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TILTED ALGEBRAS
BY
DIETER HAPPEL AND CLAUS MICHAEL RINGEL

ABSTRACT. Let 4 be a finite dimensional hereditary algebra over a field. with n
simple 4-modules. An A-module T, with n pairwise nonisomorphic indecomposable
direct summands and satisfying Ext'(T,, T,) = 0 is called a tilting module, and its
endomorphism ring B is a tilted algebra. A tilting module defines a (usually
nonhereditary) torsion theory, and the indecomposable B-modules are in one-to-one
correspondence to the indecomposable 4-modules which are either torsion or
torsionfree. One of the main results of the paper asserts that an algebra of finite
representation type with an indecomposable sincere representation is a tilted algebra
provided its Auslander-Reiten quiver has no oriented cycles. In fact, tilting modules
are introduced and studied for any finite dimensional algebra, generalizing recent
results of Brenner and Butler.

Let A be a finite dimensional algebra (associative, with 1). All A-modules will be
finite dimensional, and homomorphisms will be written on the opposite side of the
scalars. Thus, given an A-module M,, with endomorphism ring B = End(M,), we
also can consider the B-module zM. If in this situation, the canonical map
A - End(gM) is an isomorphism, we just will identify A4 with End( g M).

A module T, will be called a tilting module provided it satisfies the following three
properties:

(1) There is an exact sequence 0 - Py — P; - T, —» 0, with P’, P" projective
(thus, pd. T, < 1).

(2) Ext(T,, T,) = 0.

(3) There is an exact sequence 0 - A, - T, » T, — 0, with T, T” being direct
sums of summands of T.

Given a tilting module 7, one may consider two full subcategories of the category
M, of all right A-modules, namely the category T(T,) of all modules M, generated
by T, and the category %(T,) of all modules M, satisfying Hom(T,, M,) = 0. It is
easy to see that 9(T,) is the class of torsion modules, and (7,) the class of
torsionfree modules of a torsion theory (3(7,), %(7T,)). The main result on tilting
modules is essentially due to Brenner and Butler [6].

THEOREM OF BRENNER-BUTLER. Let T, be a tilting module, and B = End(T,). Then
sT also is a tilting module, and A = End(,T), canonically. The categories 1(T,) and
J(,T) are dual to each other; similarly, the categories 5(T,) and 5¥( zT) are dual to
each other.
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400 DIETER HAPPEL AND C. M. RINGEL

In [6], Brenner and Butler used a more restrictive notion of tilting modules;
however, their arguments remain valid in the general situation. Also, they only
considered the duality between the categories of torsion modules. and used a rather
different way of formulation. For the benefit of the reader, we will give the full proof
of the theorem.

We also will consider a linear transformation f which relates the dimension type of
corresponding modules in 9(T,) and 5(,T) or in 5(T,) and F(,T). In case the
Euler characteristic is defined, f actually will be an 1sometry (see §3). In particular,
we see that in case there exists a tilting module T, with B = End(7,). the number of
simple A-modules coincides with the number of simple B-modules.

The main parts of the present paper will deal with the special case of A4 being
hereditary. If the finite dimensional algebra B is of the form B = End( T,), where T,
is a tilting module and A is hereditary, then B will be called a tited algebra. The
starting point of our investigation is the following observation.

THEOREM. Let A be hereditary, and T, a tilting module, with B = End(T,). Then
(9(T), 5(5T)) is a splitting torsion theory.

Recall that a torsion theory is said to be splitting in case any indecomposable
module is either a torsion module or torsionfree. Note that the theorem furnishes a
one-to-one correspondence between the indecomposable B-modules and certain
indecomposable A-modules. In particular, if 4 is of finite representation type, then
also B is of finite representation type.

We will derive some important properties of a tilted algebra B. We will show that

the quiver of B has no oriented cycles (Corollary 4.2), and that gl.dim B <2
(Theorem 5.2).

Conversely, we will give sufficient conditions for B in order to be a tilted algebra.
A right module M, will be called sincere provided any simple A-module appears as a
composition factor of M,. We will introduce the notion of a complete slice (see
Definition 7.1) and show that in case one component of the Auslander-Reiten quiver
of B contains as well a complete slice as well as all indecomposable projective
modules, then B is a tilted algebra (Theorem 7.2). As a consequence, we will see that
an algebra of finite representation type with an indecomposable sincere representa-

tion is a tilted algebra if and only if its Auslander-Reiten quiver has no oriented
cycle. In fact, in this situation, one has the following result:

THEOREM. Let B be of finite representation type, and assume its Auslander-Reiten
quiver has no oriented cycle. Also assume that gN is an indecomposable sincere
representation. Then there exists g hereditary algebra A, a tilting module T,, and a
primitive idempotent e of A such that B = End(T,) and yN =T

As a consequence, we conclude the followin
and its Auslander-

B-modules are uniq

g:if B is of finite representation type.
Reiten quiver has no oriented cycle, then the indecomposable
: uely determined by their composition factors.

Tilted algebras seem to be of interest for several reasons: First of all, they provide
a rather general setting for dealing with certain special types of algebras, for example
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trees with relations of finite representation type, and the results of this paper can be
used in order to give a complete classification of all their indecomposable represen-
tations [17]. Also. one may use the theory of tilted algebras in order to construct
algebras with prescribed structure of some of the components of their Auslander-
Reiten quivers. Finally, and most important, representation theory of tilted algebras
should provide a better insight into the structure of representations of arbitrary
algebras of finite representation type using recently developed covering techniques.
For a discussion of the history of the use of special tilting modules, we refer to [6].
An account for constructing tilting modules will be given in [18].

1. Preliminaries.

(1.1) Notation. Most modules considered will be right modules, and I, will
denote the category of all right A-modules. In case we have to deal with left modules,
we will stress this fact explicitly. Of course, there always will be a bimodule involved
in our investigation, which usually will be denoted by T, or ,U.

If M is a module, we denote by End(M) its endomorphism ring, by rad M its
radical, by soc M its socle, by | M| its length, and by p.d. M its projective dimension.
Also, let add M be the class of all modules which are direct sums of direct
summands of M. We denote by X = Y that X, Y are isomorphic (as groups, or
modules whatever we deal with). We usually will not distinguish between a module
M and the isomorphism class of all modules isomorphic to M. If f: M - M’ is a
module homomorphism (we just will say a “map”), then Ker f denotes its kernel,
Cok fits cokernel. A module X is said to be generated by the module M, provided X
is an epimorphic image of some direct sum @ M, and X is said to be cogenerated by
M, provided X is a submodule of some direct sum D M.

There always will be two algebras 4 and B involved in our consideration. In 91 ,,
we usually will denote projective modules by P, P, P,..., injective modules by
I, I'1,..., and elements of add T, by T, T, T,,.... The simple 4-modules will be
denoted by R or R(a), where a runs through a fixed index set, P(a) will be the
projective module with P(a)/rad P(a) = R(a), and I(a) will be the injective
module with soc I(a) = R(a). Similarly, in 9N, projective modules will be denoted
by 0,0, 0Q,,..., injective modules by J, J', J,..., and elements of add U; by
U,U", U,.... The simple B-modules will be denoted by § or §(i), where i runs
through a fixed index set (usually {1,...,n}), Q(i) will be the projective module with
Q(i)/rad Q(i) = S(i), and J(i) will be the injective module with soc J(i) = S(i).

We denote by G,(A) the Grothendieck group of 4, it can be identified with the
free abelian group having the set {R(a)|a} of all (isomorphism classes of) simple
A-modules as basis. Using this basis, G,( 4) becomes a partially ordered group. If M
is an A-module, we denote by dim M the corresponding element of Gy(A), it will be
called the dimension vector of M. The coefficients of dim M with respect to the
canonical basis can be calculated as follows: (dim M), is the number of composition
factors of the form R(a) in any fixed composition series, and we have

(dim M ), =[Hom ,(P(a). M)gaa Pal :(End HawHom, (M, I(a)){.
Note that M, is sincere iff (dim M), # 0 for all a.
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Finally, note that D denotes the duality with respect to the basefield k. Thus
D(M) = Hom (M, k). [More generally, we may assume that we deal with an artin
algebra A, then D(M) = Hom (M, I( Z)), where Z is the center of A, Z=2/rad Z
and I(Z) is the injective envelope of Z as a Z- module ]

(1.2) Auslander-Reiten quiver. Let us recall the main notions and results from [1}.

Let A be a finite dimensional algebra. A map f: M — M’ is called irreducible
provided f is neither split mono, nor split epi, and for every factorization f = f”f’, [’
is split mono or f” is split epi. If M, M’ are indecomposable, then there exists an
irreducible map M — M’ if and only if the bimodule Irr( M, M’) of irreducible maps
is nonzero. [Recall that Irr(M, M’) = R(M, M')/R* (M, M), for M, M’ indecom-
posable, where A.(M, M’) is the set of noninvertible maps, and R*(M, M’) the set
of maps of the form 3 fg,, with f, € R(M, X)), g, € R(X,, M) and all X, indecom-
posable. Clearly, this is an End(M’) — End(M )-bimodule which actually is annihi-
lated by the radicals of End(M’) and End( M ).]

If M is indecomposable, a map g: M’ — M is called right almost split, provided g
is not split epi and for every map h: X — M which is not split epi, there exists h’ with
h = gh’. If in addition M’ is of smallest possible length, then g is called minimal
right almost split. Note that for every M, there always exists a minimal right almost
split map M’ — M, and it is unique up to isomorphism. Also, a map h: X -+ M with
X #0 is irreducible if and only if there exists A’: X' — M such that (hh'):
X @ X' - M is minimal right almost split. Actually, if & X — M is minimal right
almost split, with all X; indecomposable, then the number of X, isomorphic to a fixed
X is precisely | Irr(X, M)ga4 x| see [14]). The kernel Kerg of a minimal right
almost split map g: M’ - M is denoted by 7M and called the Auslander-Reiten
translate of M. There are two possibilities: either M = P is projective, then 7P = 0,
and the minimal right almost split map is just given by the inclusion rad P — P, or
else M is not projective, then M is indecomposable and we obtain an exact sequence

0-tM M SM-0,

which is called the Auslander-Reiten sequence ending with M. Dually, for every
indecomposable module M, there also exists a unique minimal left almost split map
M — M”, and its cokernel is denoted by 7'M. If M = I is injective, then the
minimal left almost split map starting with I is just the canonical projection

I~ 1/socl. If M is not injective, then 7'M is indecomposable and we obtain the
exact sequence

/
0> MM — 1Mo,

which is the Auslander-Reiten sequence ending with 7~'M. In particular, r7~'M ~ M
for M indecomposable and not injective, and r~'7M ~ M for M indecomposable and

not.projective. Note that the module M can be calculated as follows: choose a
projective resolution

PhpomMao
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of M, with P” minimal, and apply Hom ,(-, A4,). The cokernel Cok Hom(p, 4,) is
called the transpose of M and denoted by Tr M. Then 1M = DTr M, and similarly
7-'M = Tr DM. Finally, we remark that for X, Y indecomposable, Ext'( X, Y) can
be considered as a factor group both of D Hom(Y, 7X) and of DHom(77'Y, X)
(sometimes, these groups actually are isomorphic, see for example 2.5).

The Auslander-Reiten quiver of B has as vertices the (isomorphism classes of)
indecomposable B-modules, and there is an arrow — going from M to M’ provided
there exists an irreducible map M — M’. The existence of minimal almost split
maps, and their properties, show that the Auslander-Reiten quiver is locally finite,
thus its connected components contain at most countably many vertices.

In case A is connected (i.e. has no central idempotents different from 0, 1), and A4
is of finite representation type, then its Auslander-Reiten quiver is connected. If A is
connected and not of finite representation type, then no component of its Aus-
lander-Reiten quiver is finite {15].

Note that the Auslander-Reiten quiver is endowed with the additional, partially
defined endo-map r; it is defined for all vertices which correspond to nonprojective
modules, and has the following property: If X, Y are vertices of the Auslander-
Reiten quiver, and X is not projective, then there is an arrow Y — X if and only if
there is an arrow 71X — Y,

Very often, we will have to consider paths in the Auslander-Reiten quiver of an
algebra 4. Note that in case X is a r-periodic module, then we obtain an oriented
cycle. [Namely, if 7X # 0, consider the corresponding Auslander-Reiten sequence
0-7X->@Y,~ X -0, with Y; indecomposable, so we have a path7X > ¥, = X.
Now if 77X s 0 for some p > 0, we obtain in this way a path of length 2 p starting
with 77X and ending with X. Thus, if 77X ~ X, this is an oriented cycle.] In case
X,Y are indecomposable modules and there exists a path from X to Y in the
Auslander-Reiten quiver, then X will be called a predecessor of Y. Note that in case
an indecomposable module Y has only finitely many predecessors, and Hom( X, )
# 0 for some indecomposable module X, then there is a path from X to Y. [Namely,
assume there is no such path. Then we define inductively a path

gm 81
Ym-—-)Ym__l—» ----»Yl—)YOzY

of irreducible maps, and maps f,: X —~ Y, such that g, - - - g,, f,, # 0. We take some
0#f: X»Y=Y,, and if g,...,8 /, are defined, let (h,): ®Z - Y, be
minimal right almost split, all Z, indecomposable. There exist k; with f,, = Zh h;,
and g, ---g h, b, #0forsomesy. Let Y, =2, 8,41 =h,, S = . How-
ever, since there are only finitely many predecessors of Y, say with length bounded
by b, any such path has length < 2°[10], contrary to our construction.]

