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ABSTRACT: Cell membranes contain hundreds of different proteins and lipids in an asymmetric
arrangement. Our current understanding of the detailed organization of cell membranes remains
rather elusive, because of the challenge to study fluctuating nanoscale assemblies of lipids and proteins
with the required spatiotemporal resolution. Here, we use molecular dynamics simulations to
characterize the lipid environment of 10 different membrane proteins. To provide a realistic lipid
environment, the proteins are embedded in a model plasma membrane, where more than 60 lipid
species are represented, asymmetrically distributed between the leaflets. The simulations detail how
each protein modulates its local lipid environment in a unique way, through enrichment or depletion
of specific lipid components, resulting in thickness and curvature gradients. Our results provide a
molecular glimpse of the complexity of lipid−protein interactions, with potentially far-reaching
implications for our understanding of the overall organization of real cell membranes.

■ INTRODUCTION

Typical cell membranes are composed of hundreds of different
lipid types that are asymmetrically distributed between the two
leaflets. Embedded are many different membrane proteins,
covering an estimated membrane area as large as 30% at a lipid/
protein ratio of about 50−100.1 The variety in cell membrane
components gives rise to complex lipid−protein interplay.2,3

Lipids do not simply provide the matrix where proteins are
embedded but can actively participate in the regulation of
protein activity, trafficking, and localization.3 Proteins can either
bind lipids specifically, where a clear binding site for a given
lipid can be identified, or nonspecifically, where lipids act as a
medium, and physical properties like thickness, fluidity, or
curvature regulate protein function.4,5

The characterization of lipid−protein interactions is a key
factor in our understanding of the organizational principles of
cell membranes. Several experimental techniques are available
to probe these interactions.6 X-ray crystallography and electron
crystallization can be used to identify lipids strongly bound to
proteins as these lipids have to survive the crystallization
process.7,8 Lipid binding to membrane proteins can also be
studied using fluorescence methods9 or by mass-spectrometry
on isolated lipid−protein complexes.10 The recent development
of extraction of membrane proteins from their native
environment using nanodiscs is very promising in this
regard.11,12 Nevertheless, these techniques mainly capture
strong interactions, and although some are quantitative, they
do not give high spatial resolution.

Computational approaches on the other hand, such as
molecular dynamics (MD) simulations, can provide such details
and have been extensively used to study lipid−protein
interplay.13−16 In particular the use of coarse-grain (CG)
models allows simulation of reversible binding and unbinding
events and identify both strong and weakly binding lipids.17,18

So far, most computational studies have been restricted to
model membrane systems with a few lipid types. The recent
modeling of a complex plasma membrane mixture containing
more than 60 different lipids, however, has opened the way to
probe lipid−protein interplay in a more realistic membrane
environment.19−22 Here, we extend this work by analyzing the
lipids around 10 different classes of plasma membrane proteins.
We find that each protein forms its own unique lipid shell,
which gives rise to a complex and nonuniform perturbation of
local membrane properties (“fingerprint”). The results show a
rich variety of lipid−protein interactions and protein effects on
membrane properties, emphasizing the importance of not just
tightly bound lipids but the overall structure of the lipid−
protein matrix.

■ RESULTS AND DISCUSSION

Our simulation setup consists of a membrane patch containing
around 6000 lipids, represented by the CG Martini force field.23
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The system measures ca. 42 × 42 nm in the lateral dimensions,
and contains 63 different lipid types distributed asymmetrically
between the leaflets. The membrane composition is based on
previous work,20 and models a prototypical plasma membrane.
The outer leaflet contains most of the PC and SM lipids and all
of the gangliosides (GM1 and GM3), has a higher level of
saturation of the tails, and is slightly enriched in cholesterol.
The inner leaflet contains all anionic lipids (e.g., PG, PIPs) and
most of the PE, and has a higher level of polyunsaturation. Full
details of the composition are given in the Supporting
Information.
As shown in Figure 1A for aquaporin 1 (AQP1), we

embedded four copies of the same membrane protein inside
our plasma membrane model. The four proteins are weakly
restrained at their initial position, at a distance of ca. 20 nm
from each other, providing a computationally efficient way to
increase statistics on lipid distribution around the proteins and
to obtain an additional estimate of statistical errors independent
of time correlations. Based on 30 μs long simulations, we
characterize the distinctive nature of the lipid environment
surrounding each protein, using a distance cutoff criterion of
0.7 nm (Figure 1B). Averaged over the last 5 μs of simulation
time, we then compare the composition of this lipid shell

