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Abstract 

Numerous studies in animals and humans have established that the neuropeptide oxytocin 

(OT) reduces anxiety. However, the specific brain regions where OT acts to regulate anxiety and 

the mechanisms by which it does so require further investigation. The medial prefrontal cortex 

(mPFC) has been shown to play a role in the modulation of anxiety-related behavior.  In 

addition, the mPFC contains OT-sensitive neurons, expresses OT receptors (OTR), and receives 

long-range axonal projections from OT-producing neurons in the hypothalamus, suggesting that 

the mPFC may be a target where OT acts to diminish anxiety. In order to address this possibility, 

we performed five experiments. First we assessed whether the regulation of anxiety by OT is 

subregion specific within the mPFC. In the second experiment, we determined if the effects of 

OT on anxiety-like behavior in the prelimbic (PL) mPFC are sex-dependent or neuropeptide 

specific.  The third experiment examined whether OTR activation is required for the anxiolytic 

action of OT. In the fourth experiment, we examined the importance of endogenous OT in the 

regulation of anxiety-like behavior using virgin male and female rats that received PL infusions 

of an OTR antagonist (OTR-A). Finally, given recent studies showing that the mPFC expresses 

OTR on GABAergic interneurons, we examined the extent to which the anxiolytic effect of 

exogenous OT in the PL mPFC is mediated via actions on GABAergic neurotransmission using 

site-specific administration of OT and a GABA-A receptor antagonist, bicuculline. Results show 

that OT in the PL mPFC decreased anxiety-like behavior regardless of sex. The effect of mPFC 

OT on anxiety-like behavior was determined to be region specific and neuropeptide specific as 

anxiety-like behavior was not affected by either OT in other mPFC subregions or by 

administration of the closely related neuropetide vasopressin into the PL mPFC. Additionally, 

the anxiolytic actions of OT were shown to be mediated through its binding to the OTR and were 
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blocked by the GABA-A receptor antagonist.  In contrast to exogenous OT, endogenous OT did 

not influence anxiety as anxiety-like behavior was unaffected by administration of an OTR-A. 

Taken together, these results demonstrate that the anxiolytic actions of OT are specific to OTR in 

the PL mPFC and may attenuate anxiety-related behavior through utilization of a GABAergic 

mechanism. In doing so, our study not only provides a better understanding of the neural 

circuitry underlying OT’s anxiety attenuating actions but also suggests putative targets for the 

pharmacological treatment of anxiety disorders. 
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Introduction 

Oxytocin (OT) is a neuropeptide synthesized in the paraventricular (PVN) and supraoptic 

nuclei of the hypothalamus. OT is released peripherally into the bloodstream where it acts as a 

hormone to regulate partuition and lactation (Gimpl and Fahrenholz, 2001). OT is also released 

centrally through dendritic release or axonal projections from OT synthesizing neurons (Ludwig 

and Leng, 2006).  OT within the brain acts as a neuromodulator to influence reproductive (Bale 

et al., 2001), maternal (Bosch and Neumann, 2012) and other social behaviors such as pair 

bonding (Lonstein and Gammie, 2002; Gammie, 2005; Lim and Young, 2006; Bosch and 

Neumann, 2012), social recognition and social memory (Engelmann et al., 1998).  

In addition to its role in social functions, OT has also been implicated in the regulation of 

anxiety-like behavior in both rodents and humans. For example, studies involving OT knockouts 

demonstrate that these rodents present with an anxious phenotype (Mantella et al., 2003). Other 

studies have shown that administration of exogenous OT either peripherally or centrally is 

effective in reducing anxiety in rodents (Uvnas-Moberg et al., 1994; McCarthy et al., 1996; 

Windle et al., 1997; Bale et al., 2001; Ring et al., 2006; Blume et al., 2008; Yoshida et al., 2009; 

Ayers et al., 2011; Mak et al., 2012; Sabihi et al., 2014b). Similarly, OT is anxiolytic in humans 

when administered intranasally (Heinrichs et al., 2003; Guastella et al., 2010; de Oliveira et al., 

2012). Together, this research clearly demonstrates that OT is anxiolytic; however, the brain 

regions where OT acts to produce these anxiolytic effects are largely unknown. Previous work in 

rodents has implicated the hypothalamic paraventricular nucleus (PVN) of males (Waldherr and 

Neumann, 2007; Blume et al., 2008) and amygdala of females (Bale et al., 2001; Neumann, 

2002) as sites which mediate the anxiolytic actions of OT. However, these areas are likely to be  

part of a larger network that may also include the medial prefrontal cortex (mPFC).  
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              The mPFC is known to contain OT-sensitive neurons (Ninan, 2011), express OT 

receptors (Liu et al., 2005; Smeltzer et al., 2006), and receive long-range axonal projections from 

OT producing neurons in the hypothalamus (Sofroniew, 1983; Knobloch et al., 2012). Lesion, 

inactivation and molecular approaches have shown that the mPFC plays a role in regulating 

anxiety-like behavior as assessed in a variety of rodent behavioral paradigms including the 

elevated plus maze (EPM) and and social interaction (SI) test (Maaswinkel et al., 1996; Gonzalez 

et al., 2000; Lacroix et al., 2000; Sullivan and Gratton, 2002; Shah and Treit, 2003; Shah et al., 

