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1 Introduction 

1.1 Statistical analysis and design for environmental risk assessment 
A basic statistical approach to environmental risk assessment (ERA) has been outlined in the 
EFSA Guidance Document (EFSA, 2010b) and in Perry et al. (2009). However, this approach 
is not specified in great detail. The aim of the statistics work package is to make the EFSA 
guidelines workable, practical and to fill in the gaps. This will result in a protocol which will 
provide risk assessors with a step-by-step approach for both design and statistical analysis of 
field trials. Statistical consideration of the EFSA for the safety evaluation of genetically 
modified organisms (EFSA, 2010a) will be incorporated in this protocol. Work package 9 will 
develop statistical concepts, methods, software and protocols for environmental risk 
assessment (ERA) and post-market environmental monitoring (PMEM). Main objectives are: 

• to develop appropriate statistical methods to handle Genotype by Environment 
interaction in studies over multiple bio-geographic regions and under varying 
agronomical conditions. This is expected to be a major issue in the context of 
European ERA; 

• to introduce equivalence testing as a main approach for ERA in addition to difference 
testing, and to establish protocols for experimental design based on acceptable test 
characteristics; 

• to develop statistical approaches for handling data sets with many low counts and 
presence/absence data, as often encountered in ERA. Current practice is to use models 
based on normal distributions but this may not be appropriate; 

• to implement methods in software for practical use; 
• to provide protocols and draft texts for guidelines. The protocol will provide risk 

assessors with a set of evaluated, standardized and harmonized sampling and testing 
methods for environmental risk assessment; 

• to provide guidelines for multivariate statistical approaches appropriate for PMEM. 
 
Existing datasets will be studied to characterise baseline conditions found in different bio-
geographic regions, and to typify the variation of genotypes and environments (Task 9.1). 
Based on these results a simulation model will be built (Task 9.2), which will be used to test 
various statistical approaches for data analysis in relation to the possible design of 
experiments (e.g. sample size). Statistical approaches will use both difference and equivalence 
testing, and a graphical display of assessment results will be developed (Task 9.3). Also for 
multi-environment studies appropriate statistical methodology will be developed, including 
the consideration of genotype by environment interaction (Task 9.4). The statistical methods 
for analysis and design of field trials for Environmental Risk Assessment that give the best 
performance will be described in protocols for both single-environment (Task 9.3) and multi-
environment studies (Task 9.6). 

Tasks 9.1 (overview of existing ERA datasets) and 9.2 (simulation model for ERA data) are 
described in Goedhart et al (2013, 2014). This report describes results of a simulation study to 
investigate properties of various statistical models, which are used to perform difference and 
equivalence testing, for analysing count data. 
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1.2 A protocol for the design and analysis of single-environment field 
trials – Task 9.3.  

This task is preparatory for Tasks 9.4 and 9.5 where multi-environment trials are addressed. 
Several statistical issues regarding data types, difference testing, equivalence testing and test 
characteristics can however be better researched in the relatively simple situation of a single-
environment trial. This is also relevant because of the emphasis of the EFSA guidance 
document on single-environment trials. The EFSA guidance document states that “For field 
trials, since each field trial at a site on a particular occasion should have sufficient replication 
to be able to yield a stand-alone analysis if required, this power analysis should relate to a 
single site”. Therefore protocols for power analysis and statistical analysis of a single field 
trial will be developed in this task. To develop such protocols it is important to known the 
statistical properties of various tests which are used in practice, for example the power and 
robustness of a test and whether the test has the correct significance level. This can best be 
researched by means of a simulation model. This reports describes such a simulation study. 

1.3 Overview of this report 
The simulation model developed in Task 9.2 was used to generate count data for the simple, 
but important, situation in which a field study is conducted to compare a GM plant with its 
conventional counterpart . It is assumed that a completely randomized experiment is used and 
that a single count, without excess zeros, of a non-target organism is available for each 
experimental unit. Chapter 2 describes the setup of the simulation study.  Four different count 
distributions were used to simulate count data for a mean count ranging from 0.5 (for rare 
species) to 100 (for more common species). Different coefficients of variation and different 
levels of replication, ranging from 4 to 100, were used to simulate data. The ratio of the 
means of the GM plant and its comparator was set to 1, 0.75, 0.50 and 0.25. A ratio of 1 
implies no difference between the GM plant and its comparator. The simulated data were 
analysed by means of eight different models, such that the most robust model could be 
selected. Chapter 3 describes the results obtained for difference testing; this includes the 
simulated size and power of the difference test as well as coverage of confidence intervals. It 
also compares an approximate fast method to obtain the power of a difference test. Finally a 
recommendation is given about which difference test is to be preferred. Chapter 4 deals with 
one-sided equivalence testing and describes the simulated significance level of various 
methods, the simulated power and a fast way of calculating the power. This also results in a 
recommendation about which equivalence test is to be preferred. Chapter 5 shortly deals with 
the problem of zero inflation, i.e. more zeros than predicted by the count distribution 
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2 Setup of simulation study 

2.1 Basic setup and simulation distributions 
The most simple trial in which a GM plant is compared to its conventional counterpart is a 
completely randomized field trial with level of replication 𝑁𝑁. In that simple case there are 
only two parameters: the mean count of the non-target organism for the GM plant (𝜇𝜇𝐺𝐺) and the 
mean count (𝜇𝜇𝐶𝐶) for the comparator. In practice there might be repeated counts on the same 
plots, but this is ignored in this simulation study. Goedhart et al (2013, 2014) describe five 
statistical distributions commonly used to simulate counts: the Poisson distribution, the 
overdispersed Poisson distribution, the negative binomial distribution, the Poisson-Lognormal 
distribution and a distribution which follows Taylor’s power law. The Poisson distribution 
was not used in this simulation study because it is generally believed (Perry et al 2003, Duan 
et al, 2006) that counts of non-target organisms (NTOs) typically have larger variance than 
according to the Poisson distribution. Table 1 summarizes the four distributions which are 
used to simulate data, with the dispersion parameter 𝜎𝜎2 as a function of the mean 𝜇𝜇 and the 
variation coefficient 𝐶𝐶𝐶𝐶 in the last column. There is no statistical distribution associated with 
Taylor’s power law, as it only specifies a relationship between the variance and the mean. 
Perry et al (2003) used the negative binomial distribution to simulate according to Taylor’s 
power law employing a negative binomial dispersion parameter which follows from equating 
the variance of the negative binomial to the power law. The same approach is followed here. 
Using the negative binomial is however somewhat arbitrary, as e.g. the Poisson-Lognormal 
has the same variance to mean relationship, but has a different distribution.  

Table 1:  Distributions and values for the dispersion parameter used to simulate data. 

Distribution Abbreviation Mean Variance Dispersion parameter 
𝜎𝜎2 as a function of 𝐶𝐶𝐶𝐶 

Overdispersed Poisson OP 𝜇𝜇 𝜎𝜎2𝜇𝜇 𝜇𝜇 (𝐶𝐶𝐶𝐶 100⁄ )2 
Negative Binomial NB 𝜇𝜇 𝜇𝜇 + 𝜎𝜎2𝜇𝜇2 (𝐶𝐶𝐶𝐶 100⁄ )2 − 1 𝜇𝜇⁄  
Poisson-Lognormal PL 𝜇𝜇 𝜇𝜇 + 𝜎𝜎2𝜇𝜇2 (𝐶𝐶𝐶𝐶 100⁄ )2 − 1 𝜇𝜇⁄  
Power model (𝑝𝑝=1.5) P1 𝜇𝜇 𝜎𝜎2𝜇𝜇1.5 𝜇𝜇0.5 (𝐶𝐶𝐶𝐶 100⁄ )2 

 
The variance function of the Power model is more generally given by 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜎𝜎2𝜇𝜇𝑝𝑝 in which 𝑝𝑝 
is some power. In this simulation study 𝑝𝑝=1.5 was chosen because this results in a variance 
function nicely in between the variance function for the overdispersed Poisson on the one 
hand and the negative binomial and Poisson-Lognormal on the other hand.  

The assumed variability in field testing of NTOs is mostly defined in terms of the coefficient 
of variation (𝐶𝐶𝐶𝐶), for example Duan et al (2006), and this convention is also used here. The 
mean 𝜇𝜇𝐶𝐶 of the comparator and the coefficient of variation 𝐶𝐶𝐶𝐶 define the dispersion parameter 
𝜎𝜎2, see Table 1. This same dispersion parameter is then used to generate counts for the 
comparator and also for the GM plant. So for example with 𝜇𝜇𝐶𝐶=10 and 𝐶𝐶𝐶𝐶=100%, the 
negative binomial dispersion parameter equals 𝜎𝜎2=0.9. In case the GM plant, in the same 
simulation, has a mean 𝜇𝜇𝐺𝐺=2.5, the corresponding 𝐶𝐶𝐶𝐶 value equals √2.5 + 0.9 × 2.52 2.5⁄  = 
114%. Moreover, a mean 𝜇𝜇𝐺𝐺=1 has a corresponding 𝐶𝐶𝐶𝐶=138% in this setting. This somewhat 
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higher 𝐶𝐶𝐶𝐶 value than for the comparator reflects the general believe that smaller means are 
associated with larger 𝐶𝐶𝐶𝐶 values. The quotient of the 𝐶𝐶𝐶𝐶 value for the GM plant and the 
comparator for each distribution is given below as a function of 𝑄𝑄 = 𝜇𝜇𝐺𝐺 𝜇𝜇𝐶𝐶⁄ . 

Overdispersed Poisson simulation distribution 
The overdispersed Poisson distribution requires a dispersion parameter 𝜎𝜎2 which is larger 
than or equal to 1, where the limiting value of 1 results in an ordinary Poisson distribution. 
The quotient of the variation coefficients is given by 

𝐶𝐶𝑉𝑉𝐺𝐺
𝐶𝐶𝑉𝑉𝐶𝐶

= �
𝜎𝜎2 𝜇𝜇𝐺𝐺⁄
𝜎𝜎2 𝜇𝜇𝐶𝐶⁄ = �

𝜇𝜇𝐶𝐶
𝜇𝜇𝐺𝐺

= �
1
𝑄𝑄

 

This implies that with 𝑄𝑄 = 0.25 the GM plant has a 𝐶𝐶𝐶𝐶 value which is twice as large as the 𝐶𝐶𝐶𝐶 
of the comparator, irrespective of the value of 𝜇𝜇𝐶𝐶. 

