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1 Introduction & Overview

This Deliverable resumes two years of activity in the Work Package on “Flexible systems integration”, more
in particular in the ambitions described in the Description of Work :

• to make the project’s “flexibility” promise a reality, via a structured methodology that is (i) simple
enough for all project partners to realise the ambitious integration and flexibility goals in the project,
and (ii) generic and powerful enough to be reusable as a general methodology also beyond the scope
of this project, in similar large-scale integration projects.

This objective is realised via the System Composition Pattern, Sec. 3.

• to decrease the dependency of system builders on specific vendors, middleware, hardware and software
platforms, etc., without compromising on their integration efficiency.

This objective is realised via Software and Data bridges, Sec. 5.3.

• development of compositionality guidelines: best practices, standards, and templates for system inte-
grators to build predictable, traceable and flexible systems in a methodological way.

This objective is realised via the Guidelines in Sec. 4.

• development of composability guidelines: best practices, standards, and templates to help developers of
components in making their modules much easier to integrate in larger systems, imposing a minimum
of constraints on the integrators.

This objective is realised via the Guidelines in Sections 5–6.

“Flexibility” has many interpretations, and almost three years have passed since the writing of the paragraphs
above, so, in this project’s context of food processing systems, the research in Work Package 2 has resulted
in more specific descriptions and solutions. That is, we aim for food processing automation that can be more
flexible than the existing ones in any of the following meanings of that word:

• separation of task and platform: every piece of automation infrastructure can be discussed from a
“user perspective” (what is the machine providing as useful functionality?) and from a “developer
perspective” (how is the functionality implemented?). In order to maximize the exchangeability of
automation equipment, their designers must keep both aspects as separated as possible, while still
allowing their full integration.

This objective resulted in the “Task-Skill-Motion” design methodology presented in Sec. 2.

• auto-configuration of modules: when a new module is brought into a food processing line, for the
first time or after it has been swapped out for cleaning or updating, the act of plugging together the
physical connectors (power and data) should start off a process of auto-configuration, in which the
software of the line and module controllers interact with each others as much as possible without
human intervention.

The core contribution reported upon in this Deliverable is the System Composition Pattern of Sec. 3,
which helps machine, module and line developers with the structure (“architecture”) of their design
challenges, and “configuration” gets a very prominent place in that context.

• traceability : the control software of a Pick-n-Pack food processing line must be able to answer queries
from internal or external users to find back the data about every set of batches of food that has
gone into a line, about every set of batches that was produced by the line, and about the processing
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that each batch has undergone. This challenge is not just a matter of developing appropriate data
base software, but more about suggestion data models that could, eventually, be introduced into the
community as standards for food processing traceability.

The contributions of Work Package 2 in this context are two-fold:

– integration with Work Package 3, Sec. 7.

– HDF5 as industrial-grade data model, Sec. 4.4.

• data semantics: the above-mentioned data models should be more than the traditional standards,
in that also the meaning of the data is captured in so-called “ontologies” or “semantic models”.
For example, “cherry tomato” is not just a string representing the name of a type of vegetable, but
it is a semantic tag for which formal relationships are being defined to many other aspects of the
Pick-n-Pack food processing activities: sensing, quality assessment, robotic manipulation guidelines,
packaging guidelines, etc.

Since the beginning of the project, DLO and KUL have been working on various iterations of a “vine
tomato ontology”, which eventually will represent all of the above-mentioned knowledge aspects. (We
refer to Deliverable D2.4 for more information on this work.)

• location adaptability : one particular food processing module should be integratable in many different
processing lines, and in different locations in that line, but still its control software must be able to
adapt its working to the actual geometric location of the module in the line.

This implies that a Pick-n-Pack module’s software is designed to work with an explicit “world model”
of the line’s geometric layout and its own position and role in that line. Section 4.5 has the concrete
Guidelines for such a “world model’.

• runtime adaptability : when taking a module out of a line (say, for hygienic cleaning), or when putting
it back into a line, one should not have to stop the control software of the line and/or any of the other
modules. However, traditional machine or modules do not have this ability of “hot swapping”1.

The Pick-n-Pack designs contain a Life Cycle State Machine functionality to do realise such flexible
behaviour, Sec. 4.2.

2 The “Task-Skill-Motion” approach

The design concept of “Task-Skill-Motion” was, historically speaking, the input from partner KUL in the
Pick-n-Project, from earlier research in sensor-based control. The “lessons learned” before Pick-n-Pack was
that all earlier approaches to the specification, programming and control of complex “robot” tasks were
insufficiently flexible, for many reasons, the most important of them being:

• the too high presence of (robot or sensing) platform-specific parameters in the specification and the
software. For example:

– the maximum speeds or forces that the platform can tolerate;

– the maximum accuracy that the platform can achieve;

– the reactions to platform “error conditions”, like singularities, loss of tracking in sensing, compu-
tational errors, communication latencies, actuator overheating, etc.

1http://en.wikipedia.org/wiki/Hot_swapping
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Figure 1: The various levels in the computational platforms. Each Pick-n-Pack partner is making concrete
choices for all of them that, implicitly and unintentionally, introduce strong constraints on, both, the integra-
tion abilities and the performance of that partner’s module or machine in the overal Pick-n-Pack line. For
example, the choice of data structures, or communication middleware, or operating system, or programming
language.

• the lack of structural data models to represent the various kinds of “platforms” that developers have
to use in any realistic automation project, such as:

– mechanical structure, Fig. 3: every device has power drivers, actuators, mechanical joints, kine-
matic joints and chains, each with different properties, limits, functionalities.

– mechanical functionality, Fig. 2: different mechatronic devices have different “motion/action”
capabilties.

– computational platforms, Fig. 1: the necessary software can not be run on an “ideal” platform,
but is confronted with deployment constraints at various levels.

The “flexibility” objectives of the Pick-n-Pack project can not be achieved without a major step change in
the state of the art, in this context of separating the “magic numbers” of the specific hardware and
software platforms offered by various providers, from the functionality that they provide. Helping all
project partners to achieve such step changes is the key responsibility of KUL in the Pick-n-Pack project;
this ambition is reached in a gradual way, and will not be achievable completely by the end of the project.
However, the progress in the intended direction is reported in the other Sections of this Deliverable. As much
as possible, the generic insights and design approaches are translated into “guidelines” that are specific for
the Pick-n-Pack contextl more in particular, for food processing in lines, consisting of several modules, each
one again consisting of possibly several machines.
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Figure 2: The various complementary functionalities of mechatronic devices. In the context of Pick-n-Pack,
the “non-holonomic position mobility” (which is typically provided by so-called Automated Guided Vehicles)
is beyond the scope of the research and/or the machinery contributed by all partners.
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Figure 3: The various complementary structural components of mechatronic devices. This part of the
machinery in a system is one of the largest sources of integration problems, since most of the time only the
functionalities of the “kinematic chain” are of interest to the food processing developments of the partners,
while many of the pragmatic integration constraints come from the specific but implicit limits on all of the
physical levels below that functionality.
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3 The System Composition Pattern

A major achievement in Year 2 of the project was the consolidation of the “grand unification” approach
towards building systems of the complexity of a Pick-n-Pack food processing line, while still being able to
identify how exactly each of the flexibilities of Sec. 1 can be realised. Figure 4 depicts a representative
example of the so-called System Composition Pattern.

The following two references (which are added as appendices to this Deliverable) provide a lot more
details about the System Composition Pattern, in two complementary ways: reference [1]2 focuses on how
to use the pattern for developers of functionalities, while reference [2] is meant to guide software developers
who have to support production systems.

The following sub-sections provide a more “birds’ eye view” on the technical detail of the mentioned
references, focusing on the concrete needs and circumstances of the Pick-n-Pack partners and Work Packages.
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Figure 4: A conceptual overview of the System Composition Pattern.

3.1 System Composition Pattern

As mentioned above, Figure 4 is a sketch of a typical complex system design. Below we give an overview of
the major properties of this Pattern; KUL helps individual Pick-n-Pack partners to translate these properties
into the concrete (sub)system designs and implementations that they are confronted with. In Year 2, DLO
was the major collaborator in this respect, and the focus of this intensive collaboration was to transform the
visual tomato recognition functionalities developed in DLO into a something that is 100% conforming to the
System Composition Pattern, such that this example can be used by other partners as a concrete reference
implementation.

So, here is the list of major insights into, and properties of, the System Composition Pattern:

2This paper is currently under review; preliminary work in this domain has been reported in [3].
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• loose hierarchy : although the Figure seems to suggest a strict hierarchy, it is not: each “level”,
represented by a rounded rectangle, represents a context in which the components inside have access
to a well-defined number of data and knowledge models from which to query for the “magic numbers”
they need. Data and event flows can cross several contexts. Each component can be contained in
several contexts at the same time.

For example, DLO’s visual inspection component gets its “magic numbers” from the “tomato ontology”
(which also spans the other components that deal with the same tomatoes) but also from the “robot
platform” context of the device on which the cameras are mounted.

• functional Computations: these are the algorithms that provide the “behaviour” needed by the system
in order to realise its added value. All the other parts in the composite Component are “overhead”,
that is needed to help realise these functionalities, in a structured way, with clear indications of roles
and responsibilities.

For example, DLO’s visual inspection component is an example of a functional Computation.

• Coordinator : this is the singleton in the composite Component that is making decisions about when
and why the system’s behaviour has to change. It supervises the behaviour of how the composite use
its shared resource(s).

For example, the line module will decide that all the modules in the line will be asked to reconfigure
themselves whenever a new batch of vegetables is being introduced onto the line.

• Configurator : this is a component that is responsible for bringing a set of functional Computational
components into a configuration that makes them—together and in a synchronised way—realise a
different system behaviour. There can be multiple Configurators, each dealing with a disjoint subset
of functional Computational components. Configurators are triggered by the Coordinator, and they
shield the latter from having to know how the behavioural change that is expects is realised exactly
by the available Computational components.

For example, each module control software has configurators to switch the behaviour of its machines in
a coordinated way: the visual sensing component, the gripper component, the robot motion component,
the data tracing component.

• Composer : this is the (singleton) software activity that creates a new structural model of the composite
Component, that is, it introduces new data exchanges and functional components, couples existing or
new functional components to existing or new data flows, etc.

For example, the line controller must keep the information about which modules it contains at even
given instant in time, and how they are interconnected.

• Scheduler : this is the (singleton) activity that triggers the functional Computational components
when they are needed to realise the system’s overall behaviour. It computes the access to the shared
resource(s) of the composite.

For example, when one would deploy two robot arms in the same module, (partially) sharing each
other’s workspace, there must be a software component that computes when and where each robot
arm can use the shared workspace areas. Such a workspace sharing has been identified as an important
future requirement for food processing systems, since the overall footprint of a food processing line is
currently a major cost factor.
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• Monitor : these are the software activities that play a dual role to that of the Configurators: the
latter’s role is to take action such that the system’s behaviour can be expected to be what is required,
while the former’s role is to check whether the actual behaviour corresponds to the expected one.
As with Configurators, one single Monitor can be responsible for a set of functional Computational
components. Whenever the discrepancy between expected and actual behaviour has become “too
large” (which should be a configurable threshold!), the Monitor fires an event, to which all other
components can react.

For example, each module must monitor the Quality of Service with which the machines inside the
module are performing their expected functionality; if that performance quality drops below a threshold
(configured by the line controller!), an event is raised, to which, first, the module Coordinator can
react to take corrective actions. If it does not find a solution, the event should be forwarded to the
line Coordinator.

• data exchange: while (the very popular) “publish-subscribe” is only one particular, uni-directional, way
of exchanging information between components, one should in general allow bi-directional alternatives,
with other exchange policies than just publish-subscribe; for example, data busses, shared memory, ring
buffers, lock-free buffers, etc.

For example, the cooperation between modules in a line works best if they keep each other informed
about the Quality of Service with which they perform their functionality, so that they can adapt to each
other’s performance without stopping the line for “error recovery” or performance reconfiguration.

• transactions: some data has to be archived to so-called persistent storage, from time to time, in order
to allow the later inspection of the system’s activities.

Obviously, the traceability of the food quality data is an essential aspect of the Pick-n-Pack ambition.

• the whole pattern is the software interface, not the API of the data connections, or of the methods in
the functional blocks.

For most partners, this has turned out to be causing most re-training of their software development
attitude, because the requirements to let concurrently active (sub)systems interact are quite different
from building one single functional component with object-oriented design guidelines.

The experience of Year 2 shows that this aspect of the whole integration is one of the key “project
risks” to start monitoring more closely in the future.

• for each level of Composition, there is only one Coordinator, only one Composer and only one Scheduler,
with possibly multiple Computational, Configuration, Communication components.

• these “singletons” are the only places where specific knowledge of the other components can be used,
via “query/pull” or “configuration/push” from the component’s context.

• the pattern applies fractally : every sub-component can, in itself, be an instance of the pattern again.
One specific version of this fractality shows up in the separation of the following:

– functionality packaging & deployment (e.g., Task Specification), and

– packaging & deployment on operating system.

The latter adds an OS container context; for example:

– Linux containers (http://docker.io), with
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– LXC (http://en.wikipedia.org/wiki/Lxc) for Configuration,

– supervisord (http://supervisord.org/) for Coordination, and

– cgroups (http://en.wikipedia.org/wiki/Cgroups for hierarchical Composition.

Let’s illustrate the System Composition Pattern with a familiar example from our daily life, in which centuries
of human experience has solved all of the important system composition challenges, in a way that is 100%
conforming to our System Composition Pattern. The example is that of a School :

• functional Computations: learning activities of the pupils, teaching activities of the teachers, logistic
activities of non-educational staff,. . .

• Coordinator : School Director decides whether and when new staff has to be hired, where they have to
fit in, with whom they have to cooperate, and what activity they should deploy.

• Configurator : staff person assigns teachers to classes and lecture schedules, and operational staff to
concrete logistic roles;. . .

• Composer : realises structural plan when school building is renovated; assigns personnel to offices;. . .

• Scheduler : bell system coupled to the computer that runs the algorithm that computes the schedules
of all lectures of each day.

• Monitor : written or oral tests and discussions.

• data exchange: mail boxes; telecom system; notice boards;. . .

• transactions: intermediate and final reports of pupils; financial records of school administration;. . .

4 Guidelines for Line design

This Section summarizes some extra concrete design guidelines for line developers; in the more particular
Pick-n-Pack context, this is WP7’s “Fresh and processed food production line”.

4.1 Role of “container” context

As was mentioned already before, the System Composition Pattern has a loose hierarchy of “context compo-
nents” in which one or more other components can be “deployed”. Design motivations behind this structural
property, as relevant at the line design level, are now explained in somewhat more detail, :

• a composite component provides a boundary (“closing the world” in a “software container”) in which
particular knowledge can be applied, or particular learning can be integrated, without having

– to integrate the knowledge inside one particular component within the composite, and

– to care about taking into account “reasoning rules” that are not relevant to the context.

For example, the properties of a particular kind of tomatoes are queried from the “tomato ontology
server” and used as “magic numbers” in the configuration of the sensing and robot modules.
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• when an explicit context primitive is lacking in system architecture design, these “closure” and “intro-
spection” aspects of a sub-system always end up somewhere inside one or the other component, that
then has too much knowledge about the inner workings of the other components to be practical for
later scaling and/or further integration of this particular sub-system.

This problem has been identified every time already when, in the first two years of Pick-n-Pack, KUL
discussed “legacy” software components, implementations as well as designs. This phenomenon is
rather easy to spot, by looking for the “magic numbers” that are not documented unambiguously, and
that can not be traced one-to-one to the configuration information that comes from the module or
line the component is being used in.

4.2 Guidelines for “Life-Cycle State Machine” model

A Pick-n-Pack food processing line is not a static machine, but will have to go through various forms of
reconfiguration, for various reasons: cleaning of tools or machines; replacement of an old module by a new
one; replacement of a module by one or more humans, and back; etc. Hence, the system design foresees a
mechanism so support this dynamic reconfiguration, via the following States that the system can be in:

• create: all resources needed for the (software) functioning of the module are created.

• configure: the module is made ready to realise one particular kind of functionality.

• start: the module’s functionality is starting up; this can involve some “transient effects” before the
nomimal activity performance is reached.

• run: the system is providing it nominal activity and performance.

• freeze: the system’s activity is frozen for some time, but it remains ready to continue with it imm-
mediately.

• stop: the system’s activity is shut down; this can involve some “transient effects” before the nomimal
activity performance is brought to a halt.

• delete: all resources taken up by the module are freed.

