity of the ontology as well as on the
position of the considered concept in the ontology. For some ontologies a depth of 3
might be sufficient. Using the same depth in other ontologies one might end up for most
concepts at or close to the root concept of the ontology. This would generate a context
too general, matching too many different texts. Thus, the proposed score for homonym
detection deserves further improvements and is not further applied.

Step 5: Information extraction

The information extraction methods presented here are designed and developed for ex-
tracting intercellular signaling networks in MEDLINE abstracts, but have also been used
in the diploma thesis of Rainer Winnenburg to extend a database of interactions between
fungal pathogens and their hosts (Winnenburg, 2005; Winnenburg et al., 2006). Generic
implementations of these methods will be integrated into the re-designed ONDEX system
currently under development.

The techniques applied to extract information from MEDLINE abstracts are concept
based co-occurrence searches and hypotheses generation. As the concept based indexing
described in the previous step, also these information extraction approaches are concept
based and hence differ from usual approaches applied on a simple list of search terms
(Section 2.3.4).

In the following we explain the concept based co-occurrence search and the hypotheses
generation more detailed.

Concept based co-occurrence searches: In a usual co-occurrence search a list of
search terms is applied. A relation between these terms is assumed if they appear con-
currently within the same text (Section 2.3.4). For example, if two gene names “gene1”
and “gene2” occur and additionally a keyword like “regulate” then a regulatory relation
“gene1” → “gene2” (or “gene2” → “gene1”, depending on the order of appearance of the
keywords in the text) between the two genes could be assumed. In contrast, concept based
co-occurrence searches assume a relation if two concepts are identified in the same text or
sentence (using the concept based indexing, step 4). This has the following advantages:
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• It is not necessary to define exhaustive word lists including all synonyms since a
concept provides all equivalent names.

• Equivalent relations (i.e. relations between equivalent terms) are automatically col-
lapsed into one relation since a concept name and its synonyms are not regarded as
different entities.

• The known relations between the concepts can be exploited for mining new relations.

In order to perform a concept based co-occurrence search, a subset CS of concepts to be
searched is selected and divided into different concept groups CG. In a concept based
co-occurrence search then all possible concept combinations from a number of concept
groups are created (co-occurrence group, COC) and checked for concurrent appearance in
the texts.

More specifically, consider an ONDEX database with n imported data sources Oi (in
the following referred to as ontologies), where each ontology consists of |Oi| concepts. Then
the set C of all concepts in ONDEX is defined as:

C := {cj
i ∈ Oi|1 ≤ i ≤ n and 1 ≤ j ≤ |Oi|}, (5.5)

where a concept cj
i is defined as in Definition 5.2.

A concept subset CS ⊆ C contains all concepts to be considered in the information
extraction process. Such a concept subset is usually created by applying manually defined
concept lists. Note that a concept c ∈ CS consists additionally of the names from all
concepts that have been aligned in step 2. Hence, if in the following co-occurrences are
searched for two concepts c1 ∈ CS and c2 ∈ CS then this includes the search for co-
occurrences of all concepts from C that possess an equivalence relation to c1 or c2.

Each concept c ∈ CS possesses a concept type from the concept type set CT :

CT := {t1, t2, ...}. (5.6)

The function ct then returns for each concept its type:

ct : C → CT. (5.7)

Using the concept types, the concept subset CS can be divided into concept groups CGg,
where each concept groups contains all concepts obeying a concept type tg ∈ CT :

CGg := {cs ∈ CS|ct(cs) = tg, tg ∈ CT, 1 ≤ s ≤ |CS|}. (5.8)

To illustrate this, consider the cell-cell relation mining task (for details see Sections 5.2
and 5.3 below): concept types in this case are cell (cell types), msngr (messenger sub-
stances) and rec (receptor molecules), i.e. CT := {cell,msngr, rec}. The respective
concepts are selected from all concepts in C (Definition 5.5) into a concept subset CS
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and assigned to the correct type by using manually created lists. Finally, according to
Definition 5.8 the concept groups contain all concepts belonging to a specific concept type.
Thus, in this example a concept group CG1 could be defined that consists of all cell type
concepts c ∈ CS with ct(c) = cell and accordingly for the other concept types.

Subsequently, co-occurrence searches can be performed on combinations of concepts
from different concept groups CGg. Therefore, a co-occurrence group COC is a set of
all concept tuples for which co-occurrences in texts are searched. Hence, a co-occurrence
group is defined as the product set of a number of G selected concept groups CGg:

COC :=

G∏

g=1

CGg = CG1 × ... × CGG = {(c1, ..., cG)|cg ∈ CGg and 1 ≤ g ≤ G}, (5.9)

i.e. the set COC consists of all tuples with ordered concept combinations from G different
concepts groups CGg, where G is at maximum the number of all concept groups. Such
product sets contain no duplicate tuples. For example, in case of two concept groups
COC := CG1 × CG2 with each containing one concept c1 ∈ CG1 and c2 ∈ CG2, only the
co-occurrences of (c1, c2) are searched and not the co-occurrences for (c2, c1).

To continue the cell-cell relation mining example, consider the search for co-occurrences
of cell types and messenger substances in order to infer which cell types are able to re-
lease which ligands. Then the concept groups CG1 and CG2 can be chosen and the
according co-occurrence group is COCcell-msngr := CG1 × CG2. Hence, COCcell-msngr con-
tains all ordered pairs of concepts possessing the types cell and msngr. More specifi-
cally, for two exemplary cell types cell := {erythrocyte, hepatocyte} and one messen-
ger substance msngr := {insulin} the corresponding co-occurrence group consists of the
tuples COCcell-msngr = {(erythrocyte, insulin), (hepatocyte, insulin)}. A search for this
co-occurrences group will return all texts mapped to both concepts of the first tuple (ery-
throcyte, insulin) as well as to both of the second tuple (hepatocyte, insulin) respectively.

Hypotheses generation: based on extractions of explicit knowledge stated in single
texts, hypotheses generation as a second information extraction technique has the potential
to generate new knowledge as well as to reproduce known facts by linking all relations
sharing the same concepts. Relations occur on different levels, as e.g. on the level of
explicitly described relations in a single text or as relation inferred from different texts. In
the context of this thesis, relation mining is used to extract both kind of relations (see also
Section 2.3.4 for a general introduction). First, concept based co-occurrence searches are
used to infer relations described in single texts and subsequently, relations of concepts in
different texts are reconstructed by using hypotheses generation (since complete cell-cell
signals are usually not discussed in single texts). Thus, with hypotheses generation the
implicit relationships between concepts can be discovered (see also Section 2.3.4).

Therefore, consider another co-occurrence search for messenger substances and recep-
tors with COCmsngr-rec := CG2 ×CG3 and rec := {insulin receptor, IL-3 receptor}, result-
ing in co-occurrence searches for the tuples COCmsngr-rec = {(insulin, insulin receptor),
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(insulin, IL-3 receptor)}. If then, for example, co-occurrences are detected for both ele-
ments in COCcell-msngr and for (insulin, IL-3 receptor) ∈ COCmsngr−rec these results are
finally concatenated into two hypotheses: H1 := (erythrocyte, insulin, insulin receptor)
and H2 := (hepatocyte, insulin, insulin receptor), i.e. “insulin” is the link to combine the
co-occurrence results into a hypothesis and thus, relations between both cell types and the
insulin receptor are presumed. Adding a third concept co-occurrence search for receptors
existing in cell types will complete a cell-cell relation.

So the general approach is: all concept tuples of two co-occurrence groups CGg and
CGh that could each be found concurrently in at least one text are combined into a hy-
potheses if they share a concept. The number of such concatenations between different
co-occurrence searches is principally unlimited. That might lead in practice to a combi-
natorial explosion in the number of resulting hypotheses even for only small numbers of
located co-occurrences. Hence, validation of the co-occurrence results and additional filters
help to reduce the amount of hypotheses.

5.1.4 Graph analysis

Biological data is best seen as a set of interacting networks. This is also reflected by the
basic data structure of ONDEX where concepts are linked by relations and thus, form a
variety of graphs depending on the user’s data selection. The ONDEX frontend is the
interface to display and analyze networks from the data integration part as well as those
extracted with the text mining module of ONDEX (Köhler et al., 2006).

The ONDEX frontend (Figure 5.1) did already support the interpretation of gene ex-
pression results (Köhler et al., 2006) and has also been used for visualizing and comparing
bacterial metabolic networks. The development of the ONDEX frontend started when this
thesis was nearly finished. So, the interaction between the ONDEX frontend and network
extraction from text is not yet finished and will be included in the re-designed version of
ONDEX.

Graph analysis and visualization with the frontend component of ONDEX works on an
internal graph object which may be connected to arbitrary graph libraries as well as layout
and filter algorithms by means of several interfaces and adapters. With this architecture
a graph is generated from data imported from the ONDEX backend and subsequently
passed to some algorithms independently of the origin of the graph. The results produced
by these algorithms are transferred back into the internal graph object which then may be
processed again by the available filter and layout algorithms. This way, arbitrary graph
analysis and visualization processes are supported in order to provide the user with a wide
range of possibilities for his specific application scenario.

5.2 Applying ONDEX to cell-cell relation mining

This section describes the application of the ONDEX workflow steps 1 to 5 (Figure 5.1) in
the cell-cell relation mining project. Prior to the execution of this workflow, it has to be
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defined for which entities relations are searched in the texts (Section 5.2.1). Following that,
the import and alignment of relevant ontologies and databases (Section 5.2.2), the import
of the texts to be mined (Section 5.2.3) and the indexing of the texts by the selected subset
of the imported ontology concepts (Section 5.2.4) are performed. These are the necessary
steps in order to execute the actual information extraction (Section 5.2.5).

5.2.1 Lists of searched concepts

As a basis for all subsequent processes, several lists that contain the concepts of interest are
manually created by biomedical experts. The most important are: the cell type list (cell),
the messenger substance list (msngr) and the receptor list (rec). These lists are composed
of concept IDs from the Cell Ontology (CL) and the MeSH term (MESHD) ontologies
(Table 5.1). Additional lists are taken from WordNet (WN) and contain concepts that
describe the release of messenger substances from cells (rword), the binding of messengers
to receptors (bword) and whether receptors are contained in cells (cword).

All concepts from these lists form the concept subset CS. The word lists as well as the
entity lists can be found in the appendix (Section D, Tables 7.5 to 7.10). In the following
presentation of all conducted steps, the symbols cell, msngr, rec as well as rword, bword,
cword are used to denote the sets containing the entities of interest and important keywords
respectively.

5.2.2 Import and alignment of ontologies and databases

Here step 1 (data source import) and step 2 (ontology alignment) of the ONDEX workflow
(Figure 5.1 and Section 5.1.2) are executed. The ontologies and databases selected for
import and alignment in the cell-cell relation mining project are (see also Table 5.1): the
Cell Ontology (CL), the descriptors (i.e. the main headings) from the MEDLINE Subject
Headings (MESHD), the Gene Ontology (GO), the Enzyme Nomenclature (EC), NCBI’s
taxonomy (TX) and the English language lexicon WordNet (WN). Furthermore, Biobase
Transpath (TP) is imported and used for automated evaluation of the extracted ligand-
receptor interactions. The import parsers for CL, GO, MESHD, WN are developed within
the cell-cell relation mining project, including generic parsers for the ontology formats
DAG-Edit and OBO which are also usable for any other ontology possessing these formats.
The parsers for TX and TP were implemented by other members of the ONDEX project
team and are applied here.

Problems during the data source import and the ontology alignment occur mainly at
three different levels: for syntactic, structural and special conventions of the data sources.

Most common are syntactical errors in the data source. These could be for example
inconsistencies in relations caused by simple typos which become apparent when both data
sources are imported in ONDEX, e.g. if the ID of a GO term referenced by a MeSH term
does not exist in GO. For manually annotated ontologies and databases any other type of
misspelling might occur. In some cases, the flat files of some data sources did not obey
their own format.



5.2 Applying ONDEX to cell-cell relation mining 85

On a structural level more subtle import problems arise when a data source is inter-
preted in a way that was not originally intended. For instance the EC nomenclature was
not designed as an ontology, but can be used like that if the hierarchical structure re-
flected in the ID numbers is exploited. For example, the enzyme class 3.4.11.6 ARGINYL

AMINOPEPTIDASE can be interpreted as a concept with an is-a relation to its parent class
3.4.11 Aminopeptidases (and so on until the highest class level is reached). The problem
at this point is that in some cases no parent classes are defined (which turned out to be an
error occurring especially in the Swiss-Prot distribution of the EC nomenclature and was
resolved after reporting).

Even more intricate are special conventions employed by the data sources. The Gene
Ontology for instance applies the generic OBO format, but taxonomic specifications are
defined within the names of the concepts. For example GO:0007097 is “nuclear migration”
and the concept GO:0030473 is “nuclear migration (sensu Fungi)”. The keyword ”sensu”
and the taxonomy term ”Fungi” are given in parentheses and thus, a specification regarding
an organism is included in the name of a concept. Embedding this information in the
concept name complicates especially the automated alignment of ontologies since concept
names are checked whether they denote the same entity. In our case we decided to remove
the ”sensu”-part from the concept name and to link the concept to a taxonomic entry in
order to indicate the sensu relation. Therefore, corresponding taxonomic terms from TX
(NCBI taxonomy database) are searched and an additional link between the concepts is
created. Unfortunately, GO uses in the “sensu” phrase only the explicit organism names
and not an ID number. Hence, misspellings in the names cause mismatches and can only
be resolved manually. At the end, all terms including a sensu string are linked to such a
taxonomy entry and the sensu information inside the concept name are removed.

Further problems occur when ontologies define finely granulated relation types that
represent only slightly different contexts, which is for example the case in WordNet. Thus,
despite the simple structure of the ONDEX database scheme, the problems differ depending
on the data source and can in most cases only be solved by the individual parsers.

Finally, manually defined mappings between the concepts in the lists cell, msngr

and rec defined in Section 5.2.1 are created. This is in some cases necessary to ensure
mappings that have not been detected by the alignment algorithms. For this purpose, the
alignment results for cell, msngr and rec concepts respectively are evaluated manually
and complemented. The numbers of imported concepts per concept type and the resulting
concept numbers (i.e. all equivalent concepts are aligned) can be found in the second and
third column of Table 5.3.

Resulting from the various problems to be solved in the import process, a specific order
has to be obtained for parsing the data sources, writing the import files and copying them
into the ONDEX database.

5.2.3 Import of MEDLINE texts

In step 3 of the workflow (Figure 5.1 and Section 5.1.3) the texts to be mined are imported
into the ONDEX database. Therefore, the MEDLINE files provided by the NLM with a
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Number of different texts
(1) MEDLINE 2005 14 792 864
(2) After pre-filtering 3 484 760
(3) Indexed with all subset concepts 2 875 284
(4) Indexed with cell, mnsgr or rec concepts 2 335 656

Table 5.2: Number of all texts downloaded (1) and after pre-filtering with the Pubmed query tool (2).
Applying then concept based indexing results in about 2.8 million different texts in which concepts from
the manually selected concept subset are found (3) and about 2.3 million texts with identified concepts of
biomedical texts (4).

total amount of about 50GB (for MEDLINE 2005) are applied. They are stored in XML
format and contain not only the abstracts, but also additional information as e.g. pointers
to other databases and manually annotated MeSH terms.

It turned out that indexing all MEDLINE abstracts (about 15 millions in MEDLINE
2005, see Table 5.2) is not feasible in reasonable time, depending on the number of concepts
to be indexed and the available hardware resources. The most limiting factor seems to
be the I/O performance, whereas CPU and RAM are not fully loaded. Thus, the full
text indexing algorithm and the hard disk accessing times are crucial. For future ONDEX
versions further full text indexing software will be tested, so that indexing of larger amounts
of text might be possible.

Following that, at first the texts necessary to be imported are selected by applying a
pre-filter. This is done by executing the Pubmed online query tool with the names of all
concepts and their synonyms defined by the input lists cell, msngr and rec (Section 5.2.1).

Although the number of texts to be searched could thus be reduced to roughly 3.4
million by pre-filtering (Table 5.2), this turned out to be still too many for the database
full text indexing tool if all texts are imported into only one database table. Terms like
“activate” or “produce” for instance are usually used very frequently in biomedical texts.
Especially in this pre-filtered subset of MEDLINE texts they occur nearly in each text.
Hence, the index file generated by the database text indexer is very large and search queries
based on this index are still very slow. As a consequence, the 3.4 million texts are further
divided into 34 equally sized tables of 100.000 texts each and one table containing the
remaining texts.

Technically, the steps 1 to 3 of the workflow considered so far are not executed strictly
consecutive. Usually at first the import files for ontologies, databases and texts are created,
followed by the actual import, ontology alignment and full text indexing. On the dual
processor server used here these steps take approximately 30 hours, whereas the ontology
alignment process, depending on the number of concepts to be aligned is usually the most
intensive part (see Table 5.1 for imported concept and relation numbers).
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5.2.4 Concept based indexing

The mapping of selected concepts to texts where the concept names appear, is the task
performed in step 4 of the workflow (Figure 5.1 and Section 5.1.3). Therefore, the set of
concept types used here is defined according to the Definition 5.6 and to the concept input
lists (Section 5.2.1) as

CT := {cell, msngr, rec, rword, bword, cword}. (5.10)

At first, the concepts possessing these types are iterated in order to get all belonging
concept names. This includes synonyms and the names/synonyms of all aligned concepts.
Furthermore, at this point only distinct word stems are considered since these are also
accessed by the database text indexer. This helps especially to find concepts independent
from their singular or plural form.

Next, a filter list is applied which contains concept names that are known to be in-
appropriate. Such mappings are not necessarily wrong and originate not only from false
automatic alignments between different data sources, but also from single databases or
ontologies. Especially the MeSH terms contain synonyms that would lead in our case to
wrong indexing results. For example the term “Sheep alpha-Endorphin” is in MeSH a
synonym to “alpha-Endorphin”. Such terms are removed from the list of concept names
to be searched in the texts.

