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Abstract  20 

Global agricultural production has to double by 2050 to meet the demands of an increasing 21 

population and the challenges of a changing climate. Plant phenomics (the characterization 22 

of the full set of phenotypes of a given species) has been proposed as a solution to relieve the 23 

“phenotyping bottleneck” between functional genomics and plant breeding studies.  In this 24 

review, we survey current approaches and describe recent technological and methodological 25 

advances for phenotyping under field conditions and discuss the prospects for these emerging 26 

technologies in addressing the challenges of future plant research. 27 
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1.1 Introduction 33 

A doubling of global agricultural production is required by 2050 to meet the demands of an 34 

increasing population and the challenges of a changing climate (Alexandratos and Bruinsma, 35 

2012). This production increase will need to be met by more intensive use of the same land 36 

area through the priority process of sustainable intensification. An aspect of this requires a 37 

hastening of the plant breeding effort to deliver increased potential yields. However, 38 

potential yields are not always achieved on farm, and growing attention is paid to the 39 

stagnation of crop yields on farm (Ray et al., 2012). Elements of understanding and driving 40 

both plant breeding gain and on-farm productivity rely on the accurate capture of the 41 

phenotypic response and performance. At its broadest this encompasses harvestable yield 42 

and crop quality, as well as agronomic, biotic and abiotic stress tolerance characters. At a finer 43 

scale it involves the precision analysis of phenotypes for the dissection of underlying plant 44 

processes. 45 

Much progress has been made over the past decade in decoding and describing the genetics 46 

of key plant species. This encompasses the development of molecular markers for use in 47 

marker-assisted selection to accelerate breeding gain through to the generation of whole 48 

genome assemblies giving unprecedented insight into the genomes of crop species. These 49 

advances have also been enabled with rapid advances in bioinformatics and the development 50 

of software tools and other computational resources to allow the extraction and application 51 

of genetic and genomic data.  52 

In comparison, developments in the detailed understanding of plant phenotypes has been 53 

slow. The field of plant phenomics (the characterization of the full set of phenotypes of a 54 

given species) has been proposed as a solution to relieve the so-called “phenotyping 55 

bottleneck” between functional genomics and plant breeding studies (Furbank and Tester, 56 

2011). This encompasses both the capture of plant phenotypes using a range of 57 

methodologies and the accurate and timely extraction, analysis and application of the 58 

resulting data. Although relatively well developed in controlled conditions (Bai et al., 2016), 59 

progress in understanding and interrogating complex phenotypes at the field level remains 60 

slow. In this review, we survey recent advances in phenotyping under field conditions and 61 

discuss the prospects for these emerging technologies in addressing the challenges of plant 62 

research for the future. 63 



 

 64 

1.2 Traditional field phenotyping approaches 65 

Through the empirical selection of favourable individuals for harvest, consumption and 66 

replanting, early farmers employed the most traditional of phenotyping approaches: physical 67 

appearance of a plant in its environment. Early selection led to the subsequent domestication 68 

of many crop species. Studies in barley have shown the spread of favourable mutations 69 

modifying response to the seasonal daylength queue for the initiation of reproductive 70 

development supported the Neolithic spread of the crop for cultivation (Jones et al., 2008). 71 

Farmers and breeders have continued to use phenotypic selection in an environment, or 72 

series of environments, through time. Beyond domesticating wild species this has allowed in 73 

particular, for the optimisation of key adaptive traits, including flowering time to ensure 74 

maximum yields in a given region. Driven by physical appearance as the result of both genetic 75 

and environmental effects, this process has indirectly selected a complex of underlying 76 

genetic controllers. Modern plant science and breeding still rely on traditional phenotyping 77 

tools. This ranges from simple measurements of growth (e.g., height), time series 78 

measurements of the appearance of development stages (e.g., vegetative and reproductive 79 

development), comparative numerical scores or indices (e.g., for assessment of pest or 80 

pathogen infection) through to assessment of agronomic performance (e.g., yield, biomass) 81 

and predictive tests (e.g., for end-use quality traits). When employed at scale and with 82 

sufficient replication, many of these traits can be assessed reliably, supporting subsequent 83 

selection or analysis. This is particularly true for simple traits that have a high heritability 84 

