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Abstract 

1. Life-history responses to ecological selection pressures can be described by a slow-

fast life-history axis. Along this axis, fast-living animals usually invest in high 

breeding output, while slow-living ones prioritize their own survival.  

2. Birds may solve the trade-off between reproduction and survival by optimising their 

seasonal schedules. Breeding early tends to facilitate reproductive success, whereas 

breeding late increases the chances to survive. On the basis of this argument, short- 

and long-lived birds should benefit from initiating spring activities earlier and later, 

respectively. 

3. The timing of seasonal activities, all else being equal, depends on the architecture of 

endogenous circannual clocks. Particularly, the length of the circannual period 

relative to the 365-day environmental year facilitates either the anticipation of 

seasonal activities (in case of periods shorter than 365 days) or represents a 

responsive mode (when periods are longer than 365 days). The two alternatives will 

be manifested by early or late annual chronotypes, respectively. 

4. We hypothesise that, in birds, annual chronotype will correspond with position on the 

‘pace-of-life scale’. Species with low survival probability, and thus a poor chance of 

breeding in a next season, should show early annual chronotypes facilitated by 

circannual clock periods shorter than 365 days. In contrast, species with high survival 

rates should benefit from relatively long circannual periods.  

5. We predicted that circannual period lengths should correlate positively with species-

specific adult annual survival rates. Using published data for 16 wild bird species, we 

confirmed the predicted correlation. In our analysis, we accounted for the possible 

metabolic nature of circannual clocks, a correlation between rate of metabolism and 

survival, and phylogenetic relationships.  
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6. Based on our finding, we propose that evolutionary responsive circannual clocks help 

birds cope with temporal variation in environment in ways that are most appropriate 

for their life-history and life-table attributes.  

 

Key words: annual chronotype, circannual rhythm, life-cycle stage, metabolic rate, pace of 

life, reproduction versus survival trade-off, seasonal migration, slow-fast life-history 

continuum 

 

Introduction 

Time runs at different paces for fast- and slow-living organisms (Helm & Shavit, 2017). The 

‘pace-of-life’ of organisms is reflected in the position on a virtual slow-fast life-history 

continuum (Ricklefs & Wikelski, 2002; Versteegh, Schwabl, Jaquier, & Tieleman, 2012). 

Along the continuum, fast-living organisms tend to be smaller, mature faster, reproduce at a 

higher rate, and have shorter lifespans than slow-living ones. The continuum is the result of 

correlated variations in organismal rate processes along multiple physiological and 

behavioural axes, which include growth, metabolism, sexual maturation, learning and 

competitive risk-taking (Bielby et al., 2007; Reale et al., 2010; Ricklefs & Wikelski, 2002). 

When the rate processes are not intercorrelated, they are often complementary or 

compensatory to each other (Glazier, 2015). Such adaptive coordination facilitates an optimal 

match between internal and environmental conditions (Glazier, 2015; Ricklefs & Wikelski, 

2002).  

The adaptively coordinated rate processes in an organism form its unique life-history 

strategy of allocating resources among competing fitness components, especially 

reproduction and survival (McGraw & Caswell, 1996; McNamara, Welham, Houston, Daan, 

& Tinbergen, 2004; Orzack & Tuljapurkar, 2001; Sæther & Bakke, 2000). In birds, and 
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perhaps especially in seasonally migrating populations, the reproduction-survival trade-off is 

often mediated by time of a season: early breeding usually facilitates high reproductive 

outcome, but entails higher risks of death due to challenging weather, possible starvation due 

to insufficient body stores, or the risk of predation (see Drent, Both, Green, Madsen, & 

Piersma, 2003; Møller, 1994 for empirical examples, and Harts, Kristensen, & Kokko, 2016; 

Kokko, 1999; Kristensen, Johansson, Ripa, & Jonzén, 2015 for theoretical background). In 

contrast, breeding late is safer in terms of survival, but often decreases reproductive output 

(Lok, Veldhoen, Overdijk, Tinbergen, & Piersma, 2017; Weiser et al., 2017). Thus, a 

relatively early induction of spring activities should be beneficial for species with “fast” life-

histories, for which fitness depends on instantaneous reproductive success rather than a long 

life. The opposite should hold for birds with “slow” life histories. Therefore, when survival-

reproduction trade-off is mediated by timing of breeding, resource allocation to either fitness 

component can be optimised by fine-tuning the timing of spring activities, as it is often found 

in birds breeding in seasonal environments at temperate and northern latitudes (Drent & 

Daan, 1980; Helm & Lincoln, 2017; Karagicheva, Liebers, et al., 2016; Öberg, Pärt, Arlt, 

Laugen, & Low, 2014). 