Negative binomial and Poisson-Lognormal simulation distributions 
The negative binomial and Poisson-Lognormal distributions both require a dispersion 
parameter 𝜎𝜎2 which is larger than 0. The quotient of the variation coefficients is given by a 
more complicated formula: 

𝐶𝐶𝑉𝑉𝐺𝐺
𝐶𝐶𝑉𝑉𝐶𝐶

= �
(𝜇𝜇𝐺𝐺 + 𝜎𝜎2𝜇𝜇𝐺𝐺2) 𝜇𝜇𝐺𝐺2⁄
(𝜇𝜇𝐶𝐶 + 𝜎𝜎2𝜇𝜇𝐶𝐶2) 𝜇𝜇𝐶𝐶2⁄ = �1 +

1 − 𝑄𝑄
𝑄𝑄 𝜇𝜇𝐶𝐶  (𝐶𝐶𝐶𝐶 100⁄ )2 

 This will be close to 1 for large 𝐶𝐶𝐶𝐶 values and for large values of 𝜇𝜇𝐶𝐶. 

Power law simulation distribution 
For simulating according to the Power model, first the following equation is solved for 𝜏𝜏: 
𝜎𝜎2𝜇𝜇𝑝𝑝 = 𝜇𝜇 + 𝜏𝜏𝜇𝜇2; subsequently data are simulated according to a negative binomial 
distribution with  dispersion parameter 𝜏𝜏. Note that the equation is separately solved for the 
comparator, with mean 𝜇𝜇𝐶𝐶, and for the GMO with mean 𝜇𝜇𝐺𝐺 = 𝑄𝑄𝜇𝜇𝐶𝐶. This might results in a 
combination of parameter values which is not allowed. Suppose, as an example, 𝜇𝜇𝐶𝐶=9, 𝜇𝜇𝐺𝐺=1 
and 𝐶𝐶𝐶𝐶=50%. The dispersion parameter of the Power model with 𝑝𝑝=1.5 is then given by 
𝜎𝜎2=0.75. However the equation for 𝜇𝜇𝐶𝐶: 1+𝜏𝜏12 = 0.75*11.5 cannot be solved for positive 𝜏𝜏. 

The quotient of the coefficients of variation is given by 

𝐶𝐶𝑉𝑉𝐺𝐺
𝐶𝐶𝑉𝑉𝐶𝐶

= �
𝜎𝜎2𝜇𝜇𝐺𝐺

𝑝𝑝 𝜇𝜇𝐺𝐺2⁄
𝜎𝜎2𝜇𝜇𝐶𝐶

𝑝𝑝 𝜇𝜇𝐶𝐶2⁄
= 𝑄𝑄0.5𝑝𝑝−1 

This implies that with 𝑄𝑄 = 0.25 and 𝑝𝑝=1.5 the GM plant has a 𝐶𝐶𝐶𝐶 value which is √2 as large 
as the 𝐶𝐶𝑉𝑉 of the comparator.  
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2.2 Parameter values used in the simulation 
Depending on the NTO at hand, mean counts can be very small but can also be quite large. 
A range of 0.5 to 100 for the mean 𝜇𝜇𝐶𝐶 of the comparator is therefore employed.  

Rather than focusing on the difference between 𝜇𝜇𝐶𝐶 and 𝜇𝜇𝐺𝐺, it is more natural to focus on the 
ratio 𝑄𝑄 = 𝜇𝜇𝐺𝐺 𝜇𝜇𝐶𝐶⁄  of the two means. Generally accepted values in field testing for 𝑄𝑄 are 
between 0.5 and 0.25 (Comas et al, 2012). We used values 1, 0.75, 0.5 and 0.25. The value 
of 1, i.e. no difference between the comparator and the GM plant, is specifically meant to 
examine whether the difference test attains its nominal 𝛼𝛼-level.The other values of 𝑄𝑄 assume 
that the GM plant has a negative effect on the mean count. 

The assumed variability in field testing of NTOs is mostly defined in terms of the coefficient 
of variation (𝐶𝐶𝐶𝐶). Duan et al (2006) present graphs with 𝐶𝐶𝐶𝐶 values ranging from 25% to 
200% with generally low 𝐶𝐶𝐶𝐶 values for means larger than 5 and 𝐶𝐶𝐶𝐶 values up to 200% for 
means close to zero. In this study, five different values of 𝐶𝐶𝐶𝐶 are used for different values of 
𝜇𝜇𝐶𝐶 as given in Figure 1 and Table 2. Compared to Duan et al (2006) the larger 𝐶𝐶𝐶𝐶 values used 
in this simulation study seem to be at the upper end of what can be expected in practical field 
trials. 

Figure 1: Combinations of comparator means 𝝁𝝁𝑪𝑪 and coefficients of variation 𝑪𝑪𝑪𝑪. The 
solid line denotes the coefficient of variation of a Poisson distribution.  

 

Finally the level of replication 𝑁𝑁 must be specified. Environmental risk assessment of GM 
plants is typically performed in experiments with a small number of plots. This is (partly) due 
to the fact that relatively large plots and large guard rows are required in order to measure 
effects on NTOs without bias, see Perry et al (2003). It is therefore that such experiments are 
frequently repeated in different years and different locations such that larger levels of 
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replication are obtained. A range of 4 to 100 for the level of replication 𝑁𝑁 is employed in this 
study with some emphasis on lower values. 

Table 2 summarizes the parameter values which are used in the simulation study. These 
values result in 1600 parameter combinations. For each combination of the simulation 
distribution (OP, NB, PL and P1) and parameter values 1000 datasets were simulated. Each 
dataset was analysed using the models given in the next session and an appropriate difference 
test at the 5% level was performed (details are given below). The proportion of datasets for 
which the difference test is rejected then gives an estimate of the true significance level (𝛼𝛼) of 
the test when there is no difference, i.e. 𝑄𝑄=1, and the power (𝛽𝛽) of the test when there is a 
difference, i.e. 𝑄𝑄≠1. These are only estimates of the true size of the test. Suppose that the size 
of the test is indeed exactly 5%, then with 1000 simulations a 99% prediction interval for the 
number of times the null hypothesis will be rejected is given by (33, 67) resulting in an 
interval of 3.3% – 6.7% for the true size. So only when the simulated significance level is 
outside this interval there is an indication that the true level of the test does not equal 5%. 

Table 2:  Parameters used in the simulation study. 

Parameter Values used in simulation 
Mean 𝜇𝜇𝐶𝐶 of comparator 0.5,  1,  2,  5,  10,  20,  50,  100 
Ratio 𝑄𝑄 = 𝜇𝜇𝐺𝐺 𝜇𝜇𝐶𝐶⁄  1,  0.75,  0.5,  0.25 
Number of replication 𝑁𝑁 4,  6,  8,  10,  15,  20,  30,  40,  60,  100 

𝜇𝜇𝐶𝐶  
Coefficient of variation 𝐶𝐶𝐶𝐶 for comparator 

𝐶𝐶𝐶𝐶-1 𝐶𝐶𝐶𝐶-2 𝐶𝐶𝐶𝐶-3 𝐶𝐶𝐶𝐶-4 𝐶𝐶𝐶𝐶-5 
0.5 150 200 300 400 500 

1 150 200 300 400 500 
2 100 150 200 300 400 
5 75 100 150 200 300 

10 50 75 100 150 200 
20 40 50 75 100 150 
50 20 30 40 50 75 

100 15 20 30 40 50 
 
Data were simulated using the statistical package GenStat (VSN international, 2013). 

2.3 Statistical models for analysis 
Fitting the Poisson-Lognormal model by means of maximum likelihood requires (adaptive) 
Gauss-Hermite integration within an iterative weighted least squares algorithm. This 
algorithm turned out to fail too frequently for data with small means, small levels of 
replication and/or small coefficients of variation. Therefor the Poisson-Lognormal model was 
not used to analyse simulated data. The other models with which each dataset was analysed 
are summarized in Table 3. All models were fitted using standard facilities in the statistical 
package GenStat (VSN international, 2013). Details for each analysis model are given below. 
A difference test for all models can be obtained by comparison of the fit of the model, more 
specifically the deviance,  under the null-hypothesis 𝐻𝐻0: 𝑄𝑄 = 1 and the fit of the model under 
the alternative hypothesis 𝐻𝐻1: 𝑄𝑄 ≠ 1.  
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Table 3:  Statistical models used to analyse the simulated data. 

Analysis model Abbreviation Type of difference test 
Log transformation  LN t-test 
Squared-root transformation  SQ t-test 
Overdispersed-Poisson OP scaled deviance difference 
Negative binomial NB deviance difference 
Power model 𝑝𝑝=1.5 P1 scaled deviance difference 
Power model 𝑝𝑝=1.7 P2 scaled deviance difference 
Power model 𝑝𝑝=1.99 P3 scaled deviance difference 
Gamma model GM scaled deviance difference 

LN: Log transformation followed by a t-test 
The count data are log-transformed after the addition of 1 to prevent taking the logarithm of 
zero. The simple two-sample t-test is then applied to the log transformed counts. The log 
transformation stabilizes the variance for distributions with a standard deviation which is 
proportional to the mean, or 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) ∝ 𝜇𝜇2. This transformation therefore seems appropriate 
for the negative binomial and the Poisson-lognormal distribution with means that are not too 
small. 