(1.3) Preprojective components. A component C of the Auslander-Reiten quiver of
the algebra A will be called preprojective provided there is no oriented cycle in € and
any module of € is of the form 7~'P, for some ¢t € N and some indecomposable
projective module P. {It is not difficult to see that a component € is preprojective if
and only if € has no oriented cycles and all modules in C are preprojective in the
sense of Auslander and Smale.].
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If C is the preprojective component, and Y is a module in €, then Y has only
finitely many predecessors. [Namely, consider a path

Y,-Y, = =Y, Y=Y

in C. All Y, are of the form 7P, for some 1, € N, and some indecomposable
projective module P,. If i >, and P, = P, then , <1, since otherwise we would
obtain the oriented cycle

=1, et . e = g ! v e -1
T P‘_-){'—) )./, 1’/}3—' —-y‘r‘R,,

impossible. Since there are only finitely many indecomposable projective modules,
we conclude that any path

St il I R Tl (T

terminates after a finite number of steps, thus Y has only finitely many predecessors,
due to Konig’s graph theorem.] As a consequence, we have:

LEMMA. Let Y be an indecomposable module belonging to a preprojective component
©. Then if X is an indecomposable module, any homomorphism X - Y is a sum of
compositions of irreducible maps. Thus, if Hom( X, Y) # 0, then there is a path from X
to Y, thus X € C. In particular, if Y belongs to a preprojective component of the
Auslander-Reiten quiver of B,and B = B /Ann Y then Y also belongs to a preprojective
component of the Auslander-Reiten quiver of B.

Proor. Consider the predecessors of Y which also are B-modules. This is a finite
set closed under predecessors and containing all indecomposable projective B-mod-
ules. Now it is easy to see that the component of the Auslander-Reiten quiver of B
containing Y consists of modules of the form 7P with P an indecomposable
projective B-module (see [8]), and this is a preprojective component,

(1.4) Torsion theories. Let X, Y be two full subcategories of M ,. Then (X, %) is
called a torsion theory, provided Hom(X,Y) =0 for all modules X € X and
Y € %, and both X and % are maximal with this property (thus, if Hom(X, M) =0
for all X € X, then M € U, whereas if Hom(M,Y)=0 for all Y €Y, then
MeX).

If we deal with a fixed torsion theory (°X, %), then the modules in X are called
torsion modules, those of % are called torsionfree. Given any module M, there exists
a unique largest torsion submodule X of M, and M /X is torsionfree, and, in fact, the
largest torsionfree factor module of M. The torsion theory (%, %) is called splitting
provided any module is a direct sum of a module from % and a module from %.

[Note that in contrast to most investigations concerned with torsion theories the
torsion theories we will have to deal with, will not be hereditary.]

If T, is a module with p.d. T, < | and Ext'(T,T) =0, then we can define a
torsion theory as follows: Let J(T') be the full subcategory of all modules generated
by T,, and (T') the full subcategory of all modules Y, with Hom(T,, Y,) = 0. Then
(3(T), (T)) is a torsion theory. [Namely, let us show that §(T) is closed under
extensions. A class of modules closed under factor modules, and extensions always is

the class of torsion modules of some torsion theory, and the corresponding torsionfree
modules have to be the modules in §(T).
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Thus, consider an exact sequence
0-X,-X-X,-0,

and epimorphisms f: 7, = X, where T, T, are direct sums of copies of T. We first
form the induced sequence with respect to f,, and then we use p.d. T, < 1 in order to
obtain the upper exact sequence of the following diagram:

0 - T, - X - T, - 0

LA i i
0 - X, - X - T, - 0
f 1A VA

Since Ext'(T,, T,) = 0, we see that the upper sequence splits; thus X" = T, ® T,isa
direct sum of copies of T, and f; f| is an epimorphism.]

We also will need that, in the situation above, the subcategory (T) has relative
Auslander-Reiten sequences, this follows from a rather general result of Auslander
and Smale {2]. We recall the definitions: Let ¥ be an extension closed full
subcategory. A map g: M’ — M in Z is called right almost split, provided g is not
split epi, and for any A: X -~ M in & which is not split epi, there exists b’ with
h = gh'. Dually, a map f: M - M” in Z is left almost split, provided f is not split
mono, and for any h: M — X in £ which is not split mono, there exists A’ with
h = h'f. A relative Auslander-Reiten sequence in Z is an exact sequence

/
(+) 0~ M, - M,>M,~0

with all M, in & such that f is left almost split, g right almost split. Now Z is said to
have relative Auslander-Reiten sequences provided

(1) If Z is indecomposable and in &, there is a right almost split map Z’ - Z in £,
and also a left almost splitmap Z - Z" in £.

(2) If M, is indecomposable and in &, and Ext(M, M,) 5 0 for some M in Z,
then there exists a relative Auslander-Reiten sequence ().

(3) If M, is indecomposable and in Z, and Ext'(M;, M) 5 0 for some M in Z,
then there exists a relative Auslander-Reiten sequence ().

[In order to see that §(T,) has Auslander-Reiten sequences, one uses the equiva-
lence of (a) and (c) in 5.9, assertion (b) of 5.10, and 2.4 of [2). Note that condition (a)
of 5.9 is a direct consequence of p.d. T, < 1 and Ext!(T, T) = 0.]

(1.5) Euler characteristic. We say that the Euler characteristic is defined for 4 in
case the dimension vectors dim P(a) of the indecomposable projective A-modules

are linearly independent in G( A). In this case, let
(dim P(a), dim P(b))= dim, Hom ( P(a), P(b)),
and extend ¢, ) bilinearly to all of Gy(A). In this way, we obtain a bilinear form
(,): Go(4) X Gy(4) -~ Q

which will be called the Euler characteristic of A.
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Note that if A has finite global dimension, then the Euler characteristic is defined
for A, and we have

(%) (dim X,dimY)= Y (-1)'dim, Ext'( X,Y)

i>0
for all A-modules X,Y. [Namely, any simple A-module has a finite projective
resolution say

0P, — P, =Py —S(a) = 0;

thus dim S(a) = 2 (~1)'dim P, lies in the subgroup of Gy(A) generated by the
various dimension vectors dim P(a), thus the Euler characteristic is defined for A.
Now both sides of () are additive on exact sequences and coincide on the projective
modules, thus we have equality.]

There are also algebras of infinite global dimension for which the Euler character-
istic is defined. For example, let 4 be a local algebra with P = 4 4 of length n. Then,
dim P = n - dim § where S is the simple A-module, thus the Euler characteristic is
defined. It can be calculated on the generator dim S of Gy(A), as follows:

(dim S, dim §) = iz(dim P,dim P)
n

= ;l;dimEnd(P) = %

(1.6) Hereditary algebras. Assume now A is hereditary. Let P(a), a € I, be the
indecomposable projective modules. We will consider I, as a set of vertices of a
quiver T, with arrows a — b provided P(a) is a direct summand of rad P(b). Note
that this quiver never has oriented cycles. A source of this quiver just corresponds to
a simple projective module. [In this way we just consider the full subquiver of the
Auslander-Reiten quiver of 4 defined by the indecomposable projective modules,
and transfer the quiver structure to the index set I,- Note that in case 4 is the path
algebra of a quiver A, then T is obtained from A by reversing all arrows and

replacing multiple arrows by a single one.] Note that T becomes a valued graph [7] if
we define d,,, d’,, as follows:

rad P(b) = @ P(a)", I(a)/soc = €D I(b)%.

Note that

fdy = doyfos

where f, = dim, End P(a) = dim « End I(a), and similarly f,. [This follows from the
fact that we have d;, = | . ryIrr(P(a), P(b))], and

d, =|Irr(P(a), P(b))EndP(a)l ]

2. The theorem of Brenner-Butler. Let T, be a tilting module, with End(T,) = B.
We consider the following functors F, F: O, 4 = Mg defined by

F(M,) = Hom (T, M), F'(M,) = Ext'(T, M),
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and G, G’: My - M, defined by
G(N;) =Ny ®5T,  G'(N;) =TorP(N,T).
In 9 ,, the following two full subcategories will be of interest:
F={M,|F(M,)=0}, T= (M| F'(M,) =0}.
Note that § = §(T,), and we will see below that also § = J(T}). Similarly, in M gs
we are interested in
6)CZ{1\/14«|G(NB):0}’ @:{NBIG'(NB):O}-

(2.1) THEOREM. Let T, be a tilting module with End(T,) = B. Then also gT is a
tilting module, and A = End(3T), canonically. Also the functors F, F',G, G’ defined
above satisfy

GF=GF =0, FG=FG =0.
The categories T = 5(T,) and % are equivalent under the restrictions of the functors F
and G (these restrictions are mutually inverse to each other), and similarly, the
categories F = F(T,) and X are equivalent under the restrictions of F’ and G’ (again,
these restrictions are mutually inverse to each other).

PROOF. We need some additional notation. The functor F is right adjoint to the
functor G, thus there are canonical natural transformations

t:GF - iday,,  §tidog, > FG.

(a) 9 N F contains only the zero module.
PROOF. The definition of a tilting module gives an exact sequence

0—A,»T >T" >0

with T', T" € add(T). Applying to this sequence the functor Hom A= M), we
obtain an exact sequence

Hom(T', M) — Hom(4,, M) - Ext(T", M).

If M, € 9N F, then Hom(T, M) = 0, and Ext'(T, M) = 0, thus also for T, T" €
add(T), we have Hom(T", M) =0, Ext(T”, M) = 0, and therefore M=
Hom(A4,, M) = 0.

(b)) I(Ty) 9.

PROOF. A surjective map @ T, —» M, gives rise to a surjective map F(®T,) -
F'(M,), since p.d. T, < 1. However F(®T,)= ®F(T,) =0, again using that T
1s a tilting module.

(c) For any M,, the cokernel Cok(#,,) of the map 7,: GF(M) - M belongs to ¥.
If M, € 9, then ¢, is an isomorphism.

PROOF. We factorize t,, through its image, say:

Im
GF(M) > M

N At
MI
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Now F(z,,) is split epi (by abstract nonsense on adjoint functors). thus F(r”) is
surjective. Apply F to the exact sequence

0- M"—:M-* M" -0
with M” = Cok(1”) = Cok(t,,), we obtain an exact sequence
F(r™y
O = F(Mr) _L F(M) _ F(Mu) — F/(Mr) —_ F’(M) — FI(M") — 0.

Now GF(M) = Hom (T, M) ®, T, is clearly generated by T,. thus also the epi-
morphic image M’ of GF(M); thus M’ € 5(T,) C ¥, and therefore F'(M’) = 0. As
a consequence F(M") = 0.

Assume now M € F., The epimorphism F'(M ) = F'(M") shows that also M € *T;
thus M” = 0 according to (a). Thus ¢, is surjective. In particular we see that M, can
be generated by 7.

Letf,,....f, be abasis of Hom(T, M), and consider the map f = (f)): @& T-M.

Then f is surjective, but also Hom(T,, f) is surjective. Let K = Ker f; thus we have
the exact sequence

" /
0-K-Pr-m-o,

i=1
and application of Hom(T, -) shows that Ext{7, K ) = 0. In particular, we can
apply the previous consideration also to K (instead of M), and obtain a surjective
map from a direct sum of copies of T onto K which remains surjective when
applying Hom(T, -). Thus we have an exact sequence
IL-T,-M-0
with Ty, T, direct sums of copies of T, such that
K1,) - F(T,) - F(M) - 0
is again exact. If we now apply G, we again obtain an exact sequence, and we
consider in addition the natural transformation ¢
GF(T,) - GF(T,) - GF(M) - 0
i, Lig, by

But clearly ¢, is an isomorphism, since B = End( T), and therefore also ¢, and fr,
are isomorphisms; thus ¢,, is an isomorphism.

(d) For any M, we have F(M,) € %,

PROOF. Choose a basis f,...,f, in Hom(T, M) and consider the map /= ( £.):

@ T — M. It is not necessarily surjective, however F( f) will be surjective. Let X be

the.kernel of f, and M’ the image, and note that the inclusion M’ < M gives rise 10
an isomorphism under F. Now the exact sequence

goes under F to an exact sequence

0- F(K) -~ F(®T) - (M) -0,
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and tensoring with 4T gives the upper exact row of;
0 — Tor’(F(M'),T) -~ GF(K) - GF(®T) —» GF(M’) - 0

Ly Lter Lty

0 - K - @r - M -0

Here we use the fact that Tor(F(@®T), T) = 0, since F(BT) is a free module. Now
M’ belongs to *7, thus, as we have seen above, also K belongs to 7, therefore all three
maps {y, Igy, Iy are isomorphisms. We conclude that Tor(F(M), T) =
Torf(F(M’). T)=0.
(¢) We have End(,7') = A, canonically.
PROOF. There is a canonical isomorphism
Hom (5T . 5T) = Hom,(,7, , T ®, 4)
= Hom 4(,T, Hom, (Hom (,7 ®, 4, k), k))
= Hom*(Homk(BT ®A A, k) ®3 T, k)

= Hom,(Hom ,(,T,. Hom(,A, k)) ®3 T, k) = DGFD(,A),
let us denote it by a. Also, there is the natural map
1= 1p 4 GFD(,A) — D(,A)

which is an isomorphism, since D(,A) is injective and therefore belongs to 9.
Finally, let p: A — End(;T) be the multiplication map a +» (x > xa). Then one
checks that the diagram

DGFD(,A)
Dt 7
A Ta
PN
End(,7T)

commutes; thus, since both a and Dr are bijective, also p is bijective.

(f) If Ny € %, then sy, is an isomorphism.

ProoF. Choose an exact sequence

0~ Ly—Py—>Ny -0
with P, projective. Application of G gives again an exact sequence, since Tor’(N, T)
= 0, namely
0~ Ly®y T~ Py®sT~ Ny ®sT 0.
Now L, ®, T, is generated by T,; thus in J, therefore the application of F again
leads to an exact sequence
0 - FG(L) - FG(P) » FG(N) ~ 0.