 Spring activities, such as pre-flight fuel storage, pre-alternate moult of plumage, 

migratory restlessness, and the actual migratory flight, are triggered by environmental cues or 

Zeitgebers such as photoperiod, phenology or social interactions (van Wijk, Schaub, & 

Bauer, 2017; Williams, 2012; Bradshaw & Holzapfel, 2007; Dawson, 2008, 2015; Helm, 

Piersma, & van der Jeugd, 2006), Nevertheless, circannual clocks also play a crucial role in 

their timing  (Gwinner 1986). Circannual clocks are endogenous oscillator systems suggested 

to be driven either by whole organism metabolism (Wikelski et al., 2008) or by cyclic 

gonadal activity (Dawson, King, Bentley, & Ball, 2001). The clocks have a period of about 

12 months, but usually run ahead or behind; they need systematic resetting by external time 
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cues (Gwinner 1986). In the absence of relevant cues, such as under experimental conditions, 

circannual clocks are not reset and run free with a wide range of periods (to our knowledge, 

from 6 to 18 months; see Gwinner 1986). Under constant photoperiod and temperature, some 

seasonal activities are exerted spontaneously, at approximately the same phase of circannual 

cycle as when entrained to environmental cues (reviewed in Gwinner, 1986; Helm, Schwabl, 

& Gwinner, 2009).  

Whether exposure to environmental cues will facilitate or delay exertion of seasonal 

activities largely depends on the period-length relationship between the circannual oscillator 

and the environmental cycle (in this case: year). According to the phase-period rule, deviation 

of intrinsic periods from environmental cycles, i.e. the cycles of environmental Zeitgebers, 

will affect the rate of entrainment (cue-response) and determine whether the animal has an 

early or a late chronotype (Helm et al., 2017; Helm & Lincoln, 2017; Roenneberg, Daan, & 

Merrow, 2003). A number of factors can affect the rate of entrainment, but in general, 

organisms with relatively short intrinsic cycles will be early and the ones with long cycles 

will be late (Floessner & Hut, 2017; Roenneberg et al., 2003). Thus, animals with circannual 

periods shorter than 12-months will exert early ‘annual chronotypes’, and be prepared to 

initiate seasonal activities even before the environment becomes ‘ready’. In this case, external 

cues will prevent seasonal activities from being triggered too early (see Fig. 1 in Chandola-

Saklani, Thapliyal, Negi, Diyundi, & Choudhary, 2004 for an example). With circannual 

periods longer than the environmental cycle, physiological changes in the organism will lag 

behind the seasonal development of the environment. As a consequence, external cues will 

have to facilitate the timely expression of physiological change.   

We hypothesised that when timing of activities is shaped by long-term survival 

perspectives, short- and long-lived birds will increase their fitness by earlier or later 

responses to seasonal cues and will thus benefit from having short and long circannual 
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periods, respectively. We therefore predict that, in birds, annual chronotype should correlate 

with species-specific annual survival probability in the wild. To test this prediction, we 

compiled available published data on (1) the lengths of circannual period expressed under 

constant photoperiodic conditions indoors, and (2) species-specific adult annual survival rate. 

We then calculated the deviation of the circannual-period lengths from the 365-days 

environmental year and regressed the resulting representation of circannual chronotype on 

annual survival rate, taking into account the notion that metabolic rate correlates with both 

survival and circannual chronotype due to the possible metabolic nature of circannual clocks. 

A possible effect of shared ancestry was accounted for by including a phylogenetic 

correlation in the model. We discuss our results from an ecological perspective and suggest a 

theoretical explanation for the variation in circannual period length along the slow-fast life-

history axis in birds. To our knowledge, this is the first comparative study linking the features 

of circannual clocks with life-history traits.  