Finally, the texts in the ONDEX database are searched for the remaining concept
names. At this point all necessary information is compiled to perform the information
extraction methods, i.e. the concept based co-occurrence searches and the hypotheses gen-
eration (step 5). Results gained in step 5 can be used as filter to reduce the number
of texts, such that subsequent extraction tasks could be processed faster. Therefore, all
steps (1 to 4) conducted so far can be repeated on smaller or different subsets of texts or
concepts.

5.2.5 Information extraction

Based on the texts indexed by the entities of interest (cell types, messenger substances
and receptors) the actual cell-cell relations can be extracted by performing concept based
co-occurrence searches and subsequent hypotheses generation (step 5). Probably the most
simple approach to begin with, is to search for texts containing concepts of all elements suf-
ficient to describe a signaling relation, i.e. two cell types (source and target cell) and a first
messenger. However, only very few texts deal with complete cellular interactions, as e.g. like
“cell type A interacts with cell type B through messenger substance C”. Even constraining
the search by including keywords indicating interactions or signaling, as e.g. “interact”,
“release” or “signal”, did not result in more specific texts.

Consequently, the co-occurrence search approach had to be refined. Reconsidering
the biological background (Section 2.1), any cell-cell signal can be decomposed into
three components (Section 3.1): the messenger release (source cell → messenger), the
ligand-receptor binding (messenger → receptor) and the occurrence of receptors in cells
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(receptor → target cell). Thus, each of these components can be searched independently
by separate co-occurrence searches and subsequently combined into cell-cell relation hy-
potheses.

Double co-occurrence searches

After decomposing a cell-cell signal into its three components, the most straightforward
approach is to search for double co-occurrences, i.e. tuples with each two concepts from
different concept groups, in the abstracts. Therefore, according to Definition 5.8 three
concept groups are defined by applying the previously defined set of concept types CT
(Definition 5.10):

CG1 := {c ∈ CS|ct(c) = cell},

CG2 := {c ∈ CS|ct(c) = msngr}, (5.11)

CG3 := {c ∈ CS|ct(c) = rec},

where the concepts c are from the concept subset CS ⊆ C, that is generated from the
manually created concept lists (Section 5.2.1) and ct is the function that returns the concept
type of a concept c (Definition 5.7). Thus, each concept group CGg consists of concepts
possessing a specified concept type tg ∈ CT .

Using these concept groups, the co-occurrence groups containing all concept tuples to
be searched are (according to Definition 5.9):

COCcell-msngr := CG1 × CG2,

COCmsngr-rec := CG2 × CG3, (5.12)

COCrec-cell := CG3 × CG1,

Hence, each co-occurrence group contains a set of concept tuples, with each concept tuple
consisting of two concepts from different concept groups. For instance, tuples in the co-
occurrence group for cell and msngr could look like

COCcell-msngr := {(erythrocyte, insulin), (hepatocyte, FSH), ...}.

Hypotheses are then generated by combining the tuples of the three co-occurrence searches
possessing equal concepts connecting them, i.e. obeying the same msngr and the same rec

concept.

Triple co-occurrence searches

To further restrain the co-occurrence search, three additional lists are applied which con-
tain keyword concepts indicating that a text expresses the searched fact. These lists consist
of concepts describing the cellular release or production of molecules (rword), the binding
or interaction of molecules (bword) and when cells are able to contain or express molecules
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(cword) respectively (Section 5.2.1). The respective concept groups (according to Defini-
tion 5.8) are:

CG4 := {c ∈ CS|ct(c) = rword},

CG5 := {c ∈ CS|ct(c) = bword}, (5.13)

CG6 := {c ∈ CS|ct(c) = cword}.

In contrast to the double co-occurrence searches, it is not of importance here which con-
cept of a keyword concept group (Definition 5.13) is contained in a text, but rather if a
text contains any keyword concept. For example, if a text containing the concept tuple
(erythrocyte, insulin) is found, it is checked now whether additionally any keyword like
“release” or “secrete” or “production” appears. Thus, it is not necessary to check for all
concept triples that would be generated for e.g. CG1 × CG2 × CG4, but rather for triples
that have the set of all keyword concepts as third element. Therefore, we define new con-
cept groups that contain each of the concept groups defined in Definition 5.13 as the only
element:

CG′

4 := {CG4},

CG′

5 := {CG5}, (5.14)

CG′

6 := {CG6}.

Using these concept groups, the new co-occurrence groups for triple co-occurrence searches
are (according to Definition 5.9) defined as:

COCcell-msngr-rword := CG1 × CG2 × CG′

4,

COCmsngr-rec-bword := CG2 × CG3 × CG′

5, (5.15)

COCrec-cell-cword := CG3 × CG1 × CG′

6,

i.e. each co-occurrence group contains now a set of concept triples, with each triple con-
sisting as before (Definition 5.12) of two cell-, msngr- or rec-concepts and additionally
a set of keyword concepts. So could, for example, a part of the co-occurrence group for
cell, msngr and rword look like

COCcell-msngr-rword := {(erythrocyte, insulin, {release, secrete, produce, ...}),

(hepatocyte, FSH, {release, secrete, produce, ...}), ...}.

Thus, the texts found in the previous step are here checked for additional keywords. Hy-
potheses are then generated from the resulting reduced set of concept co-occurrences as
before.

Triple co-occurrence searches in sentences

To get more specific results and to increase the precision rates, the texts gained by the
two preceding steps (double and triple co-occurrence searches) are split into their single
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sentences and searched again for triple co-occurrences. Technically, the same processes are
applied as for the co-occurrence searches in whole texts: the sentences are regarded as
“texts” (i.e., each sentence generates a single entry in the TEXT table (see also Figure 5.2)
and indexed with all concepts of the concept subset. Finally, the searches for the concept
triples of the previously defined co-occurrence groups (Definition 5.15) are performed.

Validation

The concept co-occurrences in each of the three tasks described above are validated by
manual inspection of 100 randomly selected co-occurrence hits with one respective text
each. The resulting precision value is the ratio of texts out of all sample texts that indeed
describe the fact assumed by the co-occurrence. Although these might be too few evaluation
samples, the precision values help to indicate tendencies.

For instance, a text containing a cell and a msngr concept is considered as correct if the
text describes that this cell type is able to release this messenger. Any further conditions
under which this signaling might take place are neglected. Thus, the “semantic range” of
probably relevant texts is larger as if only special types of interactions are searched. That
means that in case of messenger release not only texts describing a “release” or “secretion”
of ligands are taken into account, but also texts talking about the “production”, “synthesis”
or “expression” of messenger substances. For our purpose it is assumed that cells which are
able to produce a substance stated in the input lists as messenger substance are probably
also able to secrete this substance. Similar assumptions hold for the other components
as well: for ligand-receptor bindings texts also describing any “interaction” between both
substances are positively evaluated and receptor occurrence in a cell can be characterized
by the “expression” of the receptor or simply that a cell type “contains” receptor molecules.
These assumptions are also reflected by the choice of additional keywords (see the lists for
rword, bword and cword in the appendix, Section D).

Furthermore, a co-occurrence hit is rated as false-positive if one of the searched concepts
does not occur at all, i.e. the concept-text match generated by the concept based indexing
is incorrect, which is here not checked separately.

The validation measure used here is the precision, i.e. the proportion of extracted
relevant entities to all entities retrieved (as defined in Section 2.3.1). Unfortunately, a recall
value (i.e. the fraction of correctly identified entities in the set of relevant and thus true-
positive entities) can not be measured since it is not known a priori, whether a text contains
relevant information (regarding recall and precision measures see also Section 2.3.1). Note
also that the same co-occurrence tuple can be selected for evaluation several times with
different texts.

The generated hypotheses are difficult to evaluate for the same reasons as discussed
in the database reconstruction approach (Section 4.5), i.e. many of them might hold true,
but have not been investigated and reported explicitly yet. Hypotheses evaluation is best
feasible for a small subset of cell types selected for a specific application (Section 6).
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Concept type Concepts Names Texts Precision

cell 251 (283) 930 1 249 188 99.7%
msngr 196 (200) 1 765 1 285 035 99.8%
rec 178 (181) 1 502 362 722 99.1%
rword 11 (11) 21 974 562 81.2% (95.5%)
bword 7 (7) 28 1 091 127 94.5% (95.9%)
cword 8 (8) 21 921 019 88.4% (98.2%)
total 651 (690) 4 267 2 875 284 –

Table 5.3: Summary of the concept based indexing step of the cell-cell relation mining process with ONDEX
(Section 5.3.1). For each concept type (column 1) the numbers of different concepts (i.e. including all
equivalent concepts) identified in the texts (2) and defined generally (parentheses in (2)), the numbers of
distinct concept names (i.e. word stems) belonging to these concepts (3), the numbers of different texts
that contain concepts of the respective type (4) and a precision value (i.e. ratio of correctly identified texts)
of an evaluated subset of each 1000 randomly selected texts (5) is given. Note that the same texts can
contain several concepts and that therefore the total number of texts in the last line is not the sum of the
numbers above. The two values for the different sets of words are explained in the text.

5.3 Results and validation

In this section the results of the concept based indexing 5.3.1 and the cell-cell relation
mining performed using the indexed concepts (Sections 5.3.2 to 5.3.4) are presented. The
relation mining is conducted in three subsequent tasks by applying the results gained in
the previous task.

5.3.1 Text indexing results

Table 5.3 summarizes the results in this step for each concept type. For the number of
different identified texts it can be observed that it differs largely from the number of pre-
filtered texts (Table 5.2). Especially if texts containing cell, msngr or rec concepts are
considered, the difference is about one million. This is surprising since the MEDLINE
texts are pre-filtered using the same names of these groups (Section 5.2.3). Thus, this
could mean that the ONDEX concept based indexing could identify a qualitatively better
set of texts or that the approach misses texts. To elucidate this question, for each concept
group a randomly selected set of 1000 concept/text pairs are evaluated semi-automatically.
First, all selected texts are checked automatically whether they contain exactly one of the
names of the assigned concept. As second step, all remaining texts are validated manually.

The resulting precision values are the ratios of all correctly identified concepts to the
number of samples. These are quite high for the biomedical concepts (cell, msngr and
rec), i.e. the absolute numbers of false positives are 3, 2 and 9 respectively. In case of the
word lists (rword, bword and cword) the main problem is the discrimination between nouns,
verbs and adjectives since only word stems are used and this differentiation might get lost
in some cases (e.g. “secrete”/”secretion” or “produce”/”production”). But the intended
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COC Maximal possible hits
cell-msngr 49 196 (56 600)
msngr-rec 34 888 (36 200)
rec-cell 44 678 (51 223)

Table 5.4: Maximal possible hits for each co-occurrence group. These numbers are the products of the
concept numbers in each respective concept group (see Table 5.3, column 2), whereas the first number
is the product of all concepts that could be identified in the texts and the number in parentheses is the
product of all defined concepts.

meaning is mostly the same and the texts are still sufficiently identified for our purposes.
Thus, the precision values of the word concept types preceding the parentheses in Table 5.2
determine the “strong” evaluation, i.e. the part-of-speech recognition is considered, whereas
the values in parentheses measure only if the word sense is met.

The complete concept based indexing process took on the double processor machine
about 14 days for 4267 concept names to searched in 3.4 million texts.

5.3.2 Double co-occurrence searches

For all combinations of the 251 cell, 196 msngr and 178 rec concepts identified in the
texts (Table 5.3) co-occurrences are searched in about 2.3 million texts. Table 5.4 shows
the maximum numbers of possible co-occurrences and the first row of Table 5.5 shows the
resulting numbers of co-occurrence hits, texts and hypotheses. In each co-occurrence group
of the double co-occurrence search about a third (or less) of all possible co-occurrences are
detected, the number of texts also decreases strongly compared to the 2.3 million texts in
which single occurrences of the three according concept groups (Definition 5.11) are found.
The total number of different texts (last column in Table 5.5) is about 22% of the original
text volume.

Hit and text numbers are not as important as the actual precision with which the
searched facts are identified. Regarding the double co-occurrences, the precisions are rel-
atively low for the co-occurrence groups COCcell-msngr and COCmsngr-rec and significantly
higher for the receptor detection with COCrec-cell (Table 5.5). The number of 107 million
hypotheses (Table 5.5, col. 6) is much less than the number of all concept combinations
possible in principle, but, however, obviously too much for manual examination or any
further use.

Two questions directly arising here are 1) if and how the quality of the results can be
improved, especially for the first two co-occurrence groups and 2) whether the distribution
of the precision values among the three co-occurrence groups is an arbitrary effect or might
remain stable in different searches. Therefore, the co-occurrence results are attempted to
be improved by adding further keywords in the next search task which would probably
also affect the number and quality of the resulting hypotheses.
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Text type COC Hits Texts Prec. Hypotheses Total texts

cell-msngr 16 386 332 475 15%
Abstract msngr-rec 11 420 191 648 9% 107 135 827 515 555

rec-cell 11 593 113 102 45%

cell-msngr-rword 13 910 170 202 15%
Abstract msngr-rec-bword 9 372 97 243 1% 94 843 489 289 578

rec-cell-cword 10 061 64 637 41%

cell-msngr-rword 6 334 97 092 22%
Sentence msngr-rec-bword 2 213 15 917 12% 3 898 341 126 916

rec-cell-cword 3 230 15 137 70%

Table 5.5: Overview of the main text mining results for cell-cell relations after three steps (column 1:
abstracts, unfiltered (first row), abstracts, filtered (second row) and single sentences (third row). Each
relation mining step is divided into three independent co-occurrence searches for the components of a
cell-cell signal (2). For each co-occurrence search, a number of co-occurring concepts (3) are found in a
number of different texts (4). A precision is determined by manual examination of 100 randomly selected
co-occurrence hits (5). The three components of a cell-cell signal are combined into complete cell-cell
signaling hypotheses (6). The last column (7) is the total number of different texts resulting from all
respective co-occurrence searches. Note that in the third section (Sentence) single sentences are regarded
as the texts.

5.3.3 Triple co-occurrence searches

Compared to the double concept co-occurrence searches, the number of triple co-occurrence
hits decreases as well as the number of texts in which these co-occurrences are found,
whereas the text number reduction is more significant than the decrease in the number of
co-occurrence hits (second row of Table 5.5). Also the number of resulting hypotheses is
lower as for applying double co-occurrences. However, the reduction is only about 11%,
which means that still too many hypotheses remain for reasonable manual investigation or
further network analysis.

The precision values, obtained for 100 randomly selected samples with the same con-
ditions (as described in Section 5.2.5) did not improve. In two cases they even lowered.
What remains is the distribution pattern of the three precision values: the ligand-receptor
binding search performs worst, the search for receptors in cell types best and the messenger
release is roughly in the middle of both. Manual inspection of the texts revealed that most
of the false-positives are due to the fact that many texts mention a number of substance
and cell type names in very different contexts. Some abstracts are quite long and some
contain long lists of names (e.g. with substances that have been investigated).

Thus, to draw from a co-occurrence hit the conclusion that the respective text describes
the fact assumed would be in most cases highly speculative, even if additional indicating
keywords are mentioned. However, what could also be seen is that many of the searched
facts are described in single sentences of the considered abstracts and hence, the next step
is to consider all sentences of the remaining texts individually.
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5.3.4 Triple co-occurrence searches in sentences

First, 2 992 991 individual sentences from the 289 578 remaining texts (Table 5.5) are
extracted and indexed by the concepts as in the previous tasks, resulting in 1 910 309
sentences where searched concepts are found. Using these sentences, the concept co-
occurrences gained here (third row of Table 5.5) show in all categories a much higher differ-
ence to triple co-occurrences in abstracts than comparing triple with double co-occurrence
searches. The number of co-occurrence hits is reduced between 25% to 50% of the triple
hits in abstracts, depending on the co-occurrence group. The text numbers can not be
compared, since here “texts” are single sentences. But considering that from about 2 mil-
lion indexed sentences only some 120 thousands remain (about 6%), this is also a great
reduction. Likewise noticeable is the reduction in the number of resulting hypotheses (only
about 4% of the number of hypotheses from triple searches in abstracts).

Remarkable changes also occur in the precision values. All rates increased by sustaining
the pattern emerged in the two previous co-occurrence searches. The values shown in Ta-
ble 5.5 are based on 100 randomly chosen results, but for sentences additionally evaluations
for 300 random samples are performed. Here, no significant differences can be observed
compared to the 100 random samples (i.e., the values are 23%, 14% and 67% for the three
co-occurrence groups respectively).

Thus, compared to the previous tasks it can be observed that the sentence-based co-
occurrence searches are the most successful ones.

5.4 Implementation

The central component of the ONDEX system implementation is the object-relational
database management system (DBMS) PostgreSQL. Running on a dual processor server
with 2 Intel Xeon 2.8 GHz running under Linux and controlled by Makefiles and Shell
Scripts, the database scheme shown in Figure 5.2 is created and serves as base for all
data integration and information extraction processes. The programming languages SQL,
Java and ANSI C are used to perform the ONDEX functions as data parsing and import,
ontology alignment, concept based indexing and information extraction. Furthermore,
additional tools for full text indexing (TSearch2), word stemming (Snowball) and part-of-
speech tagging (QTag) are applied. All programs additionally developed for the cell-cell
relation mining are implemented in Java, access the DBMS via JDBC and are controlled
by Shell Scripts and Makefiles.

5.5 Discussion

The main characteristic of the ONDEX framework and the text mining approach applied
here is that they are concept based. In concept based approaches the texts are annotated
by concepts from other knowledge representations, as e.g. controlled vocabularies or on-
tologies (Tan, 1999). Using this background knowledge, information on the semantics of a
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text is available and known relations of the concepts can be used to extract information
from text.

In contrast to other concept-based approaches, ONDEX does not apply only one data
source for annotating the texts (as e.g. in biomedical text mining often UMLS is used, see
Vintar et al., 2003; Hofmann and Schomburg, 2005), but an arbitrary number of ontologies
and databases can be imported and aligned. These integrated ONDEX ontologies are used
in all subsequent processes to support text mining at a semantic level.