around the four copies of the protein to the bulk plasma
membrane composition, expressed as the relative depletion−
enrichment (D−E) index for different categories of lipids
(Figure 1C). The same analysis was repeated for lipid shells of
1.4 and 2.l nm around the AQP1 molecules (Table S1).
To obtain a general view of the diversity of lipid shells

around membrane proteins, we performed this simulation
protocol for 10 diverse plasma membrane protein families
(Figure S1). The proteins considered, besides AQP1, are
prostaglandin H2 synthase (COX1), dopamine transporter
(DAT), epidermal growth factor (EGFR), AMPA-sensitive
glutamate receptor (GluA2), glucose transporter (GLUT1),
voltage-dependent Shaker potassium channel 1.2 (Kv1.2),
sodium, potassium pump (Na,K-ATPase), δ-opioid receptor
(δ-OPR), and P-glycoprotein (P-gp). These proteins include
transporters, channels, enzymes, and receptors, and represent
different quaternary structures and sizes, as well as monotopic
membrane proteins (Figure S1). As a result of the differences in
sizes between the proteins, the amount of lipids found in the
nearest 0.7 nm shell varies significantly, from ca. 32 as in EGFR
(whose transmembrane domain consists of only two helices) to
ca. 78 for AQP1 and ca. 95 for Kv1.2 (which are tetrameric
proteins). To compare the lipid shells of the different proteins

Figure 1. Unique lipid environments for different membrane proteins. (A) Simulation setup, consisting of a plasma membrane model containing 63
different lipid types with four membrane proteins embedded. (B) View of the local lipid environment around AQP1, displaying lipids within a
distance cutoff of 0.7 nm from the protein surface. (C) Lipid depletion−enrichment (D−E) index in the case of AQP1, obtained from the last 5 μs of
a 30 μs long simulation, and averaged over the four AQP1 molecules (error bars indicate standard deviation). The D−E index is computed by
dividing the lipid composition of the first 0.7 nm shell by the bulk membrane composition. Values larger than 1 indicate enrichment of a given lipid
group, while values smaller than 1 indicate depletion. (D) D−E index matrix, with average depletion (blue)/enrichment (red) for 10 different
membrane proteins (the calculation for additional distance cutoffs and corresponding standard deviations are shown in Table S1). The COX-1 D−E
index values for the negatively charged lipids of the lower leaflet have been omitted because they are difficult to interpret given the partial insertion of
the protein only in the upper leaflet (see the note in Table S1). Lipid classes considered are phosphatidylcholine (PC), phosphatidylethanolamine
(PE), phosphatidylserine (PS), phosphatidic acid (PA), diacyl-glycerol (DG), lyso-PC (LPC), sphingomyelin (SM), ceramide (CER),
phosphatidylinositol (PI), phosphatidylinositol-(bi, tri)phosphate (PIPs), ganglioside (GM), cholesterol (CHOL), polyunsaturated (PU), fully
saturated (FS), and others.
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irrespective of protein size, we compute the lipid D−E index for
each of the 10 systems. The results are presented in Figure 1D
and Table S1 for all 10 proteins and the three distance cutoffs
used to define the lipids shells.
The D−E index values, evaluated in terms of statistical

significance, reveal some interesting generic trends (Supporting
Information, and Tables S1−S9). Within the first lipid shell,
approximated using the distance criterion cutoff of 0.7 nm, we
observe a depletion of PC and SM lipids across the whole
spectrum of membrane proteins (Tables S1 and S6). Additional
control simulations performed on the AQP1 system to test for
convergence of the results in terms of simulation conditions
and length confirmed this trend (Tables S2−S5 and S7−S9). A
class of lipids for which we detect a significant enrichment is
represented by the gangliosides (GM lipids), present only in
the upper leaflet. Gangliosides are key signaling lipids and are
known to bind to proteins and regulate their sorting behavior
and activity.24−30 In the simulations, GM enrichment extends at
least up to 2 nm from the proteins (Tables S1−S9). In the
lower leaflet, enrichment of PIP lipids is common to all the
simulation systems (with the exception of COX1, a monotopic
protein adsorbed at the outer plasma membrane leaflet). PIPs,
too, are important signaling lipids and are found bound to a
large variety of proteins,31−34 and implicated in controlling
protein−protein interactions.35 Although the enrichment of
GM and PIP lipids depends somewhat on the water model used
in the simulations (Tables S2), it is detected in all the systems
and for different simulation setups (Tables S1−S9).
Despite these common trends, the most striking conclusion

