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Abstract

A strong driving force of scientific progress in the technical sciences is the quest

for systems that assist humans in their daily life and make their life easier and more

enjoyable. Nowadays smartphones are probably the most typical instances of such

systems. Another class of systems that is getting increasing attention are intelligent

robots. Instead of offering a smartphone touch screen to select actions, these sys-

tems are intended to offer a more natural human-machine interface to their users.

Out of the large range of actions performed by humans, gestures performed with

the hands play a very important role especially when humans interact with their di-

rect surrounding like, e.g., pointing to an object or manipulating it. Consequently,

a robot has to understand such gestures to offer an intuitive interface. Gestural

understanding is, therefore, a key capability on the way to intelligent robots.

This book deals with vision-based approaches for gestural understanding. Over

the past two decades, this has been an intensive field of research which has resulted

in a variety of algorithms to analyze human hand motions. Following a categoriza-

tion of different gesture types and a review of other sensing techniques, the design

of vision systems that achieve hand gesture understanding for intelligent robots

is analyzed. For each of the individual algorithmic steps – hand detection, hand

tracking, and trajectory-based gesture recognition – a separate Chapter introduces

common techniques and algorithms and provides example methods. The resulting

recognition algorithms are considering gestures in isolation and are often not suf-

ficient for interacting with a robot who can only understand such gestures when

incorporating the context like, e.g., what object was pointed at or manipulated.

Going beyond a purely trajectory-based gesture recognition by incorporating con-

text is an important prerequisite to achieve gesture understanding and is addressed

explicitly in a separate Chapter of this book. Two types of context, user-provided

context and situational context, are reviewed and existing approaches to incorpo-

rate context for gestural understanding are reviewed. Example approaches for both

context types provide a deeper algorithmic insight into this field of research. An

overview of recent robots capable of gesture recognition and understanding sum-

marizes the currently realized human-robot interaction quality.

The approaches for gesture understanding covered in this book are manually

designed while humans learn to recognize gestures automatically during growing

up. Promising research targeted at analyzing developmental learning in children

in order to mimic this capability in technical systems is highlighted in the last

Chapter completing this book as this research direction may be highly influential

for creating future gesture understanding systems.
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1 Motivation

A strong driving force of scientific progress in technical sciences is the quest for

systems that assist humans in their daily activities and make their life easier and

more enjoyable. In robotics research, there is a long tradition in developing robots

with human-like functionalities such as grasping, walking, or navigating in order to

enable the robot to move around in the human’s environment and manipulate it

in a meaningful way. There has been tremendous progress in the field in the last

20 years leading to such impressive results as the humanoid robot ASIMO (Hirose

et al., 2001), the small humanoid NAO (Aldebaran Robotics, 2011) and many other

humanoid robots (see, e.g., Kawada Industries, 2011) that can move in a human-like

way and manipulate simple objects.

Besides continuing the development of movement and manipulation capabilities

of such robots, research in robotics focuses on the ambitious goal of building robots

that exhibit human-like interaction capabilities in order to allow for a more natural

communication between such robots and naive human beings. This effort is driven

by the desire to design robots that can interact with humans outside the lab in real

world scenarios like, e.g., private households. Developing such robot companions is

a challenging research topic: the interaction interface has to match all requirements

for an easy usability, so that even naive users are able to interact with the robot

without an extensive training phase.

Obviously, the most natural way to interact with a robot would be to simply treat

it like a human. Such robots that are intended to communicate with humans in a

socially intuitive way are also called social robots (for an overview see Fong et al.,

2003). There is a wide variety of aspects that need to be investigated to realize

a socially interactive robot like, e.g., the robot’s appearance (see, for instance,

MacDorman and Ishiguro, 2006; Walters et al., 2008; Hegel et al., 2009), the role

of emotions (see, e.g., Sloman and Croucher, 1981; Becker et al., 2005; Saldien

et al., 2010), and the whole range of natural human-robot interaction (see, e.g.,

Arkin et al., 2003; Breazeal, 2004; Shibata et al., 2009). Especially the interaction

capabilities determine what information can be transferred between the human and

the robot. This has a direct consequence on what functional benefit the robot can

provide, i.e., how good the robot ’understands’ what the human wants in order to

act appropriately, making it appear as an intelligent interaction partner.

1



1 Motivation

1.1 Background

In the beginnings of human-robot interaction in the 1990’s, one of the first inves-

tigated communication channels that was going beyond a standard keyboard was

the use of natural language. This allows a speech interaction where the human can

provide information verbally to the robot (e.g., “My name is John.”) or ask the

robot for information (e.g., “What is your name?”). In principle, such a commu-

nication is not different from a phone conversation with an automatic call center

system where only the unimodal speech is analyzed by a technical system for a

purely verbal interaction with the human. However, in a setting where both inter-

action partners share the same environment, humans usually do make use of many

other modalities. Consequently, as a robot is embodied and, therefore, shares the

environment with the human, it should be able to take advantage of the modalities

a human naturally employs in interaction with other humans in order to make the

human-robot interaction more natural.

For example, enabling a limited form of a natural interaction with the robot

ASIMO has been proposed by Schmüdderich et al. (2008) and is depicted in

Fig. 1.1(a)). The human teaches objects to the robot by showing the objects to

the robot and giving verbal information about object properties (e.g., “large”).

Although the learning looks like a quite natural interaction, all of this is achieved

in an object-centered way, i.e., the robot only learns object properties if the object

is presented in its field of view. Therefore the human instructor has to move each

object in front of the robot before providing additional verbal information.

The example in Fig. 1.1(a) would represent a more natural interaction if the hu-

man could also point to objects instead of bringing them into the field of view of

the robot. In human-human interaction gestures are a highly important informa-

tion source because humans intensively use their hands. Gestures can be used in a

communication for many different aspects like, e.g., waving ‘Hello’, pointing to an

object, or manipulating an object. Recognizing gestures that are independent of the

environment and that are solely defined by the hand motion has been researched al-

ready in the 90s (for early reviews see Wu and Huang, 1999; Gavrila, 1999; Aggarwal

and Cai, 1999). In contrast to such gestures recognizable in isolation, pointing and

manipulating gestures interact with objects in the environment. For approaches

incorporating such context information the term gesture understanding is used in

this book to distinguish them from gesture recognition approaches based only on

motion data.

A robot capable of understanding gestures allows a human to actually engage in

an interaction with the robot in a more natural way without having to adhere to

2
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Figure 1.1: Teaching robots in interaction. a) The robot ASIMO learns the size of

an object presented to him (image from Schmüdderich et al., 2008). b)

The robot Leonardo learns the order of pressing buttons (image from

Breazeal et al., 2004).

restrictions like a special manner of presenting objects as depicted in Fig. 1.1(a).

One famous example where the gestural interaction is already looking more like an

interaction with a social creature than a programmed robot is the robot Leonard

(see Fig. 1.1(b)) developed by Breazeal et al. (2004). However, this robot is not

mobile and the gesture recognition is realized using cameras mounted in the ceiling

and behind the robot. Also, the objects that the human interacts with are simple

buttons which are known to the robot beforehand.

In order to specify more clearly what is needed to achieve gesture understanding

for a mobile robot, let us consider as example the ability to understand multi-modal

pointing gestures which is highly relevant for achieving a natural human-robot in-

teraction. Pointing to an object has already been intensively studied in experiments

(see, e.g., Kranstedt et al., 2006; Pfeiffer et al., 2008) and virtual reality environ-

ments (see, e.g., Kranstedt and Wachsmuth, 2005). Virtual reality environments

allow to investigate advanced computational models for understanding human ges-

tures as the human gesturer interacts with objects in the virtual world and the

perception of the gesture itself is usually simplified as the human has to wear spe-

cial sensing equipment. Consequently, the complete context information is readily

available from the virtual world for realizing gesture understanding. This allows to

put the emphasis on researching a wide range of issues related to more advanced
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interaction capabilities and cognitive models while the perception challenges en-

countered by a mobile robot are mostly avoided. Different from such more complex

models for gesture understanding, in the setting of this book the term ’under-

standing’ is restricted to integrating all perceptually observable information for an

interpretation of the current gesture.

An important aspect of virtual agents as embodiments of the human counterpart

is the opportunity to also investigate the generation of appropriate responses of the

virtual agent like, e.g., the synchronous generation of speech and gesture (Kopp and

Wachsmuth, 2004). Through creating a computational model that couples gesture

recognition with the generation of speech and gesture it becomes even possible to

realize more subtle processes like, e.g., imitating and mimicking of observed human

hand motions by a virtual character (Sadeghipour and Kopp, 2011). This research

stream will be of high relevance for making the interaction with future robots more

natural. However, currently even the perception of complex hand motions and

associated context information in real-world settings is still an unsolved research

topic. In order to make current mobile robots more intelligent, the first step is

the adequate processing of the environment information from the robot’s sensors

for going beyond gesture recognition and achieving gesture understanding while

aspects related to generating the robot’s response will not be covered in this book.

Coming back to the example of a pointing gesture, in an interaction with the

robot the human can simply point to objects to teach them to the robot. In case

the object is difficult to identify by gesture alone and the human did not specify

additional object properties verbally, the robot can start a dialog and ask for more

detailed information in order to resolve the object reference. In this way, the

human can support the robot as he/she would do it with a human communication

partner. All of the provided information can be stored and used in later interactions,

improving the overall interaction quality.

Obviously, for a truly human-like interaction with a robot, the robot should be

capable of understanding not only pointing gestures but all types of human gestures.

This is not only important for understanding commands given by a human in a

multi-modal way, but also for a pro-active behavior of the robot, or as Nehaniv

(2005) puts it: “If the robot can recognize what humans are doing and why they

are doing it, the robot may act appropriately”. For example, a cooking support

robot can monitor what a human is doing by tracking the manipulated objects

that are equipped with radio frequency markers (Fukuda et al., 2005). If the robot

understands the individual actions, i.e., how they relate to the overall target, it

can give recommendations by speech or gesture to help in the kitchen as depicted

in Fig. 1.2. Achieving such a gestural understanding without attaching markers to
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Sequential Human Behavior Recognition for Cooking-Support
Robots

Fig. 7. Example of learning data.

Fig. 8. Example of time-series data generated by PrefixSpan.

The time-sequence database generated by PrefixSpan
from the learning data (Fig.7) is shown in Fig.8. Data
Cup-a0/20, Pot-a1/10, TeaBag-a1/10, Spoon-a0/3 , for
example, shows that the event Cup-a0 alone was observed
20 times in learning data but that the Cup-a0, Pot-a1,
TeaBag-a1, Spoon-a0 sequence – the cup is removed
from the cupboard, the pot is stored in the cupboard, the
tea bag is stored in the cupboard, and the spoon is re-
moved from the cupboard – was observed 3 times.

3.3. Cooking-Support Robot
The mobile robot Robovie (ATR) [7] served as cook-

ing support (Fig.9). The robot recommended anticipated
action by synthesized voice and gestures.
Overall, we confirmed that the following support was

realized: When a subject removed a cup and instant cof-
fee from the cupboard, the robot anticipates the next
action by saying “sugar is in the cupboard” and turn-
ing toward the cupboard and pointing to the shelf where
the sugar is. When a subject took cold medicine and
stored it in the medicine chest, the robot suggested that
“the medicine chest should be stored on the shelf” and
pointed to the shelf. These recommendations are auto-
matically generated from inferred events such as Sugar-a0
and MedicineBox-b1 etc.

Fig. 9. Cooking-support robot recommending a presumed
next action by voice and gesture.

4. Experimental Results

To evaluate the feasibility and quality of support, we
conducted experiments with 10 subjects other than those
used for collecting learning instances. We instructed the
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Figure 1.2: The robot Robovie supporting a human in the kitchen by giving verbal

and gestural advice on the presumed next action (image from Fukuda

et al., 2005).

every possible object is an important step for the applicability of robots in different

scenarios. A suitable alternative to markers is the use of non-intrusive computer

vision techniques that can be used not only to recognize and track objects but also

at the same time to observe the human hand motions.

1.2 Aim

Focussing on vision-based sensors that are carried onboard mobile robots, the aim

of this book is to provide the reader with a deeper insight into the current research

on gestural understanding for intelligent robots. The descriptions of methods and

algorithms for vision-based gesture understanding are centered around the appli-

cation domain of mobile robots and their specific requirements. Only when the

recognition algorithms are developed with this specific application in mind, they

are applicable for improving the robot’s multi-modal interaction capabilities. To-

wards this end, typical vision-based methods for feature extraction and hand /

body tracking are reviewed in the first half of this book. With this background, the

second half of this book focuses in more detail on the broad variety of recognition

approaches and especially the incorporation of context information into the gesture

recognition process in order to understand gestures. Examples for relevant pro-

cessing stages as well as for integrated systems provide an insight into the concrete

realization of gesture understanding systems.

Having realized advanced gesture understanding capabilities, it becomes possible

to build robots that have human-like interaction capabilities with respect to gesture
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understanding within a given context. They are, therefore, getting closer to the

goal of building truly social robots. However, a drawback of current recognition

approaches is the fact that they are either manually programmed or require care-

fully prepared training data. In other words, the gesture understanding system has

to be carefully designed by experienced researchers in order to enable the robot

to understand gestures. This is in contrast to how young children learn to under-

stand gestures, which is basically by observing other humans performing gestures

in interaction. This learning of gesture understanding is, therefore, a fundamen-

tally different process that is closely linked to the social interaction between the

caregiver and the child. Research on developmental learning in children paves a

highly interesting way for constructing open-ended gesture understanding systems

and, consequently, may play a dominant role in this field in the future. At the

end of this book, this topic is touched on by highlighting recent research results

towards exploring aspects of developmental learning in children for constructing

gesture understanding algorithms that enable human-like learning in social robots.

The remainder of this introductory Chapter is structured as follows: In the next

Section the different skills a robot needs to have to support gesture understanding

algorithms will be shortly reviewed. Based on these information sources, Section 1.4

will outline what processing functionalities have to be realized for gesture under-

standing and are detailed in later Chapters of this book. The terminology used

throughout this work is summarized in Section 1.5 and the Chapter concludes in

Section 1.6 with an overview of the organization of the subsequent Chapters.

1.3 Robot Skills Needed for Gestural Understanding

In order to build an intelligent social robot, several robot skills are necessary to

support the algorithms performing gestural understanding. Throughout this book

we will take as test domain the so-called home tour scenario that was introduced

in the European project ‘The Cognitive Robot Companion’ - COGNIRON (2004).

The core idea of this scenario is that a user buys a robot from a store and unpacks

it at home for the first time. In this home scenario, the user has to show the

robot all the relevant objects and places in his/her home that are needed for later

interaction. For example, the user can go with the robot to the kitchen and say

“This is my favorite blue coffee mug.” while pointing to a mug. This is a relevant

information if the user later in the living room asks the robot to “Get me my coffee

mug.”. The home tour scenario requires the robot to be capable of an interactive

and dynamic learning process where it continuously extends its knowledge through
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interaction with humans.

Performing gestural understanding in this scenario requires several other capabil-

ities to support the gesture recognition algorithms and provide additional context

information:

Finding a partner who wants to engage in a communication

The very first requirement for the robot is to know that there is an interaction

partner. In static installations this is trivial, because the human will be required to

position himself in front of the system. For mobile robots, the situation is a little

different as the human may expect the robot to orient himself towards the human,

similar as this is an implicit behavioral rule in human-human interaction. This in

turn requires the robot to have omnidirectional sensors that allow him to detect

a human anywhere in its surroundings. Humans usually use sound information

for detecting other humans outside their current field of view, providing a coarse

location of the interaction partner. After a robot has obtained such a coarse infor-

mation, it also needs to be able to move towards this location and then find the

interaction partner in order to align the specific sensors for gesture understanding

towards this interaction partner.

Focussing the robot’s sensors

Since both the user and the robot are mobile, the robot must be able to continu-

ously track and focus on its communication partner to satisfy the precondition of

an interaction. This is an important non-trivial skill as typical vision sensors have

a limited field of view and in a natural interaction the human is usually not main-

taining a fixed position and posture. Another aspect making this more challenging

is the fact that often several potential interaction partners are in the vicinity of

the robot. In such situations, the fusion of different information sources is needed

for detecting and tracking the correct interaction partner (see, e.g., Fritsch et al.,

2003). In the following, we will assume that at least the complete upper body of the

interaction partner is always in the range of the robot’s gesture recognition sensors

and that the robot moves appropriately to avoid loosing the interaction partner if

the human starts to move out of the sensor range.

Besides the ability to keep the gesturing human in the sensor range, the robot

must also be able to sense the objects the human interacts with. If there is a

direct physical manipulation of the object by the human’s hand, the same sensor

that is used for gesture recognition can be used for sensing the object. However,

if the interaction is more distant, like in pointing gestures to another location or
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Fig. 9. The ‘two sides’ concept: The robot is commanded via the touch-
screen to fetch a drink and serve it to the user. During the interaction, the
working side of the robot with its arm points away from the user.

TABLE III

SUCCESS RATES OF COMPONENTS AND ROBOT; Ns GIVES THE

ABSOLUTE NUMBER OF SUCCESSES; Rs GIVES THE SUCCESS RATE OF

THE SINGLE COMPONENTS AND THE FULL SCENARIO IN PERCENT

Hard-
ware

drive
detect
object

grasp
bottle

open
door

place
cup

task
done

Ns 13 15 15 11 14 13 6
Rs 86.7% 100% 100% 73.3% 93.9% 86.7% 40%

the placing of the cup on the bottle later on. The analysis
shows clearly that the most critical component was the noisy
position-estimation based on the swiss-ranger measurements.
This caused the roboter to fail three times during the grasp-
procedure. Also the two failures while placing the cup on
top of the bottle are due to insufficient position-estimation.

VIII. CONCLUSION AND OUTLOOK

The motivation for the development of the service robot
Care-O-bot R© 3 was presented. The development resulted in
an outstanding high mechatronical integration and an iconic,
user oriented design with many interaction possibilities.
Several innovations from the areas of mechatronics, soft-
ware, material science and multimedia were included. By
having sophisticated software for navigation, manipulation
and vision, a solid basis was created for the development of
challenging manipulation tasks in everyday environments. A
simple object delivery use case was implemented for a first
evaluation of the performance of the integrated components
and the whole system.

The next steps will consist of implementing more complex
household scenarios including e.g., safe manipulation of
kitchen infrastructure like fridges or drawers. Simultane-
ously, existing software packages for manipulation, navi-
gation and vision will be enhanced and further improved
with respect to reliability and robustness, offering an even
more advanced development platform for service robotic
applications. The platform will be used as demonstrator for
the software developments of joint national and international
research projects in the service robotic domain.
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Figure 1.3: Different situations where a robot interacts with a human partner.

a remote object, the field of view of the gesture recognition sensor might be not

sufficient. For such situations, a steerable sensor might be needed that can be

directed to the location the human is pointing at in order to provide good sensor

data for the relevant object or location. In the following, we will assume that the

robot possesses the skill for an adequate focussing of an object sensor to pointing

locations or objects. Whether this requires the robot to actually have two distinct

sensors for gesture recognition and object recognition depends on the field of view

of the gesture sensor and the type of additional location/object information to be

recognized. Figure 1.3 shows some exemplary situations where a robot and a human

are engaged in an interaction.

Object recognition

The skill of object recognition is typically performed based on visual information

obtained by the robot’s object sensor and provides symbolic information about

objects in the scene. While there is a huge variety of algorithmic realizations,

a common aspect is that the object recognizer needs to be trained with example

images of all possible objects of interest beforehand. Object recognition is needed if

the type of the object plays a role for the gesture understanding process. Taking the

example of a pointing gesture with an associated user utterance “This is my blue

coffee mug”, the object recognition should be able to recognize this object from a set

of objects in the pointing direction in order to support the resolution of this multi-
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1.3 Robot Skills Needed for Gestural Understanding

modal object reference. Another example is a manipulative gesture, where the type

of object serves as a-priori information about the possible manipulations that can

be done with the object. These two examples show that object recognition can

often provide context information which is complementary to the gesture-centered

analysis of the visual information.

Speech recognition

As pointed out above, users should be able to use their natural interaction modali-

ties when interacting with a social robot. Speech is a very powerful modality as it

allows to specify object properties that can be used to restrict the search space and

facilitate identification. Commercial all-purpose speech recognition systems use a

huge vocabulary implicitly containing all words potentially used for specifying ob-

ject properties. However, this requires the human to use close-talking microphones.

Instead, if speech recognition is expected to work with microphones onboard the

robot, the achievable sound quality is drastically reduced. This in turn requires also

a drastic reduction of the vocabulary in order to achieve sufficient recognition qual-

ity while still including those words required for supporting gestural understanding.

Independent of the chosen speech recognition approach, it should provide a textual

transcription of the verbally specified user utterances for the next processing step.

Speech understanding & Dialog control

The task of speech understanding is the parsing of the user utterance into meaning-

ful semantic parts. In other words, the textual transcription has to be converted into

a semantic representation of the user input. This representation contains additional

information like, e.g., expectations for potential gestures if the sentence starts with

“This is ...”. The individual semantic representations are processed by the dialog

that has to collect all information provided by the user throughout the whole inter-

action, i.e., over several utterances and over several input modalities. For example,

if speech understanding provides a representation containing the expectation for a

gesture, the dialog can forward all relevant information (i.e., gesture expectation

and additional verbally specified object details like ’blue’ and ’coffee mug’) to the

subsystem for gesture understanding in order to resolve this object reference. From

the perspective of the human user, the dialog is the main human-machine interface

as it forwards user instructions to the internal robot control system and provides

appropriate verbal feedback about their execution.

9
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Memory

If the gesture understanding successfully resolves the object reference, it can ex-

tract object information from the visual scene (location, size, ...) that enhances

the verbally specified information. The multi-modal information that is collected

during such an interaction is not only relevant for the current interaction but needs

to be stored for future retrieval. For example, a later instruction to “Get me my

coffee mug.” can be understood by the robot if it has access to some kind of mem-

ory to retrieve the last location of the mug. Therefore, such a memory needs to be

accessible from different system components for using the stored information and

updating it.

The different capabilities outlined above have to be present for realizing gestural

understanding on a mobile robot. In the following, we assume all of these sub-

systems are performing as outlined and turn to the individual algorithmic steps

required to perform gesture understanding itself.

1.4 Functionalities for Realizing Gesture

Understanding

In order to approach the individual steps required to realize gesture understanding

let us take the example of the home tour scenario where a human points out objects

to a robot in a natural interaction style. This usually results in the human pointing

to an object and giving - at the same time - verbal information like, e.g., “This is my

favorite blue coffee mug”. Resolving such multi-modal object references requires

the robot skills outlined in the previous section as well as:

• detection of the hand / whole body

• tracking of the hand / whole body

• recognition of the gesture

• resolution of the multi-modal object reference by linking the pointing gesture

to the verbally specified information and the visually perceived object data

The individual algorithmic steps that need to be implemented to resolve object

references are depicted in Fig. 1.4. The conceptual architecture does not differenti-

ate in the feature extraction stage whether the hand or the whole body is detected

and tracked as long as information about the moving hand is obtained. While many

10



1.4 Functionalities for Realizing Gesture Understanding

approaches to gesture recognition have focussed on detection and tracking of the

hand only, an additional source of information for hand gesture recognition is the

fact that the hand is linked to the human body. From the overall configuration of

the human body, rough information about the hand position can be inferred. For

some types of dynamic gestures that are independent of the exact hand shape, the

movement of the lower arm may even be sufficient to recognize the gesture. We will

therefore consider both cases in the more detailed description of the requirements

in the following Subsections.

1.4.1 Detection of the Hand

Due to the embodiment of the robot and the goal of a natural interaction, the

perception of the human and his gestures needs to be performed non-intrusively,

i.e., without attaching measurement devices to the human gesturer. In this way,

any human can directly engage in an interaction without any preconditions, like,

e.g., wearing markers. Different sensing techniques are available for observing hu-

mans and their gestures, like, e.g., infrared cameras, time-of-flight cameras, or color

cameras. As humans use their eyes to perceive the gestures of other humans, the

application of computer vision techniques for gesture recognition by a robot seems

most appropriate. An important additional benefit of using a color camera as sensor

is that the manipulated environment can be analyzed in a way similar as the human

does it. For example, this allows the social robot to ’understand’ human descrip-

tions of visual object properties like shapes (”round”) or colors (”blue”). Obviously,

objects can be equipped with technical means like radio frequency markers on the

objects to identify and track them (Fukuda et al., 2005), but a social robot should

Memoryspeech sensor

gesture sensor

object sensor

mobile robot

resolving referencesgesture recognition

object recognition

speech understanding & dialog controlspeech recognition

detection tracking

Figure 1.4: Conceptual system architecture for resolving multi-modal object

references.
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allow a human to introduce any object without preparing the object for interaction.

Therefore, the focus is here on vision-based approaches for gestural understanding.

Research on vision-based gesture recognition has a long history and many dif-

ferent approaches have been developed. A variety of reviews (Moni and Ali, 2009;

Mitra and Acharya, 2007; Poppe, 2007; Erol et al., 2007; Moeslund et al., 2006;

Wang et al., 2003) have attempted to assess the current state of the field, but each

review took a different perspective on the considered gesture types and sensing

modalities. Most application examples of gesture recognition technology have con-

centrated on solving a specific recognition task that was defined for a very limited

application domain like, e.g., recognizing sign language (Vogler and Metaxas, 2001)

or Tai Chi gestures (Campbell et al., 1996). Many of these approaches are charac-

terized by a static camera setup. Different from such typical experimental setups,

a social robot moves in an environment, i.e., its camera setup is not static. This

results in the image background being unpredictable, posing hard challenges to the

analysis methods for detecting the gesturing hands/body parts:

Unknown background: One common detection technique is to learn the differ-

ences between the interesting foreground objects (i.e., the hands) and the

background. In an interaction setting, the background in an ordinary living

environment can contain anything - think about the different rooms you live

in - which makes it impossible to provide a background model a priori. For

every interaction situation, the robot would need to adapt itself to the cur-

rent appearance of the background in order to separate the hands from this

background.

Dynamic changes in the background itself: While the adaptation to a static or

slowly varying background can be performed (see, e.g., Wren et al., 1997),

such an adaption becomes challenging in more dynamic backgrounds. While

moving entities like other humans or pets may be explicitly detected and

filtered out, this cannot be done easily with image areas containing unspecific

motion like, e.g., a TV screen in the field of view.

’Moving’ background due to robot motion: Another influence especially present

with social robots are the dynamics of the robot itself. If during the interac-

tion the human moves, the robot also has to move to keep the human in the

field of view, resulting in a considerable change of the background.

From the many variations in the background that occur in a human-robot in-

teraction setting it follows that any adaptation of the detection algorithms to the
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1.4 Functionalities for Realizing Gesture Understanding

specific background is a highly challenging task. Instead of trying to model the

varying background, it is therefore advisable to put more effort in modeling the

interesting foreground, i.e., the gesturing human.

The most basic feature for detecting hands is the skin color - even a single image

pixel contains this information. An example result of applying a skin color detection

algorithm on the image shown in Fig. 1.5(a) is depicted in Fig. 1.5(b). However,

the skin color is not as discriminative as it may seem: skin color varies across the

body (compare hand inside and hand outside!), lighting conditions influence the

appearance of the skin, and different people have different skin colors. Moreover,

an image of a gesturing human may contain also his face, being also skin-colored

and, therefore, providing an additional false hand detection. All of these issues

have to be handled when aiming to detect the hands, therefore color alone is often

not appropriate.

(a) (b) (c)

Figure 1.5: Different approaches for detecting the gesturing hand: a) input image;

b) detection of skin color; c) detection of hand appearance.

As a more complex image feature the overall appearance of the hand can be

incorporated into the hand detection. The hand has many degrees of freedom and,

consequently, the appearance varies substantially, but if only certain hand postures

are to be detected, such an approach is a suitable way to capture the overall hand

and not just individual pixels (see Fig. 1.5(c) for detection results). However, if the

human hand takes on postures that are not covered by the appearance-based hand

model, the hand detection will fail. In order to avoid relying only on the features

of the hand itself for detecting it, the remaining human body can be a target of

detection as well, imposing strong constraints on where to expect a hand.

While for the hand itself a certain appearance is expectable, this does not hold

for the whole body. The appearance depends on clothing, and also the shape is

influenced by the clothing. Therefore, a reliable detection of individual body parts

13
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from a single viewpoint is quite challenging (see Sigal et al. (2004) for a multi-

camera approach). A more promising direction for the ultimate goal of gesture

recognition is to take a probabilistic approach to detection, i.e., provide in the de-

tection stage only weak classifiers (Shotton et al., 2011) and leave the final decision

on where the individual body parts are located in the image to the tracking stage,

integrating this information over time. For example, such a weak classifier can find

elongated structures (arms, legs, torso) that differ from the background. Whether

this structure is actually a body part and which body part it is, is decided by the

tracking algorithm combining all body part detections.

1.4.2 Tracking of the Hand

During an interaction with a social robot, a human may perform a variety of ges-

tures. Some of these gestures (the static ones) may be completely described by a

characteristic hand appearance so that the detection of the hand as outlined in the

previous Section would be enough (e.g., thumb up for ’everything is ok’) . Other

gestures require to capture the overall hand movement (e.g., pouring milk into the

coffee) and require the ability to track the hand positions over time. The stan-

dard way of tracking a single hand is to apply a Kalman filter to the results of the

detection stage in order to integrate the hand positions over time and cope with

occasional outliers (see, e.g., Fritsch et al., 2000). Tracking becomes more compli-

cated, however, if both hands of the human act in the scene and if the hands can

become occluded by each other or by objects in the scene. All of these aspects re-

quire a more complex tracking system, handling the appearance and disappearance

of the individual hands appropriately. Obviously, limiting the detection to hands

only and tracking them in isolation is more difficult than considering the whole

body, allowing to implicitly track occluded hands by tracking the arms.

For tracking the whole body some detection of body parts is needed. Assuming

that a reliable detection of non-characteristic body parts is hardly possible (see

previous Section), the body tracking has to cope with unreliable detection results

and should, therefore, be realized in a probabilistic way. The probabilistic modeling

should not be restricted to the detection results, also the tracking itself can benefit

by preferring ’typical’ body configurations, i.e., assigning an increased likelihood to

such configurations. Besides such soft influences, the modeling of the whole body

also allows to incorporate hard constraints between body parts (e.g., physical joint

constraints).

Combining all of these issues in a probabilistic body tracking framework provides

the body configuration over time. This is a much richer representation than only

14



1.4 Functionalities for Realizing Gesture Understanding

the hand trajectories. Nevertheless, if only the hand trajectories are needed for

gesture recognition, they can be derived from the body configuration.

1.4.3 Recognition of the Gesture

The detection and tracking provides the hand’s trajectory, which needs to be ana-

lyzed to recognize a certain gesture. The algorithmic approach for the recognition

of a gesture depends on the type of gesture to be recognized. Staying with the

example of a multi-modal object reference, a pointing gesture has to be recognized.

Theoretically, also a static posture of a human pointing with the hand could be

considered a pointing gesture. However, as this requires a different kind of analysis

and the recognition algorithms would be strongly limited - there are only a few

relevant postures in natural human-robot interaction - we focus here on the more

general task of recognizing dynamic gestures.

If the tracking provides the trajectory data of the hand, then the task of the

recognition algorithm is to analyze the trajectory data and detect a typical point-

ing trajectory. This can be achieved by applying a pattern matching algorithm to

the trajectory data, assuming ’pointing’ has a characteristic trajectory. While in

the 2D image plane typically used for hand detection the trajectory is not very

characteristic, the 3D hand trajectory is already more discriminative. If the 3D

hand position is obtained by an approach tracking the whole body, then the infor-

mation about the body configuration can be used as additional information. For

example, the 3D trajectory data can be represented in a coordinate system relative

to the human body. In this way, the fact that a human usually points to an object

’away’ from his body is retained in the 3D data used for gesture recognition. There

are several factors influencing how a referenced object can be identified based on

a pointing gesture (Pfeiffer et al., 2008). Taking a simple heuristic, some imple-

mentations have assumed that the human looks at the object while pointing at it,

resulting in a virtual eye-hand-object line (Nickel and Stiefelhagen, 2007; Droeschel

et al., 2011) as depicted in Fig. 1.6.

1.4.4 Incorporating Context for Understanding the Gesture

Following the recognition of a pointing gesture, the object that was referenced with

this gesture has to be identified by the social robot to allow for a dialog with the

user about this object. For large objects or locations, the pointing gesture alone is

sufficient to identify the object. However, if in a home setting a household object

(e.g., a mug) is referenced on a table with several other objects, the pointing gesture
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object

hand

eye

Figure 1.6: Pointing gesture with visualization of virtual eye-hand-object line.

alone will often be too imprecise to identify the object. Therefore, humans often

give in such situations additional verbal information about the referenced object

like its type, color, size, or shape.

For a natural interaction with a social robot, the algorithm for resolution of

object references needs to be capable of taking advantage of such multi-modal

context information provided by the human communication partner. Note that the

term ‘multi-modal’ is used here not only for the speech modality but also to denote

information that is extracted from the image data but is of a different type than

the actual hand motion.

If the dialog receives the semantic representation of a user utterance from speech

understanding containing information that a gesture is to be expected (see Sec-

tion 1.3), it hands the relevant information to the object resolution. For the exam-

ple “This is my favorite blue coffee mug” this would be

<Gesture expected = "yes">

<Object type = "coffee mug">

<Object color = "blue">

On receiving this information, the object resolution system queries the gesture

recognition for a pointing gesture. If a pointing gesture has occurred, the rough

pointing direction is provided by gesture recognition. This direction is in the 3D

representation relative to the gesturing human and has to be transformed into world

coordinates so that the robot can analyze the corresponding scene location. The

verbally specified information is then used as an additional filter for analyzing the

scene. In the example, the object color ’blue’ can be used as low-level visual filter.

Furthermore, if the robot already has an understanding of the object type ’coffee

mug’ and an appropriate object detector, this could be used for filtering as well.
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However, as the appearance of objects varies strongly - think about the different

mugs you have in your cupboard - this verbal information should be used only if

the associated filtering will not prohibit finding the referenced object.

1.4.5 Beyond Communication: Recognizing Manipulative

Actions

The resolution of object references as outlined above is needed for a successful

communicative interaction between the human and the robot where the human

intends to show the robot a new object. A different aspect in gestural understanding

is the recognition of gestures that are intended to manipulate objects in the world

instead of only pointing at them. For a variety of object manipulations the hand

trajectory may look similar, but depending on the intention of the human, the

object differs and there is a different effect. For example, pouring water into a plant

or milk into your coffee mug may have a similar trajectory, but the interpretation

is different. It is therefore necessary to associate the hand motion with the object

manipulated in order to understand such manipulative gestures. Following the

gesture categorization introduced by Bobick and Ivanov (1998) we also use the

term action for this combination of gesture and object.

Recognizing manipulative actions therefore requires information of the hand tra-

jectory and the object being manipulated. The necessary extension of the concep-

tual system architecture introduced before for realizing manipulative action recog-

nition is depicted in Fig. 1.7. A component for object recognition is added and

action recognition is achieved by combining trajectory and object data in a single

integrated algorithm.

This incorporation of object information into the action recognition process has

Memoryspeech sensor

gesture sensor

object sensor

mobile robot

resolving referencesdetection tracking gesture recognition

manipulative action recognitionobject recognition

speech understanding & dialog controlspeech recognition

Figure 1.7: Conceptual system architecture for recognizing manipulative actions.
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the additional benefit that also action sequences can be modeled in this approach.

For example, if a human pouring coffee into a mug is observed, there is a high

probability that he/she may add next sugar or milk to his/her coffee. In this action

sequence, every next action is closely linked to the object currently manipulated,

and the recognition process should be capable of taking advantage of this con-

text information in order to recognize the individual actions and the overall action

sequence.

1.5 Terminology

Before outlining the organization of this book, the central terms used for describing

the different aspects of approaches for gesture understanding are reviewed in the

following.

Posture describes a position or pose of the human hand or body. This is therefore

some kind of static configuration information that can be identified based on

a single image depicting a human without any temporal information. Here,

we will focus on postures closely related to the hand itself or in conjunction

with the arm and upper body. For example, when pointing at something this

is indicated by the index finger of the hand, but without more information

like, e.g., the overall body configuration it may be impossible to identify what

specific object the human pointed at.

Gesture describes a dynamic hand movement, differentiating a dynamic hand ges-

ture from a static hand posture. Obviously, techniques used for recognizing a

hand posture from a single image can also be applied iteratively on a sequence

of images. The information that a human holds his hand for 2 seconds in a

pointing posture can be considered sufficient to say that he/she performs a

pointing gesture. However, just the temporal extent of a posture is usually

not informative enough to allow further inferences as much information is

contained in the dynamics of the gesturing hand. Continuing with the point-

ing example, even when knowing the hand is in ’pointing’ posture since two

seconds, only the analysis of the dynamics of the hand motion may tell us

the exact object the human is pointing at. As the majority of gestures to

be expected in a natural human-robot interaction are characterized by the

dynamic hand motion, the focus of this book is on the recognition of such

gestures.
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Detection denotes the successful verification that a certain object is present. For

the task of gesture understanding, this means on the most basic level to verify

that a hand is present. This verification can be done easily for elementary

features like, e.g., the hand color. However, for the detection of the hand

using more abstract representations like, e.g., the hand shape, this already

involves specifying in more detail the hand to be detected. One can construct

a detector for a ’pointing’ hand posture, but this can be seen at the same time

as actually recognizing a ’pointing’ posture. There is, therefore, a smooth

transition between detection and posture recognition.

Recognition denotes the identification of a certain object, i.e., not only its pres-

ence but also more details like, e.g., its current state or a specific subtype

of an object class. As outlined for Detection, the task of detecting a specific

hand posture can be considered a recognition of the posture. The difference

becomes clearer for gestures: Detection of a gesture tells us there is a gesture

performed, but not what gesture it is. Recognizing the gesture means also

knowing what specific gesture was performed.

Understanding goes beyond Recognition by incorporating additional information.

We use the term here to denote that recognizing only the hand motion does

often not provide enough information for a robot to react appropriately. For

the example of a human pointing at an object, when the robot has recog-

nized a pointing gesture, this does not mean the robot has understood what

object the human is pointing at. For the actual understanding, additional

context information has to be analyzed. Incorporating this additional infor-

mation differentiates gesture understanding approaches from classical gesture

recognition methods operating only on the hand motion data.

Context denotes in this book the additional information sources available for en-

riching gesture recognition so as to achieve gesture understanding. Types of

context considered here are user-provided context (e.g., verbally specified ob-

ject properties) and situational context (e.g., what objects are present in the

scene). Note that temporal context (e.g., what gestures have been preceding

the gesture in question) is usually already incorporated in the recognition

algorithms.

The terminology described above will be useful for reviewing the many different

approaches that have been proposed for equipping robots with gesture recognition

and understanding capabilities. It should be noted, however, that the proposed
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terminology is just one way of differentiating between related approaches and that

other distinctions could be made. This terminology, therefore, serves to guide the

reader through this book, but other publications may use the terms introduced

above in a different way.

1.6 Organization of the Book

The book is organized as follows: Chapter 2 starts by giving an introduction to

general categorizations of gestures and to the more specific topic of gesture un-

derstanding for human-robot interaction. For the technical task of observing a

gesturing human, the Chapter includes a comparison of different sensing devices to

capture the human hand motion and motivates the use of standard vision cameras

for gesture understanding to be performed by an embodied robot. The different

design decisions that have to be considered when building a vision-based gesture

understanding system are reviewed at the end of this Chapter.

The first step for any gesture understanding system is to detect the human hand.

A variety of algorithmic solutions to vision-based hand detection is reviewed in

Chapter 3. After a successful hand detection, the hand has to be tracked over

several images to build up the temporal information of the hand gesture. Chap-

ter 4 provides an overview of the different algorithmic approaches that have been

developed to perform tracking of the hand. Two dominant approaches are the adap-

tation to changing visual features like, e.g., skin color and the model-based tracking

of hands by incorporating constraints like, e.g., the overall body configuration. For

each type there is a detailed example covered in this Chapter.

Chapter 5 describes probabilistic methods that are based on the hand trajec-

tory and perform the recognition of gestures. While the methods outlined in this

Chapter only deal with the isolated task of analyzing a hand trajectory, Chapter 6

introduces approaches that incorporate context into the recognition process to real-

ize gesture understanding. Interesting context examples for gesture understanding

are verbally specified object properties and objects that are manipulated by the

gesturing human. For both types, algorithmic approaches are outlined in more

detail.

Intelligent interactive robots that are equipped with some of the gesture recog-

nition and gesture understanding techniques outlined in the previous Chapters are

depicted in Chapter 7.

Going beyond manually designed gesture understanding approaches, Chapter 8

introduces research results obtained from studies where humans demonstrate ges-
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tures to a child or a robot. Although research in this direction is just beginning,

it offers the potential to replace engineered gesture understanding approaches by

more advanced algorithms that incorporate learning techniques and take advantage

of the way that humans employ for teaching gestures.

The book concludes with Chapter 9, reviewing the presented techniques and

applications as well as possible future trends in making the gestural interaction

with social robots more natural.
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2 Gestures in Human-Robot Interaction

In this Chapter a more closer look will be taken at the type of hand gestures

that are performed in human-robot interaction and the technical prerequisites for

understanding these gestures. To start with, Section 2.1 first reviews a general

categorization of gestures whose roots date back to the beginning of the last century.

Back then, the target of the categorization was to describe the different kinds of

gestural behavior a human being can make use of. For the aim of enabling robots

to understand gestures, this section then reviews other categorizations targeted

stronger at gestures relevant in human-robot interaction and finally identifies those

groups of gestures most beneficial for creating an intelligent robot.

In order to approach this goal, a gesturing human has to be observed by the

robot. Section 2.2 outlines different sensing techniques that have been applied

for this task together with their respective strengths and weaknesses. Out of the

different sensing techniques, a color camera is chosen as most appropriate sensing

technique for recognizing the range of different gesture types performed in typical

interactions of humans with social robots. Before going into the details of realized

algorithms for this task, Section 2.3 provides the reader with an overview of the

different design decisions that influence the performance and characteristics of a

gesture understanding system. The Chapter is summarized in Section 2.4 before

turning to the algorithmic details in subsequent Chapters.

2.1 Categorizations of Gestures

The term gesture is used in many different disciplines to describe aspects related to

human movement. Although there exists the journal Gesture (Kendon and Mueller,

2005) that is explicitly focussed on gesture-related research, a clear definition of a

’gesture’ applicable for different research communities is difficult. In the context

of this book, the term gesture focusses on the interpretation of dynamic hand

motions (cf. Section 1.5). A wider definition could incorporate movements of the

whole body, facial mimics, or the dialog interaction (see, e.g., Rieser, 2004; Rieser

and Poesio, 2009). Concentrating in this Chapter primarily on the analysis of hand

movements, next a short look at general categorizations of hand movements will be
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taken before focussing stronger on gestures in human-robot interaction.

2.1.1 General Categorizations

Due to the variety of different gestural expressions that are being performed by hu-

mans in everyday life, many categorizations can be found in the literature. While

these differ in the targeted interaction situations and underlying research ques-

tions, there are similarities between many of the proposed categorizations. These

common aspects are related to early gesture categorizations (Wundt, 1900/1973;

Efron, 1941/1972). Focussing on the semiotic aspects of gesture we can outline four

general types of gesture (McNeill, 1996, chapter 3):

Iconic and Mimetic gestures are used to depict an object or concept through a

movement that resembles relevant aspects of it. For an object the gesture

can indicate properties like, e.g., size or shape. Concepts are much broader in

nature and, consequently, a variety of gestural expressions may indicate such

things as directions of thought or metaphors. For example, drawing circles in

the air with the stretched out index finger may indicate ’continue with your

thoughts’.

Deictic gestures are closely related to the environment as they reference a spe-

cific object. Note that this object can be either concrete or only virtually

present, i.e., introduced in the interaction preceding the gesture. For exam-

ple, a stretched out index finger pointing at an empty location may indicate

’put it here’.

Symbolic gestures are simply gestures that have a specific and conventionalized

meaning. Consequently, symbolic gestures are valid only in a specific social

group and may have different meanings in different cultures. For example,

connecting the thumb and index finger in a circle and holding the other fingers

straight may indicate the word/meaning ’okay’.

Baton-like gestures and Beat gestures are not directly related to semiotic as-

pects as they do not convey meaning on their own. Instead, they occur in

synchrony with other communicative expressions, e.g., with speech. Through

beat gestures, specific parts of communicative expressions are highlighted to

underline their importance or to help in the understanding process. For ex-

ample, the importance of the verbally uttered sentence ”Be here at four!” can

be emphasized by knocking with the index finger on the table while saying

”four”.
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The listed categorization is only a rough separation of human hand movements

in different classes and many other categorizations have been proposed. For exam-

ple, other early categorizations have been proposed by (Ekman and Friesen, 1969;

Kendon, 1972). However, as also pointed out by (Kendon, 2004, Ch. 6), a single

gesture category capturing all different aspects and viewpoints is difficult to find

and it is more appropriate to see the range of different categorizations as tools

for performing research in different directions. From the perspective of gestural

understanding for intelligent robots, a general categorization does not incorporate

the relevance of the considered gesture classes for interaction of a human with a

technical system or the technical challenges when aiming to recognize relevant hand

gestures.

2.1.2 Gestures in Human-Computer Interaction

The above categorization considered the complete range of gestures and the find-

ings were based on observing humans interacting with each other. More recently,

however, humans start to gesturally interact also with technical systems. In such

settings, the computer can only react appropriately if the human gesture is recog-

nized correctly. Consequently, for the task of gesture understanding in a technical

system, the classification scheme should also consider how to tackle the recognition

problem. One such attempt focussing more stronger on human-computer interac-

tion was proposed by Pavlovic et al. (1997), who put forward the categorization

hierarchy depicted in Fig. 2.1.

While the semiotic categorization introduced in the previous subsection focusses

Hand/Arm Movements

Gestures Unintentional Movements

Manipulative Communicative

Mimetic Deictic Referential

Acts Symbols

Modalizing

Figure 2.1: Gesture categorization for human-computer interaction proposed by

Pavlovic et al. (1997).
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2 Gestures in Human-Robot Interaction

mainly on aspects outlined in Pavlovic’s subgroup of communicative gestures,

Pavlovic’s hierarchical view is already targeted stronger at the computational anal-

ysis of gestures. We find on the top-level a separation into unintentional movements

and gestures. Unintentional movements do make humans appear ’human-like’ and

are very important in creating virtual agents that should exhibit a human-like

behavior (Becker et al., 2004), but such human movements are not part of any

meaningful gesture. However, a technical system for gesture recognition has to

be able to separate such movements from meaningful gestures in order to avoid

the confusion of unintentional movements with actual gestures, i.e., producing

a large number of false positive results. Gestures themselves are separated into

manipulative and communicative gestures, where the large subgroup of commu-

nicative gestures is split up into several categories highlighting the different kinds

of gestures that can be used in an interaction. Here we can see similar terms

as in the general categorization from the previous subsection. While Pavlovic’s

categorization is more suited for describing gestures occurring in interaction with a

technical system, it is still quite general when aiming to equip a robot with gesture

understanding capabilities.

2.1.3 A Gesture Categorization for Human-Robot Interaction

Another categorization of gestures that is especially targeted at the recognition of

gestures in human-robot interaction contexts has been proposed by Nehaniv (2005)

and is depicted in Fig. 2.2.

Hand/Arm Movements

of expressive

behavior

Conventional

Gestures

Symbolic and
Interactional

Gestures
Pointing

Gestures

Referential and

Manipulative

Gestures

’Irrelevant’ and Side effects

Figure 2.2: Gesture categorization targeted at human-robot interaction proposed

by Nehaniv (2005).

This categorization is not hierarchically structured but provides a separation

between different gestures that play different roles when it comes to the underlying

intent of the gesturing human. Each class in Nehaniv’s categorization subsumes

several specialized classes capturing important differences within a parent class:

26



2.1 Categorizations of Gestures

‘Irrelevant’ and Manipulative Gestures

The first class includes all body motions that are intended to change the human’s

relation to the environment or the environment itself. Importantly, these gestures

are not intended to communicate or to interact with another partner. For example,

the motion of arms and hands during walking are gestures that are simply side

effects of motor behavior. Changing the environment is performed with irrelevant

gestures like, e.g., playing with a paper clip or with actions on objects. The latter

subtype includes the broad range of actions that are in the focus of research on im-

itation learning (Billard and Siegwart, 2004) and includes such actions as grasping

a cup in order to drink.