The two-sample t-test employs an estimate of the difference between the GM plant and the 
comparator on the transformed logarithmic scale. This difference is however a quantity that is 
not easy to interpret, especially when the underlying means 𝜇𝜇𝐺𝐺 and 𝜇𝜇𝐶𝐶 are small. Instead 
interest is in the ratio 𝑄𝑄 = 𝜇𝜇𝐺𝐺 𝜇𝜇𝐶𝐶⁄ . The so-called generalized confidence interval approach can 
be applied to provide an interval for the ratio of two lognormal means, see Krishnamoorthy & 
Mathew (2003) and Chen and Zou (2006). According to these authors such an interval has 
excellent coverage probabilities. This approach uses the fact that, assuming that the log-
transformed counts follow a normal distribution, the residual mean square follows a scaled 
Chi-squared distribution and that the two sample means follow a normal distribution which is 
independent of the Chi-squared distribution. A simulation approach is then used to generate a 
large sample for the ratio of the two lognormal means, accounting for the addition of 1. 
Percentiles of this large sample then define a confidence interval. More specifically, with 𝑋𝑋𝐶𝐶 
and 𝑋𝑋𝐺𝐺 the two sample means on the log-transformed scale, 𝑆𝑆2 the estimate of the variance on 
the transformed scale and 2𝑁𝑁-2 the number of degrees of freedom for 𝑆𝑆2, a large sample for 
the ratio 𝑄𝑄 is generated in the following way 

1. A random draw 𝐶𝐶ℎ𝑖𝑖 is generated by means of 𝐶𝐶ℎ𝑖𝑖 = (2𝑁𝑁-2) 𝑆𝑆2 𝜒𝜒2𝑁𝑁−2⁄  where 𝜒𝜒2𝑁𝑁−2 is 
a random draw from a Chi-squared distribution with 2𝑁𝑁-2 degrees of freedom; 

2. 𝑁𝑁𝐶𝐶  is a random draw from a normal distribution with mean 𝑋𝑋𝐶𝐶 and variance 𝐶𝐶ℎ𝑖𝑖 𝑁𝑁⁄ ; 
3. 𝑁𝑁𝐺𝐺   is a random draw from a normal distribution with mean 𝑋𝑋𝐺𝐺 and variance 𝐶𝐶ℎ𝑖𝑖 𝑁𝑁⁄ ; 
4. Back-transform 𝑁𝑁𝐶𝐶 by means of 𝑁𝑁𝐶𝐶 = exp(𝑁𝑁𝐶𝐶 + 𝐶𝐶ℎ𝑖𝑖 2⁄ ) and similarly 𝑁𝑁𝐺𝐺 . Note that 

the back-transformation uses the equation for the mean of the lognormal distribution; 
5. Subtract 1 from 𝑁𝑁𝐶𝐶 and 𝑁𝑁𝐺𝐺; this accounts for the addition of 1 before log-transforming 

the count. This might sometimes result in a negative value for 𝑁𝑁𝐶𝐶 or 𝑁𝑁𝐺𝐺 . Such values 
are replaced by a small positive value, i.e. by 0.0001. 

6. Calculate the ratio 𝑁𝑁𝐺𝐺 𝑁𝑁𝐶𝐶⁄  



10 
 

7. Repeat steps 1-6 many times, e.g. 10.000 or when more precise results need to be 
obtained 100.000 times. Calculate appropriate percentiles of the large sample which is 
the generalized confidence interval. 

The generalized confidence interval can be used for difference testing as well as for 
equivalence testing.  

SQ: Squared root transformation followed by a t-test 
The squared root transformation is frequently used as an alternative for the log transform, and 
a simple t-test is also performed on squared root transformed counts. This transformation 
stabilizes the variance when the variance is proportional to the mean, or 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) ∝ 𝜇𝜇. This 
transformation is therefore especially appropriate for the overdispersed Poisson distribution.  

The generalized confidence interval approach can also be employed to obtain an interval for 
the ratio on the original scale. The only modification to the seven steps described for the LN 
analysis is the back-transformation in step 4. For the squared root transform this is given by 
𝑁𝑁𝐶𝐶 = 𝑁𝑁𝐶𝐶2 + 𝐶𝐶ℎ𝑖𝑖 which employs the well-known relation 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝔼𝔼𝑋𝑋2 − (𝔼𝔼𝔼𝔼)2 where 𝔼𝔼 
denoted taking the expectation. Step 5 has to be skipped.  

OP: Overdispersed Poisson by a GLM-like analysis 
There does not seem to be standard software to fit the overdispersed Poisson distribution by 
means of maximum likelihood. However, a common way to analyse overdispersed counts is 
to use the quasi-likelihood approach of McCullagh and Nelder (1989). This amounts to fitting 
the ordinary log-linear model, which employs the Poisson distribution and a log-link, and to 
scale standard errors of parameter estimates by means of the squared root of an estimate of the 
dispersion parameter. This is the approach which is followed here. A scaled likelihood ratio 
statistic is obtained by calculating the scaled deviance difference of the model under 𝐻𝐻0 and 
𝐻𝐻1. Scaling can be done by the mean deviance or by Pearson’s Chi-squared statistic, both 
under 𝐻𝐻1, and both methods are compared. The scaled likelihood ratio statistic is compared 
with a F distribution with 1 and 2𝑁𝑁-2 degrees of freedom to obtain a p-value.  

In this model the underlying mean is log-transformed, rather than taking logs of the observed 
counts. This implies that the logarithm of the ratio of the two means, i.e. log(𝑄𝑄), is directly 
estimated in this model. A so-called Wald test statistic (Buse, 1982) can then be used for 
difference testing. This equals the quotient of the estimate of log(𝑄𝑄) and its standard error, 
and this is usually compared to a t-distribution to compensate for the estimation of the 
dispersion parameter. However it is generally believed that the likelihood ratio statistic has 
better statistical properties (McCullagh and Nelder, 1989). Moreover the Wald statistics 
breaks down when either sample only contains zero’s since the estimate of log(𝑄𝑄), and its 
standard error, then becomes plus or minus infinity. So difference testing is based on the 
scaled likelihood ratio test. Equivalence testing under this model is however based on the 
estimate of log(𝑄𝑄) and its standard error, scaled by Pearson’s statistic, which can be used to 
generate a confidence interval and thus to perform equivalence testing for arbitrary limits of 
concern. An alternative would have been to calculate a so-called profile likelihood interval 
but this requires a search algorithm which was considered to be too computer intensive in this 
simulation study.  
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NB: Negative binomial model by a GLM-like analysis 
The negative binomial regression model, with logarithmic link, is fitted to the counts by 
means of maximum likelihood. The likelihood ratio test is calculated and compared to a 
Chi-squared(1) distribution. The dispersion parameter of the negative binomial distribution 
was bounded to the interval [0.001, 1000] to avoid numerical problems. 

The estimate of log(𝑄𝑄) and its standard error is used for equivalence testing. 

P1, P2 and P3: Power Law model by a GLM-like analysis 
The Power model is defined by a variance-to-mean relationship and there is no true statistical 
distribution associated with it. Therefore, like the overdispersed Poisson model, quasi 
likelihood is used to fit the model. The quasi deviance 𝐷𝐷 can be obtained by employing its 
definition, see McCullagh & Nelder (1989): 

𝐷𝐷(𝑦𝑦; 𝜇𝜇) = 2�
𝑦𝑦 − 𝑡𝑡
𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡)

𝑑𝑑𝑑𝑑

𝑦𝑦

𝜇𝜇

 

For Taylors Power Law, i.e. 𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡) = 𝑡𝑡𝛽𝛽, the quasi deviance becomes 
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The model is fitted using GenStats facilities for generalized linear models with non-standard 
variance functions. The GenStat directives for defining the model are as follows, where 
‘response’ is the observed count, ‘power’ is the value of 𝑝𝑝 in the variance function and ‘z1’, 
‘z2’ and ‘z3’ are the three terms between squared brackets in the equation above. 

CALCULATE b1,b2 = 1,2 - power 

EXPRESSIO dcalc[1] ; VALUE=!e(vfunction = mu**power) 

EXPRESSIO dcalc[2] ; VALUE=!e(z1 = response**b2/(b1*b2)) 

EXPRESSIO dcalc[3] ; VALUE=!e(z2 = response*mu**b1/b1) 

EXPRESSIO dcalc[4] ; VALUE=!e(z3 = mu**b2/b2) 

EXPRESSIO dcalc[5] ; VALUE=!e(deviance = 2*(z1-z2+z3)) 

MODEL     [DISTRIBUTION=calculated ; DCALCULATION=dcalc[] ; \ 

          LINK=log ; DMETHOD=pearson ; DISPERSION=*] response ; \ 

          FITTED=fitted ; VFUNCTION=vfunction ; DEVIANCE=deviance 

To obtain a test-statistic the deviance difference can be scaled by the mean deviance or 
Pearson’s test statistic, both under 𝐻𝐻1. The test statistic was compared to a F distribution with 
1 and 2𝑁𝑁-2 degrees of freedom. The power model was fitted with a fixed power 𝑝𝑝 of 1.5, of 
1.7 and of 1.99, and these are denoted by P1, P2 and P3 respectively. Note that a power 𝑝𝑝=2 
is not allowed by the model as this implies division by zero. 

A confidence interval is obtained for the estimate of log(𝑄𝑄) and its standard error, scaled by 
Pearson’s statistic and using a t-distribution, and this is used for equivalence testing.  
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GM: Gamma model using a GLM-like analysis 
The final analysis is by means of the Gamma distribution employing a log-link. Since the 
gamma distribution cannot handle zero observations, zeroes were replaced by 0.001. Again 
the deviance difference was scaled by the mean deviance or Pearson’s chi-squared and 
compared with a F distribution with 1 and 𝑁𝑁-2 degrees of freedom to obtain a p-value. Also a 
confidence interval is obtained for the estimate of log(𝑄𝑄) and its standard error, scaled by 
Pearson’s statistic and using a t-distribution, and this is used for equivalence testing.  

Special cases 
For small means and small levels of replication sample means can easily become zero for a 
simulated dataset. When both sample means equal zero, or more generally when both 
variances within samples equal zero, the analysis according to the log-transformation cannot 
be performed because the residual mean square equals zero. Some decision has to be taken to 
deal with such situations. Consider therefore the case with 4 observations of the comparator 
and 4 observations for the GM plant, with obvious generalizations to more observations. The 
four cases below are then special. 