from our D−E index analysis is the large differences found
between the individual protein classes. Each protein has a
unique composition of the first lipid shell. For instance, the
enrichment of PIP lipids can be accompanied by a certain
degree of enrichment of another class of negatively charged
lipids, the PI lipids, with the exception of GluA2 and δ-OPR,
while the results for PS and PA lipids, also negatively charged,
show larger differences across proteins. For DAG molecules we
observe a significant enrichment near the proteins, with the
exception of Kv1.2 and P-gp.

When lipids are grouped based on degree of unsaturation, in
fully saturated (FS) and polyunsaturated (PU; see the
Supporting Information for full details on the definition)
classes, we observe a significant enrichment of PU lipids for
several proteins, including DAT, GluA2, GLUT1, Kv1.2, Na,K-
ATPase, and P-gp, but not for all proteins. The results for FS
lipids show a less clear trend, with a D−E index value often very
close to 1, and no significant enrichment or depletion within
the first lipid shell. We also observe that the enrichment or
depletion of a given class can be correlated with membrane
composition: we have simulated the AQP1 system in the
absence of GM lipids, which resulted in a more significant
enrichment of PU lipids near the proteins compared to the
simulations with GM lipids (Tables S2−S3 and S7−S8) but
similar results for other classes. However, a similar pattern was
not detected for the Na,K-ATPase, simulated for an additional
20 μs with no GM lipids after the 30 μs long simulation in the
presence of GM (Tables S1, S5, S6, and S9). For this system, in
fact, the enrichment of PU lipids persisted with or without GM
lipids, highlighting the different behavior of each protein in the
plasma membrane mixture.
The variation in cholesterol concentration in the lipid shells

is also remarkable. Note that cholesterol is present at an overall
probability of 30%, implying a local concentration of 35−40%
in the case of Kv1.2, AQP1, and δ-OPR (D−E index 1.2−1.3),
as opposed to a concentration of around 25% in the case of
DAT (D−E index 0.8). For DAT, depletion of cholesterol is
accompanied by an enrichment in PU lipids and GM lipids,
many of which are fully saturated, while for Kv1.2 we detect
enrichment in cholesterol, PU, and GM within the same shell.
Despite the common notion that cholesterol prefers to interact
with fully saturated lipids and in fact induces phase
separation,36−38 the coexistence of sites to specifically
accommodate cholesterol and PU lipid molecules on the
protein surface has also been previously shown for rhodop-
sin.39,40 Together, our data show how proteins can have a
strong impact on the lateral organization of lipids in their
immediate surrounding.
However, the impact of protein on membrane organization is

even more complex. The preceding analysis only revealed

Figure 2. Membrane protein fingerprints. (A) Two-dimensional lateral density maps, showing local density fluctuations around AQP1 in upper (top
row) and lower (bottom row) leaflets, grouped according to lipid classes: polyunsaturated (PU) lipids, fully saturated (FS) lipids, and cholesterol.
Major observations are indicated by arrows, see text for details: I, nonspecific binding; II, nonuniform distribution; III, leaflet asymmetry; IV, specific
binding; V, membrane fluctuations. (B) Nonuniform variations in local membrane properties around AQP1: thickness, mean curvature, and
Gaussian curvature for upper (top row) and lower (bottom row) leaflets.
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information on the average composition of the lipid shells up to
2.1 nm from the proteins. Considering that membrane proteins
are not simple homogeneous cylindrical inclusions, one can
anticipate that the distribution of lipid species around the
protein is nonuniform.
To investigate this, we analyzed the local density fluctuations

around each of the proteins by computing 2D lateral density
maps. These maps were obtained by counting the presence of
lipid beads in grid cells with 0.3 nm spacing and averaging over
the last 5 μs of the simulations. Given the complex composition
of our membrane, we restricted our analysis here to three major
lipid classes, namely, PU lipids, FS lipids, and cholesterol
(CHOL). For each class, depletion or enrichment are here
shown with respect to their corresponding average density
calculated in a given leaflet. The results for AQP1 are shown as
an example (Figure 2A), but similar density fluctuation patterns
are seen around all proteins (Figure S2).
We observe a rich spectrum of possible features of protein−

