
D2.4 — Integration of domain specific
knowledge with the component model

Herman Bruyninckx

25/10/2014

Flexible robotic systems for automated adaptive packaging of fresh and
processed food products

The research leading to these results has received
funding from the European Union Seventh Framework
Programme under grant agreement no 311987.

Dissemination level
PU Public X
PR Restricted to other programme participants (including the EC Services)
RE Restricted to a group specified by the consortium (including the EC

Services)
CO Confidential, only for members of the consortium (including the EC

Services)



Table of Contents

1 Introduction & Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Knowledge representation — Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Knowledge representation — Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Milestone MS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2



1 Introduction & Overview

This Deliverable describes the work of Year 1 and Year 2 in using formally represented knowledge to increase
the flexibility of food processing modules, more in particular, to let the control software of individual machines
or modules configure its own food-specific functionalities on the basis of formally represented “ontology
knowledge”.

More in particular, the aim of Milestone MS1 is to allow the grasping of a cherry tomato by configuring
the visual sensing module and the grasp planning module with “magic numbers” coming from a tomato
ontology: color and shape parameters of the vine and the individual tomatoes attached to it; best grasping
positions on the vine; best approach and lift motions.

LACQ and, especially, DLO and KUL have been the main contributors to the research leading to this
Deliverable:

• LACQ has interacted with DLO for identifying the knowledge about how to grasp vine tomatoes and
for integrating that into LACQ’s pick-and-place robot system.

• DLO and KUL have cooperated in making DLO’s visual tomato detection and classification software
ready for runtime configuration via “queries” to a knowledge data base, based on the “System Com-
position Pattern” (explained in more detail in Deliverable D2.1).

• DLO and KUL have cooperated in the creation of a “tomato ontology” to formally capture the knowl-
edge required in the above-mentioned functionalities.

No working software implementation of the concepts and modules developed for Milestone MS1 have yet
been realised, but proof of concepts have been developed for all necessary “bits-and-pieces”.

2 Knowledge representation — Ontologies

DLO entered the Pick-n-Pack project with proven expertise in the domain of formal modelling of knowledge
(so called “ontologies”), more particular in the domain of physical units, [2, 3, 4]. This prior expertise is
indeed very relevant, since one of the major stumble blocks in flexible system integration is the fact that the
software of different modules implicitly uses incompatible physical units; for example, the mismatch between
expressing length in millimeters in one module, and in meters in another module, is a frequently occurring
situation that typically leads to integration errors that are hard to identify.

During the first two years of the project, DLO and KUL iterated multiple times on a document that
(eventually) contains the formal representation of “all” relevant knowledge about tomatoes, necessary to
detect, classify and manipulate them, [4] (attached as appendix to this document). During this research, the
still rather poor state of the art in formal knowledge representation showed up as an important “showstopper”,
in the following areas mainly:

• multi-scale knowledge: most of the ontology research is still limited to symbolic relationships, with
OWL and/or RDF being the representation languages of choice. These languages, however, have no
support to represent knowledge in the continuous scales of physical properties (especially time and
space), or of the discrete aspects of sensori-motor control, that is, the discrete switches in the sensing
and motion control of mechatronic devices, such as robots or food processing machines.

• n-ary and hierarchical relationships: OWL and RDF are also limited to “triples”, that is, a relation
that connects two concepts. A lot of the real-world relationships, however, connect more than two
concepts; for example, a food processing machine consists of multiple machines, interconnected in

3



multiple physical ways; one cherry tomato vine has connections to multiple tomatoes; the shape of
one tomato requires geometrical, texture and color models at various levels of detail, in various parts
of the food processing chain; etc.

The latter problem shows up in all projects in which KUL is acting as the integration partner, which has lead
to concrete suggestions to improve upon the state of the art in how to structure knowledge via hierarchical
hypergraphs, [1] (attached in appendix).

All above-mentioned problems are being tackled, step by step, in the ongoing DLO-KUL collaboration,
but progress remains slow, due to the lack of any similar knowledge representation activities worldwide that
the authors are aware of.

3 Knowledge representation — Software

To increase the “flexibility” of food processing lines is a major objective of the Pick-n-Pack project,1 and
software improvements are expected to contribute most to that objective. As in the case above of “ontolo-
gies”, also in the domain of formal knowledge representation about the software aspects of complex systems,
the state of the art is extremely poor. Especially when the ambition, as in Pick-n-Pack, is that the devices
themselves have sufficient knowledge about their structural and behavioural properties to be able to config-
ure the software components that must support the interactions between two or more modules. KUL has
realised rather unique contributions in the domains of formal representations of, both, software architectures
and task specifications for complex devices, [1, 5].

A “proof of concept” implemenation was realised, in which a software system was extended with a
“querying” component to retrieve configuration information from a “server” on the “internet”. Figs 1–2.
The Redland RDF Libraries2 were used as framework basis for this experiment.

4 Milestone MS1

The Description of Work of Work Package 2 of the Pick-n-Pack project states the following Milestone
summary: The component and Task-Skill-Motion models for a simple robot-gripper-sensor sub-system are
realised.

This has been achieved, but be it at a low Technology Readiness Level3, more in particular TRL3 :4

• for all of the necessary “bits and pieces”, progress has been made in understanding the problem, and
in providing proof of concepts in the implementation;

• the integration into something that could readily be called a “knowledge-driven component” of a
system with real-world functionality and performance has not been fully reached;

• the major (and still rather fundamental) “showstoppers” are:

– lack of maturity in tooling and frameworks for the knowledge representation at the symbolic,
discrete and continuous levels of abstraction, in an integrated way;

1Deliverable D2.1 has more information about how the project tackles these challenges.
2http://librdf.org/
3http://en.wikipedia.org/wiki/Technology_readiness_level
4TRL 3. Analytical and experimental critical function and/or characteristic proof of concept.

4

http://librdf.org/
http://en.wikipedia.org/wiki/Technology_readiness_level


Figure 1: A “proof of concept” implementation of automatic configuration of a software module via a
“query” to a knowledge server.

device
driver

C C C C

C C C C

device
behaviour

Ontology block

NW

"sparql_queryer" "translator"

C

Figure 2: Internal component structure of the “proof of concept” implementation of automatic configuration
of a software module via a “query” to a knowledge server.

– lack of formally represented knowledge: it is very labour-intensive to encode knowledge about
food products (or about any other domain, for that matter) in a formal way that can be used by
online reasoning components.

5



5 Conclusions

From the experiences of the first two project years, the most generically achievable breakthrough that the
Pick-n-Pack project will probably be able to realise is to produce food processing machine and module
software systems that are able to self-configure their interactions, to the level of the mechatronic hardware.

Self-configuration of the modules’ food processing functionalities with the knowledge about individual
food products will see a proof of concept integration, with insufficient amounts of useful knowledge available
to improve upon the existing practice of fully manual “tuning” in a commercially viable way.

The efforts to reach a full knowledge representation are just too heavy to realise completely in the
context of a research project, and only because realistic under conditions of commercial exploitation of those
efforts. Nevertheless, the “proof of concept” realisation contains all the necessary components to base such
a commercial version on.

References

[1] Herman Bruyninckx, Azamat Shakhimardanov, Markus Klotzbücher, Hugo Garcia. Hierarchical Hyper-
graphs for Knowledge-centric Robot Systems: a Composable Structural Meta Model and its Domain-
Specific Language NPC4. Final draft, to be submitted to Journal of Software Engineering in Robotics.

[2] Hajo Rijgersberg. Semantic support for quantitative research. PhD Thesis Vrije Universiteit Amsterdam,
2013.

[3] Hajo Rijgersberg, M. F. J. van Assem, and Jan L. Top. Ontology of Units of Measure and Related
Concepts, Semantic Web, 4(1):3–13, 2013.

[4] Hajo Rijgersberg, Gert Kootstra, Evert Jans, Herman Bruyninckx, Jan Top. PicknPack Ontology. Version
20140313, 2014.

[5] Dominick Vanthienen, Tinne De Laet, and Herman Bruyninckx. Systematic Robot Application Develop-
ment: Applying the Composition Pattern to Constraint-Based Programming. Submitted to IEEE Robotics
and Automation Magazine, 2014.

6



PicknPack Ontology
Hajo Rijgersberg, Gert Kootstra, Evert Jans, Herman Bruyninckx, Jan Top
Version 20140313 (the document)

Here a new update of the ontology proposal for the PicknPack project. I have translated the 
document (from Dutch) and added new chapters on states, and contexts and tasks, based on 
a meeting Herman, Evert and I had in Leuven in February this year.

Contents:
1 Vine fruit hierarchy
2 Shape
3 Shape and radius
4 Color histogram
5 State
6 Context
7 Task
8 Future outlook

1 Vine fruit hierarchy

First of all the component vine fruit hierarchy (don’t be overwhelmed by the picture):

At the highest level we define Vine_fuit, Vine_fruit_truss, Vine_fruit_stalk, Vine_fruit_peduncle and 
Vine_fruit_calyx. These classes have a property “orientation”. “The ontology of Herman” is meant to be
used to model orientations, positions and other geometric aspects. For the moment we assume that 
the range of the property is the class Orientation. 
Relations between abovementioned classes are defined using the property has_part and its inverse 
is_part_of, and is_connected_to (a symmetrical relation). The property is_connected_to has got a 
property itself, namely position. Also the range of that property should be modeled using the ontology 
of Herman; for the moment we assume that the range is Position.
At the second level we define the classes Vine_tomato, _truss, _stalk, _peduncle, and _calyx.
At the third level we find Middle_tomato, _truss, _stalk, _peduncle, and _calyx. The middle tomato is 
the product that we focus on in this project. One subclass for middle_tomato is included in the 
diagram: Cherry_tomato. But of course there are more, such as:



2 Shape

Now the component shape:

At the right we see the column Vine_fruit, Vine_tomato, Middle_tomato, Cherry_tomato from the 
previous chapter. At the left we see a hierarchy for shape.