A. Sample 1 equals {0, 0, 0, 0} and sample 2 equals {0, 0, 0, 0}. In this case there is no 
information and the deviance under the null model and under the alternative model are 
both zero for all models. The p-value for the difference test is set to 1 for all analysis 
models as there is no indication of a difference between the two samples. For the most 
extreme parameter combination 𝜇𝜇𝑅𝑅=0.5, 𝐶𝐶𝐶𝐶=500, 𝑄𝑄=0.25, 𝑁𝑁=4 and the overdispersed 
Poisson distribution this situation occurs for 570 of the 1000 simulated datasets. For 
negative binomial, Poisson-LogNormal and Power models these numbers are 
respectively 511, 287 and 565. Clearly there is also no information for calculating a 
confidence interval and thus formal equivalence testing cannot be performed. 
Graphical results for equivalence testing present the proportion of these cases 
separately. Note that this case can be considered as “equivalent more likely than not”. 

B. Sample 1 equals {0, 0, 0, 0} and sample 2 equals {c, c, c, c} where c is some positive 
value. The deviance under the alternative model equals zero and so no test statistic can 
be calculated. However this situation is very rare. For the Poisson-LogNormal 
distribution there are 28 parameter combinations for which this situation occurs with a 
maximum of 5 out of 1000 such datasets at most. For the other distributions this 
situation occurs even less. These situations are therefore discarded, i.e. the 
corresponding p-value is set to missing.  

C. Sample 1 equals {0, 0, 0, 0} and sample 2 has different values with a positive 
variance. In this case all the p-values can be calculated in the usual way. 

D. The mean of both samples are positive with a zero variance, e.g. {1, 1, 1, 1} and {3, 3, 
3, 3}. This is essentially the same as case B although it will occur even rarely. There 
are only 2 simulated datasets for which this occurs and these are discarded. 
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3 Results for difference testing 

3.1 General remarks on difference testing 
A key element in environmental risk assessment it to test whether the GM plant is different 
from its conventional counterpart. The aim of a statistical difference test is to reject the null 
hypothesis of no difference between the GM plant and its comparator. A significant difference 
test is then a “proof of difference”, but this does not state that the difference is biologically 
relevant and constitutes a true hazard to the environment. Poorly designed experiments with 
low levels of replication may have low statistical power of finding a true difference. So the 
absence of a significant difference is not a proof that there is no difference, or “absence of 
evidence is not evidence of absence” (Altman and Bland, 1995). There are two possible types 
of errors for a difference test. A type I error occurs when the null hypothesis of no difference 
is falsely rejected when it is actually true. In that case the incorrect conclusion is drawn that 
the GM plant is different from its comparator. A type II error on the other hand occurs when 
the null hypothesis is not rejected although it is untrue. Typically the probability of a type I 
error, also known as the size of the test or 𝛼𝛼, is set to some pre-described small value such as 
5%, implying that in 5% of all tests the null hypothesis of no difference is falsely rejected. 
Given the size of the test, the probability of a type II error depends on the true difference, the 
level of variation and the level of replication. Note that the power of a test, frequently denoted 
by 𝛽𝛽, equals one minus the probability of a type II error. 

The size of tests based on the normal distribution, such as the t-test, is exact. However tests 
based on other distributions, like the Poisson and the negative binomial, depend on asymptotic 
(meaning large levels of replication) arguments and are therefore not exact. This implies that a 
test, which is supposed to have a size of say 5%, might in practice have a different size. When 
the actual size of the test is larger than 𝛼𝛼 the test is said to be progressive, when it is smaller 
the test is said to be conservative. Progressive tests are considered to be specifically bad 
because the null hypothesis of no difference is falsely rejected more often than the pre-
described 𝛼𝛼 level. Frequently the true underlying distribution of counts is not known. We 
might for instance falsely analyse data according to the Poisson distribution while in practice 
the data follow the negative binomial distribution or vice versa. This is particularly likely to 
happen when counts are small, as encountered frequently in ERA experiments, because then it 
is hard to discriminate between probability models. This ignorance about the true underlying 
distribution might result in difference tests to become even more progressive or conservative.  

The power of a difference test based on the normal distribution can be calculated exactly. For 
non-normal distributions, small sample properties of difference tests are not straightforward. 
A simulation approach for sample size calculations for a difference test is employed by many 
authors, e.g. Shieh (2001) and Hrdličková (2006) for the Poisson distribution, Shieh (2001) 
and Demidenko (2008) for the binomial distribution, Aban et al (2009) and Friede and 
Schmidli (2010) for the negative binomial distribution. A general practical approach to 
computing power for non-normal distributions is given by Lyles et al (2007). 

In the remainder of this chapter simulation results of various properties of the difference tests 
are presented. All results presented are for a two-sided test of no difference with a 
significance level 𝛼𝛼=5%. Detailed results are given in a separate document with Appendices. 
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3.2 Scaling of the deviance difference for OP, P1, P2, P3 and GM 
When data are analysed by means of the overdispersed Poisson, Power or Gamma model the 
likelihood ratio statistic can be scaled by means of the mean deviance or by means of 
Pearson’s chi-squared, both for the full model. The simulated significance level of these two 
variants of the test statistic for specific parameter combinations is given in Figure 2 and 
Figure 3 when data are simulated by means of the negative binomial distribution with 
coefficients of variation as given by 𝐶𝐶𝐶𝐶-1 and 𝐶𝐶𝐶𝐶-3, and in Figure 4 and Figure 5 when data 
are simulated by means of the Poisson-Lognormal distribution. Each small plot has a range of 
0 to 0.1 along the y-axis. The green line is halfway each small plot and denotes the assumed 
𝛼𝛼=0.05. The red lines denote values 0.033 and 0.067 which provide a range that could be 
expected when 1000 datasets are simulated. So simulated sizes within the red lines are OK 
and such values are denoted by open circles. Values outside this range are denoted by filled 
circles, while values larger than 0.096 are given by triangles. Results for all parameter 
combinations are given in Appendix 1 A-D. 

Overdispersed Poisson (OP) as analysis model 
For small 𝐶𝐶𝐶𝐶 values (Figure 2 and Figure 4) and the overdispersed Poisson distribution as 
analysis model the size of both test statistics is good for values of 𝜇𝜇 ≥ 2. For smaller values 
of 𝜇𝜇 more replications are needed to attain the correct size. Scaling by means of Pearson’s 
chi-squared seems to have the edge over scaling by means of the mean deviance. For larger 
𝐶𝐶𝐶𝐶 values (Figure 3 and Figure 5) the size of the both test statistics is generally bad for 𝜇𝜇 ≤ 2. 
For larger replication levels and larger 𝜇𝜇 scaling by means of Pearson’s chi-squared results in 
a better size than scaling by means of the mean deviance. 

Power(1.5) (P1) as analysis model 
For small 𝐶𝐶𝐶𝐶 values (Figure 2 and Figure 4) and the Power(1.5) analysis model, scaling by 
means of the mean deviance generally gives a conservative test for smaller values of 𝜇𝜇, while 
scaling by means of Pearson’s chi-squared has correct size, except for small values of 𝜇𝜇 and 
low level of replication 𝑁𝑁. For larger 𝐶𝐶𝐶𝐶 values (Figure 3 and Figure 5) both test statistics are 
progressive for small values of 𝜇𝜇 even for large replication levels 𝑁𝑁. For larger 𝜇𝜇 and 
simulating according to the negative binomial scaling by means of the mean deviance has 
better size than scaling by means of Pearson’s chi-squared. However when data are simulated 
by means of the Poisson-LogNormal this is the other way around 

Gamma (GM) as analysis model 
For small 𝐶𝐶𝐶𝐶 values (Figure 2 and Figure 4) and the Gamma analysis model, scaling by 
means of the mean deviance is very conservative, while scaling by means of Pearson’s chi-
squared generally has the correct size. For larger 𝐶𝐶𝐶𝐶 values (Figure 3 and Figure 5) both test 
statistics perform badly for values 𝜇𝜇 ≤ 5. For larger means scaling by means of Pearson does 
have the edge especially when simulating according to the negative binomial distribution. 
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Figure 2: Size of the test when the deviance difference is scaled by means of the mean 
deviance and by means of Pearson’s chi-squared. Data are simulated by the 
negative binomial distribution with 𝑪𝑪𝑪𝑪-1 values. 

 

Figure 3: Size of the test when the deviance difference is scaled by means of the mean 
deviance and by means of Pearson’s chi-squared. Data are simulated by the 
negative binomial distribution with 𝑪𝑪𝑪𝑪-3 values. 
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Figure 4: Size of the test when the deviance difference is scaled by means of the mean 
deviance and by means of Pearson’s chi-squared. Data are simulated by the 
Poisson-LogNormal distribution with 𝑪𝑪𝑪𝑪-1 values. 

 

Figure 5: Size of the test when the deviance difference is scaled by means of the mean 
deviance and by means of Pearson’s chi-squared. Data are simulated by the 
Poisson-LogNormal distribution with 𝑪𝑪𝑪𝑪-3 values. 
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Conclusion 
Scaling of the deviance difference by means of Pearson statistic seems to have somewhat 
better properties especially when the coefficient of variation is small. This conclusion is not 
only based on Figure 2 to Figure 5 but also on the results presented in Appendix 1 A-D. 
Therefore in subsequent comparisons the deviance difference will be scaled by means of 
Pearson’s chi-squared for analysis according to the overdispersed-Poisson, the Power models 
and the Gamma model. 

3.3 Simulated significance level of difference test 
Having decided that scaling of the deviance difference by means of Pearson’s statistic for OP, 
P1, P2, P3 and GM generally has better properties than scaling by means of the mean 
deviance, the size of all analysis methods can be compared. Full details of the size of the 
difference test for all parameter combinations and simulation distributions are given in 
Appendix 1 E-H. Results for the P3 model, with power 1.99, are not displayed since they are 
very similar to the results for the Gamma (GM) model. Results for specific combinations are 
given in Figure 6 to Figure 9.  

Figure 6: Size of the difference test under various analysis models for data simulated 
by the negative binomial distribution with 𝑪𝑪𝑪𝑪-1 values. 
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Figure 7: Size of the difference test under various analysis models for data simulated 
by the negative binomial distribution with 𝑪𝑪𝑪𝑪-3 values. 

 

Figure 8: Size of the difference test under various analysis models for data simulated 
by the Poisson-LogNormal distribution with 𝑪𝑪𝑪𝑪-1 values. 
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Figure 9: Size of the difference test under various analysis models for data simulated 
by the Poisson-LogNormal distribution with 𝑪𝑪𝑪𝑪-3 values. 