lipid interactions, indicated by arrows I−V in Figure 2A. One
important feature is the broad distribution of FS and PU lipids,
in both leaflets, near many proteins, including AQP1, DAT,
EGFR, GluA2, GLUT1, Na,K-ATPase, and δ-OPR (Figure 2A,
arrow I, and Figure S2). Other clear features are that the
observed density fluctuations are strongly inhomogeneous
around the protein (arrow II, Figure 2A), as well as leaflet-
specific as they depend on protein structure and lipid
composition, both of which are asymmetric (arrow III, Figure
2A).
In the upper leaflet, for example, we notice regions of strong

FS enrichment in contact with the proteins. Such regions are
usually more localized than PU enriched regions and are often
coupled with smaller, yet still highly localized, FS enriched
regions in the lower leaflet. This behavior can be seen for
AQP1, DAT, EGFR, δ-OPR, and even for the monotopic
COX1, which is only partially embedded in the upper leaflet
(Figure 2A and Figure S2). The size and shape of FS lipid
regions differ from protein to protein, and in many cases create
a discontinuous ring around the transmembrane domains, as in
the case of AQP1, GluA2, and Kv1.2, which are homotetramers
(Figure 2A and Figure S2).
In the lower leaflet, PU enrichment is often observed near

the proteins, and particularly noticeable around, for example,
DAT, GluA2, GLUT1, and Na,K-ATPase (Figure 2A and
Figure S2).
Some proteins clearly induce a sharp partitioning of the

different lipid classes. This is the case for GluA2 and PU lipids
in the lower leaflet, and P-gp, where in the upper leaflet we
observe a clear distinction between the side of the trans-
membrane domains in contact with PU lipids and the side in
contact with FS lipids, while in the lower leaflet there is an
obvious preference for PU lipids (Figure S2). Kv1.2 is another
striking example of how the same lipid class (PU) can be
asymmetrically distributed between leaflets, and symmetrically
distributed around the protein within the same leaflet, due to
the homotetrameric nature of the channel and possibly linked
to a more specific type of interaction (Figure S2).
Monotopic proteins are also capable of inducing a clear

separation in the distribution of lipid classes, even in the leaflet
they are not directly bound to. For COX1, for example, in the
lower leaflet the enrichment of PU lipids is aligned with the
depletion of FS lipids and CHOL underneath the protein,
partially embedded only in the upper leaflet.

In addition, to such a nonspecific, broad distribution of lipid
classes, we detect an example of more specific interactions,
especially for the CHOL class (arrow IV), where the term
specific in this case is used to indicate a localized region of
enrichment in close proximity with the protein, possibly as a
consequence of longer contact times between the protein and
the cholesterol molecules due to the presence of preferred
cholesterol interaction sites. Cholesterol is the most abundant
single component of the plasma membrane mixture, and thus
associated with a more even distribution compared to the PU
and FS classes. However, the corresponding 2D density maps
suggest sites of possibly specific cholesterol interactions. AQP1,
for example, clearly shows localized enrichment of cholesterol
at the interface between monomers, and similar features are
also observed in Kv1.2, DAT, GLUT1, Na,K-ATPase, and δ-
OPR. The D−E index analysis shows, for some proteins,
enrichment of cholesterol and PU lipids within the same shell
(Figure 1 and Table S1). The 2D density maps highlight how
such regions, when present, do not substantially overlap in
space (Figure 2 and Figure S2).
For proteins such as GLUT1, Na,K-ATPase, and DAT the

presence of specific motifs or sites for cholesterol binding is
reported in the literature.41−43 Here, we focus on DAT, as an
example of protein for which our simulations retrieve the
experimental cholesterol binding site, and on Kv1.2, for which
we predict specific cholesterol interactions. In the crystal
structure of DAT a cholesterol molecule is bound in a groove
lined by residues of transmembrane helix 1, 5, and 7, closer to
the cytoplasmic side of the membrane.44 In our simulation, the
presence of cholesterol is clearly visible for all four DAT
molecules, in the same groove that coordinates the cholesterol
molecule in the crystal structure (Figure S3A). The simulation,
moreover, reveals the dynamic component of cholesterol
interactions at this site, as multiple binding modes are detected
(Figure S3A), in line with what has been already described for
the corresponding cholesterol site in the serotonin trans-
porter.45