(Hallauer et al., 2010).  85 

Estimation of the genotypic value of a large number of selection candidates (in plant breeding) 86 

or cultivars to be recommended to farmers (in variety testing and agronomy) is central to 87 

breeding and/or crop production (Piepho et al., 2008). Heritability is a driver of this 88 

estimation: defining the degree to which phenotypic variance is a result of genetic variation. 89 

Irrespective of the means of generating phenotypic data, its heritability will impact the degree 90 

to which it can be used as a selection or trait discovery tool.  91 

Confounding this is genotype-by-environment interactions, which have been reviewed 92 

extensively elsewhere (e.g. Yan & Hunt, 2010). The magnitude of climate change effects on 93 

crops are likely to be, in part, cultivar dependent, necessitating practical solutions to tailor 94 



 

selective breeding to changing regional patterns (Trnka et al 2014). In order to reliably devise 95 

production strategies under future climatic uncertainty, trade-offs to physiologically-based 96 

plant processes and productivity across environments need to be accurately characterised 97 

which expands the need for development and application of accurate and high-throughput 98 

field phenotyping capabilities.         99 

 100 

1.3 High-throughput field phenotyping platforms 101 

High-throughput plant phenotyping can be delivered in the field via a variety of platforms, 102 

across a range of scales (see Figure 1 for examples) and using a diverse array of sensor 103 

modalities (Araus and Cairns, 2014).  Platforms can be broadly classified as those operating at 104 

ground-level (both above and below the soil surface) and those operating aerially (air- or 105 

space-borne). The appeal of these platforms is the increased throughput and impartiality with 106 

which they collect data when compared to traditional field approaches. 107 

1.3.1 Above-ground phenotyping platforms 108 

In comparison to phenotyping under controlled conditions, where the movement of either 109 

sensors or plants can be automated to increase throughput, ground-based plant field 110 

phenotyping requires either a network of fixed sensors or a system to move sensors over the 111 

crop.   The simplest systems operate at the lowest spatial resolution (single plants or 112 

experimental plots) and consist of fixed platforms typically monitoring the local environment 113 

and imaging crop development using visible light cameras (Naito et al., 2017; Zhou et al., 114 

2017).  These systems have the advantage of being relatively inexpensive, allowing 115 

deployment of multi-unit networks to increase throughput to the whole-field level (Zhou et 116 

al., 2017).   117 

Multiple plots can be assessed using mobile platforms, the simplest of which are wheeled 118 

buggies or “phenocarts”- hand-propelled platforms capable of deploying heavier sensor 119 

payloads than can be carried by an individual user (White and Conley, 2013).  Motorised 120 

versions of the cart design have been developed that, although still requiring an operator, 121 

allow high-throughput positioning of sensor arrays across an experimental field (Deery et al., 122 

2014; Jimenez-Berni et al., 2018).  Fully-autonomous ground vehicles (ranging in size from 123 

small robots capable of navigating between row crops to tractor-sized vehicles) offer the 124 



 

promise of unattended field monitoring and have been the focus of much recent research 125 

(Shafiekhani et al., 2017; Underwood et al., 2017; Burud et al., 2017; Grimstad and From, 126 

2017). Trailer or tractor-mounted systems have the benefit of utilising precision agriculture 127 

platforms already present at most field sites and have been extensively used for row crops 128 

(Comar et al., 2012; Busemeyer et al., 2013; Fernandez et al., 2017; Tanger et al., 2017).  129 

Drawbacks of tractor-based systems (and heavier autonomous ground vehicles) are that they 130 

cannot be deployed in adverse weather or soil conditions and that repeated traversing of the 131 

field may lead to unwanted soil compaction, impacting plant development (Virlet et al., 2017). 132 

Compaction can be avoided by use of larger versions of  fixed platforms (often termed 133 

“phenotyping towers” or “phenotowers”, Figure 1) which can be either installed on a 134 

temporary basis or fixed in position (Ahamed et al., 2012; Shafiekhani et al., 2017; Naito et 135 

al., 2017).  Crane or gantry installations can accurately and repeatedly position heavy sensor 136 

payloads along the three axes of a research field (Virlet et al., 2017).  However, the size of 137 

field used in such systems is relatively small, making this an expensive approach for multi-site 138 

trials (Fernandez et al., 2017). Cable- or zip-line platforms (Kirchgessner et al., 2017) generally 139 

have a lower payload than fixed gantries, but may be repositioned across multiple sites as 140 

required. 141 

1.3.2 Aerial phenotyping platforms 142 

There are four main platforms for aerial deployment of phenotyping sensors: dirigibles 143 