 
 
The size of the LN and SQ analysis is extremely good for all parameter combinations, except 
for small values of 𝜇𝜇 combined with large coefficients of variations 𝐶𝐶𝐶𝐶 and low levels of 
replication 𝑁𝑁. In such cases the LN and SQ tests are conservative. The GLM-like models 
result in sometimes progressive test especially for small means in combination with a large 
coefficient of variation. Among the GLM-like models there is no clear winner although the 
OP analysis seems to outperform the other GLM models somewhat, especially when data are 
simulated according to the Poisson-Lognormal distribution.  

The simulated significance level for all parameter combinations and simulation distributions 
is summarized in Figure 10 to Figure 13. The symbols in Figure 10 to Figure 13 have the 
following meaning: open circle denotes that the test is conservative for lower levels of 
replication and has the correct size for larger replication; closed circle denotes that the test has 
correct size for all replication levels; cross means that the test is mainly progressive; number 
denotes that the test has correct size for levels of replication larger than the plotted number. 
These plots can be used to quickly check for which parameter combination, and for which 
level of replication, the difference test has correct size. These plots clearly indicate, once 
again, that the LN and SQ analysis models have superior size. The best alternative, especially 
for for larger means and smaller coefficients of variation is the OP analysis model. 
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Figure 10: Summary of size of difference test; data simulated by Overdispersed Poisson 
(see text for explanation of symbols) 

 

Figure 11: Summary of size of difference test; data simulated by Negative Binomial  
(see text for explanation of symbols) 
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Figure 12: Summary of size of difference test; data simulated by Poisson-Lognormal 
(see text for explanation of symbols) 

 

Figure 13: Summary of size of difference test; data simulated by Power(1.5) model 
(see text for explanation of symbols) 

 

There is a large body of literature about the robustness of the two-sample t-test against 
departures from normality, two early references are Pearson and Adyanthāya (1929) and 
Gayen (1950). Miller (1986) summarizes the literature by noting that in case the skewness of 
the two samples is equal and so is the kurtosis then “the kurtosis parameters have little effect 
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on the t statistic and when the sample sizes are approximately equal the skewness parameters 
cancel each other approximately”. So assuming that the two samples follow an identical 
distribution, the t-test is very robust against departures from normality. This does not imply 
that the t-test can also be applied to the counts themselves. Taking logs or a squared root 
makes the count distribution more symmetric giving less departures from normality which 
results in better properties of the t-test. 

Conclusion 
The simulated size of the t-test after a log or squared-root transformation, models LN and SQ 
respectively, is close to its nominal level, except for small means and large 𝐶𝐶𝐶𝐶 values. The 
other analysis models are progressive for small means and larger coefficients of variation. In 
other cases the OP analysis seems to outperform the other GLM-like models.  

3.4 Power of difference test 
The power of the difference test for all parameter combinations is given in Appendices I-L for 
effects size 𝑄𝑄=0.75 (black), 𝑄𝑄=0.50 (red) and 𝑄𝑄=0.25 (green). Results for specific 
combinations are given in Figure 14 to Figure 17. Each small plot has a range of 0 to 1 along 
the y-axis. The grey horizontal lines denote power values of 0.25, 0.50 and 0.75. Values for 
progressive tests, i.e. when the simulated size of the test is larger than 0.067, are not 
displayed. This once again shows that the LN and SQ tests are never progressive. 

When data are simulated according to the overdispersed Poisson distribution (Appendix 1 I) 
there is very little difference between the power of the various analysis models. However the 
LN and SQ method seem to have a somewhat larger power for larger values of 𝜇𝜇. 

When data are simulated according to the negative binomial distribution (Appendix 1 J, 
Figure 14 and Figure 15) the LN test occasionally has slightly smaller power than the other 
tests. An example is given in Figure 15 for 𝜇𝜇=10 and 𝜇𝜇=20. The GLM-like models have very 
similar power. 

When data are simulated according to the Poisson-Lognormal distribution (Appendix 1 K, 
Figure 16 and Figure 17) the power of the LN and SQ tests is as least as good as for the other 
models.  

When data are simulated according to the Power P1 model (Appendix 1 L), once again the 
power of the LN and SQ tests is as least as good as for the other models.  

Conclusion 
The power of the LN and SQ approach is generally very similar to the power of the other 
analysis methods. In some cases the power of LN and SQ is marginally larger, in other cases it 
is marginally lower. Because there is very little difference between the power of the various 
models, other properties, like the size of tests, of the various models should be decisive as to 
which method is to be preferred.  
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Figure 14: Power of the difference test for effects 𝑸𝑸=0.75 (black),  0.50 (red) and 0.25 
(green) under various analysis models for data simulated by the negative 
binomial distribution with 𝑪𝑪𝑪𝑪-1 values  

 

Figure 15: Power of the difference test for effects 𝑸𝑸=0.75 (black),  0.50 (red) and 0.25 
(green) under various analysis models for data simulated by the negative 
binomial distribution with 𝑪𝑪𝑪𝑪-3 values  
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Figure 16: Power of the difference test for effects 𝑸𝑸=0.75 (black),  0.50 (red) and 0.25 
(green) under various analysis models for data simulated by the Poisson-
Lognormal distribution with 𝑪𝑪𝑪𝑪-1 values  

 

Figure 17: Power of the difference test for effects 𝑸𝑸=0.75 (black),  0.50 (red) and 0.25 
(green) under various analysis models for data simulated by the Poisson-
Lognormal distribution with 𝑪𝑪𝑪𝑪-3 values  
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3.5 Coverage of confidence intervals 
After each analysis a 95% two-sided confidence interval can be constructed for the ratio 𝑄𝑄 =
𝜇𝜇𝐺𝐺 𝜇𝜇𝐶𝐶⁄  of the two means. This uses the generalized confidence interval approach for the LN 
and SQ models. For the GLM-like models the confidence interval is constructed in the usual 
way employing the estimate of log(𝑄𝑄) and its standard error. One minus the simulated 
coverage probabilities of these intervals are given in Appendix 1 M-P. Each small plot has a 
range of 0 to 0.1 along the y-axis. The green line is halfway each small plot and denotes the 
assumed 𝛼𝛼=0.05. The red lines denote values 0.033 and 0.067 which provide a range that 
could be expected when 1000 datasets are simulated. So simulated sizes within the red lines 
are OK and such values are denoted by open circles. Values outside this range are denoted by 
filled circles, while values larger than 0.096 are given by triangles. Note that in this case large 
values denote a confidence interval that is too small (i.e. has smaller coverage probability than 
95%), while small values indicate a confidence interval that is too wide (i.e. has larger 
coverage probability than 95%). 

The LN and SQ generalized confidence interval can be used to test the null hypothesis of 
equal means. For LN both the simulated significance level and the simulated power of the 
generalized confidence interval are identical to those of the t-test. This can, for the simulated 
significance level of the LN analysis when data are simulated according to the overdispersed 
Poisson, be seen by comparing the first columns in Appendix 1 E with the top graphs in 
Appendix 1 M1. Similarly for SQ the second columns in Appendix 1 E can be compared with 
the top graphs in Appendix 1 M3. It then turns out that the generalized confidence interval for 
SQ has a slightly lower size significance level than the corresponding t-test for small means 
combined with small levels of replication and larger 𝐶𝐶𝐶𝐶 values. Similar comparisons can be 
made when data are simulated by the other three distributions. Results for the simulated 
power of the difference test employing the generalized confidence interval are not shown, but 
these are for the LN analysis also identical to the power of the t-test. 

However the properties of the LN and SQ generalized confidence interval are only good when 
testing the null hypothesis of equal means. Coverage of the LN interval deteriorates when the 
ratio 𝑄𝑄 = 𝜇𝜇𝐺𝐺 𝜇𝜇𝐶𝐶⁄  of the two means becomes smaller, e.g. the bottom graphs in Appendix 1M1 
for 𝑄𝑄=0.75 and Appendix 1 M2 for 𝑄𝑄=0.50 and 𝑄𝑄=0.25. Coverage of the SQ interval is even 
worse for values 𝑄𝑄≠1, see Appendix 1 M3 and M4. So it appears that the generalized 
confidence interval of LN and SQ can be used for difference testing, but it cannot be used for 
equivalence testing.  

The coverage probability of the OP interval, when simulating according to the overdispersed 
Poisson, is generally better than those of the other GLM-like models (Appendix 1 M5-12). 
For smaller values of 𝜇𝜇 and larger values of 𝐶𝐶𝐶𝐶 the OP interval is too wide indicating that the 
corresponding test is conservative. Intervals for NB, P1 and GM can be too short or too wide 
depending on the parameter combination. 

When data are simulated by means of the negative binomial distribution (Appendix 1 N) the 
OP interval generally has the better properties; the OP interval is almost never too small. 
However for 𝑄𝑄=0.25 the OP interval is somewhat too wide, while the NB and P1 intervals 
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then have a better coverage except when the 𝐶𝐶𝐶𝐶 is large in which case these intervals can 
become too small. The P1 interval seems to have somewhat better coverage than the NB 
interval. 

When data are simulated according to the Poisson-Lognormal distribution (Appendix 1 O) the 
NB, P1 and GM interval can be too small especially for smaller 𝜇𝜇 and larger 𝐶𝐶𝐶𝐶 values. For 
other values the P1 interval seems to have the edge over the NB and GM intervals. The OP 
interval is, once again, somewhat too wide for 𝑄𝑄=0.25. 

Results for the Power model (Appendix 1 P) are similar to those for the Poisson-Lognormal. 

Conclusion 
The LN and SQ generalized confidence intervals have the same properties as the t-test for 
difference testing, although the SQ interval has a somewhat lower simulated significance level 
for some parameter combinations. However these intervals do not have good coverage 
probability for 𝑄𝑄≠1, especially not for small values of 𝑄𝑄. In such cases the LN interval has a 
less worse coverage probability than the SQ interval. The OP interval is almost never too 
small (meaning that the coverage is not smaller than 95%). It can be too wide though 
especially for 𝑄𝑄=0.25 in combination with a simulation distribution other than overdispersed 
Poisson. In such cases the P1 interval seems to be the method of choice although P1 has the 
disadvantage that interval can be too small when simulating according to the overdispersed 
Poisson, and also for smaller 𝜇𝜇 and larger 𝐶𝐶𝐶𝐶 values for the other simulation distributions. 