We see that Vine_fruit has a relation “shape” with the class Shape.
At the level of Cherry_tomato this relation is restricted to Sphere. The defined shapes are of course 
geometrically perfect shapes. In practice one will find no single tomato with such perfect shape. 
Perhaps we have to define a measure of deviation from the ideal shape and margins how much it may 
deviate. In fact, margins are important with every concept. One way to deal with margins is to define 
intervals – we will do that in the next chapter. Other methods are defining distributions (normal 
distribution, uniform distribution, etc.) or define concepts such as tolerance and deviation as properties
of quantitative properties.
Relations may exist between 2D and 3D shapes. One example is included in the figure: the relation 
Mercator_projection of Sphere to Circle. Many, many other kinds of projections are of course possible. 
At this moment we will not give priority to this subject.
One open question is how we can indicate at the the level of Sphere that radius_1 = radius_2 = radius.

3 Shape and radius

Now I would like to discuss how to specify specific radii for Cherry tomatoes. We will do this using OM, 
the Ontology of units of Measure and related concepts, because units are involved.
The radius of the shape will be specified for a Shape instance, not for the Cherry tomato itself. As a 
consequence a specific Cherry tomato will have to have a specific Sphere as shape:

cherry_tomato_123456 is an instance of Cherry_tomato, and ________ is an instance of Sphere (this 
represents an anonymous instance). This figure represents a structure like:

cherry_tomato_123456.sphere.radius = 2.6 cm.

The value of the radius, _2.6_cm, is an instance of the class om:Measure:



Now we would like to postulate at Cherry tomato level that the radius is always between, say, 2 and 3 
cm. For this reason it is necessary that the shape of a Cherry tomato refers to a particular subclass of 
Sphere instead of Sphere itself:



Now we would like to restrict the radius of the new class Sphere_with_radius_between_2_and_3_cm to
a measure between 2 and 3 cm. It may look as follows then (don’t be afraid):



At the left of the figure we see the same tomato and Sphere classes as in the previous figure. Now we 
also show the infrastructure for the radius of the class Sphere_with_radius_between_2_and_3_cm. On 
top we see the class om:Measure again from the previous figure. To the right the class 
om:Unit_of_measure. This one has got (indirectly, through subclass om:Unit_multiple_or_submultiple, 
which represents prefixed units such as kilogram and millimeter) the instance om:centimetre.
We have defined the class _2-3_cm_measure (subclass of om:Measure) and have restricted its 
(datatype) property numerical_value in such way that the minimum and maximum values of the 
property are specified. We have done this using the XSD properties minInclusive en maxInclusive. XSD
is a standard ontology that is being used together with RDFS or OWL.
We have restricted the property unit_of_measure to om:centimetre.

4 Color histogram

And now the component color histogram.



I have tried to follow the idea of NetCDF as much as possible. I’m not sure whether I have succeeded 
sufficiently. For example, in NetCDF one has to specify explicitly the hue and saturation intervals, 
where we leave this implicit (we only specify the numbers of bins, not exacly which bins). Also (for the 
time being) we leave implicit how many hue, saturation, and frequency intervals there are and – above
all – what the dimensionality of the variables is (particularly relevant for the frequency variable, which 
has the dimensions hue and satuariation). Finally, in our approach the structure of the variable values 
is (for now?) quite flat (particularly relevant for the frequency values): all rows sequenced. In fact all 
rows should be surrounded by braces, such as in (a human-readable conversion of) NetCDF, as well as 
the entire dataset.

The different variables can be regarded as quantities:

5 State

As to states, the point is that every object can have different states, at different moments in time for 
example. As a consequence, we can’t store these states at the objects as defined in Chapter 1, since 
these objects are static. Our idea now is to define for each object class a state class, which can be used
to store the values of the different states.



I have tried to represent this in the diagram above. I immediately admit it’s not a very clear drawing. 
It is based on the first figure of Chapter 1. In fact I have “doubled” it with state classes (one state 
class for each object class). Every state class refers to its original object class.
In the upper left class I have included some variable properties, such as time (t), temperature (T), etc.
In fact a state as defined in this diagram can be seen as a state space. (One state (space) can, by the 
way, be regarded as a record of a table referring to only one object, but I will leave this sideway for 
now).

6 Context

A context represents a combination of objects, representing a particular situation, for example a 
gripper that holds a vine fruit truss, or a vine fruit truss that’s in a production line, etc. It is important 
to be able to store knowledge about such situations.
A gripper that holds a vine fruit truss can be seen as a state, since a gripper does not always hold a 
vine fruit truss. This may be modeled in the below way (similar to the approach in the previous 
chapter):

However, it is not possible to store the information specific for certain combinations of objects – i.e., 
contexts. The diagram only indicates which possible combinations may be made; it does not represent 
the combinations as such. So, we define the concept Context for this purpose, with a property has_part
using which the desired combinations can be specified:



In the example of an instance of such a context gripper-vine_fruit_truss, the property has_part refers 
to the classes Gripper and Vine_fruit_truss:

Note that information about the realised states appears in the “common” part of the ontology (as 
described in Chapter 1) and the states part (previous chapter). The concept context is meant to store 
(generic) knowledge about such situations. I do not think we should define a concept “context state”, 
as we have discussed (Herman, Evert and I).

7 Task

A task can be seen as a process: e.g., pick a tomato from a bin, put a tomato on a belt, inspect a 
tomato with vision technology, as well as the incorporating task, i.e., the entire production line. 
Hardware and software specifications are related to these tasks.
Here’s a preliminary diagram:

I am thinking about whether these tasks are generic, or specific (realized) information should be 
stored. Then we should think of state versions of these concepts too. For further discussion.
Realizations of these task can be implemented as instances of these classes. Likely, we also need state 
versions of these classes (like in Chapter 6) to store specific combinations of conditions (times, 
temperatures, etc.)

8 Future outlook



Especially Chapters 6 and 7 need to more worked out, to my feeling. Let’s see the current descriptions 
as input for discussion.
In the future we would like to focus on how to link histograms to components that can be recognized in
images: fruit, shadow, light/lighting, free space, background, etc. The concept image will have to be 
defined. The concept pixel is probably not required, because that will happen on histogram level. In 
other words, to a histogram will be linked which type pixel (fruit, stalk, etc.) is represented. In a later 
stage more about this subject.
Also the concepts that are related to the robot will have to be defined: gripper, arm, production line, 
belt, etc.



(Draft version. Not for distribution.)

Hierarchical Hypergraphs for Knowledge-centric Robot

Systems: a Composable Structural Meta Model and its

Domain-Specific Language NPC4

Herman Bruyninckx,1,2 Azamat Shakhimardanov,1

Markus Klotzbücher,1 Hugo Garcia1

1University of Leuven, Belgium
2Eindhoven University of Technology, the Netherlands

October 4, 2014

Abstract

Many robotics applications rely on graph models in one form or another: perception via probabilistic graph-
ical models such as Bayesian Networks or Factor Graphs; control diagrams and other computational “function
block” models; software component architectures; Finite State Machines; kinematics and dynamics of actuated
mechanical structures; world models and maps; knowledge relationships as “RDF triples”; etc. In traditional
graphs, each edge connects just two nodes, and graphs are “flat”, that is, a node does not contain other nodes.

This paper advocates hierarchical hypergraphs as the more fundamental structural meta model : (i) an edge
can connect more than two nodes, (ii) the attachment between nodes and edges is made explicit in the form
of “ports” to provide a uniquely identifiable view on a node’s internal behaviour, and (iii) every node, edge
or port can in itself be another hierarchical hypergraph. These properties are encoded formally in a Domain
Specific Language (or “meta model”), called “NPC4”, built with node, port, connector, and container as key
language primitives, and contains and connects as language primitives. The explicit introduction of the four
“c”-primitives is key to NPC4’s composability as a modelling language.

NPC4 models only the structural aspects of a system, but application-specific connection policies and be-
haviours can be added systematically. This applies, in particular, to application-specific visualisations, knowl-
edge relationships, and causality definitions, all of which are very centred on domain knowledge and show the
need for formal ways to represent context. Contexts are a challenge for traditional graphs, since they are seldom
non-overlapping.

1 Introduction

Everywhere in robotics, graph-based models show up
as formal model of concepts, knowledge, software, sys-
tems, etc. Graph models are good at separating the
structural and behavioural parts of a design, that is,
the graph only represents which nodes interact with
which other nodes, without describing the dynamical
behaviour inside the nodes, or of the interaction dy-
namics between nodes. Below is a non-exhaustive list of
examples of graph-based modelling use cases in robotics,
where nodes, edges and (sometimes) ports are the build-
ing blocks of the graphical models:

• software architectures, as in Figs. 1–2. Typically,

each node represents an input-output relationship
that is dynamic and time-varying, while the struc-
ture of the interactions (i.e., the edges and the
ports) does not change over time. Some frame-
works offer hierarchical composition (e.g., Simulink
[46] or Modelica [34]), at least in the modelling part
of system design.