A similar approach regarding text mining for ligand-receptor interactions is applied
by Albert et al. (2003). In this work, a subset of MEDLINE texts is selected, tagged by
terms from a dictionary (protein names, keywords) and finally triple occurrences at the
sentence level are extracted. They use a hierarchically organized dictionary that consists
of relations between the terms (similar to ontologies). The dictionary is manually created
and subsequently extended by the results gained from the text mining. An important
difference to our approach is that we do not rely on only one manually created ontology,
but rather apply and map standard databases and ontologies automatically.

In the following, the main results gained from concept based indexing, concept based
co-occurrence searches and hypotheses generation for cell-cell relations are discussed in
more detail as well as possibilities for future work.

Concept based indexing

The concept based indexing is best characterized as dictionary based named entity recog-
nition (NER) approach (Section 2.3.3) with the specialty that the applied dictionary is
generated by integrating many different sources and thus provides a wider background
knowledge than a single dictionary could. Also word-sense disambiguation could be feasi-
ble using the context of concepts in the ONDEX ontology. Initial tests of such a homonym
detection were not successful here (Section 5.1.3, step 4), but the consideration of further
conditions, as e.g. the length of the texts, will probably help to improve this approach.
Hence, improving the homonym detection is one of the important next steps.

The quality of our concept based indexing NER approach is evaluated for a selection
of random samples and shows high precision rates (Table 5.3). Even if the partly failed
part-of-speech recognition is taken into account, the precision is still greater than 80%.
So it can be assumed that the difference in the number of texts returned by the Pubmed
pre-filter with the number of texts mapped to cell, msngr and rec concepts (Table 5.2) is
not due to failed concept recognition in the texts. The selected texts contain the searched
entities with a high probability and are thus a qualitatively good base for the subsequently
applied text mining.

Concept based co-occurrence searches

One of the main results regarding the co-occurrence searches for concepts is the stability
in the distribution of the precision values among the three different searches in all settings
(Table 5.5). Although the number of the randomly selected samples is not exhaustive, a
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clear tendency becomes visible: in both abstracts and sentences, the messenger-receptor
interactions are difficult to identify whereas the detection of receptor expression in cells
performs best. The messenger release from cells takes a position in between the other
searches by performing significantly better than the messenger-receptor interaction search.
Thus, the quality of the results seems to be dependent on the searched relation type. This
is similar to results reported by Ding et al. (2002), who received better co-occurrence
results on the sentence level for only some relation types.

Manual inspections of the search results reveal that the high precision value of
COCrec-cell-cword (compared to the rates of the other two searches) is mainly due to the
stability of the formulations in the sentences used to describe that a cell type contains a
specific kind of receptor molecules. This is the case if the receptor is expressed in this cell
type and this in turn is mostly stated as e.g. “X cells express receptor Y”, “receptor Y
is expressed by X cells” or “Y receptor expression on X cells is ...”(with X and Y as the
names of the cell type or the receptor respectively). Furthermore, such sentences are often
short and contain only few more molecule or cell type names, which is often the reason for
false-positives. Here, a formulation convention seems to have emerged.

The ligand-receptor binding detection at the other side of the precision value spectrum
suffers from the varying possibilities to describe the interaction of two molecules. For ex-
ample, often the receptor name is not explicitly mentioned (e.g., “the binding of messenger
X to its respective receptor”) and is thus harder to detect. Messenger release from cells
as the last remaining co-occurrence group, does not achieve as good rates as for receptor
expressions, but perform significantly better then messenger-receptor interactions. For the
messenger release it can be observed that the formulations used in the texts are relatively
stable (e.g., “enhances the production of Y molecules in X cells”), but not always unam-
biguous, as e.g. in “introducing Y molecules enhances the production of X cells”, where the
direction of causality has changed. The application of further filters and the consideration
of the relative position of the concepts in the sentences might help here (see below).

It is controversially discussed in the literature whether co-occurrence approaches might
be too simplistic or whether they are generally able to produce reliable results (Chen
and Sharp, 2004). Some co-occurrence approaches were indeed successful, especially in
the context of extracting gene networks (Jenssen et al., 2001). Our observations might
help to decide whether to apply a co-occurrence search or not: since the advantage of
co-occurrence approaches is their simplicity, i.e. they are easy to apply and perform faster
than parsing each sentence for its grammatical structure, they could be applied as first
attempt and evaluated. Examining even small sample sets is usually sufficient to get an
intuitive feeling about the feasibility of a co-occurrence search in the respective case. Then
it can be decided whether further simple co-occurrence filters would help or if a deeper
natural language analysis should be performed. In case of the application of more intensive
parsing techniques, co-occurrence searches are useful to reduce the amount of text.

Summarizing the co-occurrence result discussion, it can be concluded that the sentence-
based co-occurrence searches are the most successful ones. The indexing of the concepts
in the texts ensured that the searched entities appear in the selected text with high prob-
ability. Also detecting equivalent relations is made possible by combining all equivalent
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concepts into one. Furthermore, it can be assumed that most of the missing hits from the
triple co-occurrence searches in abstracts are probably false-positives since the precision
values increased strongly when a sentence based search is applied. This confirms results
from other work, where good performance on sentences compared to the text level is also
reported (Ding et al., 2002). Nevertheless, both co-occurrence runs conducted first are
necessary to reduce the text amount and thus, computation time. Also they helped to gain
an intuitive sense about the text structures and ideas for further reductions (see below).

Hypotheses generation

The concatenation of co-occurring concepts into complete cell-cell relation hypotheses leads
(due to combinatorial explosion) naturally to large hypotheses numbers and is considered
as serious problem for hypotheses generation approaches in general (see Weeber et al., 2005,
and also Section 2.3.4). In our case it is difficult to calculate a score for automated hy-
potheses ranking (as applied in hypotheses generation, see e.g. Srinivasan and Libbus, 2004;
Wren et al., 2004) since appropriate additional information is lacking. Thus, the strategy
employed here is to remove presumably false-positive co-occurrence hits by sequential ap-
plication of co-occurrence searches with increasing restrictions. This finally reduces the
number of hypotheses to about 4% of the initial number (Table 5.5), but 4 million hy-
potheses are obviously still too many for manual consideration. Therefore, additional filter
steps on the co-occurrence level could be applied in future work (see below).

The application of the generated hypotheses considered here is to use a part of the
remaining cell-cell relation hypotheses in order to gain information about cellular commu-
nication in neurodegenerative diseases (Section 6). For this purpose, the cell types will be
restricted to the four cell types of interest in the context of these diseases. The number
of co-occurrences and resulting hypotheses are then sufficiently low to allow exhaustive
evaluations.

Future work

Future work in extraction cell-cell interactions from text might comprise a variety of differ-
ent methods. The methods proposed here consider mainly the improvement of the quality
and number of concept co-occurrences since these are feasible to evaluate and a reduction
of their number will reduce also the number of the hypotheses, which usually are difficult
to validate. Finally, all hypotheses could be made accessible for search and inspection by
a new database that incorporates the text mining results.

Co-occurrence frequencies: the frequency of co-occurrences, i.e. the number of differ-
ent texts in which the same co-occurrence appears, was not accessed yet. The assumption
here is that frequently appearing concept tuples can be expected to have a higher proba-
bility of being related than concepts appearing concurrently only once or a few times, since
they are often used together in the same text. In the present context, it was problematic to
apply co-occurrence frequencies due to the large total number of texts, which would lead
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to relative low frequencies even for concepts co-occurring in several thousand texts. Also,
most co-occurrences appear in less than thousand different texts. So it would be necessary
to compare absolute hit numbers instead of frequencies or to use a different base for the
calculation of relative frequencies. If such a measure could be implemented, it would help
to rate the quality of co-occurrences, and thus also to score the hypotheses resulting from
the co-occurrences. Selections of presumably high quality results could then be evaluated
first.

Automated validation by external data: to further improve evaluation and sub-
sequent hypotheses combination, existing information of molecular databases can be ac-
cessed. In ONDEX the molecular interaction database Transpath (Schacherer et al., 2001)
is available (Table 5.1) and can be exploited to evaluate the extracted messenger-receptor
relations (COCmsngr-rec-bword), as this seems to be the most complicated co-occurrence
search. Therefore, from the 9 372 msngr-rec triple co-occurrences identified in abstracts
(Table 5.5), 47 could be located in Transpath. This low number results mainly from the
fact that Transpath is not a very large database (Table 2.1 in Section 2.2), and not many
ligand-receptor interactions are incorporated. But applying these valid interactions reduces
the number of resulting hypotheses to only 397 748 (compared to about 94 millions of all
extracted msngr-rec interactions). Working with these hypotheses for further examina-
tions might leave out correct ones, but constrains the selection to only such hypotheses
based on a valid ligand-receptor interaction.

Co-occurrence filters: a possibility to exclude false-positive co-occurrence results is to
examine the texts for formulations that can be used as indicator for removing these texts.
For example, in case of the search for messenger release relations with COCcell-msngr-rword

in many sentences that contain the words “effects of” or “effects on” not the release of a
msngr from a cell is reported, but rather the effects of the msngr on a cell. Thus, the
causality indicated by cell → msngr is switched.

A filter that removes all sentences containing these phrases was tested and evaluated
for 300 sample sentences selected at random. The precision rate did indeed increase a little
to about 29% (compared to 22% in the triple co-occurrence search on sentences, Table 5.5).
But evaluation of another 300 samples selected at random from the 22 235 removed results
showed a precision of about 20%, meaning that about a fifth of the deleted results might
be correct and are thus wrongly removed. One reason for this is that for the concept based
indexing the WordNet concept WN:13500435NN with “effect” as the only concept name was
used. This caused indexing of all sentences containing the words “express” or “expression”,
which probably affected too many. Also, in all approaches applied here, the order of the
concepts in the text is not taken into account.

However, this does not discount filtering approaches in general, but shows that a pos-
sibility to survey quickly the resulting effects of a filter will help to remove false-positives.
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Co-Occurrence templates: following from the previous suggestions, an important im-
provement would be the possibility to apply templates and simple extraction rules on the
selected sentences. From the order of the searched context and their relative positions to
relevant keywords, probably more accurate conclusions about the most likely content of the
respective sentence could be inferred. The success of such rule-based approaches has also
been shown in text extraction competitions (as discussed in Section 2.3.4 and in Yeh et al.,
2003). For this purpose, the concept based indexing in ONDEX should be complemented
in a way that the positions of the indexed concepts in a text are also considered.

This would probably also help to avoid another problem that became visible through
manual examinations of the false-positives: many sentences consists of long lists of sub-
stance, molecule, cell type or tissue names. For example in the sentence ”A murine model
was developed to assess the direct and indirect effects of murine IL-2 and the secondarily
released cytokines, gamma interferon (INF gamma), and tumor necrosis factor (TNF al-
pha), on testosterone production in isolated Leydig cells.” (second sentence in Meikle et al.,
1992), the co-occurrence of “testosterone” and “Leydig cells” is a true-positive messenger
release, whereas any other combination of the cell type with the messenger substance names
is false-positive in this context.

Such lists can be even longer: “In this study, we investigated the effects of IFN gamma
on the production of cytokines (IL-6, IL-8, IL-10), prostaglandin E(2)(PGE(2)), proteogly-
cans (PG), nitric oxide (NO), interleukin-1 receptor antagonist (IL-1ra) and stromelysin by
non-stimulated and IL-1 beta-treated human chondrocytes.” (second sentence in Henrotin
et al., 2000). Obviously, not any pair of these names reflects the correct semantic of the
sentence. But if the position of keywords like “produce” or “binds to” is known in relation
to the list of names, it can be better approximated which entity affects which other entities.

Hypotheses database: a possible application of the hypotheses gained so far is the
creation of a database that contains all extracted potential signals in order to be queried
by biomedical experts searching for new ideas regarding specific questions on intercellular
signaling. Such a database could be periodically updated by automated ONDEX processes
that download recent MEDLINE texts, import and index them, and finally perform the
co-occurrence searches and hypotheses generation. A search in the texts that remain after
the application of the full text mining process would be much more specific than a simple
query for the respective entity names at the Pubmed interface.
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In this chapter the cell-cell signaling networks extracted from the CSNDB database (Sec-
tion 4) as well as from MEDLINE abstracts (Section 5) are investigated if they could be
applied to more specific biological questions related to neurodegenerative diseases. Hence,
instead of trying to reconstruct and analyze the whole intercellular communication network,
only a small subset of cell types is considered here.

Therefore, an introduction to neurodegenerative diseases and the special focus of the
research conducted by the group of Thomas Schmitt-John at Bielefeld University is pre-
sented in Section 6.1. This section also includes a description of the affected cell types
as well as some phenotypic effects that cell-cell signals might cause in this context. In
Section 6.2 then it is shown how the previous results are restricted, evaluated and how
the subnetwork of the selected cell types finally is generated. The resulting hypotheses are
partially evaluated and the results are discussed in Section 6.3.
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6.1 Intercellular signaling in the context of neurode-

generative diseases

Neurodegenerative diseases are hereditary and sporadic conditions which affect the brain
function and are characterized by a progressive nervous system dysfunction (Beal et al.,
2005). These disorders result from deterioration of neurons and are often associated with
atrophy of the affected central or peripheral nervous system structures. They are divided
into two groups:

1. conditions causing problems with movements

2. conditions affecting memory and conditions related to dementia

Such neurodegenerative diseases are e.g. Alzheimer’s Disease, Parkinson’s Disease, Multi-
ple Sclerosis, Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig’s Disease) or Huntington’s
Disease. Paradoxically, neurodegeneration is a major element in many diseases that are of-
ten not usually classified as degenerative (e.g. multiple sclerosis or epilepsy) and conversely,
inflammatory processes for example are activated and vascular compromise occurs in some
degenerative diseases (Williams, 2002). Age is the major risk factor for neurodegenerative
diseases and as society ages, neurodegenerative diseases will become increasingly common.
Thus, research conducted in this field is becoming of increasing importance as well.

At Bielefeld University Thomas Schmitt-John’s research group is researching the so-
called wobbler mouse (Falconer, 1956), a mouse mutant serving as model organism for the
human amyotrophic lateral sclerosis (ALS) disease. Together with two researchers of this
group, Thomas Schmitt-John and Carsten Drepper, the cell-cell communication networks
derived by reconstruction from databases (Section 4) and text (Section 5) are inspected
whether they can be applied in the context of neurodegenerative diseases. The special
focus of the research group is the wobbler mouse and the respective human disease which
will both be briefly introduced in the following section (Section 6.1.1). However, the goal
of the reconstruction application is to shed light on the communication between cell types
affected in neurodegenerative diseases in general. Therefore, the respective cell types are
presented in Section 6.1.2 and examples of typical phenotypic effects are shown where
cell-cell signals probably play a major role.

6.1.1 The wobbler mouse and ALS

The wobbler mouse was first described by Falconer (1956) as a spontaneous mutation, that
was characterized by their wobbly gait, smaller size and fine tremor of the head (Duchen
and Strich, 1968). In the following years it became the most popular murine model of mo-
toneuron diseases, characterized by the progressive degeneration of motoneurons, resulting
in muscular weakness, paralysis and death.

The most common adult human motoneuron disease is amyotrophic lateral sclerosis
(ALS). ALS is a rapidly progressive neurological disorder, characterized by a rapidly pro-
gressive degeneration and loss of motor neurons in the brain and spinal chord, which ulti-
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Figure 6.1: Cell types mainly affected in neurodegenerative diseases: motoneurons, microglia, astroglia
and Schwann cells. In case of ALS and the wobbler mouse, the motoneurons that connect the brain
with the sceletal muscle fiber are degenerating and finally die. The surrounding cells proliferate during
the motoneuron degeneration (probably in order to support the dying cells). Figure with permission by
Harald Jockusch (Bielefeld University).

mately leads to paralysis and premature death. The prevalence of ALS is approximately
5/100,000 in the population and increases with age (peak at age of 60-75: 33/100,000 for
men, 14/100,000 for women, see Majoor-Krakauer et al., 2003). Common clinical features
of ALS include muscle weakness, fasciculations, brisk (or depressed) reflexes, and extensor
plantar responses.

Most ALS cases are of unknown etiology, so, although the chromosomal localizations
of the mutations found in the wobbler mouse show no similarity to the few human forms
of ALS for which the mutation is known, the wobbler mouse remains the main source to
explore this disease (Boillée et al., 2003). The wobbler mouse is used to explore the course
of neurodegeneration at the clinical, cellular and molecular levels.

Further aspects of the wobbler syndrome were discovered by Leestma and Sepsenwol
(1980) and Heimann et al. (1991) who found that the neurodegenerative syndrome is
associated with male sterility. Augustin et al. (1997) then explored the hypothesis of a
humoral factor in the wobbler mutation and showed the cell acting autonomous of the
wobbler mutation. Schmitt-John et al. (2005) identified the mutation in the Vps54 gene
as the cause for motor neuron disease and defective spermiogenesis in the wobbler mouse.

6.1.2 Cell types affected in neurodegenerative diseases

Cell types mainly affected in neurodegenerative diseases are motoneurons, microglia, as-
troglia and Schwann cells (Figure 6.1). Communication between these four cell types plays
an important role in different diseases. Although the cell signaling hypotheses extracted for
this purpose support the research on several diseases, we will give here exemplary details
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All Neuro Neuro-Pos. Prec.

cell-msngr-rword 6 334 241 114 47%

rec-cell-cword 3 230 195 140 71%

msngr-rec-bword 2 213 911 82 <10%

hypotheses 3 898 341 347 – –

Table 6.1: Text mining results after restriction to cell types affected in neurodegenerative diseases. The
rows show the numbers of hits found in each triple co-occurrence type and (in the last row) the number of
hypotheses resulting from these co-occurrences: for all cell types (column 2, see also Table 5.5, Section 5.3),
for the four cell types in neurodegenerative diseases (3), the number of positively evaluated results (4) and
the respective precision (5). In this case, the co-occurrence hits and hypotheses are completely examined
manually. Note, that the number of the third co-occurrence search, msngr-rec-bword, is restricted to all
positively evaluated results of the other two co-occurrence searches.

of disease processes in which cell communication might play a crucial role that are related
to the wobbler mouse and the human ALS disease.

In the center of these diseases are motoneurons which transfer motion control sig-
nals from the brain through the spinal cord to the muscles. Influences of intracellu-
lar signals have been investigated for instance by gene expression profiling of receptor
molecules (Festoff et al., 2000) or by measuring the abundance of substances in the cere-
brospinal fluid (Brooks et al., 1983).