4.3 Guidelines for domain data semantics

If one really wants to reach ultimate flexibility in the composition of a food processing line from modules
provided by different vendors, and queryable from the “outside world” by various stakeholders, one has to
come up with standardized data models for the domain. Very few domains already have done so, for example:

• the “Web”: HTML is a very successful (set of) standards, which was at the basis of the explosion of
innovation on that platform.

• meteorology : weather institutes world wide have agreed on some standards to exchange the data of
their weather stations; for example, NETCDF-CF, the Climate and Forecast Metadata Conventions.3

• finite element data: for example via XMDF (eXtensible Model Data Format).4

KUL has investigated all these formats, and many others, to be prepared when the Pick-n-Pack consortium
will be ready with its own domain data model(s). The following subsections report on the two currently most
mature suggestions in that direction.

3http://en.wikipedia.org/wiki/Climate_and_Forecast_Metadata_Conventions
4http://en.wikipedia.org/wiki/XMDF
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4.4 HDF5 as industry-grade data model

Hierarchical Data Format5 (HDF5) is a mature standard to represent the numerical parts of complex data
structures. That is, all the “numbers” but without the “semantics”; the latter are supported by allowing
meta data fields to be added to the numerical data.

KUL has already conducted several real-world experiments with the HDF5 software libraries provides by
the HDF Group6, to test the integration possibilities with communication middleware (see Sec. 5.2, such as
ZeroMQ7) and “big data” databases to support traceable data storage and querying (such as iRODS8). All
these tests resulted in positive acceptance, in that they all are capable of solving the respective needs of the
Pick-n-Pack project. Pragmatically, all partners use only their custom-made, non-standardized data formats,
such that a real integration will still require significant implementation efforts.

4.5 Guidelines for food processing “world model”

As was already mentioned before, the Pick-n-Pack project must store information about “the world” at the
following complementary levels of detail:

• line: the layout of the whole line; the interconnections between modules; their footprints; and the
location of peripheral devices (scales, storage space, conveyor belts,. . . ).

• module: similar to the line, but now about the layout internal to a module, with the location of all
machines and peripherals.

• machine: similar to the module, but now about how all mechanical structures, actuators, sensors,
communication and computation components, etc., are connected.

• food : each individual or “batched” piece of food has geometric properties that have to be modelled,
for sensing, gripping, packaging, weighing, etc.

No final decision has been taken already by the Pick-n-Pack consortium, but KUL has identified XDMF
(see above) as a potential candidate for all of the above. KUL has already conducted some real-world
experiments with XDMF, for its storage and retrieval (via iRODS) as well as its querying (via a networked
GUI infrastructure of Paraview9.

5 Guidelines for Module design

This Section summarizes some extra concrete design guidelines for module developers; in the more particular
Pick-n-Pack context, these are WP4’s “Quality assessment and sensing”, WP5’s “Robotic product handling”
and WP6’s “Adaptive packaging” modules.

The major beneficiary of this particular work should be DTI: KUL, DTI and DLO have already drafted the
design of the control and integration software of the new “thermo-former” module that is being developed
under the supervision of DTI. Agreement was reached about the design of all of the difficult integration issues:
how to synchronize all modules in the line with the timing constraints imposed by the physical workings of
the thermo-former? how to provide all modules with the “world model” information that the thermo-former
is creating at the beginning of the line?

5http://en.wikipedia.org/wiki/Hdf5
6http://www.hdfgroup.org/
7http://zeromq.org/
8http://irods-consortium.org/
9http://www.paraview.org/
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5.1 Geometrical data

The above-discussed XDMF format is optimized to represent grids of all sorts, in a standardized numerical
way with semantic meta data. Such grids representations fit perfectly to the thermo-former, since that device
creates a “web” of packages formed on the line, from a configurable set of mould elements.

5.2 Communication

The practice in the domain of “robotics” and “data acquisition” devices is to use publish-subscribe10 com-
munication policies to connect two or more modules or components together. While this is arguably one of
the simpler commmunication policies to understand and use quickly, it does not cover a list of also relevant
data communication use cases:

• data bus: subscribe to channel, pick out any topic you like;

• lock-free buffers: these avoid all waiting overheadl

• circular buffers;

• shared memory ;

• blackboard : shared memory with “topics”;

• . . .

Sometimes it is also better to move the computations instead of the data. (But very few software frameworks
or libraries exist to support this; the exceptions are data bases, that support stored procedures in one form
or another.) It is also important to realise that uni-directionality makes Quality of Service monitoring and
adaptation way more difficult than practically necessary. Hence, KUL is helping Pick-n-Pack partners in
learning how to separate:

• communication mechanism and policy;

• message sensing and data model.

Two practical examples of software frameworks that support such separation very well are 0MQ11, or
nanomsg12.

5.3 Software and data bridges

It is the module level of the total system architecture where developers will be most confronted with “legacy”
problems of various kinds and for which it is not practical to re-implement them: machines or components that
are written in specific programming languages, have their own specific data structures that are more or less,
but not exactly, the same as what was agreed upon at the line level, different operating system “containers”
(threads, processes, core distribution policies, FPGAs, GPUs,. . . ), specific “inter-process communication”
(IPC) middleware, etc. In order to provide all partners with a unified system design approach for all of these
problems, KUL has introduced the concept of “bridges” between two or more of such not directly compatible
components. The core ideas of such bridges are:

10http://en.wikipedia.org/wiki/Publish-subscribe_pattern
11http://zguide.zeromq.org
12http://nanomsg.org
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• full separation between “data” and “functions”: the most conceptually clear way to let several com-
ponents interact with each other is by letting them communicate their “data” through “sockets”,
(although that interaction need not necessarily take place via real message sending infrastructure!).
Adding a “socket wrapper” around existing software components is typically always possible, and that
socket will only have data flowing through it. Hence, this insight will help new developments in the
project to profit up front from the clean separation between data and functionality. In practice, this
might mean a (perceived!) step backwards from “object oriented” design towards “old plain C”-like
software development. But the paragraph below has a (partial) answer to this objection.

• semantic data models to generate data structures: when all data structures would be available in
standard, programming-language independent, representations (such as, for example, HDF5), one can
generate the data structures for all programming languages automatically, as well as all read and write
operations. Or, in more modern settings, the REST 13 operations.

6 Guidelines for Machine design

In Year 3, KUL will go one level of detail deeper than the “line” and “module” levels of Guidelines, and adds
some extra guidelines for the developers of individual machines, like robots or sensing modules.

The major beneficiaries of this particular work should be LACQ (integration of gripper onto robot modules)
and Tecnalia (development of the new cable-driven robotics module); also the KUL group responsible for the
quality sensing module has a need for the design guidelines presented above. Close to a dozen face-to-face
workshops have already been held with all partners involved.

7 Suggestions for traceable Globally Unique Identifiers

A Globally Unique Identifier14 (GUID) is a unique reference number used as an identifier in computer
software. The term GUID typically refers to various implementations of the universally unique identifier
(UUID) standard15.

The major use of GUIDs in the Pick-n-Pack context is to be able to put them on all batches of food
that are transformed in food processing lines. Most in particular, Work Packages 2 and 3 have to agree on
a new suggestion for such a GUID, since the existing “bar code”-like identifiers in the food market are not
rich enough for the detailed and much more automated tracing queries that consumers and/or authorities
will want to have available in the future. While no final decision has yet been made about the exact form of
such a GUID, the following requirements have been identified, and checed for practical realisability:

• a GUID data model like that of the Universal Serial Bus16 (USB) is a minimum, to be able to
deduce the vendor, type and instance of a food process. This could be enough for the “outward-
facing” identification requirements of Work Package 3; however, since there are not yet internationally
operating associations that have the authority to assign such “USB-for-food-processing” IDs, our
suggestion can not materialise in the short term.

• Pick-n-Pack wants to introduce also “inward-facing” identification numbers, in order to be able to trace
back all information that was used somewhere in the whole food processing operations. Again, it is not

13http://en.wikipedia.org/wiki/Representational_state_transfer
14http://en.wikipedia.org/wiki/Globally_unique_identifier
15http://en.wikipedia.org/wiki/Universally_unique_identifier
16http://en.wikipedia.org/wiki/USB
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too difficult to suggest a realistic GUID method for this goal, in the form of the composition of GUIDs
for (i) the line, (ii) the module, (iii) the machine, and (iv) their control software versions. Generally
speaking, this is the structure that is borrowed straightforwardly from the System Composition Pattern
that is being used to make the control software and data models for any food processing line designed
in the “Pick-n-Pack way”.

8 Flexible GUI design

Although the design of the Graphical User Interfaces for line, modules and machines are, strictly speaking,
not the subject of this Deliverable but only to be provided in Month 36, the research in Work Package 2
has been conducted with the GUI design in mind all the time. The System Composition Pattern fits to this
design challenge too, because:

• it fits 100% well to the Model-View-ViewControl GUI design pattern17 that will be applied to the
whole project in Year 3.

• because of the strict 5C separation, the design of the actual line, module and machine “controllers”
can trivially accomodate one or more “remote clients” of the data and event flows of each component.
Indeed, any GUI, on any computer anywhere in the whole system, can become a “client” of the real
control component’s information without disturbing that component’s behaviour and without having
to change its software implementation; only the Monitoring and Coordination parts gets one or more
extra Communications to support.

The other good news in this context is that the evolution in the state of the practice outside of the Pick-n-
Pack project is going fast in the direction that is very much compatible with the System Composition Pattern
that underlies the Pick-n-Pack system software design; more in particular:

• Web Components:18 all major browsers are moving fast in the direction to support the HTML5
standard natively, which allows to make “single page applications” in a 100% standardized way, and
with a “5C”-compatible design.

• AngularJS :19 this is an example of a major software framework for connecting HTML5-based single-
page GUI “apps” with the real-world systems that they are representing to the users, and with a
special focus on supporting a large variety of Communication interconnections, from WebSockets (for
“server”-side communication), to WebRTC (for “peer-to-peer” data communication), to local file
access.

9 Milestone MS1

The Description of Work (page. 12 of 51) contains the following ambition as project Milestone after 24
months, for this Work Package 2: “The component and Task-Skill-Motion models for a simple robot-
gripper-sensor sub-system are realised”. The progress towards this Milestone is given in more details in the
accompanying Deliverable D2.4 (“Integration of domain specific knowledge with the component model”)
because the most important progress towards this Milestone pertains to the work reported there. With
respect to work reported in this Deliverable, Section 6 is most relevant: very intensive cooperation between
DLO and KUL has taken place in two “Task-Skill-Motion” aspects:

17http://en.wikipedia.org/wiki/Model_View_ViewModel
18http://en.wikipedia.org/wiki/Web_Components
19https://angularjs.org/
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• 5C separation of concerns: the visual tomato recognition and tracking functionality driven by Wa-
geningen has been designed for optimal configurability, with respect to, especially, the food-specific
“magic numbers” that must be adapted every time that the vision component is expected to recognize
and assess a new type of food, whose properties are available from the Pick-n-Pack knowledge base.

• software development: the transformation of conceptual designs for the “perfect” component software
into real software is, always, a lot more labour-intensive than expected. The common KUL-DLO
integration efforts, unfortunately, have turned out to be no exception to this “rule”, but then mostly
as far as the “semantic querying” is concerned, that is, the functionality that we foresee in each
component or module to query a knowledge server to provide the “magic numbers” needed for the
food- and line-specific configurations. Of course, given the extremely seminal context of this work,
there is no prior art at all that KUL and DLO could start from.

10 Conclusions

• Co-development with other projects has been taking place, but Pick-n-Pack is definitely leading in the
application of the Task-Skill-Motion approach, more particularly via the System Composition Pattern,
into concrete software implementations.

• KUL supports partners in their concrete designs, at the three “levels” that are relevant to the Pick-n-
Pack project: the machine, module and line.

• these three levels also provide, naturally, three levels of “world modelling” that must be supported:
the grid, the scene graph and the kinematic chain.

• KUL provides partners with as many well-supported standards and software frameworks as relevant for
the project, and possible within the pragmatic constraints of available resources: HDF5, 0MQ, (Linux)
containers, etc.
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Systematic Robot Application Development:
Applying the Composition Pattern to

Constraint-Based Programming
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Fig. 1: Scene of the tomato picking running example. The PR2
robot has to pick the tomato from the counter (left), and drop
it in the basket on the fridge (right). A person doing the dishes
between those locations forms an dynamic obstacle during all
phases of the task at hand.

Robotics has seen a growth in demonstrations of complex
behavior on platforms with an increasing number of degrees-
of-freedom (DOF), types of actuation mechanisms, communi-
cation networks, sensors, and processors. Robot competitions
among such complex, highly autonomous systems attract a
lot of attention from the robotics community and beyond.
Well-known examples include the Darpa Robot Challenge
[1] and the Robocup [2] competition. Given the scale and
complexity, as well as the increasing demand of flexible ap-
plication reprogramming and portability to different platforms,
application development has become an effort shared by teams
of developers, each with different levels and fields of expertise.
In order to create an application, these developers have to
create and compose compatible and interoperable building
blocks. This integration process, often including parts of a
team’s legacy software, commonly jeopardizes the success of
a project.

This paper addresses application development challenges
through the methodological combination of structure and
behavior. More concretely, it formalizes the Composition
Pattern design methodology and applies this to application
development using constraint-based programming. Moreover,
this paper shows how to refactor existing applications to

more reusable systems by looking at both these aspects in
an integrated way.

Our recent, complementary work [3] describes the Com-
position Pattern mostly as a software architectural pattern,
resulting from the multiple refactoring efforts on the iTaSC
software framework [4]; in contrast, this paper focuses on the
Composition Pattern as methodology to systematically create
robot applications by developing and composing reusable,
compatible, and interoperable building blocks. This method-
ology can be applied to the software frameworks, tools, or
languages prefered by developers.

The paper will use a tomato pick-and-place application as
running example throughout the paper. In this application,
a PR2 robot [5] has (i) to find a tomato located in the
neighbourhood of a dedicated pick-up spot, (ii) to pick up
the tomato, obviously not damaging it, (iii) and to deposit it
in a dedicated basket a few meters away. The platform has to
operate in a cluttered and populated environment, as shown
in Figure 1. It is evident that all these tasks should take into
account the limitations of the platform, and that the whole
setup conforms to safety requirements. The running example is
a typical pick-and-place robot application. It is rather ‘simple’
to pre-program this in an ad-hoc manner, provided that the
robot operates in a human-shielded environment, and pick
and drop location are within reach. However, when any of
these limiting simplifications must be relaxed, developing the
application quickly increases in complexity. Hence it becomes
relevant to adopt a methodology that helps creating reusable

Fig. 2: Example grasping strategies to pick up a tomato:
grasping the tomato using the gripper (left), or grasping it
between the two grippers (right). The orange forms an obstacle
when grasping the tomato. In an alternative scenario, the
orange must be grasped, and the tomato avoided.
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and adaptable applications. The methodology introduced in
this paper aims at helping developers to deal with this esca-
lating complexity, which comes in many forms. For example
when (i) changing the platform, e.g. replacing the PR2 by an
autonomous humanoid robot; or adding a sensor to the PR2,
and use this information where useful; (ii) changing the tasks,
e.g. grasping the orange, instead of the tomato; grasping the
tomato between the two (closed) grippers to avoid squeezing
it, rather than using a single gripper (Figure 2); increasing
the number of tasks to execute simultaneously, e.g. grasping
the orange with the other gripper; or executing the tasks in
a more cluttered and populated environment with high levels
of uncertainty, e.g. when human actions obstruct the view on
the tomato; (iii) changing the knowledge level, e.g. replacing
the given sequence of sub-tasks by a high level goal and a
reasoning algorithm.

The paper uses constraint-based optimization as a unifying
approach to create robot task descriptions: every task is a set
of objective functions and constraints that the robot controller
has to satisfy, with contributions from joint space, Cartesian
space, and/or sensor space. A major reason for the growing
success of the constraint-based approach is that constraints
and objective functions are composable. This paper exploits
this composability property by applying the constraint-based
approach not just strictly to the robot tasks alone, but to all
entities of a complete robotic application, such as platform-
specific constraints, or constraints imposed by the manipulated
object (Figure 4).

The paper is organized as follows: The following, Related
Work section links existing approaches in literature to this
paper. The next section states the Composition Pattern and de-
scribes its underlying concepts. The subsequent section applies
the Composition Pattern to the example domain of constraint-
based programming. Next, a discussion section details the
benefits of the Composition Pattern and its role in reuse
and refactoring. Further, this section compares the concepts
introduced in this paper to existing approaches. Finally, the
last section states the conclusions.

RELATED WORK

This section discusses related work on constraint-based
programming, and existing architectures, frameworks, and
methodologies for robotics.