2004; Resstel et al., 2008; Stack et al., 2010; Stern et al., 2010). A recent study has also shown 

that OT receptors (OTR) are present on GABA interneurons in the mPFC (Nakajima et al., 

2014), which may influence glutamatergic projections to the CeA/BNST, areas critically 

involved in anxiety regulation (Peters et al., 2009). Together, these results suggest that the mPFC 

may be a target for OT’s anxiolytic effects and may do so by influencing GABAergic 

neurotransmission. This hypothesis was tested in a series of experiments that addressed the 

following questions. First, does OT act in mPFC to reduce anxiety and is this effect sub-region 

specific? Second, are the anxiolytic effects of OT sex-dependent or neuropeptide specific? Third, 

are the anxiolytic effects of OT specifically due to actions on the OTR? Fourth, does endogenous 

OT in the mPFC regulate anxiety-like behavior? Last, are the anxiolytic effects of OT in the 

mPFC mediated via actions on GABAergic neurotransmission? 

Materials and methods 

Animals 

 Age-matched adult (9-12 weeks of age) virgin female (225-250g) and male (300-350g) 

Sprague-Dawley rats from Taconic (Germantown, NY) were used. Rats were housed 

individually in a temperature and humidity controlled room and maintained on a 12h/12h 
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light/dark cycle (lights on at 0600 hr) with access to food and water ad libitum. All procedures 

were conducted in accordance with The Guide for the Care and Use of Laboratory Animals 

published by the National Institutes of Health and approved by The Ohio State University 

Institutional Animal Care and Use Committee. 

 When females were used, stages of estrous were monitored through daily vaginal swabs. 

Samples of cells were obtained with a sterile cotton swab saturated in 0.9% saline and applied to 

a glass slide. After drying, slides were stained with 1% aqueous Toluidine Blue and cell types 

characterized under 10X magnification (Everett, 1989). Only those females that had normal 4-5 

d estrous cycles were used. 

 

Surgical procedures 

After at least 7 d of acclimation to the colony, rats were anesthetized with a 2-4% 

isoflurane gas/air mixture and aligned on a stereotaxic apparatus (Kopf Instruments, Tujunga, 

CA). Body temperature was maintained throughout the surgery with a warming pad. Bilateral 

cannula guides (pedestal mounted 22-gauge stainless steel tubes with 1.5 mm separation and cut 

either 1.4 mm (Cg1), 3.5 mm (PL), or 4.6 mm (IL) below the pedestal (Plastics One, Roanoke, 

VA) were secured in a stereotaxic holder and lowered into one of three regions of the mPFC 

(Cg1: AP: + 2.7 mm, ML: ± 0.5 mm, DV: -1.4 mm; IL: AP: + 3.2 mm, ML: ± 0.5 mm, DV: -4.6 

mm; PL: AP: + 3.2 mm, ML: ± 0.5 mm, DV: -3.5 mm) (Paxinos and Watson, 1998). The 

cannulae were secured by stainless steel screws and dental cement. A bilateral stainless steel 

obturator (0.35 mm diameter; Plastics One) extending 0.2 mm beyond the tip of the guide 

cannula was placed into the guide cannula after surgeries. The scalp was closed around the 
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protruding portion of the cannula with sutures. Rats were allowed to recover 7 d before 

behavioral testing.  

 

Central infusions 

On days 3 and 5 post-surgery, rats were habituated to the handling and infusion 

procedures. During habituation, rats were removed from their home cage and handled for 3 min 

while being lightly restrained in a terrycloth towel. The obturators were then removed and a 28-

gauge bilateral injection cannula extending 0.2 mm beyond the tip of the guide cannula was 

inserted into the guide. The injection cannulas were left in place for 3 min then removed and the 

obturator replaced. On the day of testing, rats underwent the same procedure as described above 

except that an injection cannula attached to a 10 µl Hamilton Syringe via PE-10 tubing was 

inserted into the guide cannula. Infusions were made using a Harvard Apparatus Pico Plus Elite 

infusion pump (Holliston, MA) which delivered a 0.5 µl volume over 1.5 min. The injector was 

left in place for an additional 1 min before withdrawal.  

 

Anxiety-like behavior 

Anxiety-like behavior was evaluated one week post-surgery using the elevated plus maze 

(EPM) and/or social interaction (SI) test (Lapiz-Bluhm et al., 2008; Rotzinger et al., 2010). The 

EPM consisted of a cross-shaped platform (height: 50 cm) with four arms (width: 10 cm, length: 

50 cm), two of which were enclosed by walls 50 cm in height. Rats were placed in the center of 

the platform (10 x 10 cm), facing a junction between an open and closed arm and allowed to 

explore for 5 min. The number of entries into the open arms and the percentage of time spent in 

the open arms (time in open arms/time in open and closed arms x 100) were used as measures of 
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anxiety-like behavior (Pellow et al., 1985; Cruz et al., 1994; Lapiz-Bluhm et al., 2008). An 

increase in the percentage of time spent in the open arms and a greater number of open arm 

entries are indicative of reduced anxiety. Closed arm entries were used as a measure of 

locomotion independent of anxiety (Pellow et al., 1985; Cruz et al., 1994; Lapiz-Bluhm et al., 

2008). The EPM measures of anxiety and locomotion analyzed are consistent with numerous 

other studies investigating anxiety like-behavior including those manipulating OT (Mantella et 

al., 2003; Waldherr and Neumann, 2007; Mak et al., 2012).   