A further possible influence of cell-cell signals could be related to the reactions of the
cell types surrounding the motoneurons, as the astroglia and the microglia. These cells are
observed in the wobbler mouse to proliferate when the motoneurons have been affected.
The reason is probably the attempt to support the degenerating cells. The question,
however, is how the surrounding cells “know” that the motoneurons are dying. It is an
obvious suggestion that here cellular communication might be involved.

Thus, these few examples demonstrate that intercellular signals are probably part of
the complex disease processes. Therefore, the results gained for all cell types will be
restricted in the following to the four presented cell types in order to better understand their
communication behavior and involvement in the diseases. Furthermore, another benefit of
this restriction will be the possibility to test the quality of the applied methodology in a
data set of manageable size.

6.2 Resulting cell-cell signaling hypotheses and eval-

uation

6.2.1 Applying the database results

Investigating the networks reconstructed from the CSNDB (Section 4) reveals that from
the few cell types contained at all in CSNDB, the Schwann cells appear as the only of
the four cell types of interest. The other cell types are mostly part of the immune system
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(as e.g., natural killer cells, T helper cells etc.). Or the available location sites are too
unspecific for our purposes (as e.g., nerve cell). This situation is similar for the HPRD
(Sec 2.2). Although this recently published database seems to be more accurate and
complete compared to the CSNDB, it lacks also most of the cell types of interest here.
Thus, the previously extracted CSNDB network could not be further applied and additional
effort to apply the HPRD would not result in applicable data for this specific context.

6.2.2 Applying the text mining results

In order to acquire hypotheses from the text mining results for only the four cell types
affected in neurodegenerative diseases (according to Section 6.1.2), the following steps are
performed:

1. The co-occurrence results for triple co-occurrences in sentences that contain cell type
concepts (i.e., cell-msngr-rword and rec-cell-cword) are restricted to the four
selected cell types. These restricted sets of sentences with co-occurrences are then
completely evaluated.

2. The co-occurrence results for msngr-rec-bword are restricted to only those combina-
tions of msngr and rec that occur in positively evaluated co-occurrence results from
step 1. Also these msngr-rec-bword co-occurrences are completely evaluated.

3. Hypotheses for all positively evaluated co-occurrence results from step 1 and step 2
are finally generated and available for manual inspection.

To allow a complete evaluation of all co-occurrence results, the order of these steps
is important: by accessing only those msngr-rec-bword results that are connected to
positively evaluated cell-msngr-rword and rec-cell-cword sentences the number of
msngr-rec-bword hits could be reduced from 2 213 to 911 (Table 6.1). Thus, using this
reduction step, a complete evaluation of the msngr-rec-bword co-occurrence results be-
came feasible.

The evaluation of the co-occurrence results by biomedical experts is conducted by
comparing the conclusion drawn from a co-occurrence (e.g., that a cell type is capable of
producing or secreting a specific first messenger) to the sentence where this co-occurrence
is found. A co-occurrence hit is positively evaluated if the conclusion is described in the
respective sentence. Since the triples of terms can occur concurrently in several sentences,
a maximum of three randomly selected sentences are manually inspected. If in at least
one case the conclusion is described by the sentence, the co-occurrence hit is evaluated as
positive.

The resulting precision values of the concept based co-occurrences can be found in
Table 6.1 For comparison, the previously gained values for all cell types (see Table 5.5
in Section 5.3) are listed in the second column. The respective positively evaluated co-
occurrence hits are listed in the Tables 7.11 to 7.13 (appendix, Section E).
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The number of finally resulting hypotheses is 347 from which 100 were manually vali-
dated. This validation resulted in about one-third true-positives. The remaining hypothe-
ses are rated as false-positives for two main reasons:

1. The concepts often include too many synonyms from conceptually different levels,
as e.g. substance names and names of substance classes. Such names should not be
regarded as synonym. This is caused mainly by improperly defined MeSH terms and
MEDLINE annotations.

2. The positively evaluated co-occurrence results originate in many cases from texts
that describe observations made in different contexts, i.e. different physiological or
experimental conditions. Cell-cell relations assembled from co-occurrence results that
combine different biological situations are not likely to exist in the organism.

A further observation is that in some cases different abstracts contained contrary state-
ments regarding the same fact, which might be also caused by the different contexts in
which the same signaling mechanisms have been investigated. A more detailed discussion
of these problems as well as suggestions for improvements are presented in the next section.

6.3 Discussion

From the two kinds of data sources generally available, molecular databases and biomedical
literature, the databases turned out to be too unspecific and incomplete in respect to the
location sites of the molecules. Therefore, text mining is applied, and the previous results
are restricted to the four cell types of interest in the context of neurodegenerative diseases.

The benefit of the restriction to a small set of interesting cell types is that all co-
occurrence results that underly the hypotheses generation could be evaluated completely.
Additionally, the initially high number of messenger-receptor interactions could be reduced
by evaluating at first the relatively low numbers of co-occurrence results related to cell
types. Thus, continuing the approach presented in the previous section, the application
of further filter steps reduces the amount of co-occurrence hits to be evaluated and finally
only hypotheses from positively evaluated co-occurrence hits are created.

Interestingly, it can be observed that the precision values of the co-occurrence re-
sults roughly show a pattern similar to that as it was found in the different searches
for the complete list of cell types (Section 5.3): the search for ligand-receptor bind-
ings (msngr-rec-bword) performs worst, the search for expression of receptors in cell
types (rec-cell-cword) best, and the performance of the messenger release search
(cell-msngr-rword) is in between. This underlines that the success of co-occurrence
approaches depends on the searched relations and is difficult to rate in general.

Although about one-third of the evaluated hypotheses are rated as valid, a larger num-
ber seems to be implausible. The first reason for this is of technical nature: the concepts
imported from the MeSH terms as well as from the annotations of the MEDLINE texts
contain too many terms from different hierarchical levels, which was not checked in ad-
vance. The effect is that for instance from a sentence containing the terms “cytokine” and
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“astrocyte” the conclusion “astrocytes secrete interleukin-6 (IL-6)” might be drawn since
“cytokine” and “IL-6” are synonym regarding the term lists of MeSH and MEDLINE. To
improve the quality of the concepts in the aligned ONDEX ontology probably these two
sources should be left out in future or at least edited manually in order to assure that
only substance names are included and class names avoided. This evaluation result sheds
also light on the importance of a high-quality biological entity thesaurus. Dictionaries like
the MeSH terms or the UMLS contain a large number of entities, but should be evaluated
carefully in respect to the specific application context.

The second reason for the resulting false-positives is specific for the application case of
neurodegenerative diseases: the respective cell types can occur in different tissues (e.g. in
the brain or in the spinal cord) and are investigated under various conditions, as e.g the
affected tissues might be healthy or not, in a developmental or an adult state or the
experiments might be conducted in vivo or in vitro. For example, most of the autocrine
signals inferred with this approach turned out to be probably false since they originate
from in vitro experiments where a cell culture has been treated with a messenger substance,
which subsequently induced the production of its respective receptor. From this fact one
can not assume that these cells communicate with themselves in vivo by such a ligand-
receptor combination, because the receptor might not be expressed in the cells under
normal conditions.

Consequently, conclusions drawn from a single sentence of an abstract might hold true
only under specific conditions, which can not be recognized any more by considering only
this sentence. Thus, the restriction to sentences helped to find and to evaluate a reason-
able amount of true-positive co-occurrences, but assembling these conclusions into cell-cell
signaling hypotheses is ambiguous in the context especially of neurodegenerative diseases.

Whereas the first problem regarding the concept names could be resolved straightfor-
wardly, the second problem is more complex. In order to include information on e.g.,
experimental or physiological conditions, the design of a subsequent approach should con-
sider the context of a co-occurrence hit. Such information might be contained in the
abstract or the full paper of the detected sentence. For this purpose, co-occurrence strate-
gies might not be sufficient since relations between sentences have to be considered and
therefore, full sentence parsers could be more appropriate to apply. However, since full
sentence parsers are much more costly regarding computation time, an application of such
tools would in many cases only be feasible by using an approach like the presented one as
filter for appropriate texts.

Concluding this section, concept co-occurrence results for cell types relevant in neu-
rodegenerative diseases are completely evaluated and cell-cell relation hypotheses gener-
ated. By applying several filter steps, the sets of resulting co-occurrences and hypotheses
are of manageable size. Although the examination of the hypotheses turned out to be
more complicated than expected, the retrieval of about one-third known cell-cell relations
in the validation set is a reasonable result and comparable to other text mining work (Win-
nenburg, 2005) as well as to the 14% known relations in all relations extracted from the
CSNDB (Section 4.2.4).
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Chapter 7

Conclusions
The goal of this work was to reconstruct and analyze intercellular signaling networks,
i.e. signaling relations between cells based on ligand-receptor interactions. Therefore,
two generally different kinds of data sources were accessed: molecular databases and the
biomedical literature. For both sources it turned out that explicit information on com-
plete cell-cell signals is not available, but rather has to be combined from information on
the different components of a cell signal, which are the messenger release from a cell, the
binding of a messenger to a respective receptor on a target cell and the existence of this
receptor in the target cell.

For these reasons are the reconstructed cell signals of hypothetical character, indepen-
dently from the chosen data source. Validating hypotheses is difficult since even if they
reflect the biological reality correctly, they might have not yet been investigated experimen-
tally. This is additionally complicated by the usually large numbers of resulting hypotheses
arising from even few combined cell signaling components. Consequently, the challenges to
be resolved were the analysis and validation as well as the visualization of dense networks
consisting of uncertain connections.

For this purpose, models capturing cell signals on different levels as well as corre-
sponding graph representations were developed and applied to the data sources. With
the proposed bi- and tripartite graphs the number of edges in signaling networks can be
reduced and thus these are particularly of use in network visualization and support manual
inspection of the resulting signals.

Regarding the available data sources, an examination of molecular databases and pre-
liminary studies with a specific database revealed that the main problem with databases
is that the locations of the molecules are rather unspecific, if defined at all. The selected
database CSNDB contains only very few cell types and the semantic of the location fields
is not defined properly. However, sample networks were reconstructed from the CSNDB
by applying two reconstruction approaches. In the network resulting from the second ap-
proach, about 14% of the reconstructed cell-cell interactions were validated as true-positive.
Statistical analysis was difficult to perform since the network is dense and consists mainly
of only one giant strong component. In a sample application on the organ subnetwork a
correlation between the signaling intensity and the physical distance of organs could not
be found.

Therefore, instead of using inappropriate third party databases, the biomedical lit-
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erature was accessed by applying a concept based text mining approach on MEDLINE
abstracts. The advantage is that in this case the searched locations are defined as input of
the reconstruction approach. In order to avoid simple text searches, the ONDEX frame-
work has been developed in a collaborative work. With ONDEX, a pre-filtered set of texts
is annotated by an ontology consisting of a number of imported and aligned databases and
ontologies. This allows concept based approaches in text indexing, co-occurrence searches
and hypotheses generation.

Applying concept based co-occurrence searches, a network of cell signals could be ex-
tracted and subsequently reduced by refining the co-occurrence searches. Manual eval-
uation of randomly selected samples showed that the precision depends on the searched
signaling component and how this component is described in the texts. Due to stable
expression in the texts, the existence of receptors in the target cells performed best with a
precision of about 70%, whereas ligand-receptor bindings were most difficult to detect.

However, even with the final refinement of the resulting hypotheses there are still too
many for an exhaustive evaluation. Therefore, both reconstruction results (i.e. from the
sample database as well as from text) were inspected whether they can be applied on a set
of four cell types important in the context of neurodegenerative diseases. The currently
available databases could not be used here since the respective cell types are not present,
whereas the respective concept based co-occurrence results from the text mining approach
could be completely evaluated and a set of hypotheses based on these valid co-occurrences
was generated.

For these hypotheses about one-third of a randomly selected sample could be shown
to reflect known knowledge correctly, but the remaining hypotheses were rated as false-
positives for two main reasons: firstly, some imported data sources caused synonym names
in several concepts which should not be regarded as synonyms and secondly, the combi-
nation of positively evaluated co-occurrences often returns implausible cell-cell signals if
they originate from different experimental settings or physiological conditions. Of the two
problems, the second one was not easily solvable within the approach chosen here. To
detect properly the context of a sentence it is probably most appropriate to apply tools
that are able to reconstruct the grammar of a text and thus the relations of its sentences.

Hence, a benefit of the presented approach is the selection of texts likely containing
the searched contents from millions of other texts with manageable effort. Thus, this
strategy returns a small set of probably relevant texts that would have been hard to
find by manual search queries. Also it enables the application of more sophisticated and
therefore computationally expensive text mining tools. Furthermore, other applications in
extracellular signaling might be not necessarily that strongly related to an experimental
or physiological context and concept based co-occurrence searches are thus still reasonable
to apply. Here, the different precision rates resulting for different co-occurrence searches
indicate that some facts are better to extract by co-occurrence approaches than others.

Concluding from this, the concept based methodology of this thesis can be used to
extract cell-cell signaling hypotheses that either can be applied directly or serve as base
for more intensive text analysis approaches. Thus, concept based text extraction method-
ologies support the understanding of systems as complex as intercellular signaling.
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A Network extraction and text mining tools

In this section we introduce selected tools that implement one or more of the approaches
discussed for each step of the network extraction workflow (Figure 2.5) in Section 2.3.
Figure 7.1 gives an overview of recently developed and available software.

Examples for integrated applications that combine all steps of the workflow into one
system are PIES (Wong, 2001), SUISEKI (Blaschke et al., 2002), PreBIND (Donaldson
et al., 2003), GeneWays (Rzhetsky et al., 2004) or PASTA (Gaizauskas et al., 2003, tool
no. (1) in Figure 7.1). The commercial software package PathwayAssist (2) also addresses
the whole workflow. It uses MedScan (Novichkova et al., 2003; Daraselia et al., 2004) as
module for textmining, which is also available separately and based on NLP techniques.
After retrieving MEDLINE abstracts according to a user-defined query, sentences that do
not contain at least one concept of a dictionary are filtered out. The remaining sentences
are further processed with a syntactic parser and a semantic interpreter. The resulting
relationships can then be visualised and analysed within PathwayAssist. The reported
precision is 91% with a recall of 21%.

Chilibot (Chen and Sharp, 2004, tool no. 3) is a web service to construct networks from
genes, proteins, drugs and other biological concepts. It uses the E-Utilities (4) service (ES-
earch and EFetch) at NCBI for retrieval of documents by submitting a query consisting of
the pairwise combinations of the user’s input terms and their synonyms. Acronyms con-
tained in the user input are automatically resolved to their long-term phrases. Retrieved
abstracts containing less than 30% of the acronym’s phrase terms are rejected. Sentences
from the abstracts that contain two or more query terms and synonyms are further pro-
cessed by the POS tagger TnT (Brants, 2000, tool no. 5) and the shallow parser CASS (6).
Following that, the resulting sentences are classified into one of six categories according to
the presence/absence of terms indicating special relationships. For visualization of the ex-
tracted relationships AiSee (7) is used in Chilibot. The extracted network can in addition
be used for navigating the related literature. The precision of the system was determined
to be between 74% and 79% depending on the category and the recall to be about 90%.

PubGene (Jenssen et al., 2001, tool no. 8) is an integrated system widely used in
different projects. It is a commercial tool, but developed in academic research. The
basic version described in Jenssen et al. (2001) uses a dictionary of gene symbols and
names collected from HUGO nomenclature database, LocusLink, GDB and GENATLAS
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Figure 7.1: Available tools for network extraction and text mining. Only tools with maintained web sites
and at least available at request are listed.

to identify genes in Medline. Each gene thereby is represented by its primary gene symbol.
With the resulting gene article index co-occurrences of pairs of genes in the abstracts are
calculated (see also ”Relations” in the previous section). The retrieved network can be
enriched with DNA microarray data. The visualization is done with GraphViz (9).

The systems described so far integrate all parts of the overall workflow. Building blocks
of these applications are tools that cover either one task, e.g. TnT, or many parts,
e.g. BioNLP (Ng and Wong, 1999, tool no. 10). A public available framework that pro-
vides the basic architecture for the development of information extraction applications is
GATE (Cunningham et al., 2002, tool no. 11). In the field of biological relation mining
it is used e.g. in PASTA (Gaizauskas et al., 2003) and by Karopka et al. (2004). GATE
includes a set of components, which can be replaced or extended easily as the framework
is provided as a Java API. Beside usual modules like a Tokenizer, a Sentence Splitter or a
Tagger, components for recognizing relations and finding identical entities (Orthomatcher,
Coreferencer) are available.

The ONDEX suite (12) is intended for integration of databases, network extraction
and graph analysis (Section 5). Here, a concept based entity recognition using mapped
ontologies is applied in a first step (see also Section 2.3.3) and used for text mining with a
co-occurrence search. It is not restricted to Pubmed abstracts as texts are imported into
a relational database format (PostgreSQL).

The library MedlineR (Lin et al., 2004, tool no. 13) uses the statistical environment and
programming language R to define procedures for retrieving articles from NCBI, mapping
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terms to MeSH and mainly to calculate co-occurrences of terms. The visualization of the
associations is realized through the generation of an output file in the Pajek (14) format.

PubMatrix (Becker et al., 2003, tool no. 15) is in contrast to MedlineR a web-based
tool intended for interactive querying. To calculate a co-occurrence matrix the user has
to define two lists of terms, a search list and a modifier list. The terms of the list, which
can be a simple keyword lists or gene symbols are used to create PubMed queries. This is
realized by pairwise combining the terms of the different lists. Finally, the resulting matrix
contains the frequency of co-occurrences. Another interactive querying tool is the iHOP
service (16). It enables the search of genes in a pre-calculated co-occurrence network of
genes and proteins (from eight organisms). In contrast to other systems the user retrieves
fragments of sentences, which contain relations of the searched gene, and then selects
relevant relations that should be added to a user specific literature network.