Constraint-based programming

One constraint-based programming approach, named
instantaneous Task Specification using Constraints (iTaSC)
[6]–[8], introduces particular sets of auxiliary coordinates to
express task constraints and model uncertainty. These auxiliary
coordinates are specified between object frames defined on
the robots and objects involved in the application. Where
possible, these object frames have a semantic meaning in
the context of the task, for example a specific ‘corner of a
table’. The composition of the constraints of all (sub-)tasks,
defined on possibly a multitude of robots, objects, and sensors,
translates to a numerical constrained optimization problem.
The developer can introduce weights and/or priorities between

the different concurrent tasks. In the instantaneous version, a
solver algorithm computes at each moment in time the best
setpoints (for example joint velocities or accelerations) for all
the robots involved in the application. A software framework
and modelling tools for iTaSC are available [4], [9].

Related approaches that define task specification as a
constraint-based optimization problem include the Stack of
Tasks (SoT) [10] framework and the Stanford Whole-Body
Control framework (SWBC) [11]. The concept of constraint-
based task specification and control to define the overall robot
task as a composition of individual composable constraints
will prove to match the composition in the Composition
Pattern, as will be detailed further on. Hence it makes an
apposite choice as example domain.

Frameworks, architectures, and methodologies

Past research resulted in different frameworks, architec-
tures, and methodologies to deal with complexity in robotics.
Kortenkamp and Simmons give an overview of robot sys-
tem architectures in [12]. The following paragraphs give an
overview of recent advances.

A first type of frameworks uses hierarchical (concur-
rent) state machines or flow charts, as pioneered by Nils-
son [13]. Control-focused frameworks of this type include
Skill/Manipulation Primitive Nets [14], [15], which provide
state machines of hybrid force/position control setpoints, and
more recently LightRocks [16], which extends this idea using
a modeling approach and introducing levels of abstraction
of task specifications built on hybrid force/position control.
General application-focused frameworks of this type include
SMACH [17] and ROSCo [18].

Another type of frameworks starts from a multi-tiered ar-
chitecture [19]. Angerer et al. [20] present a recent two-tiered
object-oriented architecture for industrial robotics, robAPI. It
consists of a robotics API tier, comprising a command and an
activity layer, and a real-time robot control core tier.

The increase of knowledge and interactions between parts
of knowledge results in the need for tools to manage this
knowledge. Two state-of-the-art knowledge driven approaches
include CRAM and the high-level mission specification by
Doherty et al. [21]. CRAM [22], a light-weight reasoning
mechanism that can infer control decisions, merges the fea-
tures found in the planning and sequencing layers of 3T (three-
tiered) architectures [19]. Examples of the application of this
framework to complex situations include two robots cooper-
ating in making pancakes [23]. Doherty et al. [21] present
a formal framework and agent-based software architecture
based on delegation for automated specification, generation,
and execution of high-level collaborative missions.

In contrast to the frameworks and architectures above, this
paper does not introduce the ‘single best system architecture’,
but helps developers in defining a system architecture that fits
their application’s needs using a systematic approach.

Next to the frameworks and architectures mentioned above,
there are a number of framework eco-systems that use data
flow or component-based techniques. These framework eco-
systems allow developers to create large systems from modular
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components or nodes that encapsulate certain functionality.
These components are intended to be substitutable blocks
of computation that communicate data or events with other
components. Component-based tools possibly allow to call
functions (services) on other components. Examples include
modeling framework eco-systems such as LabVIEW [24] and
Simulink [25], and code-oriented framework eco-systems such
as ROS [26] and Orocos [27].

This section further compares different framework eco-
system aspects using the terminology of the 5C’s principle
of separation of concerns [28], [29]. This principle separates
the communication, computation, coordination, configuration,
and composition aspects in software functionality, and forms a
basis for the here introduced Composition Pattern. In addition,
this paper considers an entity as a concept or model that maps
to software components, agents, objects, modules, processes,
activities. . . The framework eco-systems primarily focus on
functional entities, conforming to algorithms or computations
(data processing), and their communication. Support entities
that ‘manage’ functional entities, by handling configuration,
composition, coordination, monitoring, and scheduling, are
of secondary importance for most of these framework eco-
systems; the introduction of support entities as well as the
consistency of their usage, are generally left to the program-
mer. In contrast, the Composition Pattern introduced in this
paper introduces these support entities in a systematic way,
already in the conceptual and architectural design phase.

Most framework eco-systems provide the possibility to
separate configurable parameters from the computation func-
tionality, for example using the ROS parameter server or
Orocos properties. The composition of components is fixed
by design and possibly hierarchical in the LabVIEW and
Simulink case, ROS and Orocos on the other hand, allow
flat but runtime changeable compositions. State machines are
commonly used for coordination, for example rFSM [29],
SMACH [17] for ROS, or Stateflow for Simulink [30]. The
number of scheduling options varies among the tools, for
example the implicit scheduling based on block connectivity as
default in Simulink, or its more advanced Common Function
Call Initiators. Orocos assigns periodical (timer triggered),
non-periodic (user triggered), or slave (coupled to another)
activities (‘threads’) to components, and allows to choose a
real-time scheduler or not. All of these framework eco-systems
regard monitoring as a functionality to be created by the
programmer, similar to other computations.

This paper does not focus on the functionalities offered
by these frameworks, but on the structured and systematic
approach to application (architecture) design and the resulting
consequences for software engineering design, which can be
applied to the framework eco-system of choice.

COMPOSITION PATTERN: CONCEPTS FOR A SYSTEMATIC
APPROACH

This section defines concepts to divide a (robotics) prob-
lem into sub-problems. These concepts apply throughout the
design, from the conceptual design to the software modelling
phase.

Monitor

Coordinator

Composite Functional Entity

Configurator

data

Scheduler

Composer

(Composite) Functional Entity

Fig. 3: Entity types within the Composition Pattern, repre-
sented by a different color. Each block represents an en-
tity of a specific type: a Composer, Configurator,
Coordinator, Scheduler, Monitor, and one or
more (Composite) Functional Entities. All enti-
ties within the composite interact with each other. More-
over, (Composite) Functional Entities communi-
cate data among each other, and across the composite bound-
ary.

The Composition Pattern approach of application devel-
opment consists of following four concepts: metamodeling,
composition, hierarchy, and semantic context.

Metamodeling

This paper follows the meta-model approach and termi-
nology of Model Driven Engineering [31] as advocated by
Bézivin [32]. It considers all entities to be models, as opposed
to the code-centric principle of all entities are objects. We
restrict ourselves to the key concepts of metamodeling relevant
for this paper, and refer the reader to the work of Bézivin [32]
for a discussion of the consequences of this paradigm shift.

In this paper, a model captures a view or aspect of a system,
it groups semantics. A meta-model presents the language to
describe a model; it is a formal specification of an abstraction
of a (sub)-domain. A model conforms to one or more meta-
models. An implementation is an instance of, or is represented
by a model. From a model a concrete implementation can be
generated or hand-coded. However, this paper will not elabo-
rate on implementations; we refer the reader to Vanthienen et
al. [3] for a discussion on implementations.

In the examples of following sections, teletype font names
indicate meta-models1, and italic font names indicate
models. For example a Tomato Object denotes a Tomato
model, conforming to the Object meta-model. De Laet et
al. [33] present one example of the use and usefulness of
metamodeling in robotics, compatible with the Composition
Pattern. In this example a Geometric Semantics meta-
model presents a language and rules on geometric relations and
operations between rigid bodies. A concrete model represents
the semantics of a specific relation or operation, for example

1Teletype font names will also be used to indicate a non-specific
model that conforms to the meta-model with the same name, in places where
it is clear from the context. For example a Task indicates a non-specific task
model that conforms to the Task meta-model.
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Box 1: Example composition and inter-context translation
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The figures above consider the example in which the home position should
be configured on a mobile robot consisting of a mobile base and an arm.
A Mobile Robot entity composes a Base’ or Base entity, and an Arm entity.
The latter Arm entity is common to the three figures, it composes the Jointi
entities. Hence, the Jointi entities are at depth two (D2), and the Arm entity at
depth one (D1) with respect to the root composite Mobile Robot at depth zero
(D0). The leaf nodes (functional entities) control the base as a whole (Base’
or Base entity), and each joint of the arm respectively (Jointi entities). In this
example the three depth levels coincide with different levels of abstraction.
Entities at a deeper depth level have a darker shade of grey. We consider three
variations of this example, as shown from left to right:

1) In the figure to the left, the D0 Mobile Robot Configurator configures
Base’ and Arm with parameters that belong to the same level of
abstraction: ‘arm up’ and ‘start pose’. The Base’ is able to interpret
and act on parameters of this level of abstraction. The support entities
of the Arm composite further translate this parameter to the concrete
numerical joint setpoints q0.

2) In the figure in the middle, Base is an entity that can only interpret
parameters of a lower level of abstraction, similar to the level of
abstraction of the Jointi entities. The D0 Mobile Robot Configurator is
adapted with respect to the left figure, to translate ‘home’ to ‘arm up’
and ‘Tstartpoint’, a concrete pose of the base. However, the need for
adaption of the D0 Mobile Robot Configurator, as well as the translation
to different abstraction level is regrettable from a design point of view.

3) In the figure to the right, the D2 Base entity is wrapped by a composite
Base’ that translates the ‘home’ received from the D0 Mobile Robot
Configurator to ‘Tstartpoint’, which Base can interpret. This case
represents one possible way to integrate the existing Base entity in the
left figure composite, while preventing duplication of parts of models
or code, such as the D0 Mobile Robot Configurator.

The first two examples demand less effort to develop. However, in the long
term, the third option, consisting of fine-grained entities with depth levels
coinciding with levels of abstraction, will prove to be more reusable.

the End-Effector Pose of a robot. This model can be translated
to an implementation using an existing geometric library
such as KDL [34] or the ROS geometry stack [35]. The
metamodeling approach enables automatic checks for semantic
correctness of geometric operations and representations, and
their correct deduction.

Composition

A Composite Functional Entity (Figure 3), further referred
to as ‘composite’, explicitly separates all aspects of composing
(‘grouping’) different functionality based on following ques-
tions:

• What is the core behavior of the composition? This forms
one or more Functional Entities (computation) of a
composition. It typically represents continuous time and
space behavior. A Functional Entity within a composite
can be replaced by a Composite Functional Entity.

• How is the functionality interconnected within the com-
posite? This forms the Composer entity.

• How to coordinate the behavior of this group of function-
alities? This forms the Coordinator entity, which com-
mands actions from the other entities within a composite,
which on their turn report back to the Coordinator. It gives
the composite the autonomy to handle certain situations
locally.

• How to apply configuration to this functionality? The
Configurator applies settings, i.e. data and parameters,
to an entity, when triggered by the Coordinator. In this

step the Configurator translates the data and parameters
to the context of the entity. Therefore, the Configurator is
a ‘parameter translator’ and the point where knowledge
from a knowledge base can be introduced. Klotzbücher
et al. introduced this separation of commanding and
executing configuration as the Coordinator-Configurator
pattern [36].

• What conditions of this composite need to be monitored?
This forms the Monitor entity that reports on conditions
of the functionality within the composition.

• Which timing constraints are important for this group of
functionalities? This forms the Scheduler entity.

It is however possible that not all concerns are relevant
for the composite at hand, and hence certain entities can be
left out. For example the Monitor can be left out, when the
composite has no data to monitor.

Hierarchy

The Composition Pattern helps to derive a set of mod-
ular entities as building blocks that are easily adapted or
replaced, since each entity’s behavior has a limited scope
(separation of concerns), and a clear meaning. Applying the
composition pattern iteratively, results in a tree of entities
with a recurring, fractal structure. The level of granularity
of the leaf nodes of the composition tree, i.e. their ‘depth’,
does not need to be identical for all branches of the tree.
Hence each Functional Entity can be replaced by a composite,
until the granularity required by the specific application is
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Fig. 4: Composition tree of a robot constraint-based application. A node represents an entity meta-model. An arrow indicates
composition: the node at the beginning of the arrow composes entities that conform to the meta-model at the end of the
arrow, with a multiplicity indicated next to the arrow. Moreover, a composite functional entity can compose entities of the
same meta-model, which is not shown on the figure. For example an entity conforming to the Task meta-model can compose
different entities that conform also to the Task meta-model. The application shown on top is the root composite, the entities
shown at the bottom are the leaf entities considered here. The text will focus on the branch of the tree shown in blue.

achieved. At a design phase, a trade-off needs to be made
based on considerations such as the existing functionality at
your disposal and efficiency. In a refactoring phase, these
levels can change, allowing for an incremental evolution of
the application. Remark that as a consequence of the tree of
composition all Functional Entities (computations) are always
leaf entities.

Although the composition is strictly hierarchical, the ‘com-
munication’ (fifth C of the 5C’s principle of separation of con-
cerns) does not need to be hierarchical. Entities communicate
data on the same level of (compatible) semantics, although
they may reside on different depth levels, therefore crossing
different composition boundaries. The common parent entity
checks and connects communication channels. For example a
controller entity communicates setpoints to the joint1, joint2,
and base or base’ entities presented in Box 1. As a conse-
quence a flat or a hierarchical composition are similar from
the perspective of data-flow between Functional Entities, since
data is not bound to the limits of a composite.

Semantic context

Every composite forms a semantic context; i.e. the entities
within a composite use a shared vocabulary. The support enti-
ties translate from the context of a composition to the context
of its child functional entities. This concept is important for
knowledge driven architectures, where this context needs to be
explicit. Box 1 gives an example of the relation between the
Mobile Robot, Base, and Joint contexts. In the running exam-
ple, higher level compositions use tomato-specific semantics,
such as ‘a rotten tomato’ while the lower level composition
that generates robot motions, uses robot-specific semantics,
such as ‘joints’.
The semantic context also forms a ‘boundary’. The support
entities of a composite ‘know’ only about the other entities
within that composite, not the composition of the parent or
child Functional Entities. Moreover, the Functional Entities
of a composite do not know about the support entities that
manage them, they send and receive data and events not

knowing who will use or react on them. It does not imply
information hiding however: child entities can be introspected
or reasoned about.

The following section details the application of the pre-
sented approach to the domain of constraint-based program-
ming.

APPLYING THE COMPOSITION PATTERN TO
CONSTRAINT-BASED PROGRAMMING

This section explains how robots applications can use the
concepts of structured application development introduced in
previous section. It describes a generic division of the domain
of constraint-based programming in a composition tree.

Figure 4 gives an overview of the composition tree of a
constraint-based application. Each node of the shown tree
represents a meta-model of a (composite) functional entity. On
the one hand, it shows the relation between meta-models. On
the other hand, it shows the hierarchy of composite functional
entities, complementary to the composition as shown in Figure
3 (each node has the structure as shown in Figure 3). This
section focuses on one branch of this tree, shown in blue,
choosing a limited number of entities of a composition to detail
further on.

Furthermore this section applies the division represented by
this tree to the running example, resulting in concrete models
shown in Box 2.

We define following (composite) entities within the task
specification branch of the application tree, from root
to leaf: Application, Constraint-Based Program,
and Task.

Application

An Application attaches a Constraint-Based
Program to specific Platforms (hardware resources,
which can be virtual for simulation). These Platforms
consists of the specific robot Actuators, i.e. motion ca-
pabilities, and Sensors, i.e. sensing capabilities.
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Box 2: Composition structure of the running example
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The figure above presents the composition tree for the running example,
using the same notation as in Figure 4 with the difference that a node is
a (composite) functional entity model. It forms one of the possible models
for the problem at hand.
The composition tree examplified above does not present the only possi-
ble hierarchy. First, the depth of the composition tree does not need to
be restricted. For example a Setpoint Generator generating position
setpoints can be implemented or replaced by a set of single DOF trajectory
generators. In this case, the Coordinator of the now composite Setpoint
Generator entity manages the different possible timings between the six
child Setpoint Generators.
Moreover, intermediate composition layers can be introduced. For example
an intermediate layer can be introduced between the Pick and Place Task
and the different sub-Tasks (not shown in the figure). More concretely, the
Reach Task could be replaced by a composition of the current Reach Task

with an Arm Guide Task. The latter constrains the arm to move within a
tight subspace when grasping a tomato in a hard-to-reach location.
Even more, entities can have multiple roles. For example the Setpoint
Generators considered in the running example (Trapezoidal Velocity SG
and Spherical Planner SG) deliver a fixed setpoint or a time-dependent stream
of setpoints deduced from a motion profile. These Setpoint Generators
get their goal from another entity, such as the Configurator of the Pick and
Place Task, or a Planner (also an instance of a Setpoint Generator)
outside or inside the scope of the Reach Task. However a Setpoint
Generator, delivering setpoints to the Constraint-Controller can
be of a different form, or defined outside of the scope of the Task. For exam-
ple the haptic teleoperation scheme using iTaSC introduced by Borghesan et
al. [37]. In this scheme the Constraint-Output of the position-coupling
Task at the master side forms the Setpoint Generator of the equivalent
Task at the slave side, and vice versa.