The description of these subtypes clearly shows that there is a varying degree

of context relevance in the individual gestures. For example, side effects of motor

behavior are directly linked to the current activity of the overall body (i.e., the

behavior) while there is no physical context when observing someone playing with

a paper clip. It should be noted that for recognizing irrelevant and manipulative

gestures acting on objects, these objects need to be known in order to understand

the gesture and, therefore, the current intent of the acting human.

Side Effects of Expressive Behavior

This class is separated from the irrelevant gestures described before as it contains

all gestures that are performed during an interaction with an interlocutor. Dif-

ferent from gestures with an explicit role in the communication process that are

the content of the following classes, this class contains all those gestures without

any specific interactive, communicative, symbolic, or referential role. It should be

noted, however, that they may play a relevant role in improving the overall inter-

action quality as they may be used for emphasizing verbally uttered statements.

Symbolic and Conventional Gestures

As pointed out in Section 2.1.1, symbolic gestures depend on social groups in which

such gestures have a conventionalized meaning. These gestures explicitly convey

content through a specific hand configuration and are therefore comparatively sim-

ple to recognize using trained models. However, as these gestures are heavily de-

pendent on knowing the context in which a gesture is performed, the correct inter-

pretation of a recognized gesture may be challenging. For example, holding up two

fingers can be interpreted in different ways (Morris et al., 1979):

1. A person that enters a restaurant and - after visually contacting the waiter -
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2 Gestures in Human-Robot Interaction

performs this gesture may want to communicate that a table for ’two’ persons

is needed.

2. In a demonstration of anti-war protesters this gesture is likely to have the

meaning ’peace’.

3. Politicians and others commonly use it as a sign for ’victory’.

This short listing is by no means complete but already gives an impression of

the challenges that a gesture interpretation system faces after having identified the

symbolic gesture itself.

Interactional Gestures

This class represents all gestures that are used to regulate the interaction with a

partner. This regulation of a cooperative activity includes initiating, maintaining,

synchronizing, organizing, or terminating the interaction. A dominant cooperative

activity is communication itself, where interactional gestures do not convey any

content, but are simply supporting the exchange of information by regulating the

information flow. Interactional gestures are targeted at influencing other people’s

behavior as opposed to ’irrelevant’ and manipulative gestures (Nehaniv’s first class

listed above) that are acting on inanimate objects. Note, however, that offering an

object to a partner by holding the object is a gesture that would belong to both

classes.

Referential and Pointing Gestures

Compared to the other classes listed before, this last class is rather narrow. It

contains those gestures that are used to refer to objects, locations, persons, or

directions. Especially objects and locations are not restricted to physically present

entities, but include locations in space that are used as ’virtual’ objects or locations

during a discourse. For example, when describing a room layout on a table area

between two interlocutors, the position of the door may be a location on the table

introduced at the beginning of the interaction. Later, both just point to this ’empty’

position on the table when referring to the door of the room they are talking about.

2.1.4 Selected Categories for Creating Intelligent Robots

For a robot exhibiting truly human-like gestural interaction capabilities, all of Ne-

haniv’s categories outlined in the previous Section would have to be recognized by
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a robot. However, the current state of the art in gesture understanding is far from

coping with this broad variety of gestures. As the different categories pose differ-

ent requirements on the sensors and algorithms for recognition and understanding,

research projects usually pick a single gesture category for developing algorithms.

For prioritizing what gestures to focus on for making robots more intelligent, it

should be noted that enabling the robot to recognize Side Effects of Expressive Be-

havior will not raise the quality of the information flow between human and robot.

A similar argument holds for Interactional Gestures as the interaction between hu-

man and robot is not very fluent anyways. However, it is very important to be

aware that such types of gestures occur in human-robot interaction. Any gesture

recognition algorithm aiming at the recognition of the other categories has to be

robust against these types to avoid producing false recognitions.

In contrast to the previous two categories, Symbolic and Conventional Gestures

explicitly support information exchange. However, the concepts that can be trans-

mitted by the human with these gestures are rather abstract and can also be ex-

pressed verbally in an advanced human-robot interaction interface. Therefore, this

category is also not a first priority for realizing gesture understanding capabilities

on a robot.

Referential and Pointing Gestures are gestures performed to transfer infor-

mation to a communication partner. As these gestures refer to objects or virtual

places in the physical space, this kind of information provided by a gesture cannot

be replaced easily by a verbal command. Therefore, this category will be one focus

in the description of gesture understanding algorithms in this book.

Manipulative Gestures are another category that is highly relevant for making

robots more intelligent. Different from the referential gestures, the manipulative

gestures are not part of any explicit communication. However, they are very im-

portant for more advanced understanding capabilities of the robot, i.e., the robot

can know what the human is doing without being told explicitly. Consequently,

this is the second category that is in the focus of this book.

2.1.5 The Influence of Context on Gesture Understanding

The previous Subsection has focussed on which gestures to recognize. The main

emphasis in this book will be on algorithmic methods on how to recognize these

gestures. The two questions of which and how to recognize are central questions

for any scientific paper on gesture recognition and are usually already answered in

the abstract of any paper.

However, a third question that is often overlooked in scientific papers on gesture
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recognition but is highly important for providing a robot with a good gesture un-

derstanding performance is when to recognize a gesture. Many papers assume that

the human performs meaningful gestures while being observed by the robot which

is the case in a lab environment where the focus of the interacting humans is on

testing the robot’s gesture understanding capabilities. However, this is not true

in a natural interaction setting as the categorization in Section 2.1.3 has shown.

Consequently, when focussing on a subset of the categories proposed in the previ-

ous Subsection, the fact that many ’unmodelled’ gestures will be observed in the

data has to be considered. If the gesture understanding algorithm has knowledge

of when to expect a relevant gesture, it can use this context information to restrict

the processing to such situations. This not only saves computational resources but

also reduces the likelihood of wrong recognition results.

Coming back to the example of a pointing gesture as described in the Motivation,

a possible context for activating the recognition of such a referential gesture is the

information verbally given by the user. If the user’s utterance contains the keyword

’this’, it is likely that he/she is currently pointing at an object that he/she is

describing. Another type of context that is more relevant for manipulative gestures

is the situational context in the form of objects. Only if the hand is close to,

e.g., a coffee mug, a manipulative gesture ’lifting mug’ can occur while this gesture

should not be recognized if there is no mug in the vicinity. Including such different

kinds of context into the gesture recognition algorithms in order to achieve gesture

understanding is a crucial step for making robots more intelligent. Consequently,

different algorithmic approaches aiming at this target will be covered in detail in

Chapter 6 of this book.

2.2 Sensing Devices for Observing Gesturing Humans

In order to understand gestures, a technical system has to acquire information

about the gesturing human. Clearly, the most important features are the motion

of the hand and its configuration. But besides these obvious aspects, the current

configuration of the overall body and the objects in the environment can be of

high relevance, too (see, e.g., Kjellström et al., 2008). In this Section we will

review different sensing devices that can be used for measuring hand gestures and

partly also the overall body configuration. We will point out their advantages and

disadvantages, respectively, to motivate the choice of a camera as sensing device

for gesture understanding.
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2.2.1 Intrusive Sensing Methods

Probably the first method to provide a technical system with data from a gesturing

human was to attach sensors directly to the body. Depending on the application

domain, several different intrusive sensing techniques are in use today:

Marker-based Sensing of the Overall Body Motion

A standard technique used, e.g., for creating characters in animation movies or

computer games is to attach markers to the human body. These markers can

be active in the sense that each marker can calculate its position in some world

coordinate system through, e.g., measuring a magnetic field generated externally.

As this requires the markers to dispose of local processing and energy, the resulting

devices can become rather large.

An alternative are passive markers that are sensed by external sensing devices.

The most common technique is to use reflective markers that can be detected very

reliably in images from far-infrared cameras (see Fig. 2.3).

Figure 2.3: The highlighted dots are infrared reflections from markers attached to

the human body and golf club.

The benefit of using the infrared spectrum instead of the visible spectrum is

the robustness against other scene contents. In the visible spectrum the lighting

conditions heavily influence the observed scene and are usually determined by the

application domain. In contrast, the far-infrared cameras measure reflections of

infrared light sources that are used to illuminate the scene without disturbing the

human impression. This is especially important in virtual reality environments
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like, e.g., caves where the visible light is dimmed to allow for better visibility of the

screens representing the virtual environment.

An important disadvantage of markers is the necessity to attach them somehow

to the body. While this can be done for the limbs by attaching markers to the

clothes, the equipping of hands with markers is less straightforward. By wearing

some kind of wristlet, the rough hand position can be obtained, but more detailed

information like, e.g., the finger positions is beyond the reach of this sensing method

as it will disturb the human while gesturing.

There have also been attempts to use far-infrared lighting directly without any

markers to cope with low-light situations like, e.g., military command rooms (Chu

and Nevatia, 2008). Due to the lack of additional markers, only a coarse visual im-

age is obtained and a sophisticated post-processing similar to 2D vision approaches

(see later) is needed to extract the gesturing human with this technique.

Instrumented Clothing: Motion Capture Suits

Another way of measuring human body motions is known as motion capturing

and is usually realized by letting a human wear a so-called motion capture suit as

depicted in Fig. 2.4(a).

A motion capture suit is essentially a tight fitting garment that has various

(a) (b)

Figure 2.4: Xsens R© motion capture suits with position sensors to directly mea-

sure the human body configuration. a) classical motion capture

suit; b) advanced version to wear over normal clothing (images from

http://www.xsens.com).
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sensors to directly measure the position of the human limbs relative to each other

without requiring any external setup. While the marker-based approach provides

the relative information only implicitly, a motion capture suit has sensors to extract

this information directly at the spot, providing a much higher quality. However, as

a classical motion capture suit is somewhat difficult to put on, it is generally not

used for interactive applications but rather in domains like, e.g., creating animation

movies. More recent versions as depicted in Fig. 2.4(b) aim to enable the use of

this technique also for other applications.

If a user engaged in an interactive application wears a motion capture suit, the

suit could also be equipped with devices to enable a direct sensory feedback to

the user’s body. For example, lifting an object in a virtual reality environment

could be made more realistic by force feedback. Up to now this possibility has only

been explored in few applications (see, e.g., Miaw, 2010), but it may become more

important in the future.

Instrumented Clothing: Glove-based Sensing of the Hand

While motion capture suits are primarily targeted at measuring the overall human

body configuration, so-called datagloves are instrumented gloves for measuring the

detailed configuration of the hand. Figure 2.5 depicts one such device where the

sensor wiring is easy to see. Such gloves are used intensively in virtual reality

environments where the hand configuration itself, i.e., the position of all fingers,

has to be measured.

(a) (b)

Figure 2.5: A dataglove measures the hand configuration directly. a) technical

sketch of the measurement instrumentation; b) picture of the original

VPL DataGlove from 1987.
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As it is challenging to use attached markers for extracting this information due

to visual occlusion of the individual fingers, wired gloves are a quasi standard in

this application domain. For similar reasons, these gloves are used in research on

robot grasping (see, e.g., Pardowitz et al., 2007; Maycock et al., 2011), but they

are not well-suited for natural gesturing in everyday life.

2.2.2 Active Sensors

The intrusive techniques outlined before directly provide measurements of the po-

sition of human limbs and/or bending of their joints. In the case of special markers

for infrared light, this is already a combination of intrusive sensing with an active

sensing approach where infrared light is used to illuminate the scene. Alternatively,

one can use an active sensor that does not require any physical markers on the hu-

man body, i.e., there is no need for any preparation by the user. Two measuring

techniques are in common use to obtain a 3D image of a gesturing human wearing

no additional equipment: time-of-flight measurements and structured light. It has

to be noted that both sensor types provide only a depth image and possibly a grey

level image. Attempting to recognize a human hand from such data is basically

impossible, as its shape is not discriminative enough. Instead, such active sensors

are applied to obtain the configuration of the complete body pose and derive the

hand position from this. Additionally, if color information is needed to analyze the

scene, a separate color camera (see next section) has to be used in a calibrated

setup with the depth sensor to correctly associate depth and color pixels to each

other. This is needed if the human interacts with its physical environment, but not

if he/she interacts with a virtual environment or a computer game on a screen.

Time-of-Flight Measurement

One type of active sensors uses modulated light and measures the time of flight

of the emitted light to calculate the distance to the surface reflecting the light.

Figure 2.6 shows an example of a depth image obtained by a time of flight sensor.

Some active sensors able to capture scenes in 3D have become commercially

available, but they are rather expensive and usually have only low image resolutions

(MESA Imaging, 2011; PMDTec, 2011). For example, the depth image shown in

Fig. 2.6 has only 160 × 124 pixels. While we as humans can easily infer the scene

content from looking at the depth image, this data has to be processed by special

algorithms to infer the hand configuration. Especially in the case of today’s time-

of-flight sensors, the low resolution makes this task very hard.
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View Invariant Gesture Recognition using the CSEM SwissRanger SR-2 Camera 3
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(a) Range image. (b) Difference range image. (c) Detected motion.

Figure 2 (a) shows a range image, where the pixel values correspond to a distance. (b) shows
the difference range image used for motion detection. (c) is the resulting motion detected in 2D after
hysteresis bandpass filtering and creation of a double difference image.

active range of 7.5 m. We have achieved a frame rate of around 13 frames per second. The
depth accuracy is typically in the order of a few centimeters, depending of the distance
range and illumination. Figure 2(a) shows a range image of a “point right” gesture, and
figure 2(b) shows the data mapped to 3D.

2.2 3D Motion Detection

As mentioned above we want to suppress the effect of the irrelevant body parts by
only working with data originating from (moving) arms. To this end we use a 3D double
difference image. This approach is a 3D version of a 2D double difference image. A 2D
double difference image uses three consecutive images in order to extract the motion of
and object without any shadow/ghost side-effects. This is obtained by first generating two
consecutive difference images, thresholding each of them and ANDing them together [6].
We do the same except that the two difference images are made by subtracting the depth
values pixelwise, hence the name 3D double difference image.

In figure 2(b) a 3D difference image is seen (before binarising and ANDing it together
with the second 3D difference image). The moving arm (and its shadow) is present, but also
a large amount of noise due to erroneous depth values often produced by the Swiss-ranger
camera.

To handle these noise effects, each of the two 3D difference images is filtered with a
hysteresis bandpass filter before they are ANDed together to create a 3D double difference
image (figure 2(c)). This filter operates in 2D and uses four threshold values T1, T2, T3

and T4. The 3D difference values that fall within the motion range [T2, T3] are most likely
to originate from arm movements. Pixels in the range [T1, T2]

�
[T3, T4] are also classified

as belonging to the arm if and only if they are connected with pixels from [T2, T3]. This
hysteresis principle yields less fragmented motion regions while excluding noisy image
regions. Too small motion regions caused by noise or unwanted motion along the body are
filtered by a size criterion.

When the relevant motion has been extracted, the data is mapped to a 3D world coor-
dinate system, resulting in a 3D motion point cloud representing the arm movements. An
example is shown in figure 3.

Figure 2.6: Depth image obtained by the active laser-based SwissRanger R© SR2 time

of flight sensor with the depth values represented by pixel color (image

from Holte et al., 2008).

Structured Infrared Light - the Kinect Sensor

Instead of explicitly measuring the depth based on time of flight, it is also possible

to use structured light for illuminating a scene and calculating the depth values

from the deformation of the projected pattern. This technology has appeared in

a famous consumer product in November 2010, the Kinect R© system (Microsoft,

2011) for the Microsoft R© XBox R© game console. With its market introduction,

the remarkable quality of the depth measurements of this novel sensing device has

inspired many researchers to also use this device for other applications than just

interacting with computer games. The sensing equipment of the Kinect R© system

intended for gesture recognition consists of three parts:

• An infrared light source to project a specific pattern in the scene.

• A 640×480 infrared CMOS camera to record the infrared pattern.

• A 640×480 RGB CMOS camera to record the visible scene (cf. next Section).

Figure 2.7 depicts an image from the infrared camera visualizing the structured

pattern projected by the active infrared light. The pattern is differently deformed

based on the shape of the human body it is projected on. With this it is possi-

ble to calculate from the deformations of the infrared pattern image the depth of

each infrared point, providing a depth image for the complete scene as depicted in

Fig. 2.8(left).

In addition to this depth image, the Kinect R© also contains a standard camera

to obtain an RGB image of the scene. The two outputs of the sensor that serve as

basis for gesture recognition are depicted in Fig. 2.8. By knowing the geometrical
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Figure 2.7: Image from Kinect sensor exhibiting pattern of structured infrared light.

relation between the depth image and the RGB image, both images can be mapped

to each other and for each color pixel value also its depth value becomes available.

This results in a so-called RGBD image.

(a) (b)

Figure 2.8: The data provided by the Kinect sensor after preprocessing are (a) the

depth image and (b) the associated RGB color image.

The additional depth information is an import cue used in the Kinect R© applica-

tion software for generating for each image several body pose hypotheses (Shotton

et al., 2011) that are then pruned in a tracking framework based on temporal in-

formation. This can be assumed to be done with the help of color information, but

no publication detailing this is available, yet. Nevertheless, the methods used by

the Kinect application software for recognizing body poses and gestures are similar
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in nature to the gesture recognition methods based only on vision-based sensing,

which is covered in the next Subsection.

2.2.3 Vision-based Sensing Methods

The methods outlined in the previous Subsections aim at providing the 3D position

of body parts. While markers and gloves deliver this data directly, the active

sensing methods require a preprocessing of the acquired data like, e.g., the Kinect

body pose recognition based on the generated depth image. Similarly, vision-based

sensing methods require a preprocessing to extract the relevant information. In this

Subsection, different passive vision sensors providing image data that can serve as

basis for body pose recognition are outlined.

Near-Infrared Cameras

Different from the application of far-infrared cameras together with infrared light

sources and reflective markers for obtaining the overall body motion, near-infrared

cameras can be used without any active light source for directly extracting the

image regions representing warm body parts (Sato et al., 2000). Obviously, this is

only possible if the gesturing human is acting in an environment that has a lower

temperature (see Fig. 2.9(a)). Similar to other vision-based sensing methods, the

images from infrared cameras allow the extraction of the 2D hand position and

possibly its shape if the image resolution is high enough. However, as the infrared

image pixels only represent relative temperature information, infrared images are

not suited for using any appearance-based hand recognition methods as it is com-

mon for processing color images (see below). Consequently, the position of the

hand can be extracted reliably, but already the details of the hand configuration

are difficult to classify based only on the shape of the hand. When it comes to

understanding hand actions in context, the limited information from an infrared

camera is even more restricting, as it does not provide any detailed information

about objects in the environment having normal temperatures. Therefore, and

because of the cost of such cameras, they are nowadays less often used for hand

gesture recognition, but they are intensively used for the task of human detection

in surveillance and automotive applications (see Fig. 2.9(b)).

Color Cameras

Performing vision-based sensing of hand gestures using color cameras is nowadays

a common computer vision application. An important aspect boosting vision re-
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(a) (b)

Figure 2.9: Images obtained from infrared cameras. a) indoor image with several

humans; b) outdoor image showing capabilities for pedestrian detection.

search was the availability of cheap digital cameras for easy interfacing with typical

personal computer hardware.

A simplification that has been applied mainly in the beginning of vision-based

gesture recognition (see, e.g., Starner and Pentland, 1995) and that makes the

extraction of visual features much easier is the use of specially colored gloves (see

Fig. 2.10(a)). However, as this requires the gesturer to wear special equipment it

is nowadays only rarely used in gesture recognition research.

(a) (b)

Figure 2.10: Gesture recognition using color images. a) setup using a colored glove

(image from Wang and Popović, 2009); b) setup where a robot observes

a gesturing human.
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Nowadays color cameras are typically used to monitor the gesturing human from

a distance without requiring him to wear specialized equipment (see Fig. 2.10(b)).

Consequently, this non-intrusive sensing method is applicable in a wide range of

interaction scenarios. Different from all the other sensing methods outlined above,

the image-based analysis of hand gestures seems, at first glance, to resemble how

a human observes another human performing gestures. Realizing a human-like

processing scheme is not very dominant in today’s algorithmic approaches to vision-

based gesture recognition but is of greater importance when it comes to analyzing

the context of gestures, i.e., incorporating information from other objects in the

environment.

Another sensing method being very closely related to color cameras is the use of

stereo setups consisting of two color cameras. In such a setup the depth information

can be acquired from the disparity between the images of the two cameras while

at the same time the color information is directly available. This setup is most

closest to how the human perceives its environment. However, the quality of the

depth information depends on finding matching structures in both images. This

can only be done for textured scenes, while for homogenous image areas no good

depth information can be extracted with today’s stereo algorithms. Therefore the

depth image is usually sparse, i.e., not all image pixels have an associated depth.

As the Kinect sensor has shown (see page 35), it is preferable to use a structured

light setup if the reliable acquisition of depth data is intended.

Multi-Camera Setups

Instead of sensing the gesturing human only from a single perspective, multiple

cameras are used in surveillance and ’intelligent room’ setups to observe the gesturer

from different positions as depicted in Fig. 2.11.

While the images from a single color camera are directly analyzed, images from

multiple cameras can be processed in two fundamentally different ways:

Early fusion: All images are preprocessed to explore the relationship between them.

For example, through calculating in textured image areas the image disparities

based on multiple images, a representation in the form of 3D points on the

human body can be obtained. This information can be used in addition to

the color image data from a single camera to infer the body configuration.

Late fusion: Instead of combining the raw data from multiple cameras, in the late

fusion approach each camera image is analyzed individually to find, e.g., body

parts (Sigal et al., 2004). This eases the detection task as different viewing

39



2 Gestures in Human-Robot Interaction

tion, all images undergo a foreground/background segmen-
tation, based on the illumination-invariant method proposed
by Mester et al. [11]. The segmented images are used as in-
put for the two cues driving the tracking process:
1) Edges in the color images, and
2) A color textured volumetric reconstruction

2.1. RGB Color Edge Detection
Motivated by Wesolkowski [21], a color edge detection in
the RGB color space is used to detect edges in the input
images. This helps to avoid shadow edges, which can e.g.
be caused by wrinkles in the casual clothing that we want
to allow. The fundamental problem of color edge detec-
tion however, is the computation of a meaningful color gra-
dient. In the same paper, different color vector difference
metrics have been evaluated and applied to different edge
detectors. Following from that comparison, we decided for
a mixture of a Euclidean Distance between color vectors
and the Vector Angle they make, where the choice between
these criteria depends on the intensity. A Difference Vec-
tor Edge Detector [19, 22] turns these results into an edge
map. The edge detector also takes advantage of the fore-
ground/background segmentation, by only focusing on the
foreground regions. This lowers its computational costs.

(a) Original. (b) Segmented. (c) Color Edges. (d) Gray Edges.

Figure 1: a) shows a camera image and b) the result of
the foreground/background segmentation. c) shows the edge
image computed by the color-based edge detector and d) the
edge image that one would obtain using a standard Canny,
gray-scale edge detector. Note that the wrinkles indeed pro-
duce fewer edges in the color version, as is clearly seen on
the right upper arm, while preserving structurally impor-
tant edges.

2.2. Colored Volumetric Reconstruction
In our previous work [10], we proposed a fast space carving
algorithm which is capable of computing a colored hull of
the subject from our multiple calibrated cameras.
The reconstruction algorithm is based on a fast voxel

based procedure. This procedure takes advantage of pre-
computed information and updates the reconstructed vol-
ume over consecutive frames, instead of computing it from

Figure 2: Upper row shows the five input images used to
compute the volumetric reconstruction on the lower row,
presented from different angles.

scratch. From the reconstructed volume, the surface vox-
els are identified and textured using a depth-buffer algo-
rithm. The voxel space has a resolution of 1283 voxels, cor-
responding to a precision of approximately 2.2cm. Fig. 2
shows an example of a colored volumetric reconstruction.

3. Superellipsoid Model
The human body model used for tracking is built from su-
perellipsoids which are a special case of superquadrics [1].
Superellipsoids allow for a compact representation of a
wide variety of convex shapes, such as spheres, cylin-
ders/cubes with rounded edges or ellipsoids in general. This
flexibility was used to build a model that approximates body
shape reasonably well, while still being very compact in
terms of the parameters needed for its specification. Sep-
arate limbs have been constructed as a seamless combina-
tion of a truncated superellipsoid, rounded off by a spherical
cap. Fig. 3 illustrates the model used for tracking.
A skeletal structure drives the model during the tracking

process. It consists of 10 joints with a total of 24 degrees
of freedom (DOF’s). The shoulders and hips have 3 DOF’s
each, the knees and elbows each have 1 DOF and the neck
has been given 2 DOF’s only since the twist of the head is
hard to track. The torso, as the root of all articulated chains,
is tracked with all 6 DOF’s of rigid motion (translation and
rotation). Together, all DOF’s determine the configuration
of the body model, represented by a configuration vector �p.

3.1. Computations on Superellipsoids
A superellipsoid is obtained by crossing two orthogonal su-
perellipses [1], thus its shape is controlled by the two shape
parameters 0 < �1, �2 < 2 of the two superellipses. Three
scaling parameters a1, a2, a3 for each axis define the dimen-

2

Figure 2.11: Images showing gesturing human from different perspectives taken

with multi-camera setup (images from Kehl et al., 2005).

angles result in a higher likelihood to detect each body part from a defined

perspective. Only after this generation of intermediate results for each camera

is the fusion performed to obtain the final processing result.

Obviously, a multi-camera setup providing different viewing perspectives cannot

be used with a mobile robot unless an existing stationary multi-camera infrastruc-

ture can be accessed by the robot. With the progress in gesture understanding al-

gorithms sensing the gesturing human from a single perspective only, multi-camera

setups are, therefore, primarily used today in surveillance applications.

2.2.4 Choosing the Right Sensor

Based on the descriptions of the different sensing methods given above, the sensing

method most appropriate for interaction with a social robot can be selected. For

a natural interaction a non-intrusive approach is most suited as it allows any user

to start interacting with the robot directly without first preparing himself by at-

taching markers or wearing gloves. While active sensors deliver depth images that

provide 3D information about the scene, this data typically lacks color information.

However, color images are likely to be needed for recognizing objects in the envi-

ronment that are an important source of information for the automatic analysis of

manipulative and referential gestures.

Nevertheless, depth data from stereo cameras or an active sensor can support the

gesture recognition task as exemplified by the Kinect system. Whether or not to

use an additional active sensor depends also on the focus of the research: Humans

do not have such a sensing capability and only rely on their two eyes and a lot

of visual experience to infer depth. Image processing approaches extracting depth
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2.3 Design Decisions for Gesture Understanding Systems

based on image data from a stereo camera are still far from reaching human-like

performance, so the use of special depth sensing in addition to a color camera

circumvents this issue. At the same time, through using not only depth data but

also color image data, a social robot becomes more comparable in terms of its

capabilities and is likely to be capable of building up human-like representations

that can be communicated in the interaction between the robot and a human. As

will be demonstrated in Chapter 6, color image data also allows the extraction of

the scene context for understanding manipulative and referential gestures. Before

turning in the next Chapters to the details on how to realize vision-based gesture

understanding and context incorporation, the next Section will give an overview

of design decisions relevant for realizing systems performing the analysis of sensor

data.

2.3 Design Decisions for Gesture Understanding

Systems

Having outlined the types of gestures to be recognized and the choice of a color

camera as sensor, this Section will cover general design decisions for realizing a

vision-based gesture understanding system. The vision-based recognition of human

body motions has attracted a lot of interest in the image processing community

over the years. This has resulted in a huge number of publications each dealing

with different aspects of the problem. A number of reviews have tried to sum-

marize the state of the art with respect to motion of the overall body (see, e.g.,

Moeslund et al., 2006; Wang et al., 2003; Moeslund and Granum, 2001; Gavrila,

1999; Aggarwal and Cai, 1999) as well as with a focus on hands and hand gestures

(see, e.g., Erol et al., 2007; Wu and Huang, 1999; Pavlovic et al., 1997). Notably,

in both fields some authors of reviews concluded a decade ago that the field of

vision-based motion/gesture recognition was still in its infancy (Wang et al., 2003;

Moeslund and Granum, 2001; Pavlovic et al., 1997). However, with the increase

in computational power and the progress on the sensor side (especially the Kinect

sensor outlined in Section 2.2.2), the technological basis for gesture understanding

has advanced substantially in recent years. At the same time, the demand for more

intuitive user interfaces has driven research efforts. Both aspects have resulted in

first commercially available gesture interfaces, most notably the Kinect system. Dif-

ferent algorithmic approaches have been developed for the recognition of static and

dynamic gestures and are outlined in subsequent Chapters of this book, while this

Section introduces general design decisions for such gesture understanding systems.
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2 Gestures in Human-Robot Interaction

2.3.1 Graylevel vs. Color Images

An obvious design decision is the choice of the input data used for hand gesture

recognition. In the early days of image processing, all algorithms relied on gray

level images for analysis. Color images were rarely used due to the costs of video

cameras and, more importantly, the increased computational effort associated with

processing three color values instead of one gray value. Nowadays, the compu-

tational effort is less relevant in the design decision and the intended application

can guide the choice of input data. This choice can be guided by looking at the

way in which the human visual system is organized: it has different receptors for

luminance and color information and the processing of these two receptor types

also differs: luminance is used to perceive motion and to see in three dimensions

using both eyes, while the color information is used primarily for object recognition

(Encyclopedia Britannica, 2011).

Consequently, when aiming at the detection of hands in single images, it seems

obvious that color images are the better choice. While today indeed many ap-

proaches for static hand posture recognition use color, there is one major drawback

to this in algorithmic solutions: The human visual system has the capability of

automatically correcting the perceived color based on the color distribution of the

light sources illuminating the scene. This so-called color constancy (Funt et al.,

1998) is a topic of active research and algorithmic solutions to realize this feature

for image processing tasks still have requirements that cannot easily be fulfilled

in standard applications (Morel et al., 2009). Consequently, if color image data is

used in recognition approaches it is often associated with the implicit assumption

that the lighting conditions are fixed, i.e., variations during the interaction have to

be excluded. This allows to use offline-trained color representations or to initialize

the color model at the beginning of the interaction.

However, often lighting conditions cannot be fixed. For example, even if there

seems to be normal lighting from the subjective experience of a human observer,

a typical indoor scene is usually not as homogeneously illuminated as it is done

for taking professional pictures. As a result, the hand undergoes different lighting

conditions while moving in the scene. As a consequence of these challenges many

earlier approaches that had to perform robustly in environments where the lighting

could not be fully controlled (e.g., rooms with windows) often used gray level hand

representations, even if the recording camera was a color camera, and focussed on

using shape or motion information. In more recent approaches, in order to cope

with the resulting changes of hand appearance, the hand color representations are

adapted online to changing lighting conditions.
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2.3 Design Decisions for Gesture Understanding Systems

2.3.2 Data-driven vs. Model-driven Processing

(Bottom-up vs. Top-down)

Besides the choice of input data, one key characteristic of a recognition algorithm

is whether it is data-driven or model-driven. If an algorithm first performs its

computations on the input data and constructs out of the results more complex

analysis results, this is called a bottom-up processing scheme (Dewey, 2011, Ch.

7). In contrast, if an abstract model is used as representation based on which the

algorithm tries to fit the input data to this model, it is called top-down processing.

For recognizing hands both methods are in use. For example, in a bottom-up scheme

(see Fig. 2.12(a)) generic detectors for individual fingers would be applied and a

hand position could be hypothesized based on all finger detection results. In a top-

down scheme (see Fig. 2.12(b)) one would select the hand model to be recognized

from a database and run four finger and one thumb detector at the estimated hand

position to verify or falsify the existence of the fingers. Subsequently, based on the

matches of the individual finger detections the decision is made whether the hand

model could be matched well enough to the image. If the match is good enough,

the hand model from the database is considered to be present in the image.

Both types of processing schemes have different advantages when it comes to

building recognition systems:

Data-driven Processing: The bottom-up scheme does not need sophisticated mod-

els and allows to start a recognition algorithm on the input data without any

explicit a priori knowledge of the gestures to be recognized. Instead, the rules

describing how to process the data and how to compose elementary parts

together to more complex recognition results have to be defined. Potential

drawbacks are the large computational load and the potentially large amount

of false positives when running the recognition on any input data. The latter

is due to the fact that visual scenes are often ambiguous, i.e., the coded rules

have to be general enough to detect all gestures, resulting in misdetections

if a visually similar scene is encountered. This problem can be alleviated by

incorporating context knowledge (see Section 2.1.5 on page 29) restricting the

recognition results to those that are meaningful in the current situation.

Model-driven Processing: In the top-down scheme the recognition process is

rather a verification, enabling to concentrate the computational effort on a

small part of the input data if the system has expectations of the gestures

to be recognized. Consequently, such a scheme is less likely to produce false

positives. Through relying on a priori defined models, however, this scheme
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Group Fingers

Hand Detection

Finger positions

Finger Detection

Input Image
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(a) Data-driven approach

Verify finger existence
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Model information

−verified finger positions
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Input Image
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Verified hand position

Hand position + orientation
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...
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(b) Model-driven approach

Figure 2.12: Exemplary visualization of the different processing schemes. (a) Data-

driven (bottom-up) detection of a hand based on detecting its fingers;

(b) Model-driven (top-down) search for image structures that match

the expected hand model.
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has difficulties with situations that are not captured in the predefined models,

i.e., it can result in a larger number of false negatives. For example, if an

unknown hand configuration is encountered, none of the hand models can

be matched correctly to the image data. Usually the best match will be

delivered as recognition result, but in this situation the best match can be a

completely different gesture. Another crucial point is the necessity to have a

priori knowledge about what model is applicable and where in the image the

model is expected. Therefore, the effort of creating appropriate models for

top-down processing is a major challenge. Furthermore, depending on the

application, the smaller robustness towards unexpected hand configurations

can be a major disadvantage.

The description given has tried to point out the differences in both processing

schemes. Nevertheless, such a clear separation is usually difficult for categoriz-

ing algorithmic approaches: many approaches follow one scheme for the overall

organization but incorporate aspects of the other scheme in the individual steps.

Consequently, a complete system often incorporates both concepts to a varying

degree in its algorithmic realization.

2.3.3 Modular vs. Holistic Approaches

While the previous Subsection covered the direction of the processing flow, another

design difference in recognition algorithms concerns the architectural granularity

for organizing the recognition process. At the two extremes of this system design

decision are A) a modular architecture with several building blocks and B) a holistic

approach with very few building blocks.

Modular Architecture: In a modular architecture, the recognition procedure con-

sists of a set of processing steps that have to be carried out to obtain the

result. Consequently, the coordination of the different steps and the exchange

of data between them has to be engineered appropriately. While this requires

additional effort, it has the benefit that the different processing steps can be

individually adapted or improved, as intermediate results can be evaluated.

Additionally, the results can be used in parallel for a variety of other tasks.

For example, in a modular bottom-up approach (see Fig. 2.13(a)) the task of

detecting a hand in an image can consist of steps to find skin-colored fingers,

group fingers together that can belong to a single hand, and finally classify

the grouped fingers with a potential palm area to be a hand.
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Figure 2.13: Different architecture designs for hand detection. (a) Modular ap-

proach allowing to use intermediate processing results also in other

parts of the overall interaction system. (b) Holistic approach prohibit-

ing access to intermediate results, this is usually due to the use of

internal models that are themselves holistic.
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Holistic Architecture: The flexibility of modular approaches and the parallel use

of intermediate results for other tasks is not available in holistic approaches to

hand gesture recognition (see Fig. 2.13(b)). For example, the task of detecting

a hand in an image is solved in these approaches by matching some kind

of appearance-based hand model that has been trained on large amounts of

training data beforehand. This means that no intermediate processing results

are available, and also no partial detection is possible, which is an important

feature when dealing with partial occlusions. While holistic approaches can

be adapted to different tasks simply by running the training again on the

corresponding data set, they usually lack the feature of online adaptivity. So

they are only applicable to the trained task and for every new task a new

training set and a corresponding recognizer are needed. Alternatively, the

system can be re-trained to cope with several different tasks at once, but

here care has to be taken that the holistic representation can actually model

the different tasks without becoming unspecific, i.e., too generic for a good

recognition quality.

For actually creating a gesture understanding system, the type of architecture is

partly determined by the algorithmic approach and partly by the application. With

increasing complexity of gestures to be recognized and context to be incorporated,

the choice will likely be a modular approach, as this allows incremental coding

and testing as well as an easier collaboration if different people are involved in the

implementation.

2.3.4 Gesture Recognition vs. Hand Detection/Recognition

The previous Subsections have covered architectural design decisions of gesture

recognition approaches. In this Subsection, we want to provide a broad picture of

what information is actually extracted from the individual images and how this

information is integrated over time. As outlined in Section 1.5, the detection of

a hand provides its position, while the recognition includes information about the

hand posture. For the recognition of pointing and manipulative gestures that are

considered here (see Section 2.1.4), different ways of modeling a gesture are possible.

On the highest abstraction level, the model for the complete gesture can either

use some kind of holistic representation implicitly containing time information or

it can be represented by a sequence of hand positions/postures over time. In the

latter case, the hand has to be found in each individual image for analyzing the

overall sequence. As explained before, this task can be supported by using top-

down information about the hand position in the last image. Finding the hand
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2 Gestures in Human-Robot Interaction

in a single image can require either a simple detection of the hand position or the

recognition of the hand posture.

The difference between hand detection and hand recognition is important for

recognizing gestures where not only the hand motion but also the hand posture are

important. For example, when waving a hand, the number of stretched out fingers

makes a difference: all fingers (’hello’) or only the index finger (’no no’). However,

many gesture recognition approaches are based only on hand detection and ignore

the actual hand configuration while the gesture was performed. For the special case

of a pointing gesture it should be noted that intuitively the recognition of the hand

posture in a single image should be sufficient. However, the entity or object that

was pointed at can only be extracted reliably by including trajectory information.

The different levels of processing results (position vs. posture) and the different

ways of representing the temporal information to achieve gesture recognition can be

matched to different algorithmic approaches. In order to allow a better understand-

ing of the individual algorithmic steps, different Chapters of this book are devoted

to the individual steps. However, as pointed out before, there are a variety of ways

to realize gesture understanding, therefore these next Chapters are linked together

only loosely. Especially for modular approaches, the overall gesture recognition

approach is a combination of the algorithms detailed in the individual Chapters:

Methods for hand detection and hand recognition in isolated images are described

in detail in Chapter 3 while the temporal association of individual results is covered

in Chapter 4. On the highest abstraction level, the recognition of gestures without

context can be found in Chapter 5. Combining the information of gesturing hands

with context can be done on different levels and is described in Chapter 6.

In each Chapter links to the previous Chapters are made where appropriately.

With the exception of holistic approaches, this should allow the reader to keep track

of the different abstraction levels for realizing gesture understanding.

2.4 Summary

This Chapter has covered the basic issues relevant for following the methods and

techniques for gesture understanding described in the next Chapters. Starting from

general gesture categorizations, the restriction to the domain of human-robot in-

teraction as well as practical considerations with respect to the state of art have

motivated the focus on referential and manipulative gestures. For understanding

these two types of gestures, the incorporation of context information into the recog-

nition algorithms is of great importance.
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2.4 Summary

For performing the actual gesture understanding, sensors observing the human

gesturer are required. In this Chapter different sensor types have been reviewed in

terms of their advantages and disadvantages for enabling a natural human-robot

interaction. While classical gesture recognition approaches only required sensing

of the human, additional requirements have to be met for understanding the two

gesture types considered here: for referential gestures the objects that are the

subject of the reference have to be sensed by the robot and for manipulative gestures

the objects that are manipulated have to be recognized. These requirements result

in the choice of a color camera as best sensor, as it represents the environment in

a similar way as a human perceives it.

In order to realize gesture understanding based on camera images, vision-based

algorithms have to be applied to the image data. Although there is a wide variety of

algorithmic approaches, there are some general design decisions that influence the

characteristics of the resulting approaches and have been reviewed in this Chapter.

With the material covered, the reader now has the background knowledge for

following the detailed descriptions in the next Chapters, detailing the different

algorithmic steps required for understanding gestures in human-robot interaction.
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3 Detection of the Hand

A precondition for any gestural understanding process is the availability of informa-

tion about the gesturing hand. In this Chapter, methods for the extraction of the

gesturing hand from isolated images will be outlined. First, the difference between

hand detection and posture recognition will be outlined in Section 3.1. Subse-

quently, a detailed description of bottom-up methods for hand detection based on

visual features is provided in Section 3.2 and the use of actual 2D or 3D models for

solving the detection task in a top-down manner is covered in Section 3.3.

3.1 Hand Detection vs. Posture Recognition

Obtaining information of the gesturing hand from a single image requires either the

detection of the hand position or the recognition of the hand configuration. Notice

that a successful recognition implicitly provides the hand position, i.e., it enhances

the hand detection with additional information about the hand configuration. In

this Chapter, we assume that some kind of representation for the hand is used to

detect the hand position or the hand configuration in different images. An example

image sequence of a pointing gesture that will serve as reference for this and later

Chapters is depicted in Fig. 3.1.

Figure 3.1: Image frames from an example image sequence depicting a human point-

ing at a coffee mug.

Figure 3.2 visualizes the result of a successful hand detection as white cross in the

example images and the recognition of the complete hand configuration is visualized

51



3 Detection of the Hand

by a green polygon around the hand shape. In general, the detection task is much

easier, as for the recognition task many detailed hand configurations need to be

modeled and recognized. For the highly articulated and flexible human hand this

poses a challenging problem as it is capable of generating a huge number of different

configurations. Therefore, detection approaches applying general features like, e.g.,

the hand color are usually easier to implement and more robust.

model

hand

Generic

Detect handDetect hand Detect hand

Figure 3.2: Sequence of images depicting the different types of results provided by

hand detection algorithms: 1) white cross depicting the detection of

the hand position only; 2) green hand and finger shape indicating the

detection of specific hand configurations.

Obviously, recognition approaches have to use models for the hand configuration

that allow some kind of abstraction, but what is the right level of abstraction? In

other words, how many different models are needed to capture all hand configura-

tions relevant to the task? If each gesture to be recognized is characterized by a

single specific hand configuration that remains unchanged throughout the gesture,

the answer is straightforward. However, the assumption of a fixed hand configura-

tion will not hold for manipulative gestures. The danger of having a limited number

of models lies in not successfully recognizing the hand in all images of the sequence.

It is therefore advantageous to go beyond the analysis of individual images. The

processing of image sequences builds on the methods used for analyzing single im-

ages and this Chapter will cover the basic methods for processing individual images

while Chapter 4 will then focus on methods for analyzing image sequences.

In the following two Sections different approaches aiming at the detection of

hands or the recognition of hand postures from single images are reviewed. The

approaches are grouped based on the type of modeling they apply. Section 3.2

covers methods directly modeling visual features of the hand while Section 3.3

outlines methods applying some kind of geometric hand model.
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3.2 Modeling the Hand’s Visual Features

3.2 Modeling the Hand’s Visual Features

One large body of research is comprised of approaches that model the hand as a

whole based on different types of visual features. Given a sufficiently large differ-

ence in the visual appearance of the hand to be detected and the background, a

straightforward feature of a human hand is its shape. Therefore, approaches using

this feature will be reviewed first before dealing with color-based and appearance-

based modeling of the human hand.

3.2.1 Hand Shape

The shape of the hand and its outline are easy to detect for humans under nearly

every lighting condition. However, extracting the hand contour with computer

vision algorithms is much more difficult. This is due to the fact that the decision

where the hand is in the image is not obvious when using only basic image features

like edges. This is demonstrated in Fig. 3.3 where for an example image the output

of an edge detection algorithm is shown.

(a) (b)

Figure 3.3: Example input image and resulting image after edge detection.

Obviously, in a bottom-up approach the amount of detected edges is difficult to

handle. Methods performing edge detection directly on the input data are therefore

primarily used in top-down approaches applying some kind of model that guides

the selection of relevant image areas and edges. Such approaches are the topic of

Section 3.3 while we here will concentrate on how to use the hand shape directly

in a bottom-up manner.

In order to reduce the amount of features extracted, it is desirable to concentrate

on the relevant image area. One way to achieve this is the use of color information,
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i.e., to analyze only the skin-colored image areas (see also Section 3.2.2). However,

if the image contains not only a hand but also other skin-colored objects like, e.g.,

a head or wooden parts then color may not be sufficient. A standard approach

avoiding an explicit skin color model is to use additional restrictions on the image

background.

For example, if only communicative gestures are to be recognized in a non-natural

setting, a uniformly colored background like, e.g., a dark wall can be chosen. With

such a distinctive background, a preprocessing step in the form of a binarization

of the input image results in an intermediate image that only contains the hands

and possibly a face. A closely related method is background subtraction where an

image of the nearly static scene without the acting hand is learned. This back-

ground model can be represented in different ways, for example by modeling each

individual pixel as a Gaussian color distribution as shown by Wren et al. (1997).

By subtracting from an input image the learned background model, the differences

between the learned image and the current image are obtained. If only the gestur-

ing hand is of interest, the background model should contain the human so that the

difference is largely the gesturing hand (see Fig. 3.4). This, however, works only

if the human does not change his position, otherwise the difference to the original

position will cover a large part of the difference image. The image subtraction does

not differentiate whether the change comes from a new foreground object or an ap-

pearing background object (if this area is covered in the background model by the

human in its default position), individual pixels have to be classified as foreground

or background in order to obtain a binary image containing the hand area.

Figure 3.4: Result image obtained by performing ‘background’ subtraction. Note

the two left hands resulting from the difference between the background

hand position and the current hand position.
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Similarly, if hand gestures in front of a projection wall are to be recognized, the

projected image can be subtracted from the camera image containing the hand and

the projection. In this way, the hand and arm are segmented and can be used to

obtain the hand contour (Licsar and Sziranyi, 2005).

Instead of modeling the background or assuming that the hand has a distinctive

color, it is also possible to rely on the fact that the human hand is acting in the scene,

i.e., it is moving. If the background can be assumed to be static, then segmentation

algorithms relying on image motion can be used to extract the hand. Extracting

image motion can be done by performing image differencing on two subsequent

images (Gonzalez and Woods, 2001). The resulting difference image depicts image

pixels that have changed as shown in Fig. 3.5. While this method only detects

non-constant pixels including background pixels that appear if the hand in the

foreground moves away, the more complex optical flow algorithms provide for each

individual pixel a motion vector indicating the direction of the motion (see, e.g.,

Willert et al., 2006). In order to perform contour extraction, such a flow field has

to be segmented into ‘static’ and ‘dynamic’ areas. Notice that such motion-based

approaches can only be applied if the image to be analyzed is part of an image

sequence that is captured at a sufficiently high frame rate and if the observing

camera is static.

(a) (b)

Figure 3.5: Difference image depicting hand motion. a) binary segmentation result;

b) with original pixel data overlaid.

After extraction of a binary segmentation image containing the hand, contour

extraction algorithms can be used to get the hand’s contour from the hand region

(Gonzalez and Woods, 2001). This contour can be transformed in a variety of

different representations like, e.g., the curvature of the contour (Kang et al., 2004).
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For the actual recognition of hand postures a variety of different representations and

pattern matching techniques have been described in the literature. For example,

Licsar and Sziranyi (2005) represent the hand contour by Fourier descriptors. A

more local approach by Belongie et al. (2002) applies point features capturing at

different points of the contour in so-called shape contexts the surrounding contour

parts. In order to measure the similarity between contours, the integration of

generative models and feature-based approaches in an expectation-maximization

framework has been proposed by Tu and Yuille (2004). There are, therefore, many

different techniques available to represent hand contours and perform the pattern

matching task of associating an extracted representation with stored templates.

However, no single technique has proven to be the ultimate solution for the wide

variety of interaction settings and hand configurations.

Note that all methods described above for extracting contours are not well suited

for human-robot interaction in unconstrained environments as they place con-

straints on the image background. As it cannot be assumed that the background

has a certain color or is a static scene without other moving humans, approaches

extracting the hand shape have primarily been used for human-computer interac-

tion where the hand gestures were performed above an empty table or in front of a

projection screen or static background.

3.2.2 Skin Color

Another way to guide the search for a hand in a color image is to use skin color.

An important advantage is that color is a rotation and scaling invariant feature.

For the detection of a human hand, skin color can be used to simplify the hand

region segmentation process as it does not require image motion and can cope

with arbitrary variations in the background as long as they are not skin-colored.

Several researchers have carried out basic studies on the properties of skin color

and methods to model skin color to perform pixel classification. We will review in

the following some important contributions to this field.