• kinematics and dynamics of actuated mechanical
structures, as in Fig. 3. The joint nodes contain ac-
tuator dynamics, and the link nodes contain rigid-
body inertia dynamics; the edges represent connec-
tivity, modelling which actuators and links are con-
nected, that is, exchanging energy. Hierarchy is

1



functional
Computation

constraint
flow

monitor Computation

Coordinator

constraint
flow

Configurator

events

functional
Computation

constraint
flow

monitor Computation

Coordinator

constraint
flow

Configurator

events

d
a
ta

tra
n

sa
ctio

n
s

monitor Computation

Coordinator
events

composite Component

Configurator

Composer Composer

Scheduler
Scheduler

Scheduler

Composer

Figure 1: Structural model of a composite component
software architecture [47]. Nodes represent software re-
ponsabilities; edges represent data flows.

sensors actuators

software
hardware

actuator
control

joint
control

Cartesian
control

"current"
setpoint

actuator
constraint

joint
constraint

Cartesian
constraint

m
o
ti

o
n

 c
o
n

tr
o
l 
s
ta

c
k

actuator
value

joint
motion

Cartesian
motion

a
ct

io
n
 d

a
ta

 b
u
s

p
e
rc

e
p
ti

o
n
 d

a
ta

 b
u
s

motion
constraints

actual
motion

joint &
actuator

constraints

actuator
constraints

Figure 2: “Reference architecture” for a motion con-
trol stack of software components. The nodes are
the rounded rectangles, representing control or in-
put/output activities; the edges are lines connecting
the coloured ports, which give access to variables inside
nodes.

possible, e.g., a spherical joint can mechanically be
realised by a parallel mechanism.

• Finite State Machines, as in Fig. 4, are often used
to model the discrete aspects of the behaviour of
a robot control system. That is, what activities
must be running in the system in concurrent ways,
and based on which events the system must switch
its overall behaviour to another set of concurrent

Cartesian
point

trajectory

joint
limits

Cartesian
link

trajectory

rigid connection
to environment

sliding contact
with

environment

centre of
gravity

trajectory

soft Cartesian
point trajectory

sensor
space

Figure 3: A generic tree-structured kinematic chain
with possible task requirements on the chain’s joints
and links. Nodes represent actuated joints and rigid-
body links; edges represent (dynamics-less) connections
between nodes. Ports are typically not used, which
hinders the methodological extension of the structural
chain model with very relevant components such as ac-
tuators, transmissions, sensors, geometry, or tasks.

activities. States are connected via so-called “tran-
sitions”. Structural hierarchy is used to simplify
the modelling of the interconnections: all states in-
side a composite state react to the same event in
the same manner.

State
2.1

State
2.2

State1

E_1 E_2

State2
E_21

State
2.1

E_24
E_23

E_22

Figure 4: An hierarchical Finite State Machine. Nodes
represent states, and edges represent state transitions;
ports are typically not used.

• probabilistic graphical models such as Bayesian Net-
works or Factor Graphs, Figs 5–6. Nodes represent
information as captured in “random variables”;
edges represent probabilistic relationships which
govern the interaction between the random vari-
ables in the connected nodes. Hierarchy is only part
of the textbook vocabulary of probabilistic models

2



in the form of the plate notation, Fig. 7.

X(k)

Y(k)

U(k)

X(k+1)

Y(k+1)

U(k+1)

X(k-1)

Y(k-1)

U(k-1)

Figure 5: A simple dynamic Bayesian network, repre-
senting for example a Kalman Filter. The nodes contain
the random variables in the network, and the edges rep-
resent probabilistic relationships between random vari-
ables; ports are typically not represented. However, the
model does not allow to indicate which of the random
variables in each node are involved in each of the rela-
tionships represented by edges; for example, in general,
only some of the input variables U(k-1) influence the
output variables Y(k-1).

• control diagrams and other computational mod-
els, such as the Cartesian position control scheme
of Fig. 8; popular instances are Simulink [46] di-
agrams, or Bond Graph [1, 8, 24, 38, 39] models
in 20Sim [14]. The separation of structure and
behaviour is similar to the above-mentioned cases
of software and kinematic models: nodes represent
“dynamics”, edges represent interaction of informa-
tion or energy.

• knowledge representation networks, such as the “se-
mantic web” (represented often by the RDF, OWL
or TopicMap languages) or the robotics KnowRob
[44] (using also Lisp and Prolog as representation
languages). Nodes represent facts, data, term,
etc., and edges represent relationships. RDF and
OWL can only represent “triples” relationships;
Lisp and Prolog statements have the semantics of
S-expressions (or “expression trees”). Topic Maps
represent more general graphs, but without hierar-
chy.

• web applications: the design behind HTML5 [50]
brings a significant change compared to older ver-
sion of the standard, and most of that change comes
from looking at web-based applications as an hier-
archical network of interacting components. The
nodes are HTML5 primitives, such as Web compo-
nents [36], or HTML templates; the edges represent

x y z

u

x y z

uBayes network

Factor graph

Probabilistic relationship:

Figure 6: A probabilistic relationship and its corre-
sponding Bayesian Network and Factor Graph repre-
sentations. The Factor Graph is one of the few examples
where hyperedges are first-class citizens of the graphi-
cal model; the advantage is visible in the figure: the
Factor Graph can be linked one-to-one to the semantics
it represents (i.e., the probabilistic relationship), while
the mainstream Bayesian Network representation can
do that only partially.

X

sat

n

Figure 7: The so-called plate notation is one of the
few examples where hierarchy is a first-class citizen of
probabilistic graphical models. The plate is the rounded
rectangle, and it represents n copies of the graph it con-
tains, in this case, just one single random variable sat

in the round node.

bi-directional data binding supported by JavaScript
as in AngularJS [25]; ports are the sockets of all
kinds that are commonly used in the Web. This
evolution of the Web towards separation between
structure and behaviour will make it a lot easier to
use HTML5 for building graphical user interfaces
that match well to the architectures of complex,
distributed robot systems.

3



IDaq = J�1�ax � _J _q�IAK

FPK
FVK

KvKp
++ ++

+ -
-td(t)

tdd(t) teed
tee

_q(t)
q(t)aqax_td(t) FD� dist

+

� =cM(q)aq+ bc( _q; q)+ bg(q) + +� act M(q)�q + c( _q; q)+ g(q) = �SYSTEM

Figure 8: A generic Cartesian control diagram for posi-
tion controlled robots. The nodes contain computations
on variables in the diagram, and the edges represent (di-
rected) transfer of such variables between nodes; ports
are typically not represented, as is hierarchy. However,
the latter is present in most controllers, via the implicit
structural primitive of cascaded control loops, that is,
an “outer” control loop around an “inner” loop.

All graph models in the paragraphs above represent the
structure of the interactions that are represented by
their edges, and their nodes are the containers for the
different kinds of behaviour that the model represents.
Some models support hierarchy (i.e., a node can con-
tain a full graph in itself), and some support hyperedges
(i.e., one edge can link more than two nodes). Some
models introduce the concept of a port (such as soft-
ware models, Bond Graphs, or HTML5) as a “view” on
part of the internal state of the node it is connected to,
and (hence) serving as an explicit “attachment point”
for interactions via edge connectors.

A hierarchical hypergraph is a good formal represen-
tation to cover all the compositional structure discussed
above, more particulary, via the property (“has-a”),
containment (“part-of”) and connection (“interacts-
with”) primitives. (Such formalized structure is called
a mereotopology, see [7] and references therein.)

Each application domain needs more than a struc-
tural model alone, obviously; the approach in this
paper makes sure that structure and behaviour are
strictly separated, but at the same time composabil-
ity is a first-class design driver, and a systematic
method is explained to attach an application domain’s
own behavioural model(s) (its “is-a” relationships) to
the structural model represented by hierarchical hyper-
graphs.

Support for hierarchical hypergraphs, including ports,
as first-class citizens in the model is a rare exception,
e.g., in the examples above, only FSMs, Factor Graphs
and HTML5 have them in their models, at least implic-

itly. Nevertheless, hierarchical, port-based, multi-node
interactions are common in all engineering disciplines,
as major modelling instruments to deal with complex-
ity. Most practitioners in the field of (robotics) system
design are not aware of the fact to what extent their
modelling languages and tools restrict their flexibility
in modelling the designs of their systems.

In robotics software engineering, most projects1 even
do not have explicit structural models, since they pro-
vide only source code; at best, “models” are only used as
informal means of documentation, to be understood by
the human developers, but not by the robots themselves
during their runtime activities, nor by software tooling
to support (semi) automatic code generation. There are
a few exceptions that (i) provide explicit formal models
(for example, Proteus [27], or OpenRTM [2, 35]), and
(ii) support hierarchical hypergraph models implicitly
(for example, Mathlab/Simulink or 20Sim, the ROCK
toolchain for Orocos [9, 12, 11, 29], or the “plate no-
tation” in probabilistic graphical models, Fig. 7). None
of those, however, support the full flexibilty that hi-
erarchical hypergraphs provide to model the structural
aspects of complex systems. This restriction becomes a
more and more important design bottleneck in robotics,
since modern robotic systems are increasingly depend-
ing on runtime use of knowledge, and the “flat triple
spaces” that are standard in common OWL-based [48]
semantic web approaches to knowledge representations
[3] have proven to be extremely difficult to maintain,
adapt, reason with, and compose. The latter problem,
more particularly, is caused by the lack of support for
hierarchy in OWL or RDF.

Objectives and overview The aim of this paper is
to improve the modelling flexibility that robot system
developers have in tackling these complexity challenges,
by introducing them to an hierarchical hypergraph meta
model2 they can use to tackle all of the above-mentioned
use cases, and many more, in a methodological way. The
core idea in the methodology is the insight that all sys-
tems have a structural part (that is, the model that rep-
resents (i) which subsystems interact with which other
ones, and (ii) how their internal structure looks like),
that can be fully separated from their behavioural part
(that is, the model of the “dynamics” of the subsys-
tems). Being aware of that separation of concerns, and
having access to a formal modelling language that sup-
ports it, is expected to help a lot (i) to let human devel-

1Including popular “open source” projects such as ROS, Oro-
cos, OpenCV, PointCloudLibrary, etc.

2A meta model is a language with which to create concrete
models of a system in a particular application domain or context,
[4, 6, 37].

4



B

A

XC ...