The running example will make use of the PR2 and the
default sensors of the platform: the tilting laser scanner and
(stereo) cameras on the head.

Constraint-Based Program

A Constraint-Based Program (CBP) defines task
specification and control on a robot setup. It composes a Task
and attaches the Task to the world model, at certain points
where we define object frames. The Constraint-Based
Program also comprises a Solver that computes the control
input to the robot as a solution of the constrained optimiza-
tion problem. The World Model consists of the Robot-
and Object (kinematic and dynamic) models placed in the
Scene.

The Constraint-Based Program of the running ex-
ample composes following models: (i) Pick and Place Task,
(ii) a World Model, (iii) and a Weighted-Damped Least-
Squares Solver. The World Model composes a Scene, a PR2
Model, conforming to the Robot meta-model, and models that
conform to the Object meta-model: one or more Obstacles
to avoid, the Table where to pick up the tomato, the Basket
where to put the tomato, and the Tomato.

Task

A Task can compose different sub-Tasks, in which case
an intermediate composition level is introduced. To make the
distinction we will define a Composite Task composing differ-
ent Tasks. The Composite Task Coordinator coordinates the
active set of tasks. It commands different global weights and
priorities as well as (abstract) goals for the tasks.

The Pick and Place (Composite) Task of the running exam-
ple can be implemented using different combinations of tasks.
The Composite Task developer chooses these Task entities,
by (re-)using existing Tasks from a library, or by asking a
Task developer to develop a model and implementation that
fits the purpose. For the running example, he chooses to model
the desired behavior using following Tasks:

• a Locate Task to actively look for the tomato, defined
between the tomato-sensor hardware (a camera or laser-
scanner for example) and the pick-up spot,

• a Reach Task to reach for the tomato once found, defined
between the tomato and a gripper,

• a Grasp Task to grasp the tomato, also defined between
the tomato and a gripper,

• a Place Task to position the tomato in the basket, defined
between the tomato and the basket,
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• a Drop Task to simply release the tomato, defined on
the gripper,

• platform related safety Tasks such as Joint Limit Avoid-
ance, defined on the joints of the robot (configuration
space),

• and obstacle avoidance Tasks, defined between obsta-
cles and robot parts.

Some of these tasks will be executed sequentially (locate -
reach - grasp - position - drop), others in parallel. The Pick and
Place Coordinator decides on this behavior. Remark that the
resultant robot behavior emerges from the composition of the
constraints of all active Tasks, for example a simple Reach
Task will only be successful if combined with the necessary
safety and obstacle avoidance tasks.

A single Task consists of a set of constraints on a task
space representation. It is however unaware of its concrete pur-
pose within an application. Even the object frames in between
which the Task is defined are unknown to the Task. It is the
parent of the Task that defines its purpose by coordinating,
configuring, scheduling, monitoring, and composing it.

For example the Reach Task of the running example
composes alignment constraints to align the gripper with the
vector between the object frames in between which the Reach
Task is defined, and an approach constraint that reduces the
distance between these object frames. It is the Pick and Place
Task that defines the object frames to be on the Tomato and
the Gripper models.

At a meta-model level, a Task composes:

• a Task Space Representation (TSR), which de-
fines a representation of the task space, e.g. a spherical
coordinate system for the Reach Task;

• a formulation of a Constraint-Output equation
(CO), which defines the output as a function of the state
of the TSR and the joint space (joint coordinates), e.g. the
selection of the spherical coordinates of the TSR forms
the CO for the Reach Task;

• one or more Constraint-Controllers (CC),
which define the controller on the output, e.g. a position
controller imposes the constraints for the Reach Task;

• and one or more Setpoint Generators (SG), which
define the desired values of the output at each time
instance, e.g. an interpolator and a planning algorithm
deliver the setpoints for the CC of the Reach Task.

In the running example, the Coordinator of the Reach Task
decides when to switch between the two provided Setpoint
Generators. Box 3 details the interaction of the Reach
Task with its parent and leaf entities. Other examples of
Tasks of the running example include a set of inequality
constraints for each joint of the platform, which implements
the Joint Limit Avoidance Task, and a simple open-close
algorithm monitoring a ‘touch’ condition, which implements
the Grasp Task.

The presented composition stimulates developers to make
all assumptions on safety or platform specific constraints ex-
plicit, structured following Figure 4. Safety and platform spe-
cific constraints such as joint limit avoidance, center of mass
requirements for humanoids etc. are introduced as Tasks,

since they constrain the robot platform in the same way as any
other Task. Making these Tasks explicit, allows human or
artificial reasoning on the full active set of Tasks, without the
need for discovering hidden assumptions. In the simplest case,
the developer has to define these Tasks himself. However,
tooling can add these safety and platform-specific Tasks
automatically, based on the selected platforms.

Remarks

The tree of composition is a basic blue print for applications
using constraint-based programming, it is a policy to use the
Composition Pattern that gives definitions to guide decisions
and achieve rational outcomes. However some level of flexibil-
ity remains as detailed in Box 2. Abovementioned subsection
gives an example where an intermediate Composite Task level
of composition is introduced. Moreover, the here described
tree is not intended to be ‘complete’: entities not mentioned
in the division can make part of a composite, for example
Estimators.

Although presented in a top-down order for readability, the
typical workflow will start at an intermediate composition
level, composing existing (composite) entities from libraries.
For the running example, the applied workflow was (i) first the
development and choice of the World Model and Solver
within a Constraint-Based Program, (ii) second the
development of the Composite Task by selecting the Tasks
and their interactions, (iii) and last the embedment in hard-
ware, creating the Application.

Remark that each composite or functional entity gives rise
to a different user perspective at a certain level of abstraction,
demanding a different (level of) expertise.

Further remark that the different entities in the running
example can be applied more generally, outside the scope of
tomato picking. For example the approach to tomato picking
can be generally applied to ball-shaped objects. However,
naming of entities and events of the running example are kept
within the scope of the example for readability. The following
section will discuss this generality.

DISCUSSION

This section first discusses the implications and benefits
of the Composition Pattern, secondly it discusses the role
of the Composition Pattern in reuse and refactoring, lastly it
discusses the relation to existing frameworks, architectures,
and methodologies.

Implications and benefits of the Composition Pattern

The Composition Pattern helps the application developer to
avoid following ‘bad design’ traits [38]: rigidity, i.e. when
every change has its effect on too many parts of the system,
fragility, i.e. when a change breaks unexpected parts of the
system, and immobility, i.e. when the reuse of a piece of
the system is hard since it is entangled with the application
it was first designed for. These three ‘bad design’ traits
characterize their respective opposites: flexibility, robustness,
and reusability. We interpret these traits not only as a static
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Box 3: Example entity interaction
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The figure above details the interaction of the Reach Task with its parent,
i.e. Pick and Place, and children, i.e. Trapezoidal Velocity Profile Setpoint
Generator, Spherical Planner SG, PID Position Controller CC, and Spher-
ical TSR. The figure shows entities at a deeper depth level in a darker shade
of grey.
The following paragraphs elaborate the different interactions, starting from the
interactions of the Pick and Place Coordinator with the different entities of the
Pick and Place composite. Remark that in order to interact, each composite
needs common vocabulary, which differs from the other composites. The
support entities translate between the composite’s own vocabulary to the
vocabulary of their child (composite) functional entities, as will be exemplified
in following paragraphs.
The responsability of a Coordinator is to change behavior by interpreting
and reacting on events. First the Coordinator coordinates the deployment
of the composite when triggered by its parent. For example, the Pick and
Place Coordinator orders the Pick and Place Composer to interconnect the
different Tasks and support entities, and the Pick and Place Configurator
to load initial configurations to all entities, including all support entities. For
example, the Pick and Place Scheduler is configured to schedule all concurrent
Tasks in parallel.
Further the Coordinator interprets and reacts on events within the compos-
ite. For example, the Pick and Place Monitor monitors and signals events such
as the gripper close to Basket condition, which triggers the Pick and Place
Coordinator to demand the high accuracy mode explained in the following
paragraph. The same Pick and Place Monitor signals gripper surrounds

tomato, which triggers the Pick and Place Coordinator to transition to the
Grasp Task. The dotted arrows indicate the latter. Remark that a Monitor
signals the (non-) violation of a condition, not the expected reaction on that
condition.
Furthermore the Coordinator triggers configuration. For example in the
running example, the Pick and Place Coordinator commands to reach careful
when close to Basket. The Pick and Place Configurator translates this
command to a high accuracy mode configuration of the Reach Task. The
Reach Coordinator and Configurator translate on their turn this mode to
a lower approach speed configuration of the Trapezoidal Velocity Profile
Setpoint Generator, and the activation of an integral term in the PID
Position Control. The dashed arrows indicate these events.
The concrete translation values a Configurator uses, i.e. configuration of
the Configurator, can be provided by different sources, including loading
simple parameter lists or querying and reasoning on knowledge databases. For
example, the speed configuration will depend on the controller type and the
platform used.
Further a Coordinator has local responsibility more than the above
presented translation of commands from higher levels. For example, in the
running example, the Reach Coordinator switches from the Trapezoidal
Velocity Profile Setpoint Generator to the Spherical Planner when the
Reach Monitor signals that there is stall in the progress towards the goal
indicated by a build-up in position error. The dash-dotted arrows indicate
these signals.
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architecture problem, but also as a dynamic, run-time, and
behavior problem.

The Composition Pattern decreases rigidity since it sepa-
rates concerns and specifics are filled in as late as possible.
For example, configuration models what parameters to change
and how to change them, avoiding coupling to other aspects,
such as coordination or algorithms in functional entities. As
an illustration, changing the execution rate of the running
example at runtime will influence but should not alter any
of its Setpoint Generator functional entities. Moreover,
monitoring is important to decrease rigidity, since it allows an
application to react on internal and external changes.

Further the Composition Pattern decreases fragility, be-
cause it makes the semantic context explicit, which keeps
impact of changes local to a subpart of the composition
tree. For example, monitoring boundary conditions, reacting
(locally) on the violation of these conditions, and possibility
querrying an external database for a solution in the local
context, decrease fragility. As an illustration, disabling robot
base movement in the running example, while the robot has
to reach for the tomato outside the workspace of its arms, will
cause the Reach Monitor to signal that no progress is made
towards the goal, and the PR2 Left Arm Monitor to signal a
stretched arm condition. The Pick and Place Coordinator can
freeze the task execution, and signal this event. The latter will
on its turn trigger operator interaction, or simply a re-activation
of the base.

Moreover the Composition Pattern decreases immobility,
because of the limited scope of a semantic context, the
granularity of the composition tree hierarchy, the modelling
approach and the separation of concerns. It captures a certain
view of a system, making abstraction of implementation
details. For example, a (composite) functional entity does
not know its purpose, connectivity, or meaning within the
application. Further an appropriate depth provides elementary
entities, specific enough to be easily translated to code. As
an illustration, the Trapezoidal Velocity Profile Setpoint
Generator used in the Reach Task of the running example
can be easily reused in the Place Task since its manage-
ment and configuration are decoupled from its functionality.
Moreover, not only leaf entities can be reused, for exam-
ple the Reach Task on its own can be reused in another
Constraint-Based Program.

Reuse and refactoring
The running example elaborated throughout the paper spec-

ifies only one possible pick-and-place robot application. De-
veloping this example using the Composition Pattern requires
more effort than an ad-hoc approach. However, common
situations include the need to extend this application to
multiple consecutive and/or concurrent tasks, port this task
to another robot platform or object to manipulate. Applying
the Composition Pattern reduces the effort of extending and
revising the running example on a longer term. This need
for extensibility, reusability, and adaptability forms one of
the drivers to refactor robot application software. This section
discusses some guidelines and examples to refactor existing
applications to more reusable and adaptable systems.

Important is to consider everything a model, as advocated
by model driven engineering, such that applications can be
first modeled, analyzed and verified abstractly before code
is generated, next to the advantages of conceptual simplicity,
high scalability, and good flexibility [32].

A developer should detect the different forms of knowledge
and expertise, and divide the application domain at hand:
(i) in levels of abstraction, making general applicable sub-
parts explicit, (ii) and the different forms of knowledge and
expertise. This division results in the hierarchy (tree) of
semantic contexts. An appropriate depth of the tree provides
elementary entities specific enough for the available tools to
be translated to code. It is a trade-off between composability,
i.e. how easily an entity can be reused, and compositionality,
i.e. the predictability of behavior of a composite knowing the
behavior of its components [39]. For example, as mentioned in
previous section, the models used in the running example are
applicable to a wider scope of problems than tomato pick and
place applications. Many parts of the Tomato Constraint-Based
Program, such as the Pick and Place model, can be reused to
handle for example oranges: only the Tomato model should
be replaced by a Orange model, as do perception algorithms.
Context dependent configuration parameters can be deduced
from this altered model: the force used to grip the orange, the
condition for successful approach, etc.

Each of the semantic contexts can be separated in con-
cerns, more concretely the different entities of a Composition
Pattern composite. More code-centric examples include: (i) If
part of the code makes assumptions on where the data comes
from, move this dependency (where) to the Composer. (ii) Re-
place magic numbers with configurable parameters, and move
the concrete numbers to configuration. (iii) Break up if/else
statements: move the condition to the Monitor, the reaction
to the condition to the Coordinator, the concrete action to a
Functional Entity, and timing related statements to the Sched-
uler. Remark that proper design is more than separation: each
entity should be adaptable. For example Functional Entities
should contain adaptable behavior. However, few algorithms
are ready for this level of adaptability. For example the
Trapezoidal Velocity Profile Setpoint Generator in the
running example is a functional entity, which algorithm can be
implemented in different ways. Depending on the underlying
algorithm, it can assume a fixed rate of operation (sample
time), can handle a change in rate of operation, or can handle
asynchronous triggers (event-driven). The latter offers a higher
level of adaptability.

Relation to existing architectures
The Composition Pattern generalizes concepts to which

existing frameworks and architectures conform to a greater
or lesser extent. In the first place the Composition Pattern
delivers structure, not making claims on the actual behavior,
nor limiting the structure to a number of tiers or levels.
It provides a way to improve or create applications using
for example the framework eco-systems mentioned in the
Related Work section. Moreover, it provides structure beyond
(coupled) coordination-configuration using hierarchical state
machines or flow charts frameworks.
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The Composition Pattern stimulates context structuring, but
does not impose information hiding. It presents a (composite)
functional entity as first-class entity, which can be inspected
and reasoned upon, compatible with knowledge-driven ap-
proaches such as CRAM. Moreover, in future applications we
want to integrate reasoning on all composites, on all tiers, as
presented in the Composition Pattern, and in contrast to 2- or
3-Tier architectures of the Related Work section.

One consequence, together with the non-strict hierarchical
communication, is local reaction on events. A powerful fea-
ture, which needs to be used wisely to avoid immobility and
fragility. For example a ‘motor broken’ event can trigger the
immediate deactivation of a task, without the need to trickle
through hierarchical layers, such as in strictly hierarchical
architectures e.g. JAUS [40].

Remark that the Composition Pattern applied to constraint-
based programming resulted in a hierarchy of entities. Other
task specification approaches use different forms of hierarchy.
Certain frameworks, such as TaskNets [14], use hierarchies of
a single type of entity, comparable to the relation of the Task
entities and the Composite Task in the running example. Other
frameworks, such as the High-Level Mission Specification
[21], transform high level descriptions to low level descrip-
tions, i.e. a reduction of system complexity through abstraction
along the task dimension. However, the here presented hierar-
chy corresponds to higher levels of platform coupling, next to
the task dimension within the task tree: the application level
couples the ‘abstract’ program to a specific hardware, while
a task is the abstraction of a set of constraints. Hence the
hierarchy of the high-level mission is complementary with the
here presented approach, and is topic of ongoing research.

CONCLUSIONS

This paper provides a methodology for systematic robot
application development (integrating structure and behavior),
formalized as the Composition Pattern. It does not limit
itself to only ‘bringing functionality together’, but adds the
important application design concepts of (i) metamodeling,
(ii) composition (Coordinator, Composer, Configurator, Sched-
uler, and Monitor), (iii) hierarchy, and (iv) semantic context.