Representing Skin-color

A basic paper by Yang et al. (1998) analyzes the color properties of face images

based on a database containing about 1000 faces of people of different races. In

their work three properties important for modeling skin color are identified:

1. Skin color is clustered in a small region in a color space, i.e., the individual

color values are not randomly distributed. The clustering property is inde-
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3.2 Modeling the Hand’s Visual Features

pendent of a specific color space, only the compactness of the cluster varies

for different color spaces (see also J.-C. Terrillon and Akamatsu, 2000; Zarit

et al., 1999)).

2. The variance of the skin color distribution can be reduced by intensity nor-

malization. Choosing a color space with intensity normalization is therefore

advantageous for modeling skin color. Yang et al. propose the normalized

color space that is obtained by removing the luminance from the color repre-

sentation through normalization of the individual RGB values:

r =
R

R +G+B
g =

G

R +G+B
b =

B

R +G+B
(3.1)

As the value for b can be calculated based on the values of r and g with

b = 1− r − g, it does not contain additional information and the normalized

color space is therefore in the following referred to as r-g color space.

3. The skin color distribution for a specific lighting condition can be character-

ized by a multivariate normal distribution in the normalized color space.

In another study focussing on skin color present in isolated pictures collected

from the internet, Jones and Rehg (1999) analyze a total of 4675 images contain-

ing skin. They compare two methods for modeling normalized skin color, namely

mixture models and color histograms. Their results indicate that Gaussian mix-

ture models are a feasible approach to recognize human skin in environments with

limited training data but are outperformed by histogram models otherwise.

An important aspect that must be noted is the fact that studies using pho-

tographs do not represent the image quality provided by a normal camera mounted

on a mobile robot. Pictures taken by a human photographer have a superior image

quality. The images of an image sequence taken automatically during observing a

gesturing human may exhibit, for example, heavy shading due to insufficient light-

ing. Therefore the skin pixels contained in such images will cover, compared to

pixels from a photograph data set, a wider range of the color space that has a

larger overlap with non-skin pixels making a discrimination more difficult. A solu-

tion to this problem is the use of a temporary skin color model that is continuously

adapted to the current lighting situation (see also Section 4.3.1).

Representing the Global Skin Distribution: the Skin Locus

Störring et al. (1999, 2001) focus in their work on the properties of skin color in

faces of different ethnical subjects under changing lighting conditions. Their study
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3 Detection of the Hand

verifies a physics-based model of skin color that predicts the appearance of skin

color under varying lighting conditions. For this purpose images of different people

under different illumination conditions are captured. The test set consists of seven

subjects from around the world (Latvia, Denmark, Greece, Spain, China, Iran,

India and Cameroun) to capture all possible variations of skin type.

Controlling the illumination conditions and knowing the spectral sensitivity of the

camera allows to prove the validity of a theoretical framework modeling how skin

color distributions are affected by changing illumination conditions. The relation

between changes in the lighting condition and the resulting changes in the mean

skin color chromaticity can be seen in Fig. 3.6. The distribution of the individual

skin color values under the four illumination conditions for the Caucasian skin type

(from Latvia) can be seen in Fig. 3.7.
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Figure 3.6: The location of light sources and corresponding mean values of skin

color areas calculated with a theoretical model for different color tem-

peratures (image from Störring et al., 1999).
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Figure 3.7: The distribution of the individual skin color values for the Caucasian

skin type from Latvia (image from Störring et al., 1999).
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3.2 Modeling the Hand’s Visual Features

Following the theoretical model, it is shown that the area occupied by the skin

color distribution of all different skin types under all possible lighting conditions

occupies a shell-shaped area in the r-g normalized color space. This area can be

modeled by two quadratic functions and is referred to as the skin locus in the

following.

Using the Skin Locus

For real applications the area of the actual skin locus can be measured from labeled

training images for all relevant illumination conditions. This avoids knowing the

spectral sensitivity of the camera sensor. Using a measured skin locus allows to

realize a preprocessing step in skin color segmentation approaches by discarding

all pixel values that are not contained in the measured skin locus (Soriano et al.,

2000). The size of the measured skin locus depends on the skin color of the training

subjects and the illumination conditions of the training images. With such a skin

color filtering, it is possible to obtain the hand region in the image (see Fig. 3.8).

By performing a connected-components analysis (Gonzalez and Woods, 2001) on

the segmentation result, a polygonal description of the hand region can be obtained

and the center-of-mass of the region represents the hand position.

Figure 3.8: After filtering an image with a skin color model it only contains skin-

colored pixels.

However, often a rather coarse skin color model has to be used to guarantee

that the hand is found under varying lighting conditions. Consequently, other

image parts having a color close to the skin color are also often contained in the

segmentation result. The combination of a skin color segmentation algorithm with

background modeling or motion detection techniques is therefore often used to

improve the segmentation result. Alternatively, a posture recognition can be carried
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3 Detection of the Hand

out by applying a shape analysis on the segmentation result (see Section 3.2.1)

or analyzing the region for hand-like features using model-based hand detection

methods as outlined in Section 3.3.

3.2.3 Hand Appearance

Instead of separating the hand from the background and relying for the recognition

on a correct segmentation result, methods modeling the hand appearance directly

use the complete image area depicting the hand as input. The simplest modeling

of the hand appearance is to use the image directly as a template and apply a cross

correlation technique to perform template matching (Gonzalez and Woods, 2001).

The templates implicitly contain some part of the background, but as long as this

part is small and has no explicit structure, the cross correlation technique allows

a good matching performance. The drawback of this method is its sensitivity to

changes in the appearance caused by the flexibility of the hand or lighting variations.

A technique that has been successfully applied for face detection and is less

dependent on the appearance of the individual training images is the Eigenfaces

approach introduced by Turk and Pentland (1991). Here, an image is considered as

a vector and the covariance of a large set of such vectors, i.e., many face images, is

analyzed to obtain its eigenvectors. As this technique does not require the images

to contain faces and has been applied to other recognition problems as well, its

more generic name is Eigenimages. Following its success in face recognition, it has

also been applied to detect hands under the term Eigenhands (Horimoto et al.,

2003).

Another technique that has proven successful for face detection was originally

proposed by Viola and Jones (2004) and applies a boosted cascade of very simple

features calculated on image patches. Through applying the AdaBoost algorithm

from machine learning during training, a strong classifier is obtained as a combina-

tion of several weak classifiers. Through a careful implementation in the form of a

cascaded classifier and the choice of simple features this approach is very fast and

robust. Due to its simplicity, many applications have been published that use this

approach for recognizing different hand gestures (see, e.g., Kölsch and Turk, 2004;

Wang and Wang, 2008). Figure 3.9 shows example training data and an image

where several successful detections are visible.

Besides the above mentioned techniques inspired from face detection there are

many more specialized feature extraction methods applying a wide variety of dif-

ferent representations (see, e.g., Heidemann et al., 2004; Lu et al., 2005; Chuang

et al., 2011).
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3.2 Modeling the Hand’s Visual Features

(a) (b)

Figure 3.9: Hand gesture training data and detection results. (a) Training examples

for pointing (top row) and stop (bottom row) gestures; b) Detection

results of classifier.

For example, Heidemann et al. (2004) describe a processing chain to classify the

pointing direction of hand postures on a dark background. The raw images are

preprocessed by a vector quantization stage and a subsequent local principal com-

ponent analysis (PCA) to obtain feature vectors. For classification of the feature

vectors a variant of a self-organizing map called local linear map is applied.

To give another example, Lu et al. (2005) propose to use the Fourier transform

of a circular spatial histogram to represent the hand posture. A skin color model

is applied to find the hand position and six histograms are constructed based on

differently sized rings around this position. The six histograms are concatenated

to form a feature vector and a Fourier transformation is applied to obtain the final

feature vector for matching with stored templates.

The various approaches are difficult to classify in a specific category and, more

importantly, there is no common benchmark that would allow to compare their

recognition quality. Many appearance-based feature extraction methods are rather

engineered for a specific setting and have not found wider applicability. A gen-

eral trend, however, in appearance-based approaches is the use of machine learning

techniques to handle the large amounts of training data necessary to achieve ro-

bust hand detection. Since the pioneering work by Viola and Jones (2004) using

Adaboost for automatic feature selection and classification, this is a dominant ap-

proach that is replacing the hand-engineered feature design in recent years.
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3.3 Model-based Hand Detection

Instead of a purely bottom-up detection approach based on general feature extrac-

tion, the knowledge that the hand to be detected is observed in specific configu-

rations and has specific constituents can be used in a top-down detection process.

Modular approaches model the hand as consisting of several parts, notably fin-

gers, and are reviewed in Section 3.3.1. In contrast, holistic approaches represent

the visual appearance of the hand as a whole, these approaches are the topic of

Section 3.3.2.

3.3.1 Explicit Modeling of the Hand Constituents

Detecting the hand in a modular approach amounts to successfully detecting its

parts. Detecting the fingers can be done based on the approaches outlined in the

previous Section 3.2 by analyzing the data locally instead of globally. For exam-

ple, instead of searching for a complete hand shape, the same feature extraction

technique can be used to search for a finger shape. If this is done without any a

priori knowledge of the rough hand position, this would again resemble a bottom-up

processing scheme. However, as the finger shape is not as specific as the shape of

the overall hand, more false positive detections would result from such a bottom-

up approach. Consequently, detection approaches aiming at the hand constituents

are usually based on the assumption that the rough hand position is available as

top-down information to restrict the search space (see Fig. 3.10).

Model−based hand detectionFinding hand candidates

Input image Potential hand regions

Figure 3.10: Global hand hypotheses as precondition for local model-based hand

detection.

The rough hand position can just serve as a spatial prior or it can already provide

preselected data like, e.g., the segmented skin-colored area, on which to perform

the algorithmic steps for hand detection. For example, von Hardenberg and Berard

(2001) assume that the hand segmentation is available and analyze the result-

ing hand region to find finger-like region parts. Figure 3.11 depicts such a local
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Hand Detection

Search window

Finger width

Fingertip templatesegmentation
Skin

Hand image Detected Posture

Finger Detection Group Fingers

Figure 3.11: Local model-based hand detection applying a parametric model for

fingertip detection.

model-based hand detection relying on the detection of individual fingertips using

a parametric model.

By using an explicit hand model, the overall posture can be classified correctly if

the right number of fingers, i.e., the number of fingers visible in a specific gesture,

is successfully detected. Such an exact modeling of the fingers relies on the correct

hand view, i.e., the complete visibility of the hand in its ‘normal’ orientation. If the

hand has some kind of default orientation, i.e., if the gestures are performed over a

desk or in front of a wall, such constraints may hold. However, for unconstrained

gesturing of a hand like in human-robot interaction such an explicit hand modeling

may not be appropriate due to self-occlusions of the fingers. Similarly, when a

human manipulates an object, this usually results in some fingers being occluded

by the manipulated object.

Taking the idea of model-based hand detection further, more complex hand mod-

els have been applied in recent studies. Instead of simply modeling the number of

fingers, the hand is modeled as a kinematic model consisting of the palm with five

fingers including all joint angles of the individual fingers. Consequently, such a

model contains many degrees of freedom, typically around 27. Detecting with such

a model the hand posture in a single image becomes a high dimensional search

problem.

One way to avoid dealing with the full model complexity directly is to use de-

tectors for the fingertips and apply inverse kinematics to obtain the joint angle

configuration. For example, Nölker and Ritter (1999) apply fingertip detectors in

gray level images to get the 2D fingertip position. Using a parameterized self-

organizing map, the mapping between the observed 2D fingertip location and the

finger joint angles is realized.
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Technically, it is also possible to use the full 3D complexity of a hand model and

try to map the expected 3D shapes of its constituents in a top-down approach to vi-

sually observable features. If only 2D image features are available, such an approach

has to cope with possible self-occlusions and ambiguities in the 2D appearance of

the 3D posture. Approaches performing such model matching are therefore usually

not applied to single images but to image sequences where the hand configuration

detected in the previous frame serves as top-down information to initialize and

restrict the search space (see Section 4.5.1).

3.3.2 Holistic Models of the Hand

Instead of modeling the hand by its components and their relations, some algo-

rithms apply a holistic representation of the complete hand that is constructed from

training data. This type of approaches could also have been listed in the bottom-up

detection approaches in Section 3.2.3, as they usually rely on the hand appearance.

However, by learning a representation that realizes an abstraction from the raw

appearance data, these approaches are different from a direct template-based hand

representation.

For example, Triesch and von der Malsburg (2001) model a hand posture by

a graph where each of the 15 graph nodes represents the appearance of a small

part of the hand. The 15 node positions are chosen manually for each of the 12

different postures to be recognized. For each node position a local image descriptor

is learned from training data. During recognition, elastic graph matching is applied

to find the graph that matches the input image best. As this technique does not

require any image segmentation, it can be applied to arbitrary input images. The

approach can cope with arbitrary backgrounds and exhibits high recognition rates

for a limited set of hand commands. Note that this does not represent a modular

approach, as the graph nodes are chosen based on the task at hand and are therefore

a holistic hand representation.

A more sophisticated approach to detect a hand is the use of a sophisticated

3D model of the hand. Different from the modular approach of projecting the

hand constituents to 2D shapes, in a holistic approach the complete 3D hand con-

figuration is projected to a 2D shape (see Fig. 3.12). Different from the direct

shape-based detection introduced in Section 3.2.1, this holistic approach is based

on an underlying complete 3D hand configuration. It can therefore be adapted

more easily to different hand sizes and capture the perspective occlusions better.

The most important advantage of this approach, however, comes only into play if

it is used for tracking a hand: having detected the 2D hand shape of an associated
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Projection 3D −> 2D Match contour with
segmented object

3D hand model 2D hand contour
segmented hand

Figure 3.12: 3D model of the human hand projected to a 2D shape for matching

with the pre-segmented image data.

3D posture in the last image can be used to calculate based on the 3D model all

possible next configurations and then match all resulting different 2D shapes to the

image data to find the best match (see, e.g., Stenger et al., 2001). Consequently,

this method will be covered in more detail in Section 4.5.1.

3.4 Summary and Conclusion

In this Chapter a variety of different approaches for the detection of hands in

single images have been reviewed. The most basic approaches are based on visual

features that are characteristic for the hand and can be extracted easily from the

image data. The hand shape and hand color are two features aiming at such a

segmentation of the hand. However, aiming at a good segmentation of the hand

from the background in individual images is challenging as assumptions on the

image background can usually not be made in natural human-robot interaction

scenarios. Compared to shape and color, appearance-based detection of a pre-

trained hand patch just provides a rough position, but its advantage is the larger

independence to varying image backgrounds. This, however, comes at the cost of

training all hand postures to be recognized beforehand while especially the color

cue is generic for all hand postures.

If a hand has been segmented, it can be used for an additional model-based pro-

cessing step detecting the individual hand constituents to verify the hand detection

and provide additional details of the hand configuration. This second step is very

useful to reject wrong hand detections of objects with a skin-like color or hand-like

shape.

A more holistic model-based hand detection approach aims at using the knowl-

edge of the 3D hand model to predict the 2D shape of the hand. However, without

any information on the approximate hand configuration, the detection of arbitrary
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hand shapes in single images is very difficult due to self-occlusion. For this task an

image sequence needs to be analyzed so that temporal constraints can be used to

resolve ambiguities. This applies to all hand detection techniques and, therefore,

the next Chapter will turn to methods for tracking the hand in image sequences.
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While the detection methods outlined in the previous Chapter provide information

about the hand position and possibly also its configuration in an isolated image, this

Chapter deals with the tracking of the hand over a complete image sequence. First,

the differences between tracking approaches relying on a separate detection process

and tracking with continuous adaptation of the detection model will be pointed

out (Section 4.1) and classical tracking algorithms will be reviewed (Section 4.2).

Subsequent Sections cover algorithmic approaches for adaptive hand tracking based

on feature adaptation (Section 4.3 & 4.4) and model adaptation (Section 4.5 & 4.6)

based on the detection methods introduced in Chapter 3. A summary in Section 4.7

concludes the Chapter.

4.1 Detection vs. Adaptation

Assuming a successful detection of the hand in all images of an image sequence

using the methods outlined in Chapter 3, the trajectory of the hand can be recon-

structed. This amounts to a bottom-up approach where no a priori information is

used, i.e., detecting the hand in the current image is not influenced by knowledge

about the hand position and configuration in the previous image. This “tracking by

detection” is a straightforward approach to obtain a trajectory and classical track-

ing algorithms for realizing hand tracking based on a successful hand detection are

reviewed in Section 4.2.

The “tracking by detection” approach relies on the assumption that the hand

can be detected successfully in individual images. However, this is a challenging

requirement for the detection task and is not feasible in several typical situations:

• The appearance of the hand may change due to environmental conditions -

like a partly shaded scene - prohibiting the use of simple detection methods

like, e.g., a fixed skin color model.

• The configuration of the hand may change during the gesture. For example,

some fingers may become invisible due to self-occlusion. This prohibits the

use of a fixed posture detection model.
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Obviously, only for very restricted settings the application of hand detection

methods to all images of a sequence in order to achieve hand tracking is feasible,

while for natural human-robot interaction settings more sophisticated approaches

are required. One solution is the continuous adaptation of the hand representation

to incorporate a changing hand appearance or hand configuration in the detection

model, making the task of detecting the hand in the next image easier. Such an

adaptation requires to keep track of the hand of interest, i.e., to know which of

the detected objects is the hand that is represented by the current hand model

and where the input data can be used for updating the model. This association

is the core tracking process. For the sake of clarity, we will here make an explicit

separation between tracking of a hand and model adaptation. In Fig. 4.1 the

tracking and adaptation steps that are in the focus of the following Sections and

that go beyond the use of a generic hand model as introduced in Chapter 3 are

visualized with blue boxes.

hand

model

hand

Current

model

hand

Current

model

...Current

Detect hand Detect hand Detect hand Track hand

Adapt hand model

top−down top−down

Adapt hand model

Track hand Track hand

Adapt hand model

Figure 4.1: Improving detection-based sequence analysis (cf. Fig. 3.2 on page 52)

by adapting the hand model to the current appearance/configuration

of the hand.

Under the assumption that the hand has been tracked successfully, the adaptation

of the hand model depends on the detection method chosen. For the detection

methods based on color and shape features (see Section 3.2), the adaptation can be

realized by iteratively updating the mean values and variances of the feature values.

Approaches realizing such a feature adaptation will be described in Section 4.3 and

an instructive example for adapting a skin-color representation to ease the tracking

task is described in Section 4.4.
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Similar to extending the feature-based hand detection algorithms by adapting

the hand representations, also the model-based detection algorithms introduced in

Section 3.3 can be extended to enable adaptation. As the underlying model is

more sophisticated, also the benefit from adaptation is usually higher: knowing,

for example, the current hand or body configuration in 3D allows to incorporate

this as top-down information by predicting all possible next configurations in 3D.

The 2D image features resulting from the predictions can then be calculated and

matched to the image data. Approaches tracking an internal 3D representation

for matching with observed image data provide a suitable solution to cope with

the ambiguity inherent in 2D image data and will be reviewed in Section 4.5. An

example system performing the tracking of the upper body of a gesturing human

based on matching 3D models is covered in more detail in Section 4.6.

4.2 Tracking based on Hand Detection

In its most simple form, the tracking process has the task to associate the hand

position of the last image with one of the detected hand hypotheses in the current

image. As the hand may be currently moving, the closest match is not always

the best match, so dynamic information about the past motion has to be incorpo-

rated in this process. Two standard tracking methods that are frequently used will

be described exemplarily in the following Subsections, namely Kalman filtering in

Section 4.2.1 and particle filtering in Section 4.2.2.

4.2.1 Kalman Filtering

Tracking a moving object with a Kalman filter is a standard technique widely

applied in many domains. In a Kalman filter the state pdf p(qt) is modeled as a

single Gaussian with mean µt and covariance σt (Bar-Shalom and Fortmann, 1988).

In general, the state pdf of a Kalman filter can be a vector, but for simplicity we

will consider here as example only the one-dimensional case (see Fig. 4.2).

The state qt is hidden, i.e., it is not directly observable, and it is related to the

observation zt by a transfer function ht that is a scalar value for the one-dimensional

case:

zt = htqt (4.1)

Given a state qt−1 at time t − 1, predictions of its Gaussian parameters (µ̂t, σ̂t)

for time t can be calculated using the system dynamics at and the uncertainty of
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σt

p(qt)

qtµt

Figure 4.2: The unimodal Gaussian state probability density function modeled by

a Kalman filter.

the state prediction modeled with the covariance σq:

µ̂t = atµt−1 (4.2)

σ̂t = σt−1 + σq (4.3)

Similarly, the observation can be predicted to time t using the transfer function

ht and the uncertainty of the measurement process modeled with σz:

ẑt = htqt−1 + σz (4.4)

The parameters of the Gaussian density function can now be propagated over

time by fusing the predictions of the parameters (µ̂t, σ̂t) and the prediction of the

observation ẑt with the actual observation zt using the Kalman gain kt:

µt = µ̂t + kt(zt − htµ̂t) (4.5)

σt = σ̂t − kthtσ̂t

In this fusion process, the predictions and observations are weighted by their

estimated uncertainties. To minimize the a posteriori error covariance σt in Eq. 4.5

(for details see Bar-Shalom and Fortmann, 1988), the Kalman gain kt is chosen to1:

kt =
σ̂th

T
t

htσ̂thTt + σz
(4.6)

The Kalman filter as introduced above is an optimal estimator if the state den-

sity and the observation density are Gaussian and, consequently, all densities stay

Gaussian during the propagation. In this case, the Kalman filter results in an op-

timal estimator for the error variance, and the state mean is equal to the most

probable state.

1For a state vector q, the transfer function hTt would need to be the matrix transpose HT
t of the

transfer function Ht but in the one-dimensional case is hTt ≡ ht.
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However, in real applications the state density often exhibits multiple modes due

to, e.g., noise in the observations. The Kalman filter is not able to track state

densities containing multiple modes. Therefore, several extensions to the standard

Kalman filter have been proposed. For example, approaches for tracking of multiple

hypothesis represent multimodal distributions with a series of Kalman filters where

each filter is responsible for one hypothesis (Bar-Shalom and Fortmann, 1988; Cham

and Rehg, 1999). In these ’multiple hypothesis tracking’ approaches, specific func-

tionalities are needed to add and remove Kalman filters if new hypotheses arise or

old hypotheses can be discarded. While this extension does allow a limited form of

multi-modality, it comes at the cost of explicitly handling hypothesis addition and

removal, calling for a more elegant solution to handle ambiguities during tracking.

4.2.2 Particle Filtering

While the Kalman filter is well suited for tracking in situations were the probability

density function is a Gaussian distribution, a full probabilistic representation is

often better suited to cope with the noise and uncertainty typically encountered

in vision-related tracking tasks. For coping with such non-Gaussian probability

distributions, particle filters have gained a lot of interest in the last decade.

Standard Particle Filtering

The standard particle filter (PF) is a probabilistic framework that has demonstrated

to be well suited for the challenges outlined before and which is used in several of

the example approaches contained in this book. It models a probability density

function (PDF) based on a set of particles that represent a number of different

hypotheses and are propagated over time. The following gives a short overview,

more details can be found in the tutorial by Arulampalam et al. (2002).

In recursive Bayesian estimation, the posterior PDF is estimated by propagating

the PDF over time:

p(xt | Yt) ∝ p(yt | xt)p(xt | Yt−1) (4.7)

In particle filtering, a discrete representation of the PDF is represented as a

weighted set of particles as depicted in Fig. 4.3. Given in the d-dimensional space

Rd a particle set St−1 = {s(n)t−1}Nn=1 and associated weights {π(n)
t−1}Nn=1, that are

normalized to
∑N

n=1 π
(n)
t = 1, the PDF can be approximated by:
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qt

p(qt)

Figure 4.3: The approximation of a state probability density function by a particle

filter applying a weighted set of discrete particles to model the PDF.

p(xt | Yt) ∝
N∑

n=1

δ(xt − s
(n)
t )π

(n)
t (4.8)

To obtain a new particle representation of the posterior PDF in Eq. 4.8 the

weights of the particles are updated at each iteration using the principle of impor-

tance sampling. If a proposal – the importance density t(·) – can be found from

which it is easy to draw samples, it can be shown (Arulampalam et al., 2002) that

the weights can be calculated sequentially from:

π
(n)
t ∝ π

(n)
t−1

p(xt|s(n)t )p(s
(n)
t |s(n)t−1)

t(s
(n)
t |s(n)t−1,xt)

(4.9)

In the specific variant of Sequential Importance Resampling (SIR) that was ini-

tially introduced to the computer vision community as Condensation by Isard

and Blake (1998), a re-sampling step using the new weights is applied in every

iteration to avoid degeneration of the particle based representation. The overall

propagation of the weighted samples over time consists therefore of three steps and

is based on the results of the previous time step:

Select: Selection of N samples s
(n)
t−1 according to their respective weight π

(n)
t−1 from

the sample pool {(s(1)t−1, π(1)
t−1), . . . , (s

(N)
t−1, π

(N)
t−1)} of the previous time step. This

selection scheme implies a preference for samples with high probability, i.e.,

they are selected more often.

Predict: The parameters of each sample s
(n)
t are predicted using a temporal model

for the state propagation. For example, if a linear motion model is assumed,

the previous position of a hand would need to be increased by the distance

supposedly travelled between two time steps.
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Update: Determination of the weights π
(n)
t based on p(zt|s(n)t ).

Note that in high-dimensional search spaces, even if a particle escapes out of

a local minimum, the probability of hitting the low-weight surroundings is much

larger than that of hitting a region with high weights. This is due to the huge

increase of volume with radius in high-dimensional spaces that results in the need

for a large number of particles which in turn increases computation time.

Kernel-Based Particle Filtering

In order to overcome the need for many particles in high-dimensional search

spaces, many different variants of particle filtering have been proposed (for a recent

overview see Doucet and Johansen, 2011). One influential extension added iterative

mode-seeking in the form of the mean-shift algorithm (Chang and Ansari, 2005)

to shift the particles to high weight areas and is widely referred to as kernel-based

particle filtering. This has been utilized first in experiments consisting of tracking

objects or isolated body parts in the 2D image space (Han et al., 2005; Chang and

Ansari, 2005). In this extension, the true density distribution is estimated through

placing a kernel function at each sample position. The estimate of the posterior

PDF with kernel K can be formulated as:

p̂(xt | Yt) =
N∑

n=1

Kh(xt − s
(n)
t )π

(n)
t (4.10)

where Kh(xt − s
(n)
t ) = 1

Nhd
K(

xt−s(n)
t

h
), and h is the kernel bandwidth. How a PDF

can be approximated by a number of kernels is shown exemplarily in Fig. 4.4 for

different kernel sizes.

For a radially symmetric kernel we have K(xt − s
(n)
t ) = ck(‖xt − st‖), where c is

a normalization constant which makes the integral K(xt− s
(n)
t ) to one, and k(r) =

k(‖xt − st‖) is called the profile of the kernel K. For example, the Epanechnikov

kernel is:

KE(x) =

{
1
2
c−1d (d+ 2)(1− ‖x‖2) 0 ≤ ‖x‖ ≤ 1

0 ‖x‖ > 1
(4.11)

Given a particle set St and the associated weights {π(n)
t }Nn=1, the particle mean

is determined by
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Figure 4.4: Approximation of a PDF using Gaussian kernels with increasing

bandwidth.

m(s
(n)
t ) =

∑N
i=1Hh(s

(n)
t − s

(i)
t )π

(i)
t s

(i)
t∑N

i=1Hh(s
(n)
t − s

(i)
t )π

(i)
t

(4.12)

where h(r) = −k′(r) is in turn a profile of kernel Hh. It can be shown that the

mean shift vector m(x) − x always points toward the steepest ascent direction of

the density function (Comaniciu and Meer, 2002; Chang and Ansari, 2005).

Following the shifting of particles using the mean shift vector, the particle weights

w
(n)
t are recomputed. As the shifting of the particles implies that the new parti-

cles are not distributed according to the posterior distribution, a reweighting is

performed to guarantee that each mean shift iteration follows the correct posterior

gradient. Using subscript j to denote the particle set after the jth mean shift iter-

ation at time t, the weight is recomputed based on the posterior density evaluated

at the new particle positions s
(i)
t,j and a particle density balancing factor (Chang

and Ansari, 2005):

π
(n)
t,j =

p(s
(n)
t,j | Yt)

qt,j(s
(n)
t,j )

(4.13)

The balancing factor in the form of the denominator is the new proposal density:

qt,j(xt) =
N∑

l=1

Kh(xt − s
(l)
t,j) (4.14)

Without the balancing factor, several particles concentrating after a mean shift

iteration at one density mode would result in a high kernel density estimation at this
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4.3 Adaptive Visual Features for Hand Tracking

position and would, therefore, heavily influence the particle mean of Eq. 4.12. This

effect is avoided by the reweighting of Eq. 4.13 that incorporates in the posterior

density evaluation how many particles are located in the kernel window around the

new particle position.

The overall posterior density uses a sample-based approximation of the prior

density and is given by

p(xt | Yt) ∝ p(yt | xt)
N∑

l=1

p(xt | s(l)t−1)π(l)
t−1 (4.15)

Equation 4.15 is the Kernel particle filtering equivalent of standard recursive

Bayesian filtering (see Eq. 4.7).

The choice of the kernel bandwidth h is of crucial importance in kernel based

density estimation as it defines over which range the search for modes is carried

out. As depicted in the three examples in Fig. 4.4, a small value can generate a very

ragged density approximation with many peaks, while a large value can produce

an over-smoothed density estimate. In particular, if the bandwidth of the kernel is

too large, significant features of the distribution like, e.g., multiple modes can be

missed. The bandwidth is usually scaled down at each mean shift iteration in order

to concentrate the particle set on the most dominant modes.

Such a mode-based representation of a probability density function is still a

probabilistic representation and allows to track, e.g., a hand in a probabilistic

way. If a single result is required for some subsequent process like, e.g., gesture

recognition, the most dominant mode has to be extracted from the mode-based

representation. Depending on the type of application, this can be the weighted

mean of an appropriately chosen subset of all particles or some other evaluation of

the representation.

4.3 Adaptive Visual Features for Hand Tracking

With the algorithmic basis of tracking algorithms introduced in the previous Sec-

tion, we can now turn to their application for hand tracking. Instead of using

fixed representations of the hand for detecting it in individual images as outlined in

Section 3.2, the hand representation in the form of visual features can be updated

continuously in every image to account for changing visual features of the hand.

Figure 4.5 depicts the processing steps of such an adaptive approach to hand de-

tection and tracking. In this Section, typical methods for updating visual features

like color, shape, and appearance will be outlined.
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feature

visual

Current

Input Image

Detect feature Track objects

Adapt features

Detection results Tracking results

Figure 4.5: Iterative updating of visual features based on successful tracking of

detected hands.

4.3.1 Adaptive Hand Color

Many approaches to detect skin-colored image areas (see also Section 3.2.2) are

trained on large datasets and operate on isolated images with correct pixel classi-

fication rates around 90% (see, e.g., Phung et al., 2005; Kakumanu et al., 2007).

However, the training images are usually photographs and therefore of an extraor-

dinary high quality compared to image data acquired in natural human-robot in-

teraction. In other words, during a hand gesture the images acquired by a standard

video camera may exhibit strong shades and insufficient lighting compared to the

high-quality photographic images typically used in skin color databases. Conse-

quently, classifiers have to be trained and evaluated on data obtained in real in-

teraction situations to capture the challenges encountered in such settings. Due to

the broad range of possible lighting variations, however, the classification quality

usually decreases heavily in such situations.

One way of taking advantage of the sequential nature of the individual images

to be classified is to adapt a temporary color model that covers only the subset of

the color space representing the current skin color. After every segmentation step,

the color of the detected hand is used to update this temporary color model. An

alternative would be algorithms that allow to tolerate arbitrary lighting changes,

but such color constancy algorithms are still not applicable in real-world domains

as pointed out in Section 2.3.1.

An adaptive algorithm needs to decide for every image whether the it contains

objects of interest that have changed since the last frame and to whose changed

appearance the algorithm should adapt. In other words, the question that needs

to be answered is: ’What parts of this image belong to previously observed objects

that are now illuminated differently and therefore have a different appearance?’.
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4.3 Adaptive Visual Features for Hand Tracking

A major challenge in the actual implementation of adaptive strategies is the

lack of ’ground truth’ in the color signal: it is impossible to decide based only

on iconic information, i.e., the color of an individual pixel, whether a pixel still

shows the same object that now exhibits a different appearance. Consequently, an

adaptive algorithm may adapt the color models to ’wrong’ values. For example, if a

tracked human hand moves over a wooden desk with a color slightly different from

skin color, the desk could be accidentally segmented to belong to the hand region.

Subsequently, the color model may be updated not only with pixels belonging to

the hand but also with pixels exhibiting wood color. Consequently, the hand will

not be detected correctly in subsequent images and tracking will eventually fail. By

using a physics-based model of the skin reflectance properties - the skin locus (see

Section 3.2.2 on page 56) - as a filtering step in the update process it is possible

to discard pixels not having a skin-like color (see, e.g., Soriano et al., 2000; Fritsch

et al., 2002; Tsai et al., 2008). Such an additional filtering process based on general

properties of skin color can reduce the risk of a wrong adaptation. An alternative

way of coping with the potentially wrong update of the skin color model is the use

of a probabilistic tracking framework that maintains several tracking hypotheses

including associated color models (Shan et al., 2007).

Going beyond a pure adaptation to the current appearance of the hand, Sigal

et al. (2000) have applied a predictive adaptation of the color model by explicitly

modeling the temporal variations. In this way, an improved segmentation result

is expected by anticipating how the skin color will be observed in the next im-

age. However, as in human-robot interaction the lighting conditions are rather

unpredictable, this kind of adaptation is of limited benefit.

Besides applying restrictions on the color cue itself, it is also beneficial to in-

corporate domain-dependent context knowledge for updating the skin color model.

In a scenario where a mobile robot is intended to track a gesturing human, the

appearance of the face and the motion of the hands can be used to validate the

adaptation. For example, if the complete human is observable in the camera im-

age, the appearance of the face can be used as additional information for the skin

color model. After a segmentation of the current image with the current skin color

model, a face detection algorithm can be used to test whether a segmented skin-

colored region actually represents a face (Fritsch et al., 2002). If a face is detected

at the position of the skin-colored region, an image patch of face size can be used

for adapting the skin color model.

On a more elementary level, the context that pixels representing a hand have not

only skin-like color but, if the hand is moving, are also subject to image motion

can be used. Incorporating motion information into the pixel classification process
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allows to discard pixels that have skin-like color but are static. Obviously, a simple

combination of these two cues would also result in not finding a hand that rests still

in the image. Choosing an appropriate combination scheme is therefore of great im-

portance in order not to discard too many hand pixels. Lömker and Sagerer (2002)

present an approach where the skin and motion information are both represented

by likelihoods indicating their quality. Using an additive combination, a pixel gets

high values if it is very skin-like or it exhibits strong motion or both. Through

choosing an appropriate threshold, resting hands can be correctly segmented, too.

4.3.2 Adaptive Hand Shape

Similar to the color-based hand detection approaches also the shape-based hand

detection approaches outlined in Section 3.2.1 assume that the hand has a fixed

shape and can be extracted from an isolated image. As pointed out, this assumption

is often not valid as the human hand is very flexible and in most environments

there is clutter in the background prohibiting the use of simple contour extraction

techniques.

To cope with these challenges, iterative approaches detect and track the hand by

adapting to its changing shape. Following an initialization that is carried out with

the techniques for hand detection in single images, the tracking needs to deal with

small changes in the shape only, as depicted in a simplified example in Fig. 4.6.

Obviously, restricting the possible shape deformations that can occur within one

time step of an image sequence is computationally more efficient than searching for

an arbitrary shape.

A variety of shape representations have been proposed in the literature for mod-

eling object boundaries. Among these are Active Shape Models (ASM) proposed

by Cootes et al. (1995) that have also been applied to hand gesture recognition

Figure 4.6: Simplified example of an intermediate hand shape model allowing for

limited adaptation of the shape between two successive time steps.
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(Ahmad et al., 1997). Here, a shape is defined by a number of control points and

the variations of the control points are learned from training data. Knowing the

hand position and its configuration from the last time step, the previous hand

shape model can be fitted in a top-down manner to the current image by moving

the control points within their allowed/learned range. For applications where the

hand performs only a limited set of gestures, i.e., the hand shapes are limited, a

model can be learned for each different configuration and the variability of the con-

trol points must account for the intermediate configurations between two shapes.

During tracking, the different shape models must then be matched to the image

data and the best match represents the recognition result. Obviously, this is only

feasible if the set of hand configurations is small and if the model variability can

cope with all intermediate hand configurations occurring in the image data.

In order to overcome these drawbacks, the probabilistic modeling of shapes has

gained more interest in the last decade. The introduction of particle filtering (see

Section 4.2.2) in the form of the Condensation algorithm for performing contour

tracking by Isard and Blake (1996) resulted in a more intensive research on proba-

bilistic contour tracking. The important difference to standard tracking approaches

is the probabilistic nature of the tracking algorithm that allows to maintain mul-

tiple shape hypotheses during the analysis. In this way, it is possible to deal with

ambiguous situations occurring frequently in image sequences and, therefore, en-

able more robust tracking. Consequently, it has been applied often for hand shape

tracking (see, e.g., MacCormick and Isard, 2000; Laptev and Lindeberg, 2001). Due

to the inherent 2D nature of the hand shape, however, this approach is primarily

suited for gestures that are characterized by their shape. This holds true for com-

mand gestures and pointing gestures which are recognizable from the 2D shape if

the camera viewpoint is chosen adequately while the method is less appropriate for

tracking hands performing manipulative gestures.

4.3.3 Adaptive Hand Appearance

An obvious alternative to modeling the hand by its contour is to incorporate the

complete appearance. One of the first approaches to adaptively model the hand

appearance is the work by Heap and Hogg (1996). Here, a deformable 3D model of a

hand is created from a large set of training data (see Fig. 4.7) and the model points

distributed over the hand surface are adaptively matched to new input images.

Later approaches have used a variety of 2D and 3D models for capturing the

appearance of a hand over time. For example, Bray et al. (2004) have used an

underlying 3D hand skeleton model to derive the changing 2D skin surface appear-
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Figure 4.7: A deformable 3D model of a hand (image from Heap and Hogg, 1996).

ance and match it to the image data. This resulted in an adapted 3D configuration

that was used for matching in the next time step. Such sophisticated 3D modeling

approaches have a high computational load, which makes the use of 2D models

more attractive.

An adaptive approach for modeling the 2D appearance that goes beyond a simple

color adaptation (see Section 4.3.1) by using ”flocks of features” was proposed by

Kölsch and Turk (2004). Instead of modeling the color of the complete hand, the

appearance of small image patches is modeled. These patches are tracked in an

image sequence using optical flow and - at the same time - the appearance model

of each patch has to fulfill constraints with respect to the other patches. The

latter point is the ”flocking” behavior as analogy to a flock of birds: Each feature

patch has a minimum distance to other features but a maximum distance to the

mean of all feature patches. Due to the used 2D models this approach is real-time

capable and at the same time the concept of ”flocking” results in a good tracking

performance in unconstrained environments and with a moving camera.

An integrated method for modeling hands combining shape and appearance has

resulted from extending the work on Active Shape Models for contour tracking by

including appearance information. This has resulted in an algorithm termed Active

Appearance Model (Cootes et al., 2001) that has been applied intensively to face

detection and also to hand detection (Roussos et al., 2010).

As the appearance-based approaches incorporate implicitly the color-based fea-

tures and also partially the shape-based features, they provide the most complete

modeling of the visual features of hands in 2D. This is ideal for tracking the hand

in 2D, but depending on how the appearance is modeled, the representation may

not provide any details about the exact hand configuration. If such a low-level

modeling is chosen (e.g., the approach by Kölsch and Turk), this is mainly feasible

for tracking gestures that are characterized by their 2D motion, but for obtaining

the detailed hand configuration additional processing steps are required.
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4.4 Example: Detecting and Tracking Hands Based

on Skin Color

In order to give a practical example of hand tracking incorporating adaptation,

this Section will cover an approach for detecting and tracking hands based on skin

color. As pointed out in Section 3.2.2, the color of human skin is a suitable cue

for feature extraction in arbitrary domains. It is independent of the specific hand

configuration and invariant to rotation and scaling of the hand. Furthermore, it is

independent of the motion of the hand as well as any motions in the background.

However, the variations in lighting conditions pose major challenges to a color-based

feature extraction. Even in a room without windows, different lighting conditions

are encountered at different positions in the room. This is due to the individual light

sources at the ceiling, and the shading introduced by objects or moving persons. In

order to compensate the influences from such lighting and shading effects, a dynamic

color model has to be used that is constantly adapted to the changing color of the

object of interest, i.e., the gesturing hand. Using such an adaptation allows to track

hands in a wide range of environments with varying lighting conditions.

The purpose of this Section is to present an example of an adaptive skin-color seg-

mentation algorithm developed for tracking gesturing hands. The overall processing

scheme is explained in the next Subsection before further Subsections explain the

processing steps in more detail. The performance is demonstrated qualitatively

with snapshots from image sequences containing varying lighting conditions.

4.4.1 System Overview

The processing steps of the example approach for segmenting input images using

an adaptive skin color model are as follows (see Fig. 4.8):

Based on a domain-dependent initialization step (1), an initial skin color model

(2) is generated. The skin color distribution is represented as Gaussian mixture

model in the normalized r-g color space (see Section 4.4.2 for details). From now

on, every image is processed with the current skin color model to label every pixel as

either skin or non-skin pixel. For this purpose, the input image is first transformed

into the r-g color space. Based on the Gaussian mixture model of the skin color,

the probability of every pixel for being skin color is calculated. A classification

threshold (3) is applied to the probability values to obtain a binary label image (see

Section 4.4.3 for details). An example label image is visible in Fig. 4.8 on the left

beneath the input image. This label image is smoothed through applying a median

filter (4) to eliminate spurious pixels with skin color. By carrying out a connected
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Figure 4.8: Image processing steps for performing adaptive skin color segmentation

(image from Fritsch, 2003).

components analysis (5) on the smoothed label image, skin-colored regions can be

extracted. These skin-colored regions represent image-specific information about

the objects in the scene having skin color.

To select the skin-colored regions that can be used for updating the skin color

model, the segmented regions are analyzed and only regions exhibiting either mo-

tion (6) or a face-like structure (7) are kept. Based on a pre-trained global skin

locus (see Section 3.2.2), all pixels in the update regions that are not skin-like are

discarded (8). For the remaining skin-like pixels lying inside the skin locus, the

82



4.4 Example: Detecting and Tracking Hands Based on Skin Color

skin probability is calculated using the current skin color model. This probabil-

ity is compared to a threshold that was acquired in the previous skin color model

training phase. All pixels with a probability value exceeding this training threshold

are used for adapting the skin color model (9). The updated skin color model (2)

is used for segmenting the next input image (see Section 4.4.4 for details).

With the described steps, this adaptive skin-color segmentation

1. imposes a minimal set of restrictions on the scenario.

2. enables skin color segmentation in natural settings with changing lighting

conditions

3. provides a polygonal region description for all skin-colored regions instead of

only the center of mass of a single skin-colored region.

A detailed description of the individual processing steps for performing adaptive

skin color segmentation is the content of the next Subsections.

4.4.2 Modeling Skin Color Distribution and Skin Locus

Based on the properties of skin color described in Section 3.2.2, the normalized

r-g color space is used for representing skin color. The empirical study by Yang

et al. (1998) suggests that a Gaussian mixture is well-suited to model skin color

distributions. Gaussian models are used very often in adaptive color segmentation

approaches (Wren et al., 1997; Oliver et al., 2000; Raja et al., 1998) as they allow

to model color distributions with a small parameter set. Consequently, Gaussians

are applied here to model skin color distributions. The skin likelihood for a pixel

with color value x = (r, g) can be calculated for a Gaussian G(i) with mean µi and

covariance Σi using:

pi(x) =
1√

2π det Σi

exp

{
−1

2
[x− µi]

TΣ−1i [x− µi]

}
(4.16)

The remaining design decision is whether an unimodal Gaussian or a mixture

of Gaussians should be used to model a skin color distribution. Obviously, this

depends on the properties of the distribution, i.e., on the variations in lighting and

skin types contained in the distribution.

While modeling a skin color distribution with a single Gaussian is computation-

ally less expensive, it results in a reduced ability to deal with color inhomogeneities.

Color inhomogeneities are encountered within a single skin-colored object (intra-

region) due to, e.g., partial shading as well as between objects (inter-region) due
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to, for example, different skin types or lighting conditions. An important situation

where a skin-colored hand or face exhibits large intra-region color variations are

partial shading effects. Although the r-g color space partially accounts for intensity

differences, a good segmentation result can only be achieved through modeling the

skin color distribution with a mixture of Gaussians.

The quality of modeling several skin colored regions in an image with one mixture

of Gaussians usually increases with the number of mixture components used. The

mixture can be expected to allow for a better modeling than the unimodal Gaussians

if the number of components M is at least equal to the number of skin-colored

regions in the image and the different regions have partially a similar color. For

a single human, the potential differences between the hands and the face will be

related primarily to different lighting conditions. Consequently, with a smaller

inter-region variation due to similar skin appearance of the hands and the face of

a single human, a mixture of three Gaussians should allow to also model intra-

region variations due to shading. More important, however, is the more precise

modeling of the skin color distribution that reduces the number of false positives

in the background.

Having a model for the skin color distribution, the next question is how to esti-

mate and update this model. As pointed out in Section 3.2.2 on page 57, the skin

color of a large number of different human subjects is distributed in normalized

color space in a restricted area, the skin locus. This skin locus can be used to en-

sure that only skin-like pixels are used for adapting a skin color model. The exact

shape and placement of the locus depends on the camera characteristics and on

the lighting conditions used for acquiring the training images. To generate the skin

locus for a specific setup, images containing skin patches under different lighting

conditions have to be collected. Figure 4.9 shows an exemplary skin color distri-

bution for the recording setup used in this example approach. Following Soriano

et al. (2000), two quadratic functions have been fitted to this distribution to obtain

the setup-specific skin locus.

The parameters of the two quadratic functions that enclose 95% of the pixels in

the empirically determined skin color distribution are:

Au = −5.05 bu = 3.71 cu = −0.32 (4.17)

Ad = −0.65 bd = 0.05 cd = 0.36 (4.18)

The decision whether a specific pixel x = (r, g) is contained in the skin locus is

now readily available by calculating the values of the two quadratic functions based

on the r value
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chromaticity r=R/(R+G+B)

ch
ro

m
at

ic
ity

 g
=G

/(R
+G

+B
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.9: Histogram of the global skin color distribution with the skin locus fitted

to the distribution. The color indicates the number of samples for a

given position - from red (few samples) to blue (many samples).

Fu = Aur
2 + bur + cu (4.19)

Fd = Adr
2 + bdr + cd (4.20)

and checking for the g value to lie between the two calculated function values:

PixelInSkinlocus(r, g) =

{
1 , if (g < Fu) ∧ (g > Fd)

0 , else
(4.21)

With this simple classification rule, a preprocessing step to discard all pixels with

colors that are not contained in the training set can be realized before constructing

the Gaussian mixture model.

One remaining problem is the fact that the skin locus contains also the color

values for white colors resulting from highlights in the skin-colored areas of the

training images, i.e., reflections of the illumination from the light sources. Often a

scene also contains several artificial objects with a white color like, e.g., a door, a

table, or a computer display. To avoid including the color white in the skin locus,

a small region around the white point in r-g color space at (0.33, 0.33) is therefore

excluded from the skin locus.

85



4 Tracking of the Hand

4.4.3 Applying Skin Color Segmentation

For segmentation of the input image, the normalized r-g color values are calculated

from the RGB color values. Subsequently, the skin likelihood is calculated for each

individual pixel based on its color and the current color model. The overall skin

probability value for the pixel x is determined by adding up the M individual

Gaussian mixture components (see Eq. 4.16) with their weights ci:

p(x) =
M∑

i=1

ci pi(x) (4.22)

Obtaining for every pixel its skin likelihood p(x) results in a skin probability

image for the complete input image. This probability image is binarized using a

classification threshold Sclass to obtain a label image containing skin and non-skin

pixels (see Fig. 4.8 on page 82).