Figure 9: A simple Bayesian network in which the tra-
ditional graph structure mis-represents the real inter-
action between the random variables in the nodes: the
network is a graphical representation of the n-ary prob-
abilistic relationship p(A|B,C, . . . ,X), while the arrows
suggest only binary interactions. The Factor Graph
model of Fig. 6 is a better graphical representation of
the real n-ary interactions.

opers express their system designs in a more method-
ological way, and, hence, (ii) to enable a huge gain in
development efforts for software representations, tool-
ings and implementations.

Section 2 explains the semantics of what this paper
understands under the term “hierarchical hypergraph”,
since that concept is, surprisingly, not part of the main-
stream literature. Section 3 elaborates further on the
semi-formally described core conceots, and create a fully
formal language for hierarchical hypergraphs, in the
form of a Domain Specific Language (“DSL”, or “meta
modelling language”). The language is called NPC4,
inspired by the first letters of its core primitives and
relationships: node, port, connector, container, and,
respectively, contains and connects. The contain re-
lationship represents hierarchy, the connects relation-
ship represents hyperedges.

Section 4 looks back at the use cases introduced
above, and explains how NPC4 can be used as the basis
for their structural models.

2 Hierarchical hypergraphs

This Section motivates why the robotics domain has
to adopt hierarchical hypergraphs, instead of traditional
graphs, as its main structural meta model. The motiva-
tion is found from a list of examples (Sec. 2.1) that illus-
trate various ways in which the use of traditional graphs
introduces erroneous ways of representing (and hence,
“reasoning”) about complex systems. The situation is
critical since many users of graph models are not aware
of these problems, or cannot formulate them by lack of
an appropriate and semantically well-defined language;
such a language, NPC4, is introduced in Sec. 3.

2.1 Bad practices

Traditional graphs have nodes and edges as model
primitives (such as in, for example, Fig. 5), and most
practitioners feel very comfortable with usign them as
graphical primitives for modelling. However, traditional
graphs have a rather limited expressiveness with respect
to composition, that is, to model the structural prop-
erties of a system design. Here is a list of commonly
occurring “bad practices” in using traditional graphs to
represent the semantics in system models:

• an edge can only connect two nodes, while many
structural interactions are so-called n-ary relation-
ships, that is, more than two (i.c., “n”) entities in-
teract at the same time, and influence each other’s
behaviour.

Obvious examples of n-ary relationships are
“knowledge relationships”, such as the (still ex-
tremely simple!) Bayesian network of Fig. 9. But
also motion controllers of robotics hardware must
deal in a coordinated way with all the links, joints,
sensors, actuators, and their interactions via the
robot’s kinematic chain.

• the structural model is flat, in that all nodes and
edges in the model live on the same “layer” of the
model. However, hierarchy has, since ever, been a
primary approach to deal with complexity in design
problems.

Again, knowledge relationships are prominent ex-
amples of where the problem of flat structural mod-
els is very apparent: here, hierarchy is equivalent to
context—that is, the meaning of a concept depends
on the context in with it is used—and context is an
indispensable structure in coping with the infor-
mation in, and about, complex systems. Another
prominent “bad practice” example are the popu-
lar (open source) robotics software frameworks, like
ROS or Orocos: they do not support hiearchical
composition of software nodes, the consequence be-
ing that users always see all the dozens, or even
hundreds, of nodes at the same time. This makes
understanding, analysis and debugging of applica-
tions difficult.

• edges have no behaviour and just serve as topologi-
cal symbols representing the logical state of two (or
more) nodes to be “connected” or “not connected”.

However, almost all of the use cases in the Introduc-
tion have edges that do exhibit dynamics, e.g., the
communication channels between software compo-
nents (time delays, buffering,. . . ), the mechanical

5



dynamics of joints and actuators in robotics hard-
ware, etc.

• interactions are uni-directional (in the case of di-
rected edges in a graph model), that is, the graph
assumes that each “partner” in an interaction can
influence one or more other “partners”, without
ever being influenced by those partners in any way.
Nevertheless, bi-directional interactions are the ob-
vious reality, in physical interactions (including
man-machine interactions), as well as in compu-
tational, knowledge and information interactions.

Again, the recent ROS (and, to a lesser ex-
tent) Orocos practice (but also earlier practice
in robotics such as [43]), illustrate this problem:
software nodes are only exchanging data with
each other via so-called publish-subscribe protocols,
which work only in one direction, namely from the
publisher node to the (possibly multiple) subscriber
nodes. In addition, publish-subscribe introduces a
policy (hence, “behaviour”) of how messages are
being delivered from publisher to subscriber. Few
frameworks allow to separate the structure and be-
haviour of their communication interactions; one of
the better examples is ØMQ [28].

Another “bad practice” are control diagrams: the
directed edges in, for example, Simulink [46] di-
agrams, can only represent input/output interac-
tions between computational nodes, which prevents
a “downstream” computation to influence the be-
haviour of the “upstream” nodes; saturation of a
“block” or “channel” being one of the simplest and
common examples of this problem.

Nevertheless, there are other computational tools,
like 20Sim [14], that do not oblige their users to use
only uni-directional interactions, since they offer
so-called Bond Graph-based modelling primitives
[1, 24, 38, 39], that allow to represent the physi-
cal bi-directional energy interaction of dynamical
nodes.

The opposite of the later problem also occurs: directed
arrows are used in graphical notations while the rep-
resented interaction is really bi-directional, hence re-
sulting in semantically misleading or too constraining
models. For example, the probabilistic information in
Bayesian networks does “flow” in both directions along
an edge. Also in this context, hierarchical3 models are

3The hierarchy discussed in this paper is that of nodes and/or
edges being compositions of other nodes and edges themselves.
This is a semantically different kind of hierarchy then what is
called hierarchical Bayes models in probabilistic modelling, that
indicate models whose topology is a tree with the same kind of
nodes at each layer of the tree.

(very slowly!) starting to be used [22, 17, 20, 33] because
of the complexity of integrating “local” and “global”
features in sensor data, and of combining them with
the knowledge available about the objects whose sensor
features the system can observe.

A

B

C X

i

j

D

p

q
r

n

s

m

Figure 10: A concrete model of a hierarchical hyper-
graph relationship. The nodes A and X are at the top
of the hierarchy. The nodes B, C and D are contained
inside node A. The connectors “i” and “j” link ports
on nodes. The container “m” gives the context of the
whole composition and allows to refer to it from other
models.

2.2 Model primitives in NPC4

This Section defines the complementary modelling con-
cepts of hyperedges and hierarchical graphs; Sect. 3 later
introduces a language to represent them formally. The
core of the language are the structural relationships
between the Node, Port, Connector and Container

primitives, illustrated in Figure 10:

• has-a: a Port can exist on itself (e.g., when it is
still “floating” during the construction of a model
in a graphical tool), but the behaviour of a Port is
only defined by the Node behaviour behind it. So,
only statements of the following type are semanti-
cally valid:

has-a(node-B, port-p), (1)

whose semantics is that the node with name node-B
has a port with name port-p, and it is through this
port that the node can be connected to other nodes,
via a connector. So, since ports can belong only
to nodes, statements of the following type are not
semantically valid: has-a(connector-i, port-p),
or has-a(container-m, port-p).

• connect: a Connector forms an hyperedge be-
tween (Ports on) several Nodes. So, statements
of the following type are semantically valid:

connects(connector-i, node-B, Port-p). (2)

6



• contains: the containment hierarchy of Node,
Port, Connector and Container is represented by
statements of the following type:

contains(M, N), (3)

with both M and N being a container, node, port,
or connector.

Compared to traditional graphs, the presented model
splits the “edge” primitive in two,“port” and “connec-
tor”, in order to allow “behaviour” not just in the nodes
and the edges, but also in the “places” where both are
attached to each other. The motivation for this choice is
the requirement of hieararchical composition: at a cer-
tain level of abstraction of a system model, a Port might
be completely passive, without behaviour, because that
behaviour only appears when going to deeper levels of
abstraction. A typical example is communication: two
nodes connected with communication middleware send
and receive data through socket ports, at the application
layer, but when going inside such a socket at the level
of the operating system, lots of activity becomes visible:
packet composition, encoding, timestamping, etc.

The container primitive is an essential and novel ad-
dition to graph models, to represent a structural prim-
itive of containment that carries no behaviour, but is
needed for information purposes only. More precisely,
the container model primitive is needed to store meta
data, such as: unique identifiers; references to the mod-
elling languages in which the nodes, ports or connectors
inside a container are expressed; references to ontolo-
gies that encode the semantic meaning of the model;
version numbers; etc. But most importantly, to con-
tain the model of the hierarchical hypergraph that is
embedded in the container.

The term composition is used to denote any combi-
nation of the three relationships has-a, connects, and
contains.

2.3 Examples of NPC4 models

Figure 10 illustrates the has-a and connects relation-
ships on a simplistic, artificial example of a container

“m”:

has-a(node-B,port-n),

has-a(node-B,port-p),

has-a(node-C,port-q),

has-a(node-D,port-r),

has-a(node-X,port-s), (4)

connects(connector-i, node-B, port-p),

connects(connector-i, node-X, port-s),

connects(connector-j, node-B, port-n),

connects(connector-j, node-C, port-q),

connects(connector-j, node-D, port-r).

The Figure also illustrates the hierarchical composition
(or “contains”) relationship; e.g., node “A” is the com-
position of nodes “B”, “C” and “D”, so:

contains(node-A, node-B),

contains(node-A, node-C), (5)

contains(node-A, node-D).

The container “m” contains all nodes and connectors:

contains(container-m, node-A),

contains(container-m, node-B),

contains(container-m, node-C),

contains(container-m, node-D), (6)

contains(container-m, node-X),

contains(container-m, connector-i),

contains(container-m, connector-j).

Containment is a transitive relationship, for example:

contains(container-m, node-A),

contains(node-A, node-B) (7)

⇒ contains(container-m, node-B).