Similarly, let

0o L' SP = L=0
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be exact, with P’ projective. Application of G leads to the exact sequence
®l
Ly®yT — Py®,T— Ly ®,T 0.
Let K be the image of m ® 1. Since K is an epimorphic image of Ly ®, T, we see
that K is generated by T, thus K belongs to 7, and therefore the exact sequence
0 K- Py®T>Ly,®;T-0
goes under Hom(7, -) to an exact sequence:
0 - Hom(T,K) - Hom(T,P; ®yT,) — Hom(T, L, ®, E)J—» 0

= FG(P') = FG(L)
Altogether we see that we have the following commutative diagram with exact rows:
FG(P') - FG(P) - FG(N) - 0
1 s5p 1 sp M
P’ - P - N - 0
Now clearly s,_is an isomorphism, since A = End( zT), therefore also s,. and s, are
isomorphisms, due to the fact that P and P’ are projective. Thus sy is an isomor-
phism.
(8) GF' = 0,and, if M, €9, then M, ~ G'F'(M).
PrOOF. First, let M, be arbitrary, and
0-M~I,-Q,-0
exact, with /, injective. We apply F and obtain an exact sequence

0-F(M) - F(I)-> F(Q) » Ext'(T, M) - 0,
the last zero due to the fact that I is injective. Application of G leads to:
GF(I) - GF(Q) - Ext(T,M)®;T-0
by L1g
I - 0 - 0
Now [ belongs to 7, since [ is injective, and since p.d. T, <1, we know that J is

closed under quotients; thus also Q is in 9, and therefore both ¢ ; and 1, are

isomorphisms. This shows GF'(M) = 0. If now we have in addition Fi (M) = 0, then
the exact sequence

0~ F(I) - F(Q) - Ext(T, M)-0
gives under G the upper exact sequence of
0 - Tor(Ext(T, M), T) - GF(I) - GF(Q) - O
0 - M - I - Q - 0

where we also use that Tor,(F(Q), T) = G’F(Q) = 0. We conclude that there exists
a canonical isomorphism G'F'(M) - M,

(hpd,T<1,

PrOOF. Apply to the exact sequence

0-Ad,-T >T" 50
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with T, T" € add T the functor Hom ,(-, T'). Since Ext'(T,, T,) = 0, we obtain the
exact sequence

0 — Hom (T}, ,T,) - Hom (T}, pT,) -» Hom (4, 3T,) ~ 0.
Now Hom (A4, ,T,) =T, and the B-modules Hom ,(T}, ;T,), Hom (T7, ,T,) both
are projective, since T", T” € add T,.
(i) There is an exact sequence 0 — 5B - X’ - ;X" — 0 with X’, X” € add ;T.
PROOF. Start with a projective resolution
0-P/-P,->T,-0
and apply Hom (-, ;T,). Since Ext'(T,, T,) = 0, we obtain an exact sequence
0 — Hom (T}, 4T,) - Hom ,( Py, 3T,) » Hom ,( Py, 3T,) = 0.
Here, Hom (T, sT,) =B, and Hom (2;, ;T,),Hom (P}, ;T,) both belong to
add 4T, since P;, P; € add A,
() FG' = 0, and, if Ny € X, then Ny = F'G'(N).
ProoF. First, let Ny, be arbitrary, and let
be exact with P, projective. Tensoring with 7 gives
0- Tor}(N,T) - G(K) - G(P) -» G(N) -~ 0;
application of F gives:
0 - FG(N) - FG(K) - FG(P)

T sk Tsp

0 - K - P

Note that both s, and s, are isomorphisms. Namely, p.d. ;T < | implies that
Torf(-, ;T) is left exact; thus with P also K belongs to %. It follows that
FG'(N) = 0. In case G(N) = 0, we have the exact sequence

0 - G(N) - G(K) ~ G(P) - 0.

Application of F leads to the upper exact sequence of

0 - FG(K) - FG(P) - ExtY(T,G'(N)) - 0
T-Yx 1sp

0 - K - P - N - 0

where the last zero in the first row comes from the fact that F’'G = 0. Since we have
noted that s, and s, are isomorphisms, we conclude that there exists an isomorphism
N - F'G'(N).

(k) ExtY(,T, ,T) = 0.

PrOOF. We will show that Ext'(D(zT), D(;T)) = 0. Now

D(,T) = Hom, (T, k) = Hom, (3T, ®, 4, k)
= Hom ,(T,Hom(,4, k)) = F(D(,4));
thus D(,T) belongs to Y. Let
0~ D(;T)~> Ny - D(pT) -0
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be an exact sequence. Since D(;T ) belongs to Y, and U is closed under extensions,
also Ny belongs to %Y. Thus, under G this exact sequence goes to the sequence

O“D(BT) ®BT““" NB®BT""D(BT)®ET"0

which also is exact, since Tor(D(;T), ,T) = 0. However, D(,T) ®5 T, =~ D(,A)is
injective, thus the sequence splits. Applying F, we obtain back the given exact
sequence, which then also has to split.

This finishes the proof of the theorem: The assertions (h).(j). (k) show that ;T is a
tilting module. We have G'F = 0 according to (d), and GF' =0, FG’' =0 according
to (g) and (j). Also, F'G = 0, since for any B-module Nz, the module G( Ny) clearly
is generated by T, thus belongs to 5(T,), and (T,) C ¥ according to (b). Since by
(c), any M, €7 is generated by T,, we actually have T T,) = 9. Finally, the
equivalence of & and % has been shown in (c) and (f), whereas the equivalence of ¥
and X is shown in (g) and (j).

Note that the proofs in (b),(c), and (e) are directly taken from the paper [6] of
Brenner and Butler.

REMARK 1. Given a tilting module T,, and any projective module P,, there is an
exact sequence of the form

0-P, T =T >0
with T/, T" € add(T,).

This follows directly as in the proof (i) above, starting with a projective resolution
of a suitable module ;N in add( ).

Conversely, instead of property (3) of a tilting module, it is sufficient to assume that
there exists an exact sequence

0-P,>T ->T"'>50
with T',T” € add T,, such that any indecomposable projective module is a direct
summand of P,.
PROOF. In this case, Hom(P,, M) = 0 implies M = 0, this is used in (a), similarly,
in (h) one obtains p.d. , Hom(P,, 8T) and therefore also p.d. ,T < 1, since ,T €

add  Hom(P,, ;T,). It follows from (h), (i), (k) that ;T is a tilting module, and (e)
shows 4 = End(T}). Thus also ,Tis a tilting module.

(2.2) If we consider left B-modules instead of right B-modules, the result becomes
fully symmetric. Namely, we will see that X is the dual of F(5T), and % the dual of

F(5T). We need the following lemma;
LEMMA. If p.d. ;T < 1, then there are isomorphisms
D(3N) @, T, ~ DHom(,T,, ;T),
and
TorlB(D(BN)»BT:«) ~ D Exty(5T,, sN),
both natural in ,N.
PROOF. Take a projective resolution

0= 4P »,P' 5, T>0
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and apply functors D Hom g(-, ;N') and D(3N) 8 -, where , N is some B-module.
We obtain the following two exact sequences:

0 0
! !
Tor(D(sN). ;T )= — = ~»DExtl(,T, ,N)

! !

D(;N) ® 4 P"—""_ s DHom(,P", ,N)
| !

D(,N) ®5 P'——"—%-D Hom(,P’, ;N)
) !

D(;N) ®5 T——— 5D Hom(,T, ;N)
I |
0 0

The natural transformation yy,,: D(3N) ® U - DHom(gU, 5 N) is defined as

[YNU(‘P ® “)](f) = @(uf ),

where ¢ € D(;N),u € U, f € Hom(xU, yN). Clearly yy,, is an isomorphism for
U =gB, and therefore for U projective. Thus y,,. and vy, p. are isomorphisms. This
shows that also v, is an isomorphism, and that the natural isomorphism vy}, is

defined.

COROLLARY 1. DU = §(,T), DX = F(,T).

COROLLARY 2. The restrictions of the functors
~ DHom (,T,,-)
M, ——=>,MN
\/
DHomy(,T,,-)

define a duality between 5(T,) and 5 (5T ). Similarly, the restrictions of the functors
%A //—_\B%

Y~

define a duality between F(T,) and F(,T).

ProoF. Both corollaries are direct consequences of (2.1) using the previous leml-na.
(2.3) For the further investigation, it will be of interest to study the relation
between the B-modules of the forms F(I) and F'(P), where [ is indecomposable

injective and P indecomposable projective.

ki

~.<..,m“..__.~,,..,.v
T mR T
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CONNECTING LEMMA. Let T, be a tilting module, with B = End(T,). Let 1, be
injective, P, projective with socl, ~ P,/rad P,. Then 1~ Hom (,T,, 1,) =
Ext!,(;7T,, P)).

PROOF. Since T, is a tilting module, there is an exact sequence
(s) 0P, ~T ST >0

where T", T" € add(T),) (see the remark after Theorem 2.1). Under Hom (-, T,), we
obtain the exact sequence

om (7, T)

H
0 - Hom,(7",T) >  Hom,(T",T) - Hom (P,,,T,) -0,

and this is a projective resolution of Hom ,(P,, #T,), with Hom (T”, T’) minimal.

Now the transpose of Hom A(m, T) clearly is Hom (T, 7), and we have the exact
sequence.

Hom (T, n)
Hom(T,T) 5" Hom,(T,T") - Ext\(T, P) - 0,

which stems from the sequence (x) by applying Hom ,(T,, -) and using Ext'(T,, T,)
=0. Thus Ext},(3T}, P,) = TrHom (P,, ,T,). However, since P,/rad P, ~ socl,,
there is a canonical isomorphism Hom A(P4, pTy) ~ DHom ,(,T,, 1,); thus

"' Hom ,(4T,, I,) = Tr DHom (,T,, 1) ~ TrHom ,( P,, ;T,)
= ExtY(,T,, P,).
ReMARK 1. Let us reformulate the connecting lemma in the case of considering left
B-modules:
Let T, be a tilting module, End(T,) = B. If 1, is injective, P, projective, with
socl,~ P, /1ad P, then
7D Hom ,(,T,, 1,) = DExt!,(,T,, P,).
If gJ is injective, 5Q projective, with socyJ ~ 8Q/1ad 30, then
D Hom (3T}, 5J) = DExtly(,T,, ,0).

Proor. For the first formula, we apply D to the previous equality, noting that
7D(Ng) = D77'N, for any module N,. The second formula follows by left-right
symmetry.

REMARK 2. We obtain a further reformulation of the connecting lemma as follows:

Again, assume T, to be a tilting module, End(T,) = B. Let T, be in add T,; thus
Qs = K(T)) is projective. Let Jy be injective with soc Jp = Qp/rad Q. Then 1T; =
Torf(Jy, T,).

PrOOF. We have

TorIB(JB’BTA) ~ DEXt‘B(BTA’ D(JB))
=D HomB(BTA’ D(QB)) ~ 1Ty,
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using the second formula of Remark 1, and the isomorphism
DHO’“B(BE’ D(Qy )) = DHO’“B(BE’ Hom,(Q4, k))
~DHom(Qs ®; T, k) ~ 0z @ T, ~ T,.

(2.4) We use the connecting lemma, in order to derive conditions on the injective
B-modules.

CoROLLARY. Let T, be a tilting module, B = End(T,). Let I, be injective, P,
projective, withsoc I, = P, /rad P,. If P, € add T, then Hom ,(,T,, 1,) is injective.
All injective B-modules which belong 10 % are of this form.

Proor. If P, € add T, then Ext(;T,, P,) = 0; thus by the connecting lemma,
"' Hom (4T, 1,) = 0. Conversely, let Hom ,(,T,, M,) be injective. We can as-
sume M, indecomposable, and in 9. Let M, - I, be an injective hull. Then F(u):
F(M) - F(I') is mono again; thus a split mono, since we assume F(M) to be
injective. However, both M, and I/, belong to F; thus g is isomorphic to GF(p), and
therefore is itself split mono. This shows that M, is injective, say M, = I(a),. Let
P(a), be projective with P(a)/rad P(a) = soc I(a). If P(a), would not be in
add T, then using the connecting lemma again, we would have 7~'FI(a) = F'P(a) #
0, contrary to the assumption that FI(a) is injective.

COROLLARY 2. Let T, be a tilting module, B = End(T,). If both P(a) and I(a) are
in add T,, then Hom ,(yT,, I(a),) is projective and injective, and conversely every
indecomposable module which is at the same time projective and injective is of this
form.

PROOF. The first assertion follows immediately from the previous corollary.

For the second assertion, let N, be indecomposable, projective and injective. Since
Ny is indecomposable and projective, it is of the form Ny = Hom ,(zT,, 7(i),), for
some direct summand 7(i) of T, in particular, Ny € %. Since Ny is also injective, it
follows from the previous corollary that N, = Hom (3T, /(a),) for some I(a) with
P(a) € add T,. Finally, since both 7(i) and I(a) belong to J(T,), and Hom (3T, -)
induces an equivalence between J(7T,) and ¥, we see that I(a), ~ T(i), also
belongs to add T,. This finishes the proof.

(2.5) Let us remark that DExt!(T,, M,) can always be identified with a factor
group of Hom ,(M,, 7T,), where 7 is the Auslander-Reiten translation. In fact, in
our situation, both groups coincide, according to the following lemma:

LemMa. If p.d. T, < 1, then DExt(T,, M,) ~ Hom ,(M,, 7T).
Proor. Choose a minimal projective resolution
0P} > P;~T,~0
of T,. This gives an exact sequence
Hom(P’, M) - Hom(P", M) - Ext(T, M) - 0.

By definition of Tr T,, we have Tr T, = Ext!(T,, 4,). Replacing M, by 4,, and
dualizing, we obtain the exact sequence
0 — 1T, - DHom(P;, 4,) - DHom(P;, 4,).
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If we apply to this sequence D Hom (M, -). we get the left exact column of the
diagram

D Hom(M, DHom(P’, A))- - -~ -»Hom(P’, M)

| !
D Hom(M, D Hom(P”, A))———>Hom(P", M)
! !
DHom(M, 1T) L S Ext(T, M)
! |
0 0

where v is the natural transformation with »,, for an A-module X, being
D Hom (M, DHom (X, A)) = DHom (M, Hom,(Hom ,( X, 4), k))
~ DHom, (M, ® Hom (X, A), k)
= DD(M, ® Hom ( X, A))
~ M, ® Hom ,(( X, A) - Hom (X, M),
the last map being given by m ® @ » (x +»> me(x)), for m € M, ¢ € Hom (X, A),
and x € X,,. This last map, and therefore »,, is an isomorphism for X = Ay Asa

consequence, the same is true for X, projective. Since both »p., v,. are isomor-
phisms, we can see that there is an isomorphism D Hom(M, 1T ) ~ Ext(T, M).

CoRrOLLARY. If T} is a tilting module, then F(T,) is the set of all right A-modules
cogenerated by 1T,.

PROOF. If M, is cogenerated by rT,, say M is embedded in @7, rT,, then
Hom(T, M) = 0, since Hom(T, 7T) = Ext(T, T) = 0.