For Kv1.2, we observe cholesterol molecules in a site located
at the interface between two monomers and protruding toward
the central pore of the channel (residues L328, L331, I402,
P405, and V406 of one monomer, and I396, A397, and L400 of
the neighbor one) (Figure S3B). For a different type of
potassium channel, the inward-rectified Kir2.1 potassium
channel, specific residues able to modulate the sensitivity of
the channel to cholesterol are located at the interface between
monomers.46 The sequence alignment of several Kir channels
with Kv1.2 shows that the residues’ cholesterol-binding residues
here identified for Kv1.2 correspond to some of the residues
that regulate cholesterol sensitivity of Kir2 channels (in
particular, Kir2.1-I166 and Kir2.1-I175 correspond to Kv1.2-
I396 and Kv1.2-P405, respectively).43 Thus, our CG simu-
lations further strengthen the hypothesis that such cholesterol
interaction sites might have a functional role that spans across
different types of potassium channels.46 These results also
suggest that our computational approach might help in
identifying protein sites primed to interact with specific lipids,
even when experimental data are not available.
Finally, significant lipid density fluctuations can be seen

extending to the rest of the membrane, away from the protein
surface (arrow V, Figure 2A). Similar density fluctuations were
also observed in the pure plasma membrane models,20,47 but it
is likely that the proteins affect the extent and nature of these.
However, given the currently used setup with four copies of
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each protein being present in the simulation cell, analysis of the
long-range effects of these density fluctuations is problematic
and left for future studies.
One possible reason for proteins to accumulate certain

classes of lipids around them is to ensure a proper embedding
of their hydrophobic transmembrane domains.48 Thus, one
would expect variations in local thickness profiles and curvature
gradients, as has been predicted by theory,49 and observed in
many previous MD simulations of proteins in simpler
membranes.21,50−54 The 2D membrane thickness profile
around AQP1 is shown in Figure 2B, alongside the mean and
Gaussian curvature fields. Indeed, we observe strong
perturbations in all of these properties, with similar
perturbations around all 10 proteins (Figures S4−S6). Again,
we retrieve the same type of inhomogeneity as for the density
maps, with perturbations strongly varying along the surface of
the protein and depending on the leaflet. Note, for instance, the
strong alteration in both mean and Gaussian curvature around
the rim of AQP1 (Figure 2B).
MD simulations have been used extensively to study how

lipids might regulate protein function, and recent advances in
high-performance computing and in the development of CG
models have allowed for a higher degree of complexity in
simulated systems.13,20−23,55−61 In the Martini model used in
this study,62−64 a compromise between computational
efficiency and chemical details of the system is achieved by
grouping an average of four heavy atoms into a larger particle or
bead: several bead types and subtypes exist, to account for the
chemical diversity of the systems to model. In the case of
proteins, the lower resolution provided by the Martini model
requires the use of an elastic network to preserve their tertiary
structure,65 and as a consequence, the force field does not allow
the study of conformational transitions of proteins, which could
be due, for example, to lipid binding. Moreover, the tendency of
the force field to overstabilize protein−protein interactions and
form protein−protein aggregates that do not dissociate over
long time-scales has recently been reported.21,66 Here, with
these caveats in mind, we used the Martini model to describe
lipid−protein interactions in a plasma membrane mixture over
30 μs long simulations, which are not yet feasible at an
atomistic level of detail due to the complexity of the systems.
To account for reproducibility of the lipid distribution around a
given protein type, our approach considered four molecules of
the same protein, restrained to avoid the formation of protein−
protein aggregates that cannot be sampled efficiently. We have
tested different simulation setups and lengths, analyzed the
different profiles in lipid enrichment near the proteins (Tables
S1−S9), and obtained qualitatively similar results.
Our simulations reveal a hitherto unappreciated level of