The hyperedge and hierarchy relationships are decou-
pled, in that one does not imply anything about the
other. For example, even though nodes “X” and “B”
live at two different levels of the containment hierarchy,
the edge “i” can still connect both. The FSM in Fig. 4
shows a real-world example of such hierarchy crossing
edge, in the transition out of State2.2 towards the end
state.

2.4 Constraints in NPC4

The has-a, connects and contains relationships typ-
ically come with constraints, that is, not all syntacti-
cally possible relationships are also semantically mean-
ingful. The constraints on has-a and connects are sim-
ple: only nodes can have ports, and connections can

7



only connect to ports. The contains relationship is
more complex, in that its transitivity property, Eq. (7),
implies relationships between more than just the two
modelling primitives involved in one single contains

statement. The constraint imposed by NPC4 is that
any composite containment relationships should always
represent a partial order:

• no node, port or connector should be contained in
itself, via one or more levels in the containment
hierarchy. This would destroy the structural or-
der in the model, while such ordering is exactly
the strongest feature in the authors’ ambition to
(semi)automtic tool chain support for the NPC4
language.

• every node, port and connector must be fully con-
tained in another one, or in a container. The mo-
tivations are:

– pragmatic: one of the ambitions of NPC is to
provide a modelling approach that is infinitely
composable, every model needs “something”
that other models can refer to when they want
to include that model in their own model as a
sub-system. For example, a model of the kine-
matics of a robot device combines coordinate
representations, physical units, and geomet-
ric shapes, but to represent all these different
aspects in one single big DSL leads to “one
size fits all” maintainance and implemention
difficulties.

– ontological : every model has a specific seman-
tic meaning, and it must be possible to iden-
tify explicitly the (possible multiple!) “knowl-
edge contexts” of that meaning. For example,
robot motion controllers combine concept and
knowledge from the complementary domains
of (i) the kinematics and dynamics of robot
devices, (ii) linear control theory, and (iii) mo-
tion trajectory tasks.

• any node, port or connector can be contained in
more than one container, but not in more than one
other node, port or connector. This constraint re-
flects the important semantic difference between,
on the one hand, the node, port and connector
primitives, and, on the other hand, the container
primitive: the former are intended to contain be-
haviour, the latter to represent knowledge. This
fundamental difference in modelling is explained in
[6].

Figure 11 shows an example in which a connector is
crossing a containment boundary, or, in other words,

connectors can leave a container without the explicit
need for a port on that container. Indeed, NPC4 does
not introduce the (most often implicit!) constraint of
interpreting a containment boundary also as a connec-
tion boundary, since this should only be decided (explic-
itly!) when domain-specific semantics is being added to
the domain-independent semantics provided by NPC4.
The case in which the containment constraint also im-
plies a connector constraint is sometimes called a strict
hierarchical composition, or a “nested” graph; the con-
tainment relationship in that case reduces to a tree.

m

A
B

C

a

b

c

d

e

n

p

Figure 11: An example of an hierarchical composition
in which containment does not follow a strict tree hier-
archy: the containers “p” (small blue dashes) and “n”
(long red dashes) have some internal nodes in common,
with each other and with node “A”; the containers “p”
and “n” do not have ports themselves, in contrast to
the node “A”.

2.5 Hierarchy — Behaviour

The paragraphs above showed examples of hierarchy for
nodes and containers, but this paper uses the term hier-
archical graph for a graph in which also ports and con-
nectors can be hierarchies in themselves, Figure 12. A
concrete example arises when one decides to distribute
a software system over two computers: what was first
a simple shared data structure (i.e., a “connector”) in
the centralized version now becomes a full set of coop-
erating “middleware” software components in itself in
the distributed version (i.e., a composition of nodes,
connectors and ports).
Nodes and connectors are both hyperedges, in the

sense that they both connect zero, one or more ports.
The ports themselves are not hyperedges, since in our
language, one single Port is always connecting one sin-
gle node to one single connector. So, as far as struc-
tural properties are concerned, there is not yet a se-

8



A A

s

r
r

sj
j

Figure 12: Examples of possible hierarchy in Ports
and Connectors: the Port “s” and the Connector “j” of
the left-hand model are hierarchically expanded in the
right-hand model.

mantic reason to introduce both nodes and connectors

in the language, since they are acting 100% symmetri-
cally in the structural relationships. (This property is
sometimes refered to as the duality between nodes and
connectors.)

The reason why two different model primitives, nodes
and connectors, are necessary, becomes clear as soon
as the structural (“composition”) model of an applica-
tion is composed with the behavioural (“interaction”)
models that come from a particular application do-
main: such behaviours are (typically) put inside nodes,
while connectors are (typically) meant to represent
behaviour-free interconnection relations, and ports to
represent behaviour-free “access” of the connector to
the behaviour inside one specific node.

However, NPC4 does not want to impose in advance
the (arbitrary!) choice of where an application will see
behaviour fit best, in the structural primitive that it
calls a node, or in the structural primitive that it calls
a connector, or even in both or in the port. Hence,
nothing is put in the NPC4 language that can bias this
choice.

Anyway, the (fundamental) asymmetry between
behaviour-carrying and behaviour-free structural prim-
itives is just a matter of an arbitrary selection of
the names “node” and “connector”. And, more-
over, while connectors and ports are typically the
behaviour-free parts of a structural model, the NPC4
meta model allows both to contain sub-models with
nodes, connectors and ports (Fig. 12); and hence, if
the nodes in that composition can have behaviour, also
the containing connectors and ports have behaviour.

Note that the container was not part of the hier-
archy and behaviour discussion above, for the simple

reason that containers are not meant to represent be-
haviour, but only information (“meta data”, “knowl-
edge contexts”). Containers are also allowed to over-
lap, which is not allowed for nodes, connectors or
ports.

3 The NPC4 Domain-Specific
Language

The intention of the previous Section was to introduce
the concepts to human readers, and now this Section
turns these informally introduced concepts into a for-
mal model that computers can parse and reason upon.
Such a formal language model (which is given the name
NPC4 ) is often called a “meta model”, or “modelling
language”, or “Domain Specific Language”, or DSL for
short [21, 26]. (Some other examples of robotics DSLs
are [10, 15, 16, 23, 30, 42].) The NPC4 meta model
represents the structural properties—hierarchical hyper-
graphs— of all the use cases introduced before, in a fully
formal, computer-processable way.

3.1 Design drivers

The major design drivers behind the presented NPC4
language are semantic minimality, explicitness and com-
posability :

Minimality. The model represents interconnection
and containment structure, and only that. No be-
havioural, visual, software, process,. . . information is
represented.

Explicitness. Every concept, and every relationship
between concepts, gets its own explicit keyword:

• node for the concept of behaviour encapsulation.

• connector for the concept of behaviour intercon-
nection.

• port for the concept of access between encapsu-
lated behaviour and each of its interconnections.

• container for the concept of packaging a model in
an entity that can be refered to in its own right.

• contains for the relationship of composition into
hierarchies.

• connects for the relationship of composition via
interaction.

9



The Eqs. (2)–(3) introduced “informally” in the previ-
ous Section are already sufficiently formal to serve as
part of the NPC4 DSL. But in addition to these obvi-
ous language primitives, extra has-a relationships are
introduced for attachment point primitives, on nodes

and connectors:

• a node-attachment-point belongs to a node, via
an explicit

has-a(node,node-attachment-point)

relationship, and is meant to receive a connects

relation with a port.

• a connector-attachment-point belongs to a
connector, via an explicit

has-a(connector,

connector-attachment-point)

relationship, and is also meant to receive a
connects relation with a port.

Port

Connector

Node

Node-Port
attachment

Connector-Port
attachment

Figure 13: A Connector is an hyperedge that links
Ports together, and a Port links a Connector to a Node,
via Connector-Port and Node-Port attachment objects.

These primitives allow each node or connector to in-
dicate (explicitly and without needing the other prim-
itives) (i) how many interactions it offers, and (ii) to
identify each of these in a unique way. This is a neces-
sary (but not sufficient) condition for formal reasoning
on the semantic correctness of interconnections, because
the attachment objects are indispensible for A useful
side-effect of the explicit introduction of te attachment
points primitives shows up in their graphical represen-
tation inside software tools: the attachment points are
first-class properties of the structural model in itself,
but also of every particular graphical visualistion of the
model. (This discussion about graphical tooling is be-
yond the scope of this document.)

Note that Eq. (1) is not kept in the formal version
of the DSL, but it is replaced by the combination of
(i) a “has-a” for Node and its port-attachment points,
and (ii) the “connects” of a Port and a port-attachment
point.

Composability. The DSL is intended to represent
only structure, and is, hence, designed to be extended
(or composed) with behavioural models: it allows to con-
nect other models to any of its own language primitives
and relationships, without having to change the defini-
tion of the language (and hence also its parsers).

So, first of all, an extra keyword is introduced to in-
dicate that all primitives in NPC4 itself can be compo-
sitions in themselves:

composite = {node,port,connector,composite}.

The recursion in this definition reflects the hierarchical
property of containment in a natural way.

Secondly, the composition with other, external DSLs
can be done (in the simple and proven way that, for
example, XML-based meta models such as XHTML or
SVG use), by providing each primitive in a system with
the following meta data that explicitly indicate by which
meta model they have to be interpreted:

• instance UID: a Unique IDentifier of any instan-
tiation of the primitive concept;

• model UID: a unique pointer to the model that con-
tains the definition of the semantics of the primi-
tive;

• meta model UID: a unique pointer to the meta
model that describes the language in which the
primitive’s model is written;

• name: a string that is only meant to increase read-
ability by humans.

Such generic property meta data allows to compose
structural model information with domain knowledge
by letting each primitive in a composite domain model
refer to (only!) the structural model that it “conforms
to” [6]; such composition-by-referencing is a key prop-
erty of a language to allow for composability.