 

Methods 

We assembled published data on free-running circannual periods for birds maintained under 

experimentally fixed photoperiodic and temperature conditions in captivity.  Our sample 

included 14 species of songbirds (order Passeriformes) and two shorebird species (order 

Charadriiformes), the red knot Calidris canutus and the great knot C. tenuirostris (available 

as Appendix S1 and at https://git.io/vAuyo). We had to limit our dataset to species for which 

data on both circannual periods and annual survival rates were available. The published data 

on circannual periods were found by browsing for the term “circannual” and its synonyms in 

www.scholar.google.com, using reference lists in books, and by screening publications of 

authors specialized in chronobiology.  
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Data on circannual periods were available either as reported values for individual birds or 

as published diagrams of changes in the physiological parameters of different individuals 

over time. In the latter case, the beginning and the end dates of each period were estimated 

from the time axis of the graphic. If we had a choice of data collected in various photo-

regimes, we selected for datasets from those experiments where photo-regime was kept close 

to 12:12 LD (12 hours light/12 hours dark). The circannual period lengths were estimated, for 

each individual, as the intervals between onset dates of a life-cycle stage (seasonal activity) in 

successive years. However, it is often impossible to unequivocally define the onset dates, 

since some measurements can fluctuate for many reasons. In such cases we had to apply rules 

of thumb. When estimating gonadal cycles from the graphics, we defined the initiation date 

as the time-point at which growing gonads reached a size of 2 mm (Gwinner 1981). For pre-

migratory body mass peaks, the onset dates were defined as the time-point at which at body 

mass started to steadily increase to reach maximal value.  

The data included circannual periods for all available life-cycle stages. However, 

circannual period lengths often change in the course of the cue-deprived treatment (Gwinner, 

1986; Karagicheva, Rakhimberdiev, et al., 2016), and most of the circannual period lengths 

were available for the first one or two years spent under experimental conditions. We 

therefore limited our sample to transitory cycles during which the animals were transferred 

from natural to constant photoperiods (cycle 0), and the first cycle (cycle 1) when animals 

were exposed to a constant photoregime the whole year (Table 1).  

We calculated deviations of circannual periods from the calendar year (hereafter, 

circannual deviation) for each available life-cycle stage by subtracting 365 days from the 

observed duration of a circannual cycle (Table 1). The species-specific adult annual survival 

rates in the wild (Appendix S2 and at https://git.io/vAuSe ), metabolic rates (Appendix S3 and 

https://git.io/vAuSZ) and body mass (Appendix S4 and at https://git.io/vAuSB) were 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

searched for in www.scholar.google.com and in an on-line database (COMADRE Animal 

Matrix Database, 2015). If several values per species were available, we used their median in 

the analysis (Table 1). Survival rates of crossbills Loxia curvirostra were likely to be biased 

low because crossbills are irruptive with low site fidelity, and thus difficult to resight or 

recapture (Alonso & Arizaga, 2013).  

Although time-keeping may differ between sexes (Hau et al., 2017; Rani & Kumar, 

2013), we were not able to account for this possibility as sex of experimental birds was 

unknown in six of the 16 species, while in nine species only males were used in the 

experiments. As there was no obvious trend in the proportion of males versus unknown sex 

along the annual survival axis, we opted not to include sex as a variable in our model.  

The species in our study had an almost 20-fold range in body masses, from 8 g in the 

common chiffchaff Phylloscopus collybita to 150 g in the great knot (see Appendix S4). In 

comparative studies looking for functional links between longevity and other traits across 

species, it is generally recommended to account for species-specific body mass to eliminate 

the part of the correlation caused by the allometric relationship between most organismal 

processes and body mass (Speakman, 2005). However, organismal processes involved in 

time-keeping are energy- rather than mass-related (Riede, van der Vinne, & Hut, 2017; 

Speakman, 2005; Wikelski et al., 2008). Since, in our dataset (Appendix S5 and at 

https://git.io/vAu9I), basal metabolic rate (BMR) correlated with body mass, we used BMR 

to account for the body-size effect. Following Speakman (2005), we regressed the circannual 

deviation and annual survival rate (log-transformed, natural logarithm) on the values of BMR 

(also log-transformed, natural logarithm) published for the 16 species (Table 1) and used the 

residuals as the response and explanatory variables, respectively, in models testing for the 

correlation between the two traits.  
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To control for phylogenetic autocorrelation in the analysis (Harvey & Pagel, 1991; 