The value of the threshold Sclass has to be chosen carefully, a low threshold will

potentially classify a larger number of non-skin pixels as skin-like color (false posi-

tives) while a high threshold may not classify all skin-colored pixels correctly (false

negatives) due to inhomogeneities caused by, for example, shades. The probability

values p(x) that are encountered in the probability image are not normalized as the

variances of the individual mixture components influence the range of probability

values that is occupied by skin pixels. It is therefore advantageous to use an adap-

tive threshold that is based on the actual probability values present in the training

set. To obtain the classification threshold Sclass, the training pixels used for con-

structing the Gaussian model are also used as test set for building a histogram of

the probability values generated by the Gaussian model.

The probability value histogram is analyzed starting at the bin representing the

largest probability value p(x). The bin counts are successively added up until the

sum contains more than 98.5 % of all Ntrain training pixels (see Eq. 4.23). Setting

the threshold to classify a fraction of 98.5 % of the training pixels correctly has been

determined empirically to ignore spurious outliers contained within the last 1.5 %

of the training pixels. The probability value represented by the last histogram bin

added is taken as the threshold Sclass for skin color classification, i.e., all probability

values below this threshold are classified as non-skin.

Pr(Y > Sclass) = 0.985 ∗Ntrain, Y = p(x) (4.23)

To remove isolated pixels classified as skin and provide a more homogeneous

result, a median filter of size 5×5 is applied to smooth the label image. Next, a

connected components analysis is carried out in the segmentation step to obtain
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the region segmentation result (see Fig. 4.8 on page 82). Subsequently, the feature

extraction step calculates polygonal descriptions of the image regions and region

features like, e.g., compactness, pixel size, center of mass.

Figure 4.10(a) depicts an example image where a successful face detection (see red

ellipse in Fig. 4.10(b)) is used for initializing a Gaussian mixture model (Fritsch

et al., 2002). Based on this model, the hands can be successfully segmented as

visualized with the purple polygons around the hands.

(a) (b)

Figure 4.10: Initializing skin segmentation. a) input image; b) image with over-

laid face detection result (red ellipse), the resulting hand segmentation

(purple polygon) and the image area for updating the skin color model

for the next time step (yellow).

Figure 4.11 depicts the Gaussian mixture model, the resulting label image, and

the final binary segmentation result after median filtering.

(a) (b) (c)

Figure 4.11: Example of pixel classification using a mixture of Gaussians: (a) the

three mixture components in r-g color space; (b) the label image with

the color indicating the mixture component having the highest proba-

bility; (c) the label image after median filtering.
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The segmentation scheme described above operates on the pixel level to construct

the label image. Applying a threshold to the individual probability values ignores

spatial information that may have been present in the overall probability image. For

example, a hand results in an area of high probability in the probability image. This

spatial relation between the iconic probability values can be used for a segmentation

scheme that focuses on finding elliptical regions representing human hands and

faces (see, e.g., von Hardenberg and Berard, 2001; Kruppa et al., 2002). In such a

scheme, a pixel that lies in an area with many pixels having high probability values

and forming an elliptical shape is assigned the ’skin’ label even if its probability

value is below the threshold. In this way, the influence of partial shadings or

non-skin objects (e.g., a ring on a finger, glasses) can be reduced and the form

of the segmented region is closer to the ’expected’ elliptical form. However, the

associated computational cost of fitting ellipses of arbitrary size and orientation

to the probability image is very high. Only in domains where the ellipses can

be restricted, for example to ’face’ ellipses with a fixed orientation and size, this

processing scheme can be applied.

4.4.4 Updating the Skin Color Model

To realize an adaptive skin color segmentation, the skin color model generated in

the initialization step has to be adapted to the current appearance of the skin-

colored object. As there is no ground truth available on the exact shape of the

object, heuristic rules have to suffice. To select the skin-colored pixels that can be

used for updating the skin color model, two different types of context knowledge

for determining the ’true’ skin areas are applied:

• If a regionR(i)segment exhibits motions, i.e., it is not a skin-colored background

object, it is considered an ’interesting’ region and used for updating. Whether

a region is a background object or not can be determined if this region is

tracked over time.

• If a region R(i)segment segmented in an individual image exhibits a face-like

structure, an elliptical update region Rupdate is constructed based on the size

of the face as determined by the face detection. If this face region is also an

’interesting’ region due to its motions, the elliptical update region replaces

the original update region.

In case of a perfect segmentation, all pixels belonging to a skin-colored object

would have been segmented correctly despite of a changed appearance. In this
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case, the segmented object region R(i)segment and the image region for updating

R(i)update would be identical, i.e., all segmented pixels could be used to update the

skin color model.

Under realistic circumstances, however, the appearance variations within a skin-

colored area are often so large that not all pixels are correctly segmented. Con-

sequently, the segmented region R(i)segment represents only those pixels that are

sufficiently close to the current skin color model but may miss some pixels that al-

ready have a too different color due to, e.g., shading. Therefore, it is advantageous

to construct a larger update region R(i)update under the assumption that it contains

most or all of the pixels belonging to the object due to spatial closeness.

For skin-colored regions that exhibit motion, the update region R(i)update is gen-

erated by enlarging the segmented region R(i)segment. If the shape of the object is

known, e.g., a hand with fingers stretched out, this shape model could be matched

to the segmented region to construct R(i)update. For all skin-colored objects with

unknown or flexible shape, such a priori knowledge is not available and therefore

the polygon describing R(i)segment is stretched to describe a region with an area

two times the size of the segmented region. This enlarged region forms the update

region R(i)update. For skin-colored face regions, the elliptical update region is used

as determined by the face detection.

All pixels within R(i)update that do not lie inside the skin locus (Eq. 4.18-4.21)

are discarded. This step removes all pixels that are contained in the update area

but have no skin-like color like, e.g., rings, or parts of the background resulting

from the update area stretching. However, pixels from image areas having a color

similar to skin, e.g., a wooden desk, are not removed by skin locus filtering. To

avoid adapting the color model to background areas with skin-like color, a training

threshold Strain is used to select only those pixels that exhibit a skin color close

to the current skin color model. Similar to the classification threshold Sclass (see

Eq. 4.23), the training threshold is calculated from the probability value histogram

of the previous training set. The threshold value is chosen such that the probability

values p(x) of all Ntrain training pixels from the previous update step are above the

threshold:

Pr(Y > Strain) = Ntrain, Y = p(x) (4.24)

Only those pixels in the current update area that have a skin probability above

the training threshold Strain are considered for updating the skin color model. This

enforces a smooth adaptation of the skin color model and has been found to allow

coping with hands and faces in front of wooden furniture and other skin-like back-

ground objects. After applying the skin locus filtering and the training threshold
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to remove all pixels that are not skin-like, the remaining training pixels contained

in R(i)update are used for updating the Gaussian mixture model.

For updating the mixture of Gaussians, the training pixels of all update regions

R(i)update are collected. Using this training set, the parameters of the M = 3

individual components of the Gaussian mixture are calculated using a k-means

clustering algorithm. Clustering is done by choosing an initial set of cluster centers

based on the first M color values. Subsequently, the remaining color values are

processed one-by-one to update the initial cluster centers. For every training pixel

xtraining,j, the following three steps are performed:

1. assign the pixel xtraining,j to the closest cluster center.

2. calculate the new center of mass for this cluster.

3. update the cluster center with the calculated center of mass.

After processing all color values, each final cluster is used to compute the mean

and variance of one Gaussian mixture component.

4.4.5 Evaluation Results

The described adaptive segmentation approach can find hands (and also faces) in

image sequences with varying lighting conditions. The segmentation accuracy is

presented qualitatively as the effort of a quantitative evaluation does not match

its limited expressiveness: the often inferior lighting conditions in typical image

sequences and the adaptive nature of the proposed processing scheme would require

the evaluation of a large number of ’representative’ image sequences to obtain a well-

founded quantitative result. Even such a quantitative result of a system approach is

not comparable to the evaluations performed on typical photographs as the image

quality encountered in automatically acquired image sequences differs substantially

from the data sets used in non-interactive systems (see, e.g., Yang et al., 1998; Jones

and Rehg, 1999).

Moreover, the processing of image sequences for the extraction of motion trajec-

tories in order to enable gesture recognition favors small processing times to obtain

a high frame rate over exact segmentation results.

The dynamic nature of image sequences makes the presentation of results difficult,

as only ’snapshots’ of the performance of the adaptive skin color segmentation can

be shown. An example for the segmentation quality is given in Fig. 4.12 for a scene

depicting a human drinking a cup of coffee in a typical office setting. Although the
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Figure 4.12: Exemplary segmentation results for a scene depicting a person drinking

a cup of coffee.

human hand is not completely labeled as skin in the smoothed label image (bottom

row), the algorithm is capable of keeping track of the hand and the variations in

the skin color distribution of the hand during the drinking action. Despite of the

color of the wooden desk looking similar to skin, the adaptation of the skin color

model is not distracted.

Besides the use of the described adaptive skin color segmentation for tracking

gesturing hands of a human, it can also be applied for other tasks like, e.g., the

tracking of persons moving in an office environment from onboard a mobile robot

(Fritsch et al., 2003). Having the information of a human in its surrounding is the

precondition for a mobile robot to apply then another skin segmentation focussing

on the detection and tracking of the gesturing hands of this human.
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4.5 Model-based Approaches to Hand Tracking

Similar to realizing the hand tracking by continuously adapting the visual features

used for detection, the model-based detection approaches outlined in Section 3.3 can

be used adaptively, too. Note that several different 3D hand or body configurations

will result in similar 2D shapes and, consequently, the dynamics modeled for a 2D

shape have to account for these different sources of the same 2D appearance. To

avoid this ambiguity, research approaches on model-based tracking have shifted

away from bottom-up matching of planar 2D shape representations as outlined in

Section 4.3.2. Instead of adapting a 2D visual shape representation directly, an

internal 3D representation is tracked over time and used for generating in a top-

down manner the 2D data to be matched to the image data. This can be done

either for individual hands with a detailed hand model (see Section 4.5.1) or using

a complete body model with less detail for the individual parts (see Section 4.5.2).

It should be noted that also dense depth measurements as delivered by, e.g.,

the Kinect sensor (see Section 2.2.2 on page 35) could be used for 3D body model

tracking. However, in this Section the focus is on vision-based approaches to model-

based tracking.

4.5.1 Model-based Tracking of Hand Configurations

In the 2D model-based hand detection approaches (see also Section 3.3) a palm

and five fingers are mapped to the image data. Especially for tracking it becomes

possible to apply a 3D hand model as the continuous tracking reduces the search

space drastically. In other words, not all possible palm and finger configurations

are likely, but only those that can directly follow from the configuration in the

previous image. Due to the high degrees of freedom of the articulated hand, there

are several such configurations possible. This ambiguity needs to be tackled in the

model matching where often probabilistic methods are applied. Figure 4.13 depicts

the general scheme of such a model-based approach to hand tracking assuming for

simplicity a deterministic matching.

For example, Stenger et al. (2001) use a 3D hand model with 27 degrees of

freedom that is projected to the image plane to provide a 2D contour. In their

approach, a variant of Kalman filtering is used to track the hand pose. As they do

not apply a probabilistic approach, the tracking experiments in their publication

focus on translation and rotation of a specific hand shape and only allow for a single

configuration change - thumb up or not.

A similar modeling of the hand is used by Wu et al. (2005) to generate a projection

92



4.5 Model-based Approaches to Hand Tracking
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Figure 4.13: Iterative updating of the hand model based on successful tracking of

detected hand configurations.

onto the image plane. In order to perform probabilistic tracking of good matches,

a particle filtering algorithm (see Section 4.2.2) is applied for processing the am-

biguous hand configurations. The 2D projections of the different possible hand

configurations maintained by the particle filter are individually evaluated based on

comparing the 2D contour with edge measurements. In addition to the evidence for

the individual configurations from the image data, their approach incorporates pri-

ors learned from typical hand configurations and from typical configuration changes

to improve the tracking quality.

A more complex 3D deformable hand model consisting of a polygonal surface with

underlying skeleton is proposed by Bray et al. (2004) for recovering the hand pose.

The algorithm makes use of a structured light sensor (see Section 2.2.2) providing

3D data directly. In order to cope with the huge search space, an extension to

particle filtering is proposed by combining it with gradient descent techniques.

The publications on hand tracking mentioned above should give the reader a

feeling for the broad range of approaches that are followed in the research commu-

nity. In a recent review (Erol et al., 2007), the literature on extracting the 3D hand

configuration from visual data has been analyzed. Surprisingly, only two somewhat

older approaches were identified that actually perform hand posture recognition

in real-time (Shimada et al., 2001; Rehg and Kanade, 1994). In addition, the au-

thors of the review conclude from the lack of an implementation operating in a real

world system that there are unsolved theoretical questions, most importantly the

high dimensionality of the search space and the various occlusions occurring during

arbitrary hand motions. This underlines important limitations for the current use

of such model-based hand tracking approaches on interactive robots:
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• Most approaches require that the approximate hand position is known at the

start of the tracking. This constraint can be met in static setups where the

start and end of an interaction are clearly defined, but it is not applicable

in a human-robot interaction where the start of the gesture can happen any

time and a large part of the hand may be occluded in between the gestures.

• Due to the large search space and the high flexibility of the hand, approaches

using a single camera, i.e., no depth data, are usually not able to operate

in real-time with onboard computational power. In addition, for extracting

initially the coarse hand position (and also after full hand occlusion), other

techniques like model-based body tracking have to be used. These impose

additional computational constraints.

As the exact hand configuration is often not needed at all times but only at

certain points during performing a complete gesture, it seems more feasible for

recognizing hand gestures to combine an approach for continuously tracking the

overall body configuration (see Section 4.6) with a hand posture detection from

Section 3 activated on demand. In this way, the dynamic aspects of the gesture

are captured adequately and computational effort to extract the hand posture is

only used if the information about the hand configuration is relevant for the gesture

recognition. Obviously, this requires to estimate from the coarse hand position and

the overall trajectory when to actually perform a detailed hand posture recognition.

Applying model-based approaches also to full body tracking will be considered in

more detail in the following Section.

4.5.2 Model-based Tracking of Arm/Body Configurations

Tracking the full body can be done by applying either implicit body models cap-

turing the overall body configuration in a holistic representation or with explicit

body models specifying the individual body constituents.

Holistic, Implicit Body Model

Using an implicit body model means learning a direct mapping from a known body

configuration to its visual appearance. Within an image sequence, the tracking of

the current 3D body configuration amounts then to comparing the individual images

to previously learned, image-based reference models. This mapping is likely to be

ambiguous if only a single image is used. However, through considering temporal

restrictions, i.e., body configurations that are closely related to the configuration

detected in the last image, this approach becomes feasible.

94



4.5 Model-based Approaches to Hand Tracking

Agarwal and Triggs (2006) present such an implicit modeling approach for 3D

human pose extraction from silhouettes. Here, a silhouette image of a human is

obtained by applying background subtraction (cf. Section 3.2.1). Local shape con-

texts are computed on edge points of this silhouette by building angular histograms

with 60 bins around the edge points. By applying clustering techniques, the feature

vector for a specific shape can be reduced to a reasonable size of 100 components

instead of representing it by the large sum of all angular histograms. A mapping

between the obtained feature vectors and the true body joint angles is learned using

nonlinear regression techniques. In addition to this static mapping, the dynamics

are incorporated into the tracking framework to deal with ambiguities inherent in

2D shapes and the associated feature vectors. The overall approach is, therefore,

capable of tracking the 3D human pose over an image sequence without an explicit

body model.

It should be noted, however, that learning such implicit models - similar to the

appearance-based hand detection methods outlined in Section 3.3.2 on page 64 -

requires that all relevant body configurations are included in the training set to

capture their visual appearance and temporal relations. Furthermore, the available

pose information always refers to the complete body, i.e., no details of the pose are

captured.

Modular, Explicit Body Model

Tracking the body by using some kind of explicit body model is a more typical

approach to deal with the wide variety of different body configurations exhibited

by humans during everyday life. The level of detail of the body model depends

on the required precision of tracking and the available computational resources.

Especially the latter point has seen drastic improvements in the last years, leading

to more complex body models in recent research activities.

As image data from a single video camera contains only 2D information, a

straightforward approach is to use algorithms that perform body tracking based

on a simple 2D model of the human body. One well-known approach that models

the individual limbs by a blob-based representation containing their color and con-

tour is the PFINDER system developed by Wren et al. (1997). Due to the coarse

body model, the 2D system achieved tracking at video frame rates. However, it

provides just a rough estimate of the body configuration that is only suitable for

detecting gestures made up by gross body motions. For the recognition of most

gestures that may occur in human-robot interaction (see Section 2.1.3), a more

detailed body model including the 3D body configuration is needed.
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Figure 4.14: Projecting a 3D body model and an associated visual model to a 2D

representation and matching it with preprocessed image data.

The use of an explicit 3D model of the arm or the whole body for tracking is

nowadays very prominent. Surprisingly, already in the beginning of the 80s Hogg

(1983) proposed one of the first approaches using a 3D body model. The target

was the tracking of a walking human in monocular image data. The body was

modeled consisting of articulated 3D cylinders viewed under perspective projection.

The input image was segmented and pairs of parallel lines were extracted and

subsequently matched to the legs of the projected 3D model.

In more recent approaches, all parts of an articulated 3D body model are used for

matching the model to the input data. Figure 4.14 depicts the different processing

steps of such an approach. Cylinders with ellipsoid cross sections are often used for

the 3D body model as this representation generates good result when a cylinder is

observed by the camera from the side and is computationally not too demanding.

Such a coarse model of the whole body needs at least 34 degrees of freedom. The

kinematic structure is completed by defining individual joint angle limits which

model the physical constraints of the human body.

In surveillance and intelligent room setups, multiple cameras are used for human

tracking in order to cope with body self-occlusions (see, e.g., Ramanan and Forsyth,

2003; Sigal et al., 2004; Kehl et al., 2005; Deutscher and Reid, 2005; Pons-Moll

et al., 2011). Some of these approaches operate in a top-down fashion, i.e., similar

to Fig. 4.14 they use a body model and aim to find features matching the limbs

in the image (Deutscher and Reid, 2005; Kehl et al., 2005). Other approaches are
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Figure 4.15: Bottom-up detection of 2D body parts and finding the 3D body model

that best matches with the individual part detections.

taking the opposite direction and construct in a bottom-up fashion a body model

out of individual body parts detected independently from each other in the image

(Sigal et al., 2004; Ramanan and Forsyth, 2003). Such a data-driven approach is

visualized in Fig. 4.15.

Notice that all multi-camera approaches are computationally expensive due to the

large mount of input data. Another more important drawback is the fact that these

approaches require multiple cameras observing the human from different directions.

This is obviously only possible in a stationary setup like, e.g., in surveillance tasks,

but not for the targeted application of gesture recognition on a mobile robot that

has to carry all sensors onboard.

Although 3D tracking of an arm or whole body model using a single viewpoint

is challenging, several approaches have addressed the problem (Sidenbladh et al.,

2000; Agarwal and Triggs, 2006; Sminchisescu and Triggs, 2005; Schmidt et al.,

2006; Ziegler et al., 2006; Hahn et al., 2008; Wöhler, 2009; Hecht et al., 2009),

partially using similar techniques as in multi-camera approaches.

For example, Sidenbladh et al. (2000) apply several different gray-level image

cues for tracking a detailed 3D human body model. A particle filter with impor-

tance sampling (see Section 4.2.2) is applied for tracking the human motions. To

cope with the huge search space, motion priors are used to predict the 3D body

configuration prohibiting the tracking of unconstrained motions. Extending this

framework, Sminchisescu and Triggs (2005) added a more precise modeling of the

3D body model and a more complex parameter space exploration, but the compu-

tational time required prohibited its use for real-time tracking.

To cope with a large parameter space, kernel-based Bayesian filtering (see Sec-

tion 4.2.2) has been applied by Schmidt et al. (2006) to 3D body tracking to reduce

the computational effort necessary for searching good body configurations. A de-

tailed description of the algorithmic framework of this body tracker is provided in

the next Section.
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The result of the different model-based arm/body trackers outlined above is the

sequence of body configurations over time. This data is technically similar to

what can be obtained from intrusive sensing methods (see Section 2.2.1 on page

31). For the actual recognition of gestures from this body tracking data, a variety

of pattern matching algorithms can be applied. Especially the choice of suitable

features for gesture recognition is strongly dependent on the types of gestures to

be recognized. Often the 3D hand trajectory is chosen, but this only allows for

the recognition of gestures that are independent of the rest of the body. In nearly

all categories of gestures occurring in human-robot interaction (see Section 2.1.3

on page 26), however, there are gestures that cannot be recognized based on the

hand position alone. For example, in a conventional gesture one might point with

the finger to the head to indicate ’I have an idea!’. Similarly, in a pointing gesture

not only the pointing finger but also the head position may be relevant to identify

via the eye-hand-object line (see Fig. 1.6 on page 16) which object was referenced.

Having the information of the complete body posture allows to incorporate this

context from the current body configuration for understanding hand gestures (see

also Section 6.1.1).

4.6 Example: Tracking 3D Human Body

Configurations

As pointed out earlier, multiple cameras observing the human from different di-

rections cannot be used onboard a mobile robot. Consequently, for human-robot

interaction an algorithm estimating the pose of the gesturing human from a single

observation point is needed. Obviously, with a monocular camera motions of body

segments in depth, towards or away from the camera, cannot be tracked precisely.

Note, however, that the limited tracking quality of an approach operating on a

monocular image sequence is not critical for most gestures occurring in human-

robot interaction. As long as tracking is not lost and a rough estimate of the body

configuration is always available, such an approach is well suited for human body

tracking onboard a mobile robot. Nevertheless, the tracking could be made more

robust if depth from the disparity of a stereo camera setup is available.

This Section gives an example of a model-based approach for 3D human pose

tracking from monocular images, a more detailed description can be found in

Schmidt (2009). The described method focusses on tracking only the upper body as

the legs usually have no influence on gestures performed with the hands and arms.

An overview of the overall method is given in Section 4.6.1. The approach relies on
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a variety of image cues that are extracted from the color images and matched with

a 3D body model. For the detection of the torso as well as the upper and lower

arm the approach applies edge, ridge, and color cues. A skin color model is used

for detecting a person’s hands and face. These cues as well as the internal 3D body

model are described in Section 4.6.2.

The matching of the image cues to the body model is performed by way of a prob-

abilistic tracking framework described in Section 4.6.3. More specifically, a kernel

particle filter which avoids the need for a huge number of particles to represent

probability distributions in high dimensional state space is used (see Section 4.2.2).

On the basis of mean shift based mode-seeking the dominant mode is determined

and then used to select the particles for the next time step. In order to better track

moving body parts, a linear motion model is used for propagating a fraction of the

particles while uniform random noise is used for the other part.

The parameterization of this framework for tracking in an interaction setting

is detailed in Section 4.6.4 together with a quantitative evaluation of the tracking

performance. The experimental results demonstrate that such a type of approach is

well suited to support human-robot interaction by enabling body tracking onboard

a mobile robot.

4.6.1 System Overview

An overview of the processing steps necessary for matching 3D object features of a

generic human model to 2D image features extracted from input images is depicted

in Fig. 4.16.

Assuming an initial body pose has been acquired in a special initialization step

(Schmidt and Castrillon, 2008) or the system is already successfully tracking a hu-

man, one iteration of the algorithm can be described as follows:

An input image is acquired with an uncalibrated monocular color camera (1) and

preprocessed. The resulting image features (2) are used for evaluating the proba-

bility of the different configurations of the body model from the previous time step.

The outcome (3) is a probability distribution which is further explored in multi-

ple iterations (4) of the mean shift algorithm. This enables the identification of

different modes (5) of the underlying probability distribution from which a single

mode (6) representing the most likely human body pose is selected. This mode

serves as output for subsequent recognition algorithms and is also used as input (7)

for the next time step of the particle filter. Particles generated from this mode are

then - partly after applying a motion model (8) - disturbed (9) to give an estima-

tion of body configurations for the next time step. This concludes the processing of
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Figure 4.16: Outline of the probabilistic pose tracking algorithm.

the current input image and a new image is acquired (1). This is preprocessed (2)

and now the configurations propagated from the last time step are evaluated (3)

on these new image features.

4.6.2 Modeling the Appearance of Humans

In order to track the body configuration for human-robot interaction, a model

of the upper body with two arms is often sufficient and is used in this example

approach. The 3D body model is back-projected into the image plane using a

pinhole-camera model. This yields an approximate 2D representation of the 3D

body model consisting of a number of 2D polygons in the image plane that can

now be used to evaluate how well the observed image matches a 3D body pose.

Estimating the likelihood of a specific pose is done by combining likelihoods for

each limb l = 1, . . . , L of the body model. The likelihood of an individual limb is

calculated from up to four image cues c ∈ {E,R,C, S}, where E stands for the edge

cue, R is the ridge cue, C is the mean color cue and S denotes the skin color cue.

For each cue, a filter response is obtained by evaluating the cue at specific image

positions and normalizing over all evaluated image positions belonging to a single

limb. Figure 4.17 shows the backprojected 3D model of the upper body together

with a visualization of some details for calculating the different cues.

The image processing of the individual cues resulting in associated likelihoods
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Figure 4.17: Backprojection of 3D body model on 2D image plane. Green rectan-

gles show color cue area and yellow boxes denote skin color cue. The

left arm depicts feature point positions exemplarily: red boxes denote

sample points for edge cue, and blue boxes show sample points for

ridge cue.

for each different limb is discussed in the next paragraphs.

Edge Cue

The edge cue as proposed by Sidenbladh (2001) uses the first partial derivatives

that are sensitive to strong changes in contrast. For recognizing human body parts

the presence of edges is most important, not their magnitude. Therefore all images

with partial derivatives are scaled with a nonlinear normalization function. This

function smoothes low magnitude edges stemming from textured backgrounds and

emphasizes stronger ones that are expected to result from objects overlapping at

different depths. The edge cue provides an accurate match for the position of a

limb by comparing the angle of the edge gradient [∂x(z), ∂y(z)]T (see Fig. 4.18) with

the estimated limb angle α, which has been obtained from the 3D model. This is

done for m = 1, . . . ,ME feature points z(m) positioned equally spaced on the limb

boundaries (see also Fig. 4.17). Here and in the next paragraphs the notation

z(m) = [x, y]T is used to denote the location of one pixel in the image plane. The

response of such an edge filter at pixel position z(m) is:

f
(l)
E (z(m)) = ∂y(z

(m)) cos(α)− ∂x(z(m)) sin(α), (4.25)

The filter response for the whole limb can then be calculated by averaging over

all ME feature points of this limb:
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(a) (b)

Figure 4.18: Partial derivatives after scaling with the normalization function. (a)

derivative in x direction; (b) derivative in y direction;

f̄
(l)
E =

1

ME

ME∑

m=1

f
(l)
E (z(m)). (4.26)

The filter response represents how well the boundaries of a limb of the 3D body

model match the edges in the image data.

Ridge Cue

The ridge cue inspired by Sidenbladh (2001) is utilized to find elongated structures

of a specified thickness in the image. The torso as well as the upper and lower arms

are limbs that have such an elongated structure. As the ridge cue depends on the

size of the limbs in the image, it will only provide appropriate results if the observed

limb is in a particular distance to the camera. In order to enable the calculation

of this cue for limbs having different distances to the camera, a Gaussian image

pyramid is constructed from the input image. Based on the evaluated body model

providing the distance of the limb to the camera, the correct resolution level µ in

the Gaussian image pyramid is then selected for calculating the ridge cue. The cue

suppresses point-like edge features by searching for edges parallel to the expected

limb angle α and missing edges in perpendicular direction. This is achieved by

evaluating the normalized second partial derivatives [∂
(µ)
xx (z), ∂

(µ)
xy (z), ∂

(µ)
yy (z)]T at

m = 1, . . . ,MR feature points z(m) equally distributed on the main limb axis (see

also Fig. 4.17):
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f
(l)
R (z(m), α) = (4.27)∣∣∣sin(α)2 ∂

(µ)
xx (z(m)) + cos(α)2 ∂

(µ)
yy (z(m))− 2 sin(α) cos(α) ∂

(µ)
xy (z(m))

∣∣∣

−
∣∣∣cos(α)2 ∂

(µ)
xx (z(m)) + sin(α)2 ∂

(µ)
yy (z(m)) + 2 sin(α) cos(α) ∂

(µ)
xy (z(m))

∣∣∣

The filter response for the whole limb l is computed by averaging over all MR

feature points on the main limb axis:

f̄
(l)
R =

1

MR

MR∑

m=1

f
(l)
R (z(m), α). (4.28)

Compared to the edge cue, the ridge cue gives a coarser estimate of the limb

position. Its advantage over the edge cue is its robustness as it produces less false

maxima.

Mean Color Cue

The mean color cue models the appearance of a limb using for different parts of the

limb specific color models. The algorithm positions Bl rectangular polygons on a

limb l. The mean color value is calculated trough averaging over the color values of

the MC pixels in the polygon b positioned in the back-projected limb. The number

of polygons Bl and their positions are chosen on the basis of the limb type (see also

Fig. 4.17).

To calculate the filter response, the mean color Ct(z
(b,l)) of each polygon b at

position z(b,l) on limb l is compared to the adapted mean color C̄
(b,l)
t−1 of this polygon

using the L2 norm in the utilized RGB color space:

f
(b,l)
C =

√(
Ct(z(b,l)) − C̄

(b,l)
t−1

)2
. (4.29)

The filter response for the complete limb l is then calculated from:

f̄
(l)
C =

1

Bl

Bl∑

b=1

f
(b,l)
C . (4.30)

To deal with varying illumination conditions the current mean color values are

adapted according to the mean color values Ĉt−1(z(b,l)) extracted on the basis of

the back-projection of the best mode extracted from the tracked 3D body models

in the last time-step t− 1:

103



4 Tracking of the Hand

C̄
(b,l)
t−1 = β · Ĉt−1(z(b,l)) + (1− β) · C̄(b,l)

t−2 (4.31)

where β is an adaptation factor. In most situations the mean color cue reliably

finds the coarse limb position as color is usually a very discriminative cue. In

situations where parts of the background have a color similar to the clothing of the

human, the cue becomes less reliable.

Skin Color Cue

The skin color cue uses a simplified form of the skin-color based hand detection

outlined in Section 3.2.2. Similar to the description there, the rg color space is

employed as it allows to quickly generate a person- and situation-specific color

model that is relatively robust to ongoing illumination changes. The skin color

model needs to be initialized in the setup phase with skin-colored pixels from, e.g.,

a face detector (Fritsch et al., 2002; Schmidt and Castrillon, 2008). Subsequently,

it allows to find the position of the hands and the head (see Fig. 4.19) but may fail

if lighting conditions start to differ from the initialization phase. This drawback

could be overcome if the skin color model would be actively adapted to changing

lighting conditions as described in the example approach in Section 4.4. However,

as a probabilistic tracking framework is applied here, it is computationally more

effective to use a rather coarse static skin color model without adaptation and put

more effort in the probabilistic combination with the other cues.

Figure 4.19: Binary segmentation image after applying skin color model.

For calculating the skin color cue, all MS pixels z(m) in a single polygon on the

limb l are evaluated. A single polygon is sufficient as only the head and hand limbs

(see Fig. 4.17) are analyzed. The filter response for the limb l is calculated using

the ratio of pixels being classified as skin or non-skin within the polygon:
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f̄
(l)
S =

1

MS

MS∑

m=1

ψ(z(m)) (4.32)

where ψ(z(m)) = 1 if the pixel belongs to the skin class and ψ(z(m)) = 0 if not. As

neither the hands nor the head have a rectangular form, this cue does not provide

a precise position estimate. However, if only small parts of the background are

skin-like, this cue is very good at giving a coarse estimate of the positions of head

and hands.

Observation Model

The edge, ridge, mean color, and skin color cues generate a separate filter response

for each limb. The filter responses are converted into likelihoods using the following

Gaussian weighting function:

p(c, l) = exp

(
−(f̄

(l)
c )2

2σ2
c

)
(4.33)

where the standard deviations σc are derived from the variability of the responses

of each utilized cue c. To account for the variations in the number of cues per limb,

the cue likelihoods of an individual limb l are scaled according to the total number

of cues Nl for this limb. In this way, the likelihood of each limb contributes equally

to the likelihood of the overall body pose. Assuming that the cues and limbs are

independent, the likelihood of a pose is calculated as:

p(yt | xt) =
∏

c∈{E,R,C,S}

L∏

l=1

p(c, l)
1
Nl (4.34)

Using this observation model, the likelihood that a certain body pose xt consist-

ing of the configuration of the L different limbs causes the observation yt can be

calculated. Here, the observation is the actual image that is used for calculating

the filter responses of the individual cues.

4.6.3 Tracking Multiple Body Configuration Hypotheses

Through modeling the appearance of the human as described in the previous Sub-

section and applying the observation model of Eq. 4.34, it is possible to calculate

the likelihood for a specific body pose. The question is for which body poses to

calculate the likelihood and how to incorporate a temporal constraint, i.e., the fact
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that the body pose can change only smoothly over time. Abstracting from the spe-

cific application domain, the problem of searching in a high-dimensional space for

the best matching hypotheses is a common pattern recognition task. Especially in

image processing, the evaluation of a specific point in search space is often compu-

tationally costly so that the evaluation of all possible points becomes impossible. In

sequence processing, temporal constraints can be incorporated to reduce the search

space. However, due to the many ambiguities resulting from the projection from

3D to 2D in the observation model, tracking a single body pose with a Kalman

filter (see Section 4.2.1) will be too restrictive. Therefore, we here employ particle

filtering for tracking likely body poses (see Section 4.2.2).

Earlier approaches for 3D human pose tracking have made use of standard parti-

cle filtering (see, e.g., Sidenbladh, 2001), but the large search space resulting from

the high degrees of freedom of the body model made tracking difficult. A large

number of particles was needed for successful tracking, resulting in high computa-

tional requirements of the tracking algorithm and prohibiting real-time operation

of the algorithm.

To overcome this drawback and enable real-time tracking of the body config-

uration, a kernel-based particle filter can be applied (see Section 4.2.2). In this

implementation, the initial bandwidth h0 of the kernel is scaled at every iteration

i according to h = 0.8i h0 where the value 0.8 has been determined empirically,

similar to (Chang and Ansari, 2005). Mode-seeking is performed until a maximum

number of iterations has been reached or until the Euclidean distance between the

corresponding modes in the last two iterations is below an empirically determined

threshold, i.e., the mode position does not shift anymore. Figure 4.20 shows a

graphical representation of the posterior distribution for different numbers of iter-

ations.

Following mode-seeking, the most dominant mode is obtained by a weighted

(a) (b) (c) (d)

Figure 4.20: Spread of hypotheses of current body configuration for different num-

bers of mean shift iterations (increasing from left to right)
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averaging over all particles in a window centered at the peak of the posterior distri-

bution. This mode serves as estimate of the current body pose and is called mean

mode. The back-projection of this pose into the image plane (see Fig. 4.21(b)) is

utilized as reference model for updating the mean color using Eq. 4.31.

(a) (b)

Figure 4.21: (a) Particle-based body configurations colored according to their like-

lihoods; (b) Estimate of body configuration generated through calcu-

lating mean mode.

The particles are propagated from the dominant mode obtained at the end of

one iteration to the next time step based on two different strategies:

• A linear motion model is used for propagating a fraction of all particles.

The velocity of the individual limbs captured in the linear motion model is

estimated on the basis of the best mode at time t and the best mode at time

t− 1, i.e., by comparing the two configurations.

• The remaining particles are subject to random propagation.

The ratio of particles propagated with the two strategies is derived from the

success of the strategies in the previous time step. For each of the two strategies

the cumulated probabilities of the particles in the posterior are calculated. If one

strategy is better than the other, the particles stemming from the propagation with

this strategy will exhibit higher probabilities and, therefore, this strategy will be

allocated a larger fraction of the particles in the current time step. A minimum

percentage of random propagation is enforced to guarantee the ability to recover if

the motion model does not adequately capture the current motion.
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(a) (b) (c) (d)

Figure 4.22: The tracked hand trajectory (green) resulting from model-based 3D

body tracking.

Particles propagated with the motion model are subject to uniform noise with

variance 0.25D while uniform noise with variance D is used for the particles that

are subject to random propagation. The values of the joint angle variances D have

been determined experimentally based on the camera view and the application

domain. If during the propagation the addition of the noise results in an invalid

body configuration, the propagation step is repeated until a valid body pose is

obtained. For the mean shift iterations, the initial bandwidth is chosen as h0 = D.

The window for determining the most dominant mode after mode-seeking is set to

0.25D, this value has been determined empirically.

Note that a linear motion model is applied only for a fraction of the particles

and that the velocity captured in the motion model is derived from the motion

exhibited in the last time step. This model makes a very simple prediction without

including any knowledge possibly available in a specific domain. Other approaches

have included specific motion models like, e.g., a walking motion (Sidenbladh et al.,

2000). Using motion priors makes tracking easier, but comes at the cost of a lim-

ited ability to cope with other unknown motions. Without specific motion models

tracking is more challenging, but it allows to track any human motion as well as to

recover from tracking failures more easily. Figure 4.22 depicts an example sequence

including the hand trajectory obtained from tracking the overall 3D body model.

4.6.4 Evaluation Results

The framework described above can be used for tracking arbitrary human body

motions. However, the computational requirements make it necessary to restrict

the body model if tracking in real-time has to be achieved. Since in an interactive

scenario with a robotic platform the hand gestures are most interesting, the human

body model is limited to the upper body and the two arms (see also Section 4.6.2

on page 100). The hands are fixed to the lower arms and the head is fixed to the
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4.6 Example: Tracking 3D Human Body Configurations

torso leading to a model with 14 degrees of freedom. This reduction of the model

complexity is acceptable for tracking a human that is oriented roughly towards the

camera and interacts with a mobile robot.

The likelihoods of the different limbs are calculated by combining the likelihoods

of the individual cues (Edge, Ridge, Color, Skin) for each limb:

ctorso = {E,C}
cupperarm = {E,R,C}
clowerarm = {E,R}

chand = chead = {S}

For the edge cue, ME = 20 feature points are used and the ridge cue is evaluated

at MR = 30 feature points. The mean color cue is computed using Barm = 3

polygons per arm and Btorso = 4 polygons for the torso. For the three shoulder joint

angles and the elbow the joint angle variances are set to Darm = [22◦, 20◦, 35◦, 25◦].

The variance of the torso Dtorso is between 1◦-3◦ for rotation and 1cm-5cm for

translation. These parameters have been found to be an acceptable tradeoff between

detection capabilities and computational load.

Before starting the actual tracking, the body model has to be initialized. Two

fundamentally different types of initialization have to be performed:

Adapting the body model: The adaptation of the body model is done manually

to account for the variability of the limb sizes of different humans. This is

necessary as the matching is rather sensitive and a too large diameter of,

e.g., the lower arm will result in a tendency to ’push the arm away’ from the

camera to reduce the backprojected arm width and allow a good match with

the image data.

Setting the initial pose: To start the iterative tracking, the adapted body model

must be in a configuration close to the current human body pose. With a body

posture initialization scheme this can be done automatically (Schmidt and

Castrillon, 2008). Similarly, the probabilistic tracking can be started on the

initial image with initial particle configurations distributed over the complete

search space. Through iteratively processing the initial image, the tracking

may converge to the current pose of the human. However, in the evaluation

described here, manual initialization of the body pose was performed.

In order to speed up processing, no occlusion test is performed. Consequently,

matching difficulties can arise if the hands occlude the head or point in the direction
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Consumer
camera for
image recording

(a) (b)

Figure 4.23: Setup for evaluation: a) Overall scene including the mobile robot with

the camera used for evaluation; b) Image depicting view of the onboard

camera with an example trajectory and the five annotated objects.

of the camera. In such situations tracking may temporarily fail. However, the

recovering capabilities of the particle filter allow the algorithm to continue the

broken tracking when the occlusion ends.

For evaluation the setup depicted in Fig. 4.23(a) has been used: The human is

standing in front of a table with five objects, facing a mobile robot. The person is

asked to show the objects to the robot by pointing at them. The human’s actions

are recorded by the body tracking camera while it is ensured that the upper body

is in the robot’s field of view (see Fig. 4.23(b)).

The complete data set will be also used in later example approaches outlined in

this book, therefore it described here in more detail: The experiments were per-

formed with a total of four persons. After an initialization phase for the body

tracking every person pointed at each object in sequence (crocodile, cup, ball,

lemon, bottle), withdrawing their hand after each pointing gesture. Subsequently,

the subjects had to raise the hand and wave into the camera, finally lowering the

arm. All participants had to perform the same sequence of gestures three times

changing the order of targets each time. Each subject was recorded performing the

experiments four times, resulting in 16 sequences with a total number of 18572 im-

ages, equivalent to more than 20 minutes of video, counting 496 performed gestures

in total.

The body tracking algorithm has been evaluated on three recorded sequences

with 836 images in total. Ground truth for this evaluation has been generated by

manually annotating the position of the human’s hands and the head in the images.
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The measures of the body model and an initial posture of the 3D body model are

also defined manually for each sequence.

The system is configured in two ways:

1. Using 1500 particles and 6 meanshift iterations is the configuration that is

used for carrying out the overall system evaluation.

2. Using 500 particles and three meanshift iterations results in a lower accuracy

but achieves faster computation that is more likely to be real-time capable

on embedded hardware, shown for comparison only.

Tab. 4.1 shows that a relatively high number of particles is still needed to en-

sure accurate tracking over a longer image sequence. Gestures that effect in self-

occlusion are more likely to produce noisy results (cf. Fig. 4.24 around frame 270),

1500 particles 500 particles

Person # pic RMSE σ RMSE σ

subject A 318 18.7 13.9 52.7 41.3

subject B 242 14.5 8.6 32.9 23.3

subject C 276 12.0 10.1 72.6 38.3

Table 4.1: Body tracking evaluation: Position error for the right hand. RMSE

(root mean squared error) position error and standard deviation σ in

[pixel]. RMSE for subject B also shown in Fig. 4.24.
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Figure 4.24: Tracking error of subject B for two configurations. Mean errors µ as in

Tab. 4.1. Pointing at object (5) around frame 270 is difficult to track.
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as the observation function for occluded limbs (e.g., the torso) provides imprecise

or even wrong results. Fusing multiple cues for each limb and considering the body

model as a whole helps to keep up tracking even if detectors for individual body

parts were mislead. Both evaluated configurations are able to recover from track-

ing errors, but only the first configuration with 1500 particles permanently provides

reliable trajectories.

4.7 Summary and Conclusion

In this Chapter the incorporation of temporal information into the gesture recog-

nition process has been introduced. In its most simple form, the temporal tracking

can be based on using the detection techniques outlined in Chapter 3 for finding

the hand in individual images. By associating the individual detections over time

it becomes possible to track a hand. This Chapter has introduced two standard

techniques, Kalman filtering and particle filtering, for this association. A successful

tracking is the basis for subsequently adapting the underlying representation used

for achieving the hand detection in the individual images.

The two main types of detection methods introduced in Chapter 3 are using

feature-based and model-based representations, respectively. In this Chapter, dif-

ferent methods for adapting these representations have been introduced. For adapt-

ing the visual features, the feature representation used for detection can be modified

like, e.g., the mean skin color value. Alternatively, the detection process itself can

be performed adaptively. For example, instead of only modifying the 2D hand

shape to be matched after each detection, the shape model itself can be realized

as adaptive representation. Tracking the hand then results in a continuous shape

modification where knowledge about past modifications can be used to influence

the matching process. Although this is still a feature adaptation, such a kind of

processing is related to the model-based approaches to tracking that use explicit

models of how the representation changes over time.

In order to provide an insight into the tasks necessary for feature adaptation, a

tracking approach applying skin color adaptation has been outlined. In this exam-

ple approach, low-level image data processing provides an abstraction of the input

data by segmenting the image. The result of this processing are a number of image

regions with a skin-like color. An important aspect is that for this feature adap-

tation neither knowledge about the gesturing human nor about later processing

stages needs to be available. In other words, the algorithm works independently

of the context in which it is applied. While this makes its implementation easier,
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it results in a stronger susceptibility to noisy input data or ambiguous situations.

Furthermore, the results are only of a limited expressive power providing informa-

tion about the 2D position of skin-colored moving image regions which may or may

not be human hands and faces. Consequently, for separating hands and faces, ad-

ditional face detection methods have to be applied or the tracked object positions

have to be analyzed to separate moving hands from static faces.

As alternative to feature-based approaches, model-based approaches can be used

in an adaptive manner. The model can be either some kind of hand representation

or even a representation of the complete body. These models are, therefore, provid-

ing more details about the configuration of the hand or body while feature-based

approaches are usually more focussed on tracking the position only. Tracking of the

changing 3D hand configuration is important for understanding the details of an

object manipulation. Many temporal gestures performed when interacting with an

intelligent robot, however, are characterized by larger hand motions and not only

the changing hand configuration. Through tracking the overall 3D body pose, not

only the hand motion itself but also its relation to the other body parts can be used

for gesture recognition. Depending on the features used for matching the model to

the image data, such an implementation can be much more robust with respect to

the image background than just tracking a single hand. Such a system, therefore,

seems to be most suited to provide the basis for the recognition of a wide range of

different gestures and for the dynamic extension of the gesture vocabulary.

This Chapter also provided an example of a probabilistic framework for model-

based 3D human pose tracking. An upper body model is used to represent the

search space and joint constraints limit the search space. Temporal propagation

is applied to restrict tracking in the search space to smooth transitions between

body poses. The feature extraction method is obviously quite sophisticated, but

it does provide features at a high abstraction level simplifying later processing

stages. While for skin-colored region features it must be assured by later stages

that the regions are actually hands, this information comes for free when applying

the pose tracking feature extraction. In addition, the probabilistic nature allows

to incorporate the confidence of the tracking approach (i.e., how focussed the PDF

is) in the later processing stages. Consequently, feature extraction approaches that

incorporate model information are becoming more important in recent years for

realizing gesture recognition systems.

The next Chapters will detail how the tracking data can be used to perform

gesture recognition and how recognized gestures can be combined with context

information to, for example, help to resolve multi-modal object references given by

a human interacting with a mobile robot through speech and gesture.
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In the previous Chapters the detection of the hand and the tracking of the hand mo-

tion over time have been covered. In this Chapter different algorithmic approaches

for the task of recognizing gestures based on this preprocessed data are reviewed.

There is a huge variety of different pattern matching algorithms applied for gesture

recognition, but quantitative evaluations between algorithms are rarely performed.

The quality of a recognition algorithm is related to the quality of the features and

these in turn are usually depending on the application domain, preventing the find-

ing of generic rules for choosing the pattern matching technique. Therefore, this

Chapter will present a qualitative overview over the different approaches that have

been developed for recognizing gestures.

As already pointed out in Chapter 1, many gestures in human-robot interac-

tion are related to the objects in the environment. Their recognition is, therefore,

only possible by combining information about the hand motion with such context

data. However, as the extraction of context information is highly dependent on

the application domain, approaches targeting the recognition of context-dependent

gestures often contain domain-specific processing methods for context extraction.

Such approaches will be covered in the subsequent Chapter 6. A common part

of all gesture recognition approaches, however, is the analysis of the hand motion

which is the focus of this Chapter.

Recognition algorithms can be separated into holistic and modular approaches.

Section 5.1 will outline holistic algorithms that are based on holistic image repre-

sentations and usually do not require any preprocessing like detection and tracking.

However, due to the inherent limitations of holistic gesture recognition approaches

for recognizing a wide range of gestures, modular approaches building on the track-

ing algorithms outlined in the previous Chapter are much more common. Sec-

tion 5.2 will introduce the general design of such approaches for matching trajecto-

ries. Subsequently, methods for performing gesture recognition by matching hand

trajectories to gesture templates using deterministic (see Section 5.3) and proba-

bilistic (see Section 5.4) algorithms will be outlined. Furthermore, an example of

a probabilistic algorithm is given in Section 5.5 for trajectory-based recognition of

pointing gestures before a summary concludes this Chapter.
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5.1 Holistic Methods Applying Implicit Models of

Hand Gestures

Holistic approaches to gesture recognition do not require an explicit tracking of the

human hand motion. While Chapter 3 focused on approaches for hand detection in

isolated images, approaches for recognizing whole-body gestures from single images

are covered in Section 5.1.1. Holistic approaches operating on image sequences

and implicitly including temporal information in the modeling are described in

Section 5.1.2.