Conversely, let M, € F(T,). Then there is Ny € X with M, = Tor¥(N,, ;T,) =
D Exti(sT,, D(Np)). Let Ny C I, with I, injective. The dual map D(1g) - D(Np)
is surjective, so, since p.d. ;T < 1, the induced map

Exty(574, D(I3)) - Extly(,T,, D( Np))
also is surjective. Dualizing, we obtain an injection

M, ~ DExty(5T,, D(N;)) ~ DExty(,T,, D(1y)).

Now D Extiy(,T,, D(I,)) is a direct sum of modules of the form D Exty(z Ty, 5P),
with ;P indecomposable projective, thus M 4 15 cogenerated by these types of
modules. On the other hand, let zI(i) = D Hom AT, (T),) where T, is an inde-
composable direct summand of T,. Since (T)), € 9, it follows from (2.2) that

(T))4 ~ DHomy(3T,, pI(i)). The connecting lemma shows that for P(i), with
P(i)/rad P(i) = soc I(i), we have

"DHom(,T,, ,1(i)) ~ DExt'(,T,, 5 P(i)).

Thus 77, ~ 1D Hom(,T,, ,1(i)) ~ D Ext'(3T,, 3 P(i)), and therefore M, is cogen-
erated by the set of modules of the form 1T, thus by 7T,
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COROLLARY. ‘X is the set of modules generated by F'(A ).

(2.6) The tilting conditions of Brenner and Butler. This section will not be needed in
the sequel. However, it seems to be of interest to verify that modules satisfying the
“tilung conditions” (T,) or (T",) of Brenner and Butler [6) are tilting modules in the
sense of this paper. These are the tilting conditions for the right A-module T,:

(T)pd. T, < 1.

() Ext(T,, T,) = 0.

(T3) T, has a projective cover in add T,.

(T,) If M, is a module with Hom (7, M,) = 0 = Ext'(T,, M,), then M, = 0.

Assume T, satisfies (T)),(T;).(T3),(T,), and let B = End(T,). Let m: P, - T, be
a projective cover of T,, with kernel p: K, - P,. Then P, € add T, according to
(T3). and K, is projective, according to (7). It has been shown in Proposition 5 of
[6] that any indecomposable projective module is a direct summand of P, ® K ,.
Hence the result follows from Remark 1 in (2.1).

3. Isometry of Grothendieck groups. We fix a tilting module T,, and let B =
End(T,).

(3.1) Recall that G,( 4) denotes the Grothendieck group of A4, it is a free abelian
group with basis the set {R(a)|a} of simple right A-modules, and therefore can be
identified with some Z™. For any right A-module M, the dimension vector dim M is
the element of Gy(A) = Z™ with components

(dim M), =| Hom ,(P(a), M )gag pea|
(where P(a) is projective with P(a)/rad P(a) = R(a)), this is just the number of
composition factors of M, of the form R(«a) in any fixed composition series.

LEMMA. If X, is a module with p.d. X, < |, then
dy(M,) =|Hom ,( X, M )enaxy | —| EXtY( X, M )gnax) |
defines a linear mapping G(A) — Z.
PROOF. Given an exact sequence
0-M->M->M' -0,

the long exact sequence obtained by applying Hom ,(, Xg.4 x), ) is a sequence of
End( X )-modules, and immediately shows the additivity formula

dy(M) = dy(M') + dy(M").
This finishes the proof.

(3.2) PROPOSITION, Let T, be a tilting module, with B = End(T}). Then there exists
a group isomorphism f: G(A) = Gy B) satisfying
f(dim M,) = dim F(M,) — dim F'(M,).
Also, f can be calculated as follows: Let T(1),...,T(n) be a full set of representatives of
the indecomposable direct summands of T,, let Q(i)g = F(T(i)), and S(i)p =
Q(i)/rad Q(i). Then

H

fdim M) = 3 dr,(M,) - S().
=1

=

e

R e e e e

LEL LT
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ProOOF. Define
f(M,) = dim F(M,) - dim F'(M,).
Now given an exact sequence
O-M,-M -M/-0
of A-modules, we obtain the exact sequence of B-modules
0~ F(M') - F(M) - F(M") - F(M’) - F(M)- F(M")—0;
thus, in Gy( B), we have the equality
f(M) = (M) + f(M"),

and therefore f induces a linear map G(A4) — G( B), again denoted by f.

On the other hand, by the previous lemma, we also have a linear mapping
Gy(A4) - Gy(B) induced by

JM) =3 dr(M,) - SCi).

i=1
In order to show that f = , consider first a module M L €9; thus
f(M,) = dim F(M,).
The ith component of this element of Go( B) = Z" is given by

f(My), = (dim F(M,)), =| Hom ,(Q(i), F(M,))gsa o1
=| Hom ,( F(T(i)), F(M,))gnq FTy |
= HomA(T(i), M, )EndT(i) |= dT(i)(MA) :](MA)i

using the fact that Q(i) = F(T(i)), and that F induces a categorial equivalence
between J and %Y. On the other hand, consider also M « €Y, thus
f(M,) = ~dim F(M,).

We denote by J(i) the injective B-module with soc J(i) = S(i). We have G'J(i) =
7T(i), according to the connecting lemma. So since both M "o and 77(i) belong to %,
and p.d. T(i) < 1, we have

Hom y( F(M), J(é)) = Hom4(F'(M), FiG'J(i))
= Homy(F'(M), FT(i))
~ Hom (M, 7T(i)) ~ DExt\(T(i), M).

As a consequence, we see that

f(M,), = (dim F(M,)), = - endzpHOm( F'( M), J(i))
_ _dim, Hom(F'(M), J(i))
dim, End J(i)
_ _dimExt'(7(i), M) .
~ dim End T(i) J(M,);
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(We also have used that End J(i) ~ End Q(i) ~ End T().) Since any simple A-mod-
ule belongs to F or to §, we see that f and f coincide on a generating set of Gy(A);
thus f= [,

It remains to be seen that f is bijective. Any simple B-module lies in % or in 9,
since (X, %) is a torsion theory; thus it is either the image under F of a module from
J, or the image under F’ of a module from ¥. It follows that the image of f contains
the canonical generating set of Gy(B). Thus f is surjective, and consequently
rank Gy( 4) = rank Gy( B). By symmetry, also rank G,( B) = rank Go( A); thus Gy( 4)
and G(B) have the same rank. This implies that the surjective map f is in fact
bijective.

COROLLARY. If T is a tilting module, with B = End(T,), then the number of simple
A-modules coincides with the number of simple B-modules.

(3.2) PrROPOSITION. The Euler characteristic is defined for A if and only if it is
defined for B. In this case, f is an isometry.

PROOF. Assume, P(1),...,P(n) are the indecomposable projective 4-modules, and
dim P(a),1 <a<n, is a basis for Gy(A) ® Q. For any P(a), we have an exact
sequence

0-P(a)>T ->T' -0

with T, T"" € add(T); thus we see that G(4) ® Q also is generated by the elements
dim 7{i), | <i < n, where the T(i) are pairwise nonisomorphic direct summands of
T,. Under f, the vectors dim 7(/), are mapped to dim FT(¢); thus dim FT(i),1 <i =<
n, is a basis of G(B) ® Q. However, the modules FT7(i), | <i < n, are the indecom-
posable projective B-modules. This shows that also the Euler characteristic of B is

defined.
In order to show that f is an isometry, we only have to consider a basis in

Gy(A) ® Q. We will use the basis dim 7(i), | < i < n. Note that
(dim FT(i),dim FT(j))= dim, Hom( FT(i), FT(})),
since FT(i) is projective. Also
(dim 7(i), dim T( j)) = dim, Hom(7(i), T()),
since p.d. T(i) < 1, and Ext(T(i), T(j)) = 0. Thus
{ fdim T(i), fdim T(j))= (dim FT(i),dim FT(;))
= dim, Hom( FT(i), FT(j))
= dim, Hom(T(i ), T(j)) = (dim T(:),dim T(/)).

4. Tilting modules for hereditary algebras.

{4.1) LEMMA. Let A be hereditary. If T\, T, are indecomposable with Ext(T,, T,) = 0,
then any nonzero map T, - T, is an epimorphism or a monomorphism. In particular, if
T, is indecomposable with Ext'(T,, T;) = 0, then End(T) is a division ring.
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PROOF. Let ¢: T, ~ T be nonzero, and assume g is neither an epimorphism nor a
monomorphism. Let U be the image of ¢, and ¢ = pe, where & I, - U is
surjective, and p: U < T, is the inclusion. With & also Ext(T,/U. ¢) is surjective;
thus we obtain a module V and a commutative diagram:

0 - T, % v ~ T/U - 0

el e i
0 - U - T, - TJU - 0

h 3

However, this implies that the sequence

(-3) (pe)

0T, > UBV = T, -0

is exact. Note that this sequence cannot split. (Otherwise T, ® T, = U ® V¥, and by

Krull-Schmidt U would have to be isomorphic to one of T,, T,.) Thus Ext'( T.T,)#
0.

(4.2) COROLLARY. Let A be hereditary, and T, a module satisfying Ext!(T,.T,) = 0.
Then the quiver of B = End(T,) has no oriented cycles.

PROOF. Let T, T, T, be indecomposable modules in add(T,), and g: T,-T, ¢
T, - T, nonzero maps. Either both maps are monos, or both are epis, or @ is mono,
¥ is epi. Otherwise ¢ is a proper epimorphism and Y a proper monomorphism,
according to 4.1, and therefore g is nonzero and neither mono nor epi, contrary to
4.1.

Thus, assume there is a sequence of nonzero maps
-~ T T,

with all T, indecomposable and in add( T,). By the previous consideration, either all
maps are mono, or all maps are epi (since otherwise we obtain an epi followed by a
mono), thus all maps have to be isomorphisms.

(4.3) LEMMA. Let A be hereditary. Let I(1),...,T(s) be pairwise nonisomorphic
A-modules, and T, = ©°_ T(i). If Ex{'(T,T) =0, then the vectors dim T(i) in
Gy(A) are linearly independent. In particular, s < rank G,( A).

In the case of an algebraically closed base field, this result was first established by
Happel in [9].

PrROOF. We can assume that the T(i) are ordered in such a way that
Hom (T(i), T(;)) = 0 for i > j, due to 4.2, and note that End AT(i)) is a division
ring for all i. In 3.1, we have introduced linear mappings d; = dr,: Gy(A) » Z;
thus we obtain a map

d=(d,,....d,): G(A) - Z°.

The images of dim 7(1),...,dim I(s) form a linearly independent generating set of
Z°, since the matrix (d(T())H), ;18 a triangular matrix with all diagonal elements
equal to 1 (for, Ext!(T(i), T( j)) = 0 for all i, J, thus d(T()) is just the dimension
of Hom (T(i), T(j)) as an End ,(T(i))-vector space.}) Therefore,
dim 7(1),...,dim T(s) themselves have to be linearly independent.
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(4.4) LEMMA. Let A be hereditary, with n simple modules. Let T(1),...,T(n) be
pairwise nonisomorphic A-modules, and T, = @, T(i). Suppose Ext'(T,T)=0.
Then, for any A-module M ,, there exists an exact sequence of the form

0~Ti M~ M, -0,
with T' € add T,, and M, cogenerated by T,.

PrOOF. We may assume M, indecomposable. First we show that Ext' (M, T) =0
implies Hom (M, T') # 0. Consider the additive map d,,: Gy(A4) - Z given in 3.1.
For any injective module / with Hom (M, I) # 0, we have d,(1)# 0, thus
dy, # 0. Now the elements dim T(1),...,dim T(n) are linearly independent in G,( A),
according 10 4.3; thus, since G;( A) has rank », they form a basis of G,(4) @ Q; thus
d,,(dim 7(i)) # 0 for some . Since Ext!,( M, T(i)) = 0, we have Hom (M, T(i)) # 0.

In fact, Ext'(M, T') = 0 even implies that M is cogenerated by 7. Namely, let M’
be the intersection of all kernels of maps M — T. Then there is an embedding
M/M' <= @®T, and this inclusion shows that Ext'(M/M’,T) is an epimorphic image
of Ext(® T, T), and therefore zero. Thus the exact sequence 0 > M’ -~ M -~ M /M
— 0 gives rise to an exact sequence

0 -~ Hom(M/M',T) - Hom(M,T) - Hom(M’, T) - 0,
but, since every map M —~ T factors over M /M’, we see that Hom(M’, T) = 0. On
the other hand, the inclusion M’ = M also gives rise to an epimorphism
Ext'(M, T) — Ext'(M’, T); thus it follows that also Ext'(M’, T) = 0. By the first
part of the proof, we can conclude M’ = 0, thus M is cogenerated by T.
Now, let E,,...,E,, be a basis of Ext'(M, T) and let

m
(E):0-PT-M->M-0
i=1
be the corresponding exact sequence. Let 77 = @7 T. Applying Hom(-, T'), we
obtain an exact sequence

Hom(T’,T) - Ext((M, T) - Ext!(M',T) - 0,
where we use Ext(T’, T) = 0. However, the canonical projections in
Hom(@™ T, T) obviously go to the elements E,,...,E,, thus the first map is

surjective, and therefore Ext!(M’, T) = 0. By the previous part of the proof, this
shows that M’ is cogenerated by T.

(4.5) THEOREM. Let A be hereditary, and T, an A-module. Then T, is a tilting
module if and only if Ext'(T,, T,) =0 and the number of isomorphism classes of
indecomposable direct summands of T, is equal to the number of isomorphism classes of
simple A-modules.

PROOF. We can assume T, = @_, T(i), with pairwise nonisomorphic indecom-
posable modules T(¢). Let n be the number of simple A-modules. If 7, is a tilting
module, then s = n, according to Corollary 3.2.