(airships and blimps), drones (unmanned aerial vehicles), manned aircraft, and satellites; each 144 

having its own benefits and drawbacks. Dirigibles, whilst able to carry a heavy payload, have 145 

slow airspeeds and a lack of stability in high winds (Leibisch et al., 2015). Drones, both rotor 146 

and fixed wing, have the ability to fly at lower altitudes and speeds allowing for higher 147 

resolution images, making them suited for trials with smaller plots (~1m2) such as wheat 148 

nursery trials (Herwitz et al., 2004; Link et al., 2013). Drones are less expensive than other 149 

aerial systems and require smaller landing/take off areas, allowing them to be used in 150 

numerous locations. The disadvantage of drones is a limited payload capacity (<20 kg and 151 

much lower in most models) and flight time, reducing the type and number of sensors that 152 

can be carried (Yang et al., 2017). Drone flights are also limited by weather conditions, with 153 

flights ideally performed in good weather (clear, still, dry days) similar to the conditions 154 



 

required for application of agronomic inputs. As such, drone flight days can be limited for field 155 

trials in temperate climates and have to be organised so as not to disrupt other field activities.  156 

Manned aircraft have a far greater carrying capacity compared to drones and can cover larger 157 

areas in comparable flight times. This allows data from entire trial stations to be collected in 158 

one flight with numerous sensors. Manned aircraft can also operate in more challenging 159 

conditions than drones. Whilst conditions should ideally still be cloudless, manned aircraft are 160 

more stable and therefore less affected by the wind. They also fly at higher altitudes and thus 161 

do not interfere with other farming practices occurring at the same time. These advantages, 162 

however, come at the cost of resolution with most aircraft-mounted sensors operating at one 163 

pixel per 1 m2 compared to 0.05 to 0.15 pixels per m2 for drones. As the aircraft is travelling 164 

at a higher speed, image blur can be an issue making image stitching for orthomosaics more 165 

challenging (Herwitz et al., 2004; Link et al., 2013). This limits the type of trial aircraft can be 166 

used for (a maximum plot size of ~8m2 which precludes nursery trials) and lessens the ability 167 

to capture within-plot variations which can be key to explaining some results. The initial set 168 

up cost and logistics of deploying manned aircraft make it unlikely that many organisations 169 

will develop in-house solutions but for larger scale field trials (>1 ha) data from subcontracted 170 

manned aircraft is now comparable in cost to subcontracted data collected using drones. 171 

Satellites are not ideally suited for plant field phenotyping research despite being the 172 

cheapest source of data on the market (Lelong et al., 2008).  Satellite imagery is lower-173 

resolution than other aerial techniques and as the platforms are in orbit, sensor choice is 174 

fixed. The WorldView-3 Earth observation satellite (worldview3.digitalglobe.com), which 175 

provides publicly-available data, carries a multispectral camera with a resolution of 1.24 m2. 176 

For most satellite-deployed sensors, cloud cover prevents effective capture of trials data. 177 

Despite these current limitations, satellite-based phenotyping platforms will probably be a 178 

viable option in the future as sensor resolution increases and cloud penetrating sensors are 179 

deployed allowing for regular, reliable collection of high quality data. 180 

 181 

1.4 Sensors for phenotyping 182 

The characteristics of each platform determine the sensors that can be employed (Table 1).  183 

For example, sensors utilising line-scanning for data acquisition obviously cannot be used on 184 



 

static platforms. Whilst most sensors have models that can be deployed on both ground and 185 

aerial based platforms, the quality of sensor and the information collected can vary 186 

dramatically. Features such as maximum payload, positioning precision, field of view, and 187 

distance above crop will determine the appropriate sensors for each scale of platform. 188 

<Table 1 here> 189 

The simplest sensors are visible light (400-700 nm) cameras (often termed RGB imaging) that 190 

can be deployed at every scale of platform, producing two-dimensional (2D) colour images. 191 