As strongest point, the Composition Pattern enables devel-
opers to deal with the increasing scale and complexity of
robotic applications, as well as the resulting need for flexible,
reusable, and adaptable software. Moreover, the methodology
can be applied to the developers’ framework eco-system of
choice.

The paper shows how the methodology decreases the design
pitfalls of rigidity, fragility, and immobility and gives concrete
guidelines on reuse and refactoring. However, it does not
provide the final answer on how to best apply the methodology
to any new application.

Hence a lot more work is required to provide a broader
set of structural and behavioral models within the robotics
community, and the development of tooling to aid developers
at creating applications; a wide and consistent application
of the Composition Pattern might be a significant driver to
accelerate these developments.
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[3] D. Vanthienen, M. Klotzbücher, and H. Bruyninckx, “The 5C-based ar-
chitectural Composition Pattern: lessons learned from re-developing the
iTaSC framework for constraint-based robot programming,” J. Software
Engin Robotics, vol. 5, no. 1, pp. 17–35, 2014.

[4] D. Vanthienen, T. De Laet, R. Smits, and H. Bruyninckx, “itasc
software,” http://www.orocos.org/itasc, 2011, last visited May 2014.

[5] Willow Garage, “Willow Garage,” http://www.willowgarage.com/, 2011,
last visited November 2013.

[6] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aert-
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[36] M. Klotzbücher, G. Biggs, and H. Bruyninckx, “Pure coordination
using the coordinator–configurator pattern,” in Proceedings of the 3rd
International Workshop on Domain-Specific Languages and models for
ROBotic systems, 2012.

[37] G. Borghesan, B. Willaert, T. De Laet, and J. De Schutter, “Teleoperation
in presence of uncertainties: a constraint-based approach,” in 10th IFAC
Symposium on Robot Control (SYROCO), vol. 10, Dubrovnik, Croatia,
September, 5–7 2012.

[38] R. C. Martin, “The dependency inversion principle,” 1996, pp. 1–12,
http://www.objectmentor.com/resources/articles/dip.pdf.
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Abstract—The authors are part of a research group that had the opportunity (i) to develop a large software framework (±5 person
year effort), (ii) to use that framework (“iTaSC”) on several dozen research applications in the context of the specification and execution
of a wide spectrum of mobile manipulator tasks, (iii) to analyse not only the functionality and the performance of the software but also
its readiness for reuse, composition and model-driven code generation, and, finally, (iv) to spend another 5 person years on re-design
and refactoring.
This paper presents our major lessons learned, in the form of two best practices that we identified, and are since then bringing
into practice in any new software development: (i) the 5C meta model to realise separation of concerns (the concerns being
Communication, Computation, Coordination, Configuration, and Composition), and (ii) the Composition Pattern as an architectural
meta model supporting the methodological coupling of components developed along the lines of the 5Cs.
These generic results are illustrated, grounded and motivated by what we learned from the huge efforts to refactor the iTaSC software,
and are now behind all our other software development efforts, without any exception. In the concrete iTaSC case, the Composition
Pattern is applied at three levels of (modelling) hierarchy: application, iTaSC, and task level, each of which consist itself of several
components structured in conformance with the pattern.

Index Terms—Software pattern, architecture, composition, robot programming, task specification

1 INTRODUCTION

R OBOTICS has evolved from a single manipulator arm to
a broad field of fixed, driving, crawling, diving, sailing

and flying robots with many, redundant degrees-of-freedom
(DOF). Each of them equipped with a wide range of sensors,
from simple encoders to point cloud generating laser scanners.
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Moreover, more and more different, concurrently active tasks
are integrated on these platforms in ever more demanding
scenarios, such as human-robot co-manipulation.

One of our research priorities is the development of a
methodology to program such complex tasks—i.c. the instan-
taneous Task Specification and estimation using Constraints
(iTaSC) [1]—and to provide developers with appropriate soft-
ware support to facilitate reuse [2]. This paper focuses on
what we learned along the way, as “best practices”, to realise
such large-scale software frameworks; these insights have been
re-applied to the iTaSC software support context, which we
use as a concrete application domain in this document, to
make the generic, application-independent “best practices”
more tangible, and the discussion about its pros and cons more
concrete.

The focus of this paper is not on discussing the functionali-
ties offered by the iTaSC framework or any of the frameworks
mentioned in the related work section; nor on discussing their
relative merits, but on their software engineering design. The
outcome is a set of “best practices” on how to tackle future
labour intensive software development efforts, such that they
could be developed with less pain, and integrated better with
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other frameworks.
One of the major lessons learned by the authors, is that

integration should not start at the level of the software code,
but at the level of models of the provided functionality. In other
words, the essential role of formal Domain Specific Languages
(DSLs) will be stressed and illustrated at several occasions in
the document. Remark that a transformation between models,
and the generation of code from a model does not imply a
“one to one” mapping; it can include optimizations based on
“reasoning” on the model. A well known example of this
principle are software compiler optimizations. In general such
“model-to-x” transformations are a far from resolved problem,
beyond the scope of this paper.

While this work refrains from introducing “the” best system
architectures, it does propose an architectural pattern (or
“meta architecture”) that has proven to be a “best practice”
to help developers in finding and expressing the (most often
rather complex) system architecture that fits best to their
application’s particularities.

1.1 The 5Cs
The software pattern introduced in this paper builds on the
5C’s principle of separation of concerns [3], [4] separating
the communication, computation, coordination, configuration,
and composition aspects in the overall software functionality.
This earlier work reflects our insights, or “analysis” of the
design problem, while this paper introduces our solution,
or “synthesis”, of how to provide constructive guidelines to
system and component developers.

The authors consider the 5C’s as their most often proven
“best practice” in robotics software development, since it
(gradually) emerged during the huge accumulated software
development experience (section 2.4), and was applied to
dozens and dozens of new software developments. Since
two years, it is even the core of a course on Embedded
Control Systems for first-year Master students in Mechanical
Engineering, where it has proven essential to let them grasp,
quickly and thoroughly, the high-level design challenges of a
complex system-of-systems.

1.2 Outline and notation
Section 2 cites the related work and introduces the application
domain. Sections 3–7 elaborate each of the five “5C” concerns,
with a sub-section devoted to modelling, one on the implemen-
tation, one on discussion and lessons learned, and one on how
to compose that concern in a bigger architecture. Section 8
states the conclusions of this paper.

The paper emphasizes entity1 type names using teletype
font, and instance names with italic font; names of events
are emphasized using teletype font and begin with e_.

1. Entities, or components, agents, objects, modules, processes, activities. . .
The concrete name has no real importance in the context of this paper.

2 RELATED WORK

This section gives an overview of related work and introduces
the application domain. It further states the experience that led
to the formulation of the Composition Pattern.

2.1 Robot Systems Architectures and Frameworks

Different architectures and frameworks have been proposed to
create large and complex robot systems, an overview can be
found in the book chapter by Kortenkamp and Simmons [5].
This section discusses some relevant and more recent work.

A first set of frameworks use hierarchical (concurrent)
flow charts or state machines to create large and complex
robot systems [6]. Recent examples include ROSCo [7] and
LightRocks [8]. The latter focuses on task specification and
will be discussed in section 2.2.

Many robotic frameworks start from a multi-tiered archi-
tecture [9]. A recent two-tiered architecture, robAPI [10] aims
at industrial robot applications. The first tier provides a real-
time dataflow, and the second tier provides an object-oriented
robotics API making abstraction of the real-time aspects, and
dividing an application in actuators, actions, sensors, and state.
Another example is the BIP (behavior, Interaction, Priority)
framework [11], [12], which has a three-tiered architecture. It
provides formal models for the discrete behavior, which allows
for Validation and Verification of those parts of the robot task.

Recently, cognition-enabled approaches have gained more
attention. For example CRAM [13], a light-weight reasoning
mechanism that can infer control decisions. It is a two-tiered
architecture, merging the planning and sequencing layers of
3T architectures [9]. Another example of a cognition-enabled
approach is the formal framework and agent-based software
architecture by Doherty et al. [14].

2.2 Application Domain: Task Specification

This subsection introduces the basic primitives of the applica-
tion domain—specification and execution of complex robot
tasks—that was chosen in this paper to illustrate the best
practices in software development for large-scale robotics
software frameworks. This introduction is not meant to be
self-contained or exhaustive, hence the reader is referred to
the references for further details.

Traditionally, robot programming methods specify the robot
motion in either joint space or Cartesian space. In joint space
the motion trajectory is directly imposed on the individual
robot joints, and is often used for programming fast point-
to-point motions. In Cartesian space, for example used for
tool trajectory tracking, the robot motion is specified in a
compliance frame [15], or task frame [16] (typically either
a tool centre point (TCP) frame or a base frame). Besides
motion-based control, also joint-specific, Cartesian wrench
(i.e. force and torque), and impedance control schemes are
often used in practice [17].
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This approach has proven its effectiveness for (geometri-
cally) simple tasks, however, it scales poorly to more complex
tasks that involve multiple frames and multiple partial motion
specifications, [16].

Constraint-based programming on the other hand does not
consider the robot joints nor the single task frame as the
central primitives in the specification. Instead, the core idea
is to describe a robot task as a set of constraints (in various
frames on the robot, in joint space as wel as in Cartesian or
sensor space), and one or more objective functions to optimize.
Samson et al. [18] presents this approach in a generic way,
and De Schutter et al. [1] were the first to turn these generic
ideas into a publicly available software framework. The latter,
named instantaneous Task Specification using Constraints
(iTaSC), introduces particular sets of auxiliary coordinates
to model uncertainty and to express task constraints. These
task constraints are defined between object frames defined on
robots and objects involved in an application. These object
frames have, preferably, semantic meaning in the context of
the task, for example the point of a pencil. Decré et al. [19]
extended the framework to support inequality constraints.

A general iTaSC task is the composition of multiple sub-
tasks, involving possible multiple robots, sensors and objects,
and at the level of that composite task, weights and/or pri-
orities between the sub-tasks can be introduced by the task
programmer. This specification is then turned into a numer-
ical constrained optimization problem, from which a solver
algorithm computes the instantaneously best joint setpoints
(e.g., joint velocities or accelerations) for the robot(s) at each
moment in time, which are then sent to the lower-level actuator
hardware controllers.

The key advantages of the “iTaSC paradigm” are: (i) a
systematic workflow to define task constraint expressions [20];
(ii) the composability of constraints, since not only can mul-
tiple constraints be combined, but each of them can also be
partial, that is, not constraining the full set of degrees-of-
freedom (DOF) of the robot system or of the task space;
(iii) reusability of constraints, since the (recent) DSL support
allows to specify relation between object frames in symbolic
form, hence with (potentially) more semantic and hence
higher and more context-specific reusability; (iv) derivation
of the control solution: the iTaSC methodology systematically
evaluates the task constraint expressions at run time and
generate setpoints for a low-level controller; (v) modelling of
uncertainty: it provides a systematic approach to model and
estimate uncertainties.

iTaSC is not the only software framework available for
complex robot task specification. Three similar frameworks
(developed independently and during overlapping periods in
time) are known to the authors:

• TaskNets: Finkemeyer et al. [21] developed a control
architecture and a software framework for the execution
of Manipulation Primitive nets, including the integration
of on-line trajectory generation [22]. Recently Thomas et

al. provided the LightRocks [8] DSL for skill based robot
programming.

• The Stack of Tasks (SoT) [23] framework provides a
dataflow approach to the “Generalized Inverted Kine-
matics” computations required in complex compositions
of several sub-tasks for the robot, in which the relative
contributions of each sub-task can be prioritized with
respect to the others.

• the Stanford Whole-Body Control framework (SWBC)
[24] implements a hierarchical control structure, on the
basis of full-dynamics “solvers”. Also SWBC allows to
establish priorities among several sub-tasks.

The single underlying paradigm of all these frameworks is
that they rely on a set of compliance frames or task frames.
Each of the task frames represents part of the overall task
specification (which we call Tasks in the remainder of this
text), and adds a set of objective functions and constraints
to a solver that then has to compute the “optimal” solution
to the (possibly overconstrained or underconstrained) overall
constrained optimization problem.

In contract to SoT and SWBC, iTaSC and TaskNets intro-
duce some extra software in their framework, namely Finite
State Machines, to specify and execute also the discrete
behavior, that is, the the sequencing of particular sets of
sub-tasks (each of which specifies a continuous time/space
behavior).

2.3 Relation to the paper
All of the frameworks mentioned in section 2 have paid at-
tention to the integration challenge, but, invariably, this is still
limited to “adding extra functionalities into our own frame-
work”, but not (yet) “integration of selected functionalities
from different frameworks into the same application”. Hence,
the ambition of this paper is to explain how to (re)design
software frameworks, such that the latter type of real integra-
tion can be supported in a more maintainable way; here, the
“maintainability” context is that of independent “third parties”,
and not that of the original developers of the framework. “Real
integration” also means that the provided functionality can be
used as building blocks in any other system architecture than
the one(s) used by the original developers.

Many of the architectures discussed in section 2 conform
to a certain degree to the architectural Composition Pattern.
However, none of these architectures is known to incorporate
or separate all aspects of the pattern, explained in following
sections, explicitly.

Moreover, the Composition Pattern does not limit the com-
position hierarchy to a fixed number of layers or tiers, nor to
a hierarchy of “general to specific” layers of abstraction.

2.4 Lessons learned from refactoring the iTaSC
framework
As mentioned before, the authors get their “best practice”
insights mainly, but by far not exclusively, from the long-
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term development efforts of the iTaSC framework, [1], whose
functionality is summarized in Sec. 2.2.

The first iTaSC software was developed by Ruben Smits
[25], influenced heavily by the features available at that time
in our other large-scale software framework Orocos [26].
Both frameworks were, in themselves, already improved (and
“decoupled”) versions of our previous-generation (too) highly
integrated robot specification and control software framework
COMRADE that dates back to the early 1990s. [27], [28].
Recently, Vanthienen et al. [29] created a second-generation
iTaSC implementation, profiting from the “best practices”
presented in this paper; the major difference with the first
generation is the higher degree of formalization and structure
of the iTaSC paradigm, supported by a formal Domain Specific
Language. Hence, a developer can create an iTaSC model of
an application (instead of directly having to write the code),
and that model is parsed, transformed into structured code
templates, and then executed by a running instance of the
code framework presented in this paper. The higher degree
of formalization, separation of concerns, and the accompany-
ing structure, enable developers to reuse tasks specified and
implemented before in combination with other tasks to form a
new application, and on any robot that can be represented by
a kinematic tree. Moreover, it allows reuse on the even more
fine-grained level of only the statechart (“Coordination”, that
is, the discrete behavior of a task). All this can now happen
with much smaller configuration files that have to be changed
during the reuse, compared to the first-generation version.

Examples of concrete limitations for reuse, adaptability,
and extensibility, encountered in earlier work, which where
solved using the “best practices” introduced in this paper,
include: (i) conditional statements (if-then-else) in components
that in fact do scheduling or coordination of the component,
for example combining the procedure to bring a robot to a
running state, with the (general applicable) kinematic algo-
rithms to calculate end-effector positions; (ii) interfaces that
communicate data, which are in fact events; (iii) the coupling
of application specific configuration and monitoring with the
functional behavior, inside a component.

In summary, the presented “best practices” are grounded in
the accumulated software development experiences of several
dozen researchers spanning more than 20 years of very focused
framework developments, and several generations and types of
computational and robotics hardware.

3 COMPOSITION

Composition is the first one of the 5C’s to be discussed.
It models the structure of the coupling between the entities
of the other concerns; those other concerns (Computation,
Configuration, Coordination and Communication) model four
complementary kinds of behavior in a system. The structural
model in the Composition deals with two aspects: on the
one hand, it groups entities together in composites, supporting

Fig. 1: Pattern of composition. Each block represents an entity,
arrows indicate data communication, double lines indicate
event communication, and a line with the lollipop-socket in-
dicate event or service providing-requesting. The Composer
(red), Coordinator (blue) and Scheduler (yellow) are
“singletons” within a Composite Functional Entity
(grey) because they all are “master” of the (possible mul-
tiple) (Composite) Functional Entities, Monitors
(purple) and Configurators (green), at different phases
in the composite component’s life cycle. Each Functional
Entity can be (replaced by) a Composite Functional
Entity, which leads to hierarchy of compositions. A hierar-
chy with a depth of three is shown in the figure; a darker shade
of grey indicates a (Composite) Functional Entity at a
deeper depth level within the hierarchy.

hierarchy, and on the other hand, it models the interactions
between the system entities. Composition (or “architecture”) is
a trade-off between composability, i.e. the property of an entity
to be easily reused in a composition, and compositionality,
i.e. the property of a composite to have predictable behavior
knowing the behavior of its components [4]. To the best of
the authors’ knowledge, no scientific insights are known about
how to optimize the architecture of complex systems; hence,
Composition remains much of an art, while for the other
C’s described below, some more concrete design insights and
guidelines do exist.