Speakman, 2005), we introduced a phylogenetic variable in the models. We accounted for 

phylogenetic uncertainty (Huelsenbeck, 2000) by generating 10,000 trees with different 

topologies for all species in our dataset based on a comprehensive bird phylogeny for 9993 

species (Hackett ‘All Species’ from Jetz, Thomas, Joy, Hartmann, & Mooers, 2012), using an 

online phylogeny generating tool (available at http://birdtree.org/). Different trait-evolution 

models require specific statistical approaches, we tested whether Brownian or Ornstein-

Uhlenbeck models best fitted the data. Here, we used fitContinuous function from geiger 

package (Harmon, Weir, Brock, Glor, & Challenger, 2008) in an R statistical environment (R 

Core Team, 2017). We collected AIC (Akaike information criterion, Akaike, 1974) values for 

the regressions of each evolutionary model applied to each of the 9999 phylogenetic trees. 

We then calculated ∆AIC, pairwise, between the evolutionary models, for each tree. Based on 

the distribution of 9999 ∆AIC values (mean ∆AIC 0.48 ± 0.53), Brownian and Ornstein-

Uhlenbeck models were equally supported. Given that analyses based on small sample sizes 

tend to spuriously support the more complex Ornstein-Uhlenbeck model (Cooper, Thomas, 

Venditti, Meade, & Freckleton, 2016), we assumed that Brownian evolution model 

adequately suited our data and were thus able to use for model fitting MCMCglmm R 

package (Hadfield, 2010; Hadfield & Nakagawa, 2010).  

We assessed the relationships among the circannual deviation, species-specific annual 

survival rate, and time spent in a constant photoregime (cycle 0 versus cycle 1), controlling 

for random effects of individuals, species, seasonal activities and studies. To do so we fitted 

Bayesian mixed models in the package MCMCglmm in R. To account for the uncertainty in 

phylogenetic relationships, we first randomly sampled 100 trees from the downloaded 9999 

phylogenetic trees. Since MCMCglmm handles only one phylogenetic tree per model, we 

further incorporated the subset in 100 MCMCglmm models within the package mulTree 
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(Guillerme & Healy, 2017; Gutiérrez, Rakhimberdiev, Piersma, & Thieltges, 2017). 

Technical information on the model parameters used and the replicable code are provided in 

Appendix S6 (https://git.io/vAELZ). 

We used DIC (deviance information criterion by Spiegelhalter, Best, Carlin, & van 

der Linde (2002) for model selection. Following Zuur, Ieno, & Smith (2007), we started 

model selection from the most complete model:  

DeviationBMR ~ SurvivalBMR + Cycle_number + SurvivalBMR:Cycle_number    

random effects: LCS+study+species+species:BirdID + pedigree, 

where DeviationBMR is the circannual deviation corrected for species-specific BMR, 

SurvivalBMR is the effect of species-specific annual survival rate corrected for species-specific 

BMR, Cycle_number distinguishes between the effects of transitional cycle and the cycle 

fully undergone under experimental photoregime, SurvivalBMR:Cycle_number is an 

interaction term. Species:BirdID, LCS, study, species and pedigree define random effects for 

the: individual bird, life-cycle stage, study, from which the data were retrieved, bird species 

and phylogenetic variable, respectively. None of the random effects are nested within each 

other. 

We calculated an analogue of Pagel’s λ, or phylogenetic signal (the amount of variance 

explained by the phylogeny compared to the total amount of among species variance), of 

annual chronotype as var(phylogenetic)/(var(phylogenetic)+var(species)), phylogenetic 

variance contribution (the amount of variance explained by the phylogeny compared to the 

total variation in the data) following Bulla et al. (2016) as: 

var(phylogenetic)/(var(phylogenetic)+var(BirdID)+var(LSC)+var(study)+var(species)+var(

residual)),  
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with an intra-specific agreement repeatability as:  

var(species)/( var(species)+var(phylogenetic)+var(BirdID)+var(LSC)+var(study)+ 

var(residual)),  

and the adjusted repeatability as: var(species)/( var(species)+ var(residual)) following 

(Nakagawa & Schielzeth, 2010). 

A small sample size may cause bias in a model accounting for phylogeny (Garamszegi & 

Møller, 2010). Thus, we provide code and an output of an MCMCglmm model of the same 

parameter structure, but not including the phylogenetic variable, in Appendices S6 and S7 

(https://git.io/vAELZ and https://git.io/vAuHK).  