3.6 Approximate power of the difference test 

Lyles et al (2007) describe a general method to approximate the power of a difference test for 
generalized linear models. Their approach makes use of a single ‘expanded’ dataset based on 
the response distribution. This expanded dataset is then analysed using an appropriate model 
and the power of the test statistic, either Wald or likelihood ratio, can then be calculated 
employing a Chi-squared distribution with a non-centrality parameter which can be easily 
calculated.  

This approximate method is compared with the simulated power of the LN analysis. The 
approximate method consists of the following steps: 

1. Create an ‘expanded’ dataset for the simulation distribution at hand. First choose the 
possible outcomes 𝑦𝑦𝐶𝐶1, … ,𝑦𝑦𝐶𝐶𝐶𝐶 for a mean value 𝜇𝜇𝐶𝐶 of the distribution and calculate 
the corresponding probabilities 𝑤𝑤𝐶𝐶1, … ,𝑤𝑤𝐶𝐶𝐶𝐶. The sum of these probabilities should 
then be close to one. Do the same for a mean value of 𝜇𝜇𝐺𝐺 giving possible outcomes 
𝑦𝑦𝐺𝐺1, … , 𝑦𝑦𝐺𝐺𝐺𝐺 with probabilities 𝑤𝑤𝐺𝐺1, … ,𝑤𝑤𝐺𝐺𝐺𝐺, with again a sum close to one. Then 
simply stack the two vectors of possible outcomes and also the two vectors of 
corresponding probabilities, denote these as 𝑌𝑌 and 𝑊𝑊. Also create an indicator vector 
𝑋𝑋 with a zero for the first set of possible outcomes and a one for the second set. This 
results in the ‘expanded’ dataset consisting of 𝑌𝑌, 𝑊𝑊, and 𝑋𝑋 which are of equal length. 

2. The mean and variance of both log-transformed samples are calculated employing 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶 = ∑ 𝑤𝑤𝐶𝐶𝐶𝐶log (𝑦𝑦𝐶𝐶𝐶𝐶 + 1)𝑖𝑖  and 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶 = ∑ 𝑤𝑤𝐶𝐶𝐶𝐶[log(𝑦𝑦𝐶𝐶𝐶𝐶 + 1) −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶]2𝑖𝑖  and 
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similarly for 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝐺𝐺  and 𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺. An estimate of the residual variance on the 
transformed scale is then given by 𝑉𝑉𝑉𝑉𝑉𝑉 = 0.5(𝑉𝑉𝑉𝑉𝑟𝑟𝐶𝐶 + 𝑉𝑉𝑉𝑉𝑟𝑟𝐺𝐺). 

3. The ‘expanded’ dataset is analysed by means of a weighted regression of log (𝑌𝑌 + 1) 
on 𝑋𝑋 with weights 𝑊𝑊/𝑉𝑉𝑉𝑉𝑉𝑉 and fixed residual variance equal to 1. This results in an 
estimate of the regression coefficient 𝛽𝛽 for 𝑋𝑋 along with a standard error 𝑠𝑠𝑠𝑠.  

4. The non-centrality parameter is then given by 𝛿𝛿 = 𝑁𝑁 (𝛽𝛽 𝑠𝑠𝑠𝑠⁄ )2 where 𝑁𝑁 is the number 
of replications. The same non-centrality parameter is obtained by calculating 𝑁𝑁 times 
the difference between the residual sums of squares of the weighted regression model 
without 𝑋𝑋 and the residual sums of squares of the model with 𝑋𝑋. 

5. The power is calculated in the following way. A critical value 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is obtained from 
the F distribution with 1 and 2𝑁𝑁-2 degrees of freedom. i.e. 𝑃𝑃�𝐹𝐹1,2𝑁𝑁−2 > 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� = 𝛼𝛼. 
The approximate power is then calculate by means of the non-central 𝜒𝜒1 distribution 
with non-centrality parameter 𝛿𝛿, i.e. by means of 𝑃𝑃�𝜒𝜒1 (𝛿𝛿) > 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�. 

A crucial step is the calculation of the residual variance 𝑉𝑉𝑉𝑉𝑉𝑉 on the transformed scale. The 
non-centrality parameter 𝛿𝛿 is proportional to the number of replications 𝑁𝑁, so there is no need 
for stacking the two vectors 𝑁𝑁 times as is proposed by Lyles et al (2007). This implies that a 
single ‘expanded’ dataset can be used for all levels of replication 𝑁𝑁 instead of a separate 
‘expanded’ dataset for each level of replication.  

In the implementation of this approach it was found that it might be numerically more stable 
to use weights 𝑁𝑁0𝑊𝑊/𝑉𝑉𝑉𝑉𝑉𝑉 where 𝑁𝑁0 is some fixed large number, e.g. 100. This is because 
units with very small weights, in this case with very small probabilities, are sometimes 
discarded when fitting a regression model. The non-centrality parameter is then given by 𝛿𝛿 =
(𝑁𝑁 𝑁𝑁0⁄ ) (𝛽𝛽 𝑠𝑠𝑠𝑠⁄ )2. 

The approximate power is calculated for all four distributions and compared with the 
simulated power. Graphical results are given in Appendix 1 Q1, R1, S1 and T1. Each small 
plot has a range of 0 to 1 along the y-axis. The grey horizontal lines denote power values of 
0.25, 0.50 and 0.75. Simulated powers are given by the dots for 𝑄𝑄=0.75 (black), 𝑄𝑄=0.50 (red) 
and 𝑄𝑄=0.25 (green), while the approximate power is given by the lines. Across the board 
there is very good agreement between the two methods. For low power values and smaller 
numbers of replications the approximate method of Lyles can be somewhat too small, but 
such low power values are hardly of interest.  

The same approach can be followed for the SQ analysis, see Appendix 1 Q2, R2, S2 and T2, 
except that the squared root transformation is used instead of the log transformation. Also in 
this case there is very good agreement between the simulated power and the approximated 
power. 

The same approximate method can be applied for an analysis according to one of the other 
models. For parameter combinations with a simulated significance level which is not (too) 
progressive, the two methods agree closely when analysing with a negative binomial for all 
four simulation distributions (Appendix 1 Q4, R4, S4 and T4). For an analysis with the power 
P1 model (Appendix 1 Q5, R5, S5 and T5) the approximation is good when data are 
simulated according to the negative binomial or the power model especially for larger power 
values. When simulating with the overdispersed Poisson or the Poisson-Lognormal 
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distribution the method of Lyles sometimes gives less good results for the P1 analysis. For an 
analysis with the OP model ((Appendix 1 Q3, R3, S3 and T3) the approximation is frequently 
less good, except for larger means with low 𝐶𝐶𝐶𝐶 levels. 

Conclusion 
When two-sample count data are analysed by means of the LN or SQ model the method of 
Lyles et al (2007) approximates the power very well for all four simulation distributions. In 
such a case there is no need to perform a simulation study to approximate the power. 

3.7 Method of choice for difference test 
The simulated size of the t-test after a log or squared-root transformation, models LN and SQ 
respectively, is close to its nominal level, except for small means and large 𝐶𝐶𝐶𝐶 values where 
the test is conservative. The other analysis models are progressive for small means, small 
levels of replication and larger coefficients of variation. In other cases the OP analysis seems 
to outperform the other GLM-like model. 

The power of the LN and SQ approach is generally very similar to the power of the other 
analysis methods. In some cases the power of LN and SQ is marginally larger, in other cases it 
is marginally lower. In those case where the LN and SQ analysis are conservative (small 
means, small levels of replication and larger coefficients of variation), the power is so low 
that it is hardly worthwhile to perform such experiments. In other words for parameter 
combinations with sufficient power the size of the LN and SQ tests is close to its nominal 
level. 

The LN generalized confidence interval has the same properties as the t-test for difference 
testing, with respect to the simulated significance level and with respect to the simulated 
power. This is also true for the SQ interval although the simulated size using this interval is 
smaller than that of the corresponding t-test for small means combined with low replication 
and larger 𝐶𝐶𝐶𝐶 values. The LN and SQ intervals do not have good coverage probability for 
ratios 𝑄𝑄≠1. This is especially the case for the SQ interval and for values of 𝑄𝑄 which are well 
away from one. 

The method of Lyles et al (2007) can be used to approximate the power of the difference test. 
This approximation is very accurate for the LN and SQ analysis. 

The LN or SQ analysis therefor seems to be the method of choice for all simulation 
distributions. They have good size for all relevant parameter combinations, their power is 
comparable to the other analysis methods, a generalized confidence interval has good 
properties when it is used for difference testing, and an approximate quick method can be 
employed for a prospective power analysis. Because the LN generalized confidence interval 
has somewhat better properties than the SQ interval, the LN analysis method seems to be the 
method of choice. 
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4 Results for equivalence testing  

4.1 General remarks on equivalence testing 
A difference test aims to reject the null hypothesis of no difference, i.e. in the current setting 
to reject the hypothesis that 𝑄𝑄=1. Poorly designed experiments with low levels of replication 
may have low statistical power of finding a true difference. An equivalence test on the other 
hand employs a null hypothesis of non-equivalence, i.e. that the ratio Q is smaller, or larger, 
than some pre-described equivalence limit, also called limit of concern (𝐿𝐿𝐿𝐿𝐿𝐿). Rejection of 
the non-equivalence hypothesis implies that the ratio is larger than the 𝐿𝐿𝐿𝐿𝐿𝐿 and this can be 
regarded as a “proof of safety”. The advantage of equivalence testing is therefore that the 
onus is placed back on to those who wish to demonstrate the safety of GMOs to do high 
quality, well-replicated experiments with sufficient statistical power (Perry et al, 2009). Note 
that both the difference and equivalence test can be implemented by constructing a confidence 
interval for the ratio of the means of the GM plant and its comparator. When there is both an 
lower and an upper Limit of Concern, the two one-sided tests (TOST) approach of 
Schuirmann (1987) for equivalence testing can be used. 