Conversely, let Ext!(T, T) =0, and s = n. We apply Lemma 4.4 to M = P(}),

and obtain an exact sequence
0~ T - My~ P(j)~0,
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with T; € add T, and M cogenerated by T,. The sequence splits, thus P( ;) itself is
cogenerated by T,. Let f,,....f be a basis of Hom ,(P(;),T). then f=(f);
P(j) =@ T is mono. Let ¥ be the cokernel; thus there is an exact sequence

/
0-P(j)-» BT -V -0.
Since ©T maps onto V, also Ext'(T, @ T') maps onto Ext!(T, V); thus Ext(T, V)
= 0. Applying Hom ,(-, T) to the given exact sequence, we get an exact sequence
Hom(@®T, T) —» Hom(P(;),T) - Ext"(V,T) - 0

since Ext'(T,T)=0. The first map is surjective by construction of f; thus
Ext'(V, T) = 0. Finally, the epimorphism ®T — V gives rise to an epimorphism
0= Ext'(V, ®T) - Ext\(V, ¥); thus also Ext'(V, V') = 0. We conclude that

Ext!,(T®V,T®V)=0.

It follows from Lemma 4.3 that V belongs to add T, since otherwise we get too many
linearly independent vectors in G,(A4). This shows that T, also satisfies the last
condition of a tilting module, and finjshes the proof.

A

COROLLARY. Let A be hereditary and T, a tilting module. Then D(T,) also is a
tilting module.

REMARK. Let T, be a tilting module with hereditary endomorphism ring B. Let T, be

an injective cogenerator. Then the B-module K(1,) = Hom(,T,, 1,) is also a tilting
module, and End F(1,) = B.

PROOF. We can assume I, = I 4A). Then
F(1,) = Hom,,(,T,, 1,) ~ DHom(4,, ,T,) ~ D(5T),
and with ;T also D(,T) is a tilting module.
3. The global dimension of a tilted algebra. In this section, we will assume that A4 is
hereditary, 7, a tilting module, and B = End(T,); thus B is a tilted algebra. Also, as

before, let X be the set of B-modules of the form Ext'(3T,, M,), and % the set of
B-modules of the form Hom(,T,, M,).

(5.1) LEMMA. p.d. Ny < 1 for all Ny € %,

PROOF. Let Ny = Hom(,T,, M, ) where we can assume that M, belongs to §(T,).
Let f,,....f, be a basis of Hom(,T,, M,) and f = (/)i ®T - M. Since M € 9(T,),
the map f is surjective. Denote by K its kernel. We have Ext(K, T) = 0, since K
embeds into DT, and Ext'(T, K) = 0 since Hom(7, f) is surjective. It follows that
also Ext)(K, K) = 0, again using that K embeds into ®T. As a consequence

Ext)(T® K, TO®K) =0,
and therefore X € add ( T), due to 4.3. Thus, the induced exact sequence

Hom(T, f)
OeHom(BTA,KA)—»Hom(BZ,,@TA) - Hom(,T,, M,) -0

is a projective resolution of Np = Hom(,T,, M,).

(5.2) THEOREM, gl. dim. B < 2 for any tilted algebra.
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PROOF. If N; € %, then p.d. Ny < 1, by the previous lemma. Thus, consider now
the case Ny € X, say N = Ext'(;T,, M,) for some M, € F(T,). By 4.4, we find an
exact sequence

/
0-@T, M, 5M, 0

with M) cogenerated by 7,. Let g,,...,g be a basis of Hom (M), T,), and
g=(g) M - T =@ T, Note that g is an inclusion, say with cokernel ¥. We
claim that Ext(T @ ¥, T @ V') = (. By the universality of g, we have Ext\(V, T) = 0.
Since there is a surjection ®7T — V, and Ext{(T, ®T) = 0,Ext(V, DT) =0, we
conclude that both Ext{(T,V) = 0 = Ext'(V, V). From Ext(T® V,T® V) =0, it
follows by 4.3 that V € add T. Applying Hom ,(;7,, -) to the sequence

o-MET Vo,

we obtain the following exact sequence of B-modules:
(+) 0- Hom (7T, M') > Hom (T, T’) -~ Hom (T, V) - Ext'(T, M’} - 0.
Since T",V € add T,, the B-modules Hom (7, T") and Hom (T, V') are projective.
Since Hom ,(T, M) = 0, any homomorphism T - M’ maps into the image of f; thus

Hom(T, f): Hom(T, ®T) — Hom(T, M’)
is an isomorphism of B-modules, and therefore also Hom ,(,T,, M}) is projective.
Finally, the map p induces an isomorphism

Ext\(T, p): Ext'(T, M’) = Ext'(T, M),

thus we see that () is a projective resolution of Ny = Ext'(;T,, M,), and therefore
p.d. N; < 2. Since any B-module is an extension of a module from %X by a module

from %, we conclude gl. dim B < 2.

(5.3) As we have seen, the indecomposable modules from % all have projective
dimension @ or 1, those of X all have projective dimension 1 or 2 (here we use the
fact that all projective modules belong to %). For certain modules in X one can
decide which value actually occurs.

LEMMA. Assume that all simple projective modules belong to add T,. Let P, be
indecomposable projective, and not in add T,. Then p.d. F'(P,) = 2.

PROOF. There is an exact sequence
f '’ e
0-P-T;-T/ -0

with 7", 7" € add T,. We apply Hom ,(;T,,~) and obtain the following exact
sequence of B-modules:

(+) 0~ F(P) 2 R(Ty) - F(T}) ~ F(P,) ~0.

Let U, be the torsion submodule of P,, with inclusion map u. Then
F(u) = Hom (5T, u): Hom ,(,T,, U,) » Hom (57, P,)
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clearly is an isomorphism of B-modules. Now U, is projective (being a submodule of
P,), on the other hand, U, is generated by T, (being a torsion module); thus
U, € add T, and therefore F(P,) =~ Hom ,(,T,,U,) is a projective B-module. Thus,
(+) is a projective resolution of F'( P,). Assume the projective dimension of F'(P,) is
< 1. Then F{( f) is split mono, and therefore also F( fu). Now fu: U, » T, is a map
inside 3(T,); thus fu is isomorphic to GF( fu). Since with F( fu) also fu=GF(fu)is
split mono, we finally conclude that u: U, — P, is split mono. However, u being a
proper monomorphism (since P, & add T,, and U, € add T,,), and P, indecomposa-
ble, we conclude that U, = 0. However, this is a contradiction to the fact that

U, 2 soc P, since, by assumption, all simple projective modules are torsion mod-
ules.

6. Splitting of the torsion theory (%, %). We assume throughout that A is
hereditary, 7, a tilting module, with endomorphism ring B. In T, 4 We consider the
torsion theory (7, %), in M., the torsion theory (X, %) derived from 2T,

Always, P(a) will denote an indecomposable projective module. The correspond-

ing indecomposable injective module will be denoted by I(a), it satisfies soc /(a) =
P(a)/rad P(a).

(6.1) PROPOSITION. The minimal lefi almost split map starting with Fl(a) is of the
form

Fi(a) - F(I(a)/soc) ® F'(rad P(a)).

PrOOF. (1) If P(a) & add T, then there exists a module E(a) and a nonsplit exact
sequence

0 - Fi(a) - E(a) » F'P(a) - 0

and an exact sequence
(*) 0~ F'rad P(a) - E(a) - F(I(a) /soc) - 0.

PROOF. We have to distinguish two cases. Let S(a) = soc I(a).
Case 1. S(a) is a torsion module.

Since F’S(a) = 0, we obtain from the exact sequence
(%%) 0 - S(a) - I(a) - I(a)/soc - 0
an exact sequence
0 - FS(a) - FI(a) - F(I(a)/soc) - 0.

Since P(a) is not a summand of T, any homomorphism 7 — P(a) maps into
rad P(a); thus the induced map Frad P(q) - FP(a) is an isomorphism. This,
together with F'S(a) = 0 shows that we obtain from the exact sequence

(#%%) 0 - rad P(a)—»P(a)—»S(a)ﬂO
an exact sequence

0~ FS(a) - F'rad P(a) - F'P(a) - 0.
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Now form the pushout of these two sequences:

0 0
l d

0 —  FS(a) L FrdPa) - FPa) - 0

B LB I
0 -  Fla) % E(a) % FP(a) - 0
! !
F(I{a)/soc) = F(I(a)/soc)
! !
0 0

The short exact sequence starting with FI(a) does not split. For, otherwise 8" would
be a map from the torsion module F'rad P(a) into E(a) = FI(a) ® F'P(a), and
therefore would map into F'P(a). As a consequence, 78’a would be a monomor-
phism. However, n8’a = na’f = 0, and FS(a) # 0.
Case 2. S(a) is torsionfree.
Since FS(a) = 0, we obtain from (=) the exact sequence
0 - F'rad P(a) -» F'P(a) - F'S(a) - 0.
Since FS(a) = 0, F'I(a) = 0, we obtain from (*x) the exact sequence
0 - Fl(a) - F(I{a)/soc) = F'S(a) - 0.

We form the pullback:
0
i l
Frad P(a) = F'rad P(a)
¢ !
# &
0 - FI(a) =~ E(a) - F'P(a) - 0
I iy’ by
8
0 - F(a) - Fla)jse) > FSa) = 0
l l
0 0

Again, the short exact sequence ending with F'P(a) cannot split, since otherwise y'u,
and therefore also 8y’n = y&’p = 0 would be surjective, contrary to F'S(a) # 0.

(2) If P(a) ¢ add T, any nonsplit exact sequence
0- Fl(a) » X~ FP(a) -0
has to be an Auslander-Reiten sequence.
ProOF. By (2.3), 7F"P(a) = FI(a). Now End F'P(a) ~ End P(a) is a division
ring, thus Ext'(F'P(a), FI(a)) is one-dimensional as an End F’P(a)-vector space.
(3) If P(a) € add T, then FI(a) is indecomposable injective. Let E(a)=
F(I(a)/soc). Then again, there is an exact sequence of the form (+).
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PrOOF. Since P(a) € add T, the cokernel of the canonical map Frad P(a) —
FP(a) is simple, it is the simple module corresponding to the direct summand P(a)
in B = End(7,), and we denote it by U. Thus (*#+) gives rise to the exact sequence

0~ U FS(a) - F'rad P(a) - 0,

using the fact that F/P(a) = 0, since P(a) € add T. With P(a) also S(a) is a torsion
module, then the sequence (+#) gives the exact sequence

0 - FS(a) > Fi(a) - F(I(a) /s0¢) — 0.

Thus FI(a) contains FS(a) as a submodule, and this in turn the simple submodule
U. Since Fi(a) is indecomposable injective, according to Corollary 2.3, we see that
BaU is the socle of FI(a), and

E(a) = FI(a)/soc = Fl(a)/Bal

is an extension of FS(a)/al = F'rad P(a) by Fl(a)/BFS(a) = F(I(a)/soc).

(4) The sequence (*) splits.

PROOF. By induction along a source sequence. If a is a source, then rad P(a) = 0,
thus we have nothing to show. Consider now some b, and assume we know the
splitting of all sequences for a, where a — b (recall that we write a — b in case
P(a) € addrad P(b).) We want to show that E(b) has a direct summand isomor-
phic to F’rad P(b). Recall the definition of the valued graph associated to A. The
numbers d,,, d;, € N are defined by

rad P(b) = @ P(a)™,  I(a)/soc = @ I(b)*™.

If f, = dim, End P(a) = dim, End I(a), then
fodap = dy fy.
It follows that

F'rad P(b) = @ F'P(a):

thus we have to show that in case F'P(a) # 0, the module E(b) contains F'P(a)%

as a direct summand. So assume F'P(a) # 0, d,, # 0. Then a - b, thus, by induc-
tion

E(a) ~ F'rad P(a) ® F(I(a) /soc).
Also, FI(a) is not injective, thus we have the Auslander-Reiten sequence
0~ Fl(a) - E(a) » FP(a) > 0

due to (1),(2) and the connecting lemma. Now

F(I(a)/soc) = @ FI(b)"

b

Thus E(a) contains FI(h)* as direct summand. It follows that the space

Irc(FI(b), F'P(a)) considered as an End FI(b)-vector space, has dimension d
thus

’ o,
ab?

dim, Irr(FI(b), F'P(a)) = d/, f,
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due to the fact that End FI(b) ~ End I(b). Since fd,,=d.,f,, and f, =
dim, End F’'P(a), we see that the dimension of Irr(FI(b), F'P(a)) as F'P(a)-vector
space is d,,, thus for the left almost split map FI(b) - E(b), the module E(b)
contains F'P(a)? as direct summand. This shows that E(b) has a direct summand
of the form F'rad P(b). Since the torsion part of E(b) is isomorphic to F' rad P(b),
it follows that the torsion part of E(b) splits off, as we wanted to show.

This finishes the proof.

(6.2) COROLLARY. Either P(a) € add T, (and then Fi(a) is injective), or else there
is an Auslander-Reiten sequence of the form

0 - FI(a) - F(I{a)/soc) ® F'rad P(a) - F'P(a) - 0.

Proor. This is an immediate consequence of the connecting lemma and the
previous result.
The Auslander-Reiten sequences given by 6.2 will be called the connecting se- ‘

quences.

(6.3) THEOREM. Let A be hereditary, T, a tilting module, and B = End(T),). Let
X = {Ng| TorB(Ng, gT) = 0}, Y = (N | Ny @z T = 0). Then any indecomposable
right B-module belongs either to °X or to .

PRrOOF. (1) If F'P(a) — X, is irreducible, then X € X.

ProOF. We may suppose X, indecomposable. We use induction on g along a
source sequence. Note that X cannot be projective, since F'P(a) is in X, and
projective modules belong to %Y. Thus rX # 0, and there is an irreducible map
X — F'P(a). The connecting sequence ending with F'P(a) shows that 7.X is either
of the form FI(b) with /(b) € add(I(a)/soc), or of the form F'P(c), with P(c) €
addrad P(a). In the first case,

X =17X = +7FI(b) = FP(b)

is in % . Note that in case a is a source, then rad P(a) = 0, thus only the first case
can happen. In general, if 7X = F'P(c), consider the Auslander-Reiten sequence
ending with X

0 FP(c)-X ->X-0.
Since ¢ is a predecessor of a, we know by induction that X’ belongs to X. Thus,
since % is closed under factor modules, also X is in X.

(2) For any a, the module 7'F’P(a) is in X.
PrOOF. In case 7" 'F’P(a) # 0, consider an Auslander-Reiten sequence

0> FP(a) > X—1"'FP(a) - 0.

