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Abstract. Neural networks are intended to be used in future nano-
electronic systems since neural architectures seem to be robust against
malfunctioning elements and noise in their weights. In this paper we
analyze the fault-tolerance of Radial Basis Function networks to Stuck-
At-Faults at the trained weights and at the output of neurons. Moreover,
we determine upper bounds on the mean square error arising from these
faults.

1 Introduction

Neural networks are used as function approximators for continuous functions [1,
2]. Especially, Radial Basis Function networks are utilized to perform a local
approximation of an unknown function specified by a set of test data. The main
reason why neural networks are used for this purpose is the adaptability of the
network due to the learning process. Moreover, the networks seem to be fault-
tolerant against malfunctioning neurons [2] which can be modeled as Stuck-At
faults and to be robust against noise corrupted weights and inputs [3].

Digital and analog implementations of neural networks have always to face
malfunctioning elements [4], especially in future nanoelectronic realizations [5].
Moreover, when using analog hardware noise is always present due to thermal or
flicker noise [6–8] and even if digital hardware is used quantization noise contam-
inates the weights and inputs [9]. Thus, the artificial neural network structure
should handle malfunctioning elements and noise contaminated weights.

In this paper we analyze the Radial Basis Function network with respect
to errors based on Stuck-At-Faults. In [10] these properties are demonstrated
for sigmoidal feedforward networks. First, a short overview about the analyzed
neural network architecture is given. The fault-tolerance against different types
of Stuck-At-Faults is analyzed afterwards. Section 4 determines upper bounds
on the mean square error for Stuck-At-Faults occuring in the weights and output
of neurons and necessary restrictions are introduced leading to bounded errors.
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2 Radial Basis Functions

In this section a short overview about the architecture of a Radial Basis Function
network is given. The network consists of an input vector with dimension dimx =
n. At a second step m different Basis Functions which have different centers xi

are superposed and denoted by a weight αi to produce the output.

The Radial Basis Function network (RBF) can be used for local function
approximation [11]. Basing on the regularization theory the quadratic error is
minimized with respect to a stabilizing term [12]. Due to this stabilizer the inter-
polation and approximation quality is controlled in order to achieve a smooth ap-
proximation. Based on this stabilizer different Basis Functions can be performed
for superposition. As a consequence, the network function can be expressed as

fm(x) =

m∑

i=1

αihi (‖x − xi‖) (1)

where m denotes the number of superposed Basis Functions.

The function hi(z) can be any function related to a (radial) regularization
stabilizer. Here, the stabilizer leading to a Gaussian function is considered, thus
it follows

hi(z) = exp
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(2)

and therefore

fm(x) =
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i=1

αi exp

(
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)

(3)

Moreover, the parameters xi are the individual centers of each Basis Function,
σ2

i resembles the variance of each Gaussian function and αi are the weights from
each neuron to the output neuron, which performs a linear superposition of all
Basis Functions.

3 Stuck-At-Faults in Radial Basis Function networks

In future nanoelectronic systems one major problem will be the massive amount
of malfunctioning elements [5]. Therefore, fault-tolerant architectures have to
be established in order to achieve reliable systems and predictable system be-
havior. From biology it is well known that the human brain allows the loss of
several neurons because of the redundancy in its structure [2, 13]. However, it
was proven that sigmoidal feedforward neural networks are not fault-tolerant
against Stuck-At-Faults [10, 14]. Here, the fault-tolerance of an RBF network is
analyzed against Stuck-At-Faults at the output weights, at the Basis Function
centers and at the variance of the Gaussian Basis Function.



3.1 Stuck-At-Fault at the output weight

First, it is assumed that the Stuck-At-Fault occurs in the weights from the neuron
to the output αi. In order to achieve a universal expression it is assumed that
the weight is sticking at the value µ. Moreover, with loss of generality only one
weight from the whole Basis Functions is imposed by this fault. Thus, it follows
for the difference of both network outputs

fm (x) − f̂m (x) =

m∑

i=1

αi exp
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=
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where f̂m(x) denotes the network function due to the Stuck-At-Fault at the k-th
neuron. Since nearly all αi are identical to α̂i the difference vanishes except of
the k-th term where the weight is sticking at the value µ. Therefore, under the
assumption that only one weights is imposed by a Stuck-At-Fault (5) leads to

fm (x) − f̂m (x) = (αk − µ) · exp
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(6)

3.2 Stuck-At-Fault at an RBF center

Here, the Stuck-At-Fault occurs in the center of a Basis Function resulting in
an unintentional movement of the center. The k-th neuron is interfered by a
Stuck-At-Fault at the ν-th entry of the vector xk, and therefore this produces
a faulty output behavior of the neural network. The difference between both
network responses can be expressed
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where xkj denotes the j-th entry in the center of the k-th Basis Function.