Finally, since NPC4 is a language for structural com-
position, it deserves a separate keyword compose to refer
to one or both of its two possible composition relation-
ships, namely contains and connects:

compose = {contains, connects}.

The motivation for the explicitness design driver is
that (i) each of the language primitives can be given
its own properties and, more importantly, its own ex-
tensions, independently of the others, (ii) it facilitates
automatic reasoning about a given model because all
information is in the keywords (and, hence, none is hid-
den implicitly in the syntax), and (iii) it facilitates auto-
matic transformation of the same semantic information

10



between different formal representations. Such model-
to-model transformations become steadily more relevant
in robotics because applications become more complex,
and hence lots of different components and knowledge
have to be integrated. Trying to do that with one big
modelling language becomes increasingly inflexible, be-
cause it will be impossible to avoid (partial) overlaps of
the many DSLs that robotics applications will eventu-
ally have to use in an integrated way.

In the same context, composability can only be
achieved if none of the DSLs puts any restrictions on
any of the other ones; and, even better, that each lan-
guage is designed to be integrated with any other lan-
guage (as long as that other language is also designed
for composablity).

The NPC4 meta model is, in itself, already a language
that extends that of traditional graph theory. Tradi-
tional graphs, offering only vertices and edges as primi-
tives, are the meta meta model of NPC4: the node, port
and connector primitives in NPC4 are extensions of the
traditional vertex, and their interconnections are exten-
sions of the traditional edge. In other words, NPC4
composes the DSL of traditonal graphs with the node-
port-connector structural semantics. Hence, traditional
graph relationships and properties hold for NPC4 too,
for example: adjacency, incidence and paths of con-
nected primitives in a graph; the diameter of a graph;
or directed edges. NPC4 adds extra semantics to these
concepts by restricting defining them to nodes only.

3.2 Constraints

Section 3.1 introduced the primitives of the NPC4 lan-
guage, and the contains and connects relationships
that can exist between these primitives. However, not
all relationships that can be formed syntactically also
have semantic meaning. So, some constraints must be
added, as explained in the following paragraphs. Note
that no connects relationships appear anywhere in the
constraints on the contains relationships, and the other
way around, which reflects the above-mentioned orthog-
onality of both relationships. Of course, when applica-
tion developers add behaviour to a structural model of
their system, they may introduce extra structural con-
straints, even between connects and contains relation-
ships.

Constraints on primitives. The UID of every prim-
itive must be unique:

∀X,Y ∈ {node, port, connector,
node-attachment-point,

connector-attachment-point,

contains, connects},
X.UID = Y.UID⇒ X = Y.

Of course, these constraints hold for all three UIDs in
the meta data of each NPC4 primitive.

Constraints on connects. The constraints in this
Section realise the well-formedness of the connection
relationships, that is, about which kind of structural
interconnections are possible.

Every attachment point must be connected to either
a node or a connector:

∀Y ∈ {node-attachment-point},
∃!N ∈ {node} and connects(N,Y)

∀Y ∈ {connector-attachment-point},
∃!C ∈ {connector} and connects(C,Y).

If a port is connected, it must be connected to one and
only one node, and/or to one and only one connector:

∀P ∈ {port},∀N1,N2 ∈ {node},∀C1,C2 ∈ {connector},
connects(N1,P), connects(N2,P)⇒ N1 = N2

connects(C1,P), connects(C2,P)⇒ C1 = C2.

A node and a port can only be connected through a
node-attachment-point:

∀N ∈ {node},∀P ∈ {port} : connects(N,P)

⇔∃X ∈ {node-attachment-point} :

connects(N,X), connects(X,P).

Similarly for connectors and ports:

∀C ∈ {connector},∀P ∈ {port} : connects(C,P)

⇔∃X ∈ {connector-attachment-point} :

connects(C,X), connects(X,P).

A node and a connector can only be connected through
a port:

∀N ∈ {node},∀C ∈ {connector} : connects(N,C)

⇔∃P ∈ {port} : connects(N,P), connects(C,P).

Of course, more than one such node-connector connec-
tion can exist.

11



A connect relationship can only be defined on exist-
ing primitives:

∀c ∈ {connects},
∃X,Y ∈ {node,port,connector,

node-attachment-point,

connector-attachment-point} :

c(X,Y).

The connects relationship is not commutative or not
transitive, but it is always symmetric:

• a node can only be connected to itself via a connec-
tor (or a more complex composition) that connects
two or more of the node’s ports, but it can not
connect to itself directly.

• if node A is connected to node B, and node B is
connected to node C, it is possible that node A is
connected to node C, but not necessarily so.

• if node A is connected to node B, then node B is
connected to node A.

3.2.1 Constraints on contains

The constraints in this Section realise the well-
formedness of the containment relationships of nodes,
that is, about which kind of hierarchies, or “compos-
ites” are possible.

First, the fact that every primitive can be a
composite in itself is expressed:

composite = {node,port,connector,composite},
∀C ∈ {composite} :

∃n ∈ {node} ∨ ∃c ∈ {connector}
∨ ∃d ∈ {composite} :

contains(C,n) ∨ contains(C,c)
∨ contains(C,d).

Every contains relationship can only be defined on ex-
isting primitives:

∀c ∈ {contains},
∃X,Y ∈ {node,port, connector,composite} :

c(X,Y).

And finally, there always exists at least one node at the
top of a contains hierarchy:

∀X ∈ {node,port,connector,composite},
∃T ∈ {node} : contains(T,X) ∨ T=X.

This latter constraint is a very strong one, that is im-
posed for one and only one reason: every structural
model should have an explicitly identified context. In
other words, the meta data of the top node must be
made rich enough to understand the semantics of ev-
erything it contains, even when the model is deployed
in a running system. There can be more than one con-
text for each composition, which is in agreement with
the design objective of composability: a composite can
conform to more than one meta model. The top node

need not have any port attached to it, so that it is a
container of meta data only.

3.3 Host DSL languages

The previous Sections introduces a formal representa-
tion of the semantics of the NPC4 language, using first
order logic. However, such a declarative definition is sel-
dom the most compact, human-readable or user-friendly
way to let practiners in a particular domain apply the
meta model effectively. Such application efficiency is
determined by many factors, that have less to do with
the semantics than with pragmatic motivations within
in each user community. For example, users are already
familiar with particular formal languages, and prefer
not to have to learn new editors, tools or syntax. Be-
cause of the familiarity and tooling arguments, XML,
Lisp, or Prolog are primary candidates “to host” DSLs.
Another popular approach is to provide the DSL in the
form of a library in a general-purpose programming lan-
guage such as C++, Java or Lua, as a so-called internal
DSL; e.g., [30, 31]. Whatever choice is being made, en-
forcing the semantics of the DSL in a host language al-
most invariably requires the development of a “runtime”
that checks all the constraints of the DSL; of course, the
implementation of that runtime should be checked for
its conformance with the DSL [6]. Such a check, fortu-
nately, has to be done only once.

NPC4 is about the structure of hierarchical hyper-
graphs, and exactly this semantics is something for
which the above-mentioned popular host languages have
little to no “native” support. On the contrary, in Lisp or
XML hierarchy is most often not represented explicitly,
but as a result of the syntactic structure of the lan-
guage: the “nesting” in Lisp represents hierarchy (more
in particular, expression trees, not graphs) via match-
ing parentheses (Table 1), while XML achieves the same
goal via matching nested tags as in Table 2. The non-
intended, but often occurring, result is that

• reasoning or transformations on compositions can
only take place after parsing;

• the decision about which structures in the parsed

12



( tag
( tag1 ( id ”abc” ) . . . )
( tag2 ( id ”xyz”} . . . )

)

Table 1: Example of an operational representation, in
Lisp, of a hierarchical composition.

<tag>
<tag1 id=”abc”> . . . </tag1>
<tag2 id=”xyz”> . . . </tag2>

</tag>

Table 2: Example of an operational representation, in
XML, of the same hierarchical composition as in Ta-
ble 1.

“abstract syntax tree” have semantic meaning and
which don’t, is not represented explicitly but hid-
den in the implementation of the parser;

• the hierarchical composition itself can not be given
properties (such as a specific visual icon in a graph-
ical programming tool), or be extended with other
“behaviour” itself, because there is no language
primitive to compose such properties or extensions
with.

Of course, nothing in Lisp or XML prevents DSL design-
ers to represent the contains or connects relationships
explicitly, so both languages are definitely valid candi-
dates to host NPC4.

The example of using Lisp or XML to host the same
DSL also illustrates what model-to-model transforma-
tion means: the exact same semantics can be repre-
sented in a Lisp model and in an XML model, so a
model in one language should be transformable into a
model in the other language. However, in order for such
a transformation to be done correctly, both languages
must refer to the same external DSL that defines the
meaning of the keyword. The state of the art still misses
three important things: (i) the discipline of language
designers to use such external DSL semantics when-
ever that makes sense, (ii) the mere existence of formal
and composable DSLs, and (iii) the software tooling to
support correct-by-construction editors of the DSLs and
the Triple Graph Grammar [18, 19, 41] model-to-model
transformations required by DSLs with hierarchical hy-
pergraph relationships.

Two (rather composable) examples of XML-hosted
DSLs in other domains than robotics are Xcore [45] from
the Eclipse eco-system, and Collada [5] from the com-
puter animation domain. Both DSLs have explicit tags

to refer to external, application-specific DSLs; Xcore
also explicitly supports hierarchy, via it contains and
container keywords.

URDF [49] or SRDF [13, 32] are examples created
in the robotics community, but, unfortunately, they go
against the design principles advocated in this paper, by
following the extension by inheritance approach instead
of the extension by composition: if the language design-
ers want to model a new feature, they add a new key-
word to the URDF language. In the medium term, this
will lead to an overloaden, huge and not semantically
consistent or complete “standard”, such as is the case
with UML or CORBA. Because of its composability and
minimality design drivers, the DSL approach suggested
in this paper has a higher chance (but no guarantee!)
of leading to a lot of small modelling languages that are
semantically correct, and can (hence) be integrated via
small, application-specific DSLs without the application
developers having to spend time on making their own
big languages.