By (1), the module X belongs to X. Note that X is closed under factor modules.
(3) For any Y in %, we have Ext'(Y, F'P(a)) = 0.
PrROOF. Hom 4(7~'F'P(a), Y) maps onto D Exty(Y, F'P(a)), and r'F'P(a) is a

torsion module, whereas Y is torsionfree.

(4)For X € X, Y € %, we have Ext'(Y¥, X) = 0.
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PrOOF. Let X = F'M for some A-module M, and take a projective cover
P, - M,. Since p.d. T, < 1, the induced map F'P — F’'M is surjective. Since p.d. Yy
< 1 according to 5.1, also the induced map

Ext'(Y, F'P) - Ext'(Y, FM) = Ext'(Y. X)

is surjective. By (3), the first group is zero, thus Ext'(Y, X)=0.
This finishes the proof.

(6.4) COROLLARY. If A is hereditary and of finite representation type, T, a tilting
module, and B = End(T,); then the number of indecomposable B-modules is less than
equal to the number of indecomposable A-modules.

Proo¥. This follows directly from (6.3) and the theorem of Brenner and Butler.
(6.5) We want to describe the Auslander-Reiten quiver of a tilted algebra as far as
possible. We need to know the possible structure of all Auslander-Reiten sequences.

THEOREM. Let A be hereditary, T, a tilting module, B = End(T,). Let
0Ny =Ny - N; -0

be an Auslander-Reiten sequence in IR g. Then either the modules N', N, N all belong
to X, or all belong to %, or this is a connecting sequence.

ProoF. (1) Let M, be indecomposable in T,. If M, & add T, then there exists M),
in J,, with Ext',(M, M") # 0. If M, is not injective, then there exists M/ in %, with
Extl,(M”, M) # 0.

ProOF. First, assume M, & addT,. By 4.3, Ext'(T® M, T® M) # 0. Now
Extl(T,T) = 0, and Ext!(T, M) = 0 (since M, € T ). Thus Ext'(M, T & M) # 0.

Similarly, if M, is not injective, then Ext\(/ ® M, I ® M) # 0, where / is an
injective cogenerator. Since / is injective,

Ext\(1®M,I)=0;

thus Ext\,(1 & M, M) 0.
(2) Let

0—M,»M,SM >0

be a relative Auslander-Reiten sequence of 9. Then the image under F is an
Auslander-Reiten sequence %.

PROOF. Let Ny be indecomposable in M ,, and ¢: Ny — FM” a nonzero map.
Now Nj is either torsion or torsionfree. Since FM” is torsionfree, and g # 0, we se¢
that also N is torsionfree, say N = F(U) for some A-module U, in 7, and ¢ = F(@)
for some a: U, — M. Either a is an isomorphism (and then ¢ is an isomorphism) or
else « = ma’ for some o, and then ¢ = F(m)F(«).

(3) Let Ny be indecomposable and in %. Then TN € U, Also, either 77Ny € ¥ or
else Ny = Fl(a) and v7'N, = F'P(a), for some indecomposable projective module
P(a) not belonging to add T,
~ PROOF. Let Ny = F(M,), with M, indecomposable in 7. If M,  add T, then N,
1s projective, thus TN, =0€ %Y. If M 4 € add T, then there exists M in & with
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Ext\,(M, M) # 0. By the results of Auslander-Smale, there exists a relative Aus-
lander-Reiten sequence in 9, ending in M. According to (2), its image under F is an
Auslander-Reiten sequence ending in F(M) = N,. Since all its terms belong to %,
we see that TN, € .

Consider now 7'N,, and again let N, = F(M,) with M, € 5. 1f M, = I(a), then
17'Ny = F'P(a), according to the connecting lemma. Note that in case P(a) €
add T,. we have 7-'N; = 0 € %4. Assume now M, is not injective. According to (1),
there exists M, € 7 with Ext\,(M”, M) # 0. Again due to Auslander-Smale, there
exists a relative Auslander-Reiten sequence in & starting with M. By (2), the image
under Fis an Auslander-Reiten sequence starting in F(M) = Ng, and all its terms
are in Y. Thus 7-'N, € .

(4) Let N, be indecomposable and in . Then 77Ny is in X.. Also, either 7N, is in
X, or Ny = F'P(a), TNy = FI(a) with P(a) & add T,.

PrOOF. Assume 0 # 77'N, € U, Then Ny = 177'Ny € ¥, according to (3). Simi-
larly, let 0 % 7N, € . Then either 7Ny = Fi(a), Ny = 77'tNy = F'P(a) and P(a)
& add T, or else Ny, = 77t Ny € U, again according to (3).

Note that both ‘X and Y are closed under extensions. This finishes the proof of the
theorem.

(6.6) Assume now in addition that 4 is connected. Note that in this case all
modules of the form FI(a) belong to the same connected component € of the
Auslander-Reiten quiver of B, due to the form of the connecting sequences. Let us
describe this component in more detail:

LEMMA. Let C be the component of the Auslander-Reiten quiver of B containing all
modules FI(a). Then any module of C can be written, in a unique way, as 1°FI(a), with
z € L, and I(a), indecomposable injective.

PrOOF. Let O’ be the indecomposable modules of the form 7°FI(a). First, we
show that C = &’. Let Ny — 7™FI(a) be an irreducible map, with N indecomposa-
ble. By induction on m € N, we show that N, € €’. Note that in case Np is injective,
then either N, ~ FI(b) for some b, or else Ny € X, according to 2.4. Since
T™FI(a) € %Y for all m € N, we see that N, can only be injective in case Np ~ FI(b)
for some b. Thus we may assume that N is not injective, and therefore there exists
an irreducible map r™FI(a) - 7' Ng. In case m = 0, it follows from 6.1 that either
17Ny & FI(b) for some b, or 1™'Ny = F'P(c¢) ~ 7~ 'Fi(c) for some ¢, thus "' Ny € €’
(and therefore N, € @), In case m > 0, there exists an irreducible map 77'N, —~
™ 'FI(g), thus by induction r~'N, € €".

Similarly, let r~"FI(a) — N, be an irreducible map with N, indecomposable, and
m € N. Again, by induction on m, we show Ny € C. This is clear for m = 0. For
m=1,1""FI(a) ~ r~™*'F'P(a) belongs to X, thus N, cannot be projective (all
projectives belong to ¥). Therefore, there exists an irreducible map ™™ 'FI(a)
7Ny, and by induction TN, € €.

Finally, in case there is an irreducible map N, ~ 7~ ™FI(a), with m = 1, then there
also exists an irreducible map r~™*'FI(a) - Nj. And, in case there is an irreducible
map t"Fl(a) » Ng, m = 1, then there is an irreducible map Np — " FI(a). In

DR A

SR SRR T e s 1 T T 0o

FiRE



430 DIETER HAPPEL AND C. M. RINGEL

both situations we are reduced to cases discussed above, and see that N; € €’ Thus
C=2¢.

Unigueness. It clearly is sufficient to show that 7~"FI(a) ~ FI(b) with m € N is
only possible for m = 0 and I(a) = I(b). Now if m = 0, then I(a) = I(b), since Fis
an equivalence between  and %Y. On the other hand, if m > 0, then FI(b) € %, and
1~"FI(a) € X, thus there is no nonzero map 7~ "FI(a) - FI(b).

7. Complete slices.

(7.1) Let B be a finite dimensional algebra, C a component of its Auslander-Reiten
quiver. A complete slice 9 in C consists of a set of indecomposable modules in € with
the following properties:

(i) Given any indecomposable module X in €, then QL contains precisely one
module from the orbit {7°X |z € Z} of X under , 77"

@) If X;— X, - --- > X, is a chain of nonzero maps and indecomposable
modules, and X,,, X, belong to AU, then all X, belong to L.

(iii) There is no oriented cycle of irreducible maps Uy — U, = - -+ — U, — U, with
al Uin9,andr=>1.

If QU is a finite complete slice, then we will call the direct sum U = @
the corresponding slice module.

U(a)EXU U(a)

PROPOSITION. Let A be hereditary and connected, and T, a tilting module with
B = End(T). Then {F(I(a))|a € T,) is a complete slice in its component.

PROOF. (i) has been shown in 6.6.

. f
(1) Let F(I(a)) > X be a nonzero map, with X indecomposable. Assume X is not

of the form FI(b). We claim that then X € . We prove this by induction on

| FI(a) | . Since f is not an isomorphism, we can factor / through the minimal left
almost split map starting with f,

F(I{(a)) - F(I(a)/soc) ® F'rad P(a)
fl </
X

and, since f # 0, there is either a direct summand FI (b) of F(I(a)/soc) or F'P(b) of
F’rad P(a) such that the restriction of f* to this summand is nonzero. In the first
case, we note that | I(b)|<| I(a)|, thus by induction x € %. In the second case, it
follows from F’P(b) € % that X cannot belong to U, thus X € % also in this case.

As a consequence, if X, - X, » --- > X is a chain of indecomposable modules
and nonzero maps, and X, = FI(a), then either all X, are of the form FI(*), or else
there is some X; € X, and then clearly all the following modules belongs to X..

(iit) There are no cycles of nonzero and noninvertible maps between the modules
1(»), since the quiver of 4 cannot have oriented cycles, thus there cannot be a cycle
of nonzero and noninvertible maps between the modules Fi(x).

(7.2) THEOREM. Let B be q finite dimensional algebra. Assume some component C of
the Auslander-Reiten quiver of B contains all indecomposable projective modules and
also some finite complete slice Y, say with slice module U. Then Uy is a tilting module,
and End(Uy) is hereditary. (Thus, B is a tilted algebra.)
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Let us formulate explicitly an important consequence: If we assume that B has

precisely n simple modules, say with corresponding primitive idempotents e, . .. y€ps
then A = End(Uy) also has precisely n simple modules, and the slice module U
gives rise to n indecomposable A-modules ,Ue,,..., Ue,.

The proof will be done in several steps. We will need several auxiliary results
which will be obtained first.

(7.3) LEMMA. Let A be hereditary, T, a tilting module and B = End(T,). Let P(a)
be simple projective and not in add T,. Let I, be the direct sum of all indecomposable
injective A-modules different from I(a). Then the B-module F(I') ® F'P(a) is a tilting
module.

PROOF. Let o: O, — M, , be the reflection [7] with respect to P(a). Note that
this also is a tilting functor, with tilting module P’ ® r~'P(a), where P’ is the direct
sum of all indecomposable projective A-modules different from P(a), with o4 =
End(P’ © 77'P(a)), and o = Hom ,(P’ ® 77'P(a), -), compare with [16]. There is a
simple injective module Z in IM_, such that o induces an equivalence between the
full subcategory O, of M, of all modules without direct summand of the form P,
and the full subcategory M, , of M, of all modules without direct summand of the
form Z.

Since P(a) is not a direct summand of T,, we know that 7, is in 9/, thus
B = End(T,) =~ End(oT, ,). Also, the indecomposable modules in J(T,) correspond
bijectively under ¢ to the indecomposable modules in J(a7,,) different from Z.
Note that 6T, again is a tilting module. Let

F=Hom, (57,4, -): M4y > Mp.
Then clearly the functor Fo is equivalent to the functor F = Hom ,(z T, -).

Now let I(a), be injective, with soc I(a) = P(a)/rad P(a). Then ¢l(a) is not
injective, in fact 7-'o/(a) = Z. [This is well known, but also follows from the
connecting lemma applied to the tilting module _ (P’ ® 77'P(a)),: it asserts that
t7'6l(a) = ¢’P(a) = Z.]

We claim that F'P(a)~ FZ. By the connecting lemma, we have F'P(a) =
17'FI(a), thus = r~'Fol(a). Since oI(a) is not injective, there is an Auslander-
Reiten sequence in 9N 4 starting with Fol(a), due to 2.4, and it i§ not a connecting
sequence. Thus, according to 6.5, all its terms are images under F, thus it clearly is
the image of the Auslander-Reiten sequence in M ,, starting with oI(a), under the
functor F. Consequently,

r-\Fol(a) = Fr-'el(a).
Altogether we see that
F'P(a) = 17'FI(a) = r"'Fol(a) = Fr~'sl(a) = FZ.

Now, I; denotes the direct sum of all indecomposable injective modules different
from I(a). Then ol’, is the direct sum of all indecomposable injective modules
different from Z. Thus o1’ , ® Z,, is the minimal injective cogenerator of I, ,. By a
remark in 4.5, its image under F is a tilting module, this is

F(oI',® Z,,) = FoI' ® FZ = FI' ® F'P(a).

S TREERG L L
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(7.4) We will prove Theorem 7.2 by induction. For this, we need the more general
concept of a (not necessarily complete) slice.

First recall that if X is an indecomposable module, and V a set of indecomposable
modules, then X will be called a predecessor of V, provided there exists a chain of
irreducible maps and indecomposable modules

XZXO_’le) .”")Xr—l“Xr

with X, € V. If in addition, X does not belong to V, then X is called a proper
predecessor of V.

Now, again, let B be a finite dimensional algebra, and C a component of its
Auslander-Reiten quiver. A slice U in C is a set of indecomposable modules in €
satisfying the conditions (ii), (iii) of 7.1, and, in addition the condition

(i) If X is a predecessor of L, then @ contains precisely one module from the
orbit {7°X|z € Z}.

Clearly, this is a more general concept than that of a complete slice, since a
predecessor of 9 always belongs to the component of € again. Note that in contrast
to a complete slice, the modules belonging to a slice do not need to be connected by
chains of irreducible maps (going either way). Again, if QL is a slice, then U =
@D yayea Ula) is called the corresponding slice module.

LeMMA. If 9 is a slice, then X is a predecessor of 9L if and only if X is of the form
'U(a) for some t € N and some U(a) € 9.

Note that if an indecomposable module X is of the form 7'U(a), then ¢ is uniquely
determined by condition (i'), and we will write #( X) = .

PROOF OF THE LEMMA. If X = 7'U(a) for some t € N, and U(a) € U, then clearly
X is predecessor of AU, since there is a chain of 27 irreducible maps

1U(a) -» -+ - U(a).
Conversely, let X be a predecessor of AU, say of U(b). By condition (') there is z € Z
with 72X € AU, say 7°X = U(a), thus X = 7-*U(a). Now suppose z = 0. Then we
have a chain of irreducible maps
U(a) » +-- > 17°U(a) = X > --- > U(b).
Condition (ii) shows that X € 9L, thus z = 0.