In the SI test, an age, weight (+/- 10 g) and gender matched 'stimulus' rat which was 

unfamiliar to the test subject was placed in the corner of a 60 x 60 cm Plexiglas arena with walls 

40 cm high opposite from the corner in which the test rat was placed. The floor of the arena was 

covered with gridlines which allowed for measurement of locomotion. The gridlines were spaced 

10 cm apart yielding a total of 36 10 x 10 cm squares. The inner area was considered the central 

16 squares which covered a 40 x 40 cm area. Stimulus rats were used a maximum of two times 

and were never used twice in the same day. The assignment of a stimulus rat to a test rat was 

random and not restricted to a particular drug or dose of drug. During a 5 min test, the time spent 

in active social behavior (i.e. communal grooming, sniffing, approaching, following, climbing on 

or under the stimulus rat) initiated by the test rat was scored. The time the experimental rat spent 

interacting with the stimulus rat was used as a measure of anxiety-like behavior. Increased 

anxiety is reflected by a decrease in social interaction time (File, 1980).  

Beginning on day 7 post-surgery, females underwent behavioral testing upon entering 

their first diestrus in order to control for fluctuations in anxiety due to hormonal changes across 

the estrous cycle. Although social anxiety is not affected by the estrous cycle (Stack et al., 2010), 

other measures of anxiety-like behavior as assessed in the EPM are such that during the stage of 
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proestrus females exhibit a reduction in anxiety while during estrus and diestrus anxiety is 

relatively stable (Mora et al., 1996; Marcondes et al., 2001; Walf and Frye, 2007). Studies 

examining factors which regulate anxiety-like behavior in females also commonly test during 

diestrus (De Almeida et al., 1998; Marcondes et al., 2001; Hiroi and Neumaier, 2006; Figueira et 

al., 2008).  Males were tested 1 week post-surgery. 

All behavioral tests were performed under lighting conditions of ~550 lux within the 

same time range each day (approximately 0900-1300h), which is sufficiently separated from 

light-dark transitions (lights on at 0600h, lights off at 1800h) to avoid any potential diurnal 

variations in exploratory behavior (Lapiz-Bluhm et al., 2008). Tests were digitally recorded and 

later scored blind by a trained observer using BEST Collection and BEST Analysis software 

(Education Consulting Inc., Hobe Sound, FL).   

 

Experimental design 

Experiment 1: 

In the first experiment we investigated the extent to which the anxiolytic effect of OT in 

the mPFC is subregion specific. Separate groups of male rats received infusions of synthetic OT 

(cat# O6379; Sigma, St. Louis, MO) into one of the three regions of the mPFC. OT was 

dissolved in 0.5 µl saline at a dose of 0.1µg (Cg1: n = 6; PL: n = 6; IL: n = 9) or 1.0µg (Cg1: n = 

6; PL: n = 6; IL n = 9) (Bale et al., 2001; Ring et al., 2006; Blume et al., 2008; Ayers et al., 2011; 

Toth et al., 2012; Sabihi et al., 2014a; Sabihi et al., 2014b). Control rats received a 0.5 µl 

infusion of saline (Cg1: n = 7; PL: n = 6; IL: n = 8). Testing for anxiety-related behavior was 

done 15 min after infusions. The two tests of anxiety-like behavior (EPM and SI) were done 5 

min apart and the order of the two tests was counterbalanced among rats.  
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Experiment 2: 

In the second experiment, we evaluated the specificity of OT as well as whether the 

effects of OT on anxiety-like behavior are sex dependent. Separate groups of female and male 

rats received infusions of 1.0µg/1µl OT (n = 18 female; n = 14 male), 1.0µg/1µl of the closely 

related neuropeptide, arginine vasopressin (AVP; cat# V9879; Sigma, St. Louis, MO) (n = 19 

female; n = 15 male), or 1µl of saline vehicle (n = 18 female; n = 15 male) in the PL region of 

the mPFC. Previous studies that have looked at the effects of AVP versus OT on anxiety-like 

behavior have used a similar dose of each (Lee et al., 2007; Blume et al., 2008). All subjects in 

the second experiment underwent testing in the EPM; approximately half of the animals in each 

group were then tested in the SI test (males: OT n = 8, AVP n = 8, saline n = 8;  females: OT n = 

8, AVP n = 8, saline n = 8). Testing for anxiety-related behavior was done 15 min after 

infusions. The two tests of anxiety-like behavior (EPM and SI) were done 5 min apart and the 

order of the two tests was counterbalanced among rats.  