complexity of protein−lipid interplay in the asymmetric
environment of a realistic plasma membrane. It should be
considered, however, that the details of the lipid compositions
of the first lipid shells near the proteins found in our study are,
to some extent, sensitive to the details of the force field used,
although most of the features we observed are plausible based
on the results of other studies. For instance, GM lipids are
known to contribute to the lateral organization of membranes,
due to their large head groups, their saturated tails, and high
phase transition temperature.67,68 We observed small differ-
ences in the extent of GM aggregation around the proteins
depending on the water model used as also pointed out in a
previous work.24 However, the effects of the presence of GM
lipids in membrane models have been studied using both

atomistic and CG simulations (and reviewed, for example, by
Manna et al.),69 with atomistic simulations highlighting the
tendency of GM molecules to interact with each other, and CG
simulations showing their ability to segregate in nanodomains
in model membranes.25,60,70 Experimental work on protein−
GM lipid interactions includes, among others, raft-associated
glycophosphatidylinositol-anchored proteins (where protein
enrichment is colocalized with GM enrichment),71 and growth
factors.72 For EGFR in particular,30 CG simulations were used
to characterized in more detail the interactions with GM
lipids,27 and evaluate the strength of such interactions.73

Additional details on GM−protein interactions are discussed in
the Supporting Information.
The clustering of negatively charged lipids around membrane

proteins is affected by the electrostatic interactions’ treatment
in the simulations. However, their enrichment, despite
differences in magnitude for PIP, for instance, is present for
all the proteins, and has also been reported by others. Several
works, for example, focus on the interactions and redistribution
of cardiolipins around membrane proteins, providing results in
agreement with available crystal structures (see, for instance,
refs 74 and 75), while others address the interactions between
negatively charged lipids and ion channels,17 tyrosine kinase
receptors,17,76,77 or GPCRs.21 Multiscale simulation approaches
were used to characterize the interactions between the
juxtamembrane domain of EGFR and PIP lipids, in bilayers
with different ratios of POPC, POPS, and PIP2 lipids,76 and
also reported PIP lipid redistribution and interactions with the
ion channel Kir2.2 in agreement with experimental data.78

Additional details on PIP lipid−protein interactions are
discussed in the Supporting Information.
The lateral organization of PU lipids has also been addressed

by simulations. For the membrane model used in this work and
a similar membrane model, PU lipids form clusters of the size
of few lipids only and without inducing any phase
separation.20,47 This excludes that the regions enriched in PU
lipids observed here near the membrane proteins are biased by
the force field parameters. And indeed, for simpler mixtures the
Martini model reproduces experimental findings showing that
PU lipids promote the coexistence of liquid ordered and
disordered phases by accumulating and fluidizing the liquid
disordered phase79,80 and shows free energies of transfer for
polyunsaturated DLiPC lipids between different environments
that are comparable between Martini and atomistic simu-
lations,81 although with different entropy and enthalpy
contributions as expected from a coarse-grained model.23 The
presence of regions enriched in PU lipids or polyunsaturated
fatty acids (PUFAs) near membrane proteins has been
observed in atomistic and CG simulation studies be-
fore.39,40,82−85 Of note are atomistic simulations of open and
closed states of the Shaker Kv channel, which have shown
accumulation of PUFAs on the upper channel surface, similarly
to what we observe in our CG simulations of the Kv1.2
channel.85

Despite the simplified representation of the system, the
Martini model has been successfully applied to elucidate lipid
binding sites around several examples of membrane proteins,
including recovering of known experimental binding sites as
well as predicting novel ones.17,22,74,76,78,86−90 Here, we find
that the distributions of lipid types around each protein, and
near different parts of each protein, are distinct, providing a
unique environment or “lipid fingerprint” for each protein.
These unique lipid shells, in turn, affect local membrane
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properties such as thickness and curvature gradients in a highly
nonuniform way. We expect also other membrane properties,
such as the lateral pressure profiles or local compressibility as
well as dynamics, to be strongly anisotropic. The lipid
fingerprints offer a large range of opportunities for cells to
steer and control membrane organization. For instance, specific
binding sites could act as glue, stabilizing protein−protein
contacts, or cause blockage of interactions with other proteins.
Similarly, merging of nonspecific binding sites could recruit
different proteins into close proximity forming nanosized
domains. The protein-induced curvature gradients may provide
long-range effects, driving either protein oligomerization or
repulsion. The above sorting mechanisms are already known,
and used in a variety of mean field models to predict large-scale
membrane organization,91−94 but our data suggest such models
are too simplistic. The interactions between membrane proteins
will strongly depend on the protein pair considered, and be
highly nonuniform, i.e., depending on their relative orientation.
For instance, proteins may attract each other in certain
orientations, as shown by studies on the ATP-synthase,95,96