 

Results 

Deviation of circannual periods in the species included in this study varied between 170 and 

635 days, with a mean value of 371 days, and annual survival rates ranged from 0.28 to 0.90 

with a mean = 0.62. Consistent with our prediction, the BMR-adjusted circannual periods 

were longer in species with higher BMR-adjusted annual survival rates. The correlation slope 

was steeper during the transition from the natural to an unvarying photoperiod (cycle 0: mean 

slope estimate = 215.1 days, 95% credible interval between 63.8 and 369.5 days) than the 

first cycle under such conditions (cycle 1: mean slope estimate = 133.4 days, 95% credible 

interval between -13.9 and 282.0  days; Fig. 1, Appendix S7 https://git.io/vAuHK). The 

difference in slopes between cycle 0 and cycle 1 was statistically significant, as indicated by 

∆DIC = 8.2, and, therefore, the full set of parameters was also the best one (Appendix S7). 

The phylogenetic signal λ for circannual period length was 0.81 and the phylogenetic 

variance contribution was 0.43. The adjusted and agreement intra-specific repeatabilities of 

the trait were 0.95 and 0.10, respectively. The slope of correlation between annual survival 

rate and circannual period and its statistical significance were similar in the models that 
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included or did not account for phylogenetic effect (cycle 0: mean slope estimate = 200.2 

days, 0.95% credible interval between 73.3 and 331.8 days; cycle 1: mean slope estimate = 

120.3 days, 95% credible interval between − 0.04 and 247.2 days, Appendix S7).  

 

Discussion 

It has long been known that free-running circannual periods in living organisms vary in 

length and rarely match the 365-day year (Gwinner, 1986). However, it was only recently 

proposed that the variation in circannual periods is adaptive; polymorphism in annual 

chronotypes facilitates a good match between the life histories and environments of 

organisms (Helm et al., 2017; Helm & Lincoln, 2017; Helm & Shavit, 2017). Here, we, for 

the first time, provide correlative evidence suggesting that annual chronotypes are the 

outcome of endogenous-clock properties having been adjusted to selective environments. We 

test the hypothesis that deviations of the circannual-clock cycle from the calender year 

actually reflect solutions for the timing-mediated life-history trade-offs.. Consistent with our 

hypothesis, circannual periods were shorter in the species with lower probabilities of annual 

survival.  

 Our analysis was limited to migratory birds breeding in temperate and Arctic zones of 

the northern hemisphere. Selection pressures on the fitness components can be differently 

distributed along the time-axis, depending on migratory strategy or geographic and climatic 

factors for example (Jonzén, Hedenström, & Lundberg, 2007; Kristensen et al., 2015). Thus, 

it is possible that the patterns reported here will not be upheld for resident bird populations, 

or for species breeding in the southern hemisphere or in the tropics (Newton & Brockie, 

2008; Winkler, Ringelman, et al., 2014; Young, 1994). Nevertheless, it seems unlikely that 

annual chronotypes will not work in concert with other life-history correlates, as long as there 

are seasonal selection pressures on fitness parameters.  
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Variable circannual periods 

In nature, variable environmental conditions require plasticity in life-history strategies (West-

Eberhard, 2003). For this reason, the mechanisms coordinating organismal and environmental 

processes such as stress response or circadian chronotype may vary in the course of 

development, adjusting to environmental conditions experienced by individuals (Del Giudice, 

Ellis, & Shirtcliff, 2011; Roenneberg et al., 2004). As a consequence, the coordinating 

mechanisms will also vary among individuals with different backgrounds or going through 

different ontogenetic and life-cycle stages. Our study, as well as many previous studies on 

circannual rhythms in birds (Helm, 2006), revealed high variation in circannual-period 

lengths among individuals of the same species, but also within each individual. For instance, 

in shorebirds, circannual periods of spring activities were closer to 365 days than the periods 

of activities expressed later in the season (Karagicheva, Rakhimberdiev, et al., 2016; Piersma 

et al., 2008). Karagicheva, Rakhimberdiev, et al. (2016) suggested that variations in the 

precision of expression of circannual cycles in different traits reflect selection pressures for 

precise timing changing with season.  