 

Experiment 3 

In experiment 3, we evaluated whether the anxiolytic effect of OT in the PL mPFC is 

dependent on OTR activation. Separate groups of male rats received one 0.5µl infusion of saline 

followed by an infusion of 1.0µg OT (S/OT; n = 7), one infusion of a highly specific OTR-A 

(desGly-NH2-d(CH2)5[D-Tyr2,Thr4]OVT, courtesy of Dr. Maurice Manning, University of 

Toledo) at a dose of 0.1µg (Manning et al., 2008) followed by an infusion of 1.0µg OT (OTR-

A/OT; n = 7) or one infusion of a highly specific AVPR-A (d[Tyr(Me)2, Dab5]AVP, courtesy of 

Dr. Manning) at a dose of 0.1µg (Manning et al., 2012) followed by an infusion of 1.0µg OT 
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(AVPR-A/OT; n = 7). OT, OTR-A and AVPR-A were all dissolved in 0.5 µl saline. An 

additional group of rats received two 0.5µl infusions of saline (S/S; n = 7). In each case, the 

second infusion occurred 10 min after the first (Yosten and Samson, 2010; Sala et al., 2011) and 

testing for anxiety-related behavior was done 15 min after the second infusion. All subjects in 

this experiment underwent testing only in the SI test.  

 

Experiment 4: 

The importance of endogenous OT in the regulation of anxiety-like behavior was 

evaluated using an OTR antagonist (OTR-A; d(CH2)5
1,Tyr(Me)2, Thr4,Orn8,des-Gly-NH2

9)OVT; 

cat# H-2098; Bachem, Torrance, CA). Separate groups of male and virgin female rats were 

infused with 0.1µg/1µl OTR-A (n = 6 female; n = 5 male) (Lukas et al., 2011) or 1µl saline 

vehicle (n = 6 female; n = 6 male) in the PL region of the mPFC and were tested in both the 

EPM and SI tests. All rats underwent testing 20 min after OTR-A infusions (Ring et al., 2006; 

Nyuyki et al., 2011). Tests were done 5 min apart and the order of the two tests was 

counterbalanced among rats.  

   

Experiment 5: 

To evaluate whether the anxiolytic effect of OT in the PL mPFC is dependent on GABA-

A receptor activation, separate groups of male rats received either one 0.5µl infusion of saline 

followed by an infusion of 1.0µg OT 0.5µl OT (S/OT) or 5ng/0.5µl bicuculline (S/GABA-A) or 

one infusions of GABA-A followed by an infusion of 1.0µg/0.5µl OT (GABA-A/OT). Control 

animals received two infusions of saline (S/S). The dose of bicuculline used in this study is a 

subthreshold dose that has been shown to have no effect on anxiety-like behavior (Chodari et al., 
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2014). OT and bicuculline were both dissolved in 0.5 µl saline. In each case, the second infusion 

occurred 10 min after the first (Yosten and Samson, 2010; Sala et al., 2011) and testing for 

anxiety-related behavior was done 15 min after the second infusion. All subjects in the 

experiment underwent testing in the both the EPM and the SI test. 

Histology 

After the completion of anxiety testing, rats were overdosed with Euthasol and 

transcardially perfused with 4% paraformaldehyde. Brains were removed, postfixed for 24 hr and 

then sectioned on a Vibratome. 40-µm thick coronal sections were collected throughout the area 

of the cannula implant and stained with 0.2% cresyl violet for verification of correct placement. 

Examination under high magnification (40X) revealed limited to no damage at the tip of the 

cannula. Those animals with cannula placements outside of the intended region of the mPFC 

were excluded from the study.  

  

Statistical analysis  

All statistical analyses were performed using GraphPad Prism software version 5.01 (La 

Jolla, CA). All anxiety-like data was analyzed using either a one-way or two-way Analysis of 

Variance (ANOVA). Statistical significance for main effects and interactions were indicated by p 

values less than 0.05 and when significance was found were followed by Tukey’s HSD or 

Bonferroni post hoc comparison tests. 
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Results 

Experiment 1: OT specifically in the PL mPFC reduces anxiety-like behavior 

 In the EPM, OT had a subregion specific effect on anxiety-like behavior. For the number 

of open arm entries (Fig. 1a) there was a significant main effect of infusion type (F2,55 = 4.48, p < 

0.05) and brain region (F2,55 = 6.98, p < 0.05) as well as an infusion type X brain region 

interaction (F4,55 = 3.51, p < 0.05). Post hoc analysis revealed that rats infused with the higher 

1.0 µg dose of OT in the PL region of the mPFC made a greater number of entries into the open 

arms as compared to all other groups (p’s < 0.05) which did not differ from one another (p’s > 

0.05), indicating decreased anxiety-like behavior. For the percentage of time spent in the open 

arms (Fig. 1b), there were also significant main effects of infusion type (F2,55 = 4.56, p < 0.05) 

and brain region (F2,55 = 7.55, p < 0.05) and a non-significant trend for an infusion type X brain 

region interaction (F4,55 = 2.24, p = 0.07). Post hoc analysis revealed that rats infused with the 

higher 1.0 µg dose of OT spent a greater percentage of time in the open arms as compared to all 

other groups (p’s < 0.05) which did not differ from one another (p’s > 0.05), again indicating a 

decrease in anxiety-like behavior. Locomotor activity, as measured by the number of closed arm 

entries (Fig. 1c), was not altered by infusion type (F2,55 = 2.21, p > 0.05) or region of infusion 

(F2,55 = 0.08, p > 0.05) and there was no significant infusion type X brain region interaction (F4,55 

= 0.36, p > 0.05).  