3.3 Stuck-At-Fault at the variance of a Gaussian Basis Function

Now, it is assumed that the variance of a certain Basis Function is affected by a
Stuck-At-Fault at µ. Here, the k-th Basis Function is disturbed, leading to
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4 Bounds on the mean square error

In this section we analyze the fault-tolerance of an RBF network against the
Stuck-At-Faults. Hence, for the three different types of Stuck-At-Faults necessary
restrictions are introduced to achieve an upper bound on the mean square error
of the difference between both network functions. Therefore, the input vector
is assumed to be a random variable with a certain distribution function. In the
following E denotes the expected value.

Concerning (6), the mean square error due to a Stuck-At-Fault at the output
weights is determined by

mseα = (αk − µ)
2
· E
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]

(13)

Equation (13) can be estimated by the mean value theorem of integral cal-
culus [15] resulting in a mean square error of

mseα ≤ (αk − µ)2 (14)

Thus, if the weights of the RBF network are not bounded rather arbitrary
the mean square has no upper bound. Moreover, the error is depending on the
Stuck-At value. The value of the Stuck-At-Fault is a consequence of the technical
implementation. In analog hardware µ can be restricted to any continuous value
in a certain interval which is determined by operating conditions [6, 8]. In the case
of a digital realization µ can only adopt discrete values leading to a quantized
error. However, in both implementations µ is restricted by an upper bound and
with restricted weights

|αi| ≤ B ∀ i = 1 . . . n (15)

equation (14) can be further evaluated

mseα ≤ (B + |µ|)2 (16)



In the same way equation (10) and (12) can be determined leading to

msexi
= α2

kE

[(

exp

(

−
‖x − xi‖

2

2σ2

i

)

− exp

(

−
‖x − x̂i‖

2

2σ2

i

))2
]

≤ α2

k (17)
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From equation (17) and (18) can be concluded that both mean square errors
have no upper bound since the weights of the neural network can be arbitrary.
In contrast to (14) the mean square errors do not depend on the technical real-
ization. If the weights are restricted by an upper bound |α| ≤ B both errors are
restricted by an upper bound

mse ≤ B2 (19)

5 Conclusion

Artificial neural networks are intended to be fault-tolerant against noise con-
taminated inputs and malfunctioning elements like biological neural networks.
However, it was shown in [10, 14] that sigmoidal feedforward networks are not
fault-tolerant. In this work the fault-tolerance against malfunctioning elements
is determined for Radial Basis Function networks. These interferences can be
modeled as Stuck-At-Faults at the output weights and at the output behavior
of the neurons.

As in the case for multilayer perceptrons the Radial Basis Function network
is not immune to malfunctioning elements. If arbitrary weights can be used no
upper bound on the mean square error exists. Therefore, a well-defined system
behavior due to sticking elements can not be guaranteed. Furthermore, if the
error occurs in the output weights of a neuron the mean square error is depending
on the sticking value and thus on the technical realization.

The technical implementation of neural networks in analog or digital hard-
ware provides restrictions on the weights which are resulting in fault-tolerant
networks. As the weights are bounded by an upper bound (15) the mean square
error is restricted (cf. (16) and (19)). In the case of analog hardware the Stuck-
At-Fault can be assigned to any continuous value within a certain interval de-
termined by the operating conditions. For digital implementations the Stuck-At-
Fault are restricted to ’1’ and ’0’ leading to quantized steps of the error.

However, both technical implementations provide upper bounds on the Stuck-
At-Faults as was shown in section 4. Therefore, technical realizations of an RBF
network are still fault-tolerant against malfunctioning elements. By providing
adequate bounds on the weights a reliable network response can be guaranteed.
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