but repel each other in others. Furthermore, through control of
the lipid fingerprint, these interactions will depend very
sensitively on the overall composition of the membrane.
Moreover, in the crowded environment of typical plasma
membranes, another level of complexity is added through the
competition for binding sites between the proteins. Taken
together, we observe a new level of complexity in protein−lipid
interplay, with profound implications for the lateral and
dynamic organization of cell membranes. Furthermore, better
understanding of the nature of the local environment might
help with designing and understanding membrane mimetics for
functional studies of membrane proteins.97 We therefore expect
that detailed simulations of increasingly realistic cell envelopes,
together with improved characterization of lipid shells with
experimental methods, are needed to fully appreciate the role of
lipid fingerprints in cellular processes.

■ METHODS
The detailed methods are described in the Supporting
Information. In summary, we embedded 10 membrane proteins
in a previously characterized model of the plasma membrane.20

The starting structures of the 10 membrane proteins simulated
in this study were taken from the Protein Data Bank or
obtained from the corresponding publication: aquaporin-1
(AQP1, PDB ID 1J4N);98 prostaglandin H2 synthase (COX1,
PDB ID 1Q4G);99 the dopamine transporter (DAT, PDB ID
4M48);44 the epidermal growth factor receptor (EGFR);77

AMPA-sensitive glutamate receptor 2 (GluA2, PDB ID
3KG2);100 glucose transporter 1 (GluT1, PDB ID 4PYP);101

voltage-dependent Shaker potassium channel 1.2 (Kv1.2, PDB
ID 3LUT,102 residues 32 to 4421 for each monomer); sodium,
potassium pump (Na,K-ATPase, PDB ID 4HYT);103 δ-opioid
receptor (δ-OPR, PDB ID 4N6H);104 and P-glycoprotein (P-
gp, PDB ID 4M1M).105 In each system, four copies of each
protein were included and positioned at a distance of ca. 20 nm
from each other. Proteins were simulated using standard
Martini protocols with minor variations between systems to
accommodate system-specific issues (Supporting Information).
The following lipid classes were included: cholesterol (CHOL),
in both leaflets; charged lipids phosphatidylserine (PS),
phosphatidic acid (PA), phosphatidylinositol (PI), and the
PI-phosphate, PI-bisphosphate, and PI-trisphosphate (PIPs)
placed in the inner leaflet; and ganglioside (GM) in the outer

leaflet. The zwitterionic phosphatidylcholine (PC), phosphati-
dylethanolamine (PE), and sphingomyelin (SM) lipids were
placed in both leaflets, with PC and SM primarily in the outer
leaflet and PE in the inner leaflet. Ceramide (CER),
diacylglycerol (DAG), and lysophosphatidylcholine (LPC)
lipids were also included, with all the LPC in the inner leaflet,
and CER and DAG primarily in the outer leaflet. The details of
the Martini lipids used in this study can be found on the
Martini Lipidome webpage (http://www.cgmartini.nl/index.
php/force-field-parameters/lipids) and are described by In-
golfsson et al., and Wassenaar et al.20,106 The exact lipid
composition of each system is given in the Supporting
Information. The systems are ca. 42 × 42 nm in the membrane
plane (x and y), including 4 proteins and ca. 6000 lipids.
Production runs were performed in the presence of weak

position restraints applied to the protein backbone beads, with
a force constant of 1 kJ mol−1 nm−2, preventing proteins from
associating with each other. Each of the systems has been
simulated for 30 μs, which turned out to be adequate to obtain
convergence of major lipid components in the lipid shells
around the individual copies of the proteins (Supporting
Information). Additional control simulations were performed in
the AQP1 system, in order to test the effects of simulation
length, position restraints on the proteins, lipid composition,
and water model on the results of lipid composition near the
proteins (Supporting Information).
Simulations were performed using the GROMACS simu-

lation package version 4.6.3,107 with the Martini v2.2 force field
parameters,62,63 and standard simulation settings.108 Additional
details are provided in Supporting Information. All the analyses
were performed on the last 5 μs of each simulation system.
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