Using visible light cameras on ground based platforms allows the analysis of individual plants 192 

and plots. A drawback of 2D imaging is occlusion caused by overlapping leaves in older plants 193 

and difficulties in image segmentation of plant material from soil, making estimations of 194 

biomass inaccurate (Fiorani and Schurr, 2013). Imaging using multiple cameras allows 195 

reconstruction of three-dimensional (3D) features, though rarely at the resolution seen in 196 

controlled condition platforms. A high resolution RGB camera mounted on a drone or a 197 

manned aircraft can provide a range of useful phenotypic data at plot level (1 m2 and above). 198 

As with ground based platforms, images from drone-mounted RGB cameras can be used to 199 

measure basic traits such as height and crop cover, allowing assessment of traits such as 200 

lodging and leaf area index (Bendig et al., 2014). As drones can cover large areas quickly, RGB 201 

cameras can be deployed as agronomic tools in field phenotyping trials. Visual assessments 202 

of the previous crop before the trial crop is planted will identify any areas of the field that are 203 

performing badly or are lacking nutrients allowing researchers to intervene to provide the 204 

most homogeneous trial environment possible and limiting any confounding effect of 205 

environment (Zaman-Allah et al., 2015).  206 

A key step in the analysis of image sensor data from aerial (and some ground based platforms) 207 

is the production of an orthomosaic image (“orthoimage”), also termed a digital 208 

elevation/surface model depending on the sensor. Obtaining an orthoimage is a multi-stage 209 

process. Firstly the inspection and distortion characteristics of the camera and lens is required 210 

before images can then be manipulated to ensure consistency of brightness, grayscale, and 211 

texture (Yang et al., 2017). This is usually achieved by placing ground control points at fixed 212 

points in the field of known colour and texture (Richards, 1999). Finally, images are stitched 213 

together based on feature points within the images, in combination with aerial triangulation 214 

data (Colomina and Molina, 2014) to produce a mosaic. It is from these mosaics that the 215 



 

reflectance of certain light bands can be extracted from pixels in specific locations and 216 

compared over a large area (Figure 2). 217 

 218 

By combining RGB and near infrared (780 – 2500 nm) cameras (or by using a dedicated 219 

multispectral camera), various vegetation indices (VIs) can be determined (Yang et al, 2017). 220 

The accuracy of phenotype prediction using these indices varies depending on the stringency 221 

during VI development and the population being assessed. In many cases of VI development, 222 

the accuracy of phenotype prediction is assessed by correlating against a phenotype 223 

quantified using traditional methods. Whilst this method can be effective, it can be 224 

confounded by issues facing all correlations; sample size, measurement errors, homogeneity 225 

of the sample, identification of outliers and hidden variables. It is for this reason that trials 226 

phenotyped using VIs should initially have a subset of plots assessed by traditional methods 227 

for validation. Multispectral sensors represent the next level of technology from RGB cameras 228 

and are widely used in both academic and commercial field trials as they are more effective 229 

at segmenting green plant material from soil. As a result, multispectral cameras are better at 230 

predicting plant height, crop cover and predicting crop yield than RGB cameras (Yang et al, 231 

2017). True hyperspectral cameras (those which measure continuous and contiguous ranges 232 

of wavelengths) have traditionally been very expensive line-scanning devices more suited for 233 

laboratory use (Fiorani and Schurr, 2013). A new generation of lighter, relatively cheaper 234 

devices has made incorporation into field phenotyping platforms possible, although the large 235 

amounts of data such cameras produce pose an analysis bottleneck when mounted on ground 236 

based platforms. On aerial platforms, hyperspectral cameras present a step-change in 237 

information and quality of prediction compared to multispectral models. Currently, 238 

hyperspectral cameras are mainly used to identify and accurately measure traits that could 239 

potentially be identified using a multispectral camera, e.g., nitrogen content and biomass, 240 

chlorophyll content, water content and photosynthetic parameters (Yang et al., 2017). 241 

Researchers have also developed novel assessment methods that previously were not 242 

possible with multispectral sensors. For example, Zarco-Tejada et al. (2013) has identified leaf 243 

carotenoid content in vineyards whilst Uto et al. (2013) were able to identify chlorophyll 244 

density, not just chlorophyll content, in rice paddies.  245 

 246 



 