3.1 Modelling

Figure 1 shows the pattern of composition, one of the two
major “best practices” presented in this paper (together with
the “5C’s”). The pattern forces developers to consider any
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composite entity as consisting of following entities:2

• Functional Entities (Computations) deliver the functional,
algorithmic part of a system, that is, the continuous time
and space behavior. A Functional Entity can be
a composite entity in itself, following the same pat-
tern of composition. Section 4 elaborates on (Composite)
Functional Entities.

• A Coordinator to select the discrete behavior of the
entities within its own level of composition, that is, to
determine which continuous behavior each of the Func-
tional Entities in the composite must have at each moment
in time. Section 6 elaborates on Coordinators.

• A Scheduler handles the order of execution of the Func-
tional Entities (computations) within the entity (includ-
ing access to shared data), required for correct over-
all behavior of the composite. Section 6 elaborates on
Schedulers.

• Functional data Communication handles the data ex-
change behavior between Functional Entities, elaborated
in Section 7. Note that data communication is, in general
bi-directional, in contrast to the popular mainstream
“publish-subscribe” tradition.

• Event data Communication handles communication be-
tween all entities and the Coordinator, elaborated in
Section 7.

• A Monitor compares the actually received and sent out
data with the expected data, and fires events depending
on a configurable set of constraint conditions that must
be monitored for a robust execution of the composite.
Section 4 elaborates on Monitors.

• A Configurator configures the entities within a level of
composition. Section 5 elaborates on Configurators.

• A Composer constructs a composition by grouping and
connecting entities. This section further elaborates on
Composers.

The composition pattern is recursively applicable (as sug-
gested by Fig. 1), with each Functional Entity in each
hierarchical level following the same composition structure.
This gives the possibility of creating a hierarchy of large
numbers of composite entities, without having to learn any
new architectural design primitives, or adapt one’s design
trade-off insights. In other words, the authors’ “best practice”
suggests to use this composite pattern as the smallest architec-
tural building block, which is in strong contrast to the more
mainstream belief that the single entities (or “component”)
themselves are the most appropriate system primitives for
composition or reuse. The impact of this difference on overall
system architecture can not be overestimated, and hence it is a
very important point for discussion and/or review. Again, this
“best practice” has grown out, step by step, from the above-
mentioned large body of software systems that have been

2. In some cases, it might make sense to eliminate one or more of these
entities, but then, at least, the developer has a motivated reason to do so.

built by the authors’ research group, in isolation or in close
cooperation with international partners. That means that the
role of each of the parts in the pattern is motivated by several
concrete use cases, in a multitude of application scenarios and
contexts.

One successful, independently created instance of (a large
part of) this composition pattern is realised in the RObot
Construction Kit (ROCK) [30]. It was the first publicly avail-
able software project to introduce what this paper calls the
Composer, as a necessary entity within any composite. Its
role is to group and connect all other entities, on the basis
of a model of the architecture. Its first responsibility is the
deployment of the entities within a Composite Functional
Entity, when the system is brought alive for the first time.
However, the Composer is active throughout the whole life-
time of a Composite Functional Entity, and responsible for
run-time changes in the system architecture. A Composer
as an entity in its own right allows the Coordinator to
trigger a (re-)composition of the Composite Functional Entity
or a gradual composition, intermittent with configuration steps
for the composed entities. This acknowledges the Composer
as a real “activity” and not a static data structure.

The interaction between Composer and Coordinator
follows a Coordinator-Composer pattern, a speciali-
sation of the Coordinator-Configurator pattern in-
troduced by Klotzbücher et al. [31]. In the Coordinator-
Composer pattern, a Composer holds a set of composition
steps. Each composition step has a unique ID and can be im-
plementation or software specific. The Coordinator com-
mands the composition steps to be executed, the Composer
executes the commanded composition steps, that is, it is
configuring the structural model of the composition; the
Configurator in a composite, on the other hand, is chang-
ing the behavior of the composite but not its structure. Of
course, changing the composite’s structure most often implies
that first a change in the composite’s behavior must be realised,
in order to bring the composite to a behavior that allows the
restructuring.

This Coordinator commands in the form of rais-
ing events, on which a Composer reacts when the event
matches a composition step ID. A status event communi-
cates success or failure of the composition step back to the
Coordinator, allowing a befitting reaction. Section 6 de-
tails the interaction between the Coordinator, Composer,
and Configurator.

The Functional Entities take a special position
within the pattern of composition: (i) there can be multiple
Functional Entities within a composition, and (ii) a
Functional Entity can be a Composite Functional En-
tity in itself, following the pattern of composition of Figure 1,
resulting in a hierarchy of composites.
Functional Entities take this special position since

they form the core functionality of a system: without them the
other entities have no meaning nor use. Moreover, the other
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entities exist only because the behavior and interaction struc-
ture of multiple Functional Entities need extensive
“bookkeeping” support.

The Functional Entities described in Section 4 are
grouped in a hierarchy of composites, further referred to as
levels of composition. A higher level of composition, the
parent, consist of a composition of lower level components, the
children. Section 4.2 elaborates on these levels of hierarchy.

The presented hierarchy of composition has the semantic
content of a boundary of knowledge. The entities within a
Composite Functional Entity only know about the presence
of the other entities within that composite. This does not
hold for the Functional Entities: each of them should
not know about any of the other entities in the composite,
since everything that has to be known is already covered
in the other entities. Hence, the Functional Entities
broadcast their data and events, not having to know who will
react or use them. It is the authors’ belief that this pattern
represents the most strict decoupling between entities that still
results in a manageable and comprehensive entity, composite
and system design.

Figure 3 gives an example of this concept applied to an
example Task in the context of the iTaSC framework. The
Coordinator raises an e_CC_PID_connect event in its
ConnectEntities sub-state. The Composer reacts to this event
by creating, amongst others, a connection between the Chif
ports of the Functional Entities VKC Cartesian and
CC PID. Sections 4, 5, and 6 will further elaborate on this
example.

3.2 Implementation
Composition as a concept composes entities of all the other 5C
concerns; details of the latter will be given in their respective
Sections.

The current implementation of Composer is a Lua
[32] script using the RTT-Lua extension libraries [33]. The
Composer scripts are loaded in an Orocos-Lua component
[33]. An Orocos-Lua component provides a Lua based ex-
ecution environment for constructing real-time safe robotic
domain specific languages. It gives the features of an Orocos
component, such as Communication and Configuration infras-
tructure (ports, property marshalling) to a Composer.

The RTT-Lua extension libraries provide the software
framework specific information to create and connect entities,
in this case deploying Orocos components and connecting
Orocos ports. As will be elaborated in dedicated sections, all
entities will be deployed in an Orocos component.

The implementation provides a boiler plate script for the
Composer for the default compositions made in iTaSC (see
Section 4.2), and this is possible because of the very fixed
structural model to which the involved implementations of the
entities conform. Future work will create a Domain Specific
Language for the Composer in line with the Coordinator
DSL [31], Figure 3 hints at such an implementation.

The reference iTaSC framework implementation groups
code related to a Composite Functional Entity in a ROS
package. For example such package contains the C++ code for
the Functional Entities and Monitors, rFSM/RTT-
Lua Lua scripts for the Coordinators, Configurators,
Composers and Schedulers, XML property files for the
Configurators and references (e.g. ROS dependencies) to
leaf composite entities.

3.3 Discussion and lessons learned

In a first implementation the Configurator,
Coordinator and Composer were loaded in a single
Orocos-Lua component. The advantage of this approach was
the shared activity (thread) and memory, reducing the need for
event communication; also the human factor was important:
at that time, we worked in a context where typically one
single developer was responsible for most phases in the
development process, so it was the easiest solution for this
single developer to put all configurations, deployments and
coordinations into one single file.

This simple approach turned out to have severe disad-
vantages in the longer term: the sharing of activity and
memory implicitly also causes the coupling of these entities,
because the blocking of an operation in a Coordinator or
Composer, causes the thread to block, leaving possible iden-
tification and reaction only to the higher level Coordinator.
The latter typically can do no more than identify that the whole
Composite Functional Entity has stalled. The current separa-
tion of the entities as single Orocos components conforms
better to the separation of concerns advocated in this paper.

Another “lesson learned” in this context was about the
human factor: large configuration files make it extremely
difficult for new developers (i) to understand the whole file,
and, hence, (ii) to be confident that they understand the
implications of whatever small change they would like to make
to the configuration file. In practice, this had led to very poor
reuse of existing code, and even too close to zero incremental
improvement of the existing code.

From the “component” framework point of view, we learned
that it is impossible to create something like a generic de-
fault script for a Composer, since Orocos-RTT (or ROS,
or any other “component” framework) lacks an explicit, let
alone formal, model of components and of how they can be
composed. However the above-mentioned ROCK project [30],
which builds on Orocos-RTT, has made very good steps at
bringing in such formal modelling for Orocos components and
their composites, via its Syskit sub-project.

From the “task specification” framework point of view,
none of the framework mentioned in the Introduction provides
hierarchy for their software entities; many do offer hierarchy
for their task specification primitives, but this hierarchy has
very different purposes. A task specification (in a model-driven
engineering context) is a formal description (model) of what
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the robot system should do. Hierarchy has been introduced
in that context since basically the beginnings (early 80s), in
the form of more or less detail in the task description; for
example the task of navigating from Room A to Room B
in a building is hierarchically decomposed into the subtasks
of navigating (i) within Room A from the robot’s current
position to the door of Room A with Corridor 1, (ii) through
Corridor 1 to Corridor 2, (iii) inside Corridor 2 to the door
of Room B, (iv) from the door of Room B to the desired
end location inside Room B. And each of these sub-tasks can
be hierarchically decomposed in more fine-grained sub-sub-
tasks, such as (i) moving the robot arm to the handle of the
door in Room A, (ii) grasping the door handle, (iii) turning
the door handle crank, (iv) turning the door around its hinge,
(v) releasing the handle grasp, (vi) moving the arm in a
minimal-width configuration, (vii) moving through the door
opening into Corridor 1. Etc. The hierarchy described above
is ‘orthogonal’ to the software architecture hierarchy which is
the focus of this paper.

4 COMPUTATION
Computation (a Functional Entity) delivers the useful
functionality of a system, i.e., the algorithmic part of an ap-
plication. As mentioned above, applications typically involve
many different Functional Entities.

4.1 Modelling
A task specification application, based on constraint-based
programming according to the iTaSC methodology, consists
of the following Functional Entities:

• Setpoint generators deliver desired values for the
controllers of a Constraint-Based Program.
Setpoint Generators can provide fixed values, but
also more complex data structures, or even full trajectory
generating or planning functions.

• Sensors deliver feature measurements derived from raw
sensor data, e.g., distance information, force-torque data,
or point clouds.

• Robots and Objects calculate the state of robots and
objects involved in an application based on their kine-
matic and dynamic models. Robots have controllable
degrees-of-freedom (DOF), whose state is denoted with
coordinates q. Unlike Robots, Objects have no con-
trollable DOF; their models comprise definitions of object
frames as reference frames for state calculations such as
the pose or twist between two object frames. Compu-
tations by Robots and Objects include forward and
inverse kinematics and dynamics solvers, as implemented
by for example the Orocos KDL library [34].

• Drivers deliver hardware interfaces for Robots and
Objects, communicating proprioceptive information,
desired low-level controller setpoints, and sensor or es-
timator information. Examples include the Kuka FRI

interface [35] or an interface to a controller provided by
the pr2 controller manager on a PR2 robot [36].

• A Scene (or World Model) keeps track of the position of
the robots and objects in the world, and between which
object frames tasks are defined. It transforms data to
be composable conforming to geometric semantics [37],
[38], e.g., common reference frame and point, as well as
object and reference object on which these are defined
for the sum of poses.

• A Solver calculates the desired values for the low-
level robot controllers as the result of the constrained
optimization problem that results from the methodological
composition of task constraints and objective functions.
Examples include mathematical optimization algorithms
such as frequently used weighted-damped least-squares,
or more complex algorithms provided by general-purpose
numerical solver toolkits, e.g., ACADO [39].

• A Virtual Kinematic Chain (VKC) calculates the state of
the task space or feature space defined between object
frames of the robots and objects. It uses a kinematic
model of this task space using the auxiliary feature
frames. In its explicit form it can be regarded as a virtual
kinematic chain which state is represented by the feature
coordinates χf (“Chi-f ”). Computations by VKCs include
forward and inverse kinematics and dynamics solvers.

• A Constraint-Output (CO) calculates the output equation
y = f(χf , q). The output can serve as input for con-
trollers, estimators, monitors etc.

• A Constraint-Controller (CC) calculates the control
law that enforces a desired setpoint on an out-
put, resulting in the desired output in task space,
e.g. ẏ◦

d for the velocity resolved case. Examples of
Constraint-Controllers include the commonly
used PID controller or impedance controllers.

• An Estimator observes or estimates the (internal) state
of a system, based on a model, and the input and
output of the system under observation. Estimators
are commonly referred to as state observers in control
theory, or an implementation of adaptation in computer
science.

The Composition Pattern discussed in Section 3 introduces
the Monitor as an essential, special Functional Entity. It
compares the actual data flow between the Functional
Entities to the actual one, and raises an event when
a configured set of conditions is met. For example, the
Monitor on an Estimator that outputs the uncertainty
on an estimated parameter, can raise an event to indicate
that the uncertainty has risen above a maximum value; the
composite’s Coordinator can then react to that event by,
for example. slowing down the current movement of the robot.
(Event processing is discussed in detail in Section 6.)

Figure 3 shows an example of the interac-
tions of a Monitor of a Task Composite
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Functional Entity. The Coordinator raises an
e_monitor_max_position_error event that triggers
the Monitor to monitor the position error. The Monitor
has a connection to the data flow of the Functional
Entity CC PID that outputs this error. The Monitor
raises the e_max_pos_tracking_error_exc event to
indicate that the maximum allowed position tracking error
has exceeded.

The separation of Functional Entities from their
Monitors decouples Functional Entities and application
specific monitoring conditions, resulting in higher reusabil-
ity. Obviously, Functional Entities should also raise
additional events themselves, based on internal monitoring
conditions, such as the completion of a certain algorithm or
the reaching of a maximum number of iterations.

4.2 Composition of Functional Entities

The following paragraphs describe the levels of composition
for the use case of constraint-based optimization. We re-
strict ourselves to three levels of composition, Application,
Constraint-based program and Task. Higher or lower level
composites are definitely possible, for example the higher level
of a Mission that incorporates multiple applications, deployed
simultaneously or serially on multiple robots. At each of the
three levels we focus on, we regard the most important exam-
ple of a composite, which also gives its name to the level. This
does not limit the other Functional Entities to be composites
following the pattern of composition. For example a Sensor
can be a composite of a Driver, a Filter, and other
algorithms on the sensor data, possibly divided over multiple
levels of composition. Or a Constraint-Controller can
consist of a composition of atomic controllers for each of the
degrees-of-freedom of the output equation. The structure of
the Communication, Configuration and Coordination on each
level will be discussed in their respectively sections.

• A Task forms a first composite, delivering a set of
constraints to the optimization problem that are related to
the same task space. In case of the explicit formulation of
iTaSC, a Task composes the Virtual Kinematic
Chain (VKC), a Constraint-Controller
(CC), the Constraint-Output (CO), and a
Setpoint Generator as shown in Figure 2. This
composite contains all functionality needed to define
and execute a task. This Task is however agnostic of
its concrete role in the whole application. For example,
it is unaware of the role or context of the object frames
between which it is acting. That semantic meaning is
(or rather, should. . . ) be given by the parent composite.
The current discussion limits itself to one entity of each
type, however multiple entities can be present to be
able to switch between Constraint-Controllers
or Setpoint Generators within one Task, or
entities can be brought out of the Task composite. This
discussion is beyond the scope of the current document.

• A Constraint-based Program forms a second composite,
delivering task specification and control on a set of
involved robots and objects. This Composite Functional
Entity composes all elements related to the Scene graph
and how it is used to generate setpoints for the low-level
(motor) commands. It composes (“couples”) the Robots
and Objects in a Scene, constrained and linked by
Tasks which encompasses the task space formulation
and resolved by a Solver.

• The Application forms our third composite, compos-
ing (“coupling”) the Constraint-Based Program
with the application-specific “hardware” (Drivers and
Sensors), as shown in Figure 2. Separating the hard-
ware from the program allows developers to reuse the
same Constraint-Based Program in simulation
or on the real robot by just changing the Driver
and Sensors, and offers flexibility with respect to the
hardware used (multi-vendor).