(7.5) If % is a slice, then U(a) € 9 is called a sink for 9 provided for any
irreducible map U(a) - X with X indecompsable, we have X & QL.

LEMMA. Let % be a slice, U(a) € U a sink for U. If U(a) is projective, let 9L be
obtained from U be deleting U(a). If U(a) is not projective, let QU be obtained from U
by replacing U(a) by tU(a). Then U is again a slice,

PrOOF. (1) If f: U(a) - X is nonzero and noninvertible, then X ¢ QL.
PROOF. We can factor f through the minimal left almost split map (g,);: U(a) —
© Z,, say f = 3 fg,. For some i, we have f g, + 0. If X € U, then

i &
Ua)3z L x

implies that Z, € U, according to the slice condition (ii). However U(a) is a sink.



TILTED ALGEBRAS 433

(D If Y - U(a) is irreducible with ¥ indecomposable, then Y € AL
PROOF. Y is a predecessor of AL, thus Y = r'U(b) for some ¢t € N and some b.
There is a chain of irreducible maps

Ub) - -+ »17'U(b) = Y > U(a),

thus Y € A, according to (ii).

(3) If U(a) is projective, then QU is a slice.

Proor. For condition (i), let X be an indecomposable module which is a
predecessor of 9L, thus also of 9L. Since QU is a slice, 7~'X € QL for some r € N. But
r7'X = U(a) is impossible: namely, since U(a) is projective, we would have ¢ = 0,
however U(a) is not a predecessor of 9.

For condition (ii), let X, » X, = --- = X, be a chain of irreducible maps and
indecomposable modules, with X, X, € qL. Since 9L C AU, all X, belong to AU.
Assume X; = U(a), X, € 9L for some i. Since there is a nonzero map X, — X0
we get a contradiction to (1).

Condition (iii) is trivially satisfied.

(4) If U(a) is not projective, then again U is a slice. i

Proor. For condition (i') we only note that a predecessor X of @ is also one for
9, thus {r°X|z € Z} contains precisely on¢ module from @, thus also just one
from 9U.

For condition (ii), let

h f
X=Xy = oo =,

be a chain of nonzero maps and indecomposable modules. Consider first the case
that X,, X, both belong to A N 4L. Then all X, belong to A according to (ii), and no
X; = U(a) according to (1), thus all X, belong to AL. Consider now the general case.
Of course, we may suppose that no map f; is invertible.

If X, = 1U(a), let

(gj)j
0-7U(a) > ®U - Ula) =0

be the corresponding Auslander-Reiten sequence, the middle term being of the form
® U, with U, € AU, according to (2). Of course, all U, €A N QL. We factor now
f, = 2h;g;, and obtain at least one nonzero k,;: U — X,. Similarly, if X, = rU(a),
then for at least one ¢, the map g, £, is nonzero. Consider now the chain

h; f fr- &k
LG”j’Xl‘Z’Xz_‘ DX = U

here Uu,jean AL, thus by the previous consideration, all X; € q.

For condition (iii), assume there exists an oriented cycle Uy = U; » - = U, -
of irreducible maps and all U, € 9l. If one of the modules, say U, belongs to
AN 9L, then all belong to U, according to (i), but this is impossible due to (iii).
Thus all U, = rU(a). But this again is impossible, since there are no irreducible
endomorphisms.

This finishes the proof.
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(7.6) LEMMA. If 9 is a finite slice with slice module U, then Ext(U,U) = 0.

ProOF. Let U(a), U(b) € AU. The group D Ext'(U(a), U(b)) is a factor group of
Hom(U(b), TU(a)). Thus, let ¢: U(b) — 7U(a) be a2 nonzero map. Then we obtain a
chain of nonzero maps and indecomposable modules

U(b) » 1U(a) - * > U(a)

using the Auslander-Reiten sequence ending in U(a). Thus rU/(a) € A, according
to condition (ii), but this contradicts condition (i’).

(7.7) LeMMA. If QU is a finite slice with slice module Uy, and if Uy is also a tilting
module, then End(Uy) is hereditary.

PrOOF. Let A = End(Uy). Now the indecomposable projective A-modules have
the form P(a) = Hom(,Uy, U(a),), with U(a) € 9L. Also, if Y, is an indecomposa-
ble A-submodule of P(a),, then Y, = Hom(,U,, N;) for some indecomposable Ny,
and the inclusion Y, = P(a), is of the form Hom(,Uj, f), where f: Ny » U(a)gzis a
nonzero map. From Y, # 0, we obtain some nonzero map g: U(b), — N,, thus we
have the chain

g /
U(b)B - Ny - U(a)a»

and therefore Ny € U, according to condition (ii). This shows that Y, again is
projective.

(7.8) LEMMA. Let QU be a slice with a finite number of predecesors. Let Uy be the
corresponding slice module. Then p.d. Uy < 1, and if Q, is a projective module which is
a predecessor of A, then there exists an exact sequence

0-Qp— U= Ul -0
with U', U” € add Uj.

ProoF. For both assertions we use induction on the number p of predecessors of
. If p = 1, then U consists of a single module which is simple projective, thus we
have nothing to show.

Now assume the result is known for slices with p — 1 predecessors, and let U be a
slice with p predecessors. According to condition (iii), there exists a sink U(a) for .
Let U be obtained from by deleting U(a), and, in case U(a) is not projective,
addmg rU(a). According to 7.5, we know that 9, again is a slice and it is clear that
91 has precisely p — 1 predecessors. Let U be the slice module for 9.

Consider first the case that U(a) is projective, thus 9 C 9. By induction,
pd. Uy <1, and U, = U, ® U(a), thus p.d. Uy < 1. Also if Q, is projective and a

predecessor of AU, then either Q = U(a), or else 0 is even a predecessor of qL. In
the first case, we use the exact sequence

id
0—’ U(a)L»U(a) —»O——»O,

in the second case, we have, by induction, an exact sequence
0-0,-U;~> Uy -0
with U", U” € add U, C add U,
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Thus, it remains to consider the case of U(a) not being projective. Let Ann Uy be
the annihilator of Uy, and B = B/AnnUj. Also, let Q(1),...,Q(m) be the projective
B-modules which are predecessors of Uy and Q = ©2 lQ(a) By induction, any
Q(i), 1 =i < m, has an exact sequence

(+) 0—->Q(i)—>0'—>0"—’0

with U, U” € add 05; thus we see that Q, is cogenerated by UB, and therefore is a
B-module. Note that if X is a predecessor of 9, and Q(i) is indecomposable
projective satisfying Hom(Q(i), X) # 0, then Q(i) has to be a predecessor of U,
due to the fact that X has only finitely many predecessors. As a consequence, all
predecessors of AL are generated by Q,, and therefore are, in fact, B-modules, and
also Q(1),...,Q(m) are all the indecompasable projective B-modules. Finally, con-
sider the Auslander-Reiten sequence

0 - rU(a) » U = U(a) » 0

in M, and note that U € add U [we use that U(a) is a sink for U, see 7.5 (2)].
Since U’ is a B-module, the same it true for U(a), and thus the sequence is also an
Auslander-Reiten sequence in 9N ;. In particular, denoting by 73 and 75' the
Auslander-Reiten translation inside the category 9N 5, we have 75'7U(a) = U(a).

We claim that U is a tilting module. By induction, p.d.U; < I; thus also
P d. Ua < 1. Also, we have the exact sequence (*), and these are sequences of
B-modules. Finally, Ext L(Us, Ug) =0 according to 7.6, thus also Ext Uz Up) =
Also note that according to 7.7, the ring A= End(Ug) is hereditary. Let P(a); = :
Hom 3( U5, TU(a)5), then P(a)yis simple projective, since 7U(a) is a source for 9U.
The corresponding indecomposable injective module I(a); with soci(a) =
P(a)/rad P(a) is given by I(a); = DHom z(tU(a);, U;).We want to apply 7.3.
We consider the tilting module ;75 = D(;Uz), and the functors F, F': M ;- My
given by F(M;) = Hom j(;T; M), and F'(My) = Ext'{(5T;, M7). Then

F(1(a)z) = Hom (5T, I(a)5)
= Hom ;( D(;U;),D)Hom;{rU(a)5, ;Uz)
~ Hom ; (Hom;(+U(a)5, iUz ), iUz ) = 7U(a)3,
the last isomorphism being due to the fact that +U{a); is a direct summand of Uz,

and End(ﬁg) = A with respect to its canonical operation: namely consider the
canonical map

X5~ Hom(Homz( Xz, U5 ). Us), x> (prolx)).

It is an isomorphism for Xy = Uj, and therefore for all X;in add U
The connecting lemma shows that

F'(P(a)z7) = 15'F(1(a)5) = 75'1U(a) = U(a)5.
in particular, P(a); does not belong to add Ty Let I be the direct sum of the
indecomposable injective A-modules different from /(a). Then
F(I'® I(a)) =~ U;,
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thus, if Uy = @, U(b), then F(I')~ @, , U(b), and therefore
F(I') ® F(P(a)) = ( ® U(s)| @ U(a) = Uj.
b*a

According to 7.3, we know that this B-module is a tilting module. Thus every
B-module Q(i), 1 < i < m, has an exact sequence

0-0(i)-U—-U" -0
with U, U” € add Uy. Of course, these sequences are exact sequences of B-modules,

this finishes one part of the induction. Also, p.d.U; < 1, so there is an exact
sequence

0 Q4 = 5~ Uy~ 0
with @', 0” € add Q5. However Q is projective even as a B-module, thus also
Qp. Q7 are projective, and therefore this sequence is a projective resolution of Uy, as
a B-module; thus p.d. Uy < 1.

(7.9) End of the proof of Theorem 7.2: It remains to be seen that under the
conditions of Theorem 7.2, the slice 9 has only finitely many predecessors. Namely,

then it follows from 7.8 that p.d. U, < 1, and that any projective module Q ; which is
a predecessor of AU has an exact sequence

0-0,-2Up- Uy -0
with U’,U” € add U,. However, any indecomposable projective B-module Qp be-
longs to C, thus is of the form r?U(a) for some z € Z and some U(a) € U,
according to condition (i), and actually z = 0, since Q is projective. This shows that
any such module Qp is a predecessor of AL. Finally, Ext'y(U, U) = 0 according to

7.6. This shows that U, is a tilting module. By 7.7, its endomorphism ring is
hereditary. Thus, we only have to prove the following lemma.

LemMa. If QU is a finite complete slice in the component C, and C contains all
indecomposable projective modules, then U, has only finite many predecessors.

PROOF. Recall that any predecessor X of 9L is of the form X = 7 U(a) for some

U(a) €U and some number #(X) € N. Both U(a) and « X) are uniquely de-
termined by X.

(1) Let X, Y be indecomposable modules, and X — Y an irreducible map. If Xisa
proper predecessor of 9L, then Y is a predecessor of AL, and HX)=uY)

PROOF. We have X = r¥{/(a) for some 1(X) € N, U(a) € . Since X & U,
even t(X) > 0, thus X is not injective and there are irreducible maps

Y =2 ™" 1y(a) > - 5 U(a),

thus also Y is predecessor of . Therefore ¥ = 1 U(b) for some «(Y) € N, U(b)
€ Q. Assume we would have #(X) < «(Y). Then there are irreducible maps

Ula) —» 7' M=O0(p) o ... 5 y(p),

Yy— I . .. .. . . 1
thus 7 M~40Y(p) is in 9, according to condition (i), but this contradicts condi-

tion (i).

(2) If X, Y are predecessors of 9L, and Hom( X, Y) # 0, then ¢( X) = 1(Y).
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PROOI;. Assume t(X) < i(Y) = ¢. If X is not in %, there exists an irreducible map
X=X,> X, and amap f,: X, » Y with f,g, # 0. Namely, let (g),: X - ® X be
minimal left almost split, and f: X - Y nonzero. Since f cannot be an isomorphism
according to # X) < #(Y), there are maps f/: X; - Y with f = Zf’g/. Thus f’g/ # 0
for some i, and we let g, = g/, f, = f/. By induction, we construct a chain of
irreducible maps

& 4] Em
X:XO—»X]-)XZ—-) ‘e -—)Xm

and a map f,: X, — Y such that f, g, ---g, #0, as long as no X,,0<i<m,
belongs to Q. By (1), all X;,0 <i < m, are predecessors of U, and #( X)) < #( X).
(For, assume X,,, f,, 8,, are constructed, and X, & AU. Let (h;);: X, - Z be
minimal left almost split. Since £, is not an isomorphism, we obtain maps h}: Z, » Y
with f = Zhih,. Now 0 # f, g, -8 = Zhih;g,, - &, thus there is i with hh,g,,
g, #0. Let X, =2Z,g,.,=h, f,., = h.] Since U is finite, and #( X)) is
bounded by 1, there are only finitely many possibilities for X, thus the Harada-Sai
Lemma [10] shows that this process must stop, thus after a finite number of steps we
obtain X,, € U. Now Hom(X,,, Y) # 0 together with the fact that Y is a predeces-
sor of 9. implies that also Y € 9L, according to condition (ii), thus 1( X) = 0 = (Y),
a contradiction.

(3) U has only finitely many predecessors.

PRrOOF. Let Q be indecomposable projective. Since Q € €, we have 7°Q € U for
some z € Z, according to condition (1). However, the projectivity of Q then implies
2 <0, thus Q is a predecessor of 9. Let X be any predecessor of QL. Then there
exists an indecomposable projective module @ with Hom(Q, X) # 0, and therefore
1(X) < 1(Q), by (2). This shows that r( X), for X predecessor of U, is bounded by
max #(Q), where Q runs through all indecomposable projective modules. Since 9 is
finite, there only can be a finite number of predecessors of AU.

This finishes the proof of the lemma, and also the proof of Theorem 7.2.

(7.11) COROLLARY. Let B be a connected finite dimensional algebra, of finite
representation type. Then B is a tilted algebra if and only if the Auslander-Reiten quiver
of B contains a complete slice.

ProoF. This follows directly from 7.1 and 7.2, since the Auslander-Reiten quiver
of a connected algebra of finite representation type is connected.