4 Examples

This Section gives some concrete examples about how
NPC4 can be used to represent the structural parts
of systems in the various application domains intro-
duced in Sec. 1. The examples show the two comple-
mentary ways in which such domain-specific extensions
are made:

• give new, domain-specific names to the NPC4
primitives and/or relationships.

• add domain-specific extra semantics to the NPC4
primitives, relationships and constraints.

For all examples, only the NPC4-inspired approach is
explained, but not the concrete DSLs that could result
from it, since each of them requires a significant extra
effort to be developed.

4.1 Bayesian Networks

The domain of traditional Bayesian network only uses
node (for “random variables”) and connect (for “di-
rected edges”), and no contains. The more recent Fac-
tor Graph extension was introduced needed to represent
explicitly the hyperedge connectivity that has been part
of the domain since the beginning. For one reason or
another, hierarchy has never been introduced to the full
extent, such that the domain can still not model com-
plex Bayesian networks in which various sub-networks
can be given other contexts, for example, for decision

13



Domain framework

SW framework

Operating System

MoveIt, Orocos,...
domain components to
hide framework complexity

OSGi, MMQT,...
middleware components to
hide OS complexity

process, virtual memory,
IPC,... for behaviour
containers for deployment
on hardware resources

A
p

p
lic

a
ti

o
n

Yo
u
r 

co
m

p
o
si

ti
o
n
; 

p
o
ss

ib
ly

a
 f

ra
m

e
w

o
rk

 f
o
r 

o
th

e
rs

..
.

HW framework CPU, bus, storage
HW resource components

Figure 14: The four natural levels of hierarchy gener-
ally present in “software stacks”, plus the concept of an
“application” which composes them all together in one
executable software system.

making, or for scheduling of the computational execu-
tion.

4.2 Finite State Machines

This domain has been making use of the full and correct
semantics of hierarchical hypergraphs since the begin-
ning [30]:

• nodes are used to represent states in the FSMs.

• connects are used to represent two concepts: (i)
the transitions between states, and (ii) the events
that are fired or handled in a state. A transition
must connect only two states; an event can be re-
acted to by multiple states, and to model that is
the use case of the contains hierarchy.

4.3 Control diagrams

This domain applies the hierarchical hypergraphs meta
model as follows:

• nodes are used to represent function blocks.

• connects are used to represent data flows, also with
hyperedge semantics.

Hierarchy is used to model context (“plant”, “con-
troller”, etc.) and to cope with complexity of com-
position, by introducing nodes with various “levels of
detail”.

4.4 Software architecture models

The authors’ recent publication [47] provides an exten-
sive overview of how the hierarchical hypergraph meta
model can be applied to the modelling and composition

of software systems. (Even without a formally speci-
fied DSL, but relying on discipline of the developers.)
Roughly speaking, the mapping from NPC4 to the do-
main of software engineering is very similar to that for
control diagrams; the major semantic difference being
that the nodes represent also software activities (pro-
cesses, threats, computing nodes,. . . ) and not just com-
putational function blocks. The resulting data flow be-
tween such nodes typically involves communication mid-
dleware, whose models (structural and behavioural) are
typically “hidden” in a multi-layer hierarchical struc-
ture of the system architecture, as illustrated in Fig. 14.

A major use case for an NPC4-based DSL in software
architectures will be deployment models, that is, to rep-
resent the dependencies between the software modules
that determine their relative order of creation, configu-
ration, and activation.

4.5 Robot kinematics and dynamics

This Section gives a brief overview of how the meta
model of hierarchical hypergraphs can provide a more
composable DSL than the mainstream URDF format,
[49]; a much more elaborate document on this particular
topic is currently under development, which has also the
explicit aim to be able to serve as a very flexible and
composable family of modelling standards. The core
idea behind it is illustrated in Fig. 15:

• the family has five members, each one being a nat-
ural hierarchical contains context of another one.

• each level has creates a DSL of its own, with several
new semantic primitives, relationships and con-
straints.

• each level composes a specific subset of the possibly
multiple DSLs at the lower levels, not by adding
as properties in its own DSL primitives, but as
connects references to the DSLs below it.

• similarly, each level composes its domain DSL, with
has-a relationships, with a DSL that represents
physical units, [40].

• composition into a chain can only work if the four
other levels compose themselves with the same
DSL on geometric frames, [16], as the fundamental
connects primitive of electro-mechanical systems.

For example, the approach introduced above allows to
make a DSL for humanoid robots with only electrical ac-
tuators acting at each individual joint, but also for real
human musculoskeletal models with muscles connected
over multiple joints. When done wisely, both DSLs will

14



share most of their semantic primitives (which supports
the objectives of minimality and efficiency), but still
be able to provide only those semantic primitives that
are really needed (which support the objective of user-
friendliness).

(M
u
lt

i-
) 

ch
a
in

Kinematic joint

Mechanical joint

C
o
m

p
o
si

ti
o
n

LW
R

, 
3

2
1

, 
Ju

st
in

, 
y
o
u
B

o
t,

 P
R

2
,.

.. motion constraints
via revolute or
prismatic joints,...

transmission, limits,
friction, inertia,...

Actuator electric, hydraulic,
pneumatic,...

Power convertor electric-electric,
electric-hydraulic,...

Figure 15: The four natural levels of hierarchy needed
to describe the mechanical structure of all kinds of
robots, plus the concept of a “kinematic chain” which
composes them all together in one “robot system”.

4.6 Visualisation with the Model-View-
ViewModel pattern

The increasing complexity of robotic systems also in-
creases the complexity of presenting all the generated
data to the users in an intelligble way. Again, best prac-
tice in this domain uses de-composition and hierarchy
to tackle this problem, for example, by providing:

• different views on the same data: table form, 3D vi-
sualisation of the moving parts, layered maps, etc.

• different visualisations for each knowledge context
of the system, the various levels of abstraction in its
models, or the various levels of detail in the data.

For all of these, the need for hyperedge connects

relationships, and hierarchical contains relationships
is obvious. To support that need, the Model-View-
ViewModel pattern for the design of graphical user in-
terfaces is more and more replacing the more traditional
Model-View-Control paradigm; the “web app’ frame-
work AngularJS [25] is a key example of this evolution.
Unfortunately, the terminology it uses is very different
from the “port-based” terminology of this paper, which
complicates the semantic mapping between NPC4 and
AngularJS primitives, and, hence, the efficiency of lever-
aging the large momentum in building “apps” to the
more narrow context of robotics.

5 Conclusions

This paper advocates the use of the NPC4 language,
as the meta model to represent port-based composition,
for both interconnection and containment, and in a
domain-independent way. More in particular, the lan-
guage targets all man-made engineering systems based
on lumped parameter models.

The objectives behind NCP4 are already covered,
partially, in engineering languages such as Modelica
[34], but the new contributions of this paper are: (i) to
separate strictly the structural and behavioural aspects,
and (ii) to make all structural relationships explicit in
a formal language, based on hierarchical hypergraphs.

The motivation for this paper is that all current prac-
tice relies on many implicit specifications of, especially,
their structural relationships, and more in particular the
“contains” and “connects” relationships. Only an ex-
plicit representation of both will allow an engineering
systems to reason about its own structure, at runtime,
and by itself.

This requirement of being able to reason on
“contains” and “connects” relationships becomes
mandatory to deal with knowledge-centric systems:
their behaviour always depends on the specific context
in which various pieces of the knowledge integrated in
the system are valid or not. Hence, it is important
to have an explicit computer-readable representation of
the structural knowledge contexts in which a system is
contained; most often, there are many overlapping con-
texts active at the same time. Hence, the hierarchical
hypergraph meta model is highly relevant to make the
step from traditional engineering systems to knowledge-
aware engineering systems, that is, systems that can use
the knowledge themselves at runtime.

In the above-mentioned context, the aspect of com-
posability of structural models is an important design
focus; NPC4 advocates that extra “features” (such as
behaviour or visualisation) should not be added “by in-
heritance” (that is, by adding attributes or properties
to already existing primitives), but “by composition”,
that is, a new DSL is made, that imports already exist-
ing DSLs and adds only the new relationships and/or
properties as first-class and explicit language primitives.
The many examples of graphical models taken from the
robotics domain, and especially their high degree of non-
composability, should be sufficient motivation for prac-
titioners in the field to start adopting NPC4’s compos-
ability approach.

Although presented in a robotics context, nothing in
NPC4 depends on this specific robotics domain, and
NPC4 can also serve the goals of related research and
application domains such as Cyber-Physical Systems or

15



the Internet of Things. However, the advantages of the
NPC4 meta model pay off most in robotics, because of
(i) the large demand for knowledge-aware systems, (ii)
the online efficiency and (re)configuration flexibility of
such robotics systems, and (iii) their need for the online
reasoning about—and eventually the online adaptation
of—their own structural architectures.

Finally, the authors suggest the NPC4 language for
adoption as an application-neutral standard, since stan-
dardizing the structural part of components, knowledge,
or systems, is a long-overdue step towards higher eff-
ciency and reuse in robotics system modelling design,
and in the development of reusable tooling and (meta)
algorithms.

The hope is that NPC4 is simple, neutral, versa-
tile, customizable and semantically clear and complete
enough to stimulate educators, researchers and software
developers to pay more attention to modelling, and—
not in the least!—to standardize their structural mod-
elling approaches.