 In the SI test (Fig. 1d), there was a significant main effect of infusion type (F2,55 = 3.47, p 

< 0.05) and brain region (F2,55 = 8.54, p < 0.05) and a significant infusion type X brain region 

interaction (F4,55 = 4.33, p < 0.05) on the amount of time spent interacting with an unknown 

stimulus rat. Post hoc analysis showed that rats infused with the higher 1.0 µg dose of OT in the 

PL mPFC spent a greater amount of time interacting with an unknown stimulus rat when 
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compared to all other groups (p’s < 0.05) which did not differ from each other (p’s > 0.05) 

indicating decreased anxiety-like behavior.  

 

Fig. 1. OT in the PL mPFC decreases anxiety-like behavior. Rats that received the higher 
1.0µg dose of OT in the PL mPFC displayed an increase in the number of open arm entries (a) 
and a greater percentage of time spent in the open arms (b) as compared to rats infused with 
saline or 0.1µg OT in the PL mPFC, neither of which differed from any other group. Locomotor 
activity as measured by the number of closed arm entries (c) was not altered by infusion type or 
region of infusion. Rats that received the higher 1.0µg dose of OT in the PL mPFC spent more 
time interacting with an unknown stimulus rat as compared to those infused with saline or 0.1µg 
OT, neither of which differed from any other group.  
 

Experiment 2: OT, but not AVP, infused into the PL region of the mPFC reduces anxiety-

like behavior in females and males 

 For percentage of time spent in the open arms of the EPM (Fig. 2a), there was a 

significant main effect of infusion type (F2,93 = 18.70, p < 0.05) but no main effect of sex (F1,93 = 

1.18, p > 0.05) and no interaction between infusion type and sex (F2,93 = 2.66, p > 0.05). Post hoc 
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analysis of infusion type showed that overall, animals infused with 1.0µg/µl OT into the PL 

region of the mPFC were less anxious as demonstrated by a greater percentage of time in the 

open arms than those infused with saline (p < 0.05) and those infused with AVP (p < 0.05), 

which did not differ from one another (p > 0.05). For number of open arm entries in the EPM 

(Fig. 2b), there was also a significant main effect of infusion type (F2,93 = 21.22, p < 0.05) with 

post hoc analysis revealing a greater number of open arm entries in animals receiving OT 

infusion into the PL region of the mPFC as compared to saline (p < 0.05) and AVP (p < 0.05), 

which did not differ (p > 0.05), again indicating an anxiolytic effect of OT. There was also a 

significant main effect of sex (F1,93 = 4.99, p < 0.05) on the number of open arm entries with 

females entering the open arms more than males. The interaction between infusion type and sex 

on the number of open arm entries was not significant (F2,93 = 2.90, p > 0.05). The number of 

entries into the closed arms (Fig. 2c) showed no significant effects of infusion type (F2,93 = 0.68, 

p > 0.05 ) or sex (F2,93 = 1.14, p > 0.05) and no interaction between these factors (F2,93 = 3.67, p 

> 0.05 ).  

 In the SI test (Fig. 2d), there was a main effect of infusion type (F2,42 = 13.05, p < 0.05) 

but no main effect of sex (F1,42 = 2.41, p > 0.05) and no interaction between infusion type and 

sex (F1,42 = 0.72, p > 0.05) in time spent interacting with an unknown stimulus rat.  Post hoc 

analysis of infusion type showed that overall, animals infused with OT spent a greater amount of 

time interacting with an unknown stimulus rat than those infused with AVP (p < 0.05) or saline 

(p < 0.05), which did not differ from one another (p > 0.05).  

!
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Fig. 2. OT, but not AVP, infused into the PL region of the mPFC reduces anxiety-like 
behavior in females and males. In the EPM, males and females infused with 1.0µg/µl OT into 
the PL region of the mPFC spent a greater percentage of time in the open arms (a) and made 
more open arm entries (b) than rats infused with saline or AVP. Females also entered the open 
arms of the EPM more than males (b).  Locomotor activity (closed arm entries) was not altered 
by sex or infusion type (c).  In the SI test, both males and females infused with OT spent a 
greater amount of time interacting with an unknown stimulus rat than those infused with AVP or 
saline (d). Bars represent mean ± SEM; *p < 0.05, main effect of dose; **p < 0.05, main effect 
of sex.  
 

Experiment 3: The anxiolytic effect of OT in the PL mPFC is dependent on OTR activation 

 The anxiolytic effect of OT in the PL mPFC was blocked pretreatment with an OTR-A, 

but not AVPR-A (F3,23 = 11.62, p < 0.0001; Fig. 3). Post hoc analysis revealed that rats infused 

with S/OT and AVPR-A/OT spent more time interacting with an unknown conspecific than 

those infused with S/S (p’s < 0.05) while subjects treated with OTR-A/OT did not and were no 

different than S/S rats (p’s > 0.05).  
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Fig. 3. OT acting on the OTR in the PL mPFC decreases anxiety in the SI test. Rats infused 
with AVPR-A/OT and those infused with S/OT spent more time interacting with an unknown 
conspecific than those infused with S/S or OTR-A/OT, which did not differ from one another. 
Bars represent mean ± SEM; *p < 0.05. 

 

Experiment 4: OTR-A infused into the PL region of the mPFC does not alter anxiety-like 

behavior in females or males 

 In the EPM, there were no significant main effects for infusion type (F1,19 = 0.62, p > 

0.05) or sex (F1,19 = 0.002, p > 0.05) and no infusion type X sex interaction (F1,19 = 0.09, p > 

0.05)  in the percentage of time spent in the open arms (Fig. 4a). Similarly, for number of open 

arm entries (Fig. 4b) there was no significant main effect for infusion type (F1,19 = 0.009, p > 

0.05)  or sex  (F1,19 =0.41, p > 0.05) and no infusion type X sex interaction  (F1,19 = 0.02, p > 

0.05). Locomotor activity, as measured by the number of closed arm entries in the EPM, was not 

altered (p's > 0.05; Fig. 4c). 

 In the SI test (Fig. 4d), there was no significant main effects for either infusion type (F1,19 

= 0.02, p > 0.05) or sex (F1,19 = 1.03, p > 0.05) and no infusion type X sex interaction (F1,19 = 

0.11, p > 0.05) in the amount of time spent interacting with an unknown stimulus rat.  
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Fig. 4. OTR-A infused into the PL region of the mPFC does not alter anxiety-like behavior 
in females or males.!In both males and females, blockade of OTR in the PL mPFC did not alter 
the percentage of time spent in the open arms (a) or the number of open arm entries (b) in the 
EPM. Locomotor activity in the EPM (number of closed arm entries) was unaffected by sex or 
infusion type (c). OTR-A in the PL region of the mPFC also had no effect on the amount of time 
spent interacting with an unknown stimulus rat in the SI test (d). Bars represent mean ± SEM. 
 
 

Experiment 5: The anxiolytic actions of OT are prevented with the GABA-A receptor 

antagonist bicuculline  

 For percent time in the open arms in the EPM (Fig. 5a), there were significant main 

effects of GABA-A infusion (F1,22 = 6.58, p < 0.05) and OT infusion (F1,22 = 7.95, p< 0.05) as 

well a a significant OT X GABA-A interaction (F1,22 = 6.54, p< 0.05). Post-hoc analysis showed 

that animals infused with S/OT spent a greater percentage of time in the open arms (p’s < 0.05), 

an effect which was not evident in the OT treated rats that also received the GABA-A (p > 0.05).  

Similarly, for number of open arm entries in the EPM (Fig. 5b), there was a main effect of 

GABA-A infusion (F1,22 = 7.01, p < 0.05), a main effect of OT infusion (F1,22 = 9.74, p< 0.05) 

and an OT X GABA-A interaction (F1,22 = 5.81, p< 0.05). Post-hoc analysis reveled that only the 
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S/OT group displayed reduced anxiety as indicated by a greater number of open arm entries (p’s 

< 0.05).  The OT-induced reduction in anxiety was prevented by prior administration of the 

GABA-A. Both groups treated with the GABA-A spent a similar percentage of time in the open 

arms and made a similar number of open arm entries as compared to the S/S group (p’s > 0.05) 

indicating that the GABA-A itself had no effect on anxiety-like behavior. The number of entries 

into the closed arms (Fig. 5c) was not altered (p’s > 0.05). 

  In the SI test (Fig. 5d), there were main effects of GABA-A (F1,22 = 13.72, p < 0.05) and  

OT (F1,22 = 18.70, p < 0.05) as well as a signficant GABA-A X OT interaction (F1,22 = 29.20, p < 

0.05). Post hoc analysis revealed that animals infused with saline followed by OT spent a greater 

amount of time interacting with an unknown stimulus rat (p’s < 0.05), an effect which was not 

evident in the OT treated rats that also received GABA-A (p > 0.05). Both groups treated with 

the GABA-A spent a similar amount of time interacting with the unknown stimulus rat as 

compared to the S/S group (p > 0.05) indicating that the GABA-A itself had no effect on 

anxiety-like behavior in the SI test. 
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Fig. 5. GABA-A receptor antagonism prevents the anxiolytic effects of OT.  Animals were 
infused with Saline or GABA-A (x-axis) followed by an infusion of saline (white bars) or OT 
(black bars). In the EPM, males infused with S/OT into the PL region of the mPFC made more 
open arm entries (a) and spent a greater percentage of time in the open arms (b) than all other 
groups. Locomotor activity (closed arm entries) was not altered by either infusion (c).  In the SI 
test, males infused with S/OT spent a greater amount of time interacting with an unknown 
stimulus rat than any other group (d). Bars represent mean ± SEM; *p < 0.05.  

 

Discussion 

 In this series of studies we show that OT infused into the PL region of the mPFC is 

effective in reducing anxiety-like behavior, regardless of sex. This anxiolytic effect of OT is 

subregion specific and neuropeptide specific as neither OT in other mPFC subregions nor the 

closely-related neuropeptide vasopressin in the PL mPFC had any effect on anxiety-like 

behavior. Our data also show that the anxiolytic effects of OT in the PL mPFC requires 

activation of the OTR and may work via a GABAergic mechanism. In contrast to exogenous OT, 

however, endogenous OT in the PL region of the mPFC did not influence anxiety in males or 

females.  
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The anxiolytic effect of OT in the mPFC is restricted to the PL region 

 In the rodent brain, the mPFC can be broken down into 3 subregions - the infralimbic 

cortex (IL), PL cortex, and anterior cingulate cortex (Cg1) (Heidbreder and Groenewegen, 2003). 

We found that OT in the PL, bt not IL or Cg1, was effective in reducing anxiety.  The PL mPFC 

has been strongly implicated in the regulation of fear and anxiety. Specifically, enhancing 

activity in the PL mPFC promotes the expression of learned fear (Vidal-Gonzalez et al. 2006) 

and innate anxiety (Resstel et al. 2008; Saitoh et al. 2014; Stern et al. 2010) while lesion or 

inactivation generally has the opposite effect (Blum et al. 2006; Corcoran and Quirk 2007; but 

see Jinks and McGregor, 1997; de Visser et al., 2011; Gonzalez et al. 2000; Maaswinkel et al. 

1996; Shah et al. 2004).  The PL mPFC promotes the expression of learned fear via 

glutamatergic projections to the basolateral amygdala (BLA) which in turn excites the central 

amygdala (CeA) and bed nucleus of the stria terminalis (BNST) (Peters et al. 2009). Although 

innate anxiety, as was measured here, has been less studied, recent work implicates a similar 

neural circuit (Yamada et al. 2015). When combined with other studies showing that OTR are 

present on mPFC GABAergic interneurons (Nakajima et al. 2014), that OT increases GABA 

levels in the mPFC (Qi et al. 2012) and that activation of GABA-A receptors in the PL mPFC is 

anxiolytic (Solati et al. 2013), OT in PL mPFC may inhibit glutamatergic output neurons and 

thus decrease excitatory drive to the CeA and BNST resulting in a decrease in anxiety-like 

behavior (Figure 6).  

Unlike the PL mPFC, OT in the Cg1 and IL subregions of the mPFC had no effect on 

anxiety-like behavior, even though both have also been implicated in fear and anxiety regulation 

(Cg1: Bissiere et al., 2008; Albrechet-Souza et al., 2009; but see Bissiere et al., 2006; IL: Vidal-

Gonzalez et al., 2006; Sierra-Mercado et al., 2011; Bi et al., 2013).   In this regard, the dose of 
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OT may be an important factor. Since little is known about OTR distribution in the mPFC, it is 

possible that anxiety-like behavior is differentially sensitive to exogenous OT depending on the 

mPFC subregion. Thus, while 1 ug, but not 0.1 µg (Sabihi et al. 2014b), OT in the PL mPFC is 

effective in reducing anxiety, other mPFC subregions may require different doses than tested 

here for an effect on anxiety to be revealed. Consistent with this possibility are findings showing 

that OT in the IL mPFC promotes fear extinction when administered at a much lower dose of 

only 0.01 µg (Lahoud and Maroun 2013), although these results could also suggest that learned 

fear versus innate anxiety, and the different paradigms used to assess these processes, may not be 

equally sensitive to OT. It is also important to consider emerging evidence that OT is not solely 

involved in reducing fear and anxiety but can also have the opposite action and act to increase 

fear and anxiety (Bartz et al. 2011; Grillon et al. 2012; Guzman et al. 2013). In the current study, 

such effects would not necessarily be evident because at least in the EPM, anxiety levels in the 

saline-treated control rats were already fairly high. However, this was not the case in the SI test 

the results of which not only verify that the anxiolytic actions of OT are restricted to the PL 

mPFC but also show that OT is not anxiogenic in any of the subregions.  

!

OT in the PL mPFC reduces anxiety-like behavior in females and males 

Previous studies have indicated that female rats exhibit less anxiety-related behaviors 

than males (Johnston and File, 1991; Stack et al., 2010). Some sex differences were observed in 

the baseline levels of anxiety when comparing males versus females (experiment 2). Despite this, 

administration of exogenous OT into the PL mPFC  was found to be anxiolytic in both males and 

females and is thus consistent with prior work demonstrating that exogenous OT is anxiolytic in 

both males and females when delivered peripherally or centrally (Uvnas-Moberg et al., 1994; 
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McCarthy et al., 1996; Windle et al., 1997; Bale et al., 2001; Ring et al., 2006; Blume et al., 

2008; Yoshida et al., 2009; Ayers et al., 2011;  Mak et al., 2012).  