As mentioned in Section 3, a composition forms a boundary
of knowledge. The following example explains this con-
cept; the Configurator named iTaSC Configurator of
a Constraint-Based Program named iTaSC needs to
know which Tasks to configure, and the Coordinator
named iTaSC Coordinator needs to know which Tasks to
expect events from. The Tasks however present their data on
a data flow port, not knowing who is using the data. It is the
composition of iTaSC that determines who is listening and re-
acting. For example the Monitor named iTaSC Monitor that
monitors the data of a specific Task named ApproachObject.
In addition to the (functional) data, the ApproachObject also
broadcasts events, and it is the iTaSC Coordinator that expects
and reacts on events from the ApproachObject.

4.3 Implementation
The model provided above is implementable with various
software component frameworks or their combination, such
as OpenRTM [41], [42], Orca [43], GenoM [44] or ROS [45].
Strictly speaking, the Composition Pattern requires only the
following primitives to be provided by software frameworks:
Component, Port, DataFlow, Event, FiniteStateMachine. All
these primitives are provided by many frameworks, but no
framework provides them all; except for ROS or OpenRTM,
when the definition of framework is taken in the broader sense
of original framework and the ecosystem that grew around
it. However, it is not at all necessary that an implementation
of the Composition Pattern has to be realised in one single
framework; on the contrary, the ‘best’ implementation will
most often consist of a selection of features from different
frameworks. Of course, ‘best’ is an application-specific objec-
tive function, and sometimes ‘real-time performance’ will be
part of that objective function (making the Orocos framework
more appropriate than ROS, for example), while another
application gives less weight to real-time performance than to
the desire to reuse already existing ROS node implementations,
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Fig. 2: Detail of the composition of computation (Functional Entities) for the explicit formulation of iTaSC using sysML flow
ports [40]. The composition levels are the Application context, the iTaSC program, and the Task specification. Stacked boxes
refer to the possibility of having multiple entities of a specific type.

Our reference implementation provides two different ap-
proaches to implement Functional Entities. The first
and most often used approach is applied throughout the
core of the implementation and uses the Orocos component
framework for real-time control [26], [46], [47] to provide an
infrastructure for Functional Entities.

The model of an Orocos component has three primitives:
Operation, Property, and Data Port. That means that in the
(semantically rather restricted) context of component frame-
works, it is the component that provides the basic unit of com-
putational functionality. Data needed for calculations and the
resulting data of a component’s calculations is communicated
using Data Ports.

The advantages of the Orocos components as Functional
Entities include: 1) the real-time capabilities, 2) thread-
safe time determinism, 3) lock free inter-component commu-
nication in a single process, 4) synchronous and asynchronous
communication possibilities, 5) reflection capabilities and in-
terfaces to other frameworks such as ROS. Their disadvantage
is that most developers (implicitly and incorrectly!) assume
that each component has to be deployed in its own operating
system process, but this policy of composition introduces
many context switches, most of which are functionally super-
fluous.

The Orocos component framework does not explicitly pro-
vide composite components. However, since the software
patterns presented in this paper offer composition by infras-
tructure (Section 3), this lack of explicit Orocos composite
components is not a fundamental problem to the formalization
of Functional Entities as composite entities.

In order to ensure modularity and reusability of the compo-
nents as instances of Functional Entities, they have to

provide a well defined Data Port interface: what data should
be communicated and in which form. (Section 7 elaborates
on the communication aspects of these issues.) Therefore the
reference implementation offers a template component for
each type of Functional Entity, in the form of a C++
class. More specialised components inherit from this template.

For example a PID or impedance_control component
inherits from the Constraint-Controller template, im-
plementing a PID controller and impedance controller respec-
tively. Both components are however still general in the sense
that their behavior will depend on

• their composition and communication that determines
who delivers setpoints and state information,

• their configuration that determines which gains to use,
• their coordination that determines when they are active.

A component can also serve as an interface to other parts of
software or hardware, for example a Driver that interfaces
with a KUKA robot over an FRI connection [35].

In addition to Orocos components that inherit from a
template, the reference implementation provides a second,
more general way of introducing Functional Entities
by adding meta-data to an implementation of a Functional
Entity. This meta-data models the interface of the
Functional Entity and contains the necessary informa-
tion for other entities to interact with the entity. Listing 1 gives
an example of meta-data of the Data Ports of a Functional
Entity using the Lua language [32]. It contains an entry in
the Lua table for each Data Port by its name with following
tags:

• type: the type of the port that defines what general kind
of information the port delivers or requests,
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• rtt type: the type of the data specific to different plat-
forms, in this case Orocos RTT,

• semantics: the (geometric) semantics meaning of data, the
importance which will discussed in section 7,

• id: detailed identification of the port, this could refer to
for example ROS topic information,

• direction: the direction of the Data Flow with respect to
the entity,

• fw: framework in which the entity is implemented, which
will define how to interpret the other tags such as the id.

The reference implementation uses this meta-data approach
for example to provide a Driver for the KUKA Youbot
using the existing open-source ROS nodes provided by
youbot description. [48].

Listing 1: Example of meta-data

1 ports={
my_port_a={rtt_type='/motion_control_msgs/←↩

JointVelocities',
type='driver',
semantics='JointVelocitySemantics(ee,base)',

5 id='/JointVelocitiesCommand',
direction='input',
fw='ros'}}

Our reference implementation implements Monitors for
example using the service plugin feature of Orocos. It allows
pluging in extra functionality in an existing Orocos compo-
nent. Future work will formulate a DSL for Monitors, as
hinted at in the Monitor entity shown in Figure 3.

4.4 Discussion and lessons learned

Majority of Functional Entities (computations) in the current
implementation are encapsulated in the Orocos components,
which mirrors the proposed Functional Entity model.
However, this structure of different components with (inter-
process) communication is also very rigid with respect to
optimization of the computational efficiency. Nevertheless,
models can be deployed in different ways. For example, certain
Functional Entities could be grouped at run-time, reducing
communication needs. An example of such composition can
be found in the GenoM project, that makes use of codels
[44] as the smallest unit of execution that can be easily
composed to larger Functional Entities without inter-process
communication, for example using shared memory.

The approach to attach a model to an implementation gives
more versatility. The current implementation gives only a
limited example of such an approach.

5 CONFIGURATION

Configuration influences the behavior of entities of the other
concerns by changing its settings. Examples include control
gains and communication buffer sizes.

5.1 Modelling
Configuration is enforced by a Configurator entity,
separating it from coordination by the Coordinator-
Configurator Pattern [31]. A Configurator holds a
set of configurations.

A configuration consists of a set of parameters of another
entity that are exposed to be configurable. It has a unique name
and can be implementation-, hard- or software specific.

The Coordinator commands the configurations to be
loaded in an entity, the Configurator executes the com-
manded configuration. A Configurator applies a config-
uration with a certain name when receiving an event from
the Coordinator with a matching ID. A status event
communicates success or failure of the configuration action
back to the Coordinator, allowing a befitting reaction.

Figure 3 gives an example of the Coordinator-
Configurator interaction for an example Task Com-
posite Functional Entity. The Coordinator commands a
high tracking accuracy of a controller by raising an event
e high accuracy control, on which the Configurator re-
acts with adapting the gains of the Functional Entity
CC PID to a preset value.

Another example is the configuration of a Monitor,
as also shown in figure 3. The Configurator config-
ures the Monitor with the concrete error level to re-
act on, and the resulting events to raise, in this example
e max pos tracking error exc.

The Configurator needs to be configured itself which
seems a contradiction at first glance. It is however the hier-
archy provided by the composition that allows the configu-
ration of the Configurator: The Configurator of the
level of composition higher will configure the Functional
Entity to which this Configurator belongs to. This con-
figuration includes the configuration of this Configurator.
For example the Configurator iTaSC Configurator of a
Constraint-Based Program iTaSC configures a Task
ApproachObject, hence configuring its Configurator Ap-
proachObject Configurator. A bootstrap ensures the configu-
ration of the Configurator of the highest level Composite
Functional Entity. Section 6 details the bootstrap to bring up
the system.

5.2 Implementation
Since the reference implementation mainly uses Orocos, its
Property infrastructure is used for configuration. Orocos Prop-
erties [47] provide an interface to adapt at run-time parameters
that are made publicly available. Services to read and write
these properties to XML, RTT-Lua or other formats are
available for the Orocos platform. Configuration specified in
the iTaSC DSL or deduced from it can be set accordingly.

The Configurator implementation uses the reference
implementation of the Coordinator-Configurator pattern in
Lua. Its extension with the RTT-Lua libraries provides the
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Fig. 3: Example of the interaction of the Coordinator, the Composer, the Configurator, and Functional
Entities of an example Task Composite Functional Entity. Dashed arrows indicate how events trigger actions, black
arrows indicate how entities act on other entities. Only the parts relevant for the example are shown, the Scheduler and
other Functional Entities are left out. Three dots indicate left out parts within an entity.

software framework specific information to configure Orocos
components.

As for the Composer, the implementation provides a
boiler plate script for the Configurator for the de-
fault compositions made in iTaSC. The configuration of the
Configurator can load different sets of configuration.
For example the configuration of a Configurator of a
Constraint-Controller comprises the loading of the
gains stated in the iTaSC DSL model (the configuration)
into the Configurator, which applies the correct set of
gains on the instance of the Constraint-Controller
on receiving a command from the Coordinator.

5.3 Discussion and lessons learned

As for the Composer detailed in section 3.3, separating
the Configurator from the Coordinator, relieves the
Coordinator from software platform specific actions and
decouples execution and hence failure of Coordinator and
Configurator.

6 COORDINATION
Coordination determines how the entities of all concerns work
together, by selecting in each a certain behavior. It provides
the discrete behavior of entities and their composites.

6.1 Modelling
Each Composite Functional Entity has one Coordinator
that interacts with entities of other concerns by events. The
model of the Coordinator is a rFSM statechart, introduced
by Klotzbücher and Bruyninckx [49]. Statecharts have the
advantage to be composable, moreover rFSM statecharts are
able to satisfy real-time constraints. The extended version
of rFSM includes event memory, the use of which will be
explained further on.

The model of the Coordinator follows the best practice
of pure coordination [49]. Pure Coordinators are event
processors, that have determining state based on events and
sending out events as only functionality. Pure coordination
avoids dependencies on platform specific actions, and avoids
blocking invocations of operations. The events originate from
the other entities of a Composite Functional Entity or from a
Coordinator of a parent or leaf entity.
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Fig. 4: Life-cycle coordination pattern. The Active state con-
sists of a Configure, Start, Run, and Stop state. The Safety
state next to the Active state allows transition to this Safety
state at highest priority. Each state can be a state machine of
its own indicated with the two connected ovals in the right
corner of a state. Figure 5 gives an example of the sub-states.
The arrows indicate a state transition which is triggered by an
event, the filled black circle indicates an initial connector.

A Coordinator conforms to the life-cycle FSM of a
Composite Functional Entity, as represented in figure 4. Each
of the states of the life-cycle FSM can be a state machine on
its own, hence a Coordinator is a hierarchical FSM. The
following states make part of the life-cycle FSM:

• The Active state which consists of the Configure, Start,
Run and Stop state. This state is the initial state when
a Coordinator is brought up, indicated by the initial
connector in figure 4.

• The Configure state coordinates the composition and con-
figuration of the Composite Functional Entity. In the Con-
figure state the Coordinator triggers the Composer
and the Configurator. The Composer composes
the entities of the Composite Functional Entity by creat-
ing entities (deployment) and connecting communication
channels between entities, as explained in section 3 and
7. The Configurator loads and executes the configu-
ration of all entities of the Composite Functional Entity,
following the Coordinator-Configurator pattern
[31] as explained in section 5. The Coordinator
triggers the Composer and the Configurator inter-
mittent, since some steps of the composition need prior

configuration. For example the creation of communica-
tion ports of the Scene dependent of the number of
Tasks (configuration step), which can only be connected
after their creation (composition step). This sub-state is
the initial sub-state when a Coordinator is brought
up, indicated by the initial connector in figure 4.

• The Start state coordinates the preparation of the entities
of the Composite Functional Entity for nominal opera-
tion. In the Start state the Coordinator triggers the
Scheduler to initialize, and Functional Entities to start
computation and data exchange.

• The Run state is the state of nominal operation of
the Composite Functional Entity. On the one hand,
the Coordinator triggers when entering this state
the activation of the Scheduler. On the other hand,
it influences the run-time behavior of the Composite
Functional Entity. This run-time behavior consists of
altering the active set and configuration of Functional
Entities, based on incoming events fired by for exam-
ple the Monitor. For example the configuration of the
Constraint-Based Program consists of amongst
others, the set of active tasks, the involved objects and
(parts of) robots, and the task weights and priorities.

• The Stop state coordinates the termination and destruction
of the entities of a Composite Functional Entity. In this
state, the Coordinator triggers the Configurator
to do the ‘opposite’ of the actions during the Configure
state.

• The Safety state brings the composite state in a safe
mode, which does not necessarily correspond with the
Stop state. Since the Safety state is located on a higher
level in the state machine hierarchy, events triggering a
transition to the Safety state will have always priority,
independent of the current sub-state within the Active
state. For example blocking the motors of a robot in an
application in which the robot has to handle dangerous
materials, or on the contrary, bringing the robot to gravity
compensation mode when working close to humans. As
the initial connector indicates, recovering from a Safety
state requires a reconfiguration.

The different Coordinators over the different composi-
tion levels interact by events, forming a hierarchy of concur-
rently executed (hierarchical) FSMs in which the higher level
Coordinator coordinates the lower level Coordinators.
Remark that not all Coordinators need to be in the same
state, for example when a new Task is added to an existing
Constraint-Based Program in the Run state and needs
to go through the life-cycle until the Run state.

The life-cycle FSM takes part in the deployment of the
system. A bootstrap brings up the highest level Composer
that deploys the Coordinator and communication between
them. Further this bootstrap ensures the configuration of the
highest level Configurator. The Coordinator brings
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up the remainder of the Composite Functional Entity by a
coordination of a series of composition and configuration
steps, using the Coordinator-Configurator [31] and
Coordinator-Composer pattern, explained in section 3
and 5.

The advantages of this approach of deployment are (i) the
systematic approach to bring up a system, (ii) the reduction
of the actual phase of bringing up the system to a ’minimal’
bootstrap, by using the structure of the composition, (iii) the
predictability of the deployment procedure and its possible
errors.

In addition to the Coordinator, the Scheduler forms
part of the coordination. The Scheduler handles the or-
der of the computations by the Functional Entities.
However it forms not part of the Coordinator, since
(i) a Scheduler uses service calls or events, therefore it
is not a pure event processor, (ii) a Scheduler forms a
periodic (time-triggered) process with respect to the (mostly)
aperiodically, event triggered behavior of the Coordinator,
(iii) a Scheduler depends on the implementation of the
Functional Entities, (iv) a Scheduler must be
fast and efficient, and can therefore be optimized using
specialized routines. Scheduler and Coordinator are
separately triggered by their counterpart at a higher level
of composition, hence the Schedulers of each Compos-
ite Functional Entity form also a hierarchy of concurrently
executed (hierarchical) FSMs. This separation avoids cou-
pling of the timing of Scheduler and Coordinator,
that could cause delays in the scheduling. For example the
Scheduler iTaSC scheduler of a Constraint-Based
Program iTaSC triggers a Functional Entity Task
that itself is a Composite Functional Entity, this Task
should immediately execute the algorithm, hence trigger
its own Scheduler Task scheduler and not wait for
its own Coordinator Task coordinator to command the
Task scheduler to do so. This avoids the situations where
1) the Task coordinator has to react on both an event causing
a behavior change and the trigger from the iTaSC scheduler,
2) and the situation where the Task coordinator only reacts
on the trigger from the iTaSC scheduler in a next timestep
(section 6.2).

6.1.1 Concrete model of the life-cycle FSM
Figure 5 shows the details of the sub-states of the Active state
of the life-cycle FSM. The grey boxes on figure 5 indicate
these sub-states: Configure, Start, Run and Stop. They have
each two sub-states: one with a name ending on -ing and
one with a name ending on -ed, with exception of the Run
state which has a PreRunning and a Running sub-state for
linguistical reasons.

When in a -ing state, composite entities are coordinated,
before triggering the Coordinators of its child entities.
When in a -ed state, composite entities are coordinated after
the Coordinators of the child entities are triggered but

Fig. 6: Example of the interaction between Coordinators
at different levels of composition. The dashed arrows indicate
how the raised event triggers a transition.

before the parent Coordinators are notified with an event.
The Composite Functional Entity will be further on referred
to as the composite.