Timing-dependent selection pressures will also vary with life style. For example, 

short circannual periods (and early chronotypes) should be useful for the opportunistically 

breeding red crossbill Loxia curvirostra, as they have to be alert to environmental cues 

almost year-round to opportunistically prepare for nesting as soon as pine cones become 

available as a food source (Hahn, 1998). In house sparrows Passer domesticus (not included 

in the analysis), the average circannual periods exerted in 12:12 LD are relatively short (10 

months according to Wikelski et al., 2008) for a species annual survival rate of 0.55 

(Siriwardena et al., 1999). Such a short circannual period is consistent with gonadal 

recrudescence starting in late autumn in house sparrows, perhaps an adaptation to high 

territorial competition in a sedentary bird (Hegner & Wingfield, 1986). In contrast, precise 
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timing will be particularly important for long-distance migrants, and especially extreme 

“long-jump” migrants, of which Arctic-breeding shorebirds are a typical example (Åkesson et 

al., 2017; Bazzi et al., 2016; Conklin, Senner, Battley, & Piersma, 2017; Helm, Gwinner, & 

Trost, 2005; Piersma, 1987). For these species, environmental cues at departure from 

equatorial or temperate wintering sites are uninformative of the phenological conditions at 

remote Arctic breeding grounds (Piersma, et al., 1990; Winkler, Jørgensen, et al., 2014). To 

time their spring migration, these shorebirds largely rely on endogenous clocks, which have 

shown to be remarkably individually precise both in the wild as under unvarying 

photoperiodic conditions in captivity (Conklin, Battley, & Potter, 2013; Karagicheva, 

Rakhimberdiev, et al., 2016).  

 The high variation in circannual deviations was well captured by the set of random 

variables included in our model. As a result, the unexplained (residual) variance was low, 

which caused the values of phylogenetic signal and intra-specific repeatability to be high 

when they were calculated accounting for the residual variance only, and contrastingly low 

when all random variance was taken into account. The difference suggests that circannual 

chronotype is a heritable, but highly variable, trait. However, we suggest caution when 

interpreting the phylogeny-related results in this paper, as our analysis was based on a small 

sample of 16 species from two orders (Garamszegi & Møller, 2010). The phylogenetic 

correlation was included in the model only to ensure that the hypothesised correlation was not 

confirmed spuriously due to bias from shared ancestry. Our key finding was that even when 

shared ancestry was accounted for, the correlation between length of circannual period and 

annual survival rate remained significant. 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Annual chronotype as a life-history covariate 

Self-sustaining physiological oscillations of different periodicity in organisms, such as 

circadian, lunar, tidal or circannual rhythms, play an important role in coordinating rate 

processes (Hut, Paolucci, Dor, Kyriacou, & Daan, 2013; Neill, 2013; Numata & Helm, 2014; 

Riede et al., 2017). While circannual oscillations are affected and probably even driven by 

internal metabolic processes (Wikelski et al., 2008), they are also responsive to external 

information on environmental seasonal state received from the cue-response systems 

(Gwinner, 2003; Hahn & MacDougall-Shackleton, 2008). On this basis, we hypothesised that 

annual chronotypes of migratory birds should correlate with their other life-history traits, and 

specifically with species-specific annual survival probabilities. Despite vast variation in 

circannual periods for reasons of individuality, life-style, environment and ancestry 

(discussed above), we captured this relationship in the assembled data.  

Our results extend the view that endogenous rhythms interact with external cues to 

ensure optimal adjustment of organisms to environments by modulation of the rate of 

entrainment of endogenous cycles to environmental oscillations (Floessner & Hut, 2017; 

Helm et al., 2017; Helm & Lincoln, 2017). We projected circannual chronotypes on the slow-

fast life-history axis and showed how the flexible system of endogenous oscillations helps 

birds to cope with temporal variation in environment in ways that are most appropriate for 

their life-history and life-table attributes. We propose that physiological circannual clocks, 

being responsive to the endogenous organismal and environmental processes at the same 

time, can be a physiological mediator coordinating energy in metabolic processes with 

survival and other organismal properties by adjusting them to external conditions through 

physiological and behavioural responses. 
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Table 1. The circannual deviations from 365 days (mean and SD of the raw data points that were used in the analysis) and details on the 

experimental setups; species-specific annual survival probability and BMR. 