In the sequel results for a one-sided equivalence test, with significance level 5%, are given 
where the limit of concern is smaller than one. The null hypothesis is thus 𝐻𝐻0: 𝑄𝑄 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿 with 
alternative hypothesis 𝐻𝐻1:𝑄𝑄 > 𝐿𝐿𝐿𝐿𝐿𝐿. Different limits of concern are used in different sections.  

All results are based on the generalized confidence interval for LN and SQ and on the ordinary 
interval for log (𝑄𝑄) for the GLM-like models where the standard error is scaled by Pearsons 
Chi-squared if appropriate. An alternative would be to use a likelihood ratio interval. 

4.2 Size of equivalence test 
The simulated size of the one-sided equivalence test is available for those 𝐿𝐿𝐿𝐿𝐿𝐿 values which 
are equal to the ratio 𝑄𝑄. For 𝑄𝑄=1 the equivalence test equals the one-sided difference test; 
results for the simulated size of the two-sided difference test are already given in Section 0. 
Results for values 𝑄𝑄=0.75, 𝑄𝑄=0.50 and 𝑄𝑄=0.25 are given in Appendix 2 A-D. Each small plot 
has a range of 0 to 0.1 along the y-axis. The green line is halfway each small plot and denotes 
the assumed 𝛼𝛼=0.05. The red lines denote values 0.033 and 0.067 which provide a range that 
could be expected when 1000 datasets are simulated. So simulated sizes within the red lines 
are OK and such values are denoted by open circles. Values outside this range are denoted by 
filled circles, while values larger than 0.096 are given by triangles. 

The LN and SQ generalized confidence interval have a generally bad simulated significance 
level, especially for smaller values of 𝑄𝑄.  This is in accordance with findings in section 3.5, 
and the LN and SQ interval will further not be discussed. Furthermore the P1, P2 and GM 
interval have very similar simulated sizes; only the P1 analysis method will therefore be 
considered in the sequel.  

For the OP, NB and P1 intervals and 𝑄𝑄=0.50, Appendices 2 A-D are summarized in Figure 18 
to Figure 21. For 𝑄𝑄=0.25 the appendices are summarized in Figure 22 to Figure 25. The 
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symbols in these figures have the following meaning: open circle denotes that the test is 
conservative for lower levels of replication and has the correct size for larger replication; 
closed circle symbolizes that the test has correct size for all replication levels; cross means 
that the test is mainly progressive; number denotes that the test has correct size for levels of 
replication smaller than or equal to the plotted number; / means that for larger levels of 
replication the test is progressive or that the test is progressive for some other replications; \ 
indicates that the test is progressive for small replication and has the correct size for larger 
replication.  

Figure 18: Summary of size of equivalence test for 𝑸𝑸=𝑳𝑳𝑳𝑳𝑳𝑳=0.5; data simulated by 
Overdispersed Poisson (see text for explanation of symbols) 

 

Figure 19: Summary of size of equivalence test for 𝑸𝑸=𝑳𝑳𝑳𝑳𝑳𝑳=0.5; data simulated by 
Negative Binomial (see text for explanation of symbols) 

 

Figure 20: Summary of size of equivalence test for 𝑸𝑸=𝑳𝑳𝑳𝑳𝑳𝑳=0.5; data simulated by 
Poisson-Lognormal (see text for explanation of symbols) 
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Figure 21: Summary of size of equivalence test for 𝑸𝑸=𝑳𝑳𝑳𝑳𝑳𝑳=0.5; data simulated by 
Power(1.5) model (see text for explanation of symbols) 

 

Figure 22: Summary of size of equivalence test for 𝑸𝑸=𝑳𝑳𝑳𝑳𝑳𝑳=0.25; data simulated by 
Overdispersed Poisson (see text for explanation of symbols) 

 

Figure 23: Summary of size of equivalence test for 𝑸𝑸=𝑳𝑳𝑳𝑳𝑳𝑳=0.25; data simulated by 
Negative Binomial (see text for explanation of symbols) 

 

Figure 24: Summary of size of equivalence test for 𝑸𝑸=𝑳𝑳𝑳𝑳𝑳𝑳=0.25; data simulated by 
Poisson-Lognormal (see text for explanation of symbols) 
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Figure 25: Summary of size of equivalence test for 𝑸𝑸=𝑳𝑳𝑳𝑳𝑳𝑳=0.25; data simulated by 
Power(1.5) model (see text for explanation of symbols) 

 

For 𝑄𝑄=0.50 and data simulated by means of the overdispersed Poisson, the intervals according 
to OP and NB have a better simulated significance levels than the intervals according to P1 
(Figure 18). For data simulated by means of the negative binomial distribution, there is not 
much difference between the analysis methods (Figure 19). For Poisson-Lognormal data the 
OP interval has the edge over the other intervals; the NB interval is only good for low 
coefficients of variation (Figure 20). For data simulated according to the Power(1.5) model, 
the OP interval seems to outperform the other analysis models somewhat (Figure 21). 

For 𝑄𝑄=0.25 and data simulated by means of the overdispersed Poisson, the intervals according 
to OP have a better simulated significance levels than the intervals according to NB or P1 
(Figure 22). For data simulated by means of the negative binomial distribution, the P1 interval 
performs best while the OP interval can be somewhat conservative for larger values of 𝜇𝜇 
(Figure 23). For Poisson-Lognormal data the P1 interval has the edge over the OP interval; 
the NB interval is only good for low coefficients of variation (Figure 24). For data simulated 
according to the Power(1.5) model, again the P1 interval has the edge over the OP interval 
(Figure 25). 

Conclusion 
The LN and SQ generalized confidence intervals cannot be recommended for equivalence 
testing. The P1, P2 and GM intervals have very similar simulated significance levels. The size 
of the NB interval is particularly worse than that of the other intervals for data simulated 
according to the Poisson-Lognormal model. The NB interval is not better than OP and P1 for 
the other simulation distributions. For 𝑄𝑄=0.5 the OP interval seems to have the edge over the 
P1 (and this also the case for the P2 and GM) intervals. However for 𝑄𝑄=0.25 it is the other 
way around because the OP interval is then somewhat more conservative for certain 
parameter combinations. 

So with respect to size the P1 (or P2 or GM) and OP intervals can be recommended for 
equivalence testing. The size of both these interval is only problematic for smaller means and 
larger coefficients of variation. 
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4.3 Power of equivalence test 
Appendices 2 E-H display the power of the one-sided equivalence test for a hypothetical 
one-sided limit of concern 𝐿𝐿𝐿𝐿𝐿𝐿=0.5. Each small plot has a range of 0 to 1 along the y-axis. 
The red horizontal lines denote power values of 0.25, 0.50 and 0.75. The simulated 
probability to reject the null-hypothesis of non-equivalence is given by the black dots and the 
dark grey area in the plot. The probability to decide that “equivalence is more likely than not” 
is given by the grey area. The red points denote the cumulative probability to reject the null 
hypothesis or to decide that equivalence is more likely than not. Finally the light grey area 
denotes the simulated probability that all observations equal zero; these are only present for 
low values of 𝜇𝜇 in combination with large 𝐶𝐶𝐶𝐶 values. The light grey area can also considered 
to represent a decision that “equivalence is more likely than not”, if that is the case the green 
dots denote the cumulative probability of equivalence or equivalence more likely than not. In 
the sequel the “strict test” stands for equivalence while the “liberal tests” stands for the 
cumulative probability of equivalence and equivalence more likely than not. 

There are separate plots for 𝑄𝑄=1, 𝑄𝑄=0.75, 𝑄𝑄=0.5 and 𝑄𝑄=0.25. Because the tests based on the 
LN and SQ intervals are generally progressive (section 4.2) the power for these tests is larger 
than for the other models which have a more correct size. The power for the P1, P2 and GM 
tests are very similar. Restricting to those parameter combinations for which the P1 power is 
larger than 0.5, the difference for the strict test is maximally 0.01 between P1, P2 and GM, 
while for the liberal test the difference is maximally 0.08. For the same subset the difference 
between P1 and OP is maximally 0.017 for the strict test of equivalence and 0.027 for the 
liberal test. 

A special case is an effect size 𝑄𝑄=0.5 in combination with a limit of concern 𝐿𝐿𝐿𝐿𝐿𝐿=0.5. For 
such cases it is expected that the liberal test will be rejected with a probability of 50%. This is 
indeed the case, see e.g. Appendix 2 E9-12. Only for small means 𝜇𝜇 with large 𝐶𝐶𝐶𝐶 values 
there is some deviation from the 50% probability. 

It is interesting to see that for an effect size 𝑄𝑄=0.75 and small means 𝜇𝜇, combined with low 
replication levels, there is still some probability to reject the liberal hypothesis, i.e. there is a 
probability of around 25% to decide for “equivalence more likely than not”, see e.g. Appendix 
2 E13-16. 

Conclusion 
In the preceding section it was found that the intervals based on P1 (or P2 or GM) and OP 
have the best simulated significance levels. Here it is shown that these intervals results in very 
similar power for power values that matter, i.e. values larger than 0.5. 

4.4 Approximate power of the equivalence test 

The method of Lyles et al (2007), used in section 3.6 for difference testing, can also be used 
to approximate the power of equivalence tests. The relevant calculation are, in addition to 
those presented in section 3.6, as follows. A critical value 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is obtained from Students 
t-distribution with 2𝑁𝑁-2 degrees of freedom. i.e. 𝑃𝑃(𝑡𝑡2𝑁𝑁−2 > 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝛼𝛼. Furthermore a test 
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statistic 𝑇𝑇 is calculated by 𝑇𝑇 = √𝑁𝑁 (𝛽𝛽 − 𝐿𝐿𝐿𝐿𝐿𝐿) 𝑠𝑠𝑠𝑠⁄ . The power of the equivalence test is then 
approximated by means of the upper normal probability 𝑃𝑃(𝑢𝑢 > 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇).  