REMARK. We have introduced the notion of a complete slice in order to be able to
formulate Theorem 7.2. Other authors have considered similar, however, weaker
notions such as “sections” [4] or “complete sections” [6). In the example of the

algebra B given by the quiver
B
ot

with relations aB = 0, a* = 0, the indecomposable projective modules form a com-
plete section in the sense of [6], however, B is not a tilted algebra (nor obtained from
a hereditary algebra by a sequence of tilts in the sense of [6]), since tilted algebras
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with only two simple modules clearly have to be hereditary. This contradicts a
conjecture of [6]. Also note that B has a section in the sense of [4] consisting of three
modules. Also related is a construction by Reidtmann [11] which however deals with
the universal covering of the Auslander-Reiten quiver of B, and not with the
Auslander-Reiten quiver itself. We will imitate her procedure in the next section
when constructing a complete slice starting from an indecomposable sincere repre-
sentation. Note however, that even for a tilted algebra of finite representation type,
the Auslander-Reiten quiver does not have to coincide with its universal covering. In
[8], Gabriel uses the notion of a slice for the special case of a translation quiver ZQ,
with O a Dynkin quiver, in a very similar way as we do.

8. Components without oriented cycles. Let B be a finite dimensional algebra.
Recall that an oriented cycle in the Auslander-Reiten quiver of B is given by a
sequence of indecomposable modules and irreducible maps

A T D SE 4

with m = 1.

(8.1) PROPOSITION. Let C be a component of the Auslander-Reiten quiver of B, and
assume there exists a complete slice in C. Then there are no oriented cycles in C.

PROOF. Let 9 be a slice in €, and assume there exists an oriented cycle
XO_’XI “"Xz" e “’Xmquo

inside C. Now for any i, there is z, € Z such that 7% X, belongs to QL. If 2, > 0 for all
i, then let z = miny,, z;, and apply 77 to the cycle. Similarly, if z, <0, let
Z = MaXpc;<pm Z; and apply 77 to the cycle. We therefore see that we can assume that

there is i with z, > 0 and j with z ; < 0. Using Auslander-Reiten sequences, we obtain
chains of irreducible maps

zl .« f
7){l_—> —>,\”,, )(j.—-)---—)/rz/,\’j,

thus combining with irreducible maps from the given oriented cycle we obtain a
chain of irreducible maps

z.
T,X;'_)'.._)‘Xi—)”._-)XO_’Xl_, ---._)Xm_)XO_)..._)Xj‘._).--—--),rzlx},

and the slice condition (ii) implies that all X; belong to AU, contrary to the slice
condition (iii).

(8.2) THEOREM. Let C be a preprojective component of the Auslander-Reiten quiver of
B containing a sincere indecomposable representation N -

Then € contains all indecomposable projective modules and also a complete slice, thus
B is a tilted algebra. In fact, there is a hereditary algebra A, a tilting module T,, and a
simple injective module 1 ,, such that B = End(7,), and Ny = Hom ,(,T,, I,)

P.ROOF. We fix a sincere indecomposable representation Ny in C. Let us call a
chain X, > X, » --- - X_of irreducible maps and indecomposable modules a path

from X, to X,,- Such a path will be called sectional provided X, _, » 17X, for all
I<ism-1.
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(1) Let O be indecomposable projective. Since Ny is sincere, Hom(Q, N) # 0.
Thus, since C is a preprojective component, there is a path from Q to N in €. In
particular, Q belongs to C.

(2) Let U be the set of all modules U in € with the following two properties:

(a) There exists a path from Uy to N, and

(B) any path from Uj to Nj is sectional.

We claim that 9L is a complete slice.

PROOF OF CONDITION (i): First, consider an indecomposable projective module
Q. According to (1), there is a path from Q to N. Now choose ¢ maximal such that
there is a path from 77'Q to N. The maximum exists, since N has only finitely many
predecessors. We claim that any path from +~‘Q to N is sectional. Otherwise, there is
a path of the form

R R TR S 1L

Now the modules X, 1 < <, cannot be injective. [Namely N, is sincere, thus if X,
is injective, then Hom g(N, X}) # (), thus, since X € C, there exists a path from N to
X;. On the other hand, by assumption, there is a proper path from X; to X,, = N,
thus we have an oriented cycle in C, contradiction.] Thus, for 1 <j < i, we obtain
from the irreducible map X,_, ~ X;, an irreducible map X, - 7“Xj. Thus,
altogether we obtain a path

'r_(’H)Q:T_]XO—) "'—*T_IXH

which we can combine with the given path from r~'X; to X,, = N in order to have a
path from 7-“*DQ to N, contrary to the maximality of ¢. This shows that r~Q € .
The same argument also shows that 77'Q is the only module in the orbit of Q under
™! which belongs to Q. Namely, for ¢’ < ¢, there clearly is a nonsectional path from
1770 to N, whereas for ¢’ > 1, there is no path at all from 7-/Q to N. The condition
(1) for a general module Y in € follows directly from the fact that Y is in the r-orbit
of a projective module.
PROOF OF CONDITION (ii). Let

5 £2 &m
XO—)X!_) _)Xm

be a chain of indecomposable modules and nonzero maps, with X;, X,, in 9. Since
X, €C, and Hom(X,_,, X,) # 0 for | <i<m, all X, belong to C, and there is a
path from X,_, to X,. We delete isomorphisms and replace the noninvertible maps g;
by chains of irreducible maps, thus obtaining a path from X; to X, which contains
all the given modules X,. Thus, without loss of generality, we may assume all g; to be
irreducible. We want to show that all X, belong to Q. Since X,, is in 9U, there exists a
path from X, to N. Combining this with the given path from X; to X,,, we obtain a
path from X, to N, thus showing («). Assume there exists a nonsectional path from
X, to N. Combining this with the given path from X, to X,, we clearly obtain a
nonsectional path from X; to N, contradicting that X, € Q. This shows (8).

The condition (iii) follows directly from the fact that there are no oriented cycles
n all of C.
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This finishes the proof that QL is a complete slice. Let U, be the corresponding
slice module, and 4 = End(Uj). According to 7.2, we know that Uy is a tilting
module, and A is hereditary. Let ;T, = D(,Uy), then also T, is a tilting module, and
End(T,) = B. By construction of U,, we know that N is a direct summand of Up,
thus Hom z( N, ,U,) is a projective left A-module which obviously is also simple.
Thus I, = D Hom gx( Ny, ,Uy) is a simple injective right A-module. Finally note that

HomA(BTA’ IA) = HomA(D(AUB)’ DH"mB( NB’AUB))
~ Hom ,(Hom 5( Ny, ,Up ), 4Us) = N,

the first isomorphism being due to duality, the second follows from the fact that ¥,
is a direct summand of Uy, and 4 = End(U,). This finishes the proof.

ReMARK. Using idempotents of A, we may reformulate the last assertion of the
theorem as follows: Under the assumptions of the theorem, there exists a hereditary
algebra 4, a tilting module T, and a primitive idempotent e of A such that

B=End(T,), N,=D(,Te).

Namely, let P, be the projective module with P, /rad P, =~ soc I, (=1,), and let e
be a primitive idempotent of 4 with P, = e4. Then we have

Hom,‘(ﬂ), IA) ~ DHomA(PA’BT:{) ~ DHomA(eAA’BTA) ~ D(BTe)'

(8.3) COROLLARY. Let B be of finite representation type with an indecomposable
sincere representation Ny. Then B is a tilted algebra if and only if the Auslander-Reiten
quiver of B does not contain oriented cycles. Also, in this case, there exists a hereditary

algebra A, a tilting module T,, and a simple injective A-module 1 s Such that
B = End(T,), and Ny = Hom(,T,, 1,).

PROOF. Since B has an indecomposable sincere representation, B is connected,
thus the Auslander-Reiten quiver of B is connected due to the fact that B is of finite
representation type. Now, if B is a tilted algebra, then 7.1 and 8.1 show that there
are no oriented cycles. Conversely, we use 8.2 in order to show that B is a tilted
algebra in case there are no oriented cycles in its Auslander-Reiten quiver. Namely,
since B is of finite representation type, any indecomposable module is either of the
form r~'Q with ¢ € N and @ indecomposable projective, or else 7-periodic. But the
existence of r-periodic modules would imply the existance of oriented cycles in the
Auslander-Reiten quiver. The second assertion follows again from Theorem 8.2.

(8.4) THEOREM. Let B be a finite dimensional algebra of finite representation type,

and assume the Auslander-Reiten quiver of B has no oriented cycles. Let Ny, Np be
indecomposable B-modules. Then dim Ny = dim N}, implies Ny~ Nj.

PROOF. Without loss of generality, we may assume that both Ny and Np are
sincere. For, let B = B/E where E is the twosided ideal of B generated by all
idempotents e with Ne = 0. Then N becomes a sincere B-module, and, since
dim N, = dim Nj, we know that E also annihilates N’ and that also N’ is sincere as a
B-module. Obviously, with B also B is of finite representation type. Also, an oriented
cycle in the Auslander quiver of B would give rise to an oriented cycle in the
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Auslander-Reiten quiver of B. According to 8.3, we know that B is a tilted algebra
and Ny = Hom(yT,, 1,) where T is a tilting module, B = End(T,), and I, is simple
injective. Since Hom(, T, I,) # 0 and I, is simple, we see that I, belongs to 5(T,),
thus Ny = Hom(,T,, I,) belongs to %, according to the Brenner-Butler theorem.
Recall that according to 3.2, there exists an isometry f: Gy(A) — G,(B), such that
for all A-modules M,

f(dim M,) = dim Hom (5T, M,) — dimExt ,(;T,, M,).

We claim that also N; belongs to (. [Otherwise, it would belong to %, thus
N; = Ext'(4T,, M,) for some M, € 5(T,); thus
dim I, = f~' dim Ny = /' dim N} = dim M,
impossible.] This shows that Ny = Hom(,T,,, M) for some M, in 9(T,), and
dim M, = f~'dim N; = [ ' dim N; = dim /.
However, this implies M, ~ 1,, and therefore Ny ~ Np.

REMARK. This generalizes a recent result of Bautista [4]. Namely, we note that
Bautista and Larrion [5] have given a sufficient condition for an algebra B in order
that its Auslander-Reiten quiver has no oriented cycles. In particular, if B is a factor
algebra of the path algebra of a quiver with underlying graph a tree, and is of finite
representation type, then its Auslander-Reiten quiver has no oriented cycles.

(8.5) As another consequence of 8.2 we obtain the following useful result on

indecomposable representations of algebras of finite representation type with Aus-
lander-Reiten quiver without oriented cycles.

THEOREM. Let C be a preprojective component of the Auslander-Reiten quiver of B
and N a module in C. Then:

(a) For e, e, primitive idempotents of B, and b € B the multiplication map
(-e,be,): Ne, — Ne,, xe, + xe,be, is either a monomorphism, an epimorphism or
zero.

(b) If Ny is sincere, then Ny is actually faithful.

PrOOF. Let B=B/AnnN. By 1.3 we know that the component of the
Auslander-Reiten quiver of B containing N again is preprojective, and in addition
Nj is sincere. Thus we can assume from the beginning that N is a sincere B-module.

According to 8.2 and using the remark at the end of 8.2, there exists a hereditary
algebra A, a primitive idempotent e of 4, and a tilting module ,T such that
B = End(,T), and N, = eT}. If ¢, is a primitive idempotent of B, then ,Te, is an
indecomposable direct summand of ,7, and for b € B, the multiplication map

('elbez): Te] - T82

is an A-module homomorphism. It follows from 4.1 that this map is either a
monomorphism, an epimorphism, or zero. Clearly, the same is true if we multiply
both Te,, Te, from the left by e; this proves (a). Now assume, in addition, that
Ny = eTy is sincere, thus Ne, = eTe, is nonzero for every primitive idempotent ¢,. If
e be, # 0, then the multiplication map (-e,be,) on Te, has to be a monomorphism

;
i ,A
I
L.
£
%
|54
i
b

ad
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or an epimorphism, thus also the restriction
(e be,): eTe, — eTe,

is 2 monomorphism or an epimorphism in particular: nonzero. As a consequence, Ng
is faithful.

(8.6) A tilted algebra B has global dimension < 2, thus on Gy(B) there is defined
the bilinear form (, ) with

(dim X,dim Y)= dim, Hom( X, Y) — dim, Ext'(X, Y) + dim, Ext}(X,Y),
and correspondingly a quadratic form

g(dim X) = (dim X, dim X).

THEOREM. Let B be a tilted algebra over an algebraically closed field k of finite
representation type, and x a positive element in Go( B). Then g(x) > 1 and there exists
an indecomposable representation X with dim X = x if and only if q(x) = 1.

ProOF. If X is indecomposable, then End( X) is a division ring, and Ext'( X, X) =
0, Ext?( X, X) = O since there are no oriented cycles in the Auslander-Reiten quiver
of B. Since k is algebraically closed, we even have End(X) = k, thus q(dim X) = 1.
Conversely, let x be a positive element in Gy(B). Choose a representation X with
dim X = x, and End( X) of smallest possible dimension. Assume Ext'(X, X)# 0.
Since Ext'( X", X") = 0 for all indecomposable modules X', there exists a decomposi-
tion X = X’ @ X” with Ext'(X’, X"") # 0. Let

0-X'-Y-X >0
be a nonsplit exact sequence. Then dimY =dim X = x, and dimEnd(Y) <
dim End( X’ ® X”) = dimEnd(X) (see [12]), contrary to the choice of X. Thus
Ext!'( X, X) = 0. Since dim End(X) = 1,dim Ext*(X, X) =0, we see that ¢(x) =
g(dim X)> 1. In case g(x) = 1, we conclude that End(X) = k, thus X is inde-
composable.

REMARK. Note that the proof above also shows that for a fixed x € G B), with
g(x) = 1, the variety of all representations of dimension type x is irreducible.

Namely there exists a unique indecomposable representation X with dim X = x,
and if X’ is decomposable with dim X’ = x, then Ext'( X’, X") # 0 shows that X" is 2
proper degeneration of some other module with smaller endomorphism ring, thus,
by induction, a degeneration of X.

Of course, if g(x) > 1, then the variety of all representations of dimension type X
may be reducible, as the example

a B
0-0-0, af=0, x=(111)
shows.
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