Finally, there exist a number of software packages that can be used in each single step of
the network extraction workflow (Figure 2.5): The acquisition of texts can simply be done
by using the E-Utilities of NCBI. MedKit (Ding and Berleant, 2005, tool no. 17) is also
very useful for this purpose and more powerful. On the other hand more sophisticated
methods can be applied to get more appropriate text corpora. Textomy (Donaldson et al.,
2003, tool no. 18), for example, is part of the PreBIND (Donaldson et al., 2003) system
and uses Support Vector Machines for classifying texts.

For identifying entities in text in most systems standard NLP techniques can be applied.
In the biomedical domain public available tools have already been used e.g. Snowball (19)
for stemming or Qtag (20) for part-of-speech tagging. Specialised taggers for biological
knowledge also exist but might not be publicly available.

A publicly available system which addresses this task is NLProt (Mika and Rost, 2004,
tool no. 21). It uses different dictionaries, e.g. a protein names dictionary extracted from
Uniprot and a common names dictionary derived from Merriam-Webster, in combination
with support vector machines (SVMs). For training the SVMs in the first step each abstract
is split into single tokens separated by spaces. Out of this tokens sample phrases are
constructed which are composed of a central part and a preceding respectively following
environment. This enables the system to train the system for different purposes, e.g. one
SVM was trained on central words and one for the environment. The system achieves a
precision of 75% and a recall of 76% even for novel protein names.

Analysis and visualisation of the generated networks can be supported using specialised
biological pathway and network analysis tools, as e.g. Ingenuity (22), Cytoscape (23),
Osprey (24) or ONDEX (12). These tools enable users to analyse experimental data such
as gene expression results in context of the biological networks. Ingenuity makes use of a
knowledge base, but it could not be determined from the available information in the web
whether this database or parts of it has been built using text mining.

But also more generic applications as for instance Pajek (14) are very useful especially
in analyzing topological properties of the biological networks. For importing networks as
text files the accepted formats of theses tools range from simple tab delimited files to
common standards, as e.g. GML or PSI.
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B Entities in the CSNDB

Locations

Table 7.1: 100 different locations that have been found by the first (column I) or the second (column II)
CSNDB reconstruction approach. In the CSNDB the locations are listed in the fields Tissue, Synthesis
or Target in the Signal Molecule objects of a Cell Signaling. The locations serve as nodes in the
respective signaling networks. Here only locations are listed for which connections could be inferred.
The last column (Location type) contains the manually assigned location type (body part, anatomical
structure, organ, organ system, tissue, cell, cell part or embryo). The location type was not provided by
the CSNDB. Location names in italic have been explicitly excluded in the second reconstruction approach.
The order is alphabetically.

Location name I II Location type
adipose tissue x x tissue
adrenal cortex x tissue
adrenal gland x x organ
adrenal medulla x tissue
aorta x x organ
B lymphocyte x x cell
basal ganglion x x anatomical structure
basophil x x cell
blood x x organ
blood peripheral lymphocytes x x cell
blood vessel x x anatomical structure
bone x x tissue
bone marrow x x organ
brain x x organ
breast x x body part
cardiovascular system x x organ system
cell line x removed in II
central nervous system x x organ system
cerebellum x x organ
cervix x x organ
colon x x organ
connective tissue x x tissue
cortical axon x x cell part
cytotoxic T cell x x cell
dendrite x x cell part
ear x x body part
endothelium x tissue
epidermis x tissue

continued on next page
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Location name I II Location type
epithelial tissue x tissue
erythrocyte x cell
esophagus x x organ
eye x x body part
fetal brain x embryo, removed in II
fetal heart x embryo, removed in II
fiber x x tissue
foreskin x x anatomical structure
gall bladder x x organ
gastrointestinal tract x x organ system
genitourinary tract x x organ system
germ cell x x cell
glomerulus x tissue
GM progenitor cell x cell
head and neck x x body part
heart x x organ
helper T cell x x cell
hippocampus x x anatomical structure
hypophysis x x organ
hypothalamus x x anatomical structure
inhibitory synapse x x cell part
islet of langerhans x x anatomical structure
kidney x x organ
larynx x x organ
leucocyte x cell
liver x x organ
lung x x organ
lymph x x organ
lymphocyte x x cell
macrophage x cell
megakaryocyte x x cell
monocyte x x cell
mouth x body part
muscle x x tissue
myocardium x x anatomical structure
natural killer cell x cell
nervous system x x organ system
neuron x x cell

continued on next page
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Location name I II Location type
nose x x body part
NT2 neuronal precursor x x embryo
ovary x x organ
pancreas x x organ
parathyroid gland x x organ
pDC2 x cell
peripheral autonomic nervous system x x organ system
peripheral nervous system x x organ system
pineal body x x organ
placenta x x embryo
pooled x removed in II
postsynaptic neuron x x cell
prostate x x organ
retina x x anatomical structure
skin x x organ
smooth muscle x x tissue
spinal cord x x anatomical structure
spleen x x organ
stomach x x organ
suprachiasmatic nucleus x x anatomical structure
synapse x cell part
synovial membrane x x anatomical structure
T lymphocyte x x cell
testis x x organ
TH2 x cell
thrombocyte x x cell
thymus x x organ
thyroid gland x x organ
tongue x x body part
tonsil x x organ
ubiquitous x removed in II
uterus x x organ
vascular smooth muscle x cell
whole embryo x embryo, removed in II



B Entities in the CSNDB 117

Selected Cell Signaling objects in reconstruction approach I

Table 7.2: 74 Cell Signaling objects selected in the first CSNDB reconstruction approach. In this
approach the signalings are restricted to binary signalings of the type ligand-receptor binding, i.e. they
consist of two molecules, one on the left (M1) and one on the right side (M2) of the signaling. Location
links are inferred for the locations of M1 and M2. This table shows only the cell signalings that could
be used for inferring location links, i.e. for both molecules are locations defined. The respective molecule
types are liste in the second and the third column: hormone (H), cytokine (C), neurotransmitter (NT),
receptor (R), ion channel (IC), transcription factor (TF) and enzyme (E). Multiple type assignments are
possible as well as that no type is assigned (–). The order is alphabetically.

Cell Signaling M1 M1

adenosine → A2b receptor NT Rec
adrenomedullin → CRLR H Rec
anandamide → cannabinoid receptor NT Rec
anandamide → capsaicin receptor NT IC, Rec
anandamide → CB1 NT Rec
ANP → ANP receptor H Enz, Rec
arginine vasopressin → V1a receptor H Rec
BLC → BLR-1 C Rec
bombesin → bombesin receptor NT Rec
calcitonin → CRLR H Rec
CD40L → CD40 C Rec
CGRP1 → CRLR H Rec
CGRP2 → CRLR H Rec
CNTF → CNTF receptor C Rec
cocaine → dopamine transporter NT Rec
delta9-THC → CB1 NT Rec
EGF → EGF receptor H Enz, Rec
endomorphin-1 → mu-opiate receptor NT Rec
endomorphin-2 → mu-opiate receptor NT Rec
eotaxin → CCR3 C Rec
Epo → Epo receptor C Rec
estradiol → estrogen receptor H Rec, TF
ethanol → NMDA receptor – IC, Rec
Fas ligand → DcR3 Rec Rec
FGF1 → FGFR1 H Rec
FGF1 → FGFR4 H Rec
FGF2 → FGFR1 H Rec
FGF2 → FGFR4 H Rec
GABA → GABA-A receptor NT IC, Rec
GABA → GABA-B receptor NT IC, Rec
GABA → GABA-C receptor NT IC, Rec
gastrin-releasing peptide → GRP-R NT Rec
GCSF → GCSF receptor C Rec
GDNF → GDNF receptor NT Rec
GDNF → GDNFR-alpha NT Rec
GH → GH receptor H Rec

continued on next page
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Cell Signaling M1 M1

glycine → GABA-A receptor NT IC, Rec
glycine → glycine receptor NT IC, Rec
GM-CSF → GM-CSF receptor C Rec
Gn-RH → Gn-RHR H Rec
IL-1 → IL-1 receptor C Rec
IL-6 → ErbB2 C Rec
IL-6 → ErbB3 C Rec
insulin → insulin receptor H Rec
L-glutamate → AMPA receptor NT IC, Rec
L-glutamate → NMDA receptor NT IC, Rec
MCH → SLC-1 H, NT Rec
MIP-1-beta → CCR5 C Rec
morphine → mu-opiate receptor – Rec
motilin → motilin receptor H Rec
neuromedin B → NMB-R NT Rec
neurturin → NTNR-alpha C Rec
NGF → TrkA H Rec
NRG-2 → ErbB3 NT Rec
oxytocin → OTR H Rec
PEA → cannabinoid receptor NT Rec
PGE2 → EP3 receptor C Rec
progesterone → OTR H Rec
progesterone → progesterone receptor H Rec, TF
PrRP → hGR3 H Rec
SDF-1 → CXCR4 C Rec
semaphorin III → SemaIII receptor – Rec
serotonin → serotonin receptor H, NT Rec
substance P → substance P receptor NT Rec
testosterone → androgen receptor H Rec
thrombopoietin → thrombopoietin receptor C Rec
thrombopoietin agonist → thrombopoietin receptor – Rec
thyroxine → thyroxine receptor H Rec, TF
TNF-alpha → TNF receptor2 C Rec
TRAIL → DcR1 C Rec
TRAIL → DR4 C Rec
TRAIL → DR5 C Rec
TRAIL → TRID C Rec
urotensin-2 → GPR14 H Rec
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Selected Cell Signaling objects in reconstruction approach II

Table 7.3: 106 Cell Signaling objects selected in the second CSNDB reconstruction approach. After the
name of the signaling in the first column, the interaction type is given in the second column (lrb: ligand-
receptor binding, ppi: protein-protein interaction, –: no type defined). The last two columns show the types
of the two molecules selected from the cell signaling (H: hormone, C: cytokine, NT: neurotransmitter, Rec:
receptor, Enz: enzyme, IC: ion channel, TF: transcription factor). If the cell signaling contains more than
two molecules, the selected molecules are underlined, M1 and M2 appear in this order in the signaling. The
signalings are ordered alphabetically and only such signalings are listed which could be used for inferring
location links, i.e. all molecules have at least one location defined.

Cell Signaling Int M1 M2

→ TGF-beta1 + FKBP12 – C Enz, Rec
AA-NAT + serotonin → melatonin – H, NT NT
acetylcholine → muscarinic acetylcholine receptor – NT Rec
ACTH → ACTH receptor – H Rec
adenosine → A2b receptor lrb NT Rec
adrenaline → alpha2-adrenergic receptor – H, NT Rec
adrenaline → beta-adrenergic receptor – H, NT Rec
adrenomedullin → CRLR lrb H Rec
anandamide → cannabinoid receptor lrb NT Rec
anandamide → capsaicin receptor lrb NT IC, Rec
anandamide → CB1 lrb NT Rec
angiotensin II → aldosterone – H H
ANP → ANP receptor lrb H Enz, Rec
arginine vasopressin → V1a receptor lrb H Rec
BLC → BLR-1 lrb C Rec
bombesin → bombesin receptor lrb NT Rec
calcitonin → CRLR lrb H Rec
CD40L → CD40 lrb C Rec
CGRP1 → CRLR lrb H Rec
CGRP2 → CRLR lrb H Rec
CNTF → CNTF receptor lrb C Rec
cocaine → dopamine transporter lrb NT Rec
cortisol → glucocorticoid receptor – H Rec, TF
CRH → ACTH – H, NT H
delta9-THC → CB1 lrb NT Rec
desacetyl-alpha-
melanocyte-stimulating
hormone

→ MC4-R – H Rec

digoxin → tetrodotoxin-sensitive Na(I) channel – H IC
EGF → EGF receptor lrb H Enz, Rec
endomorphin-1 → mu-opiate receptor lrb NT Rec
endomorphin-2 → mu-opiate receptor lrb NT Rec
eotaxin → CCR3 lrb C Rec
Epo → Epo receptor lrb C Rec
estradiol → estrogen receptor lrb H Rec, TF
estradiol → Maxi-K channel lrb H IC
FGF1 → FGFR1 lrb H Rec
FGF1 → FGFR4 lrb H Rec
FGF2 → FGFR1 lrb H Rec

continued on next page
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Cell Signaling Int M1 M2

FGF2 → FGFR4 lrb H Rec
GABA → GABA-A receptor lrb NT IC, Rec
GABA → GABA-B receptor lrb NT IC, Rec
GABA → GABA-C receptor lrb NT IC, Rec
gastrin-releasing peptide → GRP-R lrb NT Rec
GCSF → GCSF receptor lrb C Rec
GDNF → GDNF receptor lrb NT Rec
GDNF → GDNFR-alpha lrb NT Rec
GH → GH receptor lrb H Rec
GH → IGF-1 – H H
GH-RH → GH lrb H H
glycine → GABA-A receptor lrb NT IC, Rec
glycine → glycine receptor lrb NT IC, Rec
Gn-RH → FSH – H H
Gn-RH → Gn-RHR lrb H Rec
Gn-RH → LH – H H
hGR3 → prolactin – Rec H
IL-1 → IL-1 receptor lrb C Rec
IL-1 → IL-6 – C C
IL-12 → IL-12 receptor – C Rec
IL-12 receptor → IFN-gamma – Rec C
IL-6 → ErbB2 lrb C Rec
IL-6 → ErbB3 lrb C Rec
insulin → insulin receptor lrb H Rec
leptin → OB-RL – H Rec
L-glutamate → AMPA receptor lrb NT IC, Rec
L-glutamate → GluR5 lrb NT IC, Rec
L-glutamate → mGluR1 – NT IC, Rec
L-glutamate → NMDA receptor lrb NT IC, Rec
LH → LH receptor – H Rec
MCH → SLC-1 lrb H, NT Rec
MIP-1-beta → CCR5 lrb C Rec
motilin → motilin receptor lrb H Rec
neuromedin B → NMB-R lrb NT Rec
neurotrophin-3 → TrkC – NT Enz, Rec
neurturin → NTNR-alpha lrb C Rec
NGF + TrkA → CREB – H Rec
NGF → TrkA lrb H Rec
NRG-2 → ErbB3 lrb NT Rec
NRG-2 → NMDA receptor ppi NT IC, Rec
OPGL → OPG lrb H Rec
OPGL → RANK – H Rec
ouabain → tetrodotoxin-sensitive Na(I) channel – H IC
oxytocin → OTR lrb H Rec
PEA → cannabinoid receptor lrb NT Rec

continued on next page
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Cell Signaling Int M1 M2

PGE2 → EP3 receptor lrb C Rec
PPAR-alpha → IL-1 – Rec, TF C
PRL-IH → prolactin – H H
progesterone → OTR lrb H Rec
progesterone → progesterone receptor lrb H Rec, TF
PrRP → hGR3 lrb H Rec
renin → angiotensin II – H H
SDF-1 → CXCR4 lrb C Rec
serotonin → serotonin receptor lrb H, NT Rec
somatostatin → GH – H, NT H
substance P → substance P receptor lrb NT Rec
Eta-1 ↔ CD44 ppi C Rec
testosterone → androgen receptor lrb H Rec
thrombopoietin → thrombopoietin receptor lrb C Rec
thyroxine → thyroxine receptor lrb H Rec, TF
TNF-alpha → CD44 – C Rec
TNF-alpha → TNF receptor2 lrb C Rec
TRAIL → DcR1 lrb C Rec
TRAIL → DR4 lrb C Rec
TRAIL → DR5 lrb C Rec
TRAIL → TRID lrb C Rec
TRH → TSH – H H
urotensin-2 → GPR14 lrb H Rec
vitamin D → viatmin D receptor lrb H Rec, TF
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Selected ExtraCell Signaling objects in reconstruction II

Table 7.4: ExtraCell Signaling objects selected in the second CSNDB reconstruction approach. The
CSNDB contains 15 ExtraCell Signaling objects in total from which 8 have been selected since
they contain information for intercellular signalings that could not be found in the previously checked
Cell Signaling and Gene Expression objects. On each side of the ExtraCell Signalings below the
locations are given before the “:” (source and target on the left and on the right side respectively). On
the right side of the “:” the name of the mediating ligand is given.

ExtraCell Signaling

hypophysis:FSH → ovary:FSH
ovary:estradiol → bone:estradiol
ovary:estradiol → breast:estradiol
ovary:estradiol → adipose tissue:estradiol
ovary:progesterone → breast:progesterone
ovary:progesterone → adipose tissue:progesterone
TH2:IL-4 → DC1:IL-4
TH2:IL-4 → pDC2:IL-4
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C ONDEX implementation

In the following, all components of the ONDEX implementation are briefly described:

• PostgreSQL 7.4.1 (http://www.postgresql.org/): Although PostgreSQL includes
also object oriented features, it was used only as standard relational DBMS. The SQL
implementation of PostgreSQL conforms to the ANSI-SQL 92/99 standards. Addi-
tionally, PostgreSQL contains the TSearch2 tool for full text indexing (see below).

• Makefiles and shell scripts: Makefiles are currently the central interface for a user
to start ONDEX processes. All Makefiles read a central configuration file containing
global variables defining paths and other parameters. In turn the Makefiles may
start shell scripts or SQL and Java programs. The most important process governed
by Makefiles and Shell Scripts is the database installation: creation of the database
scheme, creation of the import files from external database and text sources, actual
import into the database, creation of database and indexes (Section 5.1.2, step 1
and Section 5.1.3, step 3). Makefiles and scripts take also care about the correct
order of parsing and importing data. Shell scripts are especially used for text file
manipulation and in case a process has to be started several times on a sequence of
import files.

• Java 1.4.2 (http://java.sun.com/): Java is the language chosen for performing
most of the ONDEX tasks at the core. These tasks comprise the import of data
and texts (parsing of the flat files, applying specific rules depending on the data
source, catching known interdependencies and syntactical errors in the sources; refer
also to Section 5.1.2, step 1 and Section 5.1.3, step 3), the concept based indexing
(Section 5.1.3, step 4) and the text mining methods (Section 5.1.3, step 5).