Results are presented in Appendices 2 I-L, only for the OP interval. The different colours 
represent different limits of concern: 𝐿𝐿𝐿𝐿𝐿𝐿=0.75 (black), 𝐿𝐿𝐿𝐿𝐿𝐿=0.50 (red),  𝐿𝐿𝐿𝐿𝐿𝐿=0.25 (green), 
 𝐿𝐿𝐿𝐿𝐿𝐿=0.10 (blue). The dots denote the simulated values, while the lines represent the 
approximate values. The pages are for different values of the effect size 𝑄𝑄 as given in the title 
of the page. When data are simulated according to the overdispersed Poisson distribution 
(Appendix 2 I) the approximation is very good especially for larger power values. The same 
holds for data simulated by means of the negative binomial distribution (Appendix 2 J) and 
the Power(1.5) distribution (Appendix 2 L). However for the Poisson-Lognormal distribution 
the approximation is not good (Appendix 2 K). 

Conclusion 
The method of Lyles et al (2007) can be used to approximate the power of a one-sided 
equivalence test when using the OP interval, except when the simulation distribution is 
Poisson-Lognormal. For the other simulation distributions there is no need to perform a 
simulation study to approximate the power. 

4.5 Method of choice for equivalence testing 

The LN and SQ generalized confidence intervals should, in general, not be used for 
equivalence testing because they are too progressive, i.e. they result in too many rejections of 
the null hypothesis of non-equivalence.  

The simulated significance level of the OP and P1 (or P2 or GM) intervals outperform that of 
the NB interval when data are simulated by the Poisson-Lognormal distribution. There are 
only small differences between the power of the OP and P1 (or P2 or GM) intervals for power 
values that matter. 

It is thus hard to discriminate between the OP and P1 intervals. Since the OP analysis method 
is more generally used and widely accepted, as opposed to the maybe more esoteric P1 
analysis, the OP analysis is recommended.  

The method of Lyles et al (2007) can be used to approximate the power of the one-sided 
equivalence test using the OP interval, except when the simulation distribution is Poisson-
Lognormal. This approximate method might also work for the P1 interval but this was not 
investigated. 
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5 Zero inflation 

5.1 Introduction 
In practice the number of zero observations can be larger than predicted by the count 
distribution. This is termed excess-zeros or zero-inflation. Examples of situations with excess-
zeros are given by Cunningham and Lindenmayer (2005), Sileshi (2008) and Lewin et al 
(2010). Failure to account for zero inflation in a statistical analysis may results in biased 
estimation of environmental effects of GM plants. Goedhart (2013, 2014) describes the 
common way to model zero-inflation. 

Having a lot of zero observations in itself does not necessarily mean that a zero-inflated 
model is needed. For instance the negative binomial distribution with a large coefficient of 
variation and a not too large mean is capable of generating many zeros along with some large 
observations. As an example, 10 samples of size 10 are given below which are simulated by 
means of a negative binomial distribution with mean 𝜇𝜇=5 and coefficient of variation 
𝐶𝐶𝐶𝐶=300. Clearly many zeros can be accompanied by few large observations. 

0 0 0 0 0 0 0 0 0 9 
0 0 0 0 0 0 6 7 22 39 
0 0 0 0 0 0 0 4 13 14 
0 0 0 0 0 1 3 13 13 25 
0 0 0 0 0 0 1 1 3 9 
0 0 0 0 0 1 1 1 5 7 
0 0 0 0 0 0 4 7 12 23 
0 0 0 0 0 0 0 4 41 61 
0 0 0 0 0 0 0 3 4 60 
0 0 0 0 0 0 0 0 0 20 

 

Consequently it can be hard, especially for small samples sizes, to distinguish between a zero 
inflated distribution and an ordinary non-inflated distribution. 

5.2 A zero-inflated negative binomial distribution and its non-inflated 
counterpart. 

Consider a zero-inflated negative binomial distribution with parameters 𝜋𝜋, 𝜇𝜇 and dispersion 
parameter 𝜎𝜎2. Note that this distribution has mean (1 − 𝜋𝜋)𝜇𝜇. To see whether such a 
distribution can be distinguished from a non-inflated negative binomial distribution a large 
number of observations, 10000, are simulated from the zero-inflated distribution. The non- 
inflated negative binomial distribution was then fitted to this large sample yielding fitted 
probabilities. This was done for 𝜋𝜋 = 0.5 and a variety of means 𝜇𝜇 and dispersion parameters 
𝜎𝜎2. Results are given in Figure 26. From this it seems clear that it will only be possible to 
discriminate between the two distribution for large 𝜇𝜇 and small dispersion 𝜎𝜎2. For other 
values an ordinary negative binomial distribution, with the same overall mean, can be used 
instead. 
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Figure 26: Theoretical zero-inflated negative binomial cumulative distribution (black 
line) and fitted non-inflated negative binomial cumulative distribution (red 
circles) for various means 𝝁𝝁 and dispersion parameters 𝝈𝝈𝟐𝟐. 

 

5.3 Size of the LN difference test when there is zero inflation 
To investigate whether the t-test after a logarithmic transformation is also has correct size 
when there is zero inflation an additional small simulation study was performed. More 
specifically it is studied whether the simulated level of the t-test is close to its assumed level 
when the distribution of the two samples is identical and zero-inflated. This was done by 
simulating from 7 different count distributions: Poisson, overdispersed Poisson with 
dispersion parameter 3, 4 and 8, and negative binomial with dispersion parameter 1, 2 and 4. 
Note that, instead of specifying a coefficient of variation, in this simulation study the 
dispersion parameter itself is specified. Mean 𝜆𝜆 values of 2, 4, 10, 20, 40 and 80 were 
employed with an additional zero-inflation probability of 𝛿𝛿=0.5. The mean of a zero-inflated 
distribution equals 𝜇𝜇 = (1 − 𝛿𝛿)𝜆𝜆, implying that mean 𝜇𝜇 values of 1, 2, 5, 10, 20 and 40 are 
used here. For each parameter combination 1000 datasets are simulated and a two-sided t-test 
was performed on the log transformed counts. The simulated significance levels are given in 
Figure 27. Even in this case the simulated level of the t-test, using the log transformed count, 
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is good except for small levels of replication in combination with a large overdispersion. In 
such cases the t-test is generally conservative rather than progressive, with the exception of 
the overdispersed Poisson distribution with small levels of replication and large means 𝜇𝜇. So 
even in this case the simulated significance level of the LN analysis is generally good. 

Figure 27: Simulated level of the LN test when data are simulated according to a zero-
inflated distribution. The green line represent the theoretical 5% level. Open 
circles when the simulated level is within the expected range as given by the 
red lines. 

 

5.4 Power of the NB difference test for negative binomial data 
To evaluate the effect of excess zeros on the power of the ordinary likelihood ratio test a 
separate simulation with the excess zero negative binomial distribution was executed. Again a 
single trial without blocking with a single measurement was assumed. Furthermore a 
multiplicative ratio 𝑄𝑄=2 was used between the GM plant and the comparator. The excess zero 
probability was set to δ = 0, 0.1, 0.2 and 0.5. The mean (1 − 𝛿𝛿)𝜇𝜇 of the zero inflated 
distribution was set to 1, 5 and 40 ensuring that the means of the distributions are identical for 
different values of 𝛿𝛿. The data were analysed with the negative binomial distribution as if 
there were no excess zeros. The power for different levels of replication are given in Figure 
28. This indicates that for small means and small excess zero probabilities the power is not 
much affected. However for larger means there can be a considerable decline of the power. 
For an excess probability of δ = 0.5 and larger means the resulting distribution has a spike at 
zero in combination with larger values with not very much in between. In such a situation the 
estimate of the dispersion parameter becomes very large so as to “catch” both the zeros and 
the larger observations. Consequently the distinction between the means of the comparator 
and the GMO disappears resulting in very low power values. In such a case the data should 
possibly be analysed by means of an excess zero distribution. 
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Figure 28: Power of a difference test with 𝜶𝜶 = 0.05 for negative binomial data with 
overdispersion parameter 𝝎𝝎 = 0.25 and additional excess zeros with 
probability 𝜹𝜹 = 0 (black),  0.1 (red),  0.2 (blue) and 0.5 (green). The 
comparator has mean 𝝁𝝁(𝟏𝟏 − 𝜹𝜹) and the GM plant has a mean of 𝟐𝟐𝟐𝟐(𝟏𝟏 − 𝜹𝜹). 
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6 Conclusion 

An important note is that the conclusions below pertain to the situation in which a GM plant is 
compared with a single counterpart in a completely randomized field experiment with a single 
count as response. It is however likely that  

For difference testing the LN or SQ method seems to be the method of choice with excellent 
size for parameter combinations with sufficient power. The power of these tests is generally 
comparable to that of the other models. So even when data are simulated according to say the 
overdispersed Poisson distribution, it is still best to perform a difference test on the log or 
squared root transformed counts. The difference test can probably best be communicated by a 
confidence interval as this visualizes the result of the difference test. When this is indeed the 
case, the LN method has the advantage over the SQ method because the LN generalized 
confidence interval has somewhat better properties. However this interval can and should not 
be used for equivalence testing as it only has good properties under the null hypothesis of no 
difference. An approximate method, employing an expanded dataset, is available to quickly 
calculate the power of the LN test making a simulation study superfluous. 

For equivalence testing the situation is less clear cut. Two competing methods, OP and P1, 
perform equally well with respect to size and power of the one-sided equivalence test. 
However since the OP analysis is more generally used and widely accepted, the OP analysis 
is recommended. It must be considered though that the size of the equivalence test is 
somewhat problematic for smaller means and lager coefficients of variation. Figure 18 to 
Figure 25 might be used to provide a guideline for which parameter combinations the OP 
equivalence test has the correct size. Also for the one-sided equivalence test a fast method to 
calculate the power is available, except when the simulation distribution is Poisson-
Lognormal. 

Zero inflation, i.e. more zeros than predicted by the count distribution, can be a problem. 
However for small sample sizes it might be difficult to discriminate between a zero-inflated 
distribution and a non-inflated distribution. A small simulation study suggests that, for the 
negative binomial distribution, it is only possible to discriminate between the two for large 
means and small coefficients of variation. Another simulation study indicates that the power 
will be heavily affected for larger mean counts combined with a large excess zero probability. 
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