5.1.1 Single-Frame Gesture Recognition

Approaches for the holistic recognition of gestures in individual images require that

the gesture resembles a characteristic body posture, i.e., that there is no relevant

temporal information. If this precondition is met, similar techniques as outlined

for the task of hand detection in Chapter 3 can be used to detect the overall body

shape. However, for interaction with a robot this precondition mainly applies to

command-like gestures. One type of gesture that is relevant in the context of this

book and that can also be understood as a command gesture are static pointing

gestures.

Figure 5.1 depicts a recent example of a holistic approach for deictic gesture

recognition by Martin et al. (2010). The pointing gesture is used for telling a mobile

robot where to go. At first, the user triggers the gesture recognition by saying ’Go

there!’ to the robot. For recognition the system first classifies the general pointing

direction (left/right). After this preprocessing, a number of detailed features are

extracted from the image (see Fig. 5.1). The classification is performed using a

cascade of Multi-Layer Perceptrons (MLP) where first the rough pointing direction

is extracted and a subsequent classification step determines the detailed pointing

direction.

In the example by Martin et al. the recognition is carried out when a user com-

mand is given. In general, the recognition of gestures from a continuous video

stream requires to have a high robustness against non-relevant gestures, i.e., to

filter the input stream for relevant gestures. In analogy to the speech recognition

community this is called ’gesture spotting’ and is a highly relevant challenge for

single-frame holistic methods. Such approaches can therefore only be used for ges-

ture recognition if the gesture recognition is explicitly triggered, i.e., the gesture

spotting problem is circumvented, or the gesture to be recognized is very charac-

teristic.
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Author's personal copy

C. Martin et al. / Robotics and Autonomous Systems 58 (2010) 174–185 179

Fig. 6. Architecture overview of the Pointing Pose Estimator. Based on the face detection a primary ROI is extracted. The Gabor-filtered ROI is first fed in to ‘‘Left/right-

classifier’’. The result of this classifier enables to extract the finer images ROIs of the head and the arm. In the following stage the final pointing radius rpose is estimated by

the ‘‘Radius estimator’’. The pointing angle φpose is estimated in two steps: First a ‘‘Coarse angle classifier’’ and second a ‘‘Fine angle classifier’’ is applied.

a b c d e

Fig. 7. Steps of preprocessing and feature extraction: the raw distorted image of the low cost camera in the robot’s eye (a) is transformed into an undistorted image, and

the face of the user is detected by means of [20] (b). Based on the height of the face in the picture and the distance of the user given by the person tracker, two sections of

the image are captured and transformed into grayscale images (c). On these images a histogram equalization is applied (d). Subsequently, distributed features are extracted

by Gabor filters placed at pre-defined points of the image (marked as red dots in (e)). A background subtraction (see Fig. 8) was optionally used between steps (d) and (e).

bundled in Gaborjets that are located on several fixed points in

the selected ROIs, are used. The several steps of preprocessing and

feature extraction applied in our comparison are summarized in

Fig. 7.

A second feature extraction we used is the histogram of the

user-silhouette as proposed by Takahashi and Tanigawa in [16].

This method also uses a background subtraction to separate the

user from the background. Afterwards the algorithm counts the

pixels, which belong to the silhouette of the user, for each line

and column of the image. The number of pixels in each line and

column is used as feature for the approximation of the target. Fig. 9

shows a sample histogram for a pointing pose fromour dataset.We

compare the resultswe achievedwith this feature extraction to the

results achieved with the Gabor filters in Section 5.

4.4. Feature selection by discriminant analysis

The discriminant analysis [22,23] is a well-known technique to

figure out the most relevant features in a feature space for the

separation of two or more classes. In our approach, we used the

discriminant analysis for two purposes: First, to achieve a higher

robustness against cluttered backgrounds and, second to reduce

the required computation timedue to the reduced effort for feature

extraction.

To determine the importance and the contribution of a single

feature k on the estimation of a target position, the following

simple feature selectionwas applied: First, theGabor filter answers

for the selected feature were computed at all samples of the

training data set mentioned in Section 4.1. Every value was

assigned to a certain class r which was defined through the target

point the subject pointed to in the current sample. Then, for feature

k the discriminant value σ
(k)
rs between two arbitrary classes r and s

was computed as follows:

σ (k)
rs =

�
b(k)
r − b(k)

rs

�2

+
�
b(k)
s − b(k)

rs

�2

�
i∈r

�
b(k)
i − b(k)

r

�2

+ �
j∈s

�
b(k)
j − b(k)

s

�2
. (1)

b(k)
i is the Gabor filter answer for the sample i belonging to the

class r . b(k)
r is the mean filter answer of all samples for the feature

k in class r . b(k)
rs is the mean filter answer of all samples assigned

to a certain class r or s. The discriminant value σ
(k)
rs gets a high

Figure 5.1: Holistic approach to pointing gesture recognition (image from Martin

et al., 2010).

5.1.2 Holistic Temporal Models

Approaches performing the holistic recognition of gestures from image sequences

represent the complete image sequence depicting a specific gesture or action by

an integrated representation. Here, the image features of individual images are

not considered in isolation, but rather their temporal changes within the complete

sequence are encoded in the holistic representation. Consequently, this kind of ap-

proach implicitly solves at the same time not only the tracking task but also the

pattern matching task of recognizing a gesture. The recognition result is therefore

the specific gesture performed in the image sequence while no detailed information

about the hand motion or configuration is available. The granularity of the repre-

sentation, however, is an important choice in the design process, as it must be fine

enough to enable the construction of a characteristic holistic representation.

A well-known approach providing the implicit recognition of gestures from image

sequences was proposed by Bobick and Davis (2001). It uses for each sequence

depicting a specific gesture two image-based templates encoding the motion known

as Motion-Energy Image (MEI) and Motion-History Image (MHI). The MEI is

a binary image representing the image positions where motion has occurred in

the image sequence. The MHI represents the recency of motion in the sequence
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Figure 5.2: Motion-History Image (MHI) and Motion-Energy Image (MEI) for an

image sequence depicting a pointing motion.

through integrating the motion images with a decay factor for “old” motion. The

combination of MEI and MHI provides a view-based temporal template of a gesture.

An example of an MEI and an MHI is depicted in the center part of Fig. 5.2.

As the complete image sequence depicting a specific gesture is represented in a

single representation, the recognition simply has to perform a matching between the

representation of the current sequence and all stored representations for the possible

gestures. In the case of Motion-History Images, this amounts to a matching between

image representations (see Fig. 5.2 right) where an obvious match criterion is the

similarity on pixel level. However, some spatial similarity criterion may be needed

as well to capture the possible spatial variations in different performances of the

same gesture.

The approach of Bobick and Davis has a low computational cost and is therefore

very well suited for implementation on a mobile robot. However, their method

requires to build models of all relevant gestures, i.e., it cannot deal with unknown

gestures. A more complex motion can also be a problem as – during the course of

the gesture – the gesturing human may ’overwrite’ image areas that contained the

beginning of the gesture. In addition, it requires to have a static background, as any

image motion not generated by the gesturing human will hamper the recognition.
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5.1 Holistic Methods Applying Implicit Models of Hand Gestures

This requires the observing camera to be fixed and is also a relevant restriction when

considering interaction scenarios with more than one human. Nevertheless, a large

number of different applications have been realized with this holistic representation,

partially extending the framework to cope with the mentioned restrictions (for an

overview of different applications see Ahad et al., 2010).

To give another example of a simple holistic representation, Ahn et al. (2009)

record the complete gesture of a user and then construct a single image of the

complete trajectory, i.e., a 2D representation of the motion. Subsequently, a neural

network is applied to match this trajectory image to all stored templates.

Another prominent group of holistic approaches that has been used to recognize

whole-body motions like walking, running, boxing, a.s.o., applies spatio-temporal

features for representing the body motion (see, e.g., Schüldt et al., 2004; Dollár

et al., 2005; Niebles et al., 2008; Laptev et al., 2008). In these approaches, sparse

interest points are extracted using local space-time features. Figure 5.3 depicts two

examples of such interest points.
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22 13 20 22 49 47 11 47 231 219

manually labeled training set

            

23 13 19 22 51 30 10 49 217 211

test set

            

Table 1. The number of action labels in automatic training set

(top), clean/manual training set (middle) and test set (bottom).

video clips and the corresponding annotations, are available

at http://www.irisa.fr/vista/actions.

The objective of having two training sets is to evalu-

ate recognition of actions both in a supervised setting and

with automatically generated training samples. Note that

no manual annotation is performed neither for scripts nor

for videos used in the automatic training set. The distri-

bution of action labels for the different subsets and action

classes is given in table 1. We can observe that the num-

ber of correctly labeled videos in the automatic set is 60%.

Most of the wrong labels result from the script-video mis-

alignment and a few additional errors come from the text

classifier. The problem of classification in the presence of

wrong training labels will be addressed in section 4.3.

3. Video classification for action recognition

This section presents our approach for action classifica-

tion. It builds on existing bag-of-features approaches for

video description [3, 13, 15] and extends recent advances in

static image classification to videos [2, 9, 12]. Lazebnik et

al. [9] showed that a spatial pyramid, i.e., a coarse descrip-

tion of the spatial layout of the scene, improves recognition.

Successful extensions of this idea include the optimization

of weights for the individual pyramid levels [2] and the use

of more general spatial grids [12]. Here we build on these

ideas and go a step further by building space-time grids.

The details of our approach are described in the following.

3.1. Space-time features

Sparse space-time features have recently shown good

performance for action recognition [3, 6, 13, 15]. They pro-

vide a compact video representation and tolerance to back-

ground clutter, occlusions and scale changes. Here we fol-

low [7] and detect interest points using a space-time exten-

sion of the Harris operator. However, instead of performing

scale selection as in [7], we use a multi-scale approach and

extract features at multiple levels of spatio-temporal scales

(σ2
i , τ2

j ) with σi = 2(1+i)/2, i = 1, ..., 6 and τj = 2j/2, j =
1, 2 . This choice is motivated by the reduced computational

Figure 5. Space-time interest points detected for two video frames

with human actions hand shake (left) and get out car (right).

complexity, the independence from scale selection artifacts

and the recent evidence of good recognition performance

using dense scale sampling. We also eliminate detections

due to artifacts at shot boundaries [11]. Interest points de-

tected for two frames with human actions are illustrated in

figure 5.

To characterize motion and appearance of local features,

we compute histogram descriptors of space-time volumes

in the neighborhood of detected points. The size of each

volume (∆x,∆y,∆t) is related to the detection scales by
∆x,∆y = 2kσ,∆t = 2kτ . Each volume is subdivided into
a (nx, ny, nt) grid of cuboids; for each cuboid we compute
coarse histograms of oriented gradient (HoG) and optic flow

(HoF). Normalized histograms are concatenated into HoG

and HoF descriptor vectors and are similar in spirit to the

well known SIFT descriptor. We use parameter values k =
9, nx, ny = 3, nt = 2.

3.2. Spatio-temporal bag-of-features

Given a set of spatio-temporal features, we build a

spatio-temporal bag-of-features (BoF). This requires the

construction of a visual vocabulary. In our experiments we

cluster a subset of 100k features sampled from the training
videos with the k-means algorithm. The number of clusters

is set to k = 4000, which has shown empirically to give
good results and is consistent with the values used for static

image classification. The BoF representation then assigns

each feature to the closest (we use Euclidean distance) vo-

cabulary word and computes the histogram of visual word

occurrences over a space-time volume corresponding either

to the entire video sequence or subsequences defined by a

spatio-temporal grid. If there are several subsequences the

different histograms are concatenated into one vector and

then normalized.

In the spatial dimensions we use a 1x1 grid—

corresponding to the standard BoF representation—, a 2x2

grid—shown to give excellent results in [9]—, a horizontal

h3x1 grid [12] as well as a vertical v1x3 one. Moreover, we

implemented a denser 3x3 grid and a center-focused o2x2

grid where neighboring cells overlap by 50% of their width

and height. For the temporal dimension we subdivide the

video sequence into 1 to 3 non-overlapping temporal bins,

Figure 5.3: Spatio-temporal feature points for two example images (images from

Laptev et al., 2008).

For example, Laptev et al. (2008) perform the processing of these spatio-temporal

features for the actual recognition as follows: During training, all interest points are

grouped into classes and a representative for each class (a codeword) is determined,

this is known as Bag-Of-Features (BOF). For the actual recognition, every interest

point is converted into its associated codeword. For each cell of a predefined spatio-

temporal grid (see Fig. 5.4), the histogram of codewords is calculated from all

interest points in this grid cell. The overall feature vector for the complete image

is then the concatenation of the histograms for all grid cells and its classification is

performed using a support vector machine.

Many other holistic representations can be constructed and require other match

criterions, but the basic setup is the same: the extracted holistic representation
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Figure 6. Examples of a few spatio-temporal grids.

resulting in t1, t2 and t3 binnings. Note that t1 represents

the standard BoF approach. We also implemented a center-

focused ot2 binning. Note that for the overlapping grids the

features in the center obtain more weight.

The combination of six spatial grids with four temporal

binnings results in 24 possible spatio-temporal grids. Fig-

ure 6 illustrates some of the grids which have shown to be

useful for action recognition. Each combination of a spatio-

temporal grid with a descriptor, either HoG or HoF, is in the

following called a channel.

3.3. Non-linear Support Vector Machines

For classification, we use a non-linear support vector ma-

chine with a multi-channel χ2 kernel that robustly combines

channels [20]. We use the multi-channel Gaussian kernel

defined by:

K(Hi,Hj) = exp
(
−
∑

c∈C

1

Ac
Dc(Hi,Hj)

)
(1)

where Hi = {hin} and Hj = {hjn} are the histograms for
channel c and Dc(Hi,Hj) is the χ

2 distance defined as

Dc(Hi,Hj) =
1

2

V∑

n=1

(hin − hjn)2

hin + hjn
(2)

with V the vocabulary size. The parameter Ac is the mean

value of the distances between all training samples for a

channel c [20]. The best set of channels C for a given train-
ing set is found based on a greedy approach. Starting with

an empty set of channels all possible additions and removals

of channels are evaluated until a maximum is reached. In

the case of multi-class classification we use the one-against-

all approach.

4. Experimental results

In the following we first evaluate the performance of the

different spatio-temporal grids in section 4.1. We then com-

pare our approach to the state-of-the-art in section 4.2 and

evaluate the influence of noisy, i.e., incorrect, labels in sec-

tion 4.3. We conclude with experimental results for our

movie datasets in section 4.4

4.1. Evaluation of spatio-temporal grids

In this section we evaluate if spatio-temporal grids im-

prove the classification accuracy and which grids perform

best in our context. Previous results for static image clas-

sification have shown that the best combination depends on

the class as well as the dataset [9, 12]. The approach we

take here is to select the overall most successful channels

and then to choose the most successful combination for each

class individually.

As some grids may not perform well by themselves,

but contribute within a combination [20], we search for

the most successful combination of channels (descriptor &

spatio-temporal grid) for each action class with a greedy

approach. To avoid tuning to a particular dataset, we find

the best spatio-temporal channels for both the KTH action

dataset and our manually labeled movie dataset. The exper-

imental setup and evaluation criteria for these two datasets

are presented in sections 4.2 and 4.4. We refer the reader to

these sections for details.

Figure 7 shows the number of occurrences for each of

our channel components in the optimized channel combi-

nations for KTH and movie actions. We can see that HoG

descriptors are chosen more frequently than HoFs, but both

are used in many channels. Among the spatial grids the

horizontal 3x1 partitioning turns out to be most successful.

The traditional 1x1 grid and the center-focused o2x2 per-

form also very well. The 2x2, 3x3 and v1x3 grids occur less

often and are dropped in the following. They are either re-

dundant (2x2), too dense (3x3), or do not fit the geometry

of natural scenes (v1x3). For temporal binning no temporal

subdivision of the sequence t1 shows the best results, but

t3 and t2 also perform very well and complement t1. The

ot2 binning turns out to be rarely used in practice—it often

duplicates t2—and we drop it from further experiments.

Table 2 presents for each dataset/action the performance

of the standard bag-of-features with HoG and HoF descrip-

tors, of the best channel as well as of the best combination

of channels found with our greedy search. We can observe

that the spatio-temporal grids give a significant gain over the

standard BoF methods. Moreover, combining two to three
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Figure 7. Number of occurrences for each channel component

within the optimized channel combinations for the KTH action

dataset and our manually labeled movie dataset.

Figure 5.4: Examples of spatio-temporal grids (image from Laptev et al., 2008).

is matched to all stored representations. Correctly identifying the best matching

template is a challenging task, but many pattern recognition techniques can be

applied to this problem. It should be noted that in some applications the holistic

gesture recognition is combined with hand detection and hand tracking techniques

to capture not only the hand gesture but also the spatial embedding in a scene like,

e.g., the distance of the hand gesture to some scene object.

Although a holistic representation has low computational requirements in the

calculation of the representation and the matching to the templates, some practi-

cal challenges remain that limit the application of holistic approaches for gestural

understanding on an intelligent robot:

Background dependency: The holistic nature of the representation usually results

in a very limited abstraction from the context in which a gesture was per-

formed. Especially early approaches like the Motion-History Images (Bobick

and Davis, 2001) relied on a fixed background as the complete image area

was used for building up the holistic representation. Later approaches have

resolved this issue by using a preprocessing stage to extract the gesturing hu-

man from the background before generating the holistic representation (see,

e.g., Agarwal and Triggs, 2006).

View-point dependency: After removing the background, the visual observation

of the gesturing human is still view-point dependent. However, the orientation

of the gesturer to the camera is not fixed, so a certain amount of view-point

variability is to be expected. In order to capture this variability in the holistic

representation, a more sophisticated abstraction from the raw image data by

using, e.g., volumetric 3D information can be applied (see, e.g., Shin et al.,

2005).

Granularity: The key difference between holistic and modular approaches to ges-

ture recognition - the inherently coarse granularity of holistic approaches -

has important consequences for their applicability in real applications. Holis-
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5.2 Modular Methods for Matching Trajectories: General Design

tic approaches require that the gestures to be recognized are known at design

time, i.e., no online learning of new gestures is possilbe, but the represen-

tation can be constructed for optimal recognition results. Furthermore, the

gestures to be recognized need to have a certain level of granularity: the mo-

tion should not be too short in order to exhibit a characteristic representation,

but it should also be of limited length to avoid an ’overwriting’ of the holistic

representation. For example, in the Motion-History Images a long motion

will result in the blending out of the start phase while the Motion-Energy

Images will exhibit a large energy stemming from two different time points in

the gesture. For recognizing longer motions, therefore, a splitting into several

elementary motions may be necessary to capture the motion adequately.

With the increasing interest in gesture recognition for intelligent robots, many

holistic approaches have been proposed. However, as the previous paragraphs have

pointed out, the strength of these approaches are the recognition of short, char-

acteristic motions that are subject to only small variations in view-point. Conse-

quently, they are typically used to recognize symbolic gestures that can serve for

commanding a robot (see, e.g., Singh et al., 2006).

Due to the fact that the approaches have to be trained with the motions of interest

beforehand, they are not the primary choice when targeting a general recognition

method. Especially when the aim is to recognize a dynamically growing set of

gestures, modular approaches like the ones covered in the next Sections are more

suited.

5.2 Modular Methods for Matching Trajectories:

General Design

Modular approaches to gesture recognition assume that hand detection and tracking

have been carried out independent of the gestures to be recognized. These preceding

stages provide the hand motion in the form of a hand trajectory which has to be

matched with trajectory templates in order to perform the gesture recognition.

This basic processing scheme is depicted in Fig. 5.5 using a 2D hand trajectory as

example.

For the actual gesture recognition, a variety of trajectory representations are in

use. Approaches using visual features provide trajectories representing the absolute

hand position in 2D (Wren et al., 1997; Kölsch and Turk, 2004; Shan et al., 2007)

while model-based approaches typically provide 3D trajectories (Stenger et al.,

2001; Sminchisescu and Triggs, 2005; Schmidt et al., 2006; Ziegler et al., 2006; Hahn

121



5 Recognition of the Gesture

Tracking

Input image Hand trajectory
Matching

Trajectory

Gesture

Models

Template 3

fe
at
ur
e
i

fe
at
ur
e
i

Template 2

time

Hand Motion

Template 1

fe
at
ur
e
i

time

fe
at
ur
e
i

Figure 5.5: Schematic sketch depicting for a single feature i the recognition of a

gesture by mapping the trajectory to stored templates.

et al., 2008; Wöhler, 2009). The 3D trajectories can be in absolute coordinates or

relative to some reference point like, e.g., the torso of the gesturing human. In

addition to the 2D or 3D trajectory information of the hand, other features like,

e.g., the hand configuration can be included in the trajectory representation.

The algorithmic approaches for actually matching the observed hand motion to

the stored templates are relatively independent of the contents of the representation.

In the following Sections, different methods for achieving template matching are re-

viewed from the perspective of gesture recognition, i.e., the focus of the description

is on what implications the algorithms have for realizing a gesture understanding

system.

5.3 Deterministic Matching Methods

Deterministic methods for matching an observed feature vector to stored templates

have been the starting point of the field of pattern recognition which today spans a

wide range of algorithmic approaches. In the following, a short review of prominent

approaches is given:
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5.3 Deterministic Matching Methods

5.3.1 Direct Comparison

The most straightforward matching is the direct comparison of each feature vector

element with each template element using some distance metric. This kind of

matching requires certain preconditions to provide meaningful results:

Common length: All templates and the input feature vector have to have the

same length to obtain comparable match values for the different templates.

Common temporal basis: The direct comparison of each element from the

feature vector with elements from the templates requires that the individual ele-

ments are temporally associated to each other. Such a common temporal basis is

not given if parts of a trajectory can be performed with varying speed, leading to

a non-linear temporal stretching of parts of the feature vector.

Common signal amplitude: The matching criterion for a single feature el-

ement will contain some kind of distance metric, implicitly assuming a common

signal amplitude between the observed trajectory and the templates. Obviously,

this assumption is invalid if the trajectories can exhibit different amplitudes due to,

e.g., variations in arm lengths or different expressiveness of the gesturing humans.

As these preconditions are usually difficult to meet, the direct comparison is not

applicable for any challenging real world matching task.

5.3.2 Dynamic Time Warping

In order to enable a more flexible matching of feature vectors with templates, the

temporal alignment restriction was the first to be relaxed. The initial proposal of

the dynamic time warping algorithm was put forward by Sakoe and Chiba (1978)

for the task of isolated word recognition by matching speech signal feature vectors

to recorded templates. The basic idea of the algorithm is to find the optimal

matching between two symbol sequences by warping the sequences non-linearly in

the time dimension while adhering to some pre-specified restrictions. Figure 5.6

depicts a conceptual sketch of the matching process. The application of dynamic

programming techniques resulted in very fast algorithmic implementations being

widely used for deterministic matching of speech signals.

Following the success in isolated word recognition, some gesture recognition ap-

proaches also applied the dynamic time warping algorithm (see, e.g., Darrell and

Pentland, 1993; Corradini, 2001; Li and Greenspan, 2005; Veeraraghavan et al.,

2006; Ten Holt et al., 2007). A disadvantage of the method is the reliance on

pre-segmented input vectors to be warped and matched. While in isolated word
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Figure 5.6: Conceptual sketch of matching an 1D input feature vector to a template

using dynamic time warping.

recognition tasks like, e.g., recognizing the digits of a phone number, there are

clear pauses allowing easy segmentation, normal speech is a rather continuous sig-

nal. Similarly, gesturing is a continuous process where the beginning and end of

a gesture are not exactly specified. For applying time warping there is, therefore,

some kind of gesture spotting required to avoid a large number of false recogni-

tions. Again, this limitation was first tackled in the speech recognition community

that turned to using probabilistic approaches for template matching, these will be

considered in the Section 5.4.

5.3.3 Modeling Sequences of Atomic Gestures

While the direct comparison and the dynamic time warping outlined in previous

Subsections are based directly on (preprocessed) input data, there are also deter-

ministic approaches that are based on a successful recognition of atomic gesture

elements. This essentially amounts to having already processed the sensor input

with any of the other techniques for gesture recognition outlined in this Chapter.

Based on the recognition of elementary gestures, the modeling of sequences can be

done by realizing some kind of hierarchy, i.e., recognizing a complex gesture can be

based on observing a specific sequence of elementary gestures. The sequence can be

either strictly sequential as in syntactic approaches or can have more complex tem-

poral, spatial, and logical relationships that are represented in description-based

approaches.
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Syntactic Approaches

One typical method for a syntactic model is a Context-Free Grammar (CFG) that

represents a gesture by parsing the temporal sequence of atomic gesture elements

using parsing techniques known from the field of programming languages. A ges-

ture is therefore represented as a set of production rules generating the sequence

of atomic gesture elements that represents a complex gesture. However, such a

deterministic modeling with a CFG depends completely on a successful recognition

of the elementary gestures, otherwise the complex gesture will not be recognized.

Therefore, CFGs have mainly been applied to gesture recognition in their prob-

abilistic variant, the stochastic CFG (SCFG, see, e.g., Ivanov and Bobick, 2000;

Moore and Essa, 2002; Yamamoto et al., 2006). While the probabilistic variant re-

duces the reliance on correctly recognized elementary gestures, a general drawback

of syntactic approaches is their strong reliance on the sequential structure of the

elemental gestures.

Description-based Approaches

In order to model more complex relationships of elementary gestures, description-

based approaches have been proposed (see, e.g., Hakeem et al., 2004; Ryoo and

Aggarwal, 2006; Gupta et al., 2009; Ijsselmuiden and Stiefelhagen, 2010). A domi-

nant technique for modeling temporal relations are temporal predicates as proposed

by Allen (1983) that are used by Ryoo and Aggarwal (2006) to capture the tem-

poral relationships of gestural interaction between two humans. For example, the

complex gesture of pushing another human requires on the level of elementary ges-

tures that one human p1 stretches out his arm and keeps it stretched while already

touching the other human p2. Figure 5.7(a) depicts this temporal relationship

graphically while the computational modeling is depicted in Fig. 5.7(b).

Although description-based approaches allow to model a variety of relationships,

they are in essence a deterministic technique and rely on the correct recognition

of their constituent elementary gestures. Consequently, they are typically used for

high-level scene interpretation (see, e.g., Nevatia et al., 2003) while the low-level

elementary gestures are often recognized by applying HMMs or DBNs which are

detailed in the next Section.
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Fig. 12. (a) Time intervals of an interaction ‘push’ and its sub-events, and (b) its programming
language-like representation following Ryoo and Aggarwal [2006]’s syntax ( c�2009 Springer). The

figure (a) is a conceptual illustration describing the activity’s temporal structure, whose sub-

events are organized sequentially as well as concurrently. Following the CFG, we convert this into
a formal representation as shown in the figure (b).

grammar. In general, the recognition is performed by developing an approximation
algorithm to solve the constraint satisfaction problem (which is NP-hard).

Pinhanez and Bobick [1998] directly adopted the concept of Allen’s interval alge-
bra constraint network (IA-network) [Allen 1983] to describe the temporal structure
of activities. In an IA-network, sub-events are specified as nodes and their tem-
poral relationships are described with typed edges between them. Pinhanez and
Bobick have developed a methodology to convert an IA-network into a {past, now,
future} network (PNF-network). The PNF-network that they have proposed is
able to describe the identical temporal information contained in the IA-network,
while making it computationally tractable.

They have developed a polynomial time algorithm to process the PNF-network.
Their system recognizes the top-level activity by checking which sub-events have
already occurred and which have not. They have shown that their representation
is expressive enough to recognize cooking activities occurring in a kitchen environ-
ment, such as ‘picking up a bowl’. Atomic-level actions were manually labeled from
the video in their experiments, and their system was able to recognize the activities
even when one of the atomic actions was not provided. One of the drawbacks of
their system is that a sub-network corresponding to a sub-event has to be specified
redundantly if it is used multiple times. Another limitation is that they require all
sub-event relations to be expressed in a network form.

Intille and Bobick [1999] designed a description-based recognition approach to
analyze plays in American football. Even though their system was limited to use
conjunctions of relatively simple temporal predicates (before and around), they
have shown that complex human activities can be represented by listing the tem-
poral constraints in a format similar to those of programming languages, instead
of a network form. They have represented human activities with three levels of
hierarchy: atomic-level, individual-level, and team-level activities.

A Bayesian belief network is constructed for the recognition of the activity, based
on its temporal structure representation. The root node of the belief network
corresponds to the high-level activity that the system aims to recognize. The other
nodes correspond to the occurrence of the sub-events or describe the temporal
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Fig. 12. (a) Time intervals of an interaction ‘push’ and its sub-events, and (b) its programming
language-like representation following Ryoo and Aggarwal [2006]’s syntax ( c�2009 Springer). The

figure (a) is a conceptual illustration describing the activity’s temporal structure, whose sub-

events are organized sequentially as well as concurrently. Following the CFG, we convert this into
a formal representation as shown in the figure (b).

grammar. In general, the recognition is performed by developing an approximation
algorithm to solve the constraint satisfaction problem (which is NP-hard).

Pinhanez and Bobick [1998] directly adopted the concept of Allen’s interval alge-
bra constraint network (IA-network) [Allen 1983] to describe the temporal structure
of activities. In an IA-network, sub-events are specified as nodes and their tem-
poral relationships are described with typed edges between them. Pinhanez and
Bobick have developed a methodology to convert an IA-network into a {past, now,
future} network (PNF-network). The PNF-network that they have proposed is
able to describe the identical temporal information contained in the IA-network,
while making it computationally tractable.

They have developed a polynomial time algorithm to process the PNF-network.
Their system recognizes the top-level activity by checking which sub-events have
already occurred and which have not. They have shown that their representation
is expressive enough to recognize cooking activities occurring in a kitchen environ-
ment, such as ‘picking up a bowl’. Atomic-level actions were manually labeled from
the video in their experiments, and their system was able to recognize the activities
even when one of the atomic actions was not provided. One of the drawbacks of
their system is that a sub-network corresponding to a sub-event has to be specified
redundantly if it is used multiple times. Another limitation is that they require all
sub-event relations to be expressed in a network form.

Intille and Bobick [1999] designed a description-based recognition approach to
analyze plays in American football. Even though their system was limited to use
conjunctions of relatively simple temporal predicates (before and around), they
have shown that complex human activities can be represented by listing the tem-
poral constraints in a format similar to those of programming languages, instead
of a network form. They have represented human activities with three levels of
hierarchy: atomic-level, individual-level, and team-level activities.

A Bayesian belief network is constructed for the recognition of the activity, based
on its temporal structure representation. The root node of the belief network
corresponds to the high-level activity that the system aims to recognize. The other
nodes correspond to the occurrence of the sub-events or describe the temporal
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Figure 5.7: Description-based modeling of temporal relations. a) graphical illus-

tration of the overlapping elementary gestures and the overall complex

gesture; b) Formal representation of the complex gesture using a CFG-

like specification (images from Ryoo and Aggarwal, 2006).

5.4 Probabilistic Approaches for Trajectory Matching

Since the start and end points of gestures are not explicitly given, it is advantageous

if the classification algorithm implicitly selects the relevant parts of a trajectory for

classification. Additionally, as the same gestures are usually not identically exe-

cuted the classification algorithm should be able to deal with a certain variability of

the trajectory. These requirements have resulted in the application of probabilistic

approaches for gesture recognition that are reviewed in the following Subsections.

5.4.1 Hidden-Markov-Models for Trajectory Recognition

Based on the success of Hidden-Markov Models (HMM) for speech recognition

applications (Rabiner, 1989), this technology was subsequently also used for gesture

recognition (see, e.g., Campbell et al., 1996; Starner et al., 1998; Li et al., 2006;

Nickel and Stiefelhagen, 2007; Axenbeck et al., 2008; Hahn et al., 2009; Gehrig

et al., 2009; Droeschel et al., 2011).

While in dynamic time warping the templates are used directly for matching,

the HMMs abstract from the exact trajectory. Instead, a stochastic process with a

number of states Si is assumed to be generating the observed feature vectors. The

true sequence of states generating the observed feature vectors is not known, this is

why the term ’hidden’ is used. In other words, the true state Si is a hidden variable

and has to be estimated from an observed feature vector. Transitions between

states i and j are modeled by transition probabilities aij and self-transitions with
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5.4 Probabilistic Approaches for Trajectory Matching

aii. The probability to be in a certain state depends only on the previous P states,

this is the Markov property and the value of P is usually one, i.e., a first-order

Markov process is modeled. An example for such a first-order Markov model is

depicted in the top right of Fig. 5.8.

f f f

a22 a33a11

S1 S2 S3

a12 23

O1 O2 O3

a

f

t

b1 b3b2

Feature DistributionInput Feature Vector

Figure 5.8: Conceptual sketch of the relation between an input feature vector to

be recognized and a Hidden-Markov Model with hidden states Si and

observable features Oi.

For each state the output probability density function bi provides for a certain

feature value f the probability that this feature has been emitted by the hidden

state Si. Figure 5.8 depicts a schematic example where the rough relation between

the values of the input feature vector (left) and the HMM states (right) has been

indicated by color coding. Given an input feature vector, one way of performing

recognition is to calculate the most likely state sequence together with its over-

all probability for each different HMM gesture model using the Viterbi-algorithm

(Rabiner, 1989). For the task of gesture recognition, the HMM with the high-

est probability can be selected as recognition result if this probability exceeds a

pre-defined threshold.

Although the HMM framework provides a powerful tool for probabilistic gesture

recognition, there are some challenges when modeling a gesture vocabulary with a

set of HMMs:

• For a set of gestures of varying length a different number of states is needed

for each gesture model. This in turn influences the overall probability of the

different gestures, requiring some kind of scaling of the model probabilities

based on the state size of each model.
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5 Recognition of the Gesture

• In its original form, an HMM does not impose a minimal duration for each

state. This has the effect that a model may have the highest overall probabil-

ity even if some of its states have not been observed for more than one frame.

While in speech processing the swallowing of some phonemes is acceptable,

in gesture recognition the leaving out of a part of the trajectory may result

in a very different gesture.

While HMMs have had a huge success in speech recognition, the application of

standard HMMs to the complete gesture recognition task has declined in recent

years. Instead, more recent approaches use HMMs to model state sequences but

apply more explicit probabilistic trajectory matching techniques like, e.g., described

in Section 5.4.3 for obtaining the probability of individual states (see, e.g., Li et al.,

2006; Hahn et al., 2009).

5.4.2 Hierarchical HMMs and Dynamic Bayesian Networks

The HMMs described before allow the modeling of time series data. However,

standard HMMs are not well suited for modeling more complex gestures or ac-

tions consisting of several individual gestures, i.e., having some kind of internal

model hierarchy. For such complex gestures, the extension of standard HMMs to

hierarchical HMMs (HHMM, see Fine et al., 1998) has been proposed for use in

gesture recognition (see, e.g., Kawanaka et al., 2006). Besides the HHMMs for

which an example is depicted in Fig. 5.9 there have also been other extensions to

HMMs. For example, a coupled HMM (CHMM) was introduced by Brand et al.

(1997) to model two-handed gestures. Later, this was extended to coupled hid-

den semi-Markov models (CHSMM) by Natarajan and Nevatia (2007) in order to

capture also the duration of activities and apply this method to the recognition of

two-handed American sign language.

Besides the different variants of HMMs that have been used for the recognition

of complex gestures, also the use of general Dynamic Bayesian Networks (DBN)

has been proposed (see, e.g., Wang and Tung, 2007; Li et al., 2007; Suk et al., 2010;

Zhu and Sheng, 2011). From a mathematical viewpoint, HMMs are a special case

of DBNs (Ghahramani, 2002) and a DBN has less restrictions on the number and

relation of hidden variables resulting in more powerful modeling capabilities. Two

examples for dynamic Bayesian networks are depicted in Fig. 5.10.

For example, in the work of Suk et al. (2010) for recognizing two-handed gestures

the DBN structure is roughly similar to the example in Fig. 5.10(b) depicting two

time slices. The states SB and SC model aspects of the individual left and right hand

and the shared state SA models the relation of the two hands. Similar to HMMs,
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Figure 5.9: Conceptual sketch of a simple Hierarchical Hidden-Markov Model

(HHMM). The gray-colored links indicate transitions from a parent

state to its child states and the dashed arrow represents the comple-

tion of a child model and the transition back to the parent model. Such

a completion typically leads to a state transition on the parent level.
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Figure 5.10: Simplified examples of dynamic Bayesian networks for two time slices

t− 1 and t. a) A hierarchical DBN where the observation OA is gener-

ated by the state SA which itself is dependent on the higher level state

SB; b) A DBN where the observation OA is generated by the state SA
which depends on two other states SB and SC , i.e., the hidden states

have a more complex relationship;
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5 Recognition of the Gesture

for each different gesture to be recognized an individual DBN has to be created.

While for recognizing gestures with HMMs usually the fast Viterbi-algorithm is

used, the inference process in DBNs depends on the complexity of the network.

Often no exact inference is possible and an approximation has to be used which

can be computationally expensive. Consequently, the structure of DBNs used for

gesture recognition is usually of limited complexity.

5.4.3 Particle Filtering for Trajectory Recognition

Following the success of probabilistic trajectory modeling with HMMs, also other

probabilistic techniques were applied to the task of motion recognition. A highly

influential approach is a variant of particle filtering (see also Section 4.2.2 on page

71) called Conditional Density Propagation (Condensation) that was introduced

to the vision community by Isard and Blake (1998) for performing shape track-

ing. Subsequently, the Condensation algorithm has been adapted for classifying

commands drawn at a blackboard by Black and Jepson (1998). In this adaptation,

gestures are represented by parameterized trajectory models which are matched

with the input data, calling this approach Condensation-based trajectory recog-

nition (CTR).

Importantly, the CTR formulation goes beyond the modeling capabilities of

HMMs by matching the entire temporal trajectory to the template model using

a few explicit scaling factors. Each gesture model m consists of a 2-dimensional

trajectory, which describes the motion of the hand in the image plane during exe-

cution of the activity.

m(µ) = {x0,x1, . . . ,xT}, xt = (∆xt,∆yt) (5.1)

For comparison of a model m(µ) with the observed data zt = (∆xt,∆yt) the state

vector st is used. This vector defines the sample of the activity model µ where the

time index φ indicates the current position within the model trajectory at time t.

The parameter α is used for amplitude scaling while ρ defines the scaling in time

dimension. See Fig. 5.11 for a visual description of the parameters for one feature

dimension.

st = (µt, φt, αt, ρt) (5.2)

By applying particle filtering (see Section 4.2.2), i.e., maintaining a large number

of N state vectors s1:Nt , the best fit between a model trajectory and the observed

data zt can be found. The weight π
(n)
t of the sample s

(n)
t is the normalized probabil-

ity p(zt|snt ). This is calculated by comparing each scaled component of the model
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Figure 5.11: Matching observed data with the available models. a) Scaling of tra-

jectory in amplitude and time; b) Matching of scaled trajectory over

a time window w.

trajectory in a window over the last w time steps with the observed data. For

calculating the difference between model and observed data a Gaussian density is

assumed for each point of the model trajectory:

p(zt,i|s(n)t ) =
1√

2πσi
exp

∑t
j=t−w

(
zj,i − αm(µ)

(φ−ρj),i

)2

2σ2
i (w − 1)

. (5.3)

The propagation of the weighted samples over time consists of the typical three

steps for particle filtering (see Section 4.2.2) and is based on the results of the

previous time step:

Select: Same as in standard particle filtering.

Predict: The parameters of each sample s
(n)
t are predicted by adding Gaussian

noise to αt−i and ρt−1 as well as to the position φt−1 that is increased in each

time step by ρt. If φt is larger than the length of the current model φmax a

new sample s
(n)
t is initialized.

Update: Same as in standard particle filtering.

Based on the continuous matching of the feature vector to the model templates

contained in the sample set, the sample set represents at each point in time prob-

abilistically the gesture that currently has the highest likelihood. Now, the recog-

nition of individual gestures can be achieved by summing up for each model µi
all the weighed samples that represent a nearly completely matched trajectory to
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obtain the so-called end probability pend(µi). The minimal trajectory length Lmin
that has to be successfully matched can be expressed as fraction of the total model

trajectory:

pend(µi) =
N∑

n=1

{
π
(n)
t , if φt > Lminφmax

0 , else
(5.4)

For example, a value Lmin = 0.9 would require a sample to be within the last 10%

of the trajectory model to contribute to the end probability. If the end probability

for a certain gesture model exceeds a pre-defined threshold, this gesture is provided

as recognition result.

5.4.4 Trajectory Matching Approaches employing Neural

Networks

An alternative to the explicit modeling of probabilistic aspects is the use of neural

networks. Standard neural networks are very well-suited for pattern classification

like, e.g., the recognition of hand postures (see Section 3.2.3 on page 60) or the

holistic recognition of gestures as outlined in Section 5.1. For the recognition of

temporal signals, extensions to neural networks have to be used that allow to cap-

ture the temporal aspects (see, e.g., Yang and Ahuja, 1999; Bailador et al., 2007;

Modler and Myatt, 2008; Sigalas et al., 2010).

One early approach to trajectory matching by Yang and Ahuja (1999) used a

Time-Delay Neural Network (TDNN) to recognize American sign language from

2D motion trajectories. In the TDNN, a window is shifted over the input signal in

order to present to the network only a part of the overall trajectory and make a

local holistic classification for each input part. For the overall classification, these

local decisions have to be integrated to take a final decision on the gesture.

In later approaches, other methods for handling the temporal aspects have been

proposed like the Continuous Time Recurrent Neural Network (CTRNN, see, e.g.,

Bailador et al., 2007) or the buffering of the input data and a subsequent classi-

fication of the complete sequence with a Multi-Layer Perceptron (MLP, see, e.g.,

Sigalas et al., 2010).

Compared to the activities on probabilistic trajectory recognition, there are rel-

atively few activities on employing neural recognition techniques. One reason for

the few applications to trajectory recognition are the challenges in modeling the

temporal aspects in neural network approaches. Consequently, neural networks are

primarily applied to the detection of hand postures or some other form of prepro-
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cessing of the input data that is independent of temporal aspects (see, e.g., Zhu

and Sheng, 2009).

5.5 Example: Trajectory-Based Recognition of

Pointing Gestures

One important type of gestures used very often in every-day communication be-

tween humans are deictic gestures that are used to reference objects (see Sec-

tion 2.1.4). In this Section we will provide an example of an algorithm for rec-

ognizing pointing gestures based on the trajectory of the ’hand position’ only, i.e.,

independent of any context information (for a detailed description see Hofemann,

2007). In addition to pointing gestures, also the recognition of waving gestures is

included in the gesture repertoire, as such a waving is often used in human-human

communication to attract the attention of the communication partner.

First, we give in Subsection 5.5.1 an overview of the presented system and the

used modules. The features used as input for the trajectory recognition based on

Particle Filtering (see Section 5.4.3) are described in Subsection 5.5.2. In Subsec-

tion 5.5.3 results of the system acquired in a demonstration scenario are presented.

5.5.1 System Overview

The overall deictic gesture recognition system is depicted in Fig. 5.12:

Templates

Gesture
Trajectory

Feature3D human
body tracker calculation

CONDENSATION−based
trajectory recognition

Figure 5.12: Architecture of the deictic gesture recognition system.

The first module operates directly on the image data and extracts the 3D body

pose of the acting human from the video data. For this task, the example system

presented in Section 4.6 on page 98 is used. From the 3D human body configuration,

the 3D features can be extracted easily to serve as basis for the recognition process.
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5 Recognition of the Gesture

5.5.2 Recognizing Pointing Gestures

Based on the 3D hand position provided by feature extraction, the recognition of

pointing and waving gestures can be done. Here, a modified version of the Con-

densation-based trajectory recognition based on particle filtering approach is used

(see Section 5.4.3). In the original approach motions were represented in an image

coordinate system (∆x,∆y). In this application the hand motions are represented

in 3D using a cylindrical coordinate system with its basis in the human’s shoulder

as depicted in Fig. 5.13.

Camera

δ

z

r

Figure 5.13: Cylindrical coordinate system with its origin located in the shoulder

for feature calculation.

The motion features for representing a pointing gesture are the relative radial

velocity ∆r and vertical velocity ∆γ of the hand with respect to the torso:

m(µ) = {x0,x1, . . . ,xT}, xt = (∆rt,∆γt) (5.5)

In this way the absolute direction of the gesture is removed and a wider range of

gestures can be represented with one generic model. As the user typically orients

himself towards the dialog partner when performing pointing and waving gestures,

the used representation can be considered view-independent in such a scenario.

For the overall recognition system the repertoire consists of the elementary ges-

ture models listed in Table 5.1. For each model a trajectory template is created and

the recognition is performed as outlined in Section 5.4.3. Figure 5.14 depicts three

example images from a pointing gesture with the model probabilities (bottom left)

and the associated model end probabilities (bottom right). Note that the x-axis of

the probability plots points to the past, i.e., the most recent probability values are

inserted at t = 0.
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Pointing

point hand performs pointing to an object

back hand is retracted after pointing

Waving

up raising the arm to start a waving gesture

wave waving

down lowering the arm after waving

Table 5.1: The elementary gesture models used in this example approach.

t=15t (history)

Gesture recognized:

t=0 t=15 t=0

model end probabilitymodel probability

point

t (history)

recognition threshold

31

2

3

3

2

1

1

2

gesture gesture
Start ofEnd of

Figure 5.14: Example body tracking results and gesture recognition results for a

pointing gesture.

5.5.3 Evaluation Results

The gesture recognition is evaluated using the trajectories provided by the body

tracking component (see the dataset description in Section 4.6.4 on page 108).

The models of the gestures are trained separately for the four subjects using the

tracked and annotated motions from three of the four runs (each run consisting of

sequentially pointing to the five objects on the table and waving to the camera).

The remaining sequence is used for evaluation. This results in sets of only five to
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5 Recognition of the Gesture

20 training samples for each gesture model.

For the intended application, fast adaption to new users is an important feature

but obviously prevents extensive collection of training data. The presented algo-

rithm shows robust performance even if only a low number of training examples are

provided. Note that systematic errors of the body tracking are co-learned in the

training process, thus enabling robust gesture detection even for coarse tracking

results.

Table 5.2 is illustrating the recognition results and error types for the five different

motions. In each column the number of annotated and correctly detected gestures

is noted followed by the error types of double detections, deletions, false insertions,

and substitutions. Finally, the resulting error rate and recognition rate are given for

each gesture model. The last column summarizes the results for all models. Subject

IV executed the wave motion simply by moving the hand instead of the forearm

which is not recognizable for the body tracking. The marked column (wave*)

therefore displays the results neglecting subject IV for a better comparability.

gesture point back up wave* down all

# gestures 182 187 29 71 27 496

correct 167 182 29 65 26 469

double 49 102 0 0 0 151

delete 15 5 0 5 1 26

insert 24 26 1 2 6 59

substitution 0 0 0 1 0 1

WER [%] 21.4 16.6 3.5 11.3 25.9 17.3

recognition rate [%] 91.8 97.3 100 91.5 96.3 94.6

Table 5.2: Gesture detection evaluation: Errors and recognition rates for all objects

and subjects.

The gesture recognition shows a high recognition rate of 94.6% and an acceptable

word error rate (WER) of 17.3%. The WER is calculated by adding up all errors

(deletions, insertions, and substitutions) for the respective gesture and dividing this

by the total number of gestures. The false positive recognitions (insertions) make

up the major part in this error (11,9% ; e=59). For a robot system, this could lead

to false assumptions about the gestures performed by the user.

Comparing these results based on 3D hand position data to a similar approach

using only 2D data (see Haasch et al., 2005) shows that appropriate depth informa-

tion about the current body pose can significantly improve the robustness of gesture
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recognition. This importance of 3D information has resulted in a huge increase in

interest in 3D gesture recognition when the Kinect sensor (see Section 2.2.2 on page

35) became widely available, providing raw 3D depth data at a low cost to many

researchers. The example approach that has been outlined in this Section requires

3D hand position data and could also be based on tracking algorithms using Kinect

data as input data.

5.6 Summary and Conclusion

In this Chapter different algorithmic approaches for the recognition of gestures have

been outlined. The holistic approach to gesture recognition is not the best choice

for gesture understanding on a mobile robot as it inherently captures temporal

aspects and is applicable only in limited settings: It is usually assuming a static

camera to filter out the acting human from the background and has an inherent

view-point dependency. In addition, the granularity of the gesture models must be

chosen carefully, making this approach primarily suitable for recognizing command

gestures.