The tools Snowball and QTag (see below) are accessed as Java libraries in order to
add information to the generated import files. In case of indexing and text mining
the database is accessed via JDBC. Depending on the amount of text and whether
the text data is organized in one or several tables, different procedures have to be
applied. Tests to perform the concept based indexing by using a ramdisk were also
performed using Java. Furthermore, additional tools, as e.g. a program to access the
MEDLINE web tools for filtering the abstracts according to a list of keywords, have
been implemented with Java. And finally, the OVTK (Section 5.1.4) is completely
implemented in Java.

• SQL (see also PostgreSQL 7.4.1, above): The main tasks performed with SQL are
the actual import of data and text sources with the COPY command, the creation of
database and full text indexes (see also TSearch2, below) and the ontology alignment
(Section 5.1.2, step 2). Also, the identification of co-occurrences in the texts by
searching the IDENTIFIED CONCEPT table and the generation of hypotheses in the
text mining part (Section 5.1.3, step 5), make use of SQL scripts.
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• TSearch2 (http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/) is an
integral component of the PostgreSQL DBMS. It creates a full text index on text
columns of database tables. Using TSearch2 functions in SELECT statements improves
the search performance essentially compared to a use of the LIKE operator of the
SELECT command. Therefore, TSearch2 also applies the Snowball word stemmer (see
below), which is the reason for using the same tool for other word stemming tasks in
ONDEX.

TSearch2 has been added with a new rank function to score the results of the con-
cept based indexing regarding homonym detection and word sense disambiguation
(Section 5.1.3, step 4). For this purpose, the ANSI C with the GNU C compiler has
been used since PostgreSQL and TSearch2 are implemented in this language.

• Snowball (http://snowball.tartarus.org/): Snowball is a word stemming tool
and implemented as Java library. It is used by the TSearch2, the full text indexer
of PostgreSQL. To match concept names of the imported ontologies and databases
correctly to words of text, which are indexed with TSearch2, also all ONDEX concept
names are stemmed with Snowball. The table CONCEPT NAME therefore has also an
additional column name stemmed containing the word stemmer results.

• QTag (http://www.english.bham.ac.uk/staff/omason/software/qtag.html):
QTag is a program that reads text and for each token in the text returns the part-
of-speech (e.g. noun, verb, punctuation, etc) by applying statistical methods. It is
implemented in Java and used in both import procedures in ONDEX: for concept
names when importing databases and ontologies (Section 5.1.2, step 1) and for im-
porting texts (Section 5.1.3, step 3). So, also for this application of natural language
processing (NLP) both sources are treated equally (correspondingly to the word
stemming described before). Both concerned tables, CONCEPT NAME and TEXT contain
seperate columns, name stemmed and free text tagged respectively, to store the
results of word stemming and part-of-speech tagging.
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D Text mining input lists

Entity lists

There are three different entity lists defined: for cell types (cell), first messengers (msngr)
and receptors (rec). They are all manually collected from the MeSH terms (version from
2005), only for the cell type list additionally the CellOntology (CELL) was used (see also
Table 5.1). The lists shown below are the complete input lists, but not all synonym names
are given. All presented exemplary concept names are selected from the concept identified
by the original ID of the respective ontology (MESH or CL) shown in the second and fourth
column. Since these are the input lists, other synonyms from concepts of different ontologies
might be mapped to these concepts subsequently. Also mappings between MESH and CL
might be created and some concepts from the lists collapsed into one. In the concept
based indexing process different spellings are applied. The lists are ordered by the ontolgy
identifier (ID) from left to right and from top to bottom.

Table 7.5: Cell types collected from MeSH and the CellOntology (cell).

Cell type name(s) ID Cell type name(s) ID
nurse cell CL:0000026 monocyte stem cell, monoblast CL:0000040
neutrophil stem cell, myeloblast CL:0000042 cfu-gemm, colony forming

unit granulocyte erythrocyte
macrophage and megakaryocyte,
multipotential myeloid stem cell,
pluripotent stem cell

CL:0000049

cfu-em, megakaryocyte erythroid
progenitor cell

CL:0000050 lymphopoietic stem cell CL:0000051

enamel secreting cell CL:0000053 bone matrix secreting cell CL:0000054
ependymocyte, ependymal cell CL:0000065 blood vessel endothelial cell CL:0000071
epithelial cell of lung CL:0000082 epithelial cell of pancreas CL:0000083
germ line stem cell CL:0000085 male germ line stem cell CL:0000089
female germ line stem cell CL:0000090 osteoclast CL:0000092
osteochondroclast CL:0000093 interneuron CL:0000099
motor neuron CL:0000100 sensory neuron CL:0000101
polymodal neuron CL:0000102 bipolar neuron CL:0000103
multipolar neuron CL:0000104 pseudounipolar neuron CL:0000105
unipolar neuron CL:0000106 autonomic neuron CL:0000107
cholinergic neuron CL:0000108 adrenergic neuron CL:0000109
peptidergic neuron CL:0000110 peripheral neuron CL:0000111
columnar neuron CL:0000112 mononuclear phagocyte CL:0000113
basket cell CL:0000118 Golgi cell CL:0000119
granule cell CL:0000120 stellate cell CL:0000122
macroglial cell CL:0000126 corneal endothelial cell CL:0000132
fibrocyte CL:0000135 fat cell, adipocyte, lipocyte CL:0000136
odontocyte CL:0000140 cementocyte CL:0000141
hyalocyte CL:0000142 simple columnar epithelial cell CL:0000146
pigment cell CL:0000147 Clara cell CL:0000158
phaeochromocyte, chromaffin
cell

CL:0000166 insulin secreting cell CL:0000168

continued on next page
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Cell type name(s) ID Cell type name(s) ID
pancreatic B cell, beta cell CL:0000169 glucagon secreting cell CL:0000170
pancreatic A cell, alpha cell CL:0000171 somatostatin secreting cell CL:0000172
pancreatic D cell CL:0000173 testosterone secreting cell CL:0000177
progesterone secreting cell CL:0000179 estradiol secreting cell CL:0000180
myoepithelial cell CL:0000185 myofibroblast cell CL:0000186
skeletal muscle cell, striated mus-
cle cell

CL:0000188 red muscle cell, slow muscle cell CL:0000189

fast muscle cell, white muscle cell CL:0000190 nodal cardiac cell CL:0000194
Purkinje fiber CL:0000195 thermoreceptor cell CL:0000205
synovial cell CL:0000214 lymphoblast CL:0000229
T lymphoblast CL:0000230 B lymphoblast CL:0000231
pole cell CL:0000301 IgM B lymphocyte CL:0000302
IgG B lymphocyte CL:0000303 IgA B lymphocyte CL:0000304
IgE B lymphocyte CL:0000305 epithelial cell of trachea, tracheo-

cyte
CL:0000307

keratinocyte CL:0000312 tears secreting cell CL:0000315
sebum secreting cell CL:0000317 sweat secreting cell CL:0000318
glycogen accumulating cell CL:0000326 adrenal medulla cell, chromafin

cell
CL:0000336

choroidal cell CL:0000348 sphincter associated smooth
muscle cell

CL:0000358

vascular associated smooth mus-
cle cell

CL:0000359 xanthophore CL:0000430

iridiophore CL:0000431 vaginal lubricant secreting cell CL:0000436
delta basophil, follicle stimulat-
ing hormone secreting cell, go-
nadotroph

CL:0000437 luteinizing hormone secreting
cell, gonadotroph

CL:0000438

mammotrophic cell, mam-
motroph, prolactin secreting
cell

CL:0000439 melanocyte stimulating hormone
secreting cell

CL:0000440

calcitonin secreting cell CL:0000443 obliquely striated muscle cell CL:0000444
parathyroid hormone secreting
cell

CL:0000446 carbohydrate secreting cell CL:0000447

white fat cell CL:0000448 brown fat cell CL:0000449
thyroid hormone secreting cell CL:0000452 epinephrin secreting cell CL:0000454
mineralocorticoid secreting cell CL:0000456 glucocorticoid secreting cell CL:0000460
Cardioblast CL:0000465 adrenocorticotrophic hormone

secreting cell. corticotroph
CL:0000467

growth hormone secreting cell,
somatrophic cell, somatotroph

CL:0000471 pericardial cell CL:0000474

beta-basophil, thyrotroph, thy-
roid stimulating hormone secret-
ing cell

CL:0000476 follicle cell CL:0000477

oxytocin stimulating hormone
secreting cell

CL:0000478 vasopressin stimulating hormone
secreting cell

CL:0000479

continued on next page
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Cell type name(s) ID Cell type name(s) ID
secretin stimulating hormone se-
creting cell

CL:0000480 cholecystokin stimulating hor-
mone secreting cell

CL:0000481

bombesin stimulating hormone
secreting cell

CL:0000483 connective tissue type mast cell CL:0000484

mucosal type mast cell CL:0000485 follicular epithelial cell CL:0000500
gastrin secreting cell CL:0000509 foam cell CL:0000517
mononuclear cytotrophoblast
cell

CL:0000523 syncytiotrophoblast cell CL:0000525

afferent neuron CL:0000526 efferent neuron CL:0000527
nitrergic neuron CL:0000528 CAP motoneuron CL:0000532
primary motor neuron CL:0000533 secondary motor neuron CL:0000536
basophilic erythroblast CL:0000549 polychromatophilic erythroblast CL:0000550
unimodal nocireceptor CL:0000551 orthochromatic erythroblast CL:0000552
megakaryoblast, megakaryocyte
progenitor cell

CL:0000553 gastrin stimulating hormone se-
creting cell

CL:0000554

brush cell, monodendritic cell CL:0000555 cfu-gm, colony forming unit
granulocyte macrophage,
myeloid progenitor cell

CL:0000557

reticulocyte CL:0000558 promonocyte CL:0000559
band form neutrophil CL:0000560 amacrine neuron, amacrine cell CL:0000561
promyelocyte CL:0000564 fat body cell CL:0000565
apud cell CL:0000568 C cell, parafollicular cell CL:0000570
leucophore CL:0000571 melanophore CL:0000572
corneal epithelial cell CL:0000575 border follicle cell CL:0000579
neutrophilic myelocyte CL:0000580 metamyelocyte CL:0000582
null cell CL:0000585 cold sensing thermoreceptor cell CL:0000587
small luteal cell CL:0000590 warmth sensing thermoreceptor

cell
CL:0000591

large luteal cell CL:0000592 androgen secreting cell CL:0000593
pressoreceptor cell CL:0000602 eosinophil stem cell CL:0000611
eosinophilic myelocyte CL:0000612 basophilic stem cell CL:0000613
basophilic myelocyte CL:0000614 GABAergic neuron CL:0000617
acinar cell CL:0000622 ito cell, perisinusoidal cell CL:0000632
Hensen cell CL:0000633 Claudius cell CL:0000634
Deiter’s cell, phalangeal cell CL:0000635 Muller cell CL:0000636
chromophobic cell CL:0000641 folliculostellate cell, FS cell CL:0000642
tanycyte CL:0000643 Bergmann glial cell CL:0000644
pituicyte CL:0000645 juxtaglomerular cell CL:0000648
prickle cell CL:0000649 mesangial cell CL:0000650
mucous neck cell — neck cell CL:0000651 pinealocyte CL:0000652
podocyte CL:0000653 centripetally migrating follicle

cell
CL:0000671

Ameloblast D000565 Astroglias, Astrocyte D001253
Basophils D001491 Blastomeres, Blastocyte D001757
Thrombocyte, Blood Platelets D001792 Interdigitating Cell, Dendritic

Cell, Veiled Cell
D003713

continued on next page
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Cell type name(s) ID Cell type name(s) ID
Enterochromaffin Cell, Argentaf-
fin Cell

D004759 Eosinophils D004804

Pronormoblast, Erythroblast,
Normoblast

D004900 Red Blood Cell, Erythrocyte D004912

Fibroblast D005347 Granulocyte D006098
Granulosa Cell D006107 Hair Cell D006198
Inner Hair Cell D006199 Helper Cell, Helper T-

Lymphocyte, Helper-Inducer
T-Cell

D006377

Hematopoietic Stem Cell,
Hematopoietic Progenitor
Cell,Hematopoietic Colony-
Forming Units

D006412 Histiocyte D006644

Killer Cell, K Cell D007693 Kupffer Cell D007728
Labyrinth Supporting Cell D007760 Langerhans Cell D007801
Leukocyte, White Blood Cell D007962 Mononuclear Leukocyte D007963
Testicular Interstitial Cell, Ley-
dig Cell

D007985 Granulosa-Luteal Cell,
Granulosa-Lutein Cell, Theca-
Lutein Cell, Small Luteal Cell

D008184

Lymphocyte, Lymphoid Cell D008214 Macrophages D008264
Tissue Basophils, Mast Cell D008407 Megakaryocyte D008533
Melanocyte D008544 Monocyte D009000
Motor Neuron D009046 Gamma Motor Neuron, Gamma-

Efferent Motor Neuron
D009047

Glia, Glial Cell, Neuroglial Cell D009457 LE Cell, Neutrophils, Polymor-
phonuclear Leukocyte

D009504

Odontoblast D009804 Perineuronal Satellite Oligoden-
droglia Cell, Perineuronal Satel-
lite Oligodendrocyte

D009836

Ovocyte D009865 Oogonia D009867
Osteoblast D010006 Odontoclasts, Cementoclasts,

Osteoclasts
D010010

Osteocyte D010011 Unfertilized Eggs, Ova D010063
Gastric Parietal Cell, Oxyntic
Cell

D010295 Phagocyte D010586

Plasma Cell, Plasmacyte D010950 Purkinje Cell D011689
Reticulocyte D012156 Retinal Ganglion Cell D012165
Schwann Cell D012583 Sertoli Cell D012708
Spermatoblast, Spermatids D013087 Spermiocyte, Spermatocyte D013090
Spermatophores, Spermatogo-
nias

D013093 Spermatozoa D013094

Mother Cell, Progenitor Cell,
Colony Forming Units

D013234 Suppressor-Effector-T-
Lymphocyte, , Suppressor-
Effector T-Cell, Suppressor
Cell

D013490

continued on next page
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Cell type name(s) ID Cell type name(s) ID
T-Cell, T-Lymphocyte, Thymus-
Dependent Lymphocyte

D013601 TC1 Cell,TC2 Cell,Cytotoxic
T Lymphocyte, Cell-Mediated
Lympholytic Cell

D013602

Ovarian Interstitial Cell, Theca
Cell, Theca Interna, Theca Ex-
terna

D013799 Zygotes, Fertilized Egg, Fertil-
ized Ovum

D015053

CD4-Positive T-Lymphocyte, T4
Lymphocyte, T4 Cell

D015496 Keratinocyte D015603

Epithelioid Cell D015622 Erythropoietic Stem Cell, Ery-
thropoietic Progenitor Cell,
BFU-Es, CFU-E, Erythroid
Burst-Forming Units, Erythroid
Colony-Forming Units

D015672

Foreign Body Giant Cell D015743 Langhans-Type Giant Cell D015744
Lymphokine-Activated Killer
Cell, LAK Cell

D015979 B-Lymphocyte Subsets, B-Cell
Subsets

D016175

Tumor-Derived Activated Cell,
Tumor-Infiltrating Lymphocyte

D016246 Activated Killer Monocyte D016260

Pulmonary Macrophages, Alveo-
lar Macrophages

D016676 Suppressor-Inducer T-Cell,
Suppressor-Inducer T-
Lymphocyte

D017112

Microglia D017628 Lipocyte, Fat Cell, Adipocyte D017667
Peritoneal Macrophages D017737 Rod Photoreceptors, Rods

(Retina)
D017948

Cone Photoreceptors, Cones
(Retina)

D017949 Pyramidal Cell D017966

Olfactory Receptor Neuron D018034 Vestibular Hair Cell D018069
Outer Hair Cell D018072 CD8 Positive Lymphocyte, CD8

Positive T-Lymphocyte, T8
Lymphocyte, T8 Cell

D018414

Th1 Cell D018417 Th2 Cell D018418
Merkel Cell, Merkel Receptors D018862 Enterochromaffin-like Cell, ECL

Cell
D019861

G Cell, Gastrin Cell D019863 Somatostatin Cell, D Cell, Pan-
creatic delta Cell

D019864

Gastric Chief Cell D019872 Paneth Cell D019879
Chondroblast, Chondrocyte D019902 Rouget Cell, Pericyte D020286
Goblet Cell D020397 Follicular Dendritic Cell D020566
Enterocyte D020895 Hepatocyte, Hepatic Cell, Liver

Cell
D022781

Myeloid Stem Cell, Myeloid Pro-
genitor Cell

D023461 Oncocyte, Askenazy Cell,
Hurthle Cell, Oxyphil Cell

D024862

Amacrine Cell D025042 Perineuronal Satellite Cell D027161
Heart Muscle Cell, Cardiac My-
ocyte, Cardiac Muscle Cell

D032383 Cardiac Myoblast, Cardioblast D032386
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Cell type name(s) ID Cell type name(s) ID
Smooth Muscle Cell, Smooth
Muscle Myocyte

D032389 Smooth Muscle Myoblast D032390

Precursor Muscle Cell, Embry-
onic Muscle Cell, Myoblast

D032446 Skeletal Myoblast D032448

Skeletal Muscle Satellite Cell,
Myogenic Satellite Cell

D032496 Totipotent Stem Cell D039901

Multipotent Stem Cell D039902 Pluripotent Stem Cell D039904
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Table 7.6: Messenger substance names collected from the MeSH terms (msngr).