Thermal imaging  in the field, whether deployed on the ground or in the air, usually employs 247 

long-infrared (9000 – 14000 nm) sensors and can quantify useful functional traits such as 248 

water stress (Gonzalez-Dugo, 2013), disease (Nilsson, 1991), stomatal conductance, and 249 

transpiration rate (Baluja et al., 2012). Thermal sensors require calibration and correction for 250 

ambient temperature, wind speed and solar radiation which may confound time course 251 

imaging (Sugiura et al., 2007; Deery et al., 2014).  As with RGB imaging, segmentation of plant 252 

thermal signals from that of the soil is difficult in sparse canopies (Li et al., 2014) which can 253 

be problematic as most thermal phenotyping requires a high accuracy (< 0.5°C). 254 

 255 

LiDAR (light detection and ranging) is an active sensor technology that can quantify ground 256 

cover, canopy height and above-ground biomass.  Modern LiDAR units are light enough to be 257 

used on most ground and aerial platforms (Grimstad and From, 2017; Virlet et al., 2017). 258 

Despite its expense and relative complexity, LiDAR offers several advantages over RGB 259 

imaging - it is insensitive to ambient light changes and produces a direct measurement of 260 

canopy architecture (Jimenez-Berni et al., 2018). LiDAR mounted on aerial platforms lacks the 261 

accuracy to correctly measure canopy architecture of short crops, limiting its utility during 262 

earlier growth stages when assessing architecture is important. This limitation, coupled with 263 

the high cost and image processing requirements has meant that LIDAR has not yet been 264 

extensively deployed on aerial based platforms for crop phenotyping.  265 

 266 

Synthetic-aperture radar (SAR) is a promising technology based on detection of radar echoes 267 

to produce high-resolution three-dimensional images even in bad weather (Wang et al., 268 

2014). SAR sensors are currently too large and expensive to readily be deployed on drones 269 

and manned aircraft and as such are mainly used on satellites making the resolution currently 270 

too low for monitoring small plot crop trials. 271 

 272 

1.5 Below-ground phenotyping 273 

Phenotyping for below-ground traits in the field has seen comparatively less advancement 274 

than above ground sensors and platforms, largely due to the difficulties associated with 275 

imaging and data capture (Atkinson et al., 2018).  276 



 

Classical destructive techniques such as digging trenches to directly observe and quantify 277 

roots (Voss-Fels et al., 2018), soil coring and root washing (Frasier et al., 2016) or soil monolith 278 

sampling (Kuchenbuch et al., 2009) are still widely used. Although these methods provide high 279 

levels of detail, the time taken to physically remove soil and quantify samples makes them 280 

inherently low throughput. The core-break method, another longstanding technique, 281 

increases the throughput of coring and root washing by breaking/slicing soil core samples at 282 

set intervals and only quantifying the visible roots revealed by each break, as a representation 283 

of root biomass at each interval (Kuecke et al., 1995). This method has recently been 284 

improved and partially automated by employing UV illumination and fluorescence 285 

spectroscopy. The fluorescence images have significantly enhanced soil-root contrast when 286 

compared to RGB, allowing for automated image processing and quantification (Wasson et 287 

al., 2016). 288 

Rhizotrons, usually defined as any type root observation chamber with a transparent window, 289 

come in a variety of forms and sizes. Traditionally, a rhizotron refers to an underground 290 

laboratory dug into a field with transparent viewing windows such as the EMR Rhizolab (NIAB 291 

EMR, 2018), allowing the soil profile and any roots contacting the observation window to be 292 

studied and quantified. The term is also used for lab installations where roots are grown in 293 

artificial soil-filled boxes or between plates with transparent or removable covers such as the 294 

GROWSCREEN-Rhizo platform (Nagel et al., 2012). Minirhizotrons are the most common type 295 

of field-deployed rhizotron consisting of a transparent cylinder inserted into the soil, into 296 

which an imaging device can be lowered to quantify the soil and roots contacting the cylinder 297 

walls (Chen et al., 2018; Liu et al., 2018a; Herbrich et al., 2018). The main advantage of a 298 

minirhizotron is that a single imaging device can be used in multiple tubes, with the limitation 299 

on throughput being deployment of the tubes themselves rather than imaging/data 300 

acquisition. Their main disadvantage is that tube installation often causes artefacts in the soil, 301 

with a period of 6-12 months between installation and data capture being recommended to 302 

allow some of the disturbances to dissipate (Johnson et al., 2001).  303 

The crown root phenotyping technique “shovelomics” (Trachsel et al., 2011) is becoming a 304 

widely adopted method due to its relatively high throughput. The protocol, originally 305 

designed for maize, involves manual excavation of the crown root system and quantification 306 

of a number of key root architectural traits such as crown root number and angle. These traits 307 