Much more dominant are modular approaches for gesture recognition that are

based on matching explicit trajectory models to the observed hand positions. This

problem is similar in nature as the speech recognition task of matching word mod-

els to observed acoustic signals and has, therefore, benefitted from the progress

in that field. Early approaches used deterministic matching methods, but these

resulted in heavy restrictions on the model similarity of the different gestures to

be recognized. On a more abstract level, syntactic and description-based methods

for matching sequences of elementary gestures to complex models have obtained a

larger interest. These methods assume that the elementary gestures have been rec-

ognized beforehand, which is typically done today with some form of probabilistic

approach.

In order to provide a coarse insight into typical probabilistic approaches this

Chapter has introduced the state-based matching techniques of Hidden Markov

Models and Dynamic Bayesian Networks as well as the template-based matching

with particle filters. A short look on the suitability of neural networks completed

the overview of gesture recognition approaches.

As a prototypical example of the steps that need to be considered when im-

plementing a gesture recognition approach, an example for the trajectory-based

recognition of pointing gestures with a particle filter has been given. For this task,

an appropriate choice of the feature vectors is of crucial importance to achieve
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good recognition. The analysis of the recognition performance demonstrates that

the quality of a gesture recognition approach should not be limited to the amount

of correctly recognized gestures but also additional errors like double recognitions

or insertions should be considered. While the quality of recognizing pointing ges-

tures is already quite good employing only the visual input channel, the exactness

of the extracted pointing direction depends on the quality achieved in the 3D body

tracking. Obviously, the ability to identify “pointed at objects” could be further

increased if verbal descriptions for size and color were available.

With the overview of the techniques provided in this Chapter we can now go on

to considering the integration of context knowledge about the environment and the

current task, going beyond the pure hand motion.
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the Gesture

The previous Chapter has outlined gesture recognition techniques that are applica-

ble if the hand trajectory alone is sufficient to recognize a gesture. This assumption

holds for symbolic gestures, but for other types of gestures usually the context like,

e.g., an accompanying verbal utterance or an object in the environment has to be

considered as well.

For example, it is intuitively clear that deictic gestures are not performed inde-

pendently of the environment but stand in a relation to the object they are referring

to. Understanding deictic gestures, therefore, means not only to recognize the hand

motion as pointing but also to determine the referenced object. Besides considering

the spatial relation between the gesturing hand and surrounding objects, humans

usually employ more information sources for referencing objects. For example, a

verbal utterance denoting specific features of the referent may accompany the ges-

ture, and possibly also the gaze and the overall body posture provide additional

hints which object is referenced. This is termed here User-Provided Context and

is considered in more detail in Section 6.1. An example system performing gesture

understanding by enabling a robot to resolve such multi-modal object references

by combining the user’s pointing gestures with verbally specified information is

outlined in Section 6.2.

Similar to deictic gestures, also manipulative gestures are not performed inde-

pendently of the object they manipulate. However, in the case of manipulative

gestures there is usually no explicitly provided context from the user. Instead, the

spatial and temporal context of the gesture has to be considered for gesture under-

standing. The objects contained in the environment form the spatial context while

the temporal setting in which a gesture is performed is providing the temporal

context. These different context types are subsumed here under the term Situa-

tional Context and are detailed in Section 6.3. An example approach incorporating

situational context for the understanding of manipulative gestures is provided in

Section 6.4. A summary in Section 6.5 concludes the Chapter.
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6 Incorporating Context for Understanding the Gesture

6.1 Incorporating User-Provided Context for

Pointing Gestures

The capability of humans to identify what object another human is referencing to

is known as joint attention (Emery, 2000). From the robotics perspective, joint

attention describes the process that enables a robot to look at the object which the

user is referring to (for a detailed discussion see Kaplan and Hafner, 2004). Only

if the robot is able to focus on the object referenced by the human, it can acquire

information about this object, e.g., learn the name of an object. Additionally, the

robot should not only store this information in a specific knowledge base, but also

efficiently access all the information gathered during interaction. This acquisition

and usage of object information enables the robot later to perform tasks involving

objects without assistance of the human instructor.

In order to realize such a joint attention, the recognition of a hand trajectory as

’pointing’ gesture is not sufficient as the object referenced by the pointing needs

to be identified. Intuitively, the pointing direction of a dynamic pointing gesture

seems to be specifying the object the human is referencing. However, besides the

dynamic gesture there are many more bodily informations like, e.g., the gaze of the

gesturing human. In human-human communication, these cues are all combined by

the recipient to infer what object the other human pointed at. However, all subtle

communication cues are usually not perceivable with the sensors in today’s mobile

robots and only the coarse overall body posture can be used to restrict the search

space.

In addition to the body posture, the verbally specified information is of major

importance for understanding pointing gestures. In human-human communication

this information can become quite complex like, e.g., it can include the current

communication topic or some abstract knowledge of the current situation. Consider,

for example, a situation where a human is saying ’I will get myself a coffee.’ and

performs a pointing gesture. For another human the inference that the pointing

gesture references the empty cup on the table is possible even if the pointing gesture

was very imprecise or the table is far away from the gesturing hand. However,

a robot does not have access to the broad world knowledge allowing a human to

make such kind of inferences. Similarly, the semantic content of complex utterances

accompanying a gesture cannot be understood by today’s robots. For example, if

a human says ’First thing in the morning is to get my daily dose of caffeine.’ and

performs a pointing gesture to a table with several objects including one mug, the

referenced object cannot be identified by the robot. Nevertheless, more simple

verbal utterances can be processed by today’s speech understanding methods in
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Memoryspeech sensor

gesture sensor

object sensor

mobile robot

resolving referencesgesture recognition

object recognition

speech understanding & dialog controlspeech recognition

detection tracking

Figure 6.1: Conceptual system architecture for resolving multi-modal object

references.

order to make the robot understand object references. Although the focus is here

on using such input in combination with gestures, there are also attempts to use

only the verbal information channel to identify objects in the scene (see, e.g., Skočaj

et al., 2011; Johnson-Robertson et al., 2011).

Summarizing the restrictions of context usage by a mobile robot, the context in-

formation that can be extracted with sensors onboard a mobile robot are the coarse

body posture as well as verbally specified object/location information. Figure 6.1

depicts a conceptual system architecture with the different information sources that

are combined in the resolving references module. For actually using this context,

the information provided by the user has to be processed adequately. The next

Subsections will provide more details on approaches for the incorporation of user-

provided context in order to enable the robot to understand pointing gestures.

6.1.1 Posture Information Restricting the Object Search Space

As mentioned in Chapter 1, not only the gesture trajectory itself ’points’ to a refer-

enced object, but also the gazing direction of the human and its overall body posture

provide cues on the object of interest. The combination of the hand position with

an assumed gazing direction based on the head position to draw a virtual eye-hand-

object line has been found to help in identifying a referenced object (Nickel and

Stiefelhagen, 2007; Droeschel et al., 2011). For the task of identifying a referenced

object, the body posture can, therefore, be used to define an eye-hand line that

provides a restriction of the search space where to search for the referenced object

as depicted in Fig. 6.2.

While in this way the spatial area to search for an object can be restricted in a
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6 Incorporating Context for Understanding the Gesture

hand

eye

space
search

Figure 6.2: Using body posture information to create an eye-hand line that restricts

the search space for object search.

more appropriate way than based on the hand trajectory alone, the identification

of the object still needs to be realized. If there is no additional verbal information

available, the separation between two potentially referenced objects is impossible.

Furthermore, finding an unknown object can only be realized using general cues.

For example, if the color or texture of the background like a table surface is known,

then an object on this table can be found by analyzing the differences in terms of

color or texture. However, this requires the object to be actually visually distinctive

in these visual features. If depth information is available, then the extraction of

the depth profile to find objects ’popping out’ from a flat surface is a more reliable

cue (see, e.g., Kim et al., 2008).

6.1.2 Verbal Information Complementing Pointing Gestures

Besides using the body posture to restrict the search space, also verbal information

can provide context to understand pointing gestures. Before the use of gesture

recognition on mobile robots, the verbal information in the form of commands like,

e.g., ‘Go forward. Stop. Turn right. Go forward.’ to control the robot’s movements

was the primary human-robot interaction interface (see Bischoff and Graefe, 1999

for an early system implementation).

With the additional availability of gesture information, the verbal information

can also complement the gestural information. A pointing gesture performed in

isolation without any context cannot be interpreted in terms of its meaning. For

example, the pointing can indicate a direction for the robot to go to or it can
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6.1 Incorporating User-Provided Context for Pointing Gestures

reference an object. In settings lacking an advanced speech interface, the pointing

interpretation is predefined to be either a location to go to (see, e.g., Richarz

et al., 2007) or to reference an object (see, e.g., Bekel et al., 2004). With a more

advanced speech interface, it becomes possible to decide on the interpretation of the

gesture as either a command (‘Go there.’) or an object reference (‘This is the coffee

mug.’) based on verbal information. Focussing on the speech channel as the main

communication channel, the pointing gesture can ”fill in” the information missing

in speech, like, e.g., in ‘Put the bottle there.’ the pointing direction provides the

missing information on where to place the bottle (see, e.g., Burger et al., 2008).

Except for the gesture interpretation itself, the verbal information can also sup-

port the localization of referenced objects if the hand-eye line cannot be extracted

or is not applicable. For example, Ghidary et al. (2002) use the speech interface

to provide information to the object search process on what side of the referencing

hand the object is positioned (‘left’). Alternatively, they also allow the possibility

to indicate for large objects by a verbal command (‘two points’) that two gestures

pointing to the corners of the object are used to indicate its size. Obviously, such

verbal commands complementing rather artificial pointing gestures do not resemble

a natural interaction. A more prominent and powerful role of verbal information is

the specification of the properties of an object as outlined next.

6.1.3 Verbal Information Specifying Object Properties

Due to the expressive power of natural language, it can basically serve to specify

each and every aspect of an object referenced with a pointing gesture. However,

the human communication partner will usually, i.e., in a human-human interaction,

specify only those aspects relevant in the current situation. When interacting with

a robot, the human makes assumptions about the understanding capabilities of the

robot in order to provide appropriate additional information (see also Section 8.4).

Early fusion approaches combining gesture recognition with context from a speech

interface used the symbolic nature of language for a very elementary combination.

In this basic combination, the object is extracted based on generic cues like the

difference to the surroundings (see Section 6.1.1) and the verbal information is just

associated to this object for storage. In such a setting, the verbal information

can provide the name of the object (see, e.g., Iwasawa et al., 2009; Schmüdderich

et al., 2008) and also additional properties like, e.g., the size (Ghidary et al., 2002;

Schmüdderich et al., 2008). It is important to stress that this is not a real use of

context for gesture understanding but rather an enriching of the object information

independent of the gesture.
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6 Incorporating Context for Understanding the Gesture

In a more advanced use of verbal information, the human has to name the object

he/she is referencing in addition to the pointing gesture in order to start the object

identification process. This symbolic label is then used to select an object recogni-

tion algorithm trained on the object beforehand. Following the recognition of the

pointing gesture, an object recognizer is applied on the image area the human is

pointing to and the recognized object being closest to the pointing hand is selected.

This setting assumes that the human uses an object name that can be associated

to a pre-trained object recognition system. Besides using an explicit object label,

also general object properties can be used for identifying the referenced object.

Prominent cues are the color of an object and its size (see, e.g., Haasch et al., 2005;

Stiefelhagen et al., 2007; Schauerte et al., 2010). This use of verbal information to

complement pointing gestures for identifying referenced objects will be described

in more detail in the example system in the next Section.

6.2 Example: Including Verbal Cues for Resolving

Object References

In this Section an example system will be outlined combining gesture recognition

with verbally specified object properties to identify an object referenced by a human

instructor (for a detailed description see Haasch, 2007). For the resolution of object

references it is necessary to distinguish between known and unknown objects since it

cannot be assumed that all objects are known beforehand. Especially for identifying

unknown objects it is necessary to process multi-modal input by incorporating

gesture information and verbally specified object properties.

An overview of the system is given in Section 6.2.1 outlining the individual com-

ponents. Section 6.2.2 and Section 6.2.3 will detail the individual processing steps

necessary for resolving references to previously known and unknown objects, respec-

tively. Exemplary results obtained with this approach are given in Section 6.2.4.

6.2.1 System Overview

The Object Attention System (OAS) for resolving object references achieves its

functionality by combining input from several information sources. For pointing

gestures the example approach outlined in Section 5.5 is assumed to perform the

recognition. The user input is processed by speech understanding and dialog control

and an object sensor allows to analyze the scene for potential objects. In order to

retrieve more detailed visual information about objects, the object sensor is a pan-
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<Object owner = "Axel">
<Pointing Direction = "132">
<Position x= "142" y = "223">

Gesture Recognition
& Dialog Control

<Gesture expected = "yes">

<Object color = "blue">

. . .

Scene Model

"This is Axel’s blue cup"

Speech Understanding

<Object type = "cup">

Focus

Object Attention System (OAS)

Detect gesture

Obj. found
Position
Pointing

FSM

Object
data

.

..

<Object id = "42">

<type = "cup">

<owner = "Axel">

<color = "blue">

<relation = under(id=23)>

<pos x=10 y=23 z=42>

<timestamp = "123456">

Object Sensor

Figure 6.3: Processing chain of the object attention system including exchanged

data for an example input utterance with accompanying gesture.

tilt camera that is used to focus on a referenced object, i.e., it is assumed that

the object sensor is independent of the gesture recognition. Figure 6.3 depicts the

conceptual system and the processing chain for such a resolving references module

(cf. Fig. 6.1 on page 141).

The coordination of verbal information, gesture recognition, and object feature

extraction (e.g., color) perceived by the camera, as well as the control of hardware

components like the pan-tilt camera and the robot basis is realized by a finite

state machine (FSM). This approach allows to define what conditions must be met

in order for the system to change to a different processing state. Here a state

represents what information is currently known by the system and/or what action

the system is executing to, e.g., acquire missing information.

The OAS is activated on demand, i.e., when the user utters a phrase which con-

tains the description of an object like “This is Axel’s blue cup”. At first, the FSM

(see Fig. 6.4) is in the idle state, called Object Alertness (ObjAlert). If the OAS

is provided with data from dialog control, the FSM changes to the Input Analysis

(IA) state. Depending on a lexical cue like, e.g., “this” or “that”, the speech un-

derstanding determines that a gesture is expected. As a consequence, the gesture

recognition module is activated. On a successful recognition of a pointing gesture,

this module supplies the user’s hand coordinates and the direction of the corre-

sponding pointing gesture. Thus, an area within the camera image can be selected

as resulting ROI. In case the dialog module sends a verbally given description of
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AmbigReg (Ambiguity registered)

SelArea (Selected Area)
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<None>
Abort

Figure 6.4: The finite state machine of the object attention system.

the object (e.g., type, color, owner, etc.) to the OAS, this information can be used

for resolving the object reference.

However, it cannot be assumed that every object is known to the robot a priori.

Therefore, during processing a distinction between known and unknown objects

has to be made. To determine whether an object is already known, the robot’s

scene model is used. The scene model could be viewed as some kind of combination

between long-term memory for object properties and short-term memory for current

object positions. It provides for known objects not only visual low-level features

but also appropriate object models for initializing an object recognizer. In addition,

information that is given verbally by the user is stored as well (e.g., the owner of

an object). Given such a scene memory, an inquiry from the OAS initiates a check

whether the verbally referenced object type that is sent by the dialog component is

already known or not. The next two Subsections describe the different processing

steps in case the object type is known to the robot (6.2.2) or if it is unknown (6.2.3).

6.2.2 Finding Previously Known Objects

The search for a known object type involves an object detection process that is

initiated by the verbally specified object type. For this task the system described

here makes use of a simple appearance-based Normalized Cross-Correlation (NCC)

object recognizer (Gonzalez and Woods, 2001) that is trained for a few objects
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only. Any more advanced object recognition method could be used here as long as

it supports searching for a specific object, but for simplicity the NCC approach is

used.

After retrieving an appropriate image pattern, i.e., the object model, for the

known object, the FSM switches from the IA state to the Object Detection (Ob-

jDet) state. Within the ObjDet state the OAS uses the image patterns (e.g., for

cups) as templates for the NCC object recognizer. The camera is reoriented based

on the hand coordinates and the pointing direction that are provided by the gesture

recognition module to obtain a useful view of the scene. In addition to the reori-

entation of the camera, a search region is determined based on the eye-hand line

(see Section 6.1.1). Now, the object detection process using the NCC is initiated.

Depending on the recognition result, different processing steps are performed:

• If an object is detected, a confirmation message is sent to the dialog control

and the FSM switches to the Object Store (ObjStor) state. In this state the

position of the object is stored in the scene model. Now the FSM returns to

the ObjAlert state for the next object reference.

• If two or more objects of the same type are found during the detection phase in

the ObjDet state, the FSM switches to the User callback (UCB) state. In this

state, a message is sent to the dialog control to find out which specific object

is meant by the user. The dialog queries the user for a more detailed object

reference to resolve the ambiguity. After receiving a more detailed description,

like “The left one.”, the FSM switches to the Object Analysis (ObjAna) state.

In this state a new ROI is determined based on the information from the

gesture recognition and the lexical cue “left”. Now the FSM returns to the

ObjDet state and initiates a new search. This cycle is performed until a single

object is found, or the user aborts the action within the UCB state.

• If no object is found in the ObjDet state, the FSM switches to the Visual

Attention (VisAtt) state, that is used for the localization of unknown objects

(see next Subsection).

Following the processing of the detection result, the FSM is either in the ObjAlert

state for processing the next object reference or it is in the VisAtt for learning an

unknown object. The latter will be described in the next Subsection.
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6.2.3 Learning Views of Unknown Objects

If no object detection is available, the OAS uses different visual filters – in the

following called attention maps – in the VisAtt state to extract visual information

that can be associated with verbally specified information. The attention maps are

inspired by Itti et al. (1998) and bring out salient image features like distinctive

colors that correspond to bottom-up image cues. The appropriate attention map

is selected based on the additional verbal information (e.g., the color “blue”) given

by the user. As pointed out before, the eye-hand line (see Section 6.1.1) allows

to restrict the object search area. By combining the object search region with

the attention map, a coarse ROI depicting the referenced object can be extracted.

Using this ROI, a view of the referenced object can be extracted from the scene

and stored in the scene model.

If the verbal information given by the user is insufficient to determine a ROI, the

FSM changes to the UCB state. In the UCB state the dialog control is requested

to obtain more information about the object which the user refers to. The UCB

state is also reached if more than one ROI is found. When the dialog control,

after querying the user, can provide more object properties, the FSM returns to

the VisAtt state. After successfully determining the ROI, the FSM switches to the

ObjAna state to acquire the position of the object based on the hand position of

the user. Next, the FSM switches to the ObjStor state, to store the extracted view

and the position of the object in the scene model. Then, the FSM returns to the

ObjAlert state to process the next object reference.

To give an example, consider the scene with the two blue cups depicted in

Fig. 6.5(a) and imagine the user said “This is Axel’s blue cup”. In order to extract

all possible ROIs, an attention map that highlights the color ‘blue’ corresponding

to the verbal input is selected by the OAS. Consequently, two possible ROIs are

extracted in the color-filtered image as shown in Fig. 6.5(b). This ambiguity is

resolved by evaluating the user’s gesture as depicted in Fig. 6.5(c). The yellow line

in the image denotes the hand’s trajectory and the circle segment marks the search

area depending on the pointing direction. Based on this search area, an object is

expected in the movement direction of the hand. This enables the system to set a

bounding box surrounding the blue-colored region in the search area, resulting in a

view of the blue cup to which the user refers to depicted in Fig. 6.5(d). In this way

a new object view is identified and after creating an appropriate object recognition

model it can be easily referenced in subsequent interactions.

The information acquired by the dialog control and the OAS during the interac-

tion with a user must be stored adequately. Because the same information from dif-
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(a) (b) (c) (d)

Figure 6.5: Resolving ambiguities by color and gesture evaluation.

ferent modalities requires different ways of representation, the management of such

a multi-modal database is challenging. The realization of the scene model is based

on the concept of an active memory (Wrede et al., 2004). For converting between

symbolic and sensory information, the scene model includes a so-called modality

converter that allows to map requests to both types of information. Modalities

that are supported are color, relation, size, and shape. For example, the symbolic

information ‘red’ received from the dialog control can be mapped to a range of color

values based on the HSI color model. The scene model can, therefore, be searched

for both types of entries: symbolic labels and sensory data in the form of image

patches with a matching color value.

6.2.4 Evaluation Results

An example of how the verbal information can help resolve ambiguities was demon-

strated in Fig. 6.5. For giving an idea of what quality can be reached using posture

information to restrict the search space (see Section 6.1.1), in the following an eval-

uation of the object attention system based on using this modality is presented.

Note that the overall evaluation of the complete interactive system is of limited

value, since the task of the dialog control is to handle the different errors occurring

in the different processing parts through interacting with the user. In the end, all

object references in scenes of limited complexity will be successfully resolved, as

the user is queried in a dialog to provide support as long as the OAS is not able to

resolve the reference. Only if the visual scene is so complex that objects are partly

occluding each other or their visual features are similar, an object reference may

not be resolvable by the OAS in combination with a dialog. One way of evaluating

such an evaluation would be to measure the interaction complexity like, e.g., the

dialog length, but this would be highly dependable on the scene complexity and

difficult to specify adequately. Therefore, this Subsection is restricted to evaluating

149



6 Incorporating Context for Understanding the Gesture

the use of posture information.

Here, the same setup is used as for evaluating body tracking (Section 4.6.4) and

pointing gesture recognition (Section 5.5.3). For evaluating the object attention

module in this setup (see also Fig. 4.23 on page 110) only the 167 correctly recog-

nized pointing gestures are used.
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Figure 6.6: ROI center positions for recognized pointing gestures and ground truth

(bold markers) for each object. Objects (1-5) from left to right.

Five of those gestures have been neglected by the object attention (cf. Table 5.2

on page 136), because their calculated ROI was outside the interaction space ob-

servable by the object camera. The final object position error is calculated as the

euclidian distance in [m] between the measured object position and the ROI center.

Table 6.1 presents the RMSE error µ and the variance σ for the ROIs separately

for each subject. The objects (1-5) are ordered in the same manner as in Fig. 6.6.

The ROI errors are for most objects not bigger than 25cm. The error in the

ROI positions is mainly due to the coarse gesture information from the preceding

modules. Also, estimating the pointing direction as a line from the head through

the hand does not always suit well. For objects (4) and (5) to the left of the person

(at the right in the image), the ROI is estimated to be too close to the human

(cf. Fig. 6.6) for two reasons:

1. The body tracking cannot handle the self occlusion very well and produces

more noisy results (cf. Fig. 4.24 on page 111)

2. The assumption of an eye-hand line is invalid as for these objects the pointing

gesture is more a ‘shooting from the hip’.
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subj A subj B subj C subj D all

Obj # µ σ # µ σ # µ σ # µ σ # µ σ

(1) 9 0.22 0.04 7 0.10 0.03 7 0.15 0.04 9 0.13 0.06 32 0.15 0.06

(2) 8 0.28 0.02 10 0.21 0.07 7 0.23 0.02 7 0.23 0.03 32 0.24 0.05

(3) 8 0.29 0.06 7 0.14 0.05 8 0.25 0.04 7 0.22 0.07 30 0.23 0.08

(4) 7 0.38 0.05 7 0.25 0.03 7 0.25 0.05 8 0.34 0.03 29 0.31 0.07

(5) 8 0.58 0.04 10 0.47 0.07 11 0.51 0.05 10 0.50 0.04 39 0.51 0.06

all 40 0.35 0.14 41 0.25 0.15 40 0.30 0.14 41 0.29 0.14 162 0.30 0.14

Table 6.1: Position error for the calculated region of interest (ROI) for all objects

(1-5) and subjects (A-D). #: number of recognized gestures, µ: mean

error, σ: standard deviation, both in [m].

The results for objects (1-3) show that good results are achievable if the referenced

objects are positioned at places not leading to the problems just outlined. However,

for all cases where only the gesture recognition in combination with an eye-hand

line based on the body posture is not sufficient, the inclusion of verbal information

and a dialog interaction with the human is crucial for resolving the object reference.

6.3 Incorporating Situational Context for

Manipulative Gestures

While user-provided context is explicitly generated by the pointing human to enable

the understanding of object references, the production of manipulative gestures is

usually not accompanied by any additional information. (For an exception to this

see the modification of gestures performed when demonstrating actions to young

children in Section 8.2). Nevertheless, the recognition of manipulative gestures can

also benefit from incorporating contextual information by considering the overall

spatial setting and the temporal aspects. In general, there are three different options

for the combination of the hand motion with its spatial context:

Body-centered approach: Similar to the use of the pointing direction to narrow

down the object search space (see Section 6.1.1), the body or parts of the body

can serve as reference point to which surrounding objects are associated. This

will be detailed in Section 6.3.1.

Object-centered approach: The contrary approach focusses on the objects in a

scene and based on these reference points it monitors for each object whether
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a hand is gesturing in its vicinity or performs an interaction with the object.

Approaches taking this direction will be covered in Section 6.3.2.

Fusion Approaches Combining Objects and Gestures: Treating both informa-

tion sources, the objects and the gestures, in an integrated fashion results

in a fusion approach that is especially well suited for coping with a broader

variety of manipulative gestures. This fusion can be done in a modular way

combining both information sources in parallel are reviewed in Section 6.3.3.

Alternatively, a holistic fusion can be realized that does not require the

extraction of the individual cues but considers the whole interaction scene.

Such approaches are the covered in Section 6.3.4.

In addition to the spatial context, also the temporal context, i.e., the manipu-

lative gestures that have been performed in the time span preceding the current

gesture, can be incorporated. This is typically done implicitly in the recognition

approaches (see Chapter 5). Consequently, the next Subsections focus on different

ways to include the spatial context in order to understand manipulative gestures

which is also termed ‘action recognition’ in the following.

6.3.1 Body-Centered Action Recognition

A large body of work applying a body-centered use of context for action recognition

deals with whole body actions in office environments. Although in these settings

the human actors do make use of their hands to perform actions like, e.g,. picking

up a phone or opening a cabinet, the recognition does not focus on the detailed

gesture but rather infers the action from the location of the human and some low-

level features like intensity changes. An early example for this type of approach is

the work of Ayers and Shah (1998) where a static camera observes an office envi-

ronment. Here, a person is tracked based on detecting the face and/or neck with a

simple skin color model. The way in which a person interacts with an object is de-

fined in terms of intensity changes within the object’s image area which is specified

beforehand. By relating the tracked person to detected intensity changes in object

areas and using a finite state model defining possible action sequences, the action

recognition is performed. However, as such approaches use fixed camera positions

with pre-specified object regions for action recognition, they are not applicable for

mobile robots.

In order to enable the incorporation of context on a mobile robot, a body-centered

action recognition needs to use the human body as reference point. Focussing on

hand gestures, a logical choice is to use the hand as reference point. While for
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pointing gestures a fixed eye-hand line was used (see Section 6.1.1) to search for the

referenced object, manipulative gestures require a more flexible context handling.

For example, while a mobile phone may be picked up from straight above, the

handle of a coffee mug is usually grasped from the side. Figure 6.7 depicts a

possible body-centered context search area where the size and orientation of the

search area can vary for different actions (Fritsch et al., 2004).

Figure 6.7: A body-centered context search area for action recognition.

Note that such a parametric modeling of the search area allows for a high flexi-

bility of where to expect manipulated objects compared to pointing gestures where

the search area was fixed. A drawback of such a body-centered approach is the

necessity to specify for each action an appropriate search area, resulting in a large

number of search areas to analyze if the hand trajectory itself does not exhibit a

specific characteristic allowing to narrow down the potential actions. Moreover, if

an action does not have any restrictions on the search area like, e.g., ‘Pushing a

button’, then there is no need for a body-centered context definition. Consequently,

body-centered action recognition is primarily useful for manipulative gestures that

exhibit distinctive trajectories and approach objects in a characteristic way.

6.3.2 Object-Centered Action Recognition

Early work on object-centered action recognition by Moore et al. (1999) focussed

on recognizing actions in office and kitchen environments in order to support the

location and classification of objects. In the experiment setting a camera mounted

at the ceiling allows to track the position of a human (head) and the acting hands

based on skin color. Only if a tracked hand enters the vicinity of a potential

object, the trajectory of the hand is analyzed with Hidden-Markov-Models (see
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Section 5.4.1) trained offline. Note that these action models are bound to specific

object types, and therefore provide action-based evidence for an unknown object.

Other image processing steps are carried out to obtain image-based and object-

based evidences for objects. All of these cues are fused in a Bayesian framework

to recognize unknown objects, i.e., the gesture information is used primarily as an

additional cue for object recognition.

More recent work by Li et al. (2007) aims at object-centered action recognition

with a camera setting similar to the images available on a mobile robot. In such

a setting, the hand trajectory is much more informative than when looking at the

scene from above. However, at the same time the view-point dependency is stronger.

They apply a more advanced probabilistic modeling using a dynamic Bayesian

network (see Section 5.4.2) for each object and explicitly consider the camera view

point in the recognition framework. Relying on an object-centered approach, the

hand trajectory is analyzed with a particle filter (see Section 5.4.3) only if the hand

is close to an object. Figure 6.8 depicts how such an object-centered context search

area looks like. Different from Moore et al., this object-centered action recognition

approach provides task recognition results, i.e., the manipulative actions that have

been performed by the gesturing human.

Figure 6.8: An object-centered context search area for action recognition.

A related approach was realized by Hahn et al. (2009) where the distance between

known objects and the gesturing hand was analyzed by a polynomial classifier to

recognize ’working actions’ in an industrial environment. Together with a polyno-

mial classifier to detect the ’transfer’ between two working actions, this information

of elementary actions was used as input for a Hidden-Markov-Model to recognize

action sequences. An important aspect in this work is the possibility to differentiate

154



6.3 Incorporating Situational Context for Manipulative Gestures

between known actions, i.e., the worker following the default sequence of actions,

and unknown actions like, e.g., the worker scratching his head.

While the object-centered action recognition is intuitively appealing as different

objects allow different manipulative gestures, an unsolved issue is the increase in

complexity if the number of objects and trajectory models grows. Nevertheless, for

restricted domains containing a controllable number of objects like, e.g., industrial

environments, an object-centered approach offers a suitable way of combining object

and gesture information to recognize manipulative actions.

6.3.3 Parallel Approaches Combining Objects and Gestures

One of the first approaches exploiting hand motions and objects in parallel is the

work of Kuniyoshi and Inoue (1993) on qualitative recognition of assembly actions

in a blocks world domain. This approach features an action model capturing the

hand motion as well as an environment model representing the object context.

The two models are related to each other by a hierarchical parallel automata that

performs the recognition of manipulative gestures. This type of integration is hand-

coded and specific to the task at hand, i.e., the parallel automata that processes

the action and environment information to recognize assembly actions may not

be applicable to other types of gestures. In addition, due to the limited vision

capabilities at the time, the hand motion is not modeled by a detailed trajectory

but only with the gross motion and the approaching/departing relation to an object.

This restriction may be sufficient for block world assembly actions, but the motion

information becomes crucial if there is a larger number of different objects that can

be manipulated with several different gestures.

Another early approach tackling the understanding of manipulative gestures from

a purely symbolic perspective is the work of Mann et al. (1997). In a roughly similar

task domain as the blocks world, items on a table are manipulated (see Fig. 6.9(a)).

After applying a simplified image processing to track all objects and hands in the

scene, kinematic and dynamic properties are asserted to the individual objects.

Objects in this approach are either hands or items on the table and all are treated

in a unified computational theory as objects with different properties. For example,

an object can be ”attached” to another object, in ”contact” with another object, or

it can be a ”BodyMotor” with self-induced movement (see Fig. 6.9(b)). This logical

analysis of object relations results in a large number of possible interpretations

where the one matching best has to be selected. The system therefore generates for

each frame the most likely interpretation, but does not consider the hand motion,

i.e., the temporal context. In addition, a major drawback is the huge increase in
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possible interpretations for more complex scenes which is a typical challenge for

approaches following the artificial intelligence paradigm.

A more recent approach modeling the actions with a description-based approach

(see Section 5.3) is the work of Ryoo and Aggarwal (2007). Based on a rough

segmentation of the scene, independent ”primitive” processes are applied to extract

the object type and object motion (see Fig. 6.10(a)). The final decision for each

of the two types of information is taken by applying a naive Bayesian classifier

that incorporates context information from the other information type and also

top-down feedback from the overall semantic analysis. The integrated semantic

analysis is performed using some form of grammar for action descriptions that has

to be defined a priori using expert knowledge. In this grammar also hierarchical

relations can be captured and an extension to handle temporal processes improves

the applicability to real-world settings with varying temporal relationships. With

these measures, the number of possible scene interpretations stays feasible compared

to the generic approach of Mann et al. (see Fig. 6.10(a)).

While the logic-based and description-based approaches are appealing as they

are more intuitive to understand, the modeling of manipulative gestures in a par-

allel non-symbolic approach incorporating objects and gestures is gaining interest

recently (Gupta and Davis, 2007; Kjellström et al., 2008; Fleischer et al., 2009;

Gehrig et al., 2011).

Such an approach that assumes a ”flat” action structure without hierarchical

relations is proposed by Gupta and Davis (2007). Here, a unified inference process
114 MANN, JEPSON, AND SISKIND

FIG. 1. The example sequences: coke, cars, hit, arch, and tip. The frame numbers are given below each image.

sequence, if the system remembers that it has determined This goal of understanding forces and dynamics given
image sequences is an ambitious one. Obviously, we dothat the hand is an active object, then it should conclude

that the hand is attached to the coke can (i.e., grasping it) not achieve it completely here. However, we do present
an implementation that takes us much of the way to ourand applying an upward force on it.

(a)

Contact(hand, can, .)

Attach(hand, can, .)

BodyMotor(hand)

Contact(hand, can, .)

Attach(hand, can, .)

BodyMotor(can)

(b)

Figure 6.9: (a) Input image and (b) visualization of two possible interpretations

from the symbolic approach of Mann et al. (1997). A large open circle

at the object center denotes a ”BodyMotor”; the large disks at the

vertices of the polygons denote ”attached” objects; the small disks at

the vertices of the polygons denote ”contacting” objects. (images from

Mann et al., 1997).
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is realized that integrates object recognition and localization, action understand-

ing, and perception of object reaction in a graphical model (see Fig. 6.11). Object

evidence is acquired using standard object recognition methods and evidence for

actions is obtained by applying HMMs to 2D hand tracking data. Through en-

forcing in the graphical model a global coherence between the different information

sources this approach is able to realize a manipulative gesture understanding while

improving the recognition performance of the individual perception processes.

Following a similar line of argument, Kjellström et al. (2008) propose the use

of connected hierarchic conditional random fields (CHCRF) to model manipulative

gestures. Here, the basic evidence is obtained by extracting hand position and hand

shape as well as objects using shape descriptors. The object feature extraction is

performed only in image regions near acting hands, i.e., essentially applying a hand-

centered analysis similar to Section 6.3.1. However, for the actual manipulative

gesture recognition, both feature types are used in parallel. Instead of applying a

temporal model like, e.g., a HMM to the hand motion data, the time dimension

is considered implicitly by creating feature vectors that contain the feature values

for a certain time range. For both objects and actions a hierarchical conditional

random field models the probability for a specific object and action. By connecting

these outputs, the integration of both evidences is performed on the sequence level,
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Figure 6.10: (a) Parallel approach fusing motion and object information; (b) ex-

ample segmentation results and the different levels of the semantic

analysis (images from Ryoo and Aggarwal, 2007).
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6 Incorporating Context for Understanding the Gesture

(a) Original detector (b) Likelihood P (O|eO) (c) Reach Motion P (Mr|er) (d) P (O, Mr|eO, er)

Figure 2. Importance of contextual information involved in reach motions and object perception. (a) Object Detectors tend to miss some

objects completely (b) Lowering the detection threshold can lead to false positives in detection (c) Reach Motion Segmentation also suffers

from false positives (d) Joint probability distribution reduces the false positives in reach motion and false negatives in object detection.

(a) Likelihood P (O|eO) (b) Interaction Motion (c) Segmented Motion (d) Belief: Bel(O)

Figure 3. Importance of contextual information from interaction motion in object class resolution. In this experiment, object detectors for

cups and spray were used. (a) The likelihood value of a pixel being the center of cup and spray bottle is shown by intensity of red and

green respectively. (b) Hand trajectory for interaction motion (includes reach and manipulation). (c) The segmentation obtained. The green

track shows the reach while the red track shows the manipulation.(d) Likelihood values after belief propagation. By using context from

interaction with the object, it was inferred that since the object was subjected to a wave like motion, it is more likely a spray bottle.

2.2. Object Perception

Each object has an associated type which represents the
class to which the object belongs. In addition to type, we
estimate location and some physical properties.

The approach is independent of the specific object detec-
tion algorithm employed. We employ a variant of the his-
togram of oriented gradient(HOG) approach from [5, 33].
Our implementation uses a cascade of adaboost classifiers
in which the weak classifiers are Fischer Linear Discrimi-
nants. This is a window based detector; windows are re-
jected at each cascade level and a window which passes all
levels is classified as a possible object location.

Based on the sum of votes from the weak classifiers, for
each cascade level, i, we compute the probability Pi(w) of a
window, w, containing the object. If a window were evalu-
ated at all cascade levels, the probability of it containing an

object would be
∏L

i=1 Pi(w). However, for computational
efficiency many windows are rejected at each stage of the

cascade. The probability of such a window containing an
object is computed based on the assumption that such win-
dows would just exceed the detection threshold of the re-
maining stages of the cascade. Therefore, we also compute
a threshold probability(Pti) for each cascade level i. This is
the probability of that window containing an object whose
adaboost score was at the rejection threshold. If a detector
consists of L levels, but only the first lw levels classify a
window w as containing an object, then the overall likeli-
hood is given by:

P (O = {obj, w}|eO) =
lw∏

i=1

Pi(w)
L∏

j=lw+1

(Ptj) (1)

2.3. Human Movements

2.3.1 Reach Motion

The reach motion is described by three parameters: the start
time (trs), the end time (tre) and the 2D image location being

(a)

the other. They only model a one-way interaction between
them. We next present an approach which unifies the in-
ference process involved in object recognition and localiza-
tion, action understanding and perception of object reaction.

1.3. Overview of Our Approach

We identify three classes of human movements involved
in interactions with manipulable objects that depend on the
goal/intention of the movement. These movements are 1)
Reaching for an object 2) Grasping an object and 3) Ma-
nipulating an object. These movements are ordered in time;
manipulation is always preceded by grasping which is pre-
ceded by the reach movement1.

We present a graphical Bayesian model for modeling
human-object interactions. The nodes in the belief network
correspond to object, reach motion, manipulation motion,
object reaction and evidence related to each of these ele-
ments.

We consider the interactions between different nodes in
the model. Reach movements enable object localization
since there is a high probability of an object being present at
the endpoint of the reach motion. Similarly, object recogni-
tion disables false positives in reach motion detection, since
there should be an object present at the endpoint of reach
motion (See Figure 2).

Reach motions help to identify the possible segments of
video corresponding to manipulation of the object and de-
termine the dominant hand. Manipulation movements pro-
vide contextual information about the type of object being
acted on. Similarly, object class provides contextual infor-
mation on possible interactions with them, depending on
affordances and function (See Figure 3).

In many cases, similar interactions may produce visually
different hand trajectories because of difference in proper-
ties of the object. Figure 4 shows the difference in interac-
tion style for < throw > manipulation of heavy and light
objects. Therefore, differences in style of execution pro-
vide contextual information on properties of objects such as
weight.

Object reaction to human action, such as pouring liquid
from a carafe into a cup or pressing a button that activates
a device, provides contextual information about the object
class and the manipulation motion. Our approach combines
all these types of evidence into a single video interpretation
framework. In the next section, we present a probabilistic
model for describing the relationship between different ele-
ments in human object interactions.

1Our experiments neglect the grasping motion since the hand move-
ments are too subtle to be perceived at the resolution of typical video cam-
eras when the whole body and context are imaged

Figure 4. Differences in style based on object properties. In the

case of heavier objects, the peak velocity is reached much later as

compared to lighter objects. A study on throwing of objects of

different weights using 3-mode factorization was reported in [19]

2. Modeling the Object Action Cycle

2.1. The Bayesian Network

Our goal is to simultaneously estimate object type, lo-
cation, movement segments corresponding to reach move-
ments, manipulation movements, type of manipulation
movement and their effects on objects by taking advantage
of the contextual information provided by each element to
the others. We do this using the graphical model shown in
Figure 5.

O

eO

MrOr Mm

eor em er

Figure 5. Underlying Graphical Model for Human Object Interac-

tion.

In the graphical model, objects are denoted by O, reach
motions by Mr, manipulation motions by Mm and object
reactions by Or. The video evidence is represented by
e = {eO, er, em, eor} where eO represents object evidence,
er and em represent reach and manipulation motion evi-
dence and eor represents object reaction evidence. Since
only changes are observed for measuring object reaction,
eor is considered to be independent of O. Using Bayes rule
and conditional independence relations, the joint probabil-
ity distribution can be decomposed as2:

P (O, Mr, Mm, Or|e) ∝ P (O|eO)P (Mr|O)P (Mr|er)

P (Mm|Mr, O)P (Mm|em)P (Or|O, Mm)P (Or|eor)

2All the variables are assumed to be uniformly distributed and hence
P (O), P (Mr), P (Mm), P (Or), P (eO), P (er), P (em) and P (eor)
are constant

(b)

Figure 6.11: (a) Image with motion and object information; (b) A graphical model

incorporating evidences for objects (eo), motions reaching to objects

(eor), manipulations (em) and object reactions (er) (images from Gupta

and Davis, 2007).

i.e., not in every individual frame as in the previously outlined approaches.

The diversity of the outlined parallel approaches already shows that there is no

single approach that can cope with all challenges in a superior way. Not surpris-

ingly, recent approaches are characterized by incorporating probabilistic modeling

techniques into the fusion process. This is sufficient for recognizing simple manipu-

lative gestures and only for more complex actions a semantic modeling of temporal

and hierarchical relations is needed.

6.3.4 Holistic Approaches to Action Recognition

Besides the explicit combination of hand motion and context information in a mod-

ular approach, also the implicit combination in a holistic approach can be used for

action recognition. From the methods for holistic gesture recognition outlined in

Section 5.1, those approaches incorporating not only the human motion but the

overall scene are applicable to gesture understanding. Extending such holistic ap-

proaches to take advantage of the information contained in the scene is gaining

interest recently (see, e.g., Ullah et al., 2010; Yu et al., 2010; Wuo et al., 2011).

Focussing on actions in movie scenes, the use of local spatio-temporal features in

a bag-of-features approach (see Section 5.1) has been extended by Ullah et al. (2010)

to handle non-local cues. Instead of separating the image sequences in fixed spatio-

temporal grids for calculating the codeword histograms, different types of processing
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6.3 Incorporating Situational Context for Manipulative Gestures

are proposed to create the spatio-temporal separation. For example, in Fig. 6.12 a

foreground-background region segmentation (bottom left) is used to separate the

spatio-temporal features into two groups. Ullah et al. investigate different types

of such semantic separations. The test data set is based on Hollywood movies

and contains a wide range of actions. Only few of the actions actually involve the

manipulation of objects (AnswerPhone, DriveCar, Eat, GetOutCar) as this was not

in the focus of the investigation. Nevertheless, the semantic separation has been

found to deliver an improved action recognition performance for nearly all actions

compared to the standard grid, indicating the potential of this approach.

ULLAH, PARIZI, LAPTEV: IMPROVING BAG-OF-FEATURES WITH NON-LOCAL CUES 3
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Figure 2: An illustration of our approach to disambiguate local descriptors with the help of
semantic regions in video.

2.2 BoF representation

In the BoF framework, a video sequence is represented as a normalized frequency his-
togram of local space-time features. The histogram is computed over labels (or visual
words [19]) associated with each local feature. Feature labels are commonly obtained by
quantizing local feature descriptors according to a pre-learned dictionary. Following previ-
ous work [4, 10, 13, 19, 21], we construct a visual dictionary using K-Means with K = 4000
visual words. While K-Means is a conceptually simple and unsupervised approach to feature
quantization, previous work [7, 14] aimed to improve image classification tasks by construct-
ing supervised dictionaries. Here we follow [14] and use ERC-Forest to construct supervised
visual dictionary for action classification.

ERC-Forest is an ensemble of randomly created clustering trees [14]. It predicts class la-
bels c from local feature descriptors d. It benefits from labeled training set J = {(dn,cn) ,n =
1, · · · ,N} with N descriptors d associated with class labels c and recursively builds random
trees in a top-down manner. At each node, the labeled training set is divided into two halves
such that the classes are separated well by maximizing the Shannon entropy:

Sc (J,T ) =
2 · IC,T (J)

HC (J)+HT (J)
(1)

where HC denotes the entropy of the class distribution in J, HT is the split entropy of the
test T which splits the data into two partitions, and IC,T is the mutual information of the
split (see [14] for further details). Following [14] we use ERC-Forest to build supervised
visual vocabulary for local space-time features. We construct M = 5 multiple trees with
1000 leaf nodes each and assign M labels to each local feature according to each tree. ERC-
Forests have been previously employed for image classification [12, 14, 16]. In Section 4 we
demonstrate ERC-Forest to improve action recognition performance compared to K-means
visual dictionary.

Figure 6.12: Spatio-temporal feature points separated into two groups based on

region segmentation and schematic image of the associated recognition

concept (image from Ullah et al., 2010).

The research on holistic action recognition is quite young, but first results are

promising given the wide variety of settings like, e.g, in the movie scenes considered

by Ullah et al. (2010). Through choosing the semantic region separation appropri-

ately, this method may be able to reach sufficient recognition rates in the future.

However, due to the holistic modeling, this type of approach will enable a robot

only to understand what action was performed, but no detailed information can

be obtained. This type of approach is therefore not suited if the robot is not only

intended to understand the action but also to extract action details or to imitate

the action.
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6 Incorporating Context for Understanding the Gesture

6.4 Example: A Fusion Approach for Recognizing

Manipulative Actions

In this Section an example of a fusion approach for the recognition of actions

and action sequences is outlined (for a detailed description see Li, 2008). The

spatial context considered in this example is body-centered (see Section 6.3.1) by

considering objects that have a spatial relation to the acting hand. While for

pointing gestures this spatial relationship is fixed (see the eye-hand line in Fig. 6.2

on page 142), the example algorithm incorporates the varying locations of different

manipulative actions in the gesture modeling.

Incorporating temporal context for the recognition of manipulative actions is ben-

eficial for the recognition process as a sequence of actions usually has some overall

goal. For example, the sequential manipulative actions “take a pencil” and “move

it to a notebook” should not only be recognized as two independent manipulative

actions but also as an action sequence with the underlying human intention “to

write”. Recognizing such sequences of manipulative actions by incorporating the

temporal context is demonstrated in this example with a probabilistic hierarchical

approach. The probabilistic formulation makes it possible to hypothesize associated

intentions that are often inferred naturally by human observers.

Section 6.4.1 will provide an overview of the system with the hierarchical ma-

nipulation model, the observation data, and the matching of observation data to

the modeled actions. The process for inferring the intention during an ongoing

sequence of human gestures is done by a particle filter and is described in Sec-

tion 6.4.2. The experimental office environment for evaluating this approach and

the obtained results are presented and analyzed in Section 6.4.3.

6.4.1 System Overview

The approach described here aims at recognizing manipulative hand gestures at dif-

ferent hierarchical abstraction levels. The chosen scenario is an office environment

where a person sitting behind a table manipulates the objects on the table. The

manipulative action sequences consisting of several individual actions are: prepare

tea, prepare coffee, and water plant. The input to the system are 2D motion data

of the hand (e.g., by detecting and tracking skin-colored regions as outlined in Sec-

tion 4.4 on page 81) and object labels from object recognition. Figure 6.13 depicts

an overview of the system architecture as well as the office setting (top left).

The starting point of recognizing action sequences are the individual actions. The

manipulative primitives on the basic level are recognized by matching both hand
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calculation
Observation vector

tracking
hand

recognition
object

sequence recognition
Manipulative action

Figure 6.13: System architecture of the manipulative action recognition system.

trajectories and object context based on a particle filtering algorithm for trajec-

tory recognition (see Section 5.4.3). This context-based algorithm for recognizing

‘primitive’ gestures is embedded into a hierarchical hidden Markov model (HHMM,

see Section 5.4.2) which models the hierarchical structures in the manipulation of

objects. Assuming a first order Markov process, a two time slices dynamic Bayesian

network (DBN) with four layers can be used to model manipulative actions as de-

picted in Fig. 6.14. By combining such a lattice HHMM with a particle filtering

algorithm it is possible to infer high-level intentions in manipulative actions by

applying probabilistic processing strategies to low-level trajectory and object data.
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Figure 6.14: The DBN representation of the hierarchical structure for recognizing

manipulative action sequences.
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6 Incorporating Context for Understanding the Gesture

In the hierarchical manipulation model the shaded nodes at the bottom denote

the observations ot. The hidden states in the different hierarchical layers are rep-

resented by blank nodes. The arcs indicate the dependencies between the nodes.