Messenger name(s) ID Messenger name(s) ID
Acetylcholine D000109 Adenocard, Adenosine D000241
Adenosine Triphosphate, ATP,
Striadyne

D000255 Adrenocorticotrophic Hormone,
Adrenocorticotropin, ACTH

D000324

Aldosterone D000450 alpha-Melanocyte-Stimulating
Hormone

D000521

Androstenedione D000735 Epiandrosterone D000738
Angiotensin I D000803 Angiotensin II D000804
Angiotensin III D000805 Pitressin D001127
L-Aspartic Acid, L-Aspartate D001224 C-Fragment Endorphin D001615
beta-Thromboglobulin D001620 Bombesin D001839
Bradykinin D001920 Connecting Peptide, C Peptide D002096
Calcitrin, Calcitonin D002116 Carnosine D002336
Cholecystokinin, Pancreozymin,
Uropancreozymin

D002766 Colony Stimulating Factors,
Myeloid Cell Growth Inducer,
Macrophage Granulocyte In-
ducer

D003115

Corticosterone D003345 ACTH-Releasing Factor, Corti-
cotropin Releasing Hormone

D003346

Cortisone, Adreson D003348 Cortexolone, Cortodoxone, Re-
ichstein’s Substance S

D003350

Cytokinins D003583 Androstenolone, Dehy-
droepiandrosterone

D003687

Delta Sleep-Inducing Peptide,
DSIP

D003701 Choloxin, D-Thyroxine D003918

Dihydroprogesterone D004092 Iodogorgoic Acid D004105
Dopamine, Intropin D004298 Leucine Enkephalin D004743
Methionine Enkephalin D004744 Enteroglucagon, Gut Glucagon,

Oxyntomodulin
D004763

Epidermal Growth Factor, EGF D004815 Adrenaline, Vaponefrin,
Epinephrine

D004837

Epitestosterone, 17-alpha-
Testosterone

D004845 Erythropoietin D004921

Estetrol D004953 Estradiol D004958
Epiestriol, Ovestin D004964 Estrone, Estrovarin, Folliculin D004970
Etiocholanolone D005043 Follicle-Stimulating Hormone,

FSH
D005640

gamma Aminobutyric Acid,
GABA, Aminalone

D005680 Glucose Dependent Insulin
Releasing Peptide, Gastric-
Inhibitory Polypeptide

D005749

Glucagon D005934 Glycine Phosphate D005998
Human Chorionic Gonadotropin,
HCG

D006063 Histamine D006632

Cortisol D006854 Hydroxyestrones D006894
17-alpha-Hydroxypregnenolone D006907 Insulin, Velosulin, Humulin D007328
Insulin-Like Growth Factor I D007334 Insulin Like Growth Factor II D007335
Interferon Type I D007370 Interferon D007372
Interleukin-1, IL-1, Lymphocyte
Activating Factor

D007375 Interleukin-2, IL-2, Lymphocyte
Mitogenic Factor

D007376
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Messenger name(s) ID Messenger name(s) ID
Interleukin-3, IL-3, Eosinophil
Mast Cell Growth Factor

D007377 Interleukin D007378

Iodotyrosine D007470 Isopentenyladenosine D007541
Leukocyte Migration Inhibitory
Factor

D007961 Luteinizing Hormone, LH, In-
terstitial Cell Stimulating Hor-
mone, ICSH

D007986

Luteinizing Hormone-Releasing
Hormone, LHRH

D007987 Lipotropin D008083

Lymphokines, Lymphocyte Me-
diators

D008222 Tumor Necrosis Factor beta,
TNF-beta

D008233

Macrophage Migration Inhibi-
tion Factor

D008263 Melatonin D008550

Motilin D009037 Intermedins, Melanocyte-
Stimulating Hormones, MSH

D009074

Melanostatin D009075 Melanocyte-Stimulating Hor-
mone Releasing Hormone, MSH
Releasing Hormone

D009076

Atrial Natriuretic Peptide, ANP,
Atrial Natriuretic Factor, ANF

D009320 Neuropeptide Y, Neuropeptide
Tyrosine

D009478

Neurophysins D009481 Neurotensin D009496
Nitrogen Protoxide D009569 Noradrenaline, Levarterenol,

Norepinephrine
D009638

Octopamine, Norsynephrine,
Norsympatol

D009655 Ocytocin, Syntocinon, Oxytocin,
Pitocin

D010121

Pancreatic Polypeptide D010191 Pro-Vasoactive Intestinal Pep-
tide, Peptide Histidine Isoleucine

D010451

Gonadostatin, Pituitary Hor-
mone Release Inhibiting Hor-
mone

D010905 Pituitary Hormone-Releasing
Hormones, Hypothalamic Re-
leasing Factor

D010906

Choriomammotrophin D010928 Platelet Factor 4, PF 4 D010978
Pregnancy-Associated beta-
Plasma Protein,Trophoblast-
Specific beta-1 Glycoprotein

D011268 Pregnanediol D011276

Pregnenolone D011284 Proopiomelanocortin, Proopio-
cortin

D011333

Progesterone, Pregnenedione D011374 Proinsulin D011384
Prolaction, PRL, Mammotropin,
Pituitary Mammotropic Hor-
mone, Pituitary Lactogenic
Hormone

D011388 Prolactin Release-Inhibiting
Hormone

D011389

Prolactin Releasing Hormone D011390 Relaxin D012065
Secretin D012633 Serotonin D012701
Cholecystokinin Octapeptide,
CCK-OP

D012844 Insulin Like Growth Factors D013002

Somatotropin Release-Inhibiting
Hormone

D013004 Pituitary Growth Hormone D013006

continued on next page
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Messenger name(s) ID Messenger name(s) ID
Growth Hormone Releasing Fac-
tor, GHRH

D013007 Anaprotin, Andractim, An-
drostanolone

D013196

Substance P D013373 T-Cell Suppressive Factors D013491
Sustanon D013739 Cholecystokinin 4, CKK-4, Gas-

trin Tetrapeptide, Tetragastrin
D013758

Tetrahydrocortisol D013760 Tetrahydrocortisone D013761
Thymuline D013935 Thymins D013946
Thymosin D013947 Thymus Hormones D013951
Thyroid Stimulating Hormone,
TSH

D013972 Thyrotropin Releasing Hormone D013973

Thyroxin D013974 Transfer Factor D014165
trans-Retinoic Acid D014212 T3 Thyroid Hormone, Cytomel D014284
Reverse T3 Thyroid hormone D014285 Tumor Necrosis Factor alpha,

TNF-alpha
D014409

Tyramine D014439 Vasoactive Intestinal Peptide,
VIP

D014660

Vasotocin D014668 18-Hydrocorticosterone D015069
18-Hydroxydesoxycorticosterone D015070 Androstane 3,17 diol D015113
Neuromedin K, Neurokinin B D015287 Neuromedin L, Neurokinin A,

Substance K
D015288

Human Chorionic Gonadotropin
alpha Subunit, HCG-alpha

D015292 Recombinant Interferon alpha-2a D015380

Recombinant Interferon alpha-
2b

D015381 Calcitonin Gene-Related Peptide D015740

Neuroleukin D015782 Monokines D015846
Interleukin-4, IL-4, B Cell Stim-
ulatory Factor-1

D015847 Interleukin-5, IL-5, Eosinophil
Differentiation Factor, T-Cell-
Replacing Factor, B Cell Growth
Factor II

D015848

Interleukin-6, IL-6, Hepatocyte
Stimulating Factor

D015850 Interleukin-7, IL-7,
Lymphopoietin-1

D015851

Macrophage Colony-Stimulating
Factor, M-CSF

D016173 Granulocyte Macrophage Colony
Stimulating Factor, CSF-GM

D016178

Granulocyte Colony-Stimulating
Factor, G-CSF

D016179 Cytokines D016207

Interleukin-8, IL-8, Neutrophil
Activating Peptide

D016209 Platelet Transforming Growth
Factor

D016212

Macrophage Activating Factor D016215 Hematopoietic Stem Cell Stim-
ulators, Hematopoietic Cell
Growth Factor, Hematopoietin

D016298

Interleukin-10, IL-10, Cytokine
Synthesis Inhibitory Factor

D016753 Interferon alpha, Leukocyte In-
terferon

D016898

Interferon beta, Fibroblast Inter-
feron

D016899 Interleukin-9, IL-9,T Cell
Growth Factor P40

D016906

Sermorelin Acetate, Sermorelin D017337 Interleukin-11, IL-11, Adipogen-
esis Inhibitory Factor

D017370
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Messenger name(s) ID Messenger name(s) ID
Interleukin-12, IL-12, Natural
Killer Cell Stimulatory Factor

D018664 Glutamic Acid D018698

Interleukin-13, IL-13 D018793 alpha Endorphin D018822
gamma Endorphin D018823 Chemokines, Chemotactic Cy-

tokines, Intercrines
D018925

Monocyte Chemotactic and
Activating Factor, Monocyte
Chemotactic Protein-1, MCP-1

D018932 Monocyte Chemotactic Protein,
Monocyte Chemoattractant Pro-
tein

D018945

T-Cell RANTES Protein D018946 Human Chorionic Gonadotropin
beta Subunit, HCG-beta

D018997

Mast Cell Growth Factor D019089 Dehydroisoandrosterone Sulfate,
DHA Sulfate

D019314

17-Hydroxyprogesterone D019326 Human Growth Hormone, hGH D019382
Macrophage Inflammatory Pro-
teins

D019402 Interleukin-14, IL-14, High
Molecular Weight-B-Cell
Growth Factor

D019404

Macrophage Inflammatory Pro-
tein 1, Stem Cell Inhibitor

D019407 Interleukin-15, IL-15 D019409

Interleukin-16, IL-16, Lympho-
cyte Chemoattractant Factor

D019410 CC Chemokines, beta
Chemokines

D019742

CXC Chemokine, alpha-
Chemokines

D019743 C Chemokines, gamma
Chemokines

D019744

beta Melanocyte Stimulating
Hormone,beta-MSH

D019824 gamma Melanocyte Stimulating
Hormone,gamma-MSH

D019825

FMRF amide D019835 Gastrin-Releasing Peptide D019886
PYY Peptide, Peptide YY D019894 C Type Natriuretic Peptide D020098
Interleukin-17, IL-17 D020381 Interleukin-18, IL-18, Interferon-

gamma Inducing Factor
D020382

CX3C Chemokines D020523 Recombinant Interferon alpha-2c D020659
Leptin, Obese Protein D020738 D Ala2 NMe Phe4 Gly ol

Enkephalin
D020875

Bis-Pen-Enkephalin D020881 beta Inhibin D028322
FSH-Releasing Protein, Activin D028341 Luteinizing Hormone beta

Chain, LH-beta
D037101

FSH beta D037201 Thyroid Stimulating Hormone
beta Subunit, TSH beta

D037322
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Table 7.7: Receptor names collected from the MeSH terms (rec).

Receptor name(s) ID Receptor name(s) ID
Cyclic AMP Receptor Proteins D002373 alpha Adrenergic Receptor D011942
beta Adrenergic Receptor D011943 Androgen Receptor D011944
Angiotensin Receptors D011945 B-Cell Antigen Receptor D011947
CCK Receptors D011949 Acetylcholine Receptors, ACh

Receptors, Cholinergic Recep-
tors

D011950

Concanavalin A Receptor D011952 Cyclic AMP Receptor D011953
Epidermal Growth Factor Re-
ceptor, EGF Receptor

D011958 Estradiol Receptor D011959

Follicle Stimulating Hormone
Receptor, FSH Receptor

D011962 GABA A Receptor, Diazepam
Receptor

D011963

Corticoid Type II Receptors D011965 Gonadotropin Releasing Hor-
mone Receptor

D011966

Histamine H1 Receptor D011969 Histamine H2 Receptor D011970
Insulin Receptor D011972 Luteinizing Hormone Receptor,

LH Receptor
D011974

Muscarinic Acetylcholine Recep-
tor, Muscarinic Receptor

D011976 Nicotinic Acetylcholine Receptor D011978

Progestin Receptor, Proges-
terone Receptor

D011980 Prolactin Receptor D011981

Prostaglandin Receptor D011982 Serotonin Receptor D011985
Somatotropin Receptor, Growth
Hormone Receptor

D011986 Thyroid Stimulating Hormone
Receptor, THS Receptor

D011989

IL-2 Receptor D015375 Integrin alphaXbeta2 D016167
Integrin alphaLbeta2 D016169 Integrin alpha-M beta-2 D016177
IL-3 Receptor D016185 Macrophage Colony Stimulating

Factor Receptor, CSF-1 Recep-
tor

D016186

CD116 Antigens, Granulocyte-
Macrophage Colony-Stimulating
Factor Receptor, GM-CSF Re-
ceptor

D016187 Granulocyte Colony-Stimulating
Factor Receptor, G-CSF Recep-
tor

D016188

NMDA Receptor D016194 T-Cell Receptor gamma-delta D016692
T-Cell Receptor alpha-beta D016693 T-Cell Antigen Receptor-CD3

Complex
D017260

Dopamine D1 Receptor D017447 Dopamine D2 Receptor D017448
mu Opioid Receptors D017450 CD 32 Antigens, Fc gamma Re-

ceptor
D017452

CD 23 Antigens, Immunoglobu-
lin E Receptor

D017455 Albumin Receptor D017457

Aldosterone Receptor D017458 Atriopeptin Receptors, Atrial
Natriuretic Peptides Receptor,
ANP Receptors, Atrial Natri-
uretic Factor Receptor, ANF Re-
ceptor

D017461

continued on next page
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Receptor name(s) ID Receptor name(s) ID
CD35 Antigens D017463 CD 21 Antigens D017464
delta Opioid Receptor D017465 Endothelin Receptors D017466
Erythropoietin Receptor D017467 Fibroblast Growth Factor Re-

ceptor, FGF Receptor
D017468

Glutamate Receptor, Excitatory
Amino Acid Receptor

D017470 Interferon Receptor D017471

IL-1 Receptor D017472 kappa Opioid Receptor D017473
Neuropeptide Y Receptor D017476 Platelet Derived Growth Factor

Receptor, PDGF Receptor
D017479

sigma Opioid Receptor D017480 Somatostatin Receptor D017481
Thromboxanes Receptors, TP
Receptor

D017482 Vasopressin Receptor D017483

Insulin-Like Growth Factor Type
1 Receptor, IGF-I Receptor

D017526 Insulin-Like Growth Factor Type
2 Receptor, IGF-II Receptor

D017527

Bradykinin Receptor D018002 Calcitonin Receptor D018003
Neuromedin B Receptor, Gastrin
Releasing Peptide Receptor

D018004 Vasoactive Intestinal Peptide
Receptor, VIP Receptor

D018005

Glycine Receptor D018009 Calcitonin Gene-Related Peptide
Receptor, CGRP Receptor

D018015

Parathyroid Hormone Receptors D018016 Corticotropin Releasing-
Hormone Receptor, CRH
Receptor

D018019

Thyrotropin Releasing Hormone
Receptor, TRH Receptor

D018025 Glucagon Receptor D018027

Neurotensin Receptor D018028 Olfactory Receptor Proteins D018035
Neurokinin-1 Receptor D018040 Neurokinin-2 Receptor D018041
Neurokinin-3 Receptor D018042 Adrenocorticotropic Hormone

Receptor, ACTH Receptor,
Corticotropin Receptor

D018043

Oxytocin Receptor D018045 Purinergic P1 Receptor, Adeno-
sine Receptor

D018047

Purinergic P2 Receptor, ATP
Receptor

D018048 Leukotriene Receptor, SRS-A
Receptor

D018077

Prostaglandin E Receptor D018078 GABA-B Receptor, Baclofen Re-
ceptor

D018080

AMPA Receptor, Quisqualate
Receptor

D018091 Kainic Acid Receptor, Kainate
Receptor

D018092

Metabotropic Glutamate Recep-
tor

D018094 Histamine H3 Receptor D018100

Leukotriene B4 Receptor D018102 CD28 Antigens D018106
Transforming Growth Fac-
tor beta Receptor, TGF-beta
Receptor

D018125 Corticoid Type I Receptors D018161

Vitamin D Receptor D018167 Retinoic Acid Receptor D018168
Thrombomodulin D018180 TCDD Receptor, Polyaromatic

Hydrocarbon Receptor
D018336

continued on next page
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Receptor name(s) ID Receptor name(s) ID
alpha-1 Adrenergic Receptor D018340 alpha-2 Adrenergic Receptor D018341
beta-1 Adrenergic Receptor D018342 beta-2 Adrenergic Receptor D018343
erbB-2 Receptors D018719 CD18 Antigens, beta2 Integrin D018821
CD14 Antigens, Lipopolysaccha-
ride Receptor

D018950 CD36 Antigens, Throm-
bospondin Receptor

D018955

CD44 Antigens, Hyaluronan Re-
ceptor

D018960 CD117 Antigens, Stem Cell Fac-
tor Receptor, SCF Receptor

D019009

CD29 Antigens, beta1 Integrin D019012 CD 95 Antigens, fas Receptor D019014
CD42d Antigens, Platelet Glyco-
protein GPIb IX Complex

D019038 GPIIb-IIIa Receptor D019039

CD62L Antigens, Leukocyte Ad-
hesion Molecule LAM-1

D019041 Polymeric Immunoglobulin Re-
ceptor

D019056

CC Chemokine Receptor 5 D019713 CXCR4 Receptor D019718
Calcium Ryanodine Receptor
Complex, Ryanodine Receptor

D019837 Hepatocyte Growth Factor Re-
ceptor, HGF Receptor

D019859

IL-6 Receptor D019947 IL-4 Receptor D019948
IL-7 Receptor D020395 Platelet Derived Growth Factor

alpha Receptor, PDGF alpha
Receptor

D020796

Nerve Growth Factor Receptor D020800 Ciliary Neurotrophic Factor Re-
ceptor

D020801

Neurotrophin 3 Receptor D020812 trkB Receptor D020813
erbB-3 Receptors D020893 trkA Receptor D020917
Cyclosporin Binding Protein D021983 Tacrolimus Binding Protein 1A,

Macrophilin-12
D022061

beta-3 Adrenergic Receptor D022702 IL-8A Receptor D023062
IL-8B Receptor D023063 Activin Receptors Type I D030201
Activin Receptors Type II D030301 N-Acetylglucosamine Receptor D034781
EphA1 Receptor D036082 EphA2 Receptor D036104
EphA3 Receptor D036121 EphA4 Receptor D036122
EphA5 Receptor D036123 EphA6 Receptor D036124
EphA7 Receptor D036141 EphA8 Receptor D036143
EphB2 Receptor D036183 EphB5 Receptor D036201
EphB3 Receptor D036223 EphB4 Receptor D036224
EphB1 Receptor D036225 c erb A Protein D037021
Thyroid Hormone Receptors
beta, TR beta

D037042 Hepatic Asialoglycoprotein Re-
ceptor, Hepatic Lectin, Liver
Carbohydrate Binding Protein

D037263

Integrin alpha2beta1 D038982 Integrin alpha4beta1 D039041
Integrin alpha5beta1 D039081 Integrin alpha6beta1 D039121
Integrin alpha6beta4 D039161 Integrin alpha3beta1 D039201
Integrin alpha1beta1 D039222 Integrin alphaVbeta3 D039302
Integrin alpha2 D039421 Integrin alpha3 D039422
Integrin alpha1 D039423 Integrin alpha4 D039441
Integrin alphaM D039481 Integrin alpha5 D039482
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Receptor name(s) ID Receptor name(s) ID
Integrin alpha6 D039503 Integrin alphaX D039521
Integrin alphaV D039564 Integrin beta3 D039661
Integrin beta4 D039663 Semaphorin III Receptor D039942
Neuropilin 2 D039943 Integrin alpha IIb D040201
Endothelial Growth Factor Re-
ceptor

D040262 Vascular Endothelial Growth
Factor Receptor-1

D040281

Vascular Endothelial Growth
Factor Receptor-2

D040301 Vascular Endothelial Growth
Factor Receptor-3

D040321

Integrin alphaL D040881
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Word lists

All words in these lists are used for indexing the MEDLINE texts and selected from the
WordNet dictionary (see Fellbaum (1998) and wordnet.princeton.edu). In each table,
the second and the third columns show the part-of-speech (POS) and the WordNet identifier
(WN ID) respectively. Equal words with different identifiers might be chosen if the meaning
(in WordNet) is different.