A parent Coordinator triggers the transition to an
-ing state, hence the name of the composite that the
Coordinator belongs to is in the event name. A
Coordinator transitions from an -ing state to an -ed state
when triggered by events from the child Coordinators.
Due to this hierarchy the Active sub-states consist of exactly
two states.

For example within the Configure state of a
Constraint-Based Program iTaSC that has two
composite child entities: the Tasks ApproachObject
and AvoidObstacle, as shown in figure 6. The
events e_ApproachObject_configured and
e_ApproachObject_configured raised by their
respectively Tasks trigger the transition from the Configuring
state of the Constraint-Based Program iTaSC to its
Configured state.

Another example is shown in figure 3 and was detailed in
previous sections.

Transitions that require events from multiple child
Coordinators require the event memory extention of rFSM
in order to avoid synchronization problems. An event is in the
rFSM model an edge triggered event that lives only at that
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Fig. 5: Detail of the Active state of the life-cycle FSM with example events. The arrows indicate a state transition which is
triggered by an event, the filled black circle indicates an initial connector. Names starting with ’e ’ denote events. Events next
to arrows indicate the events that a state is waiting for to make that transition, events within a state indicate the events sent
out by the state. The ∀ symbol denotes that all events of that type need to be raised to make that transition. < entity >
denotes a name of an entity within the composite, < composite > denotes the name of the Composite Functional Entity this
Coordinator belongs to. The grey background denotes the sub-states of the Active state as shown in figure 4. Events that
trigger the lowest level transitions are replaced by . . . for readability. Also returning transitions such as from PreRunning to
Started are left out for readability.

time instant. The event memory extension registers all events
that could trigger a transition from the current state, starting
from the moment the state was entered. In other words the
event memory is cleared with every new state that is entered.

The following paragraphs give an overview of the function
of each sub-state:

• The Configuring state consists of two sub-states: De-
ployEntities and ConfigureEntities. The first triggers the
Composer to create the entities within the composite.
The Composer will also enable event flow between the
entities. The creation of child composite entities consists
of the creation of its Coordinator, Configurator,
and Composer, similar to the execution of the bootstrap
to bring up the root Composite Functional Entity as
mentioned in 6.1. A status event from the Composer
triggers the transition to the second sub-state. The Con-
figureEntities sub-state triggers the Configurators
to configure the entities within the composite and the
Coordinators of child composite entities to transition

to their Configuring state.
• The Configured state consists also of two sub-states:

ConnectEntities and NotifyConfigured. The first con-
nects the data flow between the entities of the com-
posite. This connection is made after the configuration
of the child composite entities, since connections can
be configuration dependent. The NotifyConfigured sub-
state notifies the completion of the configuration step to
the Coordinator of the parent Composite Functional
Entity.

• The Starting state triggers the Scheduler to initialize,
Functional Entities to start computation and data
exchange, and triggers the Coordinators of child
composite entities to transition to their Starting state.

• The Started state has as only function the notification to
the Coordinator of the parent Composite Functional
Entity.

• The PreRunning state triggers the Coordinators of
the child composite entities to transition to the Pre-
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Running state. It further triggers the activation of the
Scheduler.

• The Running state notifies the Coordinator of the
parent Composite Functional Entity and coordinates the
run time behavior as explained in section 6.1.

• The Stopping state has as only function the triggering of
the Coordinators of child composite entities to go to
the Stopping state.

• The Stopped state consists of four sub-states: Disengage,
CleanupComputation, Cleanup, and NotifyStopped. The
disengage sub-state triggers shutdown procedures, for
example locking robot axes. The cleanup phase con-
sists of two steps: CleanupComputation and Cleanup.
The CleanupComputation state triggers the destruction of
Functional Entities, including child composite
entities. The Cleanup state triggers the destruction of
the other entities within a composite. This distinction of
two states allows the Coordinator to react on prob-
lems when destroying the Functional Entities
for which it needs the other entities within a composite.
In the last sub-state, NotifyStopped, the completion of the
stopping is notified to the Coordinator of the parent
Composite Functional Entity.

The execution of this pattern of coordination requires a
model that provides the information of all separate parts
and their relations. The iTaSC DSL [29] is an example that
provides such a model.

The interaction of Coordinators outlined in previous
paragraphs, details interaction in case of the existence of a
parent Composite Functional Entity to the composite under
consideration. The Coordinator of the root Composite
Functional Entity will transition from a -ed to -ing state after
completion of the latter, not triggered by an event of a parent
Coordinator.

The same structure applies to all entities, also for example
to the Driver and its sub-entities that coordinates robot
hardware co-operation when composing different hardware.

6.2 Implementation
The iTaSC software framework uses the Lua reference im-
plementation of the rFSM DSL for the Coordinator, that
conform to the models presented in previous sub-sections.
These rFSM models are loaded in an Orocos-Lua component
as for the Composer, Configurator and Scheduler,
providing Communication and Configuration infrastructure to
the entity. This component will be named Supervisor further
on.

A Supervisor exposes the events raised within a
Coordinator to an Orocos port, this port is connected to the
other entities within a composite by the Composer. Through
other Orocos ports, the Supervisor and hence Coordinator
receives events.

The implementation considers two types of events, related
to the state machine progression of the Coordinator:

1) common events, which are processed at each update of the
Coordinator, 2) priority events, which are processed upon
receiving them.

Most events are common events. Priority events are mainly
used for 1) timer events, sent out by a periodic Timer to
the root Composite Functional Entity, 2) events sent out by
a Scheduler to trigger a Functional Entity, or its
child Scheduler when that Functional Entity is a
composite, 3) events that signal a fatal error, such as an
e_emergency event. Hence a Coordinator is a hybrid
event-triggered and time-triggered system.

The Timer triggers the Scheduler of the root Compos-
ite Functional Entity, which triggers his leaf Schedulers,
which on their turn trigger their leaf Schedulers etc.

The implementation provides a boiler plate script for the
life-cycle FSM, which is a general model and allows ‘plugging
in’ the application specific part of the Running sub-state
machine. These application specific parts can be developed
and saved as separate rFSM models and hence files.

As mentioned in the modelling Section, a Coordinator
knows the other entities within a composite, this knowledge is
provided by the configuration of the Coordinator, derived
for example from the iTaSC DSL model.

The current implementation provides a basic Scheduler,
that requests operations on Orocos components in an algorith-
mic correct order with respect to the iTaSC concept.

6.3 Discussion and lessons learned
As detailed in previous sections, separating the
Configurator and Composer from the Coordinator,
leaves the Coordinator with no software platform specific
actions, and is hence reusable with any other framework.

Remark that in the proposed life-cycle FSM a state triggers
the execution of ‘actions’ by other entities. These actions
happen when being in a state, while transitions are light weight
event based transitions. This forms a difference with the life
cycle FSM of Orocos, where the actions, i.e. the execution of
configuration etc., happen in between states. The advantages
are that 1) the life-cycle FSM can react on errors when
executing these actions, 2) a state of the life-cycle FSM can be
divided in sub-FSM to coordinate this transition to the level
of desired granularity.

7 COMMUNICATION

Communication relates to the exchange of data [50], [4]. Dif-
ferent communication mechanisms are possible, for example
data flow, events, and service calls.

7.1 Modelling
The communication follows the commonly used connector
design pattern [47], [51] that decouples dataflow between
entities by abstracting the locality of the entities. It enforces a
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communication protocol. Figure 1 shows the different com-
munication mechanism within a Composite Functional
Entity. Functional Entities exchange data flow.
Monitors monitor this data flow and communicate events.
Coordinators exchange events with all entities of a Com-
posite Functional Entity, as well as with the Coordinators
of a higher and lower level of composition. Schedulers
interact with Functional Entities, and Schedulers
of the higher and lower composition levels by service
calls or events. In addition they exchange events with the
Coordinator.

7.2 Implementation
The reference implementation uses mainly the Orocos port
infrastructure, with connections between them. Orocos pro-
vides lock free, thread-safe communication and integrates with
ROS topics or middleware such as CORBA. The Composer
creates these connections.

An important setting for the communication of events is
the buffer of the connection. Since multiple (common) events
can occur at any time, and Coordinators advance when
(time-)triggered, multiple events can accumulate between two
executions of a Coordinator. Moreover an entity has
multiple event sources. A buffer must be used to avoid the
loss of events. An entity has to empty this buffer when reading
from the port receiving events.

A major drawback in communication are the many data
types available to represent the same content. Moreover,
majority of these data types are general and have no specific
semantic meaning. In the reference implementation a tag is
provided to all entities that communicate data to specify this
semantic meaning.

The Composer uses these tags, together with model infor-
mation from for example an iTaSC DSL model, to automati-
cally resolve connections between entities.

7.3 Discussion and lessons learned
The Composite Functional Entity as boundary of
knowledge helps to reduce the number of events communi-
cated throughout the levels of composition. Events of entities
other than the Coordinator or Scheduler can be con-
figured to remain within that boundary.

As mentioned are many data types available to represent the
same content, and they mostly lack a semantic specification. A
promising approach is standardisation of notations and specific
models of these semantics. An example is the work by De
Laet et al. [37], [38], to standardise semantics for geometric
relations. They also provide software support to enhance
common data types for geometry with these semantics. The
following workflow shows how geometric relation semantics
integrates in the presented approach:

• each Port should get a model of the data it makes
available;

• that model should be in a standardized semantic format;
• when the Composer is making the interconnection be-

tween components, it should check whether the semantic
model (and meta-model) of both Ports are the same;

• in case both Ports have different implementations of the
model, transformation code could be added automatically
(if such code is available in the binaries of the system).

The implications on the overall design are: (i) the Communi-
cation and Composer activities must be made aware of the
semantic models, and (ii) they must have access to implemen-
tations that support the model checking and transformations.
These implications are almost trivial, conceptually speaking,
but horrendously huge for the design and implementation
of code. Currently, the authors are not aware of one single
software project that supports even the simplest form of such
semantic awareness.

8 CONCLUSIONS

This paper introduces, motivates and illustrates two major
“best practices” that resulted from the accumulated experience
of dozens of person years of robotic software framework
development at the authors’ research group. The first “best
practice” is that of the 5C’s principle of separation of concerns
[3], [49]: the communication, computation, coordination, and
configuration aspects of any software project should be kept
fully separated, but ready to be integrated into a composition
architecture. For the latter, we introduce a second “best
practice”, the Composition Pattern, that has proven to be
very helpful as the basic building block in the design of
application-specific, complex system architectures. (A third,
derived, “best practice” might be the insight that starting a
complex system development process with imposing a specific
system architecture from the start is a recipe for failure in the
long term.)

The paper illustrates the general best practices by means of
the recent intensive refactoring of our iTaSC software frame-
work, a generalized constraint-based programming approach
[1] (Section 2.2), because (i) it was the application in which
the authors first encountered the fundamental deficiencies of
former design ”guidelines”, and (ii) task specification, execu-
tion and monitoring involves ”planning”, ”sensing”, ”control”,
and ”world modelling” functionalities, hence it is a primary
example of a robotics system. It is also that broad system
integration context and challenge that is the major difference
between robotics and other software developments for engi-
neering systems.

The reference implementation uses, in itself, two other
large-scale software frameworks, Orocos [26] and rFSM [49];
all of them are available under open-source licenses, so readers
have access to all details about to what extent exactly we have
succeeded in realising the documented best practices in the
actual code.



D. Vanthienen et al./ 5Cs-based architectural Composition Pattern 33

Our search for (i) a systematic way of describing tasks
in iTaSC, together with (ii) the reusability driver in the
software implementation of the iTaSC software framework,
drove our software development approach strongly towards a
formalization of our functionalities and software by means of
Domain Specific Languages (DSLs); the result in the context
of iTaSC can be seen from Vanthienen et al. [29].

More concretely, we here enclose a critical discussion of the
lessons learned in the design and application of the presented
“best practices”:

• Separation of concerns is a mainstream design driver,
but is often used in isolation, i.e. ’separation of concerns
hence reusable entities’. We learned that composition is
as important as separation. This is the difference between
the 4C’s of Radestock et al. [50], and the 5C’s as used
in this paper, which explicitly focuses on (structural)
Composition.

• We have (mis)led ourselves during more than a decade in
believing that “components” are the fundamental build-
ing blocks for reusability of functionalities in various
architectural compositions. Now, the more complex but
very structured and motivated Composition Pattern of
Fig.1 has become the first-class citizen in our system
design. Components are still necessary building blocks,
but they should not be the fundamental building blocks
anymore. This is a very important difference, since a
component that is designed to be part of the Compo-
sition Pattern will be different from a component that is
designed without that context, since the explicit separa-
tion of the Coordinator, Composer, Scheduler,
Configurator, Monitor, Functional Entity,
and Communication aspects improve the different quali-
ties (the “ilities” such as adaptability, reusability, etc.) of
the building blocks. The first four entity types “manage”
the last two, keeping the component flexible during usage,
hence improving their adaptivity and adaptability. More-
over, this separation distinguishes application specifics
(for example concrete controller gains, monitored condi-
tions to switch controllers, or the succession of the control
algorithms to use). Only by exception, one or more of the
various parts of the Composition Pattern are left out in a
concrete design.

• The modelling of software has become second nature
to us, since thinking about which DSL(s) would be
needed to let non-software (but domain) experts exploit
our software frameworks, has been proven to be a better
driver for more structured coding than any other design
paradigm that is taught in modern computer science
curricula.

• The emphasis on modelling is only becoming more and
more important, the closer robotics moves towards “cog-
nitive” robot systems, because the latter have to be able
to reason about their own functionalities, structure and

behavior. Such reasoning is only possible when formal,
symbolic models of those aspects are available, so the
DSLs are expected to be disruptive in that area too.

• The Composition Pattern introduces a significant number
of “design forces”, which take a bit more time to grasp
fully than the more simple 5Cs. The advantage however,
is that this more elaborate structure results invariably
in much smaller configuration files or software libraries,
because developers find it a lot easier to define the scope
of each particular software development effort.

This paper focuses on structure, an important complementary
research topic, outside the scope of this paper, are formal
verification and validation tools, which check consistency of
the different models used in an application.

We introduced the Composition Pattern as an architectural
proto-pattern. The full assessment of amongst others the
different qualities of the pattern, following the format used
by Gamma et al. [52], is subject of ongoing work.

None of the above-mentioned lessons learned, and neither
the 5C’s nor the Composition Pattern, are derived from un-
shakable “first principles”, hence they can, and should, be
subject of continuous critical reflections. The higher than usual
degree of structure in the presented material should make such
refutation a lot easier; but it is this same “easiness” with which
human developers can grasp this structure that has led to the
maturation of the concepts, and the clarification of the “design
forces”, to a level that has stood firmly against dozens of
new software project developments, as well as refactorings
of existing frameworks.
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[51] D. Bálek and F. Plášil, “Software connectors and their role in com-
ponent deployment,” in Proceedings of the IFIP TC6 / WG6.1 Third

http://www.orocos.org/
http://rock-robotics.org/
http://rock-robotics.org/
http://www.lua.org
https://www.sim.informatik.tu-darmstadt.de/simpar/ws/sites/DYROS2010/03-DYROS.pdf
https://www.sim.informatik.tu-darmstadt.de/simpar/ws/sites/DYROS2010/03-DYROS.pdf
http://www.orocos.org/kdl
http://www.willowgarage.com/
http://onlinelibrary.wiley.com/doi/10.1002/oca.939/pdf
http://www.omg.org
http://www.openrtm.org
http://www.openrtm.org
http://www.mech.kuleuven.be/dept/resources/docs/soetens.pdf
http://www.mech.kuleuven.be/dept/resources/docs/soetens.pdf
https://github.com/youbot/youbot-ros-pkg/
https://github.com/youbot/youbot-ros-pkg/


D. Vanthienen et al./ 5Cs-based architectural Composition Pattern 35

International Working Conference on New Developments in Distributed
Applications and Interoperable Systems (DAIS), 2001, pp. 69–84. 7.1

[52] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Reading, MA: Addison-
Wesley, 1995. 8

Dominick Vanthienen received his B. Sc. and
M. Sc. degrees in mechanical engineering
(Burgerlijk Ingenieur) from the University of Leu-
ven, Belgium in 2006 and 2008, respectively.
After that he worked as a mechanical produc-
tion process developer in industry. In 2009 he
returned to University to pursue a PhD in the
field of Robotics at the University of Leuven,
Belgium. His research focuses on control of
different robotic systems using constraint-based
programming approaches such as iTaSC.

Markus Klotzbuecher In 2004, dr. Klotzbücher
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