In the following Subsections, we will introduce the observations, the parameters

needed for matching primitive motions, and the parameters for the hierarchical

manipulation structure.

Observation of Hands and Objects

The observation ot of manipulative gestures consists of two parts. The first part

represents the hand and its motion. The hand motion observation vector ohand

includes hand position (hx, hy), hand velocity ∆r, and change of direction ∆γ:

ohand = (hx, hy,∆r,∆γ) (6.1)

Using ∆r and ∆γ allows to represent the motion taking place in different di-

rections and places in the image with one general model. This limits somewhat

the constraints of a fixed camera position, but an appropriate view angle is still

needed throughout the observation because of the lack of depth information in the

2D images.

The second part necessary for recognizing manipulative gestures is the object

observation vector which consists of the information of the objects in the vicinity

of the acting hand or currently in the hand. Assuming successful object recognition,

the observation vector for an object contains its position (ox, oy), the distance r

between the object and the operative hand as well as the angle ∆ψ relative to

the direction of the hand motion. This vector is used during recognition to judge

whether it is a relevant object in manipulation. In addition to these position-related

features, the value of ID contains a unique identifier for each different object type

in the scene. To represent the current contents of the hand, the observation vector

also contains the hand content state ohc that indicates whether the hand is empty

(ohc = 0) or contains this object (ohc = 1). In order to assign the hand state

correctly, a temporal reasoning has to be performed. Since a scene can contain

several objects, the overall object observation vector is:

oobj = {oobj1 , ..., oobji , ..., oobjL } with oobji = (ox, oy, r,∆ψ, ID, ohc) (6.2)

Combining Eq. 6.1 and Eq. 6.2, the observation vector for each time step is:

ot = (ohandt , oobjt ) (6.3)

Note that in this model it is assumed that the acting hand can not hold more

than one object at any time.
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Matching Observations to Primitive Models

The function of the matching vector node st in Fig. 6.14 is the matching of the

observation ot with the manipulative primitive model q0t . The superscript 0 indi-

cates that this is the most elementary discrete state. The manipulative primitives

are typical hand motions in more complex manipulations. For example, ‘touch

a cup’ consists of the primitives ‘approach the cup’ and ‘withdraw the hand’. A

manipulative primitive µ is modeled by a trajectory q0(µ) of length T :

q0(µ) = {(x0, c0) . . . (xt, ct) . . . (xT , cT )}. (6.4)

Extending the particle filtering approach for trajectory recognition (see Sec-

tion 5.4.3) with context information, the model contains for each time step not

only the motion vector xt = (∆rt,∆γt) of the hand but also the context vector ct
defining a search area and an object expectation for the (manipulated) object. This

body-centered context search area is shown in Fig. 6.15 and consists of a search

radius cr and a direction range, limited by a start and end angle (cα, cβ). This

search area is compared with the object observation vector oobjt to judge whether

an object is in the context area.

search radius direction range

object

cα

cr
cβ

Figure 6.15: Object context

The object expectation (cs, chc) has two parameters, cs is used to hold the ID of

the object expected in the search area and chc is the expected hand content. Thus,

the complete context vector is:

c = (cr, cα, cβ, cs, chc). (6.5)

For comparison of the trajectory points xi of a manipulative primitive q0(µ) with

the observed hand motion, the trajectory matching state st is used (see Section 5.4.3

on page 130 for details):

st = (µt, φt, αt, ρt). (6.6)

The comparison of the context vector ci with the detected objects is part of the

inferring process described in Section 6.4.2.
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Hierarchical Manipulation Structure

Following the modeling of manipulative primitives in the bottom layer of the hier-

archical model, this Subsection deals with the two other layers. The middle layer

is the single object manipulation layer. Assuming that only one object can be

the subject of a manipulation, manipulating another object must take place after

manipulating the current object. This information is used to segment the whole

observation sequence into manipulations of different objects. The top level is the

manipulative task level. The states of this level are predefined intentions which

are extracted from the sequence of single object manipulations. For example, the

sequence of ‘take a cup’ and ‘put tea into the cup’ could be defined as the intention

‘preparing tea’.

The model uses q0t , q
1
t , and q2t to represent the state of the manipulative primitive,

the single object manipulation, and the manipulative task at time t. They are called

state nodes. On each level d, there is a terminal node edt linking to the state node

qdt . It is a binary node representing whether the current state ends at time t. If

edt = 0, the state qdt will continue. Alternatively, if edt = 1, the state qdt ends here

and a new state has to be initialized in the next time step. A terminal node equals

one only when the value of the terminal node of the lower level is one because a

state will not end when its sub-state is still in execution. Consequently, the states

of the end nodes are inferred in a bottom-up sequence.

6.4.2 Inferring Process

The probability Pr{q2t |o1:t} of the top node state given the observation sequence

represents the likelihood of the current manipulative task in execution. In order

to achieve an online state estimation of different levels in the hierarchical repre-

sentation, the concept of a belief state is applied, which is the joint distribution of

all the current variables given the observation sequence Pr{q0:2t , e0:2t , st|o1:t}. From

this, the probability of the current action can be obtained by marginalization.

Updating the belief state is realized by a standard inferring process applying

a particle filter. Here, an individual particle b
(i)
t is more complex as in previous

formulations (see Section 4.2.2) as it includes not only the trajectory matching state

s
(i)
t but also all hidden states:

b
(i)
t = {q0:2(i)t , e

0:2(i)
t , s

(i)
t }, (6.7)

Its weight π
(i)
t is the normalized probability of Pr(b

(i)
t |o1:t). According to Bayes

rule and the dependencies in the graphical model, the probability Pr{b(i)
t |o1:t} has
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the following factorization:

Pr{b(i)
t |o1:t}

=Pr{ot|sit}Pr{e0:2(i)t |q0:2(i)t , s
(i)
t }∫

j

Pr{q0:2(i)t , s
(i)
t |b(j)

t−1}Pr{b(j)
t−1|o1:t−1}

(6.8)

The first term of the right hand side of Eq. 6.8 is the probability of a matching

between the state in the primitive model and the observation. Because of the two

parts in the observation, hand trajectory and object context, Pr{ot|sit} is calculated

as:

Pr{ot|s(i)t } = Pr{ohandt |x(i)
t }Pr{oobj

t |c(i)
t }. (6.9)

The probability Pr{ohandt |x(i)
t } represents the similarity of the trajectories and is

calculated as described in Section 5.4.3 on page 130. The value Pr{oobjt |c(i)
t } rep-

resents how good the observed object context fits the expectation. If the expected

object is present the value Pr{oobjt |c(i)
t } = 1.0 is used and if the context area does

not contain the correct object a smaller value Pr{oobjt |c(i)
t } = 0.5 is used. This leads

to smaller weights π
(i)
t of samples with a missing context so that these samples are

selected less often in the resample procedure of particle filtering.

Recursively estimating the belief state of the HHMM is done with the typical

three steps of particle filtering:

Select: Same as in standard particle filtering.

Predict: The states of the state nodes q
0:2(i)
t of particle i with i ∈ 1 : N are predicted

with a top-down sequence and sampled based on conditional probabilities

q
d(i)
t ∝ Pr{qdt |q̂d(i)t−1, q

d+1(i)
t , ê

d:d+1(i)
t−1 }. After the states of the state nodes are

obtained, the state of the matching vector s
(i)
t is sampled. When ê

0(i)
t−1 = 1

which means the manipulative primitive ended at the last time step, the

position indicator φ
(i)
t will be reinitialized as 0, which means the matching

point is set to the beginning of the trajectory model of the next manipulative

primitive. The scaling parameters α
(i)
t and ρ

(i)
t are sampled randomly within

a predefined limitation (see Section 6.4.3). When ê
0(i)
t−1 = 0 which means the

manipulative primitive continues, the position indicator goes one step further

along the primitive model: φ
(i)
t = φ̂

(i)
t−1 + (1 ∗ ρ̂(i)). The scaling parameters

α
(i)
t and ρ

(i)
t are predicted by adding Gaussian noise as prediction variance

to their old values. When the states of the parameters in s
(i)
t are obtained,

the position indicator φ
(i)
t is used to determine e

0(i)
t , i.e., if the trajectory is

nearly completed then e
0(i)
t = 1 and otherwise e

0(i)
t = 0. Then the states of
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the other terminal nodes are predicted bottom-up and sampled conditioned

on the current states of the state nodes and lower level terminal nodes: e
d(i)
t ∝

Pr{edt |qd−1:d(i)t , e
d−1(i)
t }, d = 1, 2.

Update: Same as in standard particle filtering.

Besides continuously estimating the belief state of the HHMM, the obtained

probability values are also analyzed to determine which manipulative gestures have

been performed and what object was involved in the gesture.

The classification of movements is achieved by calculating the model end proba-

bility Pend,t(q
d
t ) as described by Eq. 5.4 on page 132. After recognizing a state, the

objects that have been manipulated are determined by analyzing the context infor-

mation in all samples that were used for calculating Pend,t(q
d
t ). This is especially

relevant for the single object manipulation and the manipulative primitive level.

On the single object manipulation level, there could be two objects appearing in

the context, either in the hand or in the search area. Therefore, a main manipulative

object MMO is defined that holds the ID of the expected object in the search area if

there is no object in the hand. Otherwise, the object in the hand is the main object.

The binary binding between a sample and an object does not provide information

about the quality of the binding, but the sample weight represents how good the

sample matches the observed gesture. Therefore, the object probability Pobj,t is

calculated for every object oobji based on the weights of the samples belonging to

the single object manipulation model q1 and containing this object in the context:

Pobj,t(o
obj
i , q1) =

N∑

n=1





π
(n)
t if IDobj

i = MMO

∧ MMO ∈ q1t
∧ q1t ∈ b

(n)
t

0 else

(6.10)

When a single object manipulation is recognized, the object with highest prob-

ability Pobj,t(o
obj
i , q1) is selected as the single object manipulated. On the manip-

ulative level, there is no main manipulative object. The object probability for the

primitive model q0 is similar to Eq. 6.10. The difference is that q1 should be re-

placed by q0 and MMO should be changed to the ID of the object in the hand chc
or the object in the search area cs according to the different binding requirement.

6.4.3 Evaluation Results

In order to evaluate the quality of the manipulative gesture recognition described

in the previous Subsections, images of size 320x240 pixels depicting the table (see
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6.4 Example: A Fusion Approach for Recognizing Manipulative Actions

Fig. 6.16) are recorded with a frame-rate of 15 images per second. The objects

on the table are from left to right a tea can, milk, sugar, a cup, and a plant. For

carrying out the experiment, the objects are always positioned at the same place

on the table. This is necessary as the primitive models are based on the velocity

and the relative angle of the hand motion and varying object positions would make

the manipulative recognition more difficult. Note that for the experiment object

recognition results were simulated.

Figure 6.16: A snapshot of the office scenario depicting the hand trajectory (red),

the current search context and the object positions.

The manipulation tasks carried out in the experiment and the hierarchical mod-

eling of these tasks are listed in Tables 6.2 & 6.3. On the highest abstraction level,

the tasks prepare tea and water plant can only be performed in one unique order.

In prepare coffee, however, the demonstrator can choose different objects like milk

or sugar and can use different orders for preparing his coffee resulting in a total of

four possible sequences for preparing coffee as shown in Table 6.2.

Manipulation tasks

Name Sequence of single object manipulations

water plant returnmove(cup)

prepare tea puremove(cup) → returnmove(tea can)

prepare coffee 1) puremove(cup) → returnmove(milk)

2) puremove(cup) → approachmove(sugar)

3) puremove(cup) → returnmove(milk) → approachmove(sugar)

4) puremove(cup) → approachmove(sugar) → returnmove(milk)

Table 6.2: The definition of manipulation tasks at the highest level of the hierarchy.
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Single object manipulations

Name Sequence of manipulative primitives

puremove approach → move2emp → maniend

approachmove approach → move2obj → maniend

returnmove approach → move2obj → move2emp → maniend

Manipulative primitives

Name Manipulative Gesture

approach hand approaches an object

move2obj move an object to another object

move2emp move an object to an empty place

maniend hand draws back

Table 6.3: The definition of single object manipulations and manipulative

primitives.

Each of the three manipulation tasks is performed 4-5 times by 8 persons resulting

in 36 sequences for each task and a total of 108 sequences. The motion vector of each

primitive model is generated by averaging over a training set of manually segmented

motion data. Similarly, the context vector is defined manually by choosing for

each time step an appropriate search area, if applicable. The initial, transition,

and terminal probabilities are determined by analyzing the ground truth of the

manipulations. For recognition a total of N = 3000 particles is used. The scaling

factors α and ρ are between 0.8 and 1.2 with variance σ = 0.1.

Figure 6.17 displays a plot of the probabilities in the three hierarchy levels during

recognition of a prepare tea task. Quantitative results of the recognition for the

three tasks and the associated primitives are listed in Table 6.4. At the primitive

level, an empty entry means the primitive is not used while a horizontal bar means

the primitive is defined as part of the single object manipulation but it has not

been used by the subjects during manipulation.

A comparison of the task recognition rates shows that prepare tea and water

plant are successfully recognized most of the time with 94.4% and 97.2%, respec-

tively. The recognition rate of the task prepare coffee is lower reaching only 86.1%.

Looking at the recognition rates at the different levels, we find the reason are the

low recognition rates of the move2obj and maniend primitives in the approachmove

object manipulation. This is due to the camera’s viewing angle, as the movement

of the hand from the sugar to the cup in front of the body only generated a short

hand trajectory in 2D that was difficult to recognize robustly.

The presented approach relies on 2D hand motion information and object recog-

nition results. A direct consequence from the restriction to 2D data is the view-

168



6.4 Example: A Fusion Approach for Recognizing Manipulative Actions

Figure 6.17: The recognition result from one video stream depicting a prepare tea

task.

dependency of the manipulative primitives. This requirement of having ’typical’

object positions to get similar trajectories is an obvious limitation. Using a 3D body

tracking approach providing 3D hand motion information is one possible solution to

this limitation. With a complete body tracking system, the representation of ma-

nipulative primitives could be extended by applying, e.g., body-centered trajectory

models in order to achieve a more generic action recognition system. Obviously,

not only the hand motion but also the object positions should be available in 3D

to achieve a view independent action recognition.
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Task Level

tasks prepare tea prepare coffee water plant

(%) 94.4 86.1 97.2

Single Object Manipulation Level

Seq. purem. returnm. purem. approachm. returnm. returnm.

(%) 100 94.4 100 76.9 93.1 91.7

Primitive Level

approach 100 91.7 100 97.2 96.5 100

move2obj 100 76.9 96.5 94.4

move2emp 100 100 97.2 89.6 80.5

maniend – 91.7 – 73.6 90.9 97.2

Table 6.4: Recognition results for the different levels grouped by task.

6.5 Summary and Conclusion

In this Chapter different types of context and their incorporation into the gesture

understanding process have been presented. For gestures performed by the human

in an interactive setting with the intention to convey information to the robot, the

human often provides additional information. This user-provided context helps in

gesture understanding and is especially prominent in pointing gestures. Relevant

types of such context incorporation have been detailed in this Chapter: 1) Posture

information can be used to restrict the object search space using an eye-hand line;

2) Verbal information can complement the pointing gesture for specifying the type

of pointing target (to an ”object” or a ”location”) or the interpretation of the

pointing gesture (”object is left of hand”). 3) Verbal information can specify object

properties to support the understanding of a pointing gesture, i.e., the resolution

of an object reference.

In order to give an example of the incorporation of such user-provided context,

an approach for resolving object references based on a pointing gesture was shown.

The two different processing streams were detailed for a) re-cognizing an already

known object by employing an object recognizer selected from the verbally specified

object name and b) finding an unknown object by visual processing parameterized

using verbal information.

Besides the context specified explicitly by the user, also the overall setting can

be used for understanding gestures. This situational context is especially relevant

for understanding manipulative gestures that are usually not accompanied by any

user-provided context. Incorporating situational context can be done in different

ways. In a body-centered approach, the hand motion information is enriched with
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the context to infer the manipulative gestures. In an object-centered approach,

the focus is on the objects and any approaching hand is analyzed for whether it

exhibits a motion that can be a manipulative gesture. While each of these types

sets the focus on one kind of information, there are more recently a number of

approaches aiming at a parallel fusion of both, objects and gestures. Here, the

approaches range from symbolic rule-based approaches to probabilistic graphical

models. Especially the graphical models offer the advantage of being learnable,

i.e., they can be trained with data instead of the manual coding necessary for

symbolic and rule-based approaches.

In order to give an example for the use of a graphical model for manipulative

gesture understanding, an algorithmic solution for recognizing complex actions that

consist of a sequence of more simple manipulative actions has been described. The

approach embeds data from a body-centered gesture recognition method and object

recognition results in a hierarchical hidden Markov model for modeling and recog-

nizing higher level manipulative intentions. As representation a dynamic Bayesian

network is used and the inference is done by a particle filter. The achieved recogni-

tion performance indicates that manipulative tasks can be successfully recognized

by such a context-based hierarchical hidden Markov model. While the recognition

is achieved by setting a threshold on the state end probability, the constant ob-

servation of this probability allows to also infer the current complex action. This

ability to predict in a probabilistic fashion what might be currently ongoing is an

important additional benefit that could be used in a top-down manner for steering

the processing of the visual input data. While the example approach has not taken

advantage of this information, this kind of processing can be expected to become

more prominent in future gesture understanding approaches.
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Capabilities

In the previous Chapters the algorithmic aspects of gesture understanding methods

have been covered with a focus on methods applicable to mobile robots. This Chap-

ter is devoted to giving an overview over selected robots that have been equipped

with such gesture understanding capabilities, allowing them to understand sym-

bolic, pointing, and manipulative gestures.

In the last decade, a countless number of robots has been developed in research

labs around the world, exhibiting different kinds of interaction capabilities. Due to

the increasing availability of cheap color cameras and the growing computational

power of standard PCs, vision-based understanding of gestures on mobile robots

is becoming a standard part of the human-robot interface. In Section 7.1 some

selected robots having gesture understanding capabilities in order to enable a more

natural interaction with the human are presented. Going beyond these commu-

nicative aspects, Section 7.2 will cover robots that can understand and partially

also reproduce manipulative gestures.

Obviously, many gesture understanding approaches presented in this book are

not limited to applications on a mobile robot. It is rather that the constraints

encountered on a robot like, e.g., the requirement of a single camera perspective

and the huge variability of the background, pose strong challenges to the algorithms

used. Therefore, the algorithms capable of operating on a mobile robot could

also be applied in other settings. This includes scenarios where images of several

cameras could be processed like, e.g., in intelligent rooms (see, e.g., Irie et al., 2004;

Stiefelhagen et al., 2008). However, this Chapter will be limited to the review of

gesture understanding approaches deployed on robots.

7.1 Robots Understanding Communicative Gestures

In this Section some robots that are targeted at understanding communicative ges-

tures will be presented. A classical application of gesture recognition is the control

of the robot with symbolic gestures like, e.g., a stretched out arm with open hand

to indicate to the robot to ’stop’ its current activity. Besides such a straightforward
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robot motion control based on gestures without any context, there is a large number

of robots nowadays that is capable of understanding pointing gestures. The next

two Subsections will give examples of robots capable of understanding symbolic

and pointing gestures.

7.1.1 Symbolic and Conventional Gestures

The first applications of gesture recognition for mobile robots date back to the early

90’s. For example, Kortenkamp et al. (1996) presented a robot that recognized

static arm gestures based on the configuration of the arm limbs and the head. The

gestures looked somewhat like the gestures performed by airport workers to direct

planes to their parking position.

Later works have had access to better cameras allowing to focus on the hand

posture instead of the overall body posture. This resulted in recognition approaches

for gestures that were also conventionally used in human-human interaction.

For example, the robot Robovie was equipped by Hasanuzzaman et al. (2007)

with a system to learn and recognize static command gestures. The demonstrated

hand postures included counting to three, pointing left and right, as well as thumb

up and fist up.

Figure 7.1.1 depicts an example developed by Wang and Wang (2008), the mobile

robot NTU PAL1 with the corresponding camera image showing a typical command

gesture. The gesture vocabulary of this robot consists of three gestures, the open

palm shown in the camera image, a fist, and the chinese gesture for ’six’ with

extended thumb and little finger while keeping the rest of the hand closed.
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Abstract— Hand posture understanding is essential to human
robot interaction. The existing hand detection approaches using
a Viola-Jones detector have two fundamental issues, the de-
graded performance due to background noise in training images
and the in-plane rotation variant detection. In this paper, a hand
posture recognition system using the discrete Adaboost learning
algorithm with Lowe’s scale invariant feature transform (SIFT)
features is proposed to tackle these issues simultaneously.
In addition, we apply a sharing feature concept to increase
the accuracy of multi-class hand posture recognition. The
experimental results demonstrate that the proposed approach
successfully recognizes three hand posture classes and can deal
with the background noise issues. Our detector is in-plane
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I. INTRODUCTION

When robots are moved out of factories and introduced
into our daily lives, they have to face many challenges
such as cooperating with humans in complex and uncer-
tain environments or maintaining long-term human-robot
relationships. Communication between human and robots
instinctively and directly is still a challenging task. As using
hand postures/gestures is natural and intuitive for human-to-
human interaction and communication, hand detection and
hand posture recognition could be essential to human-robot
interaction. Figure 1 illustrates an example of human robot
interaction through hand posture in which our NTU PAL1
robot and an image from an onboard camera are shown.
In this paper, the issues of hand detection and posture
recognition are addressed and the corresponding solutions
are proposed and verified.

As the Viola-Jones face detector based on an Adaboost
learning algorithm and Harr-like features [1] has been suc-
cessfully demonstrated to accomplish face detection in real
time, these approaches are also applied to detect other
objects. Unfortunately, it failed to accomplish the hand detec-
tion task because of its limited representability on articulated
and non-rigid hands [2]. In addition, hand detection with the
Viola-Jones detector can be accomplished with about 15◦ in-
plane rotations compared to 30◦ on faces [3]. Although rota-
tion invariant hand detection can be accomplished using the
same Adaboost framework in a way of treating the problem
as a multi-class classification problem, the training process
needs much more training images and more computational
power is needed for both training and testing. In this paper,

(a) A person interacts with the NTU PAL1 robot via
hand posture.

(b) An image from the onboard camera.

Fig. 1. Hand posture based human robot interaction

a discrete Adaboost learning algorithm with Lowe’s SIFT
features [4] is proposed and applied to achieve in-plane
rotation invariant hand detection. Multi-view hand detection
is also accomplished straightforwardly with the proposed
approach.

It is well understood that background noise of training
images degrades detection accuracy significantly in the Ad-
aboost learning algorithm. In the face detection applications,
the training images seldom contain background noise. How-
ever, it is unlikely to show an articulated hand without any
background information. Generating more training data with
randomly augmented backgrounds can solve this background
noise issue with a highly computational cost [5]. With the use
of the SIFT features, the effects of background noise in the
training stage are reduced significantly and the experimental
results will demonstrate that the proposed approach performs

(a) NTU PAL1 robot
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is also accomplished straightforwardly with the proposed
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ever, it is unlikely to show an articulated hand without any
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(b) Camera image of command ges-

ture.

Figure 7.1: Controlling the motion of the mobile robot NTU PAL1 by command

gestures (images from Wang and Wang, 2008).
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Note that the recognition of symbolic and conventional gestures implemented for

robot control is often a recognition of hand or body postures, i.e., the configuration

is the relevant information and there is no temporal aspect involved. One reason

for this is that the rejection of unknown gestures is a challenging task. During

gesturing, a human may make many movements that may be accidentally recog-

nized as gesture in a trajectory-based approach. If gesture recognition is used for

controlling the robot, such errors would result in an unexpected robotic action.

Consequently, characteristic postures are the preferred type of gestures for robot

control. Symbolic gestures that are not directly intended for robot control but

rather allow the robot to understand communicative interactions like, e.g., a wav-

ing or hand-shaking person are often realized together with the ability to recognize

pointing gestures and are covered in the next Subsection.

7.1.2 Referential and Pointing Gestures

Following the initial approaches to recognize command gestures, later activities

aimed at recognizing gestures that have no symbolic character on its own but are

referring to another entity in the environment (see, e.g., Sakagami et al., 2002;

Ghidary et al., 2002; Haasch et al., 2005; Stiefelhagen et al., 2007; Axenbeck et al.,

2008; Martin et al., 2010; Breuer et al., 2011).

A famous robot equipped very early with the ability to recognize 3D pointing

gestures is the humanoid robot ASIMO (Sakagami et al., 2002). Furthermore, this

robot is also able to recognize symbolic gestures that are not defined by a certain

hand posture but have a temporal aspect like, e.g, waving or hand-shaking.

A more recent example of a robot that can be directed to certain locations based

on 3D pointing gestures is the robot HOROS (Martin et al., 2010) depicted in

Fig. 7.2. This robot employs a holistic approach for pointing gesture recognition

(see Section 5.1) that is explicitly triggered by verbal commands. The images

depicted in Fig. 7.2(b) give a good impression of the large variability in the image

data that is encountered by a robot in a real world setting and has to be handled

by the gesture recognition algorithms.

An example of a robot that also recognizes gestures performed with both hands

is Robotinho depicted in Fig. 7.1.2. Axenbeck et al. (2008) employ appearance-

based hand detectors (see Section 3.2.3), track the detection results with a Kalman

filter (see Section 4.2.1) and employ HMMs (see Section 5.4.1) to recognize the

trajectories. Besides recognizing one-handed gestures like waving and pointing,

also two-handed gestures to indicate object sizes and a ’do not know’ gesture.

These gestures are symmetric, i.e., both hands perform a similar gesture and the
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Fig. 4. Overall architecture of the developed on-board target position estimator. The system mainly consists of a multimodal person tracker, the estimator of the pointing

pose, and the local navigation system.

Fig. 5. The left image shows the configuration used for recording the ground truth training and test data: The subjects stood in front of the robot and pointed at one of the

marked targets on the ground. The distance of the robot to the subject varied between 1 m and 2 m. The images on the right show typical examples of images of subjects

taken by the monocular frontal camera of the robot in several demanding real-world environments with background clutter and different lighting conditions (in contrast to

earlier approaches of us presented in [1,2]).

(xhead, yhead) of the user in the image. The output of themultimodal

person tracker (see Fig. 4) is utilized to determine the direction

φuser and the distance duser of the user to the robot. These data

are processed to extract the primary region of interest (ROI) in the

input image for the subsequent feature extraction.

The estimation of the radius rpose and the angle φpose of the

pointing pose is done in the user-centered polar coordinate system

shown in Section 4.1.

The Gabor-filtered primary ROI is first fed into the ‘‘Left/Right-

classifier’’. The result of this classifier enables one to extract the

finer image ROIs of the head and the arm of the user. In the

following stage the final pointing radius rpose is estimated by the

‘‘Radius estimator’’. The estimation of the pointing angle φpose can

be realized in two different versions: In one version, first a coarse

angle is estimated by means of the Gabor-filtered ROIs and the

output of the ‘‘Radius estimator’’. The result of the ‘‘Coarse angle

classifier’’ is fed into a ‘‘Fine angle classifier’’, which estimates the

final pointing angleφpose. In a simpler version (not shown in Fig. 6),

the pointing pose angle φpose is estimated in one step by a single

‘‘Angle estimator’’.

4.3. Image preprocessing and feature extraction

Since the interaction partners standing in front of the camera

can have different body height and distance, an algorithm had to

be developed that can calculate a normalized region of interest,

resulting in similar subimages for subsequent processing. We use

an approach suggested in [1,2] to determine the region of interest

(ROI) by using a combination of face-detection (based on the Viola

& Jones Detector cascade [20]) and some empirical factors. With

the help of a multimodal tracker [1,2] implemented on our robot,

the direction and the distance of the robot to the interacting

person can be estimated. The cropped ROI is scaled to 160 ×
100 pixels for the body and the arm and 160 × 120 pixels for

the head of the user. Additionally, a histogram equalization is

applied to improve the feature detection under different lighting

conditions. The preprocessing steps used to capture and normalize

the image are illustrated in Fig. 7. To reduce the effects of different

backgrounds, in the improved version of our system, we used a

simple background subtraction algorithm. For that, the difference

image between the start command (‘‘Horos’’) and the second

command (‘‘Go there!’’) is computed and post-processed with

a closing algorithm and a search for connected regions [21]

(see Fig. 8). The influence of the background subtraction on

the pose estimation result was tested in comparison with our

approach in [1,2] where no background subtraction was used

(see Section 5). On the normalized image regions, features were

extracted to approximate the pointing pose of the user. In our

work, Gabor filters of different orientations and frequencies,

(b) Camera images with pointing gestures.

Figure 7.2: HOROS observing human interaction partners pointing to locations

(images from Richarz et al., 2007 and Martin et al., 2010).

two-handed gesture can be recognized by requiring the individual hands to perform

the same gesture in synchrony.

An early approach where a rather simple gesture recognition was combined with

verbally specified object properties (see Section 6.1) was presented by Ghidary

et al. (2002). Their robot recognizes pointing hand postures and the user can

provide information on where a referenced object is positioned (left), the name of
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Abstract— Robotic assistants designed to coexist and commu-
nicate with humans in the real world should be able to interact
with them in an intuitive way. This requires that the robots are
able to recognize typical gestures performed by humans such as
head shaking/nodding, hand waving, or pointing. In this paper,
we present a system that is able to spot and recognize complex,
parameterized gestures from monocular image sequences. To
represent people, we locate their faces and hands using trained
classifiers and track them over time. We use few, expressive
features extracted out of this compact representation as input to
hidden Markov models (HMMs). First, we segment gestures into
distinct phases and train HMMs for each phase separately. Then,
we construct composed HMMs, which consist of the individual
phase-HMMs. Once a specific phase is recognized, we estimate
the parameter of the current gesture, e.g., the target of a pointing
gesture. As we demonstrate in the experiments, our method is
able to robustly locate and track hands, despite of the fact that
they can take a large number of substantially different shapes.
Based on this, our system is able to reliably spot and recognize
a variety of complex, parameterized gestures.

I. INTRODUCTION

Whenever robots are designed to operate in human-
populated environments, they must be able to interact with
them in an intuitive way. Our humanoid robot (see Fig. 1) is
able to generate a variety of human-like arm and head gestures
that support its speech [1]. At former public demonstrations
we asked people who interacted with the robot to fill out ques-
tionnaires about their impression of the interaction capabilities
of the robot. We discovered that several people were confused
by the asymmetry between action generation and perception
since the robot’s visual perception of people was limited to
head position and size. To reduce this asymmetry and to enrich
its multimodal interaction capabilities, it is necessary that the
robot also recognizes gestures performed by humans. This
requires robust and accurate tracking of human body parts
as well as the ability to spot and recognize typical gestures in
order to infer non-verbal signals of attention and intention.

In this paper, we present a system that is able to spot and
recognize complex gestures from monocular image sequences.
We consider typical gestures performed with head and arms,
such as head shaking/nodding or hand waving as well as
parameterized gestures. Fig. 2 shows some examples.

We represent humans using their heads and hands. For
locating faces and hands in the images, we use the object
detection framework proposed by Viola and Jones [2] to train
reliable and fast classifiers. We use an adaptive skin color

Fig. 1. Our humanoid robot interacts with people using multiple modalities
such as speech, facial expressions, eye-gaze, and gestures.

(a) (b) (c)

Fig. 2. Snapshots of typical gestures: (a) waving, (b) indicating the size of
an object (parameterized), and (c) pointing to an object (parameterized). The
bounding boxes highlight detected faces and hands.

model (which is initially based on the detected face) and
constrain the search to skin-colored regions to speed-up and
to increase the robustness of the hand detection process.

We segment complex arm gestures into their three natural
phases and train hidden Markov models (HMMs) for the
individual phases. We then construct HMMs composed of the
individual phase-HMMs for one- and two-handed gestures as
well as for head gestures.

Our approach proceeds in three stages. First, we locate faces
and hands in the images and update a probabilistic belief which
tracks them over time. Second, we extract features from this
compact representation of humans. Finally, these features are
used as input to the HMMs. Our system recognizes a variety of
complex gestures and allows for the estimation of parameters
for general gestures once a specific phase is recognized. In
contrast to that, existing techniques for parameter estimation
of gestures either concentrate on pointing gestures only (e.g.,
[3], [4], [5]) or rely on the assumption that the whole gesture
can be observed [6].

The contribution of our work is a robust and fast ges-
ture recognition method that relies on monocular image se-
quences (no stereo). In contrast to previous approaches relying
on monocular data (e.g., [7], [8], [9]), our system works
under realistic settings such as varying and difficult lighting

(a) Robotinho
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Fig. 1. Our humanoid robot interacts with people using multiple modalities
such as speech, facial expressions, eye-gaze, and gestures.
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Fig. 2. Snapshots of typical gestures: (a) waving, (b) indicating the size of
an object (parameterized), and (c) pointing to an object (parameterized). The
bounding boxes highlight detected faces and hands.

model (which is initially based on the detected face) and
constrain the search to skin-colored regions to speed-up and
to increase the robustness of the hand detection process.

We segment complex arm gestures into their three natural
phases and train hidden Markov models (HMMs) for the
individual phases. We then construct HMMs composed of the
individual phase-HMMs for one- and two-handed gestures as
well as for head gestures.

Our approach proceeds in three stages. First, we locate faces
and hands in the images and update a probabilistic belief which
tracks them over time. Second, we extract features from this
compact representation of humans. Finally, these features are
used as input to the HMMs. Our system recognizes a variety of
complex gestures and allows for the estimation of parameters
for general gestures once a specific phase is recognized. In
contrast to that, existing techniques for parameter estimation
of gestures either concentrate on pointing gestures only (e.g.,
[3], [4], [5]) or rely on the assumption that the whole gesture
can be observed [6].

The contribution of our work is a robust and fast ges-
ture recognition method that relies on monocular image se-
quences (no stereo). In contrast to previous approaches relying
on monocular data (e.g., [7], [8], [9]), our system works
under realistic settings such as varying and difficult lighting

(b) Images of recognized one- and two-handed gestures.

Figure 7.3: The robot Robotinho can recognize two-handed gestures including the

indication of an object size (images from Axenbeck et al., 2008).

176



7.1 Robots Understanding Communicative Gestures

the object (’TV’) and the rough size (’large’). Alternatively, instead of a single

pointing posture the human can also indicate for large objects the two opposing

corners of the object when he/she indicated this verbally beforehand (two points).

The robot Leonardo (Breazeal et al., 2004) is not a mobile robot but has been

included here for its impressive appearance (see Fig. 7.4) and its multi-modal in-

teraction capabilities. In this setting, a human can interact with saliently colored

buttons arranged around the stationary robot. Leonardo recognizes deictic gestures

in combination with speech and is therefore capable of resolving multi-modal object

references. Specifically, it is possible to assign names to buttons by giving verbal

information. However, the buttons are very simple objects with a salient color and

learning the objects itself is not the primary focus. Instead, the focus is on building

a socially intelligent robot that can learn to perform a simple task from natural

human instruction, achieve a task in close collaboration with a human, and employ

communication strategies like glancing or nodding to maintain a common ground.

All these capabilities are in this very early system instance shown exemplarily with

a strong focus on the buttons and interactions with these buttons. Note that as the

system relies on an additional stereo camera that views the complete scene from

the ceiling to recognize pointing gestures, it does not have the challenges faced by

a mobile robot like, e.g., limited field of view.
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Figure 7.4: Interaction with Leo (image from Breazeal et al., 2004).

A more sophisticated incorporation of the user-provided verbal information was

demonstrated by (Haasch et al., 2005) and has been presented in detail in Sec-

tion 6.2. This system for resolving multi-modal object references has been imple-

mented on the robot BIRON depicted in Fig. 7.5(a). The system allows a user

to point to objects on a table and specify as additional information the color and
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7 Robots Exhibiting Gesture Understanding Capabilities

size of the referenced objects as shown in Fig. 7.5(b). While one camera observes

the complete human in order to recognize pointing gestures, a pan-tilt camera is

directed to the pointed-at location in order to identify the referenced object.

(a) BIRON (b) Example interaction with pointing gesture.

Figure 7.5: The robot BIRON understands multi-modal object references consisting

of a pointing gesture and a verbally specified object color or size.

Although all of the robots outlined above show impressive gesture understanding

capabilities that were partly realized already some 10 years ago, there are nearly no

personal robots commercially available that possess any kind of communicative ges-

ture understanding. This is partly due to the fact that there are only few personal

robots commercially available today at all, but looked at it the other way around

this low commercialization success of personal robots may be due to their cumber-

some non-gestural interfaces restricting their usability. The reason for not providing

commercial robots with advanced gestural understanding capabilities may be the

low robustness of many research algorithms to real-world conditions. The problems

encountered when applying robots with vision-based gesture recognition technol-

ogy in ordinary households with arbitrary lighting conditions are manifold and have

up to now not been solved in a sufficient quality to enable a natural human-robot

interaction that meets the expectations of ordinary users.

7.2 Robots Understanding Manipulative Actions

The robots capable of understanding communicative gestures directly allow for a

more natural human-robot interaction. If robots can also understand manipulative
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actions, this type of gesture understanding can improve the interaction in a broader

range of applications:

Monitoring behavior: A monitoring situation that is gaining increasing attention

in the last years is the support and monitoring of elderly people. By keeping

track of what actions a person has performed, a robot could, for example,

remind the human about taking a glass of water with the daily medicine if

this action did not happen in a certain time window.

Structuring communication: If the robot can reason about the current occupation

of the human based on the recognized gestures like, e.g., the human holding

a book for reading, the robot can choose not to interrupt the human now

for some question but to wait until the human has finished his reading. In

this sense, such manipulative actions would fall into the class of ’interactional

gestures’ (see Section 2.1.3).

Reproducing the action: If a robot can reproduce a manipulative action per-

formed by the human, the effect on the interaction depends on the level of

understanding. For example, if the robot can merely reproduce the observed

movements, this can be used for interaction games (Bertsch and Hafner, 2009).

In case the robot has a deeper understanding of the actions, i.e., what the

intended effect of the movement is, the reproduction can also incorporate

constraints like, e.g., obstacles in the path of the movement to be reproduced

(Mühlig et al., 2010).

Research on monitoring behavior has not yet targeted robots but has focussed

primarily on using several cameras installed at the ceiling of a room to observe the

acting humans. The use of action understanding for structuring communication is

obviously relevant for real robots, but has no dominant influence on research ac-

tivities. The driving force for action understanding research is the quest for robots

capable of reproducing the action that can be easily instructed by humans through

demonstrating a new action to the robot. Research in this direction has been pri-

marily pursued by the robotics community and is known under a variety of terms

including learning by watching (Kuniyoshi et al., 1994), programming by demon-

stration (Ehrenmann et al., 1999) and imitation learning (Billard and Siegwart,

2004).

Here the term imitation learning will be used, which emphasizes the interac-

tive learning aspects in a human-robot interaction. Many approaches focus on

reproducing an observed motion and some examples will be given in Section 7.2.1.

Example systems abstracting from the detailed movements and incorporating the
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7 Robots Exhibiting Gesture Understanding Capabilities

overall context like, e.g., the manipulated objects and obstacles in the environment,

are covered in Section 7.2.2.

7.2.1 Imitating the Observed Motion

Approaches aiming at the pure imitation of the observed motion usually make the

underlying assumption that the observed motion is meaningful, i.e., the human

explicitly performs the action for the robot to observe it. Typically the action

is repeated several times to extract the invariances from the demonstrations (see,

e.g., Mühlig et al., 2009). Besides extracting the relevant features from the observed

demonstrations, also the different embodiments of the demonstrating human and

the reproducing robot have to be considered. An approach avoiding this challenge

of imitation learning is to learn a demonstrated gesture from several demonstrations

and then to manually code the respective gesture reproduction on the robot.

For example, Bertsch and Hafner (2009) demonstrated such an imitation inter-

action with the small humanoid robot NAO depicted in Fig. 7.6(a). The approach

builds upon a recognition of the gestures for imitating them subsequently. A hand

detection based on skin-color (see Section 3.2.2) and a subsequent tracking provide

the basic features as depicted in Fig. 7.6(b). The trajectory is segmented into basic

motion segments and simplified HMMs (see Section 5.4.1) are used to enable the

recognition of 8 different gestures on-board the small mobile platform.

Instead of manually coding the reproduction of the gesture, the automatic repro-

opens the game by presenting one gesture of the 8 sample
gesture types, which should be repeated by the human. The
humanoid then uses its speech synthesis capability to give
a feedback if the recognition result of the observed answer
gesture matches the gesture type that was initially performed
by the humanoid. Now the participants change their roles
and the human presents a gesture which is answered by
the humanoid that is performing the gesture type which
it has recognized. These role changes can be repeated in
alternation.

Fig. 9. An interaction game demonstrates a gesture-based mutual human-
humanoid interaction

V. CONCLUSIONS AND FUTURE WORK
A. Conclusions

By using the proposed approach it is possible to perform a
real-time visual recognition of dynamic human gestures with
high accuracy. Since there is no need of additional devices
it provides a simple and natural kind of human-humanoid
communication. To achieve an accurate real-time recognition
based on the potentially slow embedded hardware of a
humanoid we focused on gestures that can be described by
the hands’ motions within the image plane. This is a strong
restriction but it allows to avoid the hard reconstruction task
of 3-dimensional body configurations using only an image as
information source. The used sample gesture set shows, that
there are simple and natural gestures that fulfill the constraint
and therefore can be used as basis for a suitable interaction.

The results of the comparison of different methods for
supervised gesture learning and recognition showed similar
results for the HMM- and the histogram-based approaches. It
is striking that the histogram-based approach, which is much
simpler than the HMM approach, results in a comparable
performance in the case of our sample gesture set. This
allows to avoid the non-linear optimization problem to train
HMMs and leads to an efficient training procedure. These
findings led to a similar simple solution for the proposed
unsupervised “learning by observation” task. By calculating
the distances of gestures based on their decomposition into
basic motions without considering their timely order, we
achieved a powerful and simple solution for the clustering
task. The online clustering method that is based on the simple
distance measurement of gestures showed promising results.

The implementation on the humanoid robot Nao demon-
strated that the proposed method could successfully be used

to equip humanoids with gesture recognition skills. We used
these skills to give an impression of the possibilities of a
gesture-based human-humanoid interaction by arranging an
appropriate interaction game.

B. Future Works

The presented approach of learning by observation allows
learning the recognition of unknown gestures without an
explicit training session. Therefore it provides a possibility
to increase the set of known gestures continuously. It would
be desirable to extend this skill in a way that the humanoid
is not only able to recognize the new gestures but also to
perform them in addition to the predefined set of gestures.
This would be a typical human-robot imitation task [12]
which seems to be easy to achieve when using the gestures
we focused on. Since the gestures are described by the
hands’ movement parallel to the human’s orientation we can
easily set up a relation between the observed hand positions
and the humanoid’s posture. Using such an imitation skill
the humanoid would be able to give visual feedback of an
observed gesture which could be used to verify that the
gesture was observed correctly.
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(a) NAO

were able to reduce the pixel-wise distance calculation to the
blobs which are covered by multiple objects.

Fig. 2. Currently tracked skin-colored objects described as ellipses.

Within the set of skin-colored objects the objects that
represent the head and the hands of the observed human
are determined. To simplify this step and to avoid the need
of multiple color models associated with different people’s
skin we assume that only one person is within the robot’s
view.For each of the body parts we are selecting the object
that is most similar to the object that described the body part
during the last time step, where the similarity is considered
in terms of spatial adjacency and shape similarity. The most
similar object is regarded as the current observation of the
body part and is used as input for a Kalman filter [6]. The
initialization of the tracking of the head is done by using
the initially detected face as first observation. A hand object
is initialized by using the largest object that is visible for
some time without changing its location too much. To avoid
a mix-up of the head and the hands, some additional rules
are used for differentiation based on common configurations
of the body parts and the fact that the head is usually more
stable regarding its position than the gesticulating hands. To
give an impression of the tracking results Fig. 3 shows some
sample frames of the tracking of a human’s head and hands
during a waving gesture.

Fig. 3. Tracking of the head and the hands during a waving gesture

B. Feature selection

The tracking of a human head and hands within the
image are used as basis for the gesture recognition. To
extract features that describe the observed gestures in an
appropriate way, we applied some additional preprocessing
steps to the resulting location time series of the body parts.
The first step is a normalization which is used to compensate
different distances and spatial offsets of the gesticulating
human within the robot’s view. The head’s position and size

is used as reference for the normalization. The positions of
the hands are transformed to coordinates that are relative
to the head’s position and scaled in proportion to the head’s
width. If a hand’s position exceeds a circular area around the
head it is truncated. The radius of this circular area reflects
the typical proportion of a human’s head width and arm’s
length. As a result we obtained a time series of positions
within a circular area which is transformed to have an origin
of (0, 0) and a radius of 1.

The next preprocessing step is used to identify segments
within the continuous sequence of normalized positions
which describe a single gesture. To make this segmentation
possible we assumed that the gesticulating person returns to
a resting posture between performing gestures. The person
remains in the resting posture if both arms hang down beside
the torso. Therefore, a gesture is defined as any segment of
the continuous sequence of normalized positions where at
least one hand is not located within an area describing the
possible resting positions.

After the normalization and segmentation each gesture is
described by the time series of two hand positions. In a
series of comparative experiments we found that the best
way to encode this information for a further processing is to
describe the position as well as the direction and velocity of
movement for each time step by using the current position
and motion vector. The positions and motion vectors of
both hands are alternately inserted into a common feature
sequence, whereby the artificial position (−1,−1) and the
motion vector (−1,−1) are inserted if a hand is currently
not tracked. Finally, if a method is used for further processing
that cannot handle continuous values then the Linde-Buzo-
Gray (LBG) method [8] for vector quantization is applied
to transform the time series of continuous values to a time
series of discrete symbols (see Fig. 4).

Fig. 4. Results of the Linde-Buzo-Gray vector quantization method used
to split the normalized feature space into 16, 32 and 64 sectors that can be
used to transform the continuous features into discrete symbols

C. Basic Motions

A higher abstraction level to represent the observed ges-
tures than the described feature sequence can be achieved
by a decomposition of the gestures into a set of basic
motions. This decomposition is going along with a more
compact representation of the gestures which turns out to be
appropriate as basis for a reliable gesture recognition. A basic
motion is defined as a part of one hand’s movement without
a significant change of the moving direction. To decompose
one hand’s movement into basic motions we determined the

(b) Images including tracking results

Figure 7.6: Interaction with Nao (images from Bertsch and Hafner, 2009).
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duction is a major target of many recent approaches to imitation learning. Transfer-

ring the observed human motion to the control system of the robot’s manipulators

is the so-called motion retargeting problem. A recent example of such an approach

by Dariush et al. (2009) allows the humanoid robot ASIMO to perform a similar

motion as demonstrated by a human teacher. Here the recognition of the gesturing

human is rather simple as 3D data from a time-of-flight camera is used to detect

relevant key points of the human (shoulder, elbow, wrist, ...). This data is then

retargeted to perform a similar motion on ASIMO as depicted in Fig. 7.7.

Online Transfer of Human Motion to Humanoids 287

Fig. 15. Snapshots from online motion retargeting to Asimo.

the three major contributions are as follows. First, the proposed retargeting frame-

work relies on human motion descriptors (or task descriptors) obtained from a

marker-less vision algorithm using a single time-of-flight camera. These task descrip-

tors are noisy, sparse, and represent only a few key feature points on the human

body. We reported retargeting results based on eight upper body task descriptors;

however, the proposed formulation can handle an arbitrary number. The algorithm

is suitable when there is redundant degrees of freedom as well as when the system is

over-constrained. In fact, for many of the motions tested, we observed that utilizing

as few as four task descriptors (waist, two hands, head) could reproduce realistic

and natural looking robot motions. This attribute enables flexibility in sensing and

instrumentation required to acquire human motion, as well as flexibility in control-

ling the robot by a limited number of task descriptors.