Table 7.8: Words that indicate the release of substances or molecules from a cell (rword list).

Word POS WN ID Word POS WN ID
produce verb 01575778 prodcution noun 00859333
release noun 12785461 release, secrete verb 00067106
secretion noun 05095511 secretion noun 12789685
segregate verb 00481209 set free verb 02422490
synthesize verb 00623503 synthesis noun 12800655
unleash verb 01433584

Table 7.9: Words that indicate the binding or interaction of substances or molecules (bword list).

Word POS WN ID Word POS WN ID
adhere verb 01316841 associate verb 00689759
bind verb 00551780 binding noun 04494716
bond noun 10697642 interact verb 02305904
interaction noun 10773922

Table 7.10: Words that indicate that a cell contains or expresses specific receptor molecules (cword list).

Word POS WN ID Word POS WN ID
contain verb 02551275 contain verb 02619957
express verb 02082567 expression noun 12715700
incorporate verb 02551275 incorporation noun 05421017
insert verb 00181348 insertion noun 00306609
internalization noun 05421017 trafficking verb 02195477
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E Text mining results

Validated co-occurrence hits for neurodegenerative diseases

In the following the positively evaluated results of the co-occurrence searches are presented
in abbreviated form. That means, only one substance name or its abbreviation (first
messenger or receptor) is listed (although the hit might be resulting from a synonym name)
and one example sentence where this co-occurrence has been found. The hit sentence
can be found with the PMID number at the PubMed web interface to the MEDLINE
database (www.ncbi.nlm.nih.gov/entrez). The sentence numbering starts with the title,
i.e. sentence number three, for example, is the second sentence in the text of the abstract.

Table 7.11: True-positive cell-msngr-rword co-occurrence results in neurodegenerative diseases, i.e. all
positive hits with first messenger substances that can be produced or secreted by the four relevant cell
types (motor neurons, astrocytes, microglia and Schwann cells). The results are grouped by these cell
types and sorted inside the four groups alphabetically by the first messenger name.

Messenger name PMID Sentence

Motor Neurons
Acetylcholine 12482724 3
ACTH 9190120 8
Adenosine 12620503 2
ATP 8027518 2
Calcitonin Gene-Related Peptide 7966725 9
Chemokines 11549718 10
Dopamine 7301201 3
FMRFamide 12917365 2
Gastrin-Releasing Peptide 7907863 16
Glucagon 7301201 3
Glutamate 3249604 1
Insulin 1967914 3
POMC 7984050 8
Retinoic Acid 10357892 4
Substance P 2409171 2

Astrocytes
ACTH 9651548 10
Adenosine 1681548 2
alpha IFN 2388040 2
Androstene 9927319 8
Angiotensin II 10646512 5
ANP 12629160 10
beta IFN 9282915 1
C-C Chemokines 9203678 1
Chemokines 12586731 2
Colony-Stimulating Factor 1382099 1
CXC Chemokines 11694326 6
Cytokines 9482215 3
DHEA 10593612 1
Erythropoietin 12380959 3

continued on next page
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Messenger name PMID Sentence
Estradiol 10947808 2
GABA 9436790 4
Gastrin-Releasing Peptide 9006974 5
G-CSF 1382099 5
Glutamate 12235140 8
Glycine 2593181 7
GM-CSF 10421784 11
IGF 9037485 1
IGF-1 11549714 5
IL-1 beta 11286158 4
IL-2 1353061 4
IL-3 8087421 10
IL-6 8724985 1
IL-8 10580798 4
IL-12 9973393 4
IL-15 12572774 7
IL-18 10101231 10
Inflammatory Proteins MIP-2 11948246 1
Interferon 8926042 3
Interleukins 2463998 7
Lymphokines 8478988 2
M-CSF 2151455 1
Met-Enkephalin 8413825 9
MIP-1 9671961 8
Monocyte Chemotactic Protein-1 14722715 1
Monocyte Chemotactic Protein-1 14720224 3
Neuropeptide Y 11277982 2
Progestorone 14614261 1
Substance P 9802422 5
TGF-beta 12888549 8
Thymosin 11008214 9
TNF-alpha 11080817 5

Microglia
alpha MSH 9620667 6
ATP 15129165 6
beta Endorphin 8112823 1
C-C Chemokines 10642753 4
Chemokines 12112366 3
CXC Chemokines 15312171 7
Cytokines 10374812 10
EGF 9283823 13
Glutamate 14715932 10
Histamine 11403935 1
IGF-I 15076729 2
IL-1 1874973 8

continued on next page
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Messenger name PMID Sentence
IL-2 10375739 2
IL-3 9383038 9
IL-4 8377948 1
IL-5 7702706 8
IL-8 10950803 4
IL-10 11137576 1
IL-12 11356009 1
IL-15 8804052 7
IL-16 15175077 5
IL-18 10101231 12
Interleukins 15019947 1
Lymphokines 11377701 5
Macrophage Inflammatory Protein-1 11449364 5
Macrophage Inflammatory Proteins 10950803 4
M-CSF 8070891 10
Monocyte Chemotactic Protein-1 15139008 4
Monocyte Chemotactic Proteins 10950803 4
Monokines 12909303 6
Substance P 11113362 5
TGF-beta 2254955 4
Thymosin 7798904 8
TNF-alpha 7932874 11

Schwann Cells
Acetylcholine 7463090 1
ATP 9483546 1
Chemoattractant Protein-1 11168559 9
Chemokines 11168559 3
c-kit Ligand 14679180 9
Cytokines 8982104 4
Dihydroprogesterone 11534984 3
Glutamate 9483546 6
IL-1 1894731 1
IL-6 10586289 1
IL-8 10580813 3
IL-12 8529135 9
Lymphokines 2146529 5
Macrophage Inflammatory Protein-1 15139590 8
Macrophage Migration Inhibitory Factor 12297465 1
Pregnenolone 14670648 12
Progesterone 8743966 8
TGF-beta 8457871 6
TNF-alpha 12953261 7
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Table 7.12: True-positive msngr-rec-bword co-occurrence results in neurodegenerative diseases, i.e. all
positive hits of interactions or bindings of first messenger substances and receptors. The results are sorted
alphabetically by the first messenger name.

Messenger name Receptor name PMID Sentence
Acetylcholine Cholinergic Receptor 7855204 2
Acetylcholine Muscarinic Receptors 10101037 2
Acetylcholine Nicotinic Acetylcholine Receptor 7527881 3
ACTH CRF Receptor 7477349 6
Adenosine Adenosine Receptor 11082113 16
Adenosine P2 Purinoceptors 8954905 1
alpha Chemokines CXCR4 Receptor 10200343 1
Androstenedione Androgen Receptor 3488063 2
ANF ANF Receptor 1420611 3
Angiotensin II Angiotensin II Receptor 7656287 3
ATP P1 Purinoceptors 2847203 9
ATP ATP Receptor 8840398 3
beta-Endorphin mu Opioid Receptor 10854259 10
beta-Endorphin delta Opioid Receptor 12670304 4
beta-Endorphin kappa Opioid Receptor 2908136 2
Calcitonin Gene Related Peptide Calcitonin Receptor 2828211 1
Chemokines LFA-1 10613446 5
Chemokines Integrin beta1 11989791 5
Chemokines CXCR4 Receptor 11575704 4
Chemokines IL-8 Receptor 7929358 2
Colony Stimulating Factor CSF-1 Receptor 8384358 23
CSF-1 CSF-1 Receptor 2551961 9
CXC Chemokines CXCR2 Receptor 10747307 3
Cytokines IL-1 Receptor 10852706 5
Cytokines PDGF Receptor 7546776 9
Cytokines Adenosine Receptor 14530318 12
Cytokines Retinoic Acid Receptor 9607817 7
Cytokines alpha-2 Adrenergic Receptor 10808050 2
Cytokines Hyaluronan Receptor 10652271 2
Cytokines fas Receptor 12504821 2
Cytokines HGF Receptor 12594808 2
Cytokines IL-6 Receptor 9505191 5
Cytokines IL-4 Receptor 10691892 5
Cytokines PDGF alpha Receptor 7546776 9
Cytokines CNTF Receptor 15051883 1
Cytokines Integrin alphaV 11245625 3
Cytokines Integrin beta3 9786457 5
Cytokines VEGF Receptor 12872364 8
Cytokines VEGF Receptor Type 2 12706123 5
DHEA Androgen Receptor 9806358 5
Dopamine Dopamine-D2 Receptor 11280926 3
EGF EGF Receptor 7883816 12
GABA GABA-A Receptor 6547630 7
GABA GABA-B Receptor 9872315 2
Gastrin-Releasing Peptide Bombesin Receptor 8788416 2

continued on next page
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Messenger name Receptor name PMID Sentence
Glutamate NMDA Receptor 9504387 9
Glutamate Glutamate Receptor 11173982 4
Glutamate AMPA Receptor 8391661 2
Glutamate Kainate Receptor 9630393 8
Glutamate Metabotropic Glutamate Receptor 8189254 5
Glycine NMDA Receptor 2163119 1
Glycine Glycine Receptor 3023812 1
Glycine AMPA Receptor 11855983 10
Histamine Histamine H1 Receptor 1970573 3
IL-15 LFA-1 9502767 5
IL-18 IL-1 Receptor 9620656 6
IL-2 delta Opioid Receptor 9051743 5
IL-3 IL-3 Receptor 8943237 2
IL-6 Androgen Receptor 15129430 8
IL-6 IL-6 Receptor 9118960 7
IL-8 EGF Receptor 10702246 8
IL-8 CXCR2 Receptor 12548717 12
Insulin Insulin Receptor 288716 2
Insulin Like Growth Factor Insulin Receptor 499074 8
Insulin Like Growth Factor IGF II Receptor 14523643 3
Insulin Like Growth Factor EGF Receptor 6973821 3
Met-Enkephalin mu Opioid Receptor 3032015 3
Met-Enkephalin delta Opioid Receptor 1357608 5
Met-Enkephalin kappa Opioid Receptor 6258931 1
Progesterone Androgen Receptor 6706245 2
Progesterone Glucocorticoid Receptor 1000505 8
Progesterone Muscarinic Receptor 3374756 10
Progesterone Mineralocorticoids Receptor 7575603 2
Retonic Acid IGF-II Receptor 9811861 2
Retonic Acid Retonic Acid Receptors 8387213 2
Substance P Nicotinic Acetylcholine Receptor 7514262 3
Substance P Bombesin Receptors 1383741 5
Substance P NK-1 Receptor 12388097 3
TGF-beta IGF-2 Receptor 10508563 2
TGF-beta TGF-beta Receptor 2873833 9
TGF-beta Integrin alphaV 10025398 1
Vasoactive Intestinal Polypeptide delta Opioid Receptor 15126111 2
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Table 7.13: True-positive rec-cell-cword co-occurrence results in neurodegenerative diseases, i.e. all
positive hits with receptors that are contained in or expressed by the four relevant cell types (motor
neurons, astrocytes, microglia and Schwann cells). The results are grouped by these cell types and sorted
inside the four groups alphabetically by the first messenger name.

Receptor name PMID Sentence

Motor Neurons
5 HT Receptor 12670306 12
ACh Receptor 7472435 11
AMPA Receptor 11279366 9
Androgen Receptor 10587588 1
BDNF Receptor 8083736 4
Benzodiazepine Receptor 9364456 1
beta4 Integrin 11064368 4
CGRP Receptor 2848610 11
CNTF Receptor 8945760 1
Endothelin Receptor 12941473 1
Eph Receptor 10673322 1
Eph-A4 Receptor 10646798 3
Excitatory Amino Acid Receptor 8895864 9
Glycine Receptor 2555150 7
HGF Receptor 10725250 9
IL-1 Receptor 11311987 2
IL-6 Receptor 9063729 5
Kainate Receptor 12429586 1
Metabotropic Glutamate Receptor 10982465 10
mu Opioid Receptor 7790855 8
Neurokinin-3 Receptor 11958875 1
Neuropilin-1 15094469 4
Neuropilin-2 15094469 5
NGF Receptor 8174770 3
Nicotinic Acetylcholine Receptor 2176713 2
NMDA Receptor 10886684 7
TGF beta Receptor 10842018 7
TRH Receptor 1280790 5
trkC Receptor 9822749 7
Vasopressin Receptor 10407169 10

Astrocytes
ACh Receptor 7969896 6
Adenosine Receptor 9650577 2
Adrenergic alpha Receptor 2148555 10
Adrenergic beta Receptor 10559386 1
alpha-2 Adrenergic Receptor 6119369 2
alphav Integrin 11461157 2
AMPA Receptor 9405512 3
Androgen Receptor 11226751 3
Angiotensin II Receptor 1860709 8
ANP Receptor 1317098 3
Benzodiazepine Receptor 12106778 6
beta-2 Adrenergic Receptor 8723842 2

continued on next page
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Receptor name PMID Sentence
beta3 Integrin 11470407 7
beta4 Integrin 8786405 5
Bombesin Receptor 9458349 3
Bradykinin Receptor 1338944 11
Calcitonin Receptor 12898703 9
CD44 Antigen 8355030 4
c-erbB-2 Protein 7826981 12
CRF Receptor 12898703 9
delta Receptor 9482211 13
Dopamine D2 Receptor 8057777 3
EGF Receptor 1468600 11
Endothelin Receptor 10799769 8
Eph Receptor 12944508 3
fas Receptor 12676530 9
Fc gamma Receptor 1386416 10
FGF Receptor 8793862 7
Flk-1 11934468 8
GABA-B Receptor 14550781 6
Glucocorticoid Receptor 10715588 5
Glutamate Receptor 2540340 11
H1 Receptor 1675832 2
IGF-II Receptor 1319501 10
IL-4 Receptor 11052816 2
IL-8Rbeta 10785334 8
Insulin Receptor 1851850 9
Integrin beta1 15042583 8
Kainate Receptor 9145303 1
LFA-1 7572280 4
Metabotropic Glutamate Receptor 10533045 2
Mineralocorticoid Receptor 7825881 2
Muscarinic Receptor 10413035 7
Neuropilin-1 15233640 12
Neurotensin Receptor 10625058 2
NGF Receptor 10446331 1
Nicotinic Acetylcholine Receptor 14681929 1
Opioid Receptor 15217373 6
Oxytocin Receptor 11754214 1
P2 Purinoceptor 8895885 1
PDGF alpha Receptor 8982160 3
PDGF Receptor 10559409 4
PGE Receptor 1324890 11
Retinoic Acid Receptor 11483254 1
Serotonin Receptor 8856328 1
Somatostatin Receptor 7595483 1
TGF beta Receptor 1320057 8

continued on next page
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Receptor name PMID Sentence
Thrombomodulin 8969798 14
TR beta 7827337 3
TSH Receptor 7882998 2
Vasopressin Receptor 9630527 42
VEGF Receptor 9875268 6
VLA-1 1356158 9
VLA-2 1356158 9
VLA-6 1356158 9

Microglia
alpha6beta1 Integrin 11880486 7
AMPA Recepto 15139014 5
Benzodiazepine Receptor 9483537 10
beta2 Integrin 14500997 5
beta-Adrenergic Receptor 12271472 2
Bradykinin Receptor 12551746 1
CR3 Receptor 1506289 10
CRH Receptor 12485415 2
CXCR4 Receptor 9218610 2
EGF Receptor 1883522 3
GABA-B Receptor 15019947 1
HGF Receptor 8380919 5
IL-3 Receptor 7643220 1
IL-4 Receptor 8071435 2
IL-6 Receptor 10861795 8
kappa Opioid Receptor 8755601 3
LFA-1 7533208 8
M-CSF Receptor 11520119 13
Metabotropic Glutamate Receptor 12358765 3
mu Opioid Receptor 9152411 4
Muscarinic Receptor 9839720 6
Neurokinin-1 Receptor 11857684 5
Neurotensin Receptor 12598608 5
NGF Receptor 9775979 5
P2 Purinoceptor 10717414 1
PGE2 Receptor 15234107 11
VEGF Receptor 12417438 4
Vitronectin Receptor 1705945 10

Schwann Cells
5-HT Receptor 14724380 8
alpha1 Integrin 9187084 4
alpha1beta1 Integrin 9407013 1
alpha5 Integrin 9718369 8
alphav Integrin 9187084 4
Angiotensin II Receptor 7823177 1
ATP Receptor 9135063 19

continued on next page
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Receptor name PMID Sentence
beta1 Integrin 9187084 4
c-met Protein 7996175 4
EGF Receptor 12612091 3
Endothelin Receptor 9130251 1
Glutamate Receptor 10535694 7
low affinity NGF Receptor 1377231 8
PDGF Receptor 8432400 2
trkB Receptor 8389459 9
VEGF Receptor 10742147 7
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