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Abstract
Purpose of Review Sodium-glucose co-transporter 2 (SGLT-2) inhibitors have emerged as a promising drug class for the
treatment of diabetic kidney disease. Developed originally as glucose-lowering drugs by enhancing urinary glucose excretion,
these drugs also lower many other renal and cardiovascular risk factors such as body weight, blood pressure, albuminuria, and
uric acid. Results from the EMPA-REG OUTCOME and CANVAS trials show that these salutary effects translate into a
reduction in cardiovascular outcomes and have the potential to delay the progression of kidney function decline. This review
summarizes recent studies on the mechanisms and rationale of renoprotective effects.
Recent Findings Effects of SGLT-2 inhibitors on the kidney are likely explained by multiple pathways. SGLT-2 inhibitors may
improve renal oxygenation and intra-renal inflammation thereby slowing the progression of kidney function decline.
Additionally, SGLT-2 inhibitors are associated with a reduction in glomerular hyperfiltration, an effect which is mediated through
increased natriuresis and tubuloglomerular feedback and independent of glycemic control. Analogous to diabetic kidney disease,
various etiologies of non-diabetic kidney disease are also characterized by single nephron hyperfiltration and elevated albumin-
uria. This offers the opportunity to reposition SGLT-2 inhibitors from diabetic to non-diabetic kidney disease. Clinical trials are
currently ongoing to characterize the efficacy and safety of SGLT-2 inhibitors in patients with diabetic and non-diabetic kidney
disease.
Summary The glucose-independent hemodynamic mechanisms of SGLT-2 inhibitors provide the possibility to extend the use of
SGLT-2 inhibitors to non-diabetic kidney disease. Ongoing dedicated trials have the potential to change clinical practice and
outlook of high-risk patients with diabetic (and non-diabetic) kidney disease.

Keywords Sodium-glucose co-trasporter-2 inhibitor . Type 2 diabetes . Chronic kidney disease . Pharmacology . Clinical trials
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The worldwide prevalence of diabetes mellitus will continue
to increase in the next decades from 415 million people in
2015 to 642 million in 2040 [1]. Approximately 40% of all
patients with diabetes will develop diabetic kidney disease
(DKD), and a substantial number of these patients will prog-
ress to end-stage renal disease [2]. Diabetic kidney disease is
also independently associated with increased risk of cardio-
vascular disease and a significant reduction in life expectancy
[2, 3]. Consequently, it places a heavy burden on individual
patients and on national health budgets. Recent studies indi-
cate that the 10-year mortality rates of patients with DKD
equal average mortality rates of all cancers [4, 5]. There is
thus a strong rationale to develop new interventions to slow
the progression of DKD.
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incompletely understood. This review summarizes new in-
sights in the potential protective mechanisms of SGLT-2 in-
hibitors. In the context of recently started renal outcome trials,
we will also review the potential benefits of SGLT-2 inhibitors
in patients with non-diabetic kidney disease.

Metabolic Effects of SGLT-2 Inhibitors

In healthy glucose-tolerant individuals with a glomerular fil-
tration rate of 125 ml/min/1.73m2 180 gram glucose is fil-
tered each day by the kidney. In these healthy conditions,
urinary glucose concentration is absent owing to an effective
reabsorption system, consisting of two sodium-glucose co-
transporters (SGLT): SGLT-1 and SGLT-2 [21]. The SGLT-2
transporter is located on the luminal side of the first segment
of the proximal tubule in the kidney and is a high-capacity,
low-affinity transporter. It is responsible for the reabsorption
of approximately 90% of all filtered glucose. The remaining
10% of the filtered glucose is reabsorbed by the low-
capacity high-affinity SGLT-1 transporter which is located
in more distal segments of the proximal tubule [22]. Both
transporters are also located in other organs than the kidney.
For example, SGLT-1 transporters actively transport glucose
from the lumen into the enterocyte of the small intestine.
SGLT-2 transporters are also located in muscles, the heart,
brain, and liver [23]. However, it appears that SGLT-2 inhib-
itors specifically inhibit the SGLT-2 transporter in the prox-
imal tubule of the kidney, demonstrated by a recent study
using positron emission tomography with 4-[18F]fluoro-
dapagliflozin [24]. In patients with diabetes in whom plasma
glucose levels exceed 400 mg glucose per 100 ml plasma,
SGLT-2 transporters become saturated and the maximum
capacity threshold to reabsorb glucose is reached resulting
in increased glycosuria [22].

The increased knowledge on the role of the kidney in main-
taining glucose homeostasis, in particular the SGLT transport-
er system, led to the development of drugs inhibiting SGLT.
Early experimental studies with phlorizin showed that SGLT
inhibition augmented glycosuria and decreased plasma glu-
cose levels [25–27]. However, the clinical development pro-
gