ALGEBRAIC K-THEORY OF SPACES.

Friedhelm Waldhausen

Thig is an account of foundational material on the algebraic K~theory of spaces
functor X+ A(X) . -

The paper is im three parts which are entitled "Abstract K-theory", "A(X)}",
and "Relation of A(X) to WhPL(X)", respectively.

The main result of the paper is in the second part, it says that several defi-
pnitions of A(X) are in fact equivalent to each other, up to homotopy. The proof
uses most of the results of the first part. An introduction to this circle of ideas
can be obtained from looking at the sections entitled 'Review of A(X)}" and "Review
of algebraic K-theory" in the papers [17] and [18] (these two sections were written

with that purpose in mind).

The third part of the paper is devoted to an gbstract version of the relation
of the A~functor to concordance theory., The content of the paramstrised h-cobordism
theorem in the sense of Hatcher is that PL comcordance theory, stabilized with re~
spect to dimension, can be re-expressed in terms of non—manifold data. A detailed
account of the translation is given elsewhere [16], in particular the relevant re-
aults of Hatcher's are (re-)proved there. The result of the translation (after &
dimension shift) is a functor Xw WhPL(x) . It is ghowm here that there ie & map
AlX) = WhPL(XJ and that the hoﬁotupy fibre of that map is a homology theory (i.e.,
that, as a functor of X , the homotopy fibre satisfies the excision property).

The first part of the paper, on which everything else depends, may perhaps look
a little frightening because of the abstract language that it uses throughout, This
is unfortunate, but there is mo way out. It is not the purpose of the abstract lan-
guage to strive for great generality. The purpose is rather to simplify proofs, and
indeed to make some proofs understandable at all. The reader is invited to rum the
following test: take theorem 2.2.1 (this is about the worst case), translate the
complete proof into not using the abstract language, and then try teo communicate it
to somebody else.
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1. ABSTRACT X-THEORY.

1.1, Categories with cofibrations, and the language of filtered objects.

A category C is called poimted if it is equipped with a distinguished zero

object * , i.,e. zn object which is both initial and terminal.

A category with cofibratione shall mean a pointed category C together with a
subcategory col satisfying the axioms Cof 1 - Cof 3 below. The feathered arrows
" 33 T will be used to denote the morphisms in coC . Informglly the morphisms

in cof will simply be referred to as the cofzbrationg tn C .

Cof 1. The isomorphisms in € are cofibrations (in particular col contains all
the objects of C ).

Cof 2. For every A€ C, the arrow #* -+ A ig a cofibration.

Cof 3. Cofibrations admit cobase changes. Thisg means the following two things.
If A~ B is a cofibration, and A~ C any arrow, then firstly the pushout CUAB

exists in { , and secondly the cancnical arrow C = CUﬁB ig a cofibration again.

Here is some more language. If A»»B is a cofibration them B/A will denote
any representative of #U,B . We think of it as the quotient of B by A . The
canonical map B -+ B/A will be referred to as a quotient map. The double headed
arrows ' —u ' are reserved to denmote guotient maps. (Note that it is neither
asked, nor asserted, that the quotient maps form a category, i.ef that the compqsite

of two quotient maps is always a quotient map again,)

Our usage of the term cofibration gequence conforms to the usage in homotopy
theory. It refers to a sequence A>—B —w3B/A where B—~#»B/A is the quotient

map associated to A»—B .

Beware that we will also be using the term gequence of cofibrations which of

course refers to a sequence of the type AI>——+A2>~* tos P—*An '

The most important example of a category with cofibrations, for our purposes,
ig that of the spaces having a given space X a5 a retract. We will denote this
category by R(X) . 4s a technical point, there will be several cases to consider
depending on whether gpace means simplicial set, or cell complex, or whatever, and
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perhaps with a finiteness condition imposed. In any case the term cofibration has
essentially its usual meaning here. (Ag a technical point again, note that the
axiom Cof 2 wmay force us to put a condition on one of the structural maps of an

object of R(X) ~ the section should be a eofibration).

Another important example, though of less concern to us here, ias that of an
exact category in the sense of Quillen. Any exact category can be considered as a
category with cofibrations by choosing a zerolobject, and declaring the admissible
monomoxphisms to be the cofibrations. The re-interpretation invelves a loss of
structure: one igneres that pullbacks used to play a role, too (the base change by

admissible epimorphisms).

Since our axioms are so primitive it will not be surprising that they admit
examples which are not important at all, and perhaps even embarrassing. Here is a
particularly bad case. Consider a category having a zero object and finite eclimits.
Tt can be made into a category with cofibrations by declaring aill morphisms to be

cofibrations.

Here is some more language. A fumctor between categories with cofibrations is
called exget if it preserves all the relevant structure! it takes * to * , co-

fibrations to cofibrations, and it preserves the pushout diagrams of axiom Cof 3 .

For example, a map X -+ X' induces an exact functor R(X) -+ R(X') . On total

spaces it is piven by pushout of X= X' with the structural sections,

Another example of an exact functor is the linearization functor (or Hurewicz
map) which takes an object of R{(X) to the abelian-group-object in R(X) which it

generates.

There is a concept slightly stronger than that of an exact tneluston funetor
which we will have to consider. We say that C' is a suboategory with coftbrations
of C if in addition to the exactness of the inclusion functor the following condi-
tion is satisfied: an arrow in (' is a cofibration in C' if it is a eofibration

in C and the quotient is in C' (up to igomorphism) .

An example of a subcategory-with-cofibrations arises if we consider a subcate-

gory of R(X) defined by a finiteness condition,

Here is a more interesting example. For n 2 3 let R™MX) denote the full
subcategory of R(X) whose objects are obtainable from X by attaching of n-cells
{up to homotepy). It can be considered as a subcategory with cofibrations of R(X) .

Tn the remainder of the section we will check that certain elementary construc-
gories do not lead one out of the framework of categories with cofi~
articular we will be interested in filtered objecte; that is, sequen-

tions with cate
brations. In p

ces of cofibrations.
¢ at all, we shall let ourselves be guided by the more relevant

(Despite the fact, exemplified above, that cofibrations need

not be monomorphi.
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examples to justify using this terminology). The arguments below will not go beyond
trivial manipulation with colimits. There is, however, one idea involved. The idea
is that the notion of bifiltered objeat (or lattice) can be formulated without pull-
hacka., Namely if the diagram

A—B

|

cC—D

ig to be a 'lattice' we are inclined to ask this in the form of two conditions:

firstly, that ail the arrows be cofibrations, and secondly, that the 'images' in D
patisfy Im{A) = Im(B) N Im(C)} . The latter does not make sense in our context, in
general, but we can substitute it with the condition that the arrow BUAC + D bea

cofibration.

For any category C we let ArC denote the category whose objects are the
aryows of C and whose morphisms are the commutative squeres

|

in C. If € is a category with cofibrations then sc is ArC 1in an obvious way:

e
——

a map is in coArC if and only if the two asssociated maps in C are in coC .

Definition. FIC is the full subcategory of ArC whose objects are the cofibra-—
tions in €, and coFIC iz the class of the maps (A> B) » (A"~ B') in .Flc
having the property that both A -+ A' and A'UAB -~ B' are cofibrations in C .

Lemua 1.1.1, coFlC makes FIC a category with cofibrations,

Proof, There are two points that require proof: that coFlc is a category, and
that the axiom Cof 3 is satisfied.

As to the first, let (A= B)»~ (A" B') and {(A'»> B') » (A"~ B") be in
coFIC . Then A A" since cof is a category. By assumption about the second
map A"UA,B' >+ B'" ; and by assumption about the f£irst map and by axiome Cof ! and
Cof 3 for col , all the following terms are defined and the composed map

A™UB = A, (A'U,B ——r A, AT, B0 B' —= A", ,B"

'
(A Uu,B) |
is also in coC . Taking the composition of the two maps we obtain that A“UAB - g"

ig in eoC ,  as was to be showm.

~ As to the second, let (A» BY» (A'>»B") and (A= B) =+ (0= D) be maps in
coFIC , TE3P. FIC « Their pushout exists in ArC by Cof 3 for C (because.
Ar A’ and A'UABH B' implies B» B' ) where it is represented by

t '
A UAG —=+ B UBD .
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We show below that this is an object of (and consequently also a pusheut in) FIC .
We must in addition show that the canonical map (C» D) ﬂ-(A'UAF ﬂ-B'UBD) is in

coFlC . This amounts to the two assertions that G>+4A'UAC , which is elear, and
that (A'UAC)UCD-* (B'UBD} . 'The latter map is isomorphic to A'UAD - B'UBD which

in turn is isomexphic to the composed map

f t ~ t
(A'U,B)U,D — B U(A.UAF)(A‘UAp)UBD —— B'U,D

and this is a ecofibration since A'UAB - B! ip one. Finally A'UAG -+ (A‘UAG)UCD

is a cofibration since C- D is one. Composing it with the cofibration
(A'UAC)UGD-» B'UBD (above) we obtain the map A’UAQ 4VB'UBD . 'This proveé the post-—
poned claim that the latter map is a cofibration. o

Definition, F C 1is the category aquivalent to F,C in which an object conuists
of an obJect Ai+ B of F C together with the chaice of a quotient B/A ; in other
words, F C is the categnry of cofibration sequences A= B»Bf/4 in C . It is '
made into a category with cofibrations by means of the equivalence F =~ F|C

Lemma 1.1.2. The three functors s, t, q: FTC o ¢ sending A=~ B -+B/A to A, B,

and B/A , respectively, are exact.

Proof. For s this holds by definition, and for t almost so., The case of g
requires proof. We must show that q takes coFTC to col , and that g pre—

serves the pushout diagrams of axiom Cof 3 .
As to the first, if (A~ B) =+ (A'» B') is in coF?C then, by definition,
A'UA3 - B' is in col . Hence so is

BfA B, =u:1.l‘,L

t r
,A'UA'B —_— *UA.A UABU(A'U B)B —-+B fA
as claimed.

As to the second, let such a pushout diagram in FTC be given by the diagram

(A»+ B =» BJA) ———— (G~ D *D/C)

(A" »+ B' »DB'JA") ~— (A'UAGH BTULD - (B‘UBD)/(A'UAG)) .

Then the assertion means that
(B'uBn)f(AFuAp) and B'IA‘UB,Ap/c

are canonically isemorphic, But this is cleax from the fact that an iterated colimit

may be computed in any way desired pr
In particular the two objects at hand are canonlcally isomorphic because both repre-

ovided only that all the colimits involved exist.

gent the colimit of the diagram



when this colimit is computed in the two obvious ways. »)

Definition. Fmp is the category in which an object is a sequence of cofibrations
Abh——rAIh—w ...»—+Am

- ) [ - - + -
in €, and where a morphism is a natural transformation of diagrams. FmC is the
category equivalent to FmC in which an object consists of one of FmC together

with a choice, for every 0 £ i <j s m , of a quotient Ai f = Aj/Ai .
L
Temma 1.1.3. Let A- A' be a map in Fmp s Tesp. F;C .. Suppose that the maps

—3 At ] . —_— |_»'
Aj Aj R AjUA.AJ+1 Aj+l
are cofibrations in ¢ . Then

= - N t [ . - - !
for every pair j < k the map AjUAjAk -+ Ak i3 a cofibration, and

- - a ' ‘ L] - -
for every triple i< ] <%k the map AiajUAi’in’k - Ai,k is a cofibration.

Proof. The first results inductively by considering the compositions
AN, AU, & .~ AN — A
‘ JAjAk b Aa Bt T B
and the second follows from the first by the preceding lemma applied to the cofibra-
tion in FIC ’

1 T r T
(AiUAiAi’* AD »———+(A3UAjAks+ AD =]

Proposition 1.l.4. ch and F;C are categories with cofibrations in a natural

way. The forgetful map F;C - FmC ig an exact equivalence., The 'subquotient' maps

+
A, > A.JA.
A AJ A AJ ml
are exact.

L + L3 + - a '} 4
In fact, & map in Fm; y Yesp, FmC s is defined to be a cofibration if it
getisfies the hypothesis of lemma 1.1.,3, and the assertions of the proposition just

summarize the preceding lemmas. ' ‘ .o

Tterating the conétruction one can obtain categories with cofibrations F“Fmp
At
and FnFmC .
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Lemma 1,1.5., There are natural isomorphisms of categories with cofibrations
+pt ot
FnFmC rd FanC , Fnch S FanC .

Proof. Tt suffices to remark that an objeet of FnFmC can be more symmetrically
defined as a rectangular array of squares each of which consists of cofibrations
only and satisfies the condition in the definition of a cofibration in F]C ; the
point is that the condition is symmetric with respect to horizontal and vertical.
Similarly, a cofibration in FnFmC , or sequence of such, mey be identified to a
J~dimensional diagram satisfying conditions with respect to which none of the three

directions is preferred. o

We will want to know that categories with cofibrations reproduce under certain
other simple constructions. By the fibre product of a pair of functors £: A-+C,
g: B~ C 1z meant the category N(f,g) whose objects are the triples

: £
(A,e,B) AEA, BEB, e: £(a)—>g(B),
and where a morphism from (A,é,B) to (A',c',B') is & pair of morphisms (a,b) .
compatible with the isomorphisms ¢ and ¢' . In some apecial cases the fibre pro-

duct category is equivalent to the pullback category Ach ; mnotably this is so if
either £ or g is a retraction. {If the two are not the same, up to equivalence,

the pullback should be regarded as pathological.)

Lemma 1.1.6, 1f f£f: A= C and g: B= C are exact functors of categories with co-

fibrations then TI{f,g) can be made into a category with cofibrations by letting
co(Ni(£,8)) = M(colf),co(g)) ,
and the projection functors from TI(f,g) to A and B are exact.
$imilarly, if j - Cj , j€J, is adirect system of categories with cofibra-
tions and exact funectors then lip Cj ig a category with cofibrations, with
col 1im C, } = lim coC; ,
- ] -+ J

and the functors Cj - lim Cj are exack, o

Definition and eorollaxry. Let A, B, C be categories with cofibrations and let A
and B be subcategories of C in such a way that the inclusion fumetors are exact.

Define E(A,C,B) as the category of the cofibration sequences in C ,
A C=3 , AfA, BEB.
Then E(A,C,B} is a category with cofibrations, and the projections to A, C, B

are exact.

Indeed, E(A,C,B) is the pullback of a diagram FTC —3CxC+—AxB; the

pullback is not pathological since the First arrow has a section, a
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1.2. Categories with cofibrations and weak equivalences.

‘Let C be a category with cofibrations in the gense of section 1.1 (we will
from now on drop explicit mentioning of the category of cofibrations col from the
notation). A sategory of weak equivalences in C shall mean a subcategory wC

of C satisfying the following two axioms.

Weq 1. The isomorphisms in C are contained in wC (and in particular therefore
the category «wC contains all the objects of ().

Weg 2. (Gluing lemma). If in the commutative diagram

Bi—A—>C(

| 1]

B'HA' ,_).0I

the horizental arrows on the left are cofibrations, and all three vertical arrows

- are in wC , thén the induced map
) 1
BUAG 3 B UA,G

is also in wC.

Here are some examples. Any category with cofibrations can be equipped with a
category of weak equivalences in at least two ways: the minimal choice is to let
w( be the category of isomorphisms in C , while the maximal choice is to let wC
be equal to { itself.

To obtain an example of a category of weak equivalences on the category R(X)
(the preceding section) choose a homology theory end define wR(X) to be the cate-
gory of those maps which induce isomorphisms of that homology theory.

To obtain another example define hR(X) to be the category of the weak homotopy
equivalenaes. |

To obtain yet another example define 8R(X) to be the categﬁry of the gimple
maps, i.e. the maps whose point inverses have the shape (or Cech homotopy type) of a
point. (We shall consider simple meps in the simplicial setting only in which case
the definition simplifies to asking that the point inverses in the geometric realiza-
tion of the map are contractible.) Neither the fact that sR(X) iz a category nor
the gluing lemma are trivial to prove. '

The following two further axioms may, or may not, be satisfied by a given cate-

gory of weak equivalences.
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Sqtuvation antom. 1f a, b are composable maps in C and if two of a, b, ab are
in wC then so is the third. ‘ | 7

For example the simple maps do not satisfy the gaturation axiom. E.g. consider
the two maps &, b in R(x) given by the inclusion of the basepoint in a l-simplex

and by the projection of that 1-gimplex to the basepoint, respectively.

Futenston axtom. Let

A s— B —w BJA

[ L

AT —r BT — BlIA'I

be a map of cofibration sequences. 1f the arrows A~ A' and BfA - B'/A' are

in wC then it follows that B~ B' is in w( , too.

For example the weak homotopy equivalences do not gatisfy the extension axiom.
E.g. consider the diagram in R{¥)

BZ »= BE ~—» ¥

.¢
g7 =—+ BG —* BEG/BZ

where BZ is the classifying space of the infinite eyclic group and BG the classgi-

fying space of a suitable non—-abelian group which is normally gemerated by a sub-

group Z , for example a classical knot group.

As the examples show there may be a great profusion of categories of weak equi-
valences on a given category with cofibrations. Alse, we will have occasion to con-
gider a category with cofibrations equipped with fwo categories of weak equivalences .
at the same time, one finer than the other, and study their interplay. We must
therefore exercise some care with the notation, and in general the category of weak

equivalences will be explicitly mentioned.

gtill there are some situations where there is no danger of confusion. On
those occasions we will allow ourselves the abuse of referring to the maps in wC

as the weak equivalencss in €, and denote them by the decorated arrows ' —

By a category with cofibrations and weak equivalences will be meant a categﬁry
with cofibrations equipped with one (and only one) category of weak equivalences. A
functor between such is called exact if it preserves all the relevant structure.

As in the preceding geetion, the notion of an exact inclusion functor may be

sharpened to that of a subcategory with cofibrations and weak equivalences.

Finally we note that categories of weak equivalences are inherited by diagram
categories., There are lemmas similar to, but easier than, those of the preceding

gaction, We omit their formulation.
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1.3. The R-theory of a category with cofibrations and weak equivalences.

Consider the partially ordered set of pairs (i,j}) , 0<£1i¢j£n, where
(i,j) € (1',3") 4if and only if i £ i' and j g j' . Regarded as a category it
may be identified to the arrow category Ar[n] where as usual [n] denotes the

ordered set (0 < 1 < ... < n) (considered as & category).
Let C be a category with cofibrations. We consider the functors
A: Arfn} —— C

(L) — 4y

e

having the property that for every j ,
and that for every triple i€ j £k, the map

is a cofibration, and the diagram

is a pushout; in other words,

. A, A.
A:I.,J Al:k_» J.k

is a cofibration sequence. We denote the category of these functors and their

natural transformations by SnC .

To give an object A€ Sn is really the same thing as to give a sequence of

cofibrations

A HAO

0’] — “ase HAO

2 0

together with a choice of subquotients

Ao T Aoy,

It results that the category SnC can be identified with one of the categories of
filtered objects considered in section 1.1 (namely F:;__1 ) and in particular there-

fore SnC can be regarded as a category with cofibrations in a natural way.

v
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The definition of S ¢ given here has the advantage of making it clear that
[n] & Arln) » 8 C is contravarlantly functorial on the category A of the ordered

sets [0], []1, ve+ + We therefore have a simplicial category
8.¢: a°F —— (cat)

In Fact, we have a simplicial category with eofibratione; that is, a simplicial ob-
jeet in the category whose ohjects are the categories with cofibrations and whose
morphisus are the exﬁct functors between those. This results from the lenmas of
section 1.1 upon inspection of what the face and degeneracy maps are. For example
the £ace map d.: S ¢~ S ¢ corresponds, for i >0, to the forgetful map which

-1

drops Ao i fram the sequence A 1 M .. A o and for i =0 it coxresponds
r l

to the map "quotient by Aj 4 " whlch replaces that sequence by A! g b eee P Ap oo
3 ]

1f C is equipped with a category of weak equivalences, W , then snc comes
naturally equipped with a category of weak equivalences, anC . By definition here
an arrow A= A' of S ¢ ig in wS C if and only if the arrow A, 1, - A' 3 is in
wl for every pair 1 s j i or what amounts to the same in view of the assumed glu-

ing lemma, if this is so for i=0. Tt results that S.C is a simplioial categvry

with cofibrations and weak equivalences in this case.
T,et us take a look at the simplicial category of weak aquivalences
w8.C ¢ AP w— (cat)

[n) ——> anC .

The categery SOC , and therefore also its subcategory wSOC , is the trivial

category with one object and ome morphism. Hence the geometric realization IwSDCI
ig the one-point space.
The category SIC is the category of dxagrams

B2 b 4 L m k
* Ao,o Ab,l A ]

and is thus isomorphic te ¢ . Hence the category of weak equivalences may be iden—
tified to wC .

|wS.Cl , the geometric realization of the simplicial category wS. ¢ .
~direction 15 obtained from the '0~skeleton' (which is’

|WS c| » IA | (where IA | denotes the topological space

Consider

The 'j-skeleton' in the 3.
IwS ¢| ) by attaching of
-Bzmplem) It results that the

sion SlAlel . As a consequence We obtein an inclusien 5 AIWCI [wS.CI , and by

adjointness therefore an inclusion of

1]-gkeleton' is naturally 1somorph1c to the suspen—

|wC| into the loop space of fwS.Cl ,

|we] — flwS.Cl .

The passage from wCl to flwS.Cl is reminiscent of the 'group completion'
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process of Segal £11] (by which it was originally motivated, to some extent). We

will have occasion to make an actual comparison later (in section 1.8},

Definition. The algsbraic K~theory of the category with cofibparions C , with

respect to the category of weak equivalences wC , 1is piven by the pointed space

2lws.Cl .

To pursue the analogy with Segal's version of group completion a little further,
one can actually describe K~theory as a spectrum rather than just a space. Namely
the S.-construction extends, by maturality, to simplicial categories with cofibra-
tions and weak equivalences. In particular therefore it applies to S.C to produce
a bisimplicial category with cofibratiens and weak equivalences, 5.8.C , Again the
construction extends to bisimplicial categories with cofibrations and weak equiva-

lences; and so on. Theye results a spectrum

nl—"'—"‘"" IWS- [ S-C'
- n—

-

whose structursl maps are defined just as the map |wC| - QlwS.Cl above.

It turns out that the spectrum iz a fi=spectrum beyond the first term (the addi-
tivity theorem is needed to prove this, below). As the spectrum is connective (the

o-th term ig (n-I)=~connected) an equivalent assertion is that in the sequence
|WCI ey nIWSnCI —— RRIWS-SQCI — s

all maps except the first are homotopy equivalences. It results that the K-theory
of {(C,w() could equivalently be defined as the space
ﬂmleSN)C[ = lim ﬂnIWSS“)CI ; $S™We = ws. ... 8.C .
Tt e T —P

There iz another way of making K-theory into a spectrum. Namely the pushout of
the cofibrations # - A induces a sum in € and therefore a composition law im the
sense of Segal on wC , wS.C, wSSZ)C , and 80 on. As q|wS.Cl is 'group~like'
Segal's machine produces a connective N-spectrum from it. To see that the spectrum
is equivalent to the former it suffices to mote that the two gpectra can be combined

into B connective bi-apectrim. (A more direct relationship can also be established.)

The definition of K-theory is matural for categories with cofibrations and weak

equivalences: an exact functor F: C' =+ C  induces maps ws.F: wS.Ct » wS,C, etc.

Let a Weak equivalence of exact functors F, F't C' » C mean a natural trans-
formation T = F' having the property that for every A € C' the map F(AY ~» F'(A)

is a weak equivalence in C .

Proposition 1.3.1. A weak equivalence from F te F' induces a homotopy between
wS.F and wS.F' .
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Proof. The weak equivalence from F to F' restriets to a natural transformation
of the restricted functors F, F': wC' —+ wC and thereby induces a homotopy between
these by a well known remark due to Segal [10]. Similarly there is what may be
called a simplicial natural transformation from wS.F. to wS.F' . It gives rise

to a homotopy in the same way. ‘ ' a1

Let a cofibration sequence of exact functors C' + C mean a Bequ'ence of natu-
ral transformations F' =+ F— F" having the following two properties: (i) for
every A € C' the sequence F'(A) =+ F(A) ~ F"(A) is a cofibration sequence, and

(ii) for every cofibration A' -+ A in C' the square of cofibrations

F'(A"Y) = F' (&)

!

F(A") —» F{&)

is admipethise in the sepse that F(A') U F'(A) —~ F(A) is alsc 4 cofibration.

E'(A")

Recall the category E(A,C,B) (section 1.1), and let E(C) = E(C,C,C) .

Proposition 1.3.2. {(Equivalent formulatione of the additivity theorem}. Each of
the following four assertions implies all the three others.

(1) The following projection is a homotepy equivalence,
wS.E(A,C,B) —— wS,A x w3.B
A C =B b A s B
{(2) The following projectioﬁ is a homotopy equivalence,
WS-E(C) e WS.C ] WS.C
A QB b— A, B,
(3) The following two maps are homotopic (resp. weakly homotopic),
WS, E(C) ——m—— uS.C
A C—+B —— C, resp. AVB ,
(4) If F' -+ F +F" is a cofibration sequence of exact functors C' - C then
there exists a homotopy

IWS.EFl o (WS.F' v IWSEM (= IWS.(EVEM )

Proof. (2) is ‘a special case of (1), and (3) is a special case of (4). So it will
guffice to show the implications (2) = (3) = (4) and (4) = (1) .

Ad (3)=(4). To give a cofibration sequence of functors F'»»F #F" 'from C' to C
is equivalent to giving an exact functor G: 0" » E{C) , with F'=3gG, F = tGC,

and F". = qG , where &, t, q are the maps VA.H C-+B+—>4, C, B, respgctively
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(which are exact by proposition 1.1.4). Thus (4) follows from (3) by maturality.

Ad ¢2)»(3), The desired homotopy IwS.t] e wS.(svq) | iz certainly valid upon re-

striction along the map

IWS.CI % |w8.01 — > w8, E(O) !
A, B b——— Aw AVB-»3B ,

g0 it will suffice to know that this map is a homotopy equivalence. But the map i=s

a section to the map in (2) and therefore is a homotopy equivalence if that is one.

Ad (4)»(1), The map p: wS.E(A,C,B) » uS.A x wS.B is a retraction, with section o
given by A,B+> Ar AvB -+ B . To show P is a homotopy equivalence it therefore
suffices to show that the identity map on wS.E(A,C,B) is homotopic to the map op .
(In fact, it would suffice to know that the two maps are weakly homotopie, that is,
homotopic upon restriction to any compactum, fox that would Btill imply that the

map © is surjective, and hence bijective, on homotopy groups.) The desired homo-
topy results from (4) applied to a suitable cofibration sequence of endofuncters

on E(A,C,B) . The cofibration sequence ig shown by the following diagram which
depicts the functors (the rows) applied to an object A»» C-»B ,

(A= A=+ %)
(A C -»B)
it
(* = B 2 B)
This completes the proof. o

The actual proof of the additivity theorem is rather long and it will be given
later (it occupies the next section), We will now convince ourselves that a consi-
derable short cut to the proof is possible if the definition of K-theory isladjusted
somewhat. We begin with the

Observation 1.3.3. Let 8, t, q denote the maps from E(C) to C given by
A C-»B +—» A, C, B, respectively, and let svq denote the sum of & and (g .

Then the following two composite maps are homotopic,

t
[WECC) | ———% [wCl —> aluS.Cl .
svq
~ This results from an inspection of IwS.CI(z) , the '2-gkeleton' of [wS.Cl
in the S.-direction. Let us identify wC to wS,C, as before, and let us identify
wE(C) to wS,C whose objects are the cofibration sequences A, > A, -wA .
2 . 0,1 0,2 1,2
The face maps from WSZC to wSiC then correspond to the three maps 8, £, 4 »

‘regpectively, and which is which can be seen from the diagram
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' Ao,l

Let us consider the canonical mep |w320| % [Azl -+ IWS'CICZj . Regarding the 2-gim-
plex |A2| as a homotopy from the edge (0,2) to the edge path (0,1}(1,2) we
obtain a homotopy from the composite map jt ,

IWEC) |~ 15 —j—‘-ﬂle.C!(z) :

to the loop product of the two composite maps js and jg . But in QIwS.C| the
loop product is homotopic to the composition law, by a well known fact about loop

spaces of H-spaces, whence the observation as stated.

The same consideration shows, more generally,
Observation 1.3.4. Tor every n » 0 the two composite maps

] |
w8 ey | ——— 1us™ el —— alws (Pt Deg
svq

are homotopic, where wSF“)C =3, ... 8.0 .

— = '
Corollary 1.3.5. The additivity theorem (proposition 1.3.2) is valid if the defini~
tion of K-theory as Q[wS.C| is substituted with lewSSN)Cl = ;im n“IwSS“)CI .

Proof. TFirst, proposition 1.3.2 is formal in the sense that it applies to the pre-—
gent definition of K~theory just as wyell. Second, by the preceding observation the
two composite maps _
s | =3 0 ws el —— 2”18 ey
‘ svq _
are weakly homotopic. Sinee the arrow on the right is an isomorphism this is one of

the equivalent formulations of the additivity theorem (propositicn 1.3.2). 2

Remar®. As a consequence of the corollary we could add yet another reformulation of
the additivity theorem to the list of proposition {.3.2. WNamely the additivity theo-
rem as stated there implies (section 1.5) that the maps Ws®el » plus® e are
homotopy equivalences for n » | . Conversely if these maps are homotopy equivalen~
ces then so iz QlwS.Cl = ﬂmlegN)CI , and thus the additivity theorem is provided

by the corollary.
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To conclude this section we describe a modification of the simplicial category
wS.C which was suggested by Thomason, It is a simplicial category w0 . By de-
finition “ThF is a subcategory of the functor category C Bl | The objects of

anC are the sequences of cofibrations
C —+C, 9= ,,, > C
o 1 n

and the morphisms are the natural transformations C =+ C' satisfying the condition
that for every i £ j the induced map
] 1

is amap in wC .

wI.C is 'better' than wS.C insofar as it may be regarded as the horizontal
nerve of a bieategory.

In order to compare the two we have to modify wT.C a little, by including
choices. Namely let wT:C be defined” just as WTnC except that in the date of an
object we include a choice of quotients cij - Gjlci for every 1€ 3j 3 the choice
is to be arbitrary except if i = j where we insist that Cog ™ %y the basepoint.
The forgetful map wTte » 4T.C is an equivalence of categories in each degree, and
therefore a homotopy equivalence. The comparison is now made by means of a map of
simplicial categories wITC » w$.C which we show to be a homotopy equivalence. The
map is defined as the forgetful map which forgets the Ci gnd remembers only the

subquotients Gij s

To show the map is a homotopy equivalence it suffices to show WT:C'+ anC is
& homotopy equivalence for every n . DFor fixed n now anC may be regarded as a
retract of dT;C ; the section is the map which defimes Ci as co,i (the section
is not induced by a simplicial map}. We show the retraction is a deformation retrac-
tion by exhibiting a homotopy explicitly. There is a natural transformation from
the identity functor to the composed map wT:C - anC - wT:C y, it is étven on an
object Corr esa ™ C by the quotient map teo Co,u’” . co,n which 18 a map in
anC in view of the definition of what this means. The natural transformation
gives the desired homotopy.



335

1.4, The additivity theorem.

The proof of the additivity theorem involves only the coflbration structure,
not the weak equivalences. It will therefore be convenient to explicitly concentrate
on the cofibratiens, a kind of 'separation of wvariables'.

Ef C is a (small) category with cofibrations we let AnC = Qb(SnC) , the set
of objects of SnC » and 4.C the simplicial set [n] — énC . '

Lemna 1.4.1. An exact functor of.categuriea with cofibrations £: C - 0" induces
a map 4.£: 8.0+ 4.0' . An isomorphism between two such functors £ and f?

induces a homotopy between 4&.f and 4.f' .
Before proving this we note the following consequence.

Corollary. (1) An exact equivalence of categories with cofibratiens C -~ C' induces
a homotopy equivalence 4.C -~ 4.C'.

(2) Let C be made into a category with cofibrations and weak equivalences by means
of the category il of isomorphisms in C . Then there is a homotopy equivalence
5.0 » i8.C . '

Indeed, (1) is clear, and (2) results by considering the simplicial object
fm] v imS.C , the nerve of i8.C in the i-direction, and noting that i S8.C = 4.0
and that the face and degeneracy maps are homotopy equivalences by (1).

Proof of lemma. 'The first part is clear. To prove the second part we will explicie-
ly write down a simplicial homotopy. This is best done in categorical language. It
is quite well known that simplicial objects in a category U can be regarded as
functors X: AP + 0, Inl+ Xlnl ; and mapsrof gimplicial objects ag natural
transformations of such functors. It seems to be less well known that simplicial
homutopieé can be dagcribed in aimilar fashion. Namelf let 4/{1] denote the cate-
gory of objects over [1] im 4 ; the objects are the maps [n] - [1] . For any.

%: 2P 4P et ¥* denote the composed functor
' X

A/DP —— 2P ——p
([n] -+ [11) =—> [n] ——>x[n] .
Then a stmplioial homotopy of mape from X to Y may be identified with a natural

transformation X* - Y* .

In the case at hand suppose that a funetor isomerphism from £ to £' is given
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and write it as & functor F: C x [1] » C' , The required simplicial homotopy then
is the map from {[nl-i1]) » AnC to (In]=[11) = énC' given by

(a: [n] = [1}) ——— ( (A: Ar[n] =+ C) = (A': Ar[n] » C") )

where A' 1is defined as the composition
(A,ﬂ*) id x P F
Ar[n] ——— C % Arll] ———— ¢ x [1] — ¢!

and p: Arf1] =+ [1] is givenby (O, 0, {(J,D» 1, and (O,1D w1, o

Recall the equivalent formulations of the additivity theorem given in proposi~

tion 1.3.2. We will now prove cne of them.

Theorem 1.4.2, (Additivity theovem), Ler { be a category with cofibrations and

weak equivalences., Then the following map is a homotepy equivalence,

wS,E(C) —— wS.,C x v§.C
AHC-»Bl-_-_’A’B'

We deduce this from
Lemma 1.4.3. The map 4.E(C) - 4.8 x 4.0 is a homotopy equivalence.

The lemma may be regarded as a special case of the theorem, namely tha case of

the map 1iS.E({C) ~» iS8.C x i8.C , in view of lemma 1.4.1. Conversaly,

Proof of theorem from lemma 1.4.3. Define C(m,w) to be the full subcategory of
the functor category C[m] of those functors which take values in wC . Then
C(m,w) is a subcategory-with-cofibrations of C{m] » &nd [m] » C(m,w} defines a
simplicial category with cofibrations. Applying the lemma we obtain that each of
the maps A.E{{(m,w)) -+ 4.C(m,w} % 4.C(m,w) is a homotopy equivalence. It follows,
by the realization lemma, that the map of simplicial objects

{ [m] » 4. E€C(m,)) ) —— ([mlp 5.C(m,w) ) x ( [m]f* 5.C(m,w) )

is a homotopy equivalence. But this is equivalent to the assertion of the theorem
in view of the natural isomorphism of [m],[n) - AnC(m.w) with the bisimplicial set
[m],[n] » menC » the nerve of the simplicial category wS.C , o

In the proof of lemma 1.4.3 we will need a version of the fibration eriterion,
theorem B of Quillen [ 8], in the framework of simplicial sets, We proceed to for-
mulate this.

 Let A" denote the simplicial set atandovd n-simplex, [uml = HomA([m],[n]) ]
If Y is any simplicial set then its set of n-simplices may be identified with the
set of maps a" > Y (a case of the Yoneda lemma) . Let‘ £: XY be amap of sim—
plicial sets and let y be a n-simplex of Y . Define = simplicial set £/(n,y)
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as the pullback

£/{(n,y) —X

L

AN ——y

Lemma 1.4.A. If £/(n,y) is contractible for every {(mn,y) then £ 15 & homotopy

equivalence.

Lemma 1.4.8, If for every a: [m] + [n] , and every ¥y € T, , the induced map
from £/(m,a*y) to £/(n,y} is a homotopy equivalence then for every (n,y) the
pullback diagram above is homotopy cartesian.

These two lemmas follow at once from theorems A and B of Quillen [ 8]. Fox let
simp(Y) denote the category whose objects are the (n,y) and where a morphism from
(n',y") to (n,y) is a morphism a: [n') +[n] in & such that a*y = y' ., By
applying simp(-) to everything in sight we obtain a translation of lemmas A and B
into cases of theorems A and B, respectively. This uses that simp(f/(n,y)) is na-
turally isomorphic with simp(£)/(m,y) , the left fibre over {(n,y) of the map of
categories simp(f) . And it uses further that, if N denotes the nerve functor, |
there is a natural transformation Nsimp(Y) -+ Y which is a homotopy equivalence

{cf. the end of section [.6),
Proof of Temna 1,4.3. We defer till later the proof of the following

Sublemma. The map £: 4.E(C) » 8,6, Aw» C+Br— A, satisfies the hypothesis

of lemrma B above.

Applying lemme B we obtain a certain homotopy cartesian square for each simplex
(n,y) of &.C . In particular we obtain such a square for the unique O-simplex =*
of 4.0 in which case the homotopy cartesian square may be rewritten as & fibration
up to homotopy £/(0,4) —+ 4.E(C) = 4.0 . The term £/(0,%) can be identified with
4,E'{C) where E'(C) denotes the subcategory with cofibrations of E£(C) whose
objects are tha cofibration sequences #*» C-»B . As the gquotient map in those
cofibration sequences is necesssrily an isomorphism, &'(C} is equivalent to ¢,
and by lenma 1.4.1 therefore 4.E'(C) is homotopy equivalent to 4.0 . We conclude

that the sequence

4.0 ——p 4, E(C) —> 4.C
Ar OB F— A

B i+—+t %rs B-»B

{g a fibration up to homotopy. There is a map to this fibration sequence from the
product fibration sequence. The map is the identity on the fibre and on the base,
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and on total spaces it is given by the split cofilration sequences, i.e. it is the
map 4.C x 4.C = 4.E(C) , (A,B) +» (As>> AVB # B) . It follows that this map is a
homotopy equivalence., The map is a section to the map of lemma |.4.3, so that map

must be a homotopy equivalence, too. o

Proof of sublemma. The assertion is that for every y € 4 C and w: [m] -» [nl]
in A, the map wy! £/(m,w¥y) > £/(n,y) is a homotopy equivalence.

Tt will suffice to consider the special case of maps [0] » [n] . For any map

wi: [m] -+ [n] can be embedded in some commtative triangle

{m] "'—‘“"’ [n]

N /-

fol

and if we know that u, and v, are both homotopy equivalences then it follows
that w, is a homotopy equivalence, too.

We are thus reduced to proving this: let A' be & n-simplex of 4.C , for
some n , and # the unique O-simplex of 4.C . Tet wv,: [0] = [n] denote the
map which takes 0 to i . Then for every i the map

Vgt E/O,) — £/(n,A")
is a homotopy equivalence.

A msimplex of 4.,E(C) may be identified to an chject of ‘E(SmC) , that is,
a cofibration sequence A» C +B in the category SC .

A m-simplex of £/(n,A') now consists of such a m—simplex A+ C-»B. together
with 2 map u: [m] - [n] , and these data are subject to the condition that A is
equal to the composite ' ' ‘
Arlm] —, Ar[n) L’ c .

The quotient projection Aw+* € -#B 3B induces a map p¢ £/{n,A") = &.C .
Tt will suffice to show that p 1is a homotopy equivalence, Indeed, p is left
inverse to each of the composed maps |

»

Jx Vik
4.0 —— £/(0,%) —— £/(n,A") ,

therefore if p 1is a homotopy equivalence then so is vi*j* . and hence also TR
since j, certainly is a homotopy equivalence, being induced by the equivalence
C-£/(0,%) , Br (4= ESB, =) .

Finally, in order to show p is a homotopy equivaience,' it suffices to show
‘that the particular map vn*j*p: £/(n,A") + £/(n,A") is homotopic to the identity
map on £/(n,A') . We will construct such z homotopy explicitly.
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The homotopy to be constructed will be a lifting of the simplicial homotopy
thet contracts A" to its last vertex, In categorical language, this simplicial -

homotopy is given by & map of the composed functor

@w/0n°e 3 4°F — (sets)
{[m] + [1]) > [n] — Hom([m],[n])

to itself, namely by
(w: [ml » [11) ——> ( (u: [m} > [0])} — (o3 [m] = [n]) )

where u 15 defined as the composite
{u,v) W
] ————emp [n] x [1] — [n]
and where w(j,0) =j , w(j,1> =n.

A lifting of this homotopy to ome on £/(n,A') will be a map taking

(vt [m] » [1])
to . .
(A ¢ #B , u: [n) - [0]} tmom—y B €3, u: [m] > [a])

where U i3 obtained from {v,u) as before and where certain compatibility eondi-
tions must be satisfied. TIn particular A must be equal to the composite

Uy Al
Ar[m] —— Arfn] — C

and is thus entirely forced.

To see that the rest of the data can be found in the reqﬁired way we note that

for every i € [m] we have
u(j) € ulj) .
This may be eﬁpressed by saying that there is a map of functers
(u: [m]l » [n]) —— (u: [m] = [a]) .
Consequently there is also a map of functors
 (uyd Arlm] ~+ srlnl) —> (uy: Aclm] » Aclnl) ,
and the latterx induces a map r;nf the composed functors

Aclm) —» Arlnl —C ,

that ig, o map from A to A in 50 .

Tor 'late.r reference we record that a map A - A obtained in this fashion is

necegsarily unique. Tndeed, A - A is induced by a mep of functors Arfm] < Ar[n]

and the latter map, if it exists at all, is uniqie because Ar[n] is a partially

ordered set.




340

We now define a cofibration sequence A~ C -+ B as being obtained from
A= C -+ B by cobase change, in SmC s with the map A - A . Thus

Ar—sr C —»B

|

hs—»C—»B .

The definition involves a choice of pushouts; that is, given A& A» £ we must
complete it to a pushout diagram, with pushout C , 1in some definite way. We
insist at this point that those choices shall be made in C xather than in SmC .
Because of the way pushouts in smc are computed (proposition I.1.4) this gives

the required choices in SmC as well.

We are left to verify that the construction of A~ C-»B is compatible with
the structure maps of the category Af[1] ; that is, if in our data we replace [m)
by [m'] throughout, by means of some map [m'l] -+ [m] , then the structure map
in 4.E(C) induced by [m'] - [m] takes the ome cofibration sequence to the otbhex.

To see this we review the steps of the construction. The first step was the
definition of the map A -+ A . The definition is compatible with structure maps

because of the uniqueness property pointed out above.

The second step was the choice of sctual pushout diagrams. But this choice was
made in ¢ , and an element of SmC is a certain kind of diagram in C on which
the simplicial structure maps operate by omission andfor reduplication of data. 5o
again there is the required compatibility.

With a little extra care we can arrange the choices so that the homotopy starts
from the identity map (namely if A - A is an identity map we insist that C - T
is also an identity map); and that the image of Vn*j* is fixed under the homotopy
{namely if A = * we insist that C -+ B is the identity map on T ). We have now
constructed the desired homotopy. This completes the proof of the sublemma and
hence that of the additivity theorem. ' a
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1.5, Applications of the additivity thecrem to relative K-theory, de-looping,

and cofinality.

tet X: AP 2 0 be a simplicial object in a category P . The associated path
object BX is defined as the composition of X with the shift funotor A - A
which takes [n] to [n+i] (by 'sending i to i+#] ' - this fixes the behaviour
on morphisms). The fact that a path space deforms inte the subspace of constant
paths has the following well known analogue here, e.g. [11], which we record in de~

tail because we need to know the homotopy.

Lemma 1.5.1. PX is simplicially homotopy equivalent to the constant simplicial

object [n]m X -

Proof., We show there is a simplicial homotopy between the identity oo PX and the
composite map PX - X ~ PX induced from

{n] — ( [nt1] = (0] = [n+1] )
00 .

The homotopy is given by the natural transformation
(at [n] = [11) = (@%: X = X )
induced from (a: [n]l » 1)+ (maz [n+1] + [n+t]) where 9,(0) = 0 and

i41 if a(j) =1 | .
@0 (j+1) = { -
0 if a(d =0 . A

PX comes equipped with a projection PX—X (it is induced by the 0-face map_
of X which is not otherwise used in PX ) and there is an inclusion of Kl con-
sidered as a constant simplicial object (because (Px)o = Kl Y+ There results a
sequence Xl + Pl =2>X.

In particular if C is a category with cofibrations and weak equivalences we
obtain a sequence wS]C + P(wS.C) + wS.C which in view of the igomorphism of WSIC
with w0 we may rewrite as

wl — P(wS.C) — wS.C .

The composite map is constant, and 1P(wS.C)| is contractible (for by the preceding
Jemma it is homotopy equivalent to the ome-point space IwSOCI ), so we obtain a

map, well defined up to homotopy,
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Lemma 1.5.2. The map can be chosen to agree with the corresponding map in the

preceding section.

Proof. TFrom the explicit homotopy of the preceding lemma one actually obtains an

explicit choice of the map. This ig the map in question. o

By naturality we can substitute € with the simplicial category S.C in the

above sequence., We obtain a sequence
w3.C — P(wS.8.C) — w3.8.C

(where the ' P ' refers to the first S.-direction, say).

Proposition §.5.3. The sequence is a fibration up to homotopy. That is, the map
from [wS.C| to the homotopy fibre of [P(wS.8.C)| -+ 1wS8.3.C] is & homotopy equi-

valence.
Proof. This is a speeial case of proposition 1.5.5 below. : o ]

Thus |wS.C| » ©|wS.S.C| is a homotopy equivaience and more generally there-—
fore, in view of the realization lemma, alsc the map IWSS“)CI - ﬂle.(nH)CI for
every n» 1, proving the postponed claim (section 1.3) that the spectrum
n - IwSS“)CI is a Q-spectrum beyond the first term.

We digress to indicate in which way the twice de-looped K-theory wS.5.C 1is
used in defining products; or better, external puirings (products are induced from
those). The ingredient that one needs is a bi~exact funcior of categories with
cofibrations and weak equivalences. This is a functor AxB - C , (A,B) & AAB ,
having the property that for every A €A and B € B the partial fumctors A A 7
and 7 A B are exact, and where in addition the following more technical condition
must also be satiéfied; namely for evexry pair of cofibrations A» A' and B> B'
in A and B , respectively, the induced square of cofibrations in ( must be
admiseible in the sense that the map A'AB UAAB AAB' - BAB' is a cofibration.

A bi-exact functor induces a map, of bisimplicial bicategories,
wS.A % w§.B — wusS.S8.C
which upon passage to geometric realization factors through the emash product
IwS.Al A wS,8] —» [wwS.5.C!
andr in turn induces -
flwS.Al A 8lwS.B| ~—— qniwwS.S.Cl

' This is the desired pairing in K-theory in view of the homotopy equivalence of
wS.Cl with @JwS.S.Cl , and a (much more imnocent) homotopy equivalence of wS.38.C

~with wiS.S,0 which we will have occasion later on to consider in detail {the
*awallowing lerme' in section 1.6).
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Definition 1.5.,4., Let f£: A~ B be an exact functor of categories with cofibra-
tions and weak equivalences, Then S,(f:4+B) is the pullback of the diagram

S.A—S,B<—P5.B .

Thus for every n we have a pullback diagram

Sn(f:A4B) — (PS.B}H_H S B

o

SA —— SB .
n n

The vertical map on the rightrhas a section (it is not compatible with face maps),
8o the pullback category is equivalent to the fibre product category and in any case
is nmot pathelogical. It results (sections 1.1 and 1.2} that S,(f:A+B) iz a sim-
plicial category with cofibrations and weak equivalences in a natural way, and all

the maps in the defining diagram (definition 1.5.4) are exact.

Considering B as a simplicial category in a trivial way we have an inclusion
B - P(S.B) whose composition with the projection to S.B is trivial (ef. above),
Lifting the inclusion to the pullback, and combining with the other projection, we

then obtain 2 sequence

B—+8.(f:A0B) —S.A

in which the composed map is trivial. The sequence is foxmally very similar to the
sequence describing the homotopy fibration associated to a map of spaces. The

following result says that in fact the sequence serves a similar purpose,

Proposition 1.5.5. The sequence
vS.B —» wS.8, (£:A+B) —> wS8.5.A

is a fibration up to homotopy.

Proof. There 15 a fibration criterion which says that it is enough to show that fox
every n the sequence wS.B- wS.Sn(f=A»B) - wS.SnA iz a fibration up to homotopy
{e.g. since the base term wS.SnA is comnected for every n , the eriterion given
by lemma 5.2 of [13] will do). Using the additivity theorem we will show that, in

' fact, the sequence is the same, up to homotopy, as the trivial fibration sequence
associated to the product wS.B x wS,SnA ' '

Neglecting choices to simplify the notation, we can identify an object of

Sn(f:AwB) to a pair of filtered objects in A and B, respectively, say

A 4 and 30,4 By = v B, » together with an isomorphism of £il-
0y

" tered objects,

T s Ao’n

f(Ao’!)H ...Hf(Ao’n) R BllBoH '.'HBBIBO .
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Let ('. denote the subcategory of the objects where all the maps B> B+ .o B

are identities and all the Ab ; are equal to the basepoint; then C' is isomorphic
2

to B, Let C" denote the subcategory where Bo ig equal to the basepoint; then

C" is isomorphic to SnA . There is an obvious cofibration sequence of endofunctors
§'—sid —» §"

where 3' and j" take values in C' and (", respectively. Applying the addi-
tivity theorem (in formulation (4) of proposition 1.3.2) we obtain that the identity
map on wS.Sn(f:AﬂB) is homotopic to the sum of wS.j' and wS.j" . It results

that the map, given by the split cofibration sequences,
wS.B x wS.SnA — wS.Sn(f:A+B)

iz a retraction, up to homotopy. On the other hand the map is obviously also a
coretraction. It is therefore a homotopy equivalence, We conclude with the remark
that the homotopy equivalence can be induced by & map from the product fibration
sequence to the gequence in question (i.e. the degree n part of the sequence of
the proposition). It follows that the two sequences are the same, up to homotopy.

This completes the proof of the proposition, a

In a special situation we can modify the definition of S,(f:A+B) to obtain a
variant which ig technically a little more convenient. Namely suppose that A is
a subeategory with cofibrations and weak equivalences of B as defined in sections
1.1 and 3.2, Then we define

F_(B,A)

as the category whose objects are the sequences of cofibrations in B,
B 3B, — ,,. =B
0 1 n

subject to the condition that for every pair 1€ i the object Bj/Bi is isomorphic
to some object of A ., There is a forgetful map

Sn(AﬂB) L—*—Fn(B,A)

(forget choices of quotients Bj/Bi in A ). It is an equivalence of categories
with cofibrations and weak equivalences. Further the Fn(B,A) may be assembled to
a simplicial category with cofibrations and weak equivalences F.(B,A) . By the

" reslization lemma then the forgetful map

3,8, (A+B) — wS.F.(B,A)

is a homotopy equivalence. Thus F.(B,A) may be used interchangeably with S.(A-B)
if A is a subcategory with cofibrations and weak equivalences of B .
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Corollary 1.5.6. If A- B- C are exact functors of categories with cofibrations

and weak equivalences then the square

w8.B —» w§.S. (A+B)

|

w8.0 —— uS.S. (A4C)
is homotopy cartesian., Similarly the square

WSIB — wSlFl (B,A)

|

wS.C —— uS.F.(C,A)
is homotopy cartesian if the terms on the right are defined.

Proof. There is a commutative diagram

wS,B — wS.8. (A+B) — wS.8.4

L

WS, 0 —— wS.8.(A0) — wS.S.A

in which the vertical map on the right is an identity map and where the rows are
£ibrations up to homotopy, by the preceding proposition. It results that the square

on the left is homotopy cartesian.
Concerning the second square, if that is defined, there is a natural transfor-
mation between the two cquares in which all the maps are homotopy equivalences. The

second assertion is just a rewriting of the first. H

Corollary 1.5.7. To an exact functor B = C there is associated a sequence of the
hamotopy type of a fibration (with a preferred null-homotopy of the composed map)
WSDB —_— WS|C Eaunamnc J Ws.s- (B‘PC) *

Indeed, this is the case A = B of corollary 1.5.6 since wS. 8. (A=A is
contractible,
1f ¢ is a retract of B . (by exact functors) there is a splitting

Corcllarg 1.5.34.
wS.B o wS.C % wS.5.(C»B) .

Indeed, this is the case of corollary 1.5,6 where the composed map A- B~ C

is an identity map (or more generally, an exact equivalence) since wS.8.(AsC) 1is

contractible in that case.
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Let A be a subcategory with cofibrations and weak equivalences-of B, We
say that A is strictly coftnal in B if for every B € B there exists a A €A
such that BvA is isomorphic to an object of A .

For example the category of free modules over a.ring qualifies as strictly
cofinal in the category of stably f£ree modules, but not in the category of projec—

tive medules.

Proposition 1.5.9. If A is strictly cofinal in B then wS.A -+ wS.B is a

homotopy equivalence.

Proof. Tt will be convenient to assume that A is saturated in B in the sense
that every object of B isomorphic to ome of A is actually contained in A .
Since A can be enlarged to an equivalent category which is saturated in B and
since such an enlargement does not affect any homotopy types, this assumption is

rot a loss of generality.

By corollary 1.5.7 or 1.5.6 the map wS.A - wS.8 will be a homotopy equiva~-
lence if the bisimplicial category wS.F.(B,A) is contractible. By the realization
lemma this follows if wﬁﬂf.(B,A) i eontractible for every n , We can rewrite

wsnF;(B,A) M WF.(S B,SA) .

Asgertion 1. 1f A is strietly cofinal in B then, for every = , SnA is
strietly cofinal in SnB .

The assertion will be proved later. It reduces us to showing that wF.(B,A)
ia contractible if A is strictly cofinsl in B . By the realization lemma again
thie follows if the simplicial set me.(B,A) , i.e. the degree-m-part of the nerve
in the w-direetion, is contractible for every m . Let; as before, B(m,w) denote
the category of the diagrams B, By ... B, in B in which the arrows are
weak equivalences; and similarly with A(m,w) . Let {.(B,A) denote the gimplicial
set of objects of F.(B,A) . We can rewrite |

me.(B,A) N §.(B(m,w) ,Alm,w)) .

Agaertion 2. 1f A is strictly cofinal in B then, for every m, Alm,w) is
strictly cofinal in B(m,w) . '

The assertion reduces us to proving
Asgention 3. If A is strictly cofinal in B then {.(B,A) is contractible.

It remains to prove the assertions.
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o,]’* Bo,z

By applying the cofinality

Proof of aseertion 1. Let B ES B . We think of it as a filtration B -

wse 7 B plus a choice of subquotients B,

On’ 1!j *

hypothesis for Ac B we can £ind objects A' . in A (not subquotients of a fil-
tration) go that B. .3 v A 1j is in A for ‘every (1.3) Let A' be the sum of
all the A‘ . Then B. i vA' isin A for every (i,j) . We can define an

ocbject A o% S A where, for every 1i<3j , Ai,j involves at least one summand -
A' 3 briefly, Ao,i ig the i~fold sum of A' with itself, Them B v A is in

S B , and all the objects involved in it ere in A ; it is therefore in S A in
view of the definition of what it means for A to be a subecategory with cofibra-

tions of B .
Proof of assertion 2. This is similar, but easier.

Proof of assertion 3. A n-gimpléx of §.(B,A) is 4 seduence of cofibraticns in B,
B e PP B subject to the eondition that every subquotzent B /B. i3 isomor-
phlc to some obJecc of A (in fact, equal to an object of A, for any choice
vhatacever, in view of the assumed fact that A is saturated in B ). We apply the
cofinality hypothesis to each of the B; and then add all the objects of A ob-
tained, ‘This gives an object A in A with the property that B vA isin A
for every i ; the sequence .B VA a0 B vA iz thus a sequence of cofibrations

in A (since A is a subcategory with cof1brat1ons of B ). We refer to this
situation by saying that the object A moves the simplex B > S B, »

More generally, given finitely many simplices, not necessarily of the same di-
mension, we can f£ind objects as before and add them all up te obtain a single object

A which moves every one of these simplices.

The simplicial set §.(A,A) is contractible (it is the nerve of the category
of cofibrations in A , which has an initial object). To show £.(B,A) ie con-
tractible it suffices therefore to show that the inclusion §.(A,A) ~ {. (E A) a
homotopy equivalence. This follows if we can show that for every fintte paxr of
gimplicial subsets (5L,K) < (f.(B, A),§.(A,A)) there is a homotopy, of pairs, from

the 1nc1usxon map to some mep with image in £.(AAY o

/

The simplicial set L has only finitely many non-degererate simplices. So
there is an object A E A which moves every one of these simplices. But then A

moves every other 51mplex of L as well.

§.¢8,A) is a simplicial subset of the nerve of the categury of cof1bratxons in
B . The sum with A induces a natural tranaformation of that ecategory, and in “turn
a homotopy of the identity map on §.(BsAY . The restriction of that homotopy to
K, is entirely in §.(8,A) , resp. f.(A,A) , and the homotopy ter—
into 4§.(A,A) . This gives the required homotopy
’ =]

. L, resp,
minates at a map which takes L
of pairs. The proof ig complete.
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{.6. Cylinder functors, the generic fibration, and the approximation theorem,

Let ¢ be a category with cofibrations and weak equivalences. By a cylinder
funetor on C is meant a functor from ArC to the category of diagrams in C

taking f£: A=+ B to a diagram

J 12
A —— T(f) «—=—B

%

The functer is redquired to satisfy the axioms Cyl 1 - Cyl 3 below. The object
T{f) will be referred to as the eylinder of £ , and the maps j1 s j2 sy P &8
the front inolusion, back inclusion, and projeciion, respectively.

Cyl 1, The front and back inclusions assemble to an exact functor .
ArC > FIC
(A—B )1} » { AV Bromem——y T(f) ) .
£ Iy v,

Gyl 2. T(x~4) = A, for every AEC, and the projection and back inclusion

are the identity map on A .

&y 3.

(fool's morning song [9], the tune replaces an unnecessary axiom)
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Consider, for example, the category R(X} of the spaces having X as retract.
. t = . '
It has a cylinder functor where T(¥Y") X UX?:[O,]] ¥x[0,1] UYxl Y.

The following axiom may, or may not, be satisfied by a particular category of

weak equivalences wC .
Cylinder axiom. The projection p: T(f) B is in wC for every f: A<+ B in c.

Note. If in additien to the cylinder axiom wC also satisfies the saturation
axiom (section 1.2) it follows that the back inclusien j2 is always in wC , and

the front inclusion jl is in wC whenever f 1is.

For example in R{X) the weak homotopy equivalences and the simple maps satisfy
the eylinder axiom while the isomorphisms do not. However the simpIe maps do not
satisfy the saturation axiom, and in fact jl and j2 are not, in general, simple

maps,

Lemma 1.6,1. Cylinder functors are inherited by filtered objects. That is, a cylin-
der funetor on C induces one on SnC , for every n . If the weak equivalences

in C satisfy the cylinder axiom then so do those in SnC .

Proof, The required functor on ArSnC ig defined as the induced map
ArSnC o SnArC — Sn(diagrams in ) w~ (diagrams in SnC) .
The only non—-trivial point to check is the exactness of the functor ArSnC -* FlSnC
of axiom Cyl 1 . But this functor may be identified to the composite
Ar§ C w SnArC —_— SnFlc R FISnC

and hence is exact since ArC - FlC is exact by axiom Cyl 1  in C. o

Definition. The aone functor Aw cA is defined by

ch = T(A"'*) »

and the suspension functor is defined as the quotient of the cone by the front

inclusion A= T(A- %) , '
IA = cA/A .

Proposition 1.6.2, If C has a cyli_ndef functor and the weak equivalences satisfy

the cylinder axiom then the suspension map

£ : uS.C — wS.C

represents a homotopy inverse with respect to the H-space structure on wS.C given

by the sum.
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Proof. By the additivity theorem the cofibration sequence of functors idm o I

implies a homotopy of self-maps on wS.C, idv I = c. The natural transforma—
tion cA -+ % is a weak equivalence in view of the assumed cylinder axiom. By lemma
1.3.1 therefore ¢ , and hence id v ¥ , is null-homotopic. ' o

Define w( to be the subcatepory of wC of those weak equivalences which are
also cofibrations. (This is no%, in general, a category of weak equivalences in the

genge of section 1.2.)

Lemma !.6,3. If C has a cylinﬂer functor, and the weak equivalences in ( satisfy
the cylinder axiom and saturation axiom, then the inclusion w0 - wl is a homotopy

equivalence.

Proof. Calling the inelusion i, Iit suffices to show by theorem A'[8 ] that for
every B € wC the left fibre i/B is contractible. An object of i/B is a pair
(A,f) where f: A= B is amap in wl . Since the eylinder projection p: T(f) -+ B
is in wC (by the cylinder axiom) we can define a fupctor &: ifB -~ i/B by letting
t(A,£) = (T(f),p) . The front inclusion jl: A ﬂ‘T(f) and back inclusion j,: B -
T(£) are wesk equivalences as well as cofibrations (by the cylinder axiom and satu-
ration axiom), so they define matural transformations to the fumctor t , one from
the identity functor (using that p.jl = f ) and one from the constant functor with
value (B,idB)‘ {using that p j2 = idB Y. It results that t is homotopic to both
the identity map on i/B and the trivial map (B,idB) » Hence the latter two are

homotopic, and i/B is contractible, o

To formulate the next result suppose that C is a category with cofibrations
and that C is equipped with fuwo caﬁegories of weak equivalences, one finer than
the other, vi < wl . Let (¥ denote the subcategory with cofibrations of C given
by the objects A in C having the property that the map * ~+ A is in wC . It
inherits categories of weak equivalénces va = nvC and wC¥ = nut

Theorem 1.6.4. (Fibration theorem). I1f C has a cylinder functor, and the coarse
‘category of weak equivalences wl satisfies the eylinder axiom, saturation axiom,

and extension axiom, then the square

v —— ws. ¥ (mox)

1

VS.C — WS.C

is homotopy cartesian, and the upper right term is contractible.,
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Proof. Define vwC to be the bicategory of the commutative squares

in ¢ 1in which the vertical and horizontal arrows are in v{ and wC , respec-

—_—

r—

tively. Considering wC as a bicategory in a trivial way we have an inclusion
w0 - vwl which is a homotopy equivalence (lemma 1.6.5 below).  There is a map in
the other direction. The map exists only after passing to nerves, and diagonalizing
{briefly, the map takes each square to its diagonal arrow), but to simplify the
notation we will allow ourselves the abuse of writing the map as wwC » wC . The

map is left inverse to the former map, hence is a homotopy equivalence itself,

We can similarly define a simplicial bicategory wwS.C . By:the realization
lemma it results from the above that the maps wS.C + vwS.C and wwS.C - wS.C are
homatopy equivalences as well (again the second map exists only after passing to

nerves and diagonalizing the v— and w-directions).

Let vwC denote the sub~bicategory of ww( of the squares in which the hori-
zontal arrows are in wC rather than just wC . Then the inclusion vﬁt ~» vyl is
a homotopy equivalence by lemmz 1.6.3, which applies in view of the asaumed cy11nder
axiom and saturation axiom. (In detail, by the real1zat1on 1emma we can reduce to
passing to nerves in the v-direction and showing that v, wC -+ v, WC is a homotopy
equ1valence for every n ., The map may be rewritten, in a way we have used beforve,
as wC(v,n) » wC(v,n) , and lemma I. 6.3 now applies to the latter). Similarly there
is a Slmpllclal bicategory vw3.C , and the inclusion veS.C + vwS.0 is a homotopy
equivalence. (For by the realization lemma we can reduce o ahowlng that va C -
vwS C is a homotopy equivalence for every n . As S C inherits a cylinder functor

from ¢ (lemma 1.6.1) the above considerations apply tu it.)

The square of the theorem may be {dentified to the large square in the following

diagram

B us.c¥

v8,0 —— yu§.0 — wS.0 —* uS.C

s the precedlng dlscussxon shews, the horizontal maps in the middle and on the right
So the square will be. homotopy cartesian if and only if

are homotopy equivalences.
After passing Lo nexves in the w-direction we cam iden-

the sguare on the left is.
tify the square on the left to one of the squares of corollary 1.5.6 associated to

the categories at hand, namely
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v8.0¥ ———s vS.F. (CV,CN)

v8.0 ——+ vS.F.{C,07)

the point is that a map in wC can be characterized as a cofibration in C whose
quotient is in C¥ (this uses the assumed fact that wl satisfies the extension

axiom). The square is thus homotopy cartesian by corollary 1.5.6.

Finally the simplicial category wS.0¥ is contractible because in each degree

it has ar initial object. o

The following lemma was used in the preceding argument; cf. [13] for some

generalities on bieategories.

Lemma 1.6.5. (Swallowing Zenmz). Let A be a subcategory of B , and AB the
bicategory of the commutative squares with vertical and horizontal arrows in A and

B, respectively, The inclusion B -+ AB is a homotopy equivalence.

Proof. By the realization lemma it will suffice to take the nerve in the A-direction
and show that for every n the map B -+ AnB is 2 homotopy equivalence, For fixed

n we can define a map AnB » B by taking the sequence Ao -+ L. *—An to AD .

This is left inverse to the inelusion of B . Composing the other way we obtain

the map which takes A = ... = An to the appropriate sequence of identity maps

on Ao . There is a natural transformation of this map to the identity map; it ie

given by the diagram

A Ew A —— ,,, —A
0 o o
l a] an.tl az a]
Ab y AI a : BN " r A
s | 2 n n
Thig shows that B is a deformation retract of AnB . a

In order to formulate the next result it is convenient to introduce the follo-
wing notion. Let F: A - B be an exact functor of categories with cofibrations and
weak equivalences. We say it has the appromimabion property if it satisfies the
conditions App 1 and App 2 below. |

App 1. An axrow in A is a weak equivalence in A if (and only if) its image

in B is a weak equivalence in B .,
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App 2. Given any object A in A and any map x: F(A) » B in B there exist
2 eofibration a: A» A' in A and a weak equivalence x': F(A") » 2 in B

8o that the follewing triangle commutes,

FA_
F(a) l ~~ B
A
F(A") .

Lemma 1.6.6. If F: A=+ B has the approximation property then so dees SnA'+ SnB .

Progf, The non~trivial thing to verify is the condition App 2 for the map SnF R

We think of an object of SnA as a filtration Ao,l - Ao,z T Ao,n , plus 2

choice of subquotients. Proceeding by induction on n we suppese we have found _

already a sequence A; (P Aé =1 together with maps as required, From these '
H 3

data we obtain an object in A ,

A U Al

n A a,n-1
s o,n-1 ’

and a map in B ,

t »
¢ Ao,n UA A'o,n-l ) Bo,n R
o,n~1

to which the hypothesis App 2 for F may be applied. This gives a cofibration

A U T e
o, Ao,n-I a,h—] STo,n
and a weak equivalence F(Aé n) +'B0 n 8° that the following diagram commutes
] H

(where the broken arrow A, nv--n+A; n is defined as the composite)
] H]

F(Ao.n_]}\ /= BD'“-I
' ~ pa ) ~

o,0-1

Tt
F(A, . U Ay =1’

0,0 An,n—-l "-‘__HE*

We are done.
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Theorem 1.6.7. (Appromimation theorem). Let A and B be categories with
cofibrations and weak equivalences. Suppose the weak equivalences in A and B
satisfy the saturation axiom. Suppose further that A has a cylinder functor
and the weak equivalences in A satisfy the cylinder axiom, Let F: A= B be
an exact functor. Suppose F has the approximation property. Then the induced
maps wA -+ wB and wS.A -+ wS8,B are homotopy equivalences.

Proof. It will suffice to show that wA » wB is a homotopy equivalence. For this
implies, in view of the preceding lemma, that anﬁ = anB is a homotopy equiva-.
lence for every n , and hence, by the realization lemma, that wS.A » wS.B is a

homotopy equivalemnce.

The proof that wA - wB is a homotopy equivalence, is quite long. It occupies
the rest of this section. Calling the map £ , it suffices to show, by theorem A
[ 8], that for every B € wB the left fibre £/B is contractible, und this is
what we shall prove.

The idea for the proof of contractibility of f£/B is in the following observa-
tion which says that certain diagrams P in £/B admit extensions to their cones
and are thus contractible in £/B ; by the core on D is meant here the diagram P

together with an added terminal vertex.

Observation, Let D be a diegram in £/B . Suppose that as a diggram in F/B
it extends to the cone (for example, this is the case if the colimit of 7 exists
in ¥/B ). Then 7 -+ £/3 also extends to the cone. '

Indeed, suppose that ¥ + £/B « F/B extends to the cone. Let the cone point
be represented by (A',F{A')»B) in F/B . Applying the approximation property of
F ‘we find a cofibration A'» A" in A and a weak equivalence F(A") =B in B
s0 that the triangle ‘

F(A")
~

="
F (A.“)

commutes, Then (A",F{A")=+B)} may be regarded as a terminal vertex to P in £/B
rather than just TF/B as we see by checking that certain maps are weak equivalences.
Namely let (A,F(A)#B)} represent any vertex of T . Then there is a triangle

o\ FA
F(A' ) 1 B
)
F(A")’{'\.J’,

in which both of the maps going to B are wesk equivalences. Applying the satura-
tion axiom we obtain that F(A) - F(A") is a weak equivalence in B . From this we
deduce in turn, using property App 1 of F , that A - A" is a weak equivalence,

as required,
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For example the empty diagram in £/B has a colimit in F/B provided by the
initial object of A . In view of the observation we conclude that £/B is non-
empty,

S$imilarly any discrete two~point-diagraim in £/B has a colimit in TF/B provi-
ded by the sum in A . 1In view of the observation this shows that £/B is connec=
ted. |

o show that £/B is contractible it remains to £ind sufficiently manj dia=- -
grams to which the observation applies. The sublemma below claims that this can be

done. But we must first explain what "sufficiently many' means in thia context.

Let a non-ginguiar simplicial set mean one where for every n and cvery non=
degenarate n-simplex, the representing map from A" ig an embedding. For example.
ordered aimplicial comploxes may be regarded as simplicial sets and as such are non-

singular,

In order to show the simplicial set W(E/B) , the nerve of £/B, is contrac-
tible it will suffice to show that for every non-singular X and every map from X
to N(£/B) , this map e null-homotopic.  (E.g. think of X as running through
jterated subdivisions of spheres. There are sufficiently many maps from such X to
represent all the elements of the homotopy groups of N(£/B) . If they are all tri-
vial N{£/B) is thus contractible by the Whitehead theorem).

To any gimplicial set Y we can associate its category of simplicés gimp{Y) ,
and there is a matural transformation N(simp(¥)) - ¥ (the last vertex map) which
is a homotopy equivalence (this will be recalled at the end of this section). If ¥
happens to be the nerve of a category then the natural transformation is the nexve

of a map of categeries. In particular we have a map simp (N{E/B)) - £/B .

If ¥ is non-singular then the category aimp(¥)} has a subcategory which is

given by the non-degenerate simplices (it is a partially ordered set really). The

inclusion 5imp“'d'(y) - gimp(Y) is a homotopy equivalence (cf. the end of the sec~
tion).
The map ¥ - N(£/B) now gives rise to a sequence of maps

pimp™ 3 () — =+ sinp(X) —— simp(N(£/B)) —= £/B

as well as a diagram

N simp(X) —— N sinp(N(£/B))

F

X —————— N(E/D) .

This shows that the map X~ N(E/B) will be null-homotopic as scon ag the induced

map aimp“'#'(x) -+ £/B is. The proof of the theorem has thus been reduced to the
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dsgertion. Let X be a non-singular finite simplicial set and ¢: X = N(£/B) a

map., Then the induced map q: aimpn'd'(x) + £/8 is null~homotopic.

We prove below

Sublemma. In this situation there exists a functor

n.d.

T : simp (%) ~sf/B

q
with the following two properties.

{1} There is a natural transformation from Tq to gy

{(2) The composite functor

T
simpn'd'(x)———g—ile < F/B

extends to a functor on B(X) , the partially ordered set of the simplicial subsets
of X.

The sublemma implies the assertion and bence the theorem. For the partially

ordered set g{X) has a maximal element, therefore part (2} of the sublemma implies

.d,

that simp (X) » F/B extends to the cone on simpn'd'(x) . In view of the ob-

servation therefore Tq: simpn'd'(x) -+ /B extends to the cone, too, thus T is

null~homotopic, By part (1) of the sublemma Tq is homotopic to ¢, . It results

that q, is null-homotopic.

Proof of sublemma. 1In order to define Tq we need the notion of iterated mapping

eylinder, a notion derived from the cylinder fumctor on A . Let Al oo Al be

a sequence of maps in A . We will associate to this sequence the following data
(1) the (iterated) eylinder object T(Adw...dﬁgg ’

(2) a mep ai: T(Adw...aﬁia...aAn) - T(Aoﬂ...ﬁAh} for every 0 £ 1 £n , where
the hat indicates the omission of Ai from the sequence,
(3) amap p: T(Ad*...aﬂn)J» An .
Proceeding inductively we define T(Abw...ﬂﬁn} as T(T(Ad+...4ﬁh_l) - An) ,
the cylinder of the composed map
T(Ad+”.4An_l)———+An_]H_M+An ,
and p: T(Abﬁ...ahn) -+ An as the cylinder projection.
The definition of 3. requires a case distinctien. The map
Bn H T(AD-“ N .-’An“l} —— T(Ao"'- ] -'ﬂ‘lﬂ)
is defined as the front ineclusion of the cylinder. If n = 1 the map
ao H Al —+T(Ao-rﬁ.1)

ig the back inelusion. And in general, finally, if i <n and n> 1 then the map
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A
a ]'_ : T (AO"’- . -"')Ai"*t . --‘J'Ln) p— T (AD-" . 1"’An)

is defined inductively as T(ail where ai is the (vertical) map of diagrams

P
T(Ao")a " n_'Ai".r . c"'An_l> '_"—"An

P I

T(A—D—). nl-.A.n_]) —An .’

From the particular sequence A = .ev 2 A, we can cbtain a functor

s:T_mpn'd 'Y ——r A

taking each face of A" to the iteratad cylinder of the subsequence indexed by that
face. On morphisms the functor is given by the maps Bi and their composites. To
justify this we must check that the maps 32, gatisfy the identities for iterated
face maps, But for the identities not involving Bn this follows inductively from
the case n~l1 , and for the identities which do involve 3n it follows from the

fact that the front inclusion is a natural transformation.

The desired functor Tq is obtained by a slight modification, and generaliza-
tion, of this construction, Namely let X be a non-singular simplicial set, and q
& map from X to the nerve of £/B . Then the image of q on a n-simplex =x of

X is given by a sequence of weak equivalences in A, over BE B,
AO(K) —_— e —_— An(x)
Assuming mow that x is a non—degenerate n~simplex of X we define Tq(x) to be

the iterated cylinder of that sequence, making it an object of £/B by means of the

composite map F(T(A (x)e...»A (x)) =+ F(A (x)) » B (the first map here is induced

from the projection p by the functor F , it is a weak gquivalence in view of the

assumed cylinder axiom). On morphisms Tq iz defined by the maps ai and their
iterates (the morphisms are in £/B rather than just F/B in view of the assumed
cylinder zxiom and saturation axiom). It was checked above that the rule for mor-
phisms is compatible with the identities for iterated face maps. There are no other

identities in 31mpn'd'(x) y 80 Tq ig a functor om ikt.
The desired natural transformation from Tq to q4 1is given by the projection
P T(Ao(x)-r...-rAn(x)‘) N An(x)
This complctes the argument for part (1) of the sublemma.
In defining the proposed extension t of the composed functon
T
simpmd'(}{) —3,£/8 « F/B

we will insist on the following two properties of t

(1) t takes maps in gfX) to cofibrations (as maps in A , after mneglect of the
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structure maps to B , that is),
(2) (X, u}{(J X = t(X) Ut(xo) t£(Xy)

n.d.(

Given its restriction to simp X) provided by Tq , the functor t is

uniquely determined by these conditions, up to isomorphism.

To establish the existence of t we proceed by induction, assuming in the
inductive step that t does exist on the (n-1)~skeleton of X . Our aim is to
astablish the existence of t on the n-skeleton. There is only one thing that
could conceivably go wrong with the inductive step. Namely if x is a n-simplex
of X and 9x its boundary (the union of the pfoper faces) then t(3x) and t(x)
are both defined, and a map t(dx) = t{x) is also defined, The problem now is if

this map is a cofibraticn.

Let AMx be the n-th horn of % , the union of all the proper faces except

dx i 8o
n

x = A" U

*

ad x n

Condition (2) sbove expresses t(Anx) in terms of values of t on faces of x .
Since a similar formula is valid for the cylinder functor, in view of its exactness,
we conclude that . '

e o~ T(e(d x) + A)

where A denotes the value of t on the n-th vertex of x (and where, for ease
of notatlan, we are ignoring the structure maps of objects in F/B). Applying con~
dition (2) again we obtain that the map t{dx) = t{x)} can be identified to the map

t(dnx) Ut(adnx) T(t(adnx)"An) —_'_'_,T(t (dﬂx)-’An} b
That the latter map is a cofibration, is one of the conditions that must be satis—
fied for the following map in FlA to be a cofibration in F]A.,
( t(adnx) - T(t(adnx)eAn} ) — ( t(dnx)-¢ T(t(dnxJﬂAn) ) E
go it will suffice to know that., The map is the image, with respect to
j

<D . (A" = A") s (AL T ),
of the following map in ArA ,

(t@dx) 8 ) — (LX) »4 ),

which is & cofibration in ArA because t(ad'x)~+ t(dnx) is a cofibration by con-—
d1t1on (1) above and the inductive hypotheszu. We conclude by recalling thac a -
cylznder funetor has certain exactness properties, as specified in the axiom Cyl 1 .
In particular therefore the map (¥) preserves cofibrations. This completesa the
proof of the sublemma and hence also that of the theorem. . o
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It remains to say a few words, as promised, about the map Nsimp(¥) +¥ . In
view of the nztural isomorphisms Nsimp(Y) = colimSImp(Y)(([n],y)l+ Neimp(A")) and
Y & colim .mp(.n(([n],y]H &™ , the map is fully described once onme knows the
special case of simplices A" . A m-simplex of N31mp(ﬁ Y iz a sequence of maps
in &, .

_ 80 B.l . X am
[nD] — [n]] ? s e ’ [nm]'_’[n] 2

and one associates to it the m-simplex b: [m] = [al in Aﬁl given by the last
‘vertices, i.e.

b(i) o aglny)

am A1
Nsinm(A“) is contractible sinece simp(ﬂn) has a terminal object. Therefore the
map Nsimp(hn) ~ A" is a homotopy equivalence, In view of the gluing lemma it
results from this that Nsimp(Y} = Y is a homotopy equivalence in general {cf, the
appendix A to [1113),

Suppese now that Y is the nerve of a category ¢ ., Then simp(NCY is the
category of pairs ([ml,x) , = [m] = €, and we can define a natural transforma-
tion simp(NC) » ¢ by (Im],x} » x{m) . On passing to nerves this induces the
above natural transformation im the case when C = [n] , and consequently also in

general.

We conclude with

: - . - » L) Gdl
Lemmaz, If X is non-singular there is a functor gimp(X) ~ s:.mpn

(X) which is
left adjoint, and left inverse, to the inclusion functor. '
Proof. The functor associates to each simplex of X the unique nen-degenerate
gimplex of which the simpiex is a degenerate. It is clear that this works in the
special case where X is A" . The general cagse reducas to this special case

in view of the non-slngularlty of X .



360

1.7. Spherical objects and cell f£iltrations.

By a homology theory on a category with cofibrations €, with values in an
abelian category A , will be meant a sequence of functors H,: C-A, i=0,1,,.,
together with connecting maps (A>r B) t— (Hi+l(BIAJ - Hi(A)) such that the long
sequence resulting from a cofibration sequence A» B -»B/A is exact and terminates
in a surjection HO(B) -»HO(B/A) .

Given such a homology theory', € may be regarded as a category with cofibra-
tions and weak equivalences where the lattexr are defined as the maps inducing iso-
morphisms in homology. The category of weak equivalences will be denoted wC . It

satisfies the saturation axiom and extension axiom.

Suppose given a full subcategory E of the abelian category A which is closed
under the formation of extensions and kernels; that is, if E' = E -»E" is short
exact then E', E" € E implies R € E, and E, E" € E implies E' € E . For
example A itself will do. |

Dofinition. An objeet A € C is (H,,E)-spherical of dimension n if
Hi(A)-D if i1 ¥%n, and Hn(AJEE.

With H, and E being understoed, such an A will also be aimply referred to as
n-~spherical.

We denote the category of the n-spherical objects by C® . 1Tt is a subcategory

with cofibrations and weak equivalences of C (section 1.1).

Example. On the category R{X) of the spaces having X as a retract there is a
homology theory with values in the category of Z[v]x]-modules, Hi('f,r,s) -

H, (¥,s(X) ’r#(z['rrlX])) . For E one can tqke the category of projective ZITL‘]X]-mo-"
dules, or even the subcategory of the stably free ones. The n~spherical objects in-
clude the objects (¥,r,s) where Y is obtainable, up to homotopy, by attaching
n~cells to X .

We assume that C has a cylinder functor and that the weak equivalences satisfy
the cylinder axiom, Any map £: A- B then gives rise to & long exact sequence
sra ¥ Hi(A) - Hi(B) -+ Hi(f) -» Hi"] (A) - ,as Where

Hy(£) = Hi(T(f)/A) .
We gay the mhp £ is kepomneated if Hi(f) =0 for i<k,

The following hypothesis will be meeded in the theoxem below.
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Hypotheeie. TFor every m-connected map XY in € there is a factorization

' d
X » ¥ > S + 3
m xm+ 1 : Kn Y

\

mt 1 n
xm+tlxm €C xn[xn__] ec .

Recall (proposition 1.6.2) that the suspension induces an exact funetor
£t 0+ C and a homotopy equivalence wS.C - wS.C . As a consequence if we denote
by l—iim(z) wS.0 the direct limit of the system n+ wS.l in which the maps are
given by suspension then
wS.C — {ﬁm(s) wS.C

is a homotopy equivalence.

. . L anl : ‘ :
The suspension also induces an exact functor € = C s So we can form

lim C° .
1

Theorem 1,7.1. The map
T 1t] 1
lﬁp wS.Co > 1im gy ws.C

is a homotopy equivalence, provided that the hypothesis ia satisfied.

The proof of the theorem cccupies all of thigz section. The strategy of the.
proof is to replace { by a category of cell filtrations, and to study two notions

of weak equivalence, as well as their interplay, on that category.

Definition. A eell filtration in C is an .eventually staticnary sequence of cofi-
brations ‘ |

* = A 1HA°5—-+...>——bAni—+...

such that

n
AJAL EC

for every n . The object to which the sequence stabilizes is denoted A .

any object A El C one cén find a cell filtration {Ai} to-

For example, given

gether with a weak equivalence A - A . This results from the hypothesis of the

theorem applied to the map *- A in C ..

.The category of cell filtrations will be denoted C . It is a category with

cofibrations where, by definition, a map - {A;} = {aj} is a cofibrakion if, and iny

if, for all n the map

t
An-—l UA

A“ — A:"
n-1
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is a eofibration in C with quotient in ¢™ . (Note this implies that the maps
LETL '

AJA |~ AJA| and An"llAn-]

quotient as the above. It algso implies that for all n the map A“ > A; is a

- AA/An are cofibrations, with the same

cofibration.)

L) .
The eylinder funetor on C induces one on C where

TCLEd: g0 D) = DAy T Uy ALY

i-1
As usual the cylinder functor induces functoxs cone and suspension. The suspension

functor on £ relates very simply to that on C , namely it is given by

-

Of the two categories of weak equivalences in C to be considered, the coarse

. 1 2 . L}
one is the category wl of Ehe meps {Ai] -+ {Ai} having the property that A - A
is in wC . The category wl satisfies the saturation axiom and extension axiom,

and also the cylinder axiom.
Lemma 1.7.2. The map wS.a + wS.0 , {Ai} b A, is a homotopy equivalence.

Proof. This is where the hypothesis of the theorem is used. We verify that the

approximation theorem 1.6.7 applies to the forgetful map E + C . The non-trivial
thing to prove is that given {Ai] € a* and a map xt A -+ 3B in C, we can find
a cofibration {ai}= {Ai}>+ {A;} in C and a weak equivalence x': A! =+ B in C

= ol
go that x = x B s

Let, for definiteness, A, -:Am . If m=~1 then {Ai} =% , and {A;] can
be found by applying the hypothesis of the theorem to the map *~ B ,

For m2 0 we froceed by induction. Truneating {Ai} at level m-] we can
apply the inductive hypothesis to find {Ag} y» & cofibration {Ai}(m-l)’* {AE} )
and a weak equivalence A" + B 0 that the resulting triangle commutes.

A homology computation (downward induction on 1 ) shows that AE-# B is
.i-connected for every i , in particular A;r1-+ B is (m~1)-connected. By another
homology computation we deduce from this that
Am UAm-l P . .
is also (m~1)-connected. We can now apply the hypothesis of the theorem to factor

1]
Am--l

the map as

1}
Am UA Am—
m=]

where the quotients of the cofibrations are spherical of the appropriate dimensions.

[ A b ., =3 A! ey B
“m n

We define Ai - AE for i € m-1 . Then everything has been proved already except
for the fact that A;IAEF] € C" . To see this we consider the sequence
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A'  m AN A U AT s AT,
m=1 m=1 m Am—l =1 m

The aggociated cofibration sequence

N a7t — A ' "
Aim/Am-l A'm/A‘mwl Am/(AinUAm_lAm--l)
has both its 'subobjeet' and quotient in €™ . Since C™ s extension cloged in C
we conclude that A$/Aé—1 E‘Cm + The lemma is proved, o

~

Let the fine category of weak equivalemces in C: be defined as the category
vC of the maps {Ai} -+ {Ai} having the property that Ai -+ A,"_ is in wC for

every i ,

]

Let Cm denote the category of the cell filtrations in dimensions s m, i.e.
the full subcategory of the {A;} in C with A =4, . We consider C as'a.

aubcategory~w1:h*coflbrat1ons-and-weak-equxvalences (sectlons f.1 and 1 2) of (C
VC) .

Lemma 1.7.,3. The map

vs-am _'—'_) WS!CO x WS.CI X eae X WS Cm

(AGH A] H'.'H Am) P A.D » AIIA IR ] A f m"l‘

is a homotopy equivalence.

Proof. By induction it suffices to show that the map
VS|Em —_—F vs-na x VS c

O S el .~+A ,) LA JA

is a homotopy equivalence. The map is a retraction. We show that it is also a
coretraction, up to homotopy, The desired homotopy is given by the “dd1t1V1tY
theorem applied to the cofibration sequence of functors E'>—id—+f" on C ~ where
£ and £ take (A;JH..'-P Am) to (AOH-}PA -v-A I) and. (krr, 2 #:—rA/A ])
respectively. '

. Let, as usual,‘ C" denote the subcategory of the {a;} din 'C where - {Ai}-
is in wﬁ + Let EW - E“ n & ; it is the category of the cell filtrations

(A Mo A = A ) having the property that A is acyclxe. We consider C as

1
a subcategory-WLEh-cof1brat10ns-and-weak~equ1va1ences of (C.VC)

Lemma 1.7.4, If (A;} € ¢¥ then A € ¢™ for all =n.

FProof. Using suitable long exact sequeﬁcés we ‘obtain
~ R -
if k»n then Hk(An)413-_Hk(Ah_l)t-—-... é—-iﬂk(A_l) =0, and

. R il P N - :
if k<n then H(A) —H @A) —vH.4) =0 .
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thus Hk(An) =0 if k¥ n . There is a short exact sequence

H‘n(An) = Hnmnmn-l) — Hn'-l(An-I) ¢

By induction we may assume H -1 (An_l) €E, and By definition of a cell filtration
wa have H“(An/An_l) € E. It follews that H (A ) € E in view of the assumed fact
that the category E 13 closed under taking kernels. a

Lewma 1.7.5. The map
vs.E: s ws® xws.e! x ... x SO

(AOHA =, 0 A.m) '_""" AO * A » [ X ] ' A

1 ] m-]

18 a homotopy equivalence.

Proof. 'The map exists by the preceding lemma., To show it is a homotopy equivalence
it suffices, by induction, to show that the map p ,

o . v m~=1
vs.C ¥ v8.C _, x wS.C

(Ao S Am) prumep (AO -, Am-ZH Am) , Am-l s

is a homotopy equivalence ( p exists by the preceding lemma since Hi{AmlAm_ZJ R
B (A _2) ). We show that the map s in the other direction,

(Bo et ad Bm-l) sy B —— (Bo S+ B o B VEr Bm_]VcB) ,
is homotopy inverse to p where, as usual, cB denotes the cone on B .
The composite sp 1is given by
(Bo oo+ B 1), B (BOH..H B o> B _,vcB) , B VB .
There is & natural transformation from the identity map to sp ., It is a weak equi-

valence since both B -1

it induces a homotopy (lemma 1.3.1), showing that =& i3 left inverse to p .

-+ Bm__j\IcB and 3B = Bm_lvB are weak equivalences. Hence

To show that s 1s right inverse to p we construct a hometopy by applying

the additivity theorem to a cofibration sequence of maps on Cz . We can write

ps = £'vE" where £' and f£" are the self-maps of C; taking (Ao o Am) to
(k dous % A
could find a cofibration sequence £'smsf —wf" , vhere £ denotes the identity map

~

= cA ) and (A P A o™ Am: A) » respectively. If we

on C; y it would follow by the additivity theorem that there iz a homotopy between
£ and f£'vf" , and we would be done.

The desired cofibration sequence does not exist directly, but it exists after
the maps £ and £" have been modified a little. The modified maps are related to

the original maps by chains of weak equivalences.,

In a first step we replace the identity map f by a map £, taking (A >+,

A) to moH“H Am-l - c(AmUA

cA _.}) . There is a weak equivalence £ = £
o m=1 O 1 ' 1
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and we can define a map f' = f] now. In a second step we blowup £, ‘to a weakly

1
equivalent f2 so that the map f' - f! can be replaced by a cofibration £'*+ f2 .

By definition, £, takes (AOH..H Am) to

( AOH per Am-Z > Tﬁm-] = Tc(AmUAm_ICAm-I} )

where TA is defined as T(idA) ’ the eylinder of the identity map on A ,
Let £§ be defined as the quotient £,/f' . There is a weak equivalence to it

3
from £} ,

(AOH e P A

o TA . /A ]-*TA IIAm-l ),

Tl e m—
the latter maps by weak equivalence to f']' ;
(-1
CA ™ con™ B - TA A S TA A ),

and, to conclude, we have a weak equivalence £" = f'l' . We are done. u -

Lemma 1.7.6. The map
ﬁw m ~
vS._Cm x w8.C0 —— v8.C

is a homotopy equivalence.

Proof. The map

w8.C% % ... x w8.0" ] ~ vS.C¢ .

Al s vev 3 A L A cA VA B L0 CAV..VeA VA > ch v..veh

is a homotopy equivalence. For by composing it with the hemotopy eqlllivalence of the
. o m-1 .. . -
preceding lemma we obtain a map induced by a self-map of Cox, . uxC weakly equiva~
lent to the identity map. As a result it will suffice to show that the composite map
- . A ’ . A~ m o

€% x € k(P Fx e O —— O x O,

where the right hand map is that of lemma 1.7.3, induces a homotopy equivalence of

w8.C%, . xuS. ™ to itgelf. The composite map is given by

CA 4 vee A ) — (A » TAVA , IA VA, 5 <o s BA VAL D .

This is clearly a homotopy equivalence.

Lemma 1,7.7. The mep _

" m . oW ’ . p
1%111 wS.C" x lim{z) v5.00 ~——> l_ﬁm(z) vS.C
(Limits by suspension) is a homotopy equivalence.

Proof, The desired homotopy equivalence results by direst limit once it is known

. P . ; -
that the 'maps Py 1im ws.c™ x 1}.m vS.C ke —-rl%m "S'Cmm are hemotopy equivalen
m m '
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ces. The case k =0 follows from the preceding lemma by direet limit. We deduce
the case k = I from the case k = 0 , Namely the gwo maps

2 v ; . 1. a
1in (™ —— 1im €™ —2 1jn ¢ Lim (" —d—s 1in C
= 4 - -» m - - m+!
m m o ] m
are related by a cofibration sequence of functorg | P 0 b,t where © is the
compogite map

a
--._‘--_.-—-...plimc
)

. m N
Lim ¢ ———— 1in C -

.0
Ab— (L. 3 xmAnch 3 ..)

By the additivity theorem there results a homotopy of the induced nmaps, ¢ VIO,
showing that, medulo 11m C ] ? the maps 7 and ¢ I are the seme up to sign.

We conclude that ?y is a homotopy equ1valepce since 9, is. Similarly it follows
that 9, is & homotopy equivalence since 9 is, And so on. a

Froof of theovem 1,7.1, By the fibration theotem 1.6.4 there i3 a homotopy cartesian
square

uw .
VS.C —e e VS-C

L,

WS-EW ——p ws.c .

Suspension induces a self-map of the square, and hence a direct system, Passing to
the direct limit we obtain a square which ig homotopy cartesian again. It is the
large square in the following diagram

1im v8.C¥ ——s 1im ( vS.C¥ x wg, " ) ————p lim vs.é
-+ = -

] 1

Lim wS.C" —— 1im ( uS.Y x ug,(® ) s 1im vS.C

By comparing the vertical homotopy fibres we see that the left square in the disgram
is also homotopy cartesian. It follows that the square on the right 13 homotopy
cartesian, By the preceding lemma the upper hoxizontal map in the right hand square
is a homotopy equivalence. We conelude that the lower hor1zonra1 map is & homotopy
‘equiyalence. Discarding the contractible factoy k&m wSs, C Ve obtain the map,

| lip wS.C — {&m ws,C
vhich is therefore a homotopy equivalence, 1In view of the homotopy equivalence
llm w3, C "“-—“*11m ws,C

of lemma 1.7.2 this completes the proof of the thedyem. ' a
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I.8. 35plit cofibrations, and K-theory via group completion,

Let A be a category with swm (categorical coproduct), and let A be pointed
by an initial object % . There is an associated simplicial category

N.A ¢ AOP —+ (cat)

[n] —— NﬁA .

the nerve with respect to the somposition lms. By definition NnA‘ is the category
equivalent to A in which an objectrconsista of a tuple A],...,Ah together with
appropriate sum diagrams, one for each subset of {i,..,.,n} ; these choices are to
be compatible, and for the subsets of cardinality <! they are to be given by the
objacts Al,...,Ah themselves and by the initial objeet #* , respectively.

By a category of weak equivalences in A will be meant any subcategory wA
which contains the isomorphisms and is closed under sum formation; that is, if

Ay - A; and A, - Ai are in wA then so is Avh, - A;vAé .

1£ A is a category with sum and weak equivalences let wN A be defined as
the subcategory of NnA whose morphisms are the natural transformations with vélues
in wA . It is a category of weak equivalences in NnA , and it is equivalent to
wA" by the forgetful map. N.A may be regarded as a simplioial eategory with sum
and weak equivalences, and the simplicial category of weak equivalences is

wNA 1 AP s (cat)
[n]Fh——wanA .

The construction is a special case of Segal's construction of I'-sategories [11].

The present notation has been chosen to conform to that of section I.3.

Let C be a category with cofibrations and weak eqﬁivaiences. By neglect of
structure € is a category with sum and weak equivalences, AvE = AUB . There is
a map of simplicial categories |

wN.{ m———p wS.C ,
it takes i |
{ A’l,...,Ah , choices )
to ' '
( Apm A VA ™ oo ApVee VA (fewer) choices )} .

The theorem to be formulated below says that the map is a homotopy equivalence ia-

certain cases.
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Suppose that € , & category with cofibrations and weak equivalences, has a
eylinder functor and that the weak equivalences in { sarisfy the cylinder axiom,

gaturation axiom, and extension axiom.

Suppose given a sequence of subcategories-with-cofibrations-and-weak-equivalen-

-kl for

ces € in € subject to the conditidn that suspension takes " into C
all n . The example to be kept in mind is that of & sequence of categories of

spherical objects in the sense of the -preceding section.

Let us say that a cofibration A+ B in C" is splitiabile up to weak equiva-
lence if there is & chain of weak equivalences, relative to A , relating A~ B
to Ar B' where B' s A v B'JA .

Theorem 1.8.1. The map

lim wN.C® —— lim wS.C"

i J =)

n n
is a homotopy equivalence, provided that, for every n , all cofibrations in ¢
are splittable up to weak equivalence,

The proof of the theorem occupies the present section. The argument will be
summarized at the end of the section. The splittability condition actually used is
slightly weaker than the one formulated here.

For any X € C let Cx denote the category of the cofibrant objects under X ;
the objects of CK are the cofibrations X>» A& din € , and the morphisms are the

maps A - A' restricting to the identity map on X . CX is a category with sum,

(XmA)v (XmA'). = (XmaU'),

and it comes equipped with a category of weak equivalences 'wa y the pre-image of
wl under the projection CK + 0, (XA w4,

Let as usual ¢ denote the cone funetor derived from the cylinder funetor
{cA =T(A») ) and ¥ the suspension functor, FA = cA/A = cA UA ®

Lenma j.8.2, To X» A in CX there is naturally associated a chliain of weak

equivalences in sz .

"( IX = muzkm) ~ (X H‘ IA U, EA/ZX )Y

Proof. The chain consists of two maps. These are given by the two diagonal arrows
in the following diagram -
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ZAUXEAU* *

z
/ f

A Upy ( cA/X U,y cAfcX ) —— A Ugy ZA U ZA/IX

T~ |

TA U* ZA/ZX

By definition, the horizontal arrow is given by pushout with the map A/X -+ % ,
and the downward vertical arrow is induced by the folding map ZA sz A= EA ,
The upper diagonal arrow is a weak equivalence since it is given by pushout with
the weak equivalence ¢AjeX -+ % , The lower diagonal arrow is a weak equivalence
in view of the assumed extension axiom. For by cobase change with the map IA - #

one obtains from it the weak equivalence cA/eX UA/K cAfeX -+ ZAJIX . D

Remavk., Yf C happens to be an additive category the lemma is true without suspen—
sion, one can define a weak cquivalence A UX A= AU, A/X a5 a map whose restric-
tion to the second A is the sum of the identity A -+ A U* ¥ and the projection

A= % U AfX ., In the sdditive case the argument lending to the theorem, and the

theorem itself, can thus be simplified. o

If X€C" we can form CE . There are maps, of categories with sum and weak
equivalences,
m m ., pm m
q 4 Cx —_— j:+ C ———a-cx
Xe A AfX Br— X=X U B
and q 1is left inverse to j , up to natural igomorphism of q j to the identity

on C",

Proposition 1.8.3, The map

1im wi.
flrdy
n

(limits by suspension) is a homotopy equivalence.

m+n . men
¢ s 1im wN 'CL‘“X

Proof, Tt will suffice to kmow that for each n the composite j q becomes homo-
tepic to the identity upon suspension. The next lemma provides this; upon re-indexing

it will suffice to formilate the lemma for the case n = 0. o

Lemma 1.8.4. The geometric realizatioms. of the two maps

+|
£, Ligq wN.CE — wN.C?x
are homotopic.

Proof. The natural transformations of lemma 1.8.1 provide a homotopy between the two
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maps wN.CE-* wN.C?;l which take X» & to
IX = IAU., IA  and EX = EAU_EA/IX ,
respectively; that is, the maps

EviZ and Ev Ijq .

Cm-ﬂ

The geometric realization of wN. X is an H-space (by v ) which is comnnected and

hence group~like. So we can ecancel the left E to obtain thé desired homotopy. O

The following is the analogue of definition 1.5.4 with the S. construction
replaced by the N. construction. In particular the letter P refers to the simpli-
cial path object construction whose elementary properties have been recalled in the

beginning of section 1.5.

Definition 1.8.5. Let f£f: A3 B be a map of categories with sum and weak equiva-
lences. Then N.(£:A-B) is the simplicial category with sum and wesk equivalences
given by the puliback of the diagram

N.A — N.B «— PN.B .

N.(£:A+B)} represents a one-sided bar construction of A acting on B by the
sum via £ . In fact, notice that in particular for every n there is a pullback
diagram

Nn(fiAaB) —_— (PHiB)n - Nn+IB
NA —eo—r N B
n n
and the vertical map on the right correspends, under the equivalence of N B with

the product category B s to the projection map B“+1 - B® s the projection away
from the first factor; and Nn(f.ﬁﬂﬂ) is equivalent to the product category BxA"

Considering B as a simplicial category in a trivial way we have a sequence
of simplicial categories with sum and weak equivalences

B = N.(£:4-8) ~—* NA .

We would like this sequence to reprasent a fibration, up to homotopy, of the assoei~
ated simplicial categories of weak equivalences, but we cannot expect this to be

true in general since A need not act invertibly onm B. We circumvent the diffi~
culty by introducing another simplicial direction, using either the S. or the N. con-
struction (we need both cases}, as follows.

If £: A+ B is a map of categories with cofibrations and weak equivalences
then N.(f:A+B) is a simplicial category with cofibrations and weak equivalences,
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so we can form S.N.(f:A+B) . Alternatively we could apply the definition 1.8.5 to
the map S.f: S.A -+ S.B to obtain N.(S.f:5.A+8.B) , and the two bisimplicial cate-
gories are naturally isomorphic, There is a sequence, of bisimplicial categories

with cofibrations and weak equivalences,
S.B — S-M-(f:A"B) M’S-N'A ;
alternatively we could rewrite it, up to isomorphism, as

S.B — N, (S-E:S-A""‘SAB) — NISIA .

In general we can apply the N. construction to the simplicial category with sum
and weak equivalences N.(£:A+B) to obtain N.N.(£:A+B) . Alternatively we could
apply the definition 1.8.5 to the mep N.f: N.A — N.B to obtain N.(N.£:N.ASN.B) ,
and the two bisimplicial categories are naturally isomorphic (the isomorphism invol-
vas a sviteh of the two N. directions). There is a sequence, of bisimplicial cate-

gories with sum and weak equivalences,
N.B — NLN, (£:A+B) — N.NLA
alternatively we could rewrite it, up to isomorphism, as

N,B = N (NLENANBY — NLNA

Lemma 1.8.6, The sequence
N B — wN.N. (£3A4B) — w.N.A
is a fibration up to homotopy. Similarly so is the sequence
wS.B —s uS. N, (F:A+B) — wS.N.A
if that is defined, In either cage, if £ is an identity map then the middle term

WN.N. (£:A9B) , resp, wS.N.(£:A+B) , is contractible.

Proof. This is a special case of a result of Segal [11]. Essentianlly the same proof

results if the argument of propos1tlon 1.5.5 is adapted to the present situation.

That i8, one observes that (in the second case, say) for every n one has a fibration

wS.B —r WNn(s|f:S|A""S|B) —_— WNnS-A

namely a product fibration, and one draws the desired conclusion from this, using a

sultable fibration criterion for simplicial objects.

Let D be a category with cofibrations and weak equmvalences. The example to

be kept in mind is that of the categoxry 1im " of the theorem. Our next result is

of a formal nature. It gives & suffzcient condition for the conclus1cn ‘of the theo=-

rem to be wvalid,

o -
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Proposition 1.8,7. If for every X <& D the simplicial category wN.(j:D - DX) is
contractible then the map wN.D -+ wS.? is a homotopy equivalence.

Proof. Applying lewma 1.8.6 we obtain that the map of the proposition de~loops to
wN.N.D = wN.8.D , so it will suffice to show that the latter map is a homotepy equi-

valence. By the realization lemma this follows if fox every n the map
n N
is a homotopy equivalence, and this is what we shall show.

The simplicial category on the left is equivalent to the product CwN.D)n , 80
our task is to show that the simplicial category on the right is homotopy equivalent
to that same product by the subguotient map. In othef words, our task is to estab-
lish a case of the additivity theorem for the N. comstruction rather than the S. con-

sttuction.

By induction it will suffice to show that the map

wN.S D > wN.Sn_lP x wi.D
CApm o A, choices ) — ( Ay= ..om A, choices; An/An-l )
is & homotepy equivalence. To reduce further we consider the map
A o
ip ¢ P Snﬂ
AbF—r kv .. ¥ A

By combining these two maps, and using lemma 1.8.6, we obtain a diagram of homotopy

fibrations

wN.SnD ———= wN.N, (jn:'D - Sn‘D) —_— NN

wN.(Sn_ID X D) ——r w.NAD > S“_ID X D) —— wN.NT .
So our task of showing that the vertical map on the left is a homotopy equivalence,

translates into the task of showing that the vertical map .in the middle is one. By
the realizetion lemma this will follow if we can show that

wNo (i i = SnD) — wN, (D - Sn-lp x D)
is a homotopy equivalence. Now
W@ =S _0xD) ~ wS _0xuN.0 > 0)

and the factor wN.(D » D) is contractible. So the proof of the proposition has
been reduced to proving the following leuma: ‘

Lemma 1.8.8., If for every X € P the simplicial category wN.(j:7 -~ Dx) is con~
tractible then the map p: wN.(jn:D~ﬂ Sn?) - an_lD iz a homotopy equivalence.
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Proof. There is a variant of theorem A [ 8] for simplicial categories. 4 special
case, sufficient for the present application, has been described in [13, prop. 6.5]
in great detail. A neater, and more general, version may be found in [15, section 4]
with a sketch proof. In any case, the criterion says that for the map p to be a

homoteopy equivalence it suffices that for every object
B = ¢ BIv* =B choices ) € an_lv
the left fibtre {p/B). is contractible.

Capitalizing on the special feature that an_IB , the target of p , is only
a gimplicial category in a trivial way, we can re-express .(p/B). in terms of left

fibres of maps of categories, namely
(p/B), = p,/B .

An object of pm/B consists of a diagram

A — ... HAnHIHAn

1

Pk

By >+t o0, = B
1 n-l

pPlus a m~tuple of objects in 7 , plus certain sum diagrams formed from this m-tuple

and A {plus, as usual, certain other choices).

There is a natural transformation of the identity map on pm/B , it is given by
pushout with the vertical map(s) in the diagram. For varying m the natural trans-
formations are compatible, so they combine to give a homotopy of the identity map
of (p/B). ; namely a deformation retraction into the simplicial subcategory defined
by the condition that the vertical map(s) be the identity.

‘That subeategory is isomorphic to wN.(j:0 ~ D)) where X =18 _, , it is thus

contractible by assumption. We are dome. Q

Let D be a category with cofibrations and weak equivalences, and X €7 ., It
turns out that the contractibility of wN.(P 4—DX) may be re-expressed in terms of

two other conditions which appear to be rather independent of each othex.

Propogition 1.8.9. wN.(D = ﬂx} is contractible if and only if the fellowing two

conditions are satisfied:
(1) wN. (0~ 7,) is connected,

(2) the map wN.D » wN.D, is a homotopy equivalence.

Proof, 1€ wN.(D -» UX) is connected it has wN.N.(D = ﬂx) as a de=leop (by [11]

or a variant of lemma 1.8.6). Therefore, provided it is connected, it is comtractible
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if and only if wN.N.(? -~ ‘DR) is contractible. By lemma [.8.6 we have a diagram

of homotopy fibrations

WD ——r WND D D) wNND

| | \

'wN.vx —— WN. (@ Dy) = wN.N.D

and the middle term in the upper row is contractible. Therefore wN.N.(D -+ Dx) is
contractible if and only if the vertical map on the left is a homotopy equivalence., O

Proof of theorem 1.8.1. The nerve of the simplicial category wN.(D -+ Px) is a bi-
aimplicial set whose vertices are the objects X = A in I)X . There are two kinds
of 1-gimplices, eorresponding to the morphisms of w‘Dx on the cne hand, and to the
'operation' of the cbjects of 7 on those of UX on the other. It results that
the set of connected components is the set of equivalence classes of the X» A

under the aquivalence relation generated by
(1) (X~ A) ~ (X~ A") if there iz amap (X» A) » (X~ A") in wﬂx
(ii) (Xm» A) ~ (= AU*A") if A"ED .

The condition referred to in the theorem, that cofibrations in D are spiittable up
to weak equivalence, implies that every object of 'Dx can be related (in a special
way, in fact) to the trivial object X X , thus wi,(D = 'Dx) . is connected,

Tet U = l_iim ¢" now. Then, as just observed, wN.(D - 'Dx) is connected for
every X , and, by proposition 1.8.3, the map wN.U ~» wN.ﬂx is a homotopy equiva-
lence. By proposition 1.8.9 these two properties imply that wN.(D - Px) ig con~
tractible for every X which in turn, by proposition 1.8.7, implies that

‘W‘N.p —_— WS -D

is a homotopy equivalence, as desired.
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1.9, Appendix: Relation with the Q construction.

Let A be an exdet cdtegory in the sense of Quillen [ §). One can make A
into a category with cofibrations and weak equivalences by choosing a zero object
and by defining the cofibrations and the weak equivalences to be the admigsible
monomorphisms and the isomorphisms, respectively. So a simplicial category iS.A
is defined. It turns out that iS.A is naturally homotopy equivalent to the cate-
gory QA of Quillen. ‘

To see this we First replace QA by a homotopy equivalent simplicial category
iQ.A . Namely let iQA be the bicategory of the commutative squares in QA in
which the vertical arrows are the isomorphisms (in either A or QA —those are
the same)., Then QA and 1i0QA are homotopy equivalent (lemma 1.6.5), and we let
iQ.A be a partial nerve of iQA , namely the nerve in the Q direction.

_ Next wa replace iS.A by a homotopy equivalent simplicial category iSSA .
We use the edgewise subdivision functor [121 which to any simplicial object X. ,
say " X, : 2% L K , associates ancther- 2% AP 4 K , namely the composite

x5 = X, 4% | |
where d: A~ A is the dowbling map which takes [n] to [2n+1] and whose behavi-
our on maps may be described by saying that it takes
(0<1<ensn) to (R <€...<1'<0'<0<T<..u<0) .

If X. is a simplicial space then the geometric realizations [X.| and lx?l are

raturally homeomorphiec [12, prop. (A.1)]. Applying this fact to the simplicial
space [n] » liSnAl we obtain that iS.A and its edgewise subdivision iS%A , or

rather their geometric realizations, are homotopy equivalent.
There is almap of simplicial categories
1854 — iQ.A
which is an equivalence of categories in each degrge; and therefore a homotopy

equivalence. ‘The map is best explained by drawing a diagram to illustrate the

situation for n =3 .,
An object of iS;A ( a:iS7A ) 48 a sequence of cofibrations
- A, .
A,y ™ A, ™ Aanon ™ A0 7 Ac,n T et T e
together with a choice of quotients

ALy = Aepnfen o
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By dropping some of the choices while retaining others we can associate to the

object the following diagram

a0 T AGL ) T A, T G,

.

Ao T ALy T A

l

Aqr,0)

l

40',0)

+
+

= Aann

The diagram describea a sequence of three compesable morphisms in QA as well as
the different ways in which the actual cbmposition can be performed. In particular
the diagram defines an object of iQ3A . The object in question is not identical
to the diagram itself, rather it is an equivalence class of diagrams; two diagrams

are considered equivalent if they are isomorphic by an isomorphism which restricts
Aoy sy o
('3

To conclude wa note a variant of the homotopy equivalence. YLet &.A denote

to the identity on each of the diagonal objects

the simplicial set of objects of S.A . Considering A4.A as a simplicial category
in & trivial way we have an inclusion 4.A -+ iS.A which is a homotopy equivalence

by lemma 1.4.1. Let Q.A denote the nerve of the category QA . Above we have
described a map

S%A — A
This map is a homotopy equivalence, For it fits into a diagram
oy ,
18TA —iq.A

and we know already that the three other maps in the diagram are homotopy equiva-
lences. 7
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2. THE FUNCTOR A(X) .

2.1, Equivariant homotopy theory, and the definition of A(X) .

Leat X be a space. A(X) is defined as the K~theory, in the sense of the

preceding chepter, of an equivariant homotopy theory associated to X ,

There are several ways of making this precise. The main purpose of this
section ig to describe a few of those ways in detail and to show that they all

lead to the same result, up to homotopy.

The var-i.ous cases arise from the fact that we want to keep the option of inter-
preting each of the terms 8pace, equivariant, and finite type in two different ways.
Namely we will want to work either with topological spaces ox with éimplicial sets.
We want to use spaces over X on the one hand or spaces with an action of G(X) ,
the loop group of X , on the other. And finally we want to be free to impose a
condition of strict finiteness on the objects of the category or to be content with_l

a condition of finiteness up to homotopy.

We begin with a conmstruction that combines Ithe two equivariant points of view.
We will be mainly in:eresfed, eventually, in the two special cases where one of G
and W below is trivial and the other one is X , resp. a leop group of X.

Let G be a simplicial monoid and W a simplicial set on which G aets

(by a monoid is meant an associative semigroup with 1). We define
R(W,6)

to be the category of the G—simplicial sets having W as a retract. In detail, the
objects of R(W,G) are the triples (¥,r,s) where Y iz a simplicial set with
G-action amd s: W= Y and r: Y- W are G-maps so that rs = Id, , aryd the mor-
phisme from (Y,r,s)l to (Y',r',s') are the G-maps f£: Y = Y' so that r'f =r
and fg = gt ,

If G is the trivial fnonoid‘. we omit it Ffrom the notation. In other words, we
lat R(X) denote the category of the simplicial sets having X as a retract.

There are similar constructions in the topological case, and geometric realiza-

tion induces a functor R(W,G) - R(IWl,lE€l) .



378

We define our finite type conditions now. We proceed in the following order:

1. finiteness in the simplicial case,
2, finiteness in the topological case,
3. homotopy finiteness in the topological case,

4. homotopy finiteness in the simplicial case,

1. Pinitensss in the siiplicial case. An object (Y,r,5) of R(X) is called
finite if the simplicial get Y is generated by the simplices of 8(X) together
with finitely many other simplices. An equivalent condition is that the geometric
realization {Y¥| is a finite CW complex relative to the subspace |s(X)! . The
full subcategory of the finite objects is dencted Rf(X) .

In the general case of R(W,G) we must combine the finite generation condition
with a freeness condition. #PFinite generation of (Y,r,s) means that Y is gene-
rated, as a G-simplicial set, by the simplices of s(W) together with finitély many
other simplices; F:eeneas means that,-for every k , the action of Gk on Y is
free away from Wk ; precisely, the condition is that ¥ may be obtained fxom W by
attaching of free G-cells, that is, by direct limit and the formation of pushouts of
diagrams of the kind Y'e- 3A"xC - A"XG where A" denotes the simplicial set
- n-gimples, and 3A"  the gimplicial subset boundary. We denote RffW.G) the full
subcategery of R(W,G) given by the objects which are both finitely generated and
free; the objects (Y,%,8) , in other words, where Y "can be obtained from W by
attaching of finitely many free G-cglls. Rf(W,G) is a category with cofibrations
and weak equivalences in the sense of sections }.! and 1.2, the cofibrations are the
injective maps, and the weak (homotopy) equivslences are the maps (Y,r,s) = (Z,t,u)
whose underlying maps Y -+ Z are weak homotopy equivalences in the usual sense
(that iz, induce isomo:phisms of homotopy groups upon geometric realizatiom). We
dencte the category of the weak homoﬁopy equivalences by hRf(w,G) .

2.. Finitences in the topological case. Let IX! be a topelogical space, not
necessarily the geometric realization of a simplicial set X . An object (Y,r,8)
of R{IXI) is called fintte if ;Y is equipped with the structure of a finite CW
complex relative to the subspaée s(IX1) . Ve let Rf(lej denote the category of
these objects and their cellular waps (it is not, of course, a full subcategory
of R({IXI) ). We ﬁonsider Rf(lxl) as a category with cofibrations and wesk (homo-.
topy) equivalences; by definition, a map in Rf{IKI) is a cofibration if it is
isomotrphic to a cellular inclusion.

More generally, in the case of R{IWl,I6]) , we define Rf(lwl,lcl) to be the
category of the finite |G|-free CW complexes, relative to IW| , and their cellular
Maps ., '
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3, Homotopy finiteness in the topologieal case. We define 'Ehf(IWI,IGI) as
the full subcategory of R(IWl,IG|) given by the (¥,r,s) where (¥,8) has the
|Gl-homotopy type, in the strong sense, of a finite |¢|-free CW complex relative
to IWl . This is a category with cofibrations and weak (homotopy) equivalences,
where eofibpation has its usual meaning as a map having the |G| -homotopy extension
property {after megleet of structural retractions, that ig). To see that cobase
change by cofibrations does not take ome out of the category, i.e. preserves homo-
topy finiteness, it suffices to note that weak homotopy equiValgnces have homotopy
inverses, after neglect of structural retractions (the Whitehead theorem for

|Gl-free CW complexes).

Remark, On the face of it there are set theoretical difficulties in the construc-
tion of K-theory from Rhf(IXl) . TFor 'hS.Rhf(IXI) ig not a 'small’ simplicial
category, nor even equivalent to one {in the sense of category theory). Here arve

a few ways of dealing with this matter, each with its own virtues and drawbacks:

{a) one can pick an expliciﬁ small category Réf(lxl) with which to work (for
example, have all one's spaces embedded in |X|xR” 9, (b) ome may pestulate the
existence of a universe, in the sense of Grothendieck, work in a fixed one, and
check that an enlargement of the universe does not alter the homotopy type, (c} one
nay fegard the notion of a 'large' space as just as legitimate as that of a 'large’

category, provided only that certain constructions are avoided (this is the naive

version of the preceding). Which one of these or other alternatives to adopt seems

a matter of taste, We will not pursue the matter further.

4. Homotopy finiteness in the simplicial case. We reduce to the topological
cage, That is, we define Rhf(w,c) as the full subcategory of R(W,G) given by

the (Y,r,s) whose geometric realizations are homotopy finite in the sense of the

preceding case, ' ;V

Recall that the appromimation theorem 1.6.7 deseribes sufficient conditions

for an exact funetor C - €' to induce a hemotopy equivalence bS.C —+ hS.C' .

Proposition 2.1.i. The approximation theorem applies to the map
Rf(W,G) ———+Rhf(W,G) ’
resp. its topological analogue.

Proof. The non-trivial thing to verify is the following assertion {the part App 2

of the approximation property).

Assertion. Let (¥,r,s) € Rg(W,6) , and let (t,r,8) + (Y',r",s") be any map in

Rhf(W,G) . Then the map can be factored as (Y,r,a) » (Yl,r],sl) - (Yt,r!,s")
where (Y,,r;,s,) € Rg(W,6} , the first map is a cofibration in R (W,G) , and the

second map is a weak equivalence in Ry (W,8) .
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To prove the asserﬁion it will suffice to £ind 2 factorization
(Y,B) _— (Yl!slj "—”*(Y'jst) .

For it is then possible to define the structural retraction r., as the composite

1
of Y1-+ ¥ owith r': ¥ =W ,

We treat the topological case first, The Whitehead theorem for |G|-free
CW complexes relative te |Wl is available here, so we can find a finite (Yo’so)
togethey with homotopy 'equivalences (Yo,so) - (¥',8'") and (Y',s8") A—(Yo,so) ,
homotopy inverse to each other. Choose a cellular map (Y,5) = (Yo,so) hemotopic
to the composition ‘(Y,s) - (Y',3") = (Yb,so) » and define (Y],sl) as its mapping
cylinder. Then there exists a map (Yl,sl) + {Y',s') extending the given maps on
.(Y,s) and (Yo,so) + This has the required properties.

In the simplicial case we know, by the topological casé, that there exists

some factorization
(1¥l,Is) ——r(Y],sl) — (lY"],Is'D) .

We show that, by perturbing Yl’sl) a little, we may 1ift it back to the simpli-
cial framework.

Proceeding by induetion on the cells of Yl not in [Y| we suppose that we
. have found a subcomplex |Z| of 14 which does arise by geometric realization,
and so that cthe map |Z| » |¥'| is a geometric realization, too. To add amother

one of the cells of Y, to |Z] , means that we form the pushout of a diagram of
‘the kind

1Z] «— l3a™ x lal — 1871 x g} .

We use simplicial approximation to rigidify this, WNamely let Sd denote the
subdiviaion funetor for simplicial sets [4 ], and $d, its k-fold iteration. Then
if k is large enough one knows [4 ] that there is a map of simplicial sets,

sd, 3" — 1z,
whose geometric realization is homotopic to the map

Isd, 3a"l a 13A" % I — 12| 1€ |G

and, again if k is large ensugh, the composite map Sdkaﬂ <+ Z=+Y' extends
to  5d, A » in the preferred homotopy class. We now define -

1 : n

Z‘ w Z U Sdkaﬂn X G SdkA x G,

Then Z + Y' extends to a map 2' - ¥Y' in the preferred homotopy class. By the
IG[fhomotopy extension theorem |Z'| in turn may be extended, by induction on the
remaining cells, to a |G|-CW complex Y mapping to ¥, by homotopy equivalence.
This completes the inductive step, and hence the proof of the prop051t10n.
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[

Proposition 2.1.2. The approximation theorem applies to the geometric realization
nap
Rf(W,G) —_ Rf(IWI,IGl) .

Progf. The non-trivial thing to verify is the following assertion.

Asgertion. Let (¥,x,s) € RE(W,G) , and let (|¥],lzl,lsl) - (¥",x',s") be any map
in Rf([W|,IGI) . Ther the map can be factored as ‘

UYldel, sl) —— (1Y, 02", 18" ) — (Y'.r',S')

where the first map is the geometric realization of a cofibration in R {u, G) , and

the second map is a weak equivalence in R (IWl,lGI) ‘ ‘ .

As before (the preceding proof) it suffices to flnd a factorization
([!I,Isl) — (X", 18" ]) — (X7,8") .

Define (Yl,s } as the mapping cyllnder of (IYl,lsl) =+ (¥',8') . Then (Y" 8"
is obtained from (YI’ 1) by r131d1fy1ng, one after the other, the cells of Y]
not in Y| . The argument is the same as that in the second part af the preceding

pProof. : | o

Let G be a simplicial group now, not just momoid, and X a simplicial set.
By a principal G-bundle with base X is mhant a free G—s{mplicial_set P together
with an isomorphism of X with PxG*_, the simplicial set of orbits.

Lemma 2.1.3. There is an equivalence of categories R(X) ~ R(P,G)

Proof. We can define functors between these categor{es by puliback with P =+ X and
' : G ' .
by the orbit map, respectively. If (Y,r,s) € R(X) then (YRKP)X * &Y . And if
(¥',r',s') € R(P,G) then the diagram o,
f

Y ——— P

| l

Y'xG* B ] PxG*

is a pullback, thanks to the freeness of the G-action on P and the fact that 6
L > . . “ G
is a simplicial group, not just monoid. Hence Y¥'m (¥'x *)xxP , and the two

functors are inverse to each other, up to isomorphism,

By a untversal G-bundle with bage X will be meant & principal bundle whose
total space P is contractible (in the weak sense). In this situation it is
necessarily the case that € represents the loop space of X ; but apart from‘
this restriction one knows that universal bundles exist in great profusien. Speci-
fically thére is a functor, due to Kan, which to connected pointed X asgoclates

a universal. G(X)-bundle where G(X) is a certain free simplicial group, the Loop
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group of X . Conversely it is also possible, in any of several functorial ways,

to associate to a simplicial group G a universal bundle over a clagsifying space.
Given a universal G-bundle over X we can define a funetor

R(X) ————= R(%,6)
(¥,1,8) ——r ( (I,B)/(Xx,P),¥,5 ) .

The functor respects the notion of finiteness, resp. homotopy finiteness, and it is
exact (sections 1.1 and 1.2), so it induces a map in K-theory. In a similar way

we can also use P to define a map R(IXI) - R(*,IGl) .
Proposition 2.1.4. The map hS.Rhf(x) - hS.Rhf(*,G) is a homotopy equivalence.

Proof. 1In view of its definition, the map arises as the composite of the equiva-
lence Rhf(x) - Rhf(P,G) of lemma 2.1.3 with the map Rhf(P,G) - Rhf(*,G) given by
pushout with P - % . It therefore suffices to show that the latter map induces a
homotopy equivalence. We show this by providing a homotopy inverse. Consider the
map R{*%,8) - R(P,6) given by product with P , using the diagonal action of G .
The map respects the notion of hometopy finiteness, in view of the contractibility
of P, and it is exact, so it induces a map in K-theory. The composite map on
R(*,G) admits a natural transformation to the identity,

YR U o % — T,
and the composite map on R(P,8) admits a natural transformation from the identity,

In view of the contractibility of P each of these two natural transformatioms is

a weak equivalence, Using proposition 1.3.1 now we are done. o

Theorem 2,1.5, If X is a simplicial set (resp. if € is a simplicial moncid)
there is a 2%2 diasgram of homotopy equivalences, namely the left one (resp. right
one) of the following two squares

hS.T(X) ——— hS.R. - (X) RS.R (#,6) s BS.R, - (¥,0)
nS.Re (IXI) —— bS.R, (IxI) hS.Rg (%, 161} —— SRy (x, D)

If G is a loop group of X , and if a universal G=bundle with base X is given,
there is a natural transformatien from the left square to the one on the right, and

all the arrows in the resulting 2x2x2 diagram are homotopy equivalences.

Proof. This results from propusitioné 2.1.1, 2.1.2, and 2.1.4. . o
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Picking one of the choices offered by the thecrem we now make the definition
A) = 2lnS.R (0]

if X is a simplicial set.

Amep x: X+ X' induces x,: R(X) » R(X') by pushout with x , and hence a
map in K-theory. In this way A(X) becomes a covariant functor. Below we give an
argument to show that this functor is a homotopy functor (proposition 2.1.7).

We have to consider Functorial behaviour in a slightly more general situation,
Namely let g: G-~ G' be a group map, and w: W= W' a map under g . These
induce a map (g,w),: R(W,6) » R(W',G') as the composite

R(W,G) —» R(ACG",6') — R(W',6")
where the first map is given by product with G' under ¢, and the second map by
pushout with wCet - W,
Let a map of universal bundles mean a triple of maps
(%,p,8) ¢ (X,r,G) '—""'(K':P':Gr)
G . .
where p is a map under g , and over % . We note that Xx P!~ Px ' in this

situation.

Lemma 2.1.6. To such & map there is assoclated a commutative diagram

X
R(X) — R(X")

RCK,O) gyt ROSEN

Proof. This results from the definition of the maps and the pommutativity of the

diagram
R(X) —_ s R(Xy —— R(X")

2 4 0

o 4

'I’Gl)

(=]
«“
-
@
~—
=
—~
o

R(P,6) —=—+ R(Px

+ v "L

R(k,Q) > R(¥,G") ——— R(¥,6")

where the arrows —— denote equivalences of categories (lemma 2.1.3).
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Propesition 2.1.7. If x: X= X' dis a weak homotopy equivalence then so is the
induced map x,: A(X) - A(X") .

Proof. The functor Xw hS.Rf(x) commutes with direet limit, and it takes finite
disjoint unions to products. As a result it suffices to prove the proposition in
the case where X and X' are connected. We may further replace 'h' by 'hf'
Our task is then to show that x4: hS.Rhf(X) 4—hS,Rh£(X‘) is a homotopy equivalence
in that special case.

Choose a universal bundle over X' , say a universal G'-bundle P' . Since
x: ¥ - X' is a weak homotopy equivalence, pullback with it defines a universal

6"-bundle P = KXX.P‘ over X . There is a map of universal bundles now,
(x,p1y,Tde) ¢ (X,P,6Y) — (X',P',6") .

Hence (the preceding lerma) there is a commutative diagram

Xy
hS’Rhf_(x) —_— hS.RhE(X‘)

| |

BS.R, ¢ (%,6") _— hS.Ry - (#,6")

and the vertical arrows are homotopy equivalences by proposition 2.1.4. It follows

that x, is a homotopy equivalence. o

Remark. For simplicial monoids in general, as opposed to simplicial groups, it
does not fellow in the same way that G+ 2IhS.R.(*,6)1 is a homotopy funetor.
The result is still true, however. TFor example it follows from theorem 2.2.1

below.
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2.2, A(X) via spaces of matrices.

Let G be a simplicial monoid. We consider the free pointed |G|-CW complex
with %k |@l-cells in dimensien n and no other cellg; or what iz the same thing,
Vst a lal,
the half-smash product of |G| with a wedge of k spheres of dimﬁnsion o
Let
Q) = Hg (¥ s™lsl)

dencte the simplicial menoid of pointed |Gl-equivariant (weak) homotopy equivalences,

and let BHﬁ(G) denote its classifying space. There are stabilization maps .
+1 n n o
BHE(G) —r 'BHE (G) [ BHk(G)’ '_"BHk_H (G)
given by suspension and by the addition of an identity map, respectively.

The purpose of this section is to show that the K-theory of the preceding

section can be re—expressed in terms of the + construction of Quillen, as follows.

Theorem 2.2.1, There ig # natural chain of homotopy equivalences
QIhS.R.(+,0) | & 2 x lim BN@T .
f = k
. n,k
By combining with theorem 2.1.5 we obtain that, in particular, A(X) may be

50 re—expressad for connected X ,

CA(®) = Zxlim BH (G(x))
‘ n,k
This may be regarded as .a description of A(X) in terms of spaces of matrices,
analogdus to the definition of the algebraic K~theory of a ring in terms of matrices
and the + construection, as follows.
In Ehe case at hand, the 'ving' in question is the ring up to homotopy
. n I
”s”I61, = 1lim Hap(s",s"alGl) .

: n
Let kak(nwsmiclﬁ) denote the product of kxk copies of this space, congidered

as a multiplicative H-space by means of matrix multiplication. We denote
A _
6L, (@816l )
the sub-H-space of the homotopy-invertible matrices; it 15 the union of those connec-

ted components which are invertible in the monold of connected components., The pOLnt
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now is simply that
. n
1im BHk(G)
n
provides a classifying space for the H-space éik(n“smlcl+) . Indeed, there is a
homotopy equivalence of H=-spaces

. n ~ 0@
lim Hk(G) ot GLk(n s 161, .
It is given, in the Llimit, by the {(n-1)-connected map

k K
Map o (VSAIGI,VS™ALGL,)  ~ Map(v's™VRsTalsl )

> Hap(st, s el Hap(s®,s"alcl )%

Proof of theorem. Define RE(*,G) to be the full subecategory of Rf(*,G) given
by the objects which are n-spherieal of rank k . DBy definition, these are the

objects weakly equivalent to

k ,n
U iik_aa“xs 1L A7"=xG

that is, the objects which are in the same connected component, in hRf(*,G) T
that particular chject,

It is plausible, and will be shown below (proposition 2.2.5), that there is

a natural chain of homotopy equivalencas

BHE(G) o IhR;(*,G)].

Define R"(*,G) to be the subcategory of Rf(*,G) of the objects which are
n-spherical of unspecified rank; that is, the union of the categories R;(*,G) .
This is a eategory with sum and weak equivalences (section 1.8), so the group com-
pletion in the sense of Segal is defined; in the language of section 1.8 this is the
simplicial category hN.R™(x,G) . By a theorem of Segal [11] there is a homotopy
equivalence, well defined up to weak homotopy (homotopy on aamﬁacta),

IR (4,6 | = Z % 1m IR (k,0) 1Y,
K

Combining with the homotopy equivalence above, and passing to the limit with respect

to n , we obtain now a homotopy equivalence

Lim RIbN.R*(%,6) | = 2 x 1in BT
1t f,k ‘

This reduces the proof of the theorem to the following proposition.

Proposition 2.2,2. There is & natural chain of homotopy equivalences

Lin bR (£,6) &  hS.R (%,6) .
n
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The proof of the proposition is an application of theorems 1.7.1 and 1.8.1.

To make these theorems applicable we have to check some things first. Let us define

T *
for Y € Rf(*,G) , where H, denotes the reduced integral homology of pointed

spaces.
Lemma 2,2.3. If ﬁi(Y) =0 for 1i<m then ﬁﬁ(Y) - hm(Y) is an isomorphism.

Proof. We give two proofs. The first applies to the special case where G is a
simplicial group, not just monoid. Im this case YxGwoG w Yx'% where F is the
comnected component of 1 € ¢ . Choose & universal F-bundle E and form the asso-
ciated bundle over EXF* y Lo (YXE)XF* . Then YKF* may be identified, up to '
homotopy, to the quotient (YXE)kF*fExF* , and the lemma results from the Serre

spectral sequence of the fibration.

In the general case cne notices that the lemma is really a special case of one
in the next section (lemma 2.3.4) which concerns simplicial modules over a simpli-
cial ring and whose proof depends on a spectral sequence of Quillen's on (derived)

tensor products, :

Let Réz)(*,c) denote the subcategory of Rf(*,G) of the objects which are

© l-connected.
Lemma 2.2.4, The inclusion hS.Réz)(*,G) - hS.Rf(*,G) is a homotopy equivalence.

Proof. Double suspension defines an endomorphism of each of these which is homoto-—
pic to the identity map (proposition 1.6.2). On the other hand, double suspension
takes hS.Rf(*,G) into hS.Réz)(*,G) , 80 it gives a deformation retractien. n

Proof of propesition 2.2.2. The functor Yw hye(¥) defines a homology theory on
Rf(*,G) » in the sense of gection 1.7, with values in the category of Ziwocl—modules.

Restricting attention to |-connected objects, as we may by lemma 2,2.4, we
obtain from lemma 2.2.3 together with the Hurewicz theorem that the weak equivalen~
cec are homologieally definad: a map is a weak equivalence if and only if it induceg

an isomorphism on h, .

. The objects of RM(x,6) have the property that hi(Y) is 0 for i #n, and
free over Z[wOG] for i =n . Conversely they are characterized by this property.
To see this it suffices to construct a map from a standard object indueing an iszo-

. . . : . n
morphism en hy . Such 2 map 16 obtained by mapping each generating cell A%,
suitably subdivided, so as to represent an appropriate generating element of the

module nnlYI n-.!}{n(‘[) R hn(Y) .
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We show next that the hypothesis of section 1.7 is satisfied: if Yp-+ Y is

any p-connected map then it is possible to construct a factorization

¥ -—hYpﬂm—-»...—-*qu-—-*Y

where each Y .. is obtained from Y by attaching (n+1)-cells and where the map

Y -+ Y 1is a weak homotopy equivalence. First, the inductive construction of Yn+l
from Y ig done as follows. The module h l(Y +Y) R L ](IY l-+1¥1) is finitely
generated over ZI7n,G] , and each element may be represented by mapping a (suitably
subdivided) pair (A" ?,3A“+I)
to attach (n+])=-cells to Yn and to extend the map to Y to the eells., Next, the

+ Picking & generating set, we can use these maps

construction can terminate., For suppose that ¢q is at least as large as the
dimengion of ¥ . Then hq(Yq_laY) is computed from a finitely generated free
chain complex which ig both (q-I)-commected and q-dimensional. It follows that

hq ie the only non-vanishing homology, and that it is stably free. After attaching
- some mora (q-1)-cells to Y -1 * if necessary, we may suppose the homology is actu~
ally free, so that in a last step, finally, we can attach q-cells to kill the homo-

logy without introducing new homolegy in the next dimension.

We have verified most of the hypotheses of theorem I.?.l now, The one excep-
tion is the condition that the categorﬁ £, in the definition of spherical objects
in section 1.7, should be closed under the operation of taking kernels of surjec~
tions, Our E so far is the category of finitely generated free modules over
Z[ﬂoG] . This does not satisfy the condition, in gemeral, so we must enlarge it.
We therefore replace R(%,0G) by ﬁn(*,G) which we define as follows. It is the
subeategory of Rf(*,G) of the objects which are n—spherical in the following
gense: h.(Y) is 0 for i#n, and it is stably free for ien .

Theorem 1,7.1 now applies to give homotopy equivalences

@%m hS. R (#,6) ——s Limyy hS.R, (*,6) —— h8.R(*,G)

(we have used lemma 2,2.4 to suppress the superscript (2) on Rf again}.

It is plain from the preceding discussion, on the other hand, that R%(,8)
is strietly cofinal in E“(*,G) in the sense of proposition 1.5.,9, so the inclusion

S R (*,6) ——3 1S.RO(*,0)
is a homotopy eyuivalence.

Finally it is also plain that the cofibrations in R™(x,G) are splittable up
to weak equivalence in the sense of theorem 1,8.1, so the map

Lim hA.R(%,6) ——s 1im hS.R™(%,6)
n : n

is a homotopy equivalence,

The proof of the proposition is now complete, ' o
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Remark., ‘The preceding argument can be varied a little. Namely instead of replacing
RY(*,6) by R"(%,G) as we have just done, we could also argue directly that

Lim W B (%,0) ——s Lim hS. R (*,6)
n : n ’

is a homotopy equivalence. Segal's theorem used elsewhere in the proof of the

theorem then applies in the form of giving a homotopy equivalence
>n . 1]
aIBN.R (x,6}] & Kl (Zlr 61) = 1%m IuRy C<,6) 1

where Ké(z[noG]) denctes the subgroup of thé clags group given by the'stably free

modules (that subgroup is of course .Z again).

The theorem itself can also be varied. Namely the category R (#,G) may be
enlarped to the category Rdf(* G) of the objects dominated by f@nﬁte cnes (these
are the objects which are retracts, up to homotapy, of finite ones}. The theorem
then goes through unchanged except that the restricted class group K| (z[w G]) has
to be replaced by the full class group KO(Z[woG]) _ . _ o

To complete the proof of the theorem we are still left to compare BHE(G)
with hR]' (* G) . '

Let C denote any of the categories thf(* 6) , hRf(*,IGI) , thf(*,IGI) .
We blow it up to a simplicial category €. , [mlw C , where C ~is defined as
the category whossa ob;ects are the same as those of - C and vhose morphxsms are the
meparameter famllles of morph1sms in € . That is, a morphism in C from Y to
. & is a map
| y g
in € (resp. similarly with aA™ replaced by 12" in the topological case) of,
what is the same, a map ¥xa"/4xA™ o 2 . Considering C as a simplicial category
in 2 trivial way, we have a map C - ¢ . '

IfE Y€C we let C, , resp. C.p , denote the connected component of C ,
resp. C.. , containing Y , end .C.(¥) the simplicial subcategory of self-maps

of Y in C. .

Proposition 2.2.5. In the topological case, the maps

CY + c.Y ¢ c.{x

are homotopy equivalences. The same is txue in the simplicial case provided that

Y satisfies the Kan extension condition.

Corollary. There is a natural chain of homotopy equivalences

B(E) = IR0
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Proof. Let € = hRf(*,IG[) in the proposition, and Y = VkSnAlGl+ . Then IC.(M)I
ig the same as BHE(G) , by definition of the lattex, and it is homoropy equivalent
to hRE(*,IGI) , by application of the proposition. On the other hand, the geome=-
tric realization map hRE(*,G) - hRE(*,IGI) is a homotopy equivalence by proposi-
tion 2.1.2. o

Proof of propoeition. By lemma 2.2.6 below, each of the (degeneracy) maps C -+ Cm
is a homotopy equivalence., It follows (the realization lemma) that € > C. is a

homotopy equivalence. Conmsequently, C, = C.y 1is one, too.

In the topological ecase, the ineclusion C.Y*- C.{IY is a homotopy equivalence
by lemma 2.2.7 below,

In the simplicial case, that lemma does not apply to C, directly, it only
applies to the simplicial subcategory C! of the objects which satisfy the Kan ex—
tension condition. It remains to see that the inclusion C! -+ C. is a homotopy
equivalence. By the first part of the proposition we can reduce to showing that
€'+ C 1is a homotopy equivalence, This follows if we can find a fumctor C -» ('
together wifh a natural transformation from the identity functor. The desired '
functor is given by one of the standard devices of forcing the extension condition,

namely the process of f¢iling horne (which may be arranged in a G-equivariant way). D

Lemma 2.2.6., The map C - Cm is a homotopy equivalence,

Proof. Call this map j . We define a map p! Cm - C . It is the identity on
objects, and it takes a morphism YxA™/4xaA™ + 2 to the map Y - Z given by restric-
tion to the last vertex of A" . Then pj is the identity map on C . We will

show that jp is homotepic to the identity map on Cm .

To construct the homotopy we use an auxiliary functor F: Cm_ﬂ Cm which on
objects is given by

Y — Ym‘/*xa‘ .

To define F on morphisms we use the standard econtraction of Am', that ié, the
map f£: AmxA1 - A" whose restrictions to A0 and A"x1 are the identity map on
A", and the projection of A" into its last vertex, respectively. By definition
now F takes a map YxA"/#xA™ <+ 2 to the map given by

vealua® o Yx.&mx.ﬂ] _(a’.l’l...a,, 7]

(or rather the induced map of quotients) where b is the projection Yxﬂmxbl e Al',

and a is the composite map
Yx(ﬂmxal) MY:{AU‘ —_— 7,

The point of considering F 1is that there are natural transformations Id - F
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and jp = F . They are induced by the inelusions Y = YxAlf*xAl taking Y to
Yx0 and ¥x1 , respectively. In view of these natural transformations, each of
the functors Id and jp is homotopic to F . Hence they are homotopic to each

other, : o

In order to formulate the mext lemmz we need a little preparation. Let C.
be a simplicial category., We say it is speciql if all the catepories C'm hava the
game objects, and the face and degeneracy maps are the identity on objects. By
abuse we can then speak of the objects of C. , rather than objects in some fixed
degree, and for any two objects Y and 2 we have a simplicial set of morphisms,
which we denote C.(Y,Z) .

As before wa let (C.(Y) denote the simplicial category of endomorphisms of Y .
We must carefully distinguish between C.(¥) and C.(¥,Y) . For they have diffe-
rent geometric realizations (the geometric realization of the former takes the com-

position law into account, whereas that of the latter does mnot}.

We will say that two objects ¥ and Z are strictly homotepy equivalent if
there exigt £ € CD(Y,Z) and g € CO(Z,Y) so that the composite gf 1is homotopie,
in the simplicial set C.(Y,Y) , to the identity map on Y , and so that similarly
the composite fg is homotopic in C.(Z,Z) to the identity map on Z .

Lemma 2,2.7. Let €. be a special simplicial category in which all objects are
strictly homotopy equivalent to each other. Then for every object Y the inclu-

gion C.{(Y) + €. is a homotopy equivalence.

We deduce the lemma from a version of Quillen's theorem A for simplicial cate-
gories. 1In the case of special simplicial categories it takes the following form,

cf. [15].

Criterion. Let F: D. » C. be a map of special simplicial categories. A suffici-
ent condition for F to be a homotopy equivalence is that for every object 2 of

C. the simplicial category F./Z : [m] +~ Fm/Z is contractible.

Proof of lemma. By the criterion applied to the inclusion F: C.(xy»C. it
suffices to show that for every Z the simplicial category F./Z is contractible.

Suppoge that f € CO(Z,Z') . It induces a map f£,: F./Z-=F./2',
{(u € Cm(Y,Z) y ———y (d¥(€) u € Cm(f,z‘) )
where d* denotes the (degemeracy) map induced by d: [m] - [0] .

Suppose mext that fl € Cl(Z,Z') , and let £ and £' be its faces in
CD(Z,Z') . Then we claim that £, and £} are homotopic. Indeed, 2 simplicial
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homotopy from 'f* to £, is given (cf. the proof of lemma 1.4.1 for a discussion
of “simplicial homotopies) by the natural transformation which takes a: [m] = [1]

&) It 1
to the map meZ - rmjz .

(u € Cm(Y,Z) } — ( a*(fl) u E Cm(Y,Z') Yy .

By induction we conclude that if £ and f" are in the same connected compo~

nent of C.(Z,2') then they induce homotopic maps F./Z -» F./Z' .

In turn we conclude that if Z0 and ZI are strietly homotopy equivalent to
each other, then F./ZO and F.IZ] ate homotopy equivalent.

Applying the hypothesis of the lemma now we obtain that, for every 2 , T./2
is homotopy equivalent to F./Y .

But F./Y is the same as o /Y 3 (m] ~» Idcm/Y .+ This is a simplicial object
of contractible categories (each has a terminal object). Hence it is contractible.

We are done. o
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2.3, K-theory ef simplicial rings, and linearization of A(X) .

The theme of this section is that much of the material of the preceding two
sections can be redone in a 'linearized' setting., This leads to considering a
K-theory of simplicial rings, and specifically, to comparing several definitions

of it. In the case of discrete rings the K-theory is the same as Quillen's,

There is & natural transformation, Iimearisation, from the 'non-linear' to the
'linear' setting. We record the plausible fact that, up to homotopy, the induced

map in K-theory does not depend on which particular definition of K~theory is used.

Let R be a simplicial ring {(with 1), By a module over R is meant a
simplicial abelian group A together with a (unital and associative) action of R,
that is, a map A2R - A (degreewise tensor product)., Wa let M(R) denote the
cakegory of these modules and their R-linear waps.

A simplicial set ¥ gives rise to a module R[Y] where (R[Y])n-= Rn[Yn] ,

the free R -module generated by Y . By the attaching of a n~cell to a module A
is meant the formation of a pushout of the kind

A «—— R[3a™ — R[A"] .
We say that B is obtainable from A by attaching of cells if it can be built up
by this process together with, perhaps, direet limit; we will also refer to this
situation by saying that A~ B is a free map (the notion is the same as that of

a free map in [ 51).

We define Mf(R) ta be the full subcategory of the modules which are obtainable
from the zero module by attaching of finitely many cells.  This is a category with

cofibrations (free maps) and weak (homotopy) equivalences.

More generally; we define. th(R) as the category given by the modules cobtain-
able from O by attaching of perhaps infinitely many cells, but homotopy equivalent
to some module in Mf(R) . Again this is a category with cofibravions and weak

equivalences,'in the same way. |
Mf(R) and th(R) give rise to the same K-theory, that is, the map
RINSM(RY | —— BINS.M, - (R))

is 2 homotopy equivalence. This results from

Proposition 2.3.1. The approximation theorem applies to the map Mf(R)'ﬁ th(R) .
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Proof. The argument is the same as that in the first part of the proof of proposi~
tion 2.1.1. The point is thet the Whitehead theorem is available for objects in
M (R} or M'f(R) {one just constructs any desired map by induction on the genera-
tlng gimplices A"1, 1 €R it is not even necessary to subdivide A" in the

process since simplicial abelian groups satisfy the Kan extension condition). o

Let kak(R) denote the simplicial ring of the kxk matriees in R . We de-
fine GL (R) to be the multiplicative simplieial monoid given by the matrices in
kak(R) wh;ch are invertible up to homotopy., Let BGL (R) denote the elassifying

space.

Theorem 2.3.2, There is a natural chain of homotopy equivalences

alhs. M (R = ! (w R x l}l'zm B@Lk(R)+

Here K;(noR) denotes the subgroup of the class group of the ring won given
by the free modules (it is eyelic, and in cases of interest it is usually 2 ).

femark. There is a variant of the theorem where the category Mf(R) ig replaced
by the larger category Mdf(R) of the objects dominated by finite onee; that is,
the objeats which are retracts of such in th(R) ., In that case the restricted
class group K;(wok) in the theorem has to be replaced by the full class group
KO(ﬂOR) .

Proof of theorem. Define ME(R) to be the full subcategory of ME{R) given by
the objeets which are n-apherﬂcal of rank k ; that is, the objects weakly equiva=
lent to R[LLAPI/R[1LI2AT .

Tt will be shown below (proposition 2.3.5) that there is a natural homotopy
equivalence

”
BoL, (1) = [0 (R) |
compatible with auspension (the passage from n to wn+l on the right hand side).

Define Hn(RJ‘ as the union of the categories ME{R) . hAcgording to Segal [11]
we have a homotopy equivalence
QN M RYL & K'(r R) x Lim [bMPR) 1T
00 T k
Combining with the former homotopy equivalence we obtain one

albN (R K (v R) 1%:“ nétk(a)*‘

compatible with suspension, The proof of the theorem has thus been reduced te the
following proposition.
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Proposition 2.3.3. There is. 8 natural chain of homotopy equivalences

Lim bNMYR) & BSWM(R)
n

The proposition is actually true without passége to the limit on the left, but
the limit makes for easier quoting of the gemeral results (which were designed fox

diffarent applications}.

The proof is an application of theorems !.7.1 and 1.8.1. To make these theo~

rems applicable we have to check some things first. Let us define

h*M = 'ﬂ'*( M @R 'JTOR ) .

Lemma 2.3.4, Let M € th(R) . If "iM =0 for i <n then the map nnn:» hﬁM

is an isomoxrphism,

Proof, If M and M' are right and left R-modules, respectively, there is a
derived tensor product M 3 M' , well defined up to homotopy ( 6,6, 8], If the
module M happens to be 'free' {in the sense that 0 = M is a free map — the ob-
jects of (R) have that property, by definitien) then the ‘derived tensor product _
is repreaented by the actual tensoxr product M % M' , by the corollary [ 6,p.6.101,
Therefore the spectral sequence (b) of theorem 6 [ 6,p.6.8] gives, in the case at

hand, & first quadrant spectral sequence

2 1T*
= T Ty, R =>1r (errR)
Ep’q orp (* )

where Torp(..)q denotes the degree q part of the graded abelian group- Tor (..)
Now #,M =0 for i<n, &0 Eg q w0 for q<mn, and we obtain an 1somorphxsm
1 ¥

2

n
nn(MaRqu) s Eo,n

, proving the lemma.

Proof of propesition. The argument is precisely the same as that of the proof of

proposition 2.2.2. Here is a brief account.

The objects of MR(R) may be characterlzed by the property that h, M de O
for i ¥ n, and free of finite rank over T, R for 1 =wn . Let W (R) be the
corresponding category with free replaced by stabe fres. Then all the hypothesas

of section 1.7 are satisfied, so by theorem 1.7.1 we have homotopy equivalences

lin RSP (R) —— 1im zy BSM(R) — BSM(R)
On the other hand, MYR) is striectly cofinal in ﬁn(RJ , 80 the inclusioq
BS MM R) —— DS AP(R)
is a homotopy equivalence by proposition 1. 5.9. And finally the cofibrations in
W™(R) are splittable up to weak equivelence, so theorem 1,8.1 applies to show that

1im hN.M (R) — lim hS. M (R)
n . n :

n
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is a homotopy equivalence. 3y combining the homotopy equivalences we obtain the

proposition. o

To complete the proof of the theorem we are now left to compare IhME(R)I and
BELy (R) .

Let us write C instead of th{R) s for short., We blowup C to a simpli-
cial category C. , [m]lw Cm + The objects of Cm are the same as those of ( ,
and the morphisms in Cm are the mparametey families of merphisms in € . That
is, a morphism in Cm from A to B is a mep A[A™] ~ Aez[a™] & B . Considering

C as a simplicial category in a trivial way we have a map C - C. .

If A€ we let CA » TE8P. C'A » denote the connected component of C ,
resp, C. , containing A , and C.(A) the simplicial category of self-maps of A

in C. .

Proposition 2.3.5. For every A€ th(R) there are homotopy equivalences

CA —ap CUA e CG{A—) *
Proof, The argument is similar to that of propositien 2.2.5. o

Corollary. There is a natural chain of hemotopy equivalences, Béik(R) ot ]hM;(R)I ,

compatible with suspension.

Proof. Let A= A: denote the module obtained by attaching k mn-cells to zero,
Ay = RILL *any /RlL1%987] |

We claim that the simplicial ring of self-maps of AE is homotopy equivalent to
Hﬁxk(R) » independently of n . To see this we can reduce, by a direct sum argument,
to the special case k =1 . Restricting to the generating simplex we then obtain
an isomorphism

Map, (A7,A7)  w~  Hap(a®/oa™ RIA™T/R[AA™T) .

But it is well known, and easy to prove, that the n-fold leop space of the simplicial
abelian group R[A"J/R[24™] is R again, up to homotopy. For example consider the
horn AP , the union of all the faces of A" except the last. Then R[An]/R[An]

is contractible. Hence the short exact sequence

[a" 1 /R194% ] — REA™MI/RIAPT —— RIA™M/RI3A™

gives a looping fibration. It £ollows from the claim that the simplicial moneid of
self-equivalences of Ak is homotopy equivalent, as monoid, to étk(R) Hence
Bﬁtk(k} e |C. (Ak)l + Applying the proposition now we obtain that the latter is

" homotepy equivalent to ICAI = IhME(R)I . The corollary results, o
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Remark. The theorem includes a description of the Quillen K-theory of a discrete
ring in terms of chain complaxes over that ring. For if R is discrete then a
'module’ in the sense used above is really the same thing as & stmpltetal module
over R . In view of the Dold-Kan theorem there is therefore an equivalence (it is
given by the normalized chain complex functor) of the category ME(R) with a cate-

gory of chain complexas over R . a

Belew, in the context of linearization, it will be convenient to know that the
foregoing material can be redone topologically rather than simplicially. We recoxd

this now.

4 a technical point, we will want to know that the geometric realization
functor commutes with finite products, Therefore products should be formed in the
category of compactly generated spaces. Ae a result we will restrict ourselves to
working in that category. For example, if we mention a topolegical abelian group
it will be taeitly understoed that the underlying topological space ig compactly

generated.

Let JAl be a topological abelian group, not necessarily the geometric reali-
zation of a simplicial abelian group A , and |X| =& topological space, not neces-
sarily the geometric realization of a simplicial set X . either, In this situation
we can form |A|[]XI] , the topological abelian group freely generated by |[X| over
|Al . The underlying space is. the space of linear combinations of the kind

a,%) oo TR
jubject to a suitable equivalence relation, and topologized accordingly. In detail,
one forms

o 1a1% x ixi® 7~
where the equivalence relation is generated by the rule that for every map of finite
sets, 0: m- n, the two maps

*
AT x (x|t e X T gmy gt TR L ™ xi®

are to be equalized.

1f, in particular, I[Rl 1is a topological ring, and IX| a topologieal space,
we can in this way obtain I[RI[IXI] , the free |R{-module generated by [Xl . The
construction is compatible with geometric realization in the semnse that if R is a
simplicial ring, and X a simplicial set, then IR[[IX|] ~ IR[X]l .

We have the means now of defining the notion of the atiaching of & n-cell to a
|R|-module M . Namely this is the formation of a pushout of the kind

M +— IRI[(28"]] — IRITIAMID .

Starting from this notion we can proceed as in section 2,1 to carry over the defini-
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tions of Hf{R) and th(R) to the topological context to obtain definitions of
Mf(IRI) and th(IRI) .

Proposition 2.3.6. Let R be a simplicial ring. The approximation theorem applies
to the geometric realization map Mf(R) -+ Mf(lRl) .

Proof. The arguwent is similar to that of proposition 2.1.2. 0

Define étk(ERI) as in the simpliecial case; that is, it is the simplicial

monoid of the hometopy-invertible matrices over IR| .

Corollary 2,3.7. Let R be a simplicial ring. There is a natural chain of homo-

topy equivalences

MESM(IRDT & KR x Lim BéL, ((R))*

and the chain is compatible, via geometric realization, to that of theorem 2.3.2.

Proof, We consider the chain of maps in theorem 2.3.2 as consisting of three parts.
The first part is the chain of maps between Lim HN.Mn(R} and hS.Mf(R) in propo-
sition 2.3.3. The preceding proposition applies to each map in the transformation
from this chain to its topological analogue, =0 these maps dre homotopy equivalences.

As a result, sinece the maps in the former chain are homotopy equivalences, it fol-
* lows that so are those in the latter,

The second pert of the chain is-Segal's homotopy equivalence of flhN, MR RY |
with K'(ﬂ oR) % lim Ith(R)I . This is certainly compatlble with its topological
analogue.

The third part of the chain, finally, is given by the maps in proposition 2.3-5,
Tesp. its corollary. There is a compatible chain of maps in the topological case,
and the maps are homotopy equivalences by the version of proposition 2.3.5 in the
topological case, . ‘ o

Suppose.how that G is a simplicial monoid, Let Z be the ring of integers.
There ig an exact functor

R(*,0) —— M(Z[C])
1 £ N A

and hence an induced map in K-theory, the Zinear'ﬁzatioﬁ mnap
Q|kS. Re(%,6) 1 —— o[nS. Mz (z[G])i .

On t:he other hand, the map of mngs up to homotopy 0 S IGI - Z[1&l] . induces, by
matrix multiplication, & map of H-spaces
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fL(a"s™161,) — ELzlialD .
This is de~loopable to a map of classifying spaces Béi(n“swtcl+) - Bét(ztlcl]) .
well defined up to homotopy. HNamely the latter is obtained by composing, in the

‘limit with respect to n and k , the map
k.n e Kon
B Aut). (V78 AV|G|+) ~——+ B Auly[ o3 GIVSAIGL D)
with a homotopy inverse to the homotopy equivalence ,
) reoka0 o [ykah .
We can further compose with an inverse to the homotopy equivalence

‘ Béi.k(ztc;]) —_ Béik(z[tell} .

Corollary 2.3.8. The linearization map corresponds, under the homotopy equivalences
of theorems 2.2.1 and 2,3.2, to the map S

A A +
z % BL(a"s"16l ¥ — 2 x BéL(2lE])” .

As indicated in [14], thia result can be used to obtain numerical information.
0w s,
For example, as a consequence of the fact that the map 25 el - z[lgl] is a
rational homotopy equivalence as well as an isomorphismon w  , it follows that

the map of the corollary is a rational homotopy equivalence.

Proof of eorollary. This is a matter of checking, gimilar to the preceding corol-
lary. We regard the chain of homotopy equivalences in theorem 2.2.1 as consisting
of three parts. The first part ig the chain of maps hetween 11m nN . RP (%,6) &and
hS. R (x,G) in proposition 2.2.2., This is compatible, by lxnearlzat1on, to the
correspondlng chain of maps between lim bN. W(z{61) and S. M (@L61) in proposi-
tion 2.3.3.

The second part of the chain is Segal's homotopy equivalenee of QIhN,R™(x,0) 1
with 2 x 11m [hﬂk(*,G)[ . This is compatible to its linear analogue, the homotopy .
equxvalence between Q|WN.MP(2[6])| and Z x lim thn(Z[G])l

The third part, finally, is the commutative diagram of homotopy equivalences,
thh the notation as in proposition 2.2. 5, and Y the simplicial version oE

vis A|G|

[

¥t

The notation of the broken arrows here simply means that these arrows are nissing.
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For we have not tried to put anything into the upper right cornmer. Such 2 Y would
have to satisfy the Kan extension condition (proposition 2.2.5) and it would also

have to fit into a sequence of Y's related to each other by some kind of suspen=-

sion.

At any rate, the diagram is compatible, by linearization, to one

¢, — (.

A — C.(8)

A

C|A| —*C.IAI‘—‘—‘ C.Clal)

where the upper row is that of proposition 2,3,5, with A » Z[Y] , and the lower row
is the topological analogue of it. ‘ o

To conclude the topic of linearization let us briefly mention that, in the case
of A(X) , there is a description of the linearization map which uges only spaces
over X , not the loop group of X . The map is defined in terms of an exact funo-
tor R(X) - R&b(x) vhere Rab(X) denotes the category of abelian group objects in
R{X) .

In particular this means that, for commected X , there is a deseription of
K(Z[G(X)]) in terms of Rab(x) . To obtain that description, one defines a notion
of weak equivalence in Rab(x) so that the map Rab(x) -+ Rab(*,G)sv M(zlel) corre-
sponding to that of proposition 2.1.4, respects and detects weak equivalences, The

argument of propesition 2.1.4 may then be adapted.
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3. THE WHITEHEAD SPACE Wh “(X) , AND ITS RELATION T0 A(X) .

3.1. Simple maps and the Whitehead space.

A map of simplicial sets is called simple if its geometric realization has
contractible point inverses. We will admit here that simple maps form a category;
that is, that a composite of simple maps is simple again, and that the gluing lemma
is valid for simple maps. Proofs of these facts may be found e.g. in [16] where

also a few other characterizations of simple maps are given.,

If X is a simplicial set we demote by C(X) the category of the cofibrant
objects under X ; the objects are the pairs (¥,s) , st X = Y , and the morphisms
from (Y,s) to (Y',s') are the maps £: ¥+ Y¥' with fs =8’ .

As bafore we let R(X) denote the category of the triples (Y,r,s) , rs = Id, .

In either case, the subseript 1£' will denote the subcategory of the finite
objects (where Y is generated, as simplicial set, by the simplices of s&(X) to-
gether with finitely many other simplices) and the guperscript 'h' will denote the.
subcategory of the homotopically trivial objects (where s: XY is a weak homo-
topy equivalence). Finally the prefix 's' will denote the subcategory of the
simple mapa. - ' .

The category BC?(X) is of interest because of its role in the classification
of PL manifolds and their automorphisms (21037 [16); ef, also [15] and especially
the proof of proposition 5.5 in that paper. | |

By the Whitehead space (the PL Whitehead spaée, to be precise) is meant & space

vwhose fundamental group turns out to be the Whitehead group (the Whitehead group of -
w]X , that is, if X is connected) and which can be obtained from the {clasgifying

space of the) category BCE(X) by de-lcoping, as follows.

In the language of section 1.8, the categoxy CE(X) may be regafded as a cate~
gory with sum (gluing at X ) and weak equivalences {simple maps). Hence the group
completion in the sense of Segal, the simplicial category sM.C?(X) , is defined.

Proposition 3,1.1. There is a natural homotopy equivalence
Isch |~ slsM.Cil
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Proof. Thanks to Segal [11] one knows that the canonical map from jsﬂg{x)l ta .
n!sN.CE(X)I is a homotopy equivalence if the H-space lacg(x)l is group-like or,
what amounts to the same thing, if the monoid wolscg(x)l is a group. But it is
well known that this is the case, cf. e.g. [16] for a proof. ("]

The main goal of this secction is to prove the result (theorem 3.1.7 below) that
the sum construction in sM.Cg(x) can be traded for the cofibration eongiruotion
that ie, that 'N.' can be replaced by 'S.' . In order for this replacement to
make sense it is necessary to trade 'C' for 'R' first, that is, to impose struc-
tural retractions throughout. We also need an auxiliary construetion; its purpose
is to prevent the homotopy property of the functor X sN.CE(X) from being lost

upon tramsition from 'C' te T'R' .,

Let F be a functor defined on the category of simplicial sets, with values in
a category B , say. We associate to it another functor ¥ s With values in the
category of simplicial objects in B ,

o
Fy = ([alerid))

n
where XA denotes the simplicial set of maps Ao x

- Remark. 1In cases where the name of the functor is not F but something lengthy,
such as for example sN.CE s the notation f(X) would be awkward. We will there—
fore use instead the notation F(XA ) on such cccasions. o a

, ‘ o :
Using the identification of F(X) with F(xA ) , and considering objects of B
as pimplicial objects in a trivial way, we can define a natural transformation from
v
F to F.

Supposing now that in the receiving catepory B rit makes sense to speak of
weak homotopy equivalences, we will say that the fumctor F xespecte weak homotopy
equivalences if X3 X' always implies F(X) 3 F(X") .

Lemma 3.1.2, If F respects weak homotopy equivalences then the natural transfor-
 mation F~- ¥ is a weak homotopy equivalence.

. ’ AO An
Procf, The (degeneracy) map X~ =+ X

o n
fore so is F(xA )=+ F(xA } , by assumption about F ., We conclude with the reali-

is a weak homotopy equivalence and there-
zation lemma. ' o

Lemma 3.1.3. For any F , the functor f preserves simplicial homotopies.

) 1
Proof., Let X - YA

assoclate to it a simplicial hometopy of maps f(x; dgﬁ(Y) « SBuch a simplicial ho-

be a simplicial homotopy. The cleim is that one can naturally

motopy may be identified to a natural transformation of functors on the category

afl1] ,
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(a: [n] + [1]) s (F(x) »F(Y) ) .
The desired map on the right is defined as the composite map

n 1l
Fexd )y —— perd Yy F(YAn)

Al
where the first and second map are 1nduced, respectxvely, by the homotopy X - Y 5

and by the map X ,
84, 1d
—_— s Ak,

Lemma 3.1.4, Let F(X) = ng(K) . Then the functor ¥ respects weak homotopy
equivalences. Similarly with the functors sN.RE(X) and BS.R?(K) .

Freof. By a well known argument (which e.g. may be found in [16]) it sufficas to
show that f(x) - ﬁ(x') is a weak homotaopy equivalence if %' is obtained from X
by filling @ horn, that is, if it is the pushout of a diagram X « A -+ 4" where

An is the i-#k horm in A", the union of all the faces except the l-th The idea
of the following argument is to conetruct, in this situation, a defeormation retrac*
tion of F(X') to F(X) by using the preceding lemma., . Since it is not true, in
general, that X 1is a deformation retract of X' by a simplicial homotopy, we must,

subdivide first.

Let 5d denote the subdivision functor for simplicial sets, and Sdk its
k-fold iteration. One knows that the subdivision of a simple map is simple again,

ef. [16], 80 We can use Sd2 » say, to define a map
2 sR X"y ——— sR (Sd .

We compose with the map f* sR {5d X') = sRh(X') induced by puahout with

£f: 84 X' -+ X' (the composite of the 'last vertex map' S5d(X") » X" with itself).
The composite map on sRh(X ) then is homotopie to the idemtity. For, it takes.
(Y,r,8) to - :

L]
Sd, ¥ USdzx' X,

with the appropriate structure maps, and the desired homeotopy is given by the natu-~

ral transformation to the identity functor induced from Sd,¥ - 7Y, which is a

simple mep, cf, [16]. ' C

As shown below, f: Sdzx‘ =+ X' is simplicially homotopic, relative to 8§d,X N
to 2 map inte X , Applying the preceding lemma we thus obtain a simplicial homo-
topy of the map f* . We conclude that there is a map homotopic to the Ldentity
on sRh(x'A ) , namely f*é s which ig also humotcplc to & map into sR (x ) . The
latter homotopy is relative to the 'identity' omn sR (X ) } more preclsely, the
homotoﬁy is constant on the analogue of the map E*Q constructed f:om X instead
of X' . So we can draw the desired conclusion that the wap aR (x ) - st(K'A K
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18 a weak homotopy equivalence.

We are left to show that Sdzx' = X' is simplicially homotopic, relative to
Sdzx , to & map into X . Since the subdivision functor commutes with pushouts,

this reduces to the following special case.

Assertion. The map Sdzﬂn + 2% s gimplicially homotopic, relative to Sdzﬂz s to

a map into A .

To see this we note that there is a homotopy of maps ISdlAnl - |4 which has
all the asserted properties except that it is not quite the geometric realization of
a simplicial homotopy; it is only a linear homotopy of unordered simplicial comple~
xes, We can get the ordering right by subdividing once more. This gives a éimpli—
cial homotopy of maps Sdzﬂn -+ SdlAn . Composing with the map SdIAn + 8" we ob-
tain the desired homotopy from it,

The other cases of the lemma are handled similarly. o
Lemea 3.1.5. If X satisfies the Kan condltlon, the map sRh(x } - sC (X ) is

a homotopy equivalence.

Proof. We define a simplicial category [m] » sR (K) in which an object is one

of sC {X) , say (Y,y) , together with a map YxAm - x extending the projection
Xxa™ - K . Since ¥y is a weak homotopy equivalence, and x satisfies the exten=
sion condition, the simplicial set of those objects of sR {(X). which arise from
any particular (Y,y) , is contractible. In other words, the simplicial set of
objects of BR?(X). maps by homoteopy equivalence to the set of objects of SC?(X)
Similarly, the simplicial set of morphisms of BR?(X). maps by homotopy equivalence
te the set of morphisms of sC (X) s and so on. It follows {the realization lemma)

that the forgetful map sR (X). -+ sCh(x) is a homotopy equivalence. .

Next we define a bisimplieial category [ml,[n] = aR Ry ™ sﬂh(xﬂn} In
view of the homotopy equivalence just establisghed it follows, by the realmzatlon
lemma, that the map SR?(K).. - SCE(X ) 1is a homotopy equivalence. Passing to the
diagonal simplicial category of the bisimplicial category on the left (it has the

same geometric realization, up to isomorphism} we obtain
aiag sRI(D .. — sCH(XA")

The lemma now results by checking that diag SR:(X).. contains ERE(XA } as a
deformation retract, and that the map.of the lemma is the restriction of the latter
homotopy equivalence.

: . n
- An object of sR (K) consists of an injective map XA + Y (with a finite-

n n

ness condition) together thh a map Yxa™ - xA which on Xh %A pestricts to the
n

projection. The object is in the subcategory sR?(XA ) if the map on - Yxa" itself

factors through the projection.
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Ny 10 :
Pagsing to the adjoint, we can rewrite the map ng Y » x27%7 | The desired

ampl:l.c:al homotopy now is induced by a simplicia) deformation retraction of

ARx AT

[n]w x to [nle+ Xﬂ « Cf. e.g. [16] for a description of the homotopy. o

Lemma 3.1.6. If X satisfies the Kan condition, the forgetful map

b At | .
| aS _RE(x%") > 8S__ IR}'cx ) x Ry B b’y
( Y] L BTN Yn"'l H,Yn ) — ( Y] L SR o Yn"I Yann_l )

is a homotopy equivalence.

Proof. Define a category s'§nR}_}(x) just as sSnRI-f‘(x) except that there is no
structural retraction on the object Y, in the filtration Y w= ... ¥ .- Y .

There is a forgetful map
ho A % pho A'
sSan(x ) — sSan(X )
which forgets the structural retraction in question. This forgetful map is a homo—
topy equivalence as cne sees by a straightforward adaption of the argument of the

preceding lemma. Consequently (and in view of the preceding lemma) the assertion

of the lemma is equivalent to the assertion that the map
~ h, A* h, A" h, A"
sSan(x ) — sSn_]Rf(K I scf(}{ )
is a homotopy equivalence. By the realization lemma this follows if we can show it

m
degreewise, for fixed m . Writing X instead of e now, we are reduced to

showing that the map
63 R —— o8 _ AR x sCew
nf n—-1"f f
is 2 homotopy equivalence.
Let us denote the components of this map by p and ¢ , respeci:ively, and the

section of the map ¢ by i . In order to show that (p,q) is a homotepy equiva-

lence, it will suffice to show that the sequence
h i ~ oh,., p h ..
| aCf(x} —_— ssnﬂf(}.{) —_— sSn__lRf(x)

ig a fibration, up to homotopy. We use Quillen's theorem B [ 8] to prove this. We
proceed to show that the theorem applies, in its version for left f£ibres, to the
mep p .

Let (Y -, .-bY 1) be an cobject of &S (f() An objem: of the catcegory
p/(‘l -, .-vY l) consmts of an object (Y’-o..-tY‘_l—rY )} of 53 R (¥} togethexr with
amap g, say, in sS n~1 f(x) s the (vertical) transfarmatlon

Y'=a ... =21
o n~1]

| l

YO" 4.4‘“’ Yn_
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Let pf(YO-:..#Yn_l)' denote the subecategory of the objects for which the structural
map g 1is the identity map. It is a deformation retract of P/(Yoﬂ..an_l) 3 in
fact, a deformation retrection is given by pushout with g .

On the other hand, p/(Y uitind I)' is isomorphic to aC (Y ]} Ag shown
in [16], the functor Xw sCh(X) respects weak homotopy equ1valences. Hence the
structural inclusion X = Yo 1nduces ‘a homotopy equivalence sC (X) *-sCh(Yn_l)
It results that the maps in g8 1 f(X) induce homotopy_equ1va1ences of the left
fibres. Thus theorem B gpplies, showing that for every (Yd*"*&ﬁ—l) the square

P/(Yo-b. W) — 'BEnRIf](X)

A 85 Re(0)

‘is homotopy cartesian. In particular this is so for the distinguished object
(%+..~X) . We saw above that p/(¥>..»X) contains as a deformation retract a sub-
category isomorphic to sC?(X) . Under the horizontal map in the square this subca-
tegory projécbs to the image of the inclusion map i , and under the vertical map

it projects trivially into the contraetible category Id/{¥»..»X) . We obtain that
the maps i and p form a homotopy fibration, as claimed. | o

Theorem 3.1,7. Let X be a simplicial set., There are homotopy equivalences

s.'u.c*f‘(x) —_— su.c*f‘(x‘") — sN.R‘f‘cx“') —-—vss.R‘f‘(x‘“) )

Proof, It is shown in [16] that the functoxr X sC (X) respects weak homutopy
equivalences. By lemma 3.1.2 therefore the map from aC {RJ to sCh(x Y is a
homotopy equivalence, and consequently also siN, Cf{x) - sN Ch(x ) in view of the
realization lemma. To proceed we chooss a weak equivalence X - X' where X' is &
simplicial set satisfying the Kan condition. Then all maps in the tranaformation of
the chain of the theorem to the corresponding chain with X replaced by X' are
weak equivalencez by lemma 3.1.4. Thus we can reduce to proving the theorem for
simplicial sets which actually satisfy the Kan condition. Applying lemmas 3.1.5

and 3.1.6 now to the second and third map, respectively, we obtain that these maps
are homotopy equivalences degreewise in the N, , resp. 8. , directiona. We con~
clude with the realization lemma. \ o
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3.2. The hemolopy theory asscciated to A(x) ,

Let F be a functor defined on the category of simplicial sets, with values
in some category of spaces, We say F is emcietve if it satisfies the following
two axioms.

{Limit). F commutes with direct limit,

(Excision). If xb = X, is a cofibration, and X, % any maﬁ, then the square
F(Xb) — F(IZ}
F(x]) -— F(x]UonZJ

is homotopy cartesian.

We say F is a homological funetor (or a homology theowy) if, in addition to

being excisive, it also satisfies

(Homotopy). If X = X' is a weak homotopy equivalence then so is 'F(x} = F(X") .
SLOMOLOpY

. v .
Recall (the preceding section) that F{X) = F(XA ) denoteg the functor

X —s ( [n] + 7N ) .

The purpose of this section is to prove the following result.
Theorem 3.2,1, The functor Xk aS.Rf(xA Y is a homelogy theory.

Addendum 3.2.2. The functor X+ ﬂIsS.Rf(XA | may be identified, up to a natural
chain of maps, to the homology theory associated to A(x) .

In fact, the chain is given by the maps (of loop spaces of)
( In] b 6S.R (KM ) e ( [n] B8R (X)) ) = ( [n] 1 BS.RLGED )

where X = ( [n]lP X ) and vhere the first map is induced by the identification

xn = (Xﬁn)o . Each of the three terms is a homology thecry, In the first case this
is 80 by the theorem, and in the second and third cases, the terms are the homology
theories associated to the T-gpaces with underlying spaces sS.Rf(*) and hS;Rf(*) s
respectively (cf. e.g. [13] for a detailed description of the homology theory asso-
ciated to a (special) I'-space). Given the fact that the three texms are homology

\
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theories, and connected, the proof that the maps are homotopy equivalences can be
reduced to checking the case X = % . In that case, the first map is an isomor-
phism, while the second map is the inclusion sS.Rf(*) - hS.Rf{*) . There does not
seem to exist a direct proof that the latter map is a homotopy equivalence, but an
indirect proof is provided by theorem 3.3.], below, together with the fact that
sS.Rg(*) is contractible (which, e.g., follows from proposition 1.3.1).

In order to prove the theorem it will suffice to prove the following two pro-
poeitions 3.2,.3 and 3.2.4.

Proposition 3.2.3. The fumctor X» sS.Rf(X) is excisive.

Proof. TFirst, it is clear that the functor commutes with direct limit (up to iso-

moyphism).

Next, suppose that Xb -+ Xl igs an injective map. Pullback with it defines a
wmap Rf(xl) -+ Rf(xo) which respects simple maps. The inclusion=-induced map Rf(xb)
- Rf{xl) also respects simple maps, Composing the two we therefore obtain a sub~
fupctor f of the identity functor on Rf(xl) which is exqct, and hence a cofibra-
tion sequence of exact functors £ - Id =+ f' vhexe £' is defined as the quotient
£f' = Td/f . Let Rfcxl,xo) be definéd as the categbry of the objects (¥,r,s) in
Rf(xlj having support avay from X, that is, having the property that the pullback

is not bigger than xu . Then £' takes values in Rf(xl’xo) » and it restriets to

the identity map on that subcategory. Applying the additivity theorem to the cofi-

bration sequence £ - Id = £' npow, we obtain a homotopy equivalence of BS.Rf{Kl)

with the product ES.Rf(XD) x sS.Rf(K],XD) + In particular, therefore, the sequence
8S,Rp (X)) —— 88.Rp(X;) —— 8S.R.(X,,X))

is a fibration, up to homotopy.

Applying this consideration in the situation of the excision axiom, we obtain

a diagram of homotopy fibrations
. .

BS.RE(Xz) —_— sS.Rf(XIUXOXZ) -——*——+rsS.Rf(XIUxoxz,Xz) .
The vertical map on the right is an isomorphism (an inverse is induced by pullback).

It follows that the square on the left ie hoﬁotopy cartesian, as asserted by the

excigion axiom. This completes the proof. ' =
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Proposition 3,2.4, Tet F be &n excisive functor, and suppose that F(X) is
& v L]
connected for every X . Then the associated functor F 1is a homplogy theory.

The proof will be given at the end of this section. Together with the prepara-

toxy material, it occupies the rest of the section.

Remark. 'The artificial looking connectivity assumption comes from the fact that our
proof of the proposition uses the following lemma 3.2.5. Some auxiliary condition,

such as connectivity, is definitely needed in that lemma.

Lemms 3.2.5, Let
wllﬁx.l
Y..—'Z-.

be a commutative diagram of bisimplicial sets, Suppose that for every m the -

diagram of simplicial sets

Wmc -_— xm|

Ym.-~*zm.
is homotopy cartesian, Suppose further that for every m the simplicial sets Y ,
and 2. are connected. Then the diagram of bisimplicial sets is also homotopy

cartesian,

Remark. There are easy examples to show that the connectivity assumption camnot be
dropped without replacing it by sémething else. Here is a particularly bad case.
Take any pullback diagram of simplicial sets, and congider it as a diagram of bigim~
plicial sets in a trivial way., Then in each degree m we have a pullback diagram
of sets, and certainly therefore a homotopy cartesian square {of sets !)., But it

rarely happens, on the other hand, that a pullback diagram of simplicial sets is
4

also homotopy cartesian,

Proof of lemmx. We deduce the lemma from a corresponding result for homotopy fibra-
tions which we refer to as the fibre realization lemma, A proof may be found in
{13]; for convenience we recall the statement here. By a fibration up to homotopy
ig meant here a2 séquence of mape of 'spaces' of some sort, X - Y~ Z , bhaving the-
property ﬁhat, firstly, the composite map X~ Z is a trivial map, with image *
say, and, secondly, the map from X to the homotopy fibre of Y-+ Z at * is a
weak homotopy equivalence. The fibre realizetion lemma says the following. Let

X.. » Y.. + Z.. be a sequence of maps of bisimplicial sets so that the composite
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map X.. = Z.. is a trivial map. Suppose that, for every m , the sequence of maps
of simplicial sets Rpe = ¥ 4 ig a fibration up to homotopy. Suppose further
that for every m the simplicial set Zm. is conneeted. Then the sequence of bi-

simplicial sets, X.. = Y., = Z.. , is itself a fibration up to homotopy.

The idea for proving the present lemma comes from the fact that a homotopy car—
tesian square with connected bases can be characterized as a commutative square in
which the homotopy fibres of the vertical maps are mapped to each other by homotopy
equivalence. Using this one hopes to obtain a translation of the assertion which

follows from the fibre realization lemma.

To get the details vight, it is convenient to replace homotopy f£ibres by actual
fibres in a systematic way. We need to know that there is a functerial way of turn-—
ing a map of simplicial sets into a Kan fibration; e.g., the process of filling
#orng [ 1] will do. Using it we replace, for every m , the square of the lemma by

a square

1 ]
Wﬁ. h——’Xm.

I

) 1
Yo~ &g
in which the vertical maps are Kan fibrations. In view of the naturality of the

construction, these squares still assemble to a square of bisimplicial sets

WI.—&X!.

| |

:-—*Z:- 'l

There is a natural transformation from the old square to the new, and the maps
W.. = W. , etc., are homotopy equivalences by the realization lemma. To prove the

lemma it will therefore suffice to show that the new square is homotopy cartesian,

Choose any point of ¥!. ({i.e., & compatible family of points in the Y&.V) ak
a basepoint; denote it * , 1Lat fibre(W%.*Yé.)(*) denote the actual fibre at * .

Since w;. -+ Yé. iz a Xan fibration, it is cerxtainly true that the sequence
4 ¥ 1 1 1
flbre(wm.'-ﬂfm.)(*) ""'_"b Wm. — Ym.

ig a fibration up to homotopy, for every m . In view of the fibre realization
Llenmz we deduce from this that the sequence

fibre(WI.&YI.)c*j-———#W!. — !,

is also a fibration up tc homotopy, where the term on the left denotes the actual
] . 4 . » - . » ' ' i+ 1 '
fibre again; the point is that fibre(W .#Y..)(*) o ([m] - bere(Wm.-+Ym.) (%) ) .

There are similar fibrations if W' and Y' are replaced by X' and 2’ .
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We can now complete the proof of the lemma as follows. In view of the assump-

tion of homotopy cartesianness we have, for every m , & homotopy equivalence
3 1 1 : t 1y :
fzbre(ﬂm.»Ym.)c*) —_— flprecxm‘qzm‘)(lm(*})
By the realization lemma this implies a homotopy equivalence
: oLt : 4 ' 1
flbre(WU 0-’Y| u) (*) e 4 flbrecx. 4"21 -) (Im(*)) ]

‘and therefore, in view of the preceding, a homotopy eduivalence of the vertical
homotopy fibres in the W!.-X!.-¥l.-Zl!. square. Thus that square is homotopy

cartesian, as was toc be shown.

The lemma enters into the proof of proposition 3.2.4 through the following

consequence,

Proposition 3.2.6. Let [m]|+ F, bea simplicial object of functors, Suﬁpose that -

F,(X) is connected for every m and every X . Then if the ¥ are excisive,
it follows that so is F , where F(X) = ( [m] = F (X)) .

Proof. 'The validity of the limit axiom for F is automatic. The validity of the
excision axiom for F follows from its validity for the F_ by application of the

praceding lemma. B

For later use we record the following here.

Lemma 3.2.7. Let F‘

connected for every X . Let F

and F2 be excisive functors so that F](X) and’ rz(x) are
L Fz be a natural tramsformation. IE the natural

n
transformation is a weak equxvalence in the cases X=4 , n= 0, 1y 2, «os y then

it is a weak equivalence in gemeral.

Proof. By the limit axiom we can reduce to showing that F () = cmx) iz a wesak

equivalence for finite X . Let X be obtained by attach1ng a ast" simplex A"

to a gimplicial set ¥ . In other words, choose an isemorphism of X to the push-
out in a diagram
Y |

n
¥ — Y Uaa“ A

to the disgram we obtain a homotopy cartesian square, in view of exci-
we cbtain another, The map Fl +-F2 gives a map of the
are to the second.\ Since Fl(x) and FZ(K) are con-
- Fz(x) to be & homotopy equivalence,

Applying pl
sion, and applying F2,
first homotopy cartesian squ
nected we conclude that, in order for 7! X)
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it suffices that the map is a homotopy equivalence in the other three cases., But
in the case of A" this is true by hypothesis, and in the cases of 24" and Y

it may be assumed true by induction, a

The crucial step in the proof of propesition 3.2.4 is the construction given
in the following two definitions.

Definition 3.2.8. Let X be a simplicial set, Define [k]m Cou(X)k ko be the
simplicial object, in the category of simplicial sets, given by

m
C'ov(x)k = J__Lm’n A ox Nk(m,n) b xn

vwhere Nk(m,n) denotes the set of sequences in 4 ,

[m] - [mI] -+ aae *'[mk_l] -+ [n] { k arxows) .

To describe the simplicial structure one rewrites Cov(X) as the bisimplicial

set where a bisimplex in bidegree (q,k) consists of a seqtience
lq) + [m ] = [m] = vev s (m 1~ [m, ]

together with an element x € X[mk] + By definition now the i~th face map with
respect to the k~direction is given by omitting [mi] from the sequence; except

if i=%k in which case, in addition, the element x € X{mk] muat be taken to the
eppropriate element of x[mk_l] + The degeneracy maps are given by the insertion
of identity maps in the sequence,

Definition 3.2.9, Let F be a functor on the category of simplicial sets. Then

F'x) = ( [k] = F(Con(X),) ) .

Considering the simplicial set X as o simplicial object in a trivial way, we

can define a natural transformation

Cov(X), —~—X ;

by definition, its restriction to (4%, [ml=...»[n), x) is the composite map

Am ([m]-+[n]), LI SN

Lemma 3.2.10. If X is a simplex . AP or, more generally, a disjoint union of
gimpliceg, then this map is the retraction in a simplicial deformation retraction
from the simplicial object [k] v Cou(X), to the trivial simplicial objeet [k]m X .

Proof. In the case X = AF » the simplicial homotopy is defined as the natural
transformation on the category A/[1] taking a: [k] -+ [1] to the map of va(ﬁp)k
to AP defined in the following way. The map a, takes the sequence
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[q) » [m ] = [my] = .0v » [m ] = [p]
te the sequence
[a) » ) » vov > [mg ]+ 01 5 o0 3 191

where i(a) i the largest of the i € [kl which are in the pre-image of 0 € [1] ;
if a takes [k] entirely into 1 &€ [1] then the image sequence is

[q) = [pl 5 ... = [p) .

The homotopy is similarly defined in the more gemeral case where X is a

disjoint union of simplices. : ‘ = o

Considering the objeets of the receiving category of the functor F ag sim

plicial objects in a trivial way, we can define a natural transformation
F(X) — F(X)

as the map which in degree k takes F(C’ov(}{)k) into F(X) by the map induced
from Cov(x}k-+ X.

Lemma 3.2.11. In the case where X is a simplex, or a diéjoint union of such,

the map F (X) -» F(X) is a (simplicial) homotopy equivalence.

Proof, The funetor "F* has been defined by means of degreewise extension in the

k=variable, so it preserves simplicial homotopies in the k-variable. The present

lemma thus results from the preceding lemma. o

Remark. It is not difficult to show that Cov(X). » X is a weak homotopy equiva-
lence for all X . On the other hand there seems little reason o sSuppose, in
general, that the natural transformation Fx(x) + F{X) iz a weak equivalence for

X which are not just disjoint unions of simplices.

Proposition 3.2.12, Suppose that F(X) ia connected for all X , and that F is
excisive. Then FY(X) = F(X) is a weak homotopy equivalence for all X.

Proof. The functor
' m
X — Gov(x)k - lim,n A % Nk(m,n) x X,
preserves monomorphiéma and pushouts, As a result, the functor
X +——+ F(Cov(X)y)
is excisive since F is. Applying proposition 3.2.6 now we obtain that

X —— ( [kl » F(Cov (X)) )

is an excisive functor, too.
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Thus F“(x) -+ F(X) 1is a map of excisive functors. By lemms 3,2.11 the map is
a weak equivalence in the case X = A" , Consequently, by lemma 3.2.7, it is a wealk

equivalence in general. o

Proposition 3.2.13. Let G be a functor satisfying that G(X) is connected for
ell X . Suppose that ¢ commutes with direct limit, and that it takes finite dis—
joint unions to products (up to homotopy); e.g., suppose that € is excisive. Then

X, . .
the funector 5 18 exclslive,

Proof. Let X = ([jlwm Xj ) + Then the functor X~ G(Xj) is excisive by hypo-

"thesis about 6 . By proposition 3.2.6 therefore the functor X~ ( [j] e G(Kj) )

. » + 14 - - vx
18 exelsive, too. We will show that the latter functor is weakly equivalent to G .,
We show this by constructing an intermediate functor H and relating it to both.

Recalling the definitions
FRO0 = ([k] e F(Cov (%)) ) and Py = (3] F(x‘ﬁj), )

a & 4+ ¥ X
we unravel the definition of G asa

F® = Clle (e seoret)) )
= CL5le (DRl GUL, A%, (o,mox(x) 5 ) )

. m, AR
= Ukl (Le el a8 e ) ) )
. n
We define the intermediate functor H by replacing XA by X in the latter term,

HX) = ([kIw ([5)m Gl o Amek(m,n)xxj) )Yy .

.
The projection A" =+ A° induces an inclugion X ~ KA and hence a map of H(X) ¢to

E“(x) . We claim this map is a homotopy equivalence.

In fact, the map ¢ [J]#+ X ) = ( [T+ (X ) ) is a eimpilieiql homotopy
equivalence. The process of applyzng functors degreewzse preserves simpliecial homo-
topies. Hence the map

C) e oy, | Am*Nk(m.n)"Xj) ) — (il moely, o Amek(m.n)x(xAn)'j) )

is a (simplicial) homotopy equivalence still. Applying the realization lemma with
respect to the k-varlable now, we conclude that H(X) -+ b (X) is a (weak) homotopy
equivalence.

To proceed, we rewrite H(X) as
CLiTw € el ooy ﬂmXNk(m,n)KXj) ) ) .
The map ' o

( [K] » Gt o Amek(m,n)x}{j) ) —— ( [K] - c(xj) )
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is a (simplicial) homotopy equivalence by lemma 3.2.11, Applying the realxzat;on
lemma with respect to the j=variable now we conclude that the map

#(®) — ( (510 ([ P 6(X) ) )

is a (weak) homotopy equivalenca. The target‘of this map is the simplicial object
[3] - G(Kj)‘ considered as a bisimplicial object in a trivial way., We are done. 0

Proof of proposttion 3.2.4. Recall, the claimis that if F is an excigive functor
such that F(X) is connected for every X , then the functor F isa homology
theory.

The main problem is to-show that F is excisive again. To see this we intro-
duce the functor' F' (definition 3.2.9). The natural transformation For is 2
waak homotopy equzvalence in the situation at hand (prop031t10n 3.2, ]2) By the
realization 1emma it follows that the natural transformatlon F oo F is a weak
homotopy equivalence as well. Thus we can reduce to showing that the functor P

is exeisive. This was shown in proposition 3.Z.13.

| We are left to show now that the functor ¥ respects weak homotq?y equivalen-
ces. By a well known argument (which e.g. may be found in [11) it suffices to show
that ﬁ(x) - F(X') is a homotopy equivalence if X' is obtained from X by £ill-

ing a horn, that is, if there is a pushout diagram

¥ applied to this diagram gives a homoteopy cartesian square, by excision, so we can
‘ v v . ,
reduce further te showing that F(A?) + F(aA") is a homotopy equivalence.

Now A" is contractible to its i-th vertex by simplicial homotopy (if 1 = ']
or n, & s1ngle homdtopy will do; otherw1ae one needs a chain of twe) and the con-
traction restricts to one of hi.. Since ¥ preserves simplicial homotoples (1emma
3.1.3) we conclude that indeed f(Ai) - ¥(a") is a homotopy equivalence. The proof

is now complete. o
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3.3. [Ihe fibration relating WhPL(X) and A(X) .

The fibration arises from the interplay of two notions of weak equivalence on
the category RECX) » where X is a simplieial set. The twe notions are given by
the simple maps on the one hand and by the weak homotopy equivalences on the other.

Let the superseript 'h' denote the subeategory of the objects which are homo-
topically trivial; that is, the {(Y¥,r,s) where s is a weak homotopy equivalence.
As before (Ehe preceding two sections) let Rf{xpa) denote the simplicial category
In) m R (22

Theorem 3.3.1. The square

8S.RE(K®) s nS.RECxA )

"

88.Ry () ——— 1S.R (x4

iz homotopy cartesian, and the term on the upper right is contwactible. The other
terms are as follows,

ams.RA )1 = A,
X w sS.Rf(XA.) is a homology theory,
sS.REGE) o )

and each of the homotopy equivalences can be described by a natural chain of maps.

Proof. 1In order to show that the square is homotopy cartesian it will suffice to
' n
‘show, by lemma 3.2.5, that for each n the square with xA replaced by XA is
. n
homotopy cartesian., Writing X instead of X" now we have reduced to showing

that the aquare

8S.RE (X) ——s B RE (%)
53R (X) ———s hS.R(X)

I

is homotopy cartesian. The desired fact is essentially a special case of theorem
1.6.4., There is 2 little technical point. Namely the category of weak homotopy
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equivalences on Rf(x) does not satisfy the extension axiom as required for a

direct application of theorem 1.6.4. For this reason we compare with the square

sS.R;'(X) nS.RIX)

l l

8.2 (1) ———s 18.RP (x)

where R( )(X) denotes the subcategory of R {X) of the (Y,r,s) where si X =Y
is a l—connected map. The weak homotopy equxvalences in R( )(X) may alternatively
be characterized as the maps inducing isomorphisms in homology (the Whitehead theo-
rem), consequently they do satisfy the extension axiom. Hence theorem 1.6.4 applies
to show the latter square is homotopy cartesian. We conclude by noting that the map
to the former square is a homotopy equivalence on each of the four corners. In
fact, double suspension induces an endomorphism of each of the terms, the endomor-

phism is homotopic to the identity map (proposition 1.6.2), and it takes Rg(X)
fnto RY () .
The upper right term hS.R?(KA ) is contractible sinece it is a bisimplicial
object of categories with imitial objects. .
! R : At P
The term hS.Rf(XA } 1is a de-lcop of A(X) since hS.Rf(X) - hS.Rf(x ) isa
hometopy equivalence (by lemma 3.1.2) in view of the fact th;; s hS.Rf(X)

respects weak homotopy egquivalences (proposition 2.1.7).
The homotopy aquivalence sS.R?(xA ) e WhPL(X} iz given in theorem 3.1.7.

The fact that X+ sS.Rf(XA.} is a homology theory, finally, is provided by
theorem 3.2.1.

The theorem may be reformulated a little by defining the auxiliary simplicial
structure in a slightly different way. Namely define a simplicial category Rf(X);
as follows. RE(X)n is the subcategory of Rf(xxﬂ“) given by the objects (Y,r,s){
which have the property that the composite map

T 123
Y —e X x A" f-——g—+ An

is locally fibre homotopy trivial.

| Proposition 3.3.2. There is a homotopy cartesizn square
8S.RE (X) . — hS.RE(K).

| |

SS-Rf(K) § — hs.Rf(X) +

and it is homotopy equivalent to the asquare of the theorem by a natural map.
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Proof. The homotopy cartesianness of the square is established in the same way as
in the theorem, There is a map from the square of the theorem to that of the propo-~
sition. It is induced from the map of simplicial categories RE(Xa ) ~ Rf(x). de~

fined as follows. The map in degree mn 1s the composite map
n n
R(xD ) s R(xD %8y — R Cixa™

where the first map is given by product with A% , and the second map is induced

£rom a map
T

X2 kAt —— o™,
namely the map whose second and first compoments are the projection map pr, and
the evaluation map '
AR

X% xa® — v x N

respectivaly.

In order to show that the transformation of squares is a homotopy equivalence
it suffices, in view of the homotopy cartesianness of the two squares, to show that

the map is a homotopy equivalence on three of the four corners.

This is automatic in the case of the upper right corner as both terms are con-
tractible.

It is still easy in the case of the lower right corner. Namely in view of the
homotopy equivalence hS.Rf(X) - hS.Rf(Xﬁ.) {the thecrem) it suffices to know' that
the map hS.Rf(X) - hS.Rf(x). is a homotopy equivalence. This follows from the
fact (by the argument of lemma 2,2.6) that for every n the map hS.Rf(K) - hS.Rf(K)n

is & homotopy equivalence,

As our third case we take that of the upper left corner. That case is less easy.
We consider the diagram

M0 —— oM.y e aMRBGKE) s o8RBT

! | L]

N CHEK) et oNLCTCR) o SMLRE(K) . mp 8SLRECK) .

where the upper row is the chain of maps of theo;em 3,1.7, and the lower row is an
analogue of that chain for the other auxiliary simplicial structure. The maps in
the upper rov are homotopy equivalences (theorem 3.1.7), so it will suffice to know
that the maps in the lower row aré homotopy equivalences, too. The second and third
maps in the chain now are handled as before (lemmas 3.1.5 and 3.1.6). In the case
of the first map one can reduce (by the realization lemma) to showing that the map
acg(x) -+ BC?(X).. is a homotopy equivalence; or in fact, that aCE{X} - BC:(X)H is,
for every n ., But this has been proved in [16]. | o
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