Species Number of 

individuals 

used in the 

experiment 

Circannual 

deviation, days  

(mean ± SD) 

Cycles since 

transition to 

unvarying 

photoregime 

Photoperiod Annual 

survival 

rate 

(median) 

BMR, W Body mass, g 

Ficedula albicollis 10 males 28.6 ± 22.2 
1
 0,1 13:11 LD 0.45 

14
 0.276

34
 14.2 

14
 

Ficedula hypoleuca 7 males 36.3 ± 25.8 
1
 0,1 12:12 LD 0.48 

15
 0.230

35
 11.6 

14
 

Fringilla coelebs 15 males 53.5 ± 37.4 
2
 1 12:12 LD 0.6 

16, 17
 0.373

30
 24.2 

30
 

Fringilla montifringilla 2 males 90.0 ± 34.6 
3
 1 10:14 LD 0.57 

18
 0.516

31
 24.1 

31
  

Junco hyemalis 7 males 100.4 ± 83.6 
4
 1 24 DD 0.49 

14
 0.192

31
 19.6 

14
 

Loxia curvirostra 3 males - 71.6 ± 54.2 
5, 6

 1 12:12 LD 0.45 
19,20

  0.600
30

 40.6 
30

 

Phylloscopus trochilus 6 unknown - 22.3 ± 25.2 
7, 8

 0,1 12:12 LD 0.34 

16,21,22,23
 

0.208
30

 9.4 
30

 

Phylloscopus collybita 7 unknown - 10.0 ± 18.0 
8
 0 12:12 LD 0.28 

16,22
 0.165

30
 7.7 

30
 

Parus cristatus 8 unknown - 46.3 ± 17.8 
6
 0,1 10:14 LD 0.6 

14,24
 0.470

14
 11.2 

14
 

Passer montanus 3 females - 87.0 ± 66.6 
6
 0,1 10:14 LD and 

14:10 LD 

0.44 
25

 0.405
30

 21.7 
30

 

Saxicola torquata rubicola 9 males - 30.0 ± 32.7 
9
 1 12.25:11.75 0.48 

26
 0.256

30
 14.9 

30
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LD 

Sturnus vulgaris 18 males 33.7 ± 74.6 
10

 1 12:12 LD 0.72 

14,16,27
 

0.877
30

 82.3 
14

 

Sylvia borin 4 males - 25.7 ± 61.5 
10, 11

 1 12:12 LD 0.46 
16,22

 0.416
30

 19.1 
30

 

Sylvia atricapilla 4 males - 51.7 ± 27.2 
11

 1 12:12 LD 0.41 
16,22

 0.413
30

 18.9 
30

 

Calidris canutus 16 unknown 6.8 ± 37.3 
12

 0,1 12:12 LD 0.81 
28

 0.880
32

 130.0 
32

 

Calidris tenuirostris 4 unknown 8.7 ± 45.6 
13

 0,1 12:12 LD 0.9 
29

 1.255
33

 149.3 
33

 

1. Gwinner & Schwabl-Benzinger, 1982; 2. Дольник, 1975; 3. Pohl, 1971; 4. Holberton & Able, 1992; 5. Berthold, 1977; 6. Berthold, 1982; 7. 

Gwinner, 1968; 8. Gwinner, 1971; 9. Helm et al., 2009; 10. Gwinner, 1981; 11. Berthold, Gwinner, & Klein, 1972; 12. Karagicheva, 

Rakhimberdiev, et al., 2016; 13. Piersma, Brugge, Spaans, & Battley, 2008; 14. Møller, 2008; 15. Sanz, 2001; 16. Siriwardena, Baillie, & 

Wilson, 1998; 17. Siriwardena, Baillie, & Wilson, 1999; 18. Desholm, 2009; 19. Senar, Borras, Cabrera, & Cabrera, 1993; 20. Alonso & 

Arizaga, 2013; 21. Silverin, Arvidsson, & Wingfield, 1997; 22. Johnston et al., 2016; 23. Morrison, Robinson, Butler, Clark, & Gill, 2016; 24. 

Ekman & Askenmo, 1986; 25. Downing, Cornwallis, & Griffin, 2015; 26. Mueller, Spaar, Schifferli, & Jenni, 2005; 27. Freeman, Robinson, 

Clark, Griffin, & Adams, 2007; 28. Rakhimberdiev, van den Hout, Brugge, Spaans, & Piersma, 2015; 29. Piersma et al., 2016; 30. Møller, 2009; 

31. McKechnie, 2008; 32. Piersma, Cadée, & Daan, 1995; 33. Battley et al., 2001; 34. Moreno, Gustafsson, Carlson, & Pärt, 1991; 35. Ward, 

2004. 
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