The second important contribution is the online self collision avoidance algo-

rithm. This problem is particularly challenging in humanoid motion control since

for a given motion, several segments can simultaneously collide. We presented a

robust method which can cope with fast motions where multiple collisions can

simultaneously occur. Unlike many existing collision avoidance algorithms such as

those based on virtual forces or potential functions, the proposed method does not

require parameter tuning and is not subject to numerical instabilities such as those

observed based on null-space projections.

The third important contribution of this paper is the system and algorithmic

integration to create a unified framework for online motion retargeting with kine-

matic constraints. Although certain individual components used in this paper are

based on previously developed algorithms, the integration and modification of those

Figure 7.7: Motion retargeting on ASIMO (images from Dariush et al., 2009).

Obviously, for such a retargeting there is no understanding of a gesture needed,

as the observed motions are just replicated without any deeper understanding of

their target. The next Subsection will consider robots with a more advanced un-

derstanding and reproduction of observed gestures.

7.2.2 Understanding for Reacting to the Environment

Manipulation

Inferring the intention of an acting human based on visually observing his acting is

fundamentally different from approaches that aim at only imitating manipulative

actions. As pointed out before, if the embodiment is different this requires a retar-

geting if the motion is to be imitated as a direct copy of the observed movement.

However, also the differences in the environment need to be considered for a real

understanding. For example, if a human is putting an object on top of another ob-

ject, his movement alone is not specifying this gesture sufficiently. In other words,

if the robot would just reproduce the observed movement, it will certainly not have

a good success rate in safely placing two objects on each other. Obviously, the in-

formation of the manipulated objects need to be taken into account as well as other

factors like, e.g., obstacles that require an adaptation of the robot’s movement to

achieve the target.
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7 Robots Exhibiting Gesture Understanding Capabilities

An approach that incorporates the object information into the imitation process

in order to enable the robot ASIMO to learn object manipulations and reproduce

them has been shown by Mühlig et al. (2010). In this approach, the hands and face

of the human demonstrator are detected based on skin color (see Section 3.2.2)

and subsequently tracked. An internal model of the human body in the form

of a stick figure is used to derive the 3D posture information from the detected

hands and face. By imposing constraints on the motion of the stick figure model,

noisy or incomplete detection results (e.g., caused by occlusions) can be handled.

This processing scheme is a simplified form of a model-based body tracker (see

Section 4.5.2). Based on the body model, posture recognition is performed to

enable the human teacher to provide commands to the robot that help to structure

the learning process by providing start and end signals.

The main task of the body model, however, is to provide information on the acting

hands. This information is combined with object information applying situational

context in the form of an object-centered approach (see Section 6.3). From the

analysis of the object motions in combination with the body model, ASIMO can

interactively learn object manipulations and also reproduce them as depicted in

Fig. 7.8. As the robot has built up an internal representation of the movement to

be reproduced, it can also cope with additional constraints like the blocking of the

movement path by an object or the reproduction of a one-handed manipulation

with two hands.

Besides the depicted examples there are many more approaches that aim at
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Fig. 5. Illustration of the interaction and the interplay between internal elements during an experiment

now has to decide if the robot should try it anyway or refrain
from it. In our example the tutor raises his left hand meaning
the former. The robot now reproduces the task successfully,
puts the objects onto the table and retreats from the table. The
objects are unfrozen again and the robot can engage in further
interaction. Note that during the grasping and the releasing
of objects the body schema of the robot changes too. This
is one of the generalization features that allows the robot to
actually perform the movement bi-manually, although it has
seen the demonstration only one-handed.

C. Exploitation of Variances
In another experiment (Figure 6), the robot is asked to

reproduce the same movement with one hand. This is done
in two different situations. Firstly, without any obstacle and

secondly with a yellow box blocking the direct path of the red
object. In both cases the tutor highlighted the green and the
red object in before, so that the generic representation of the
stacking movement is applied to those two. The movement
itself was demonstrated multiple times instead of only once.
This leads to more variance in the demonstration. During the
reproduction, this variance is exploited by the robot to avoid
a collision with the yellow box. The figure shows that the
robot is still able to fulfill the task. In fact, the experiment
shows that generalization is not only achieved by learning
the task in object-related task spaces, but also by using the
probabilistic representation with Gaussian Mixture Models.
This is explained more detailed in [11].

(a) Side view of human demonstrating a manipulative gesture to Asimo

Fig. 6. One-handed imitation with and without obstacle

V. CONCLUSION

We presented a framework that allows a robot to learn
and reproduce movement tasks in interaction with a human
tutor. This interaction is important in two ways. On the
one hand, we use it to generate degrees of freedom in the
movement representation, which improves the generalization
capabilities of the robot. On the other hand, it is used during
the movement reproduction to map the degrees of freedom to
specific situations. In particular, our experiments show that
interaction leads to flexibility in the following ways:

• Saliency and the robot’s attention are used to determine
the objects from which the robot should learn.

• The same features are used to define which objects
should be manipulated by the robot.

• The tutor’s postures “tell” the robot how to reproduce
a learned task (e.g., one-handed or bi-manually).

• By introducing variance into the demonstrations, the
tutor implicitly allows the robot to avoid obstacles and
still perform the task.

• If there is uncertainty about the correct way to reproduce
a movement, the robot can verbally ask the tutor for a
decision.

In addition to the interactive elements, our framework in-
corporates a flexible robot control approach that allows to
define very complex task spaces. This, in turn, allows to learn
tasks as generic representations based on object relations.
Furthermore, the framework includes online body schema
adaptation and the concept of linked objects, which increase
the generalization capabilities of the system even more.

In this paper, we particularly focused on interaction to
achieve flexibility. In future, we will investigate this further,
but also try to increase the autonomy of the system, for
example by including higher-level planning approaches.
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(b) Front view of Asimo reproducing the observed manipulative gesture

Figure 7.8: Asimo learning to reproduce manipulative gestures (images from Mühlig

et al., 2010).
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realizing imitation learning on mobile robots. More information on the learning

techniques itself can be found in the robotics community (see, e.g., Demiris and

Billard, 2007; Billard et al., 2008; Kober and Peters, 2010).

7.3 Summary and Conclusion

The robots described in this Chapter already exhibit a variety of gestural under-

standing capabilities and give an impression of what the future of intelligent robots

may be. With the research progress in the individual functionalities, the perfor-

mance of such robots will become more and more human-like and the interaction

quality will gradually improve. A very important point that must be made here,

however, is the fact that all the interaction behaviors are programmed by experts.

The described systems are able to learn factual knowledge of objects, but the learn-

ing process has been designed taking the human-human interaction as role model.

This implementation of central learning processes for factual knowledge may be

acceptable for core capabilities, but how about learning procedural knowledge? It

is not possible to implement all procedural knowledge by experts, so an intelligent

robot should have the capacity to learn this type of knowledge.

While ‘learning’ in general is a huge research question, the more specific question

of how to learn to perform certain gestures is of crucial importance for a humanoid

robot. For humans, learning a new gesture to manipulate some object is closely

related to observing other humans performing the task and trying it out by oneself.

If a robot has to be able to manipulate arbitrary objects like, e.g., a new coffee

machine that was not existing when the robot was built, it has to have the capability

to ‘learn’ how to make coffee with the unknown machine.

In the approaches for gesture understanding outlined in previous Chapters, the

gesture recognition models were manually designed. For the recognition of pointing

gestures this is not a problem, but for recognizing action sequences a robot should

be able to autonomously learn to recognize and reproduce new actions. Recent

results like the work of Mühlig et al. are very impressive, although the interaction

setting relies on the human instructor to control the learning phase. Humans have

the ability to learn new actions in a more natural interaction, so making a robot

learn like a human will ease the teaching task and will also pose less restrictions on

the type of object manipulations that can be learned. A typical learning scenario is

the interaction between a mother and her child where the mother demonstrates to

the child how to use objects. If a robot could learn to handle arbitrary objects in a

way similar to how a child learns from its mother, a major obstacle towards building

183



7 Robots Exhibiting Gesture Understanding Capabilities

truly intelligent interactive robots would be overcome. Insights from experiments

aiming at revealing the mechanisms of such a social learning of gestures are the

topic of the next Chapter.
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8 Towards Learning of Gestures:

Studies on Human Gesture Understanding

The algorithmic approaches for gesture recognition presented in this book rely on

models for the gestures to be recognized. These models are either specified man-

ually by the programmer or are constructed during a carefully controlled teaching

phase with the human demonstrating the gesture repeatedly several times. In this

Chapter, a different view on the acquisition of new gestures will be presented which

aims at using children’s learning processes as a role model. Following a review of the

limits of classical learning approaches in Section 8.1, the modifications of actions

performed by caregivers during action demonstration are introduced in Section 8.2.

Experimental findings from studies investigating motionese are presented in Sec-

tion 8.3. A study focussing on the complete interaction loop including a robot

performing gesture reproduction is presented in Section 8.4. The chapter concludes

with a summary in Section 8.5.

8.1 Limits of Classical Approaches to Learning

In many classical gesture recognition algorithms the models used for the analysis of

the hand motion are designed by programmers. This means they are constructed

manually before the recognition algorithms are integrated into complete systems

like the interactive robots presented in the previous Chapter. As long as the dif-

ferent gestures to be recognized are known to the programmers beforehand, this

method for constructing a gesture recognition system can be applied. Obviously,

models for clearly defined hand motions like pointing and conventional gestures

(see Section 2.1.3) can be defined in a recognition system a priori. Looking at the

huge variety of different objects present in human environments, however, points

out a basic problem of such predefined gesture models for handling manipulative

gestures: it is impossible to cover all possible manipulative gestures in the design

process in order to enable a robot to perform arbitrary object manipulations.

An obvious solution to this problem is to develop approaches that learn from

human demonstrations how to perform manipulative gestures. This so-called imi-

tation learning (see also Section 7.2) is guided primarily by five questions that need
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to be decided on by a robot (Dautenhahn and Nehaniv, 2002): ‘who to imitate’,

‘when to imitate’, ‘what to imitate’, ‘how to imitate’, and ‘how to evaluate’ the

performed imitation.

There has been intensive research on solving these questions by technical ap-

proaches (cf., e.g., Demiris and Billard, 2007; Billard et al., 2008; Dariush et al.,

2009; Kober and Peters, 2010; Mühlig et al., 2010). However, most algorithmic so-

lutions concentrate on the questions of ‘what to imitate’ and ‘how to imitate’. The

two questions are generally tackled by analyzing the observed hand trajectory, find-

ing invariant features across several demonstrations (‘what’), and enabling a robot

to reproduce the demonstrated gestures (‘how’). In order to simplify the task,

these learning algorithms assume that the human demonstrator performs clearly

separated manipulative gestures and that no other motions are performed during

a teaching session.

Most current imitation learning approaches are, therefore, not representing nat-

ural interaction situations but are characterized by a very technical approach to

imitation as they concentrate solely on extracting a trajectory model. This is in

contrast to the first two questions of ‘who to imitate’ and ‘when to imitate’ that are

strongly related to the social interaction between the demonstrator and the learner.

In a scenario where one human demonstrates an object manipulation to another

human, the human-human-interaction related to these two questions may take on

the form of symbolic start/stop markers (e.g., verbal commands like “Look here”

and “That’s it”). Such an explicit verbal annotation of relevant trajectory parts

used in the transfer of skills between adult humans, however, is radically different

from how parents teach their children new skills. Especially in the interaction be-

tween a child and a caregiver, social aspects like, e.g., verbal and gestural ‘attention

getters’ are of crucial importance as they allow the caregiver to guide the child’s

attention to demonstrated actions that the caregiver wants the child to learn. This

guiding of attention is not limited to verbally denoting the start and end of a ges-

ture, but includes modifications of the hand motion itself as research on adult-child

interactions has shown (Brand et al., 2002). This so-called ‘motionese’ that adult

demonstrators exhibit when demonstrating gestures to a child will be introduced

in Section 8.2.

Making these findings on hand motion modifications accessible to technical sys-

tems aiming at gesture understanding requires to bridge the gap between develop-

mental learning and computer science. Recent research by Vollmer (2011) indicates

that imitation learning as it is performed by the child in interaction with its care-

giver is a dynamic process. The interactive aspects are not captured when focussing

only on the demonstrator’s hand trajectory as it is done in most current imitation
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learning approaches. In order to enable a technical system to benefit from ‘mo-

tionese’ modifications of the demonstrated hand motion, Section 8.3 introduces an

algorithmic approach for measuring ‘motionese’, i.e., to detect ‘when to imitate’ an

observed gesture.

Going beyond the hand motion itself, the interaction between demonstrator and

learner is another domain which is not considered by current imitation learning ap-

proaches. While many classical approaches focus on trajectory information when

answering ‘what to imitate’, the trajectory itself (i.e., the ‘manner’) may not be

relevant but rather the effect (i.e., the ‘goal’) of the gesture like, e.g., pressing a

button. Distinguishing between these two alternatives may be done based on ana-

lyzing the demonstrator’s feedback on the robot’s attempt to reproduce the action.

Section 8.4 will introduce a human-robot interaction study aiming at investigating

such an interactive learning setting.

Using feedback from the demonstrator after an imitation attempt is one way of

answering the question ‘how to evaluate’. Another alternative is to motivate the

demonstrator to emphasize relevant action parts (‘what to imitate’) already during

an action demonstration. For example, varying the simulated gaze of the robot

learner can be used to communicate to the demonstrator what the robot currently

‘understands’. The feedback of the demonstrator that is stimulated by the robot’s

comprehension display enables it to determine whether its current understanding

of ‘what to imitate’ (manner or goal) is correct. Also such non-gestural aspects will

be shortly covered in Section 8.4 before the Chapter concludes with a summary.

8.2 Modifications of Child-directed Motions:

Motionese

In the research findings on developmental psychology there is a growing support

for the idea that children are learning from input that is specifically designed

for them. For example, adults speak differently when addressing children and

this child-directed speech – motherese – has been characterized as directing the

child’s attention to relevant aspects of the speech signal (Fernald and Simon, 1984;

Dominey and Dodane, 2004). While motherese is well known and has already been

used as a cue in technical systems (see, e.g., Breazeal, 2004), more recent studies

also found evidence for a modification in mothers’ infant-directed physical actions

that has been termed motionese (Brand et al., 2002; Gogate et al., 2000): as part of

‘motherese‘ [...] mothers’ infant-directed actions [...] reveal distinctive characteris-

tics that amplify or exaggerate meaning and structure within their bodily motions.
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(Brand et al., 2002, p.73).

Obviously, this action modification could also be used by a learning robot situated

in a social context with a caregiver. It would enable a robot to automatically detect

‘who’,‘when’, and ‘what’ to imitate based on the caregiver’s action modification that

seems to be a natural behavior for any adult demonstrating an action to a child.

Consequently, it is necessary to understand in a first step how exactly adults modify

their bodily motions and how this can be detected by a technical system.

In a study on motionese by Brand et al. (2002) it was observed that mothers

reveal distinctive characteristics amplifying or exaggerating meaning and structure

within their bodily motions in their infant-directed actions. These characteristics

were identified using 8 intuitive categories: range of motion, rate, repetitiveness,

proximity to partner, enthusiasm, interactiveness, punctuation, and simplification.

The findings were obtained by analyzing videos with adult-child interactions. Each

demonstration recorded on video was given a rating (0-4) for each of the eight

categories by human coders. As this analysis was based on manual annotation, it

has to be stressed that the definition of the categories was tailored for human coders

and often a single parameter like, e.g., hand velocity was implicitly contained in

several of the eight categories. In order to make motionese accessible to a robotic

system for learning a new gesture, it is therefore necessary to first find a technically

measurable equivalent to the rather qualitative ratings of the human coders in the

studies by Brand et al.

8.3 Technical Analysis of Motionese

In order to investigate the technical analysis of motionese, an experiment similar to

Brand et al. was carried out by Rohlfing et al. (2006) where the adult demonstrator

was filmed with a camera. One of the tasks was the stacking of four cups into each

other. In order to analyze the differences between Adult-Child Interaction (ACI)

and Adult-Adult Interaction (AAI) the adults had to demonstrate the cup stacking

to their child (see Fig. 8.1(a)) and to another adult (see Fig. 8.1(b)).

For the analysis the demonstrator’s hand motion was extracted from the video

using a vision-based 3D body tracking similar to the approach in Section 4.6. Note

that the use of intrusive sensing methods outlined in Section 2.2.1 may make natural

acting more difficult for the demonstrator and, more importantly, may distract the

attention of the child looking at the demonstrator. Figure 8.2 depicts an image

of the adult demonstrator before the start of the cup-stacking task together with

example trajectory data of the hand indicating how it later performed the task.
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(a) Adult-Child

Interaction (ACI)

(b) Adult-Adult

Interaction (AA)

(c) Adult-Robot

Interaction (ARI)

Figure 8.1: The different settings of the studies analyzing motionese: (a) and (b)

analyzed by Rohlfing et al. (2006); (c) analyzed by Vollmer et al. (2009)

(images from Vollmer, 2011).

Based on tracking the hand, several action parameters can be derived from the

hand motion. Consequently, visually observable modifications in actions can be

analyzed in a quantitative manner by converting the categories used by the human

coders in the study by Brand et al. (2002) to measurable parameters. However,

there is no obvious conversion available as there are no direct one-to-one relations

between the categories and the measured parameters. For example, ‘punctuation’ is

Figure 8.2: Example of cup-stacking task with hand trajectory overlaid. Each color

of the trajectory represents the action of stacking a cup with correspond-

ing color into the blue cup and the thin line represents moving the hand

without any cup (image from Vollmer, 2011).
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characterized by the acceleration of the hand and the number of pauses. However,

pauses are also one aspect of ‘simplification’, as more pauses make the overall action

sequence simpler.

Consequently, it is necessary to identify those parameters that can be extracted

from the trajectory data of hands tracked in video streams and that are relevant

for motionese. As a preprocessing step, the video stream is segmented into motions

and pauses based on the hand velocity. In this way, only the parts of the trajectories

that actually show a moving hand are analyzed. For a frame sequence segmented

as a motion, the path traveled by the hand (PathLength) and the distance between

start and end point (DistanceTravelled) are calculated. Additionally, the duration

of the motion (MotionDuration) and the preceding pause (PauseDuration) are

counted in video frames. For each motion, i.e., each sequence of frames containing

a moving hand, the following parameters are calculated:

• average velocity v̄ =
∑
v

MotionDuration

• average acceleration ā =
∑ dv

dt

MotionDuration

• roundness s = PathLength
DistanceTravelled

is a measurement for the shape of the motion.

It is defined as the path of the hand over the distance between the start and

end position. A motion describing a curved path results in a high value, a

straight move has a low value.

• pace p = MotionDuration
PauseDuration

indicates how long the motion is in relation to the

preceding pause. If the pauses are relatively short, the motion has a high

pace and vice versa.

Using these parameters, the trajectory data from the Adult-Child and Adult-

Adult interactions has been analyzed by Rohlfing et al. (2006). In this initial

study, significant differences have been found between how adults demonstrate a

task to their children in comparison to the demonstration to another adult. In

demonstrations to children, roundness was found to be significantly lower, there

were more pauses, and there was a trend for a lower pace.

In a subsequent experiment by Vollmer et al. (2009), the same experiment has

been repeated using as ‘learner’ a simulated robot face presented on a screen to

investigate the Adult-Robot interaction (see Fig. 8.1(c)) in relation to the AAI and

ACI conditions. In order to enable a comparison between all three conditions, the

data from the first study was analyzed again in this more comprehensive study using

improved analysis tools and evaluation methods. Besides confirming the findings

190



8.3 Technical Analysis of Motionese

from the initial study, this also resulted in a better understanding of how adults

interact with a robot learner.

Example results from this study are provided in Fig. 8.3 showing the differences

in velocity and length of motion pauses for the different interaction partners. The

motions in the adult-child interaction and adult-robot interaction reveal longer

pauses between the single actions following each other and a lower velocity. These

differences result in noticeable longer interaction sequences compared to adult-adult

interactions. A much more detailed analysis of the results can be found in Vollmer

et al. (2009).
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Figure 8.3: Mean values of velocity and length of motion pauses (m.p.) for the

different interaction situations (image from Vollmer, 2011).

Summarizing the results, it was found that adult demonstrations towards a robot

(ARI) exhibit even more motionese characteristics than the already significant dif-

ferences found in demonstrations towards a child (ACI). These significant differ-

ences indicate the possibility to automatically identify a motion as being demon-

strated by the adult with the intention to teach a ‘learner’ like a child or a robot.

This has important consequences as it supports the idea of enabling social learn-

ing of an imitating robot, i.e., a technical system that can make use of the way

how learning is done by a child. Importantly, this teaching of a robot does not re-

quire the human to have any knowledge of the technical system, as he/she can just

treat it like a young child. The experiments have verified that humans indeed use

child-directed motions (i.e., apply motionese) to highlight relevant parts of action

demonstrations not only to children but also to robots.
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8.4 Studying Gestural Interaction between Humans

and a Robot

The previous Section has shown evidence that modifications in the demonstrator’s

hand motions can be used by a robot to learn new actions. In this Section the

interaction between a human and a robot during such a kind of learning will be

analyzed.

In most research approaches towards imitation learning, the interaction is uni-

directional in that the demonstrator performs the action and subsequently the

robot extracts the relevant information and reproduces the observed action. How-

ever, such a setting completely ignores the feedback that can be provided by the

demonstrator when observing how the robot has imitated the demonstrated action.

Another even more important aspect is the fact that most approaches to imitation

learning aim at reproducing the motion while this may not always be the relevant

aspect of an action. For example, when pushing a button it may be that the motion

(i.e., ‘manner’) is less relevant than the effect (i.e., ‘goal’) of the gesture.

While in the motionese studies it was verified that a demonstrator emphasizes as-

pects of the hand motion for supporting the learning task, it was not distinguished

between manner and goal. Furthermore, the influence of learner feedback on the

adult’s action demonstration was not considered. In order to understand how the

feedback provided in an interactive setting shapes the demonstrator’s action pre-

sentation and in turn the learning success of the robot, a comprehensive study

was carried out by Vollmer (2011, Ch.7). Figure 8.4 shows the setup of this study

where the human demonstrates actions to a real robot who, in turn, reproduces the

actions.

In this study the human demonstrator was instructed to demonstrate to the

robot a total of eight actions that differed in being either manner-crucial or goal-

crucial. After each action demonstration, the robot reproduced the action. For

each reproduction, before a new action demonstration started the behavior of the

robot was randomly selected:

Manner-oriented imitation: the robot reproduced the observed trajectory as ex-

actly as possible.

Goal-oriented emulation: the robot moved the object to the end position with a

direct motion without considering the observed trajectory.

Due to this setup of the study, the reproduction was often not correct. This was

intended to study how the demonstrator tries to ‘correct’ the learner by providing
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(a) (b)

Figure 8.4: (a) Setting of the human-robot interaction study; (b) example demon-

stration and reproduction (images from Vollmer, 2011).

some kind of feedback. After each reproduction the human demonstrator could

choose to show the action again or to go on with demonstrating a new action

(see Fig. 8.5 for a visualization). In this way, the consequences of the robot’s

reproduction (imitating the motion or emulating the goal) on the demonstrators

(next) action demonstration could be investigated.
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Figure 8.5: Sequence of steps in the interplay between human’s demonstration and

robot’s reproduction (image from Vollmer, 2011).

For the initial demonstration of an action by the human subjects, which was not

influenced by the feedback behavior, the motionese parameters were analyzed to

evaluate possible differences in the two types of actions. As depicted in Fig. 8.6,
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significant differences have been found: manner-crucial actions were demonstrated

faster, with a higher pace, and with shorter motion pauses. These results indicate

that the type of an action demonstration might already be inferred based only on

the motionese parameters of the first demonstration.
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Figure 8.6: Differences in motionese parameters for goal-oriented and manner-

oriented action demonstrations (images from Vollmer, 2011).

In the analysis of the effect of the robot’s reproduction on the human’s next

demonstration, it was found that manner-oriented actions that the robot emulated

by simply reaching the end position were repeated most often by the human demon-

strator. The study therefore verified that the way in which the robot reproduces

an action determines how often the human demonstrates the action. This coupling

of the robot’s feedback to the demonstrator’s actions is an important characteristic

of interactive learning situations that will enable a much more efficient learning of

gestures by future robots that consider the insights from this study.

Besides the gesture-related feedback in the interaction study, also the gazing

feedback of the robot was investigated. While a detailed analysis of the results

is not relevant here (for an in-depth analysis see Vollmer (2011, Ch.7)), it should

be noted that also the way in which the robot’s gaze was controlled in the experi-

ments influenced the human demonstration. Depending on whether the robot was

set to imitate a motion or emulate a goal, the gaze was either following the hand

(imitation) or jumping to the goal position (emulation). If the gaze followed the

human hand during a manner-crucial action demonstration, actions were demon-

strated slower as the robot was considered ‘attentive’. If the robot, however, was

in the emulation mode and its gaze jumped to the goal position, the demonstrators

interpreted this as ‘lack of attention’ and tried to capture the robot’s attention by,

e.g., making a longer pause, in order to support the learning of the robot. These

insights on how the robot’s gaze influences the action demonstrations emphasize

the importance of the robot’s feedback behavior for gaining the most support from

the human demonstrator during the gesture learning task.
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8.5 Summary and Conclusion

This Chapter presented insights from studies into developmental learning going

beyond current imitation learning settings that focus mainly on the reproduction

of trajectory information. Results from the analysis of adult-child interactions

and adult-robot interactions have shown that adults modify their behavior when

demonstrating an action to a child and these modifications can also be observed in

demonstrations to a robot. Consequently, it becomes possible to realize an imitation

learning algorithm that takes advantage of this modified input for automatically

detecting ‘when to imitate’.

Going beyond the uni-directional analysis of the demonstrated hand motion, this

Chapter also pointed to recent research on investigating the interactions between a

demonstrator and a robot learner in an interactive setting. The study emphasized

that for answering the question ‘how to evaluate’, the feedback from the demon-

strator in a turn-taking setting can provide additional support. Furthermore, by

controlling the robot’s gaze during an action demonstration, it could be shown that

this elicits action modifications by the demonstrator that can be used to distinguish

between manner and goal in ‘what to imitate’.

The studies analyzing ‘motionese’ and demonstrator feedback have only touched

on the potential of imitation learning in a social setting. The findings suggest that

imitation learning will also greatly benefit from incorporating additional cues like,

e.g., speech (e.g., ‘Noooooow it’s ready’) to structure the action demonstration and

to group several motions into one action. Although the research on incorporating

insights from developmental learning into imitation learning is just beginning, the

presented results confirm the large benefit these insights might provide for future

gesture understanding algorithms. Instead of manually coding the gestures to be

recognized, future systems might be able to extract the relevant information auto-

matically. This will help research in intelligent robots to reduce the complexity of

the ‘acquisition problem’, i.e., to reduce the requirements on built-in architectural

constraints of learning mechanisms (Gergely, 2003).
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9 Conclusion

In this book the individual algorithmic stages for hand gesture recognition and

understanding have been covered together with some application examples and in-

sights from developmental psychology. In this final Chapter, the presented material

will be summarized and conclusions regarding the future development of the field

of gesture understanding for intelligent robots will be drawn.

Out of the large field of human communication capabilities, this work has been

restricted to cover research on human hand motions. The term ‘gesture’ is not

limited to hand motions only but is also used in a broader meaning including, for

instance, body posture and facial mimics. All these aspects contribute to equipping

technical systems with more natural human-machine interfaces. However, especially

for robots that interact with humans and that are intended to fulfill practical tasks,

the understanding of hand gestures is a key capability for enabling the practical

application of such robots.

Current interactive robots that are serving a practical purpose beyond entertain-

ment are primarily being programmed by technical experts and have rigid human-

machine interfaces like, e.g., pre-defined verbal commands or command gestures.

The understanding of hand gestures is the next big step towards making the in-

teraction with these robots more human-like, i.e., more natural. The approaches

covered in this book have focussed on vision-based gesture understanding, consid-

ering that mobile robots have to carry all sensors on-board and should perceive not

only the hand motions but also context information like, e.g., objects on a table.

Recognizing gestures based on a sequence of images is not a trivial task, and

similar to other complex analysis problems solved with computer science methods

the research community has mainly applied ‘divide and conquer’ approaches to

this computer vision challenge. Consequently, for the analysis of hand motion, the

gesture recognition problem has often been decomposed into detecting the hand,

tracking it over an image sequence, and classifying the trajectory. Following this

dominant view on vision-based gesture recognition, the organization of this book

reflects this decomposition, grouping the respective research in the corresponding

Chapters.

The wide range of approaches for hand detection covered in Chapter 3 emphasizes

the difficulty of finding a generic solution to the detection problem despite of 25
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years of research in computer vision for human motion analysis. Often the research

scenarios are simplified so that the hand’s color or shape can be successfully detected

based on, for example, strong restrictions on the image background. An important

trend of the last years is the use of machine learning approaches that process

large amounts of low-level appearance features to generate automatically trained

detection systems (see Section 3.2.3).

Through training the systems with a large number of examples for the appear-

ance features, the color and shape information is implicitly encapsulated in the

appearance models instead of the explicit modeling used in earlier approaches for

color- and shape-based detection. This makes appearance-based approaches ap-

pealing as they allow the handling of arbitrary real world environments as long as

the training data contains appropriate images of the settings. In terms of computa-

tional demands, the appearance-based approaches are well-suited for mobile robots,

as modern machine-learning techniques can operate in real-time on standard PC

hardware. A drawback of appearance-based approaches is that they cannot gener-

alize well to untrained gestures. Furthermore, for more complex tasks the detection

result is rather probabilistic and these ambiguities need to be handled in the sub-

sequent tracking stage.

Chapter 4 has introduced standard tracking techniques for the incorporation of

temporal information into the gesture recognition process. In early gesture recogni-

tion approaches that operated in simplified settings, a high quality of single image

detection results was secured and the tracking task could be reduced to ‘tracking by

detection’ by applying standard techniques like, e.g., Kalman filtering or particle

filtering (see Section 4.2). In more realistic scenarios, however, a detection in every

image is usually not possible. A successful approach to cope with this challenge has

been to provide top-down feedback from the tracking stage to the detection stage

and to adapt the detection algorithms with this top-down information.

Adaptive tracking approaches have initially been developed for use with classical

detection methods focussing on the modification of models for visual features like

hand shape or skin color (see Section 4.3). More recently, model-based approaches

that internally maintain a sophisticated 3D model of the hand or the human for their

detection in the 2D images are gaining increasing interest (see Section 4.5). Such

adaptive model-based tracking approaches offer the potential benefit of coping with

arbitrary motions that do not need to be modeled in advance as the visual models

for detection are generated on-the-fly from the internal 3D models. However, the

computational demands of model-based tracking approaches are rather high and

an appropriate handling of occlusions is still an unsolved issue. Therefore, these

adaptive tracking approaches are in direct competition with simple ‘tracking by
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detection’ approaches that are extended to probabilistic versions to cope with the

ambiguous detection results from appearance-based machine learning methods.

Especially for use on mobile robots, the Kinect R© sensor has lowered the technical

barrier significantly for robotics researchers to obtain trajectory data of a gesturing

human. The high-quality depth information from the active Kinect R© sensor is in

limited form also available from a passive stereo camera and has shown its potential,

while today no monocular approach achieves a similar performance at a comparable

hardware cost. This may lead future vision-based hand detection and tracking

research to focus on stereo-based approaches while monocular approaches may see

a strong decline.

Based on a successful extraction of the hand trajectory provided by the detec-

tion and tracking stages, trajectory-based gesture recognition can be performed.

In Chapter 5 relevant methods that have been developed over the years for time

series processing and that are now applied successfully to the field of gesture recog-

nition were reviewed. Due to their growing importance in the field, the focus was

on probabilistic methods as they have proven to be well-suited to cope with the

ambiguities present in the recognition task. Especially graphical models with their

ability to represent hierarchical relationships are an important technique to tackle

the recognition of more complex gestures consisting of several elementary hand

motions. Although Hidden-Markov Models and Dynamic Bayesian Networks are

applied heavily in many different approaches, there is a huge variability in the form

of the graphical models and the level on which gestures are modeled. Despite the

long research in this direction, this variety exemplifies that there is still no common

modeling that has proven to be superior for a larger number of gesture recognition

applications on robots.

With the techniques covered for detection, tracking, and recognition, the overall

task of gesture recognition can be realized. However, the classical decomposition

of the task into these steps has effected the nature of the developed recognition ap-

proaches. On the one hand, this decomposition has enabled to focus on the specific

challenges in each of the individual areas and has created a wealth of approaches

for some of the areas. On the other hand, this sequential view of the processing

steps has emphasized bottom-up processing schemes which are primarily relevant

for gestures that are independent of the context, i.e., where no top-down influences

like, e.g., objects in the surroundings have to be considered. Such isolated bottom-

up processing is, therefore, reasonable for symbolic and conventional gestures like,

e.g., commands.

However, for pointing gestures and manipulative gestures that have a relation to

their surroundings the classical bottom-up scheme becomes challenging. For such
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gestures, the recognition of the hand motion alone is not enough as the context

has to be incorporated into the recognition process to achieve gesture understand-

ing. While research on gesture recognition has been very active since the 90’s,

the incorporation of context in more advanced algorithmic frameworks for gesture

understanding is only recently gaining increased attention.

Chapter 6 has been devoted to introduce relevant types of context as well as algo-

rithmic frameworks for the inclusion of context into the recognition process in order

to achieve gesture understanding. Although initial work on gesture understanding

has been conducted at the same time as the gesture recognition research has started,

over the years there has been much less emphasis on the context processing because

gesture recognition itself turned out to be a hard task. Consequently, progress on

gesture understanding was limited and this research direction can be considered to

be still in an early stage. However, there have been growing activities in this field

in the last years and there is now a large diversity of algorithmic approaches that

promise to advance gesture understanding substantially.

As the modular gesture understanding approaches typically build upon the ex-

isting methods for gesture recognition, the preceding Chapters have provided the

algorithmic background of hand motion processing for introducing in Chapter 6 the

methods for incorporating context. In addition to categorizing the different types

of context, two approaches for incorporating user-provided context and situational

context have served as instances to demonstrate the processing exemplarily. It

should be noted that the main focus of gesture understanding research has been on

modular approaches as they follow the ‘divide and conquer’ decomposition and are

well suited for imitation learning, i.e., for the transfer of the observed gesture to a

robot for reproduction. In contrast, holistic approaches to gesture understanding

can only serve to improve the robot’s reaction to an observed gesture but do not

allow a skill transfer. Nevertheless, the very impressive results of recent holistic

approaches to gesture understanding underline that there may be different routes

to making robots more intelligent depending on whether the communication or

manipulation skills should be enhanced.

From the many approaches on gesture recognition and gesture understanding,

only a few ones have actually been implemented and tested on robots. Chapter 7 has

provided an overview of robots exhibiting some kind of gesture understanding, but

all of the presented robots are research prototypes that operate only in laboratory

environments. Consequently, they may have a very limited ability to cope with

real-world situations like, e.g., challenging lighting conditions or naive human users

that may gesture quite differently from how the experienced researchers instruct

‘their’ systems. This rather challenging situation and the absence of commercially
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successful personal robots are likely to be linked. As soon as the research community

can implement robust gesture understanding systems providing natural human-

robot interfaces, the demand for personal robots may rise.

Although the algorithms and systems presented in this book achieve impressive

functionalities, they are often very brittle. In order to achieve robust performance

in natural situations with partial occlusions, there is still substantial research to

be carried out not only on the level of context incorporation, but also on the more

elementary algorithms for detection and tracking. The versatility of probabilistic

frameworks offers here the potential to introduce more top-down processing paths

into the overall systems in order to use context information for improving also

the elementary algorithms. An important open challenge for future systems will

be the coherent view on the whole processing chain, i.e., to support each step of

the algorithmic processing in a way that the overall recognition result achieves

the best performance. Probabilistic frameworks are currently the most promising

algorithmic means for this task, but there is still a long way to go to achieve gestural

understanding on robots for a wider range of gestures.

Besides the algorithmic considerations about gesture understanding covered in

this book, Chapter 8 has also shortly touched on recent research that focusses

stronger on the interactive learning employed in adult-child interactions. Studies

have shown that adults modify their behavior when demonstrating actions to chil-

dren, and similar modifications have also been found in demonstrations towards a

robot. Consequently, knowledge of such action modifications could be employed by

a robot aiming at learning a new action from a human demonstrator.

Different from the carefully designed algorithms for gesture understanding sys-

tems, the insights from developmental learning offer the potential to let future

robots learn simply by observing a human demonstrator. While today’s technical

approaches to imitation learning focus largely on trajectory reproduction, the range

of human gestures is much wider than can be captured in the form of the trajec-

tories. The different kinds of feedback that have been found in interactive learning

settings between an adult and a humanoid robot give a first glimpse of the potential

that insights from developmental learning provide for creating future gesture under-

standing systems. Combining the set of algorithmic methods presented in this book

with the insights from developmental learning is an unsolved but promising research

direction that can bring robots closer to exhibit advanced gestural understanding

capabilities and, therefore, pave their way to become personal robots.
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B. Burger, F. Lerasle, I. Ferrané, and A. Clodic. Mutual assistance between speech and vision for

human-robot interaction. In IEEE/RSJ Int. Conf. on Robots and Systems, pages 4011–4016.

IEEE, 2008.

L. Campbell, D. Becker, A. Azarbayejani, A. Bobick, and A. Pentland. Invariant features for 3D

gesture recognition. In Proc. IEEE Int. Conf. on Automatic Face and Gesture Recognition,

page 157, Killington, Vermont, USA, 1996. IEEE Computer Society.

T. Cham and J. Rehg. A multiple hypothesis approach to figure tracking. In Proc. IEEE Int.

Conf. on Computer Vision and Pattern Recognition, pages 239–245, 1999.

C. Chang and R. Ansari. Kernel particle filter for visual tracking. Signal Processing Letters, 12

(3):242–245, 2005.

C. Chu and R. Nevatia. Real-time 3D body pose tracking from multiple 2D images. Articulated

Motion and Deformable Objects, pages 42–52, 2008.

Y. Chuang, L. Chen, G. Zhao, and G. Chen. Hand posture recognition and tracking based on

bag-of-words for human robot interaction. In Proc. Int. Conf. on Robotics and Automation,

pages 538–543, 2011.

COGNIRON. The Cognitive Robot Companion, 2004. URL www.cogniron.org. (FP6-IST-

002020).

D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002. ISSN 0162-8828.

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape models - their training

and application. Computer Vision and Image Understanding, 61(1):38–59, Jan. 1995.

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 23:681–685, June 2001. ISSN 0162-8828.

A. Corradini. Dynamic time warping for off-line recognition of a small gesture vocabulary. In

Proceedings of the IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and

Gestures in Real-Time Systems, Washington, DC, USA, 2001. IEEE Computer Society.

B. Dariush, M. Gienger, A. Arumbakkam, Y. Zhu, B. Jian, K. Fujimura, and C. Goerick. Online

transfer of human motion to humanoids. International Journal of Humanoid Robotics, 6(2):

265–289, 2009.

205

www.cogniron.org


References

T. Darrell and A. Pentland. Space-time gestures. In Proc. IEEE Int. Conf. on Computer Vision

and Pattern Recognition, pages 335–340, 1993.

K. Dautenhahn and C. L. Nehaniv. The agent-based perspective on imitation. In Imitation in

animals and artifacts, pages 1–40. MIT Press, 2002. ISBN 0-262-04203-7.

Y. Demiris and A. Billard. Special issue on robot learning by observation, demonstration, and

imitation. IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics, 37(2):254–

255, 2007.

J. Deutscher and I. Reid. Articulated body motion capture by stochastic search. International

Journal of Computer Vision, 61(2):185–205, 2005.

R. A. Dewey. Psychology: An introduction, 2011. URL http://www.intropsych.com/ch07_

cognition/top-down_and_bottom-up_processing.html.

P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-

temporal features. In 2005 IEEE International Workshop on Visual Surveillance and Perfor-

mance Evaluation of Tracking and Surveillance, pages 65–72. IEEE, 2005.

P. Dominey and C. Dodane. Indeterminacy in language acquisition: the role of child directed

speech and joint attention. Journal of Neurolinguistics, 17:121–145, 2004.

A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: Fifteen years later.

Oxford University Press, 2011.

D. Droeschel, J. Stückler, D. Holz, and S. Behnke. Towards joint attention for a domestic service

robot–person awareness and gesture recognition using time-of-flight cameras. In Proc. Int.

Conf. on Robotics and Automation, pages 1205–1210. IEEE, 2011.

D. Efron. Gesture, Race and Culture. The Hague: Mouton, 1941/1972.

M. Ehrenmann, P. Steinhaus, and R. Dillmann. A multisensor system for observation of user

actions in programming by demonstration. In IEEE Int. Conf. on Multisensor Fusion and

Integration for Intelligent Systems, 1999.

P. Ekman and W. Friesen. The repertoire of nonverbal behavior: Categories, origins, usage, and

coding. Semiotica, 1(1):49–98, 1969.

N. J. Emery. The eyes have it: the neuroethology, function and evolution of social gaze. Neuro-

science and Biobehavioral Reviews, 24:581–604, 2000.

Encyclopedia Britannica. human eye. Encyclopedia Britannica Online, 2011. URL http://www.

britannica.com/EBchecked/topic/1688997/human-eye. last access 2011.07.29.

A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly. Vision-based hand pose estimation:

A review. Computer Vision and Image Understanding, 108(1-2):52–73, 2007. ISSN 1077-3142.

A. Fernald and T. Simon. Expanded intonation contours in mothers’ speech to newborns. Devel-

opmental Psychology, 20(1):104–113, 1984.

206

http://www.intropsych.com/ch07_cognition/top-down_and_bottom-up_processing.html
http://www.intropsych.com/ch07_cognition/top-down_and_bottom-up_processing.html
http://www.britannica.com/EBchecked/topic/1688997/human-eye
http://www.britannica.com/EBchecked/topic/1688997/human-eye


References

S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov model: Analysis and applica-

tions. Machine Learning, 32(1):41–62, 1998.

F. Fleischer, A. Casile, and M. Giese. View-independent recognition of grasping actions with a

cortex-inspired model. In IEEE-RAS Int. Conf. on Humanoid Robots, pages 514–519, 2009.

T. W. Fong, I. Nourbakhsh, and K. Dautenhahn. A survey of socially interactive robots. Robotics

and Autonomous Systems, 42(3–4):143–166, 2003.

Y. Freund and R. Schapire. A desicion-theoretic generalization of on-line learning and an appli-

cation to boosting. In Computational learning theory, pages 23–37. Springer, 1995.

J. Fritsch. Vision-based Recognition of Gestures with Context. PhD thesis, Faculty of Technology:

Bielefeld University, 2003. URL http://pub.uni-bielefeld.de/publication/2304982.

J. Fritsch, F. Lömker, M. Wienecke, and G. Sagerer. Detecting assembly actions by scene obser-

vation. In Proceedings International Conference on Image Processing, volume I, pages 212–215,

Vancouver, Sep. 2000. IEEE.

J. Fritsch, S. Lang, M. Kleinehagenbrock, G. A. Fink, and G. Sagerer. Improving adaptive skin

color segmentation by incorporating results from face detection. In Proc. IEEE Int. Work-

shop on Robot-Human Interactive Communication, pages 337–343, Berlin, Germany, September

2002.

J. Fritsch, M. Kleinehagenbrock, S. Lang, T. Plötz, G. A. Fink, and G. Sagerer. Multi-modal
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M. Hahn, L. Krüger, and C. Wöhler. Spatio-temporal 3D pose estimation and tracking of human

body parts using the shape flow algorithm. In Proc. Int. Conf. on Pattern Recognition, pages

1–4. IEEE, 2008.
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demonstrations, past experiences, and vocal comments. IEEE Trans. on Systems, Man, and

Cybernetics - Part B: Cybernetics, 37, 2007.

V. Pavlovic, R. Sharma, and T. Huang. Visual interpretation of hand gestures for human-computer

interaction: A review. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(7):677–

695, 1997.

T. Pfeiffer, M. Latoschik, and I. Wachsmuth. Conversational pointing gestures for virtual reality

interaction: Implications from an empirical study. In Proceedings of the IEEE Virtual Reality

2008, pages 281–282, 2008.

S. L. Phung, A. Bouzerdoum, and D. Chai. Skin segmentation using color pixel classification:

Analysis and comparison. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(1):

148–154, 2005. ISSN 0162-8828.

PMDTec. Pmd [vision], 2011. URL www.pmdtec.de.

G. Pons-Moll, L. Leal-Taixe, T. Truong, and B. Rosenhahn. Efficient and robust shape matching

for model based human motion capture. In Proceedings DAGM-Symposium, pages 416–425.

Springer, 2011.

R. Poppe. Vision-based human motion analysis: An overview. Computer Vision and Image

Understanding, 108(1-2):4–18, 2007. ISSN 1077-3142.

L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.

In Proceedings of the IEEE, pages 257–286, 1989.

Y. Raja, S. J. McKenna, and S. Gong. Colour model selection and adaptation in dynamic scenes.

In Proc. European Conference on Computer Vision, pages 460–474, 1998.

D. Ramanan and D. A. Forsyth. Finding and tracking people from the bottom up. In Proc. IEEE

Int. Conf. on Computer Vision and Pattern Recognition, volume 2, pages 467–474, 2003.

J. Rehg and T. Kanade. Digiteyes: Vision-based hand tracking for human-computer interaction.

In Proc. of the Workshop on Motion of Non-Rigid and Articulated Bodies, pages 16–24, 1994.

214

www.pmdtec.de


References

J. Richarz, A. Scheidig, C. Martin, S. Müller, and H. Gross. A monocular pointing pose estimator

for gestural instruction of a mobile robot. International Journal of Advanced Robotic Systems,

4(1):139–150, 2007.

H. Rieser. Pointing in dialogue. Catalog, 4:93–101, 2004.

H. Rieser and M. Poesio. Interactive gesture in dialogue: a ptt model. In Proceedings of the SIG-

DIAL 2009 Conference: The 10th Annual Meeting of the Special Interest Group on Discourse

and Dialogue, pages 87–96. Association for Computational Linguistics, 2009.

K. J. Rohlfing, J. Fritsch, B. Wrede, and T. Jungmann. How can multimodal cues from child-

directed interaction reduce learning complexity in robots? Advanced Robotics, 20(10):1183–

1199, 2006.

A. Roussos, T. S., P. V., and P. Maragos. Affine-invariant modeling of shape-appearance images

applied on sign language handshape classification. In Proceedings International Conference on

Image Processing, 2010.

M. Ryoo and J. Aggarwal. Recognition of composite human activities through context-free gram-

mar based representation. In Proc. IEEE Int. Conf. on Computer Vision and Pattern Recog-

nition. IEEE Computer Society, 2006.

M. Ryoo and J. Aggarwal. Hierarchical recognition of human activities interacting with objects.

In Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

A. Sadeghipour and S. Kopp. Embodied gesture processing: Motor-based integration of perception

and action in social artificial agents. Cognitive Computation, 3(3):419–435, 2011.

Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura. The intelli-

gent asimo: system overview and integration. In IEEE/RSJ Int. Conf. on Robots and Systems,

volume 3, pages 2478 – 2483, 2002.

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recogni-

tion. IEEE Trans. on Acoustics, Speech, and Signal Processing, 26(1):43–49, 1978.

J. Saldien, K. Goris, B. Vanderborght, J. Vanderfaeillie, and D. Lefeber. Expressing emotions

with the social robot probo. Int J Soc Robot, 2(4):377–389, 2010.

Y. Sato, Y. Kobayashi, and H. Koike. Fast tracking of hands and fingertips in infrared images for

augmented desk interface. In Proc. IEEE Int. Conf. on Automatic Face and Gesture Recogni-

tion, page 462, 2000.

B. Schauerte, J. Richarz, and G. A. Fink. Saliency-based identification and recognition of pointed-

at objects. In IEEE/RSJ Int. Conf. on Robots and Systems, pages 4638–4643, 2010.

J. Schmidt. Vision-based Posture Detection and Tracking for Interactive Scenarios. Phd thesis,

Faculty of Technology: Bielefeld University, Bielefeld, 2009.

215



References

J. Schmidt and M. Castrillon. Automatic initialization for body tracking - using appearance to

learn a model for tracking human upper body motions. In 3rd International Conference on

Computer Vision Theory and Applications (VISAPP), 2008.

J. Schmidt, B. Kwolek, and J. Fritsch. Kernel particle filter for real-time 3D body tracking in

monocularcolor images. In Proc. IEEE Int. Conf. on Automatic Face and Gesture Recognition,

pages 567–572, Southampton, UK, April 2006. IEEE.
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