 

can be quantified directly from the excavated crown, or from images using automatic image 308 

analysis software such as DIRT (Bucksch et al., 2014) and REST (Colombi et al., 2015). Although 309 

automated image analysis has increased overall throughput of the method, the rate-limiting 310 

step is still the manual excavation of the crown root system. Automation of this process is 311 

being addressed by the DEEPER project at Pennsylvania State University, part of the ARPA-E 312 

funded ROOTS program. Field-deployable systems for root phenotyping using several other 313 

sensor technologies (X-ray computed tomography, magnetic resonance imaging, 314 

thermoacoustic imaging) are also being developed as part of the same program (ARPA-E, 315 

2018). 316 

Geophysical sensors, more commonly utilised in archaeology and engineering, have seen 317 

significant advancement in recent years and are now commonly used in soil and root profile 318 

phenotyping. Electrical Resistance Tomography (ERT) can be used to quantify soil structure 319 

and water profiles by measuring electrical resistivity via arrays of probes inserted into the soil. 320 

ERT is an indirect method to quantify root activity via mapping soil drying caused by plant 321 

water uptake (Srayeddin and Doussan, 2009). ERT has been employed to analyse large 322 

diameter root profiles (e.g. trees (Amato et al., 2008)) but is starting to see adoption in crop 323 

phenotyping (Srayeddin and Doussan, 2009; Whalley et al., 2017). Although ERT has 324 

advantages such as non-destructive data collection, its throughput is limited by the number 325 

of probe arrays that can be placed and maintained in the field throughout the season.  326 

Electromagnetic inductance (EMI) measures soil electrical conductivity and can be used to 327 

quantify root activity by measuring soil water profiles in a similar fashion to ERT. EMI collects 328 

data at a significantly higher throughput compared to ERT as it does not require probe arrays 329 

or direct contact with the soil (Shanahan et al., 2015), requiring a single sensor for 330 

measurement of multiple plots (or even fields) in reasonably quick succession. However, EMI 331 

has a lower spatial resolution than ERT, and also requires data calibration using a second 332 

method such as penetrometer mapping (Whalley et al., 2017).  333 

Neutron probes also quantify soil water content and are used as an indirect measure of root 334 

activity in a similar fashion to EMI and ERT. A radioactive source is placed on the soil surface 335 

or lowered into an access tube and emits fast neutrons into the soil which interact with 336 

hydrogen atoms in water, thermalizing and scattering the neutrons. These thermalized 337 

neutrons can then be quantified as an estimate of water content. Neutron probes are a widely 338 



 

accepted method for measuring soil water content (Whalley et al., 2017) and are frequently 339 

used in root phenotyping e.g.  (Zhang et al., 2016), but are limited in terms of throughput as 340 

they require access tubes in the soil and extra handling precautions associated with the use 341 

of a radioactive source. 342 

Ground penetrating radar (GPR) maps sub-surface structures by measuring reflection, 343 

refraction, and scattering of pulses of high-frequency radio waves, with a similar data 344 

collection throughput to EMI. GPR does not currently have the resolution to detect individual 345 

objects less than 2 mm in diameter, but has previously been used to quantify larger diameter 346 

tree roots (Liu et al., 2016). Despite spatial resolution limitations, it has recently been 347 

demonstrated that GPR can detect bulk root biomass in wheat and sugarcane, although with 348 

limited ability to detect differences between genotypes (Liu et al., 2018b). 349 

 350 

1.6 Conclusions and Future Perspectives 351 

The adoption of high-throughput technologies has generated a potential new bottleneck in 352 

the phenotyping pipeline – the handling, management and analysis of very large amounts of 353 

data. Whilst challenging to manage, such large datasets also offer opportunities for modelling 354 

and machine learning analyses (Coppens et al., 2017).  Machine learning represents a solution 355 

to the problem of analysing large image datasets, with automated feature detection capable 356 

of producing highly accurate results.  For example using a deep machine learning approach, 357 

wheat spikes and spikelets have been identified in complex images with >95% accuracy 358 