Unfortunately, even after 50 years of disappointing
experiences with respect to standardization in the do-
main of robotics, many practitioners are not motivated
to help create and accept standardization efforts. It is
beyond the scope of this paper to explain why and how
well-designed and neutral standards are indispensable
for the domain of robotics to transition from small-
scale academic or industrial development groups to a
large-scale, multi-vendor industry. However, the major
design principles behind this paper (minimality, explic-
itness and composability of the DSL) have been strongly
motivated by the just-mentioned unfortunate situation
of lack of standards in robotics: it is the authors’ believe
that the high complexity and variability of robotics as a
scientific and engineering discipline is exactly due to the
pressure of the open world assumption: no model of the
world is ever complete, or has the right level of detail for
the many different use cases that the domain has to sup-
port. So, starting with first separating out the simplest
part of complex systems—namely its structural model—
from their more complex behavioural aspects, provides
the path of least effort to reach the stated long-term
goal.

References
[1] R. R. Allen and S. Dubowsky. Mechanisms as components

of dynamic systems: A Bond Graph approach. J. of Elec.
Imag., pages 104–111, 1977.

[2] N. Ando, T. Suehiro, and T. Kotoku. A software platform
for component based RT-system development: OpenRTM-
Aist. In Conf. Simulation, Modeling, and Programming of
Autonomous Robots, pages 87–98, Venice, Italia, 2008.

[3] G. Antoniou and F. van Harmelen. A Semantic Web Primer.
MIT Press, 2nd edition, 2008.

[4] C. Atkinson and T. Kühne. Model-driven development:
a metamodeling foundation. IEEE software, 20(5):36–41,
2003.

[5] M. Barnes and E. L. Finch. COLLADA—Digital Asset
Schema Release 1.5.0. http://www.collada.org, 2008. Last
visited August 2013.

[6] J. Bézivin. On the unification power of models. Software
and Systems Modeling, 4(2):171–188, 2005.

[7] S. Borgo and C. Masolo. Full mereogeometries. The Review
of Symbolic Logic, 3(4):521–567, 2010.

[8] F. T. Brown. Engineering System Dynamics, a Unified
Graph-Centered Approach. CRC Press, 2nd edition, 2006.

[9] H. Bruyninckx. Open robot control software: the OROCOS
project. In Int. Conf. Robotics and Automation, pages 2523–
2528, Seoul, Korea, 2001.

[10] H. Bruyninckx and J. De Schutter. Specification of force-
controlled actions in the “Task Frame Formalism”: A survey.
IEEE Trans. Rob. Automation, 12(5):581–589, 1996.

[11] H. Bruyninckx and P. Soetens. Open RObot COntrol Soft-
ware (OROCOS). http://www.orocos.org/, 2001. Last vis-
ited March 2013.

[12] H. Bruyninckx, P. Soetens, and B. Koninckx. The real-time
motion control core of the Orocos project. In Int. Conf.
Robotics and Automation, pages 2766–2771, Taipeh, Taiwan,
2003.

[13] S. Chitta, K. Hsiao, G. Jones, I. Sucan, and J. Hsu. Semantic
Robot Description Format (SRDF). http://www.ros.org/

wiki/srdf, 2012.

[14] Controllab Products B.V. 20-sim. http://www.20sim.com/.
Accessed online 2 August 2013.

[15] E. Coste-Maniere and N. Turro. The MAESTRO language
and its environment: specification, validation and control of
robotic missions. In Proc. IEEE/RSJ Int. Conf. Int. Robots
and Systems, pages 836–841, Grenoble, France, 1997.

[16] T. De Laet, S. Bellens, R. Smits, E. Aertbeliën, H. Bruyn-
inckx, and J. De Schutter. Geometric relations between rigid
bodies (Part 1): Semantics for standardization. IEEE Rob.
Autom. Mag., 20(1):84–93, 2013.

[17] T. De Laet, H. Bruyninckx, and J. De Schutter. Shape-based
online multitarget tracking and detection algorithm for tar-
gets causing multiple measurements: Variational Bayesian
clustering and lossless data association. IEEE Trans. Pat-
tern Anal. Machine Intell., 33(12):2477–2491, 2011.

[18] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Funda-
mentals of Algebraic Graph Transformation. Monographs in
Theoretical Computer Science. Springer, 2006.

[19] G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, and
B. Westfechtel, editors. Graph Transformations and Model-
Driven Engineering. Springer, 2010.

[20] J. F. Ferreira, M. Castelo-Branco, and J. Dias. A hierarchi-
cal Bayesian framework for multimodal active perception.
Adaptive Behavior, 20(3):172–190, 2012.

[21] M. Fowler. Domain Specific Languages. Addison-Wesley
Professional, 2010.

[22] F. Francis Colas, J. Diard, and P. Bessière. Common
Bayesian models for common cognitive issues. Acta Bio-
theoretica, 58(2–3):191–216, 2010.

16

http://www.collada.org
http://www.orocos.org/
http://www.ros.org/wiki/srdf
http://www.ros.org/wiki/srdf
http://www.20sim.com/


[23] E. Gat. ALFA: a language for programming reactive robotic
control systems. In Int. Conf. Robotics and Automation,
pages 1116–1121, Sacramento, CA, 1991.

[24] P. Gawthrop and L. Smith. Metamodelling: Bond Graphs
and Dynamic Systems. Prentice Hall, 1996.

[25] Google Inc. Angular JS. http://angularjs.org. Last visited
September 2014.

[26] J. Greenfield, K. Short, S. Cook, and S. Kent. Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. John Wiley and Sons, 2004.

[27] Groupe de Recherche en Robotique. Proteus: Platform for
RObotic modeling and Transformations for End-Users and
Scientific communities. http://www.anr-proteus.fr/.

[28] P. Hintjens. ØMQ—The guide. http://zguide.zeromq.org,
2013. Last visited July 2014.

[29] S. Joyeux. ROCK: the RObot Construction Kit. http://

www.rock-robotics.org, 2010. Last visited November 2013.

[30] M. Klotzbücher and H. Bruyninckx. Coordinating robotic
tasks and systems with rFSM Statecharts. J. Softw. Eng. in
Robotics, 3(1):28–56, 2012.

[31] M. Klotzbücher and H. Bruyninckx. A lightweight, compos-
able metamodelling language for specification and validation
of internal domain specific languages. In Proceedings of the
8th International Workshop on Model-based Methodologies
for Pervasive and Embedded Software, volume 7706 of Lec-
ture Notes Comp. Science, pages 58–68. 2012.

[32] L. Kunze, T. Roehm, and M. Beetz. Towards semantic robot
description languages. In Int. Conf. Robotics and Automa-
tion, pages 5589–5595, Shangai, China, 2011.

[33] L. Ladický, P. Sturgess, K. Alahari, C. Russell, and P. H. S.
Torr. What, where and how many? Combining object detec-
tors and CRFs. In 2010 European Conference on Computer
Vision, volume 6314 of Lecture Notes in Computer Science,
pages 424–437. Springer, 2010.

[34] Modelica Association. Modelica: Language design for multi-
domain modeling. http://www.modelica.org/. Last visited
September 2014.

[35] National Institute of Advanced Industrial Science and Tech-
nology, Intelligent Systems Research Institute. OpenRTM-
Aist. http://www.openrtm.org. Last visited August 2013.

[36] NN. Web components. http://webcomponents.org. Last
visited September 2014.

[37] Object Management Group. Meta Object Facility (MOF)
core specification. http://www.omg.org/technology/

documents/formal/data_distribution.htm, 2006.

[38] H. M. Paynter. Analysis and design of engineering systems.
MIT Press, 1961.

[39] H. M. Paynter. An epistemic prehistory of Bond Graphs. In
P. Breedveld and G. Dauphin-Tanguy, editors, Bond Graphs
for Engineers. 1992.

[40] H. Rijgersberg, M. F. J. van Assem, and J. L. Top. Ontology
of units of measure and related concepts. Semantic Web,
4(1):3–13, 2013.

[41] A. Schuürr. Specification of graph translators with triple
graph grammars. In Graph-Theoretic Concepts in Computer
Science, volume 903 of Lecture Notes Comp. Science, pages
151–163. 1995.

[42] R. Simmons and D. Apfelbaum. A task description lan-
guage for robot control. In Proc. IEEE/RSJ Int. Conf. Int.
Robots and Systems, pages 1931–1937, Vancouver, British
Columbia, Canada, 1998.

[43] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of dy-
namically reconfigurable real-time software using port-based
objects. IEEE Trans. Software Engineering, 23(12):759–776,
1997.

[44] M. Tenorth and M. Beetz. KnowRob—A knowledge pro-
cessing infrastructure for cognition-enabled robots. Int. J.
Robotics Research, 32(5):566–590, 2013.

[45] The Eclipse Foundation. Xcore. http://wiki.eclipse.org/
Xcore, 2013.

[46] The MathWorks. Simulation and model-based design by
The MathWorks. http://www.mathworks.com/products/

simulink/.

[47] D. Vanthienen, M. Klotzbücher, and H. Bruyninckx. The
5C-based architectural Composition Pattern: lessons learned
from re-developing the iTaSC framework for constraint-based
robot programming. J. Softw. Eng. in Robotics, 5(1):17–35,
2014.

[48] W3C. Owl. http://www.w3.org/TR/owl-ref/.

[49] Willow Garage. Universal Robot Description Format
(URDF). http://www.ros.org/wiki/urdf, 2009.

[50] World Wide Web Consortium. HTML5. http://www.w3.org.
Last visited September 2014.

17

http://angularjs.org
http://www.anr-proteus.fr/
http://zguide.zeromq.org
http://www.rock-robotics.org
http://www.rock-robotics.org
http://www.modelica.org/
http://www.openrtm.org
http://webcomponents.org
http://www.omg.org/technology/documents/formal/data_distribution.htm
http://www.omg.org/technology/documents/formal/data_distribution.htm
http://wiki.eclipse.org/Xcore
http://wiki.eclipse.org/Xcore
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.w3.org/TR/owl-ref/
http://www.ros.org/wiki/urdf
http://www.w3.org