 

OT, but not AVP, in the PL mPFC reduces anxiety and this effect is dependent on OTR 

activation 

AVP is also known to regulate anxiety-related behaviors but its effects are often opposite 

to that of OT and thus act to increase anxiety (Neumann and Landgraf, 2012). Here we found 

that administration of AVP in the PL region of the mPFC did not significantly alter anxiety-

related behavior in males or females. Thus, our results suggest that the PL mPFC is not a site of 

action for the anxiogenic actions of AVP, and furthermore provide evidence that the anxiolytic 

effects of PL OT  are neuropeptide specific. It is important to keep in mind that OT and AVP 

show structural similarities, and cross-reactivity at the receptor level has been described (Postina 

et al., 1998). OT does indeed have a moderate to strong affinity for the AVP 1A (V1aR) receptor 

(Hicks et al., 2012) and can act as a partial agonist at this site (Chini et al., 1996). Recent studies 

have shown that some of the prosocial effects of OT may be mediated by the V1aR rather than 

the OTR (Sala et al., 2011; Ramos et al., 2013). Therefore, exogenous OT may potentially be 

acting at the V1aR to reduce anxiety. To address this possibility, we co-administered OT with 

either an OTR-A or an AVPR-A and found that the anxiolytic effects of OT were blocked by the 

OTR-A and not the AVPR-A. Thus, the anxiolytic actions of OT are specific to the OTR which 

not only lends support to other work showing that OTR are present within the mPFC (Gould and 

Zingg 2003; Insel and Shapiro 1992; Liu et al. 2005; Smeltzer et al. 2006) but also indicate that 

their activation is required in order to have behavioral significance.  
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Endogenous OT in the PL  mPFC does not alter anxiety-like behavior in females or males 

In contrast to exogenous OT, endogenous OT in the PL mPFC does not appear to directly 

be involved in regulating of anxiety since anxiety-like behavior was not affected in males or 

females infused with OTR-A. Prior studies have found similar results following  acute ICV 

OTR-A administration (Neumann et al., 2000; Neumann, 2002; Slattery and Neumann, 2010). 

This does not eliminate the possibility that endogenous PL OT could be involved in regulating 

anxiety during times of elevated OT system activity. Indeed, in other studies we have found that 

administration of an OTR-A into the PL mPFC of postpartum females (Sabihi et al., 2014a) 

blocks the anxiolytic properties of high endogenous OT. Whether endogenous PL OT is similary 

involved in males during elevated OT system activity as occurs after mating (Waldherr and 

Neumann, 2007), remains to be determined. 

 

Interactions between mPFC OT and GABA in the regulation of anxiety-like behavior  

As noted above, recent studies have found that OTR are present on mPFC GABAergic 

interneurons (Nakajima et al. 2014). When combined with other work showing that OT increases 

GABA levels in the mPFC (Qi et al. 2012) and that activation of GABA-A receptors in the PL 

mPFC is anxiolytic (Solati et al. 2013), OT in PL mPFC may inhibit glutamatergic output 

neurons and thus decrease excitatory drive to the CeA and BNST resulting in a decrease in 

anxiety-like behavior (Figure 6). To begin exploring this potential mechanism, we co-

administered OT with a GABA-A receptor blocker (bicuculline) and found that that the 

anxiolytic effects of OT were indeed prevented. Thus, our results provide support for the 

possibility that OT is acting  on GABAergic neurons within the PL mPFC to attenuate anxiety.  
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Fig. 6. Proposed circuit in which OT acts in order to have anxiolytic effects. Administration 
of exogenous OT to the PL mPFC binds to OTR on GABA interneurons and activates them, 
thereby increasing inhibitory tone in this region. This increase in inhibition leads to a decrease in 
excitation on glutamatergic projections that are sent from the PL region to downstream areas 
including the BLA and BNST, which, when activated produce an increase in anxiety-like 
behavior. Thus, increased inhibition in the PL region by OT administration may prevent 
excitation of the CEA/BNST and result in a decrease in fear and anxiety.  
 

 

Implications 

 Recently in humans, brain neuropeptides, including OT, have received increasing 

attention as central regulators of anxiety behavior (Heinrichs et al., 2003; Landgraf, 2006; 

Meyer-Lindenberg et al., 2011; de Oliveira et al., 2012; Benarroch, 2013; Macdonald and Feifel, 

2014). Anxiety can be characterized in animals by a temporary behavioral state induced by 

threatening stimuli such as open spaces and bright lights (Crawley, 1985; Pellow et al., 1985; 

Sylvers et al., 2011; Adhikari, 2014).  In humans, however, anxiety is commonly defined as 

prolonged hypervigilance in anticipation of, or response to, a threat where the danger is not 

clearly imminent (Gorman, 2003; Adhikari, 2014). Despite the differences in behavioral outputs, 

there are many similarities in the neurobiological and neurochemical underpinnings that regulate 
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anxiety in both rodents and humans (Lang et al. 2000; Leuner and Shors 2013; Maroun 2013; 

Myers-Schulz and Koenigs 2012). As such, the study of rodent anxiety-like behavior is able to 

provide useful insights into human anxiety disorders. The results of the current study provide a 

better understanding of the neural circuitry underlying OT’s anxiety attenuating actions, and in 

doing so may reveal putative targets for the pharmacological treatment of anxiety disorders in 

humans. 
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