(Pound et al., 2017).  As more datasets are produced and made publically available, the 359 

accuracy of such techniques will increase.  Modelling approaches are capable of fully utilising 360 

the large amount of sensor data to provide more reliable phenotype predictions than 361 

vegetation indices (Jin et al., 2018). Crop modelling describes phenotypes or crop growth 362 

traits as functions of various metadata, both genetic and environmental. One of the main 363 

limitations of these models has been a lack of (or unreliable) spatial data. Field-deployed 364 

sensors offer the opportunity to collect reliable and accurate spatial descriptors of soil 365 

properties and canopy phenotypes of crops (reviewed in Jin et al., 2018 and Kasampalis et al., 366 

2018). From this data predictive models for the phenotype of interest can be developed for 367 

use in future studies. As with machine learning, subsequent trials will provide more data to 368 

further improve model accuracy and predictive power.   369 



 

The recent advances in plant phenotyping approaches under field conditions reviewed above 370 

offer the promise of high-throughput collection of phenotypic data and unbiased 371 

quantification of novel traits for functional analyses and assessment of field performance.  372 

Such platforms have been widely adopted by research organisations and are being more 373 

slowly adopted by plant breeders as the technology matures and the benefits are proven.  374 

Ground based platforms with new sensor modalities allow researchers to study many aspects 375 

of plant development at a level of detail not previously possible. Aerial sensors offer the 376 

opportunity to non-destructively assess traits such as photosynthetic activity and water stress 377 

at regular intervals over large scale field trials. For many years, root system traits have been 378 

less studied by field researchers due to a lack of suitable techniques; new below-ground 379 

techniques and sensors have made it possible to assess various aspects of root growth in agri, 380 

informing new selection criteria for crops for sustainable farming systems. 381 

 382 
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Figure Legends 392 

Figure 1. Field phenotyping platforms.  Adapted from (Shakoor et al., 2017). 393 

Figure 2. Orthoimage of a large-scale wheat field trial compiled from images captured by a 394 

drone using RGB and multispectral cameras (NIAB, unpublished). (a) RGB camera image. (b) 395 

Plots overlaid with a heat map showing Normalized Difference Vegetation Index (NDVI) for 396 

each plot calculated from multispectral camera data.  Scale bar: 20m. 397 

 398 

  399 

(a) (b) 



 

Table 1. Sensors deployed in field phenotyping (adapted from Yang et al., 2017). 400 

Sensor Spectral 
bands 

Wavelength 
range 
(typical) 

Potential applications Advantages Disadvantages 

Digital 
camera 

Red  
Green  
Blue 

400 – 700 nm Leaf colour, plant height, 
lodging, canopy cover, 
intercepted radiation, LAI, 3D 
structure, leaf angle  
 

Low cost, light 
weight, convenient 
operation, simple 
data processing 

Low radiometric 
resolution, lack of 
proper calibration 
 

Multispectral 
camera 

Red 
Green 
NIR 

490 -~920 nm See above and leaf nitrogen 
content, yield, chlorophyll, 
biomass, weed emergence 

Low cost, flexibility Fewer bands, low 
spectral resolution, 
discontinuous 
spectra 
 

Hyperspectral 
camera 

100-1600 250-2500 nm See above and net 
photosynthesis,  nitrogen, 
chlorophyll, disease detection 

More bands, higher 
spectral resolution 

Expensive, complex 
data processing, 
sensitive to 
weather 
 

Thermal 
imager 

Long IR 7.5–13 μm Canopy temperature, 
stomatal conductance, water 
potential 

Indirect 
determination of 
crop growth status 
under abiotic and 
biotic stress 

Sensitive to 
weather, frequent 
calibration, difficult 
to eliminate the 
influence of soil 
 

LIDAR UV 
Visible 
NIR  

532-1550 Plant height, biomass Rich point cloud 
information, 
acquisition of high 
precision 3D canopy 
structure  
 

High cost, data 
processing 

Synthetic 
Aperture 
Radar 

- 1-1000 mm Crop identification, crop 
acreage monitoring, key crop 
trait estimation and yield 
prediction 

Collects data even in 
cloudy weather 

High cost, data 
processing, Mainly 
limited to satellites 
therefore only used 
for large plot work 

Ground 
Penetrating 
Radar 

Ultrawideband 
 
0 – 1000 MHz 

-  Detection of root bulk root 
biomass or large diameter 
tree roots 

High throughput  Cannot detect fine 
roots, limited ability 
to detect genotypic 
differences  

 401 

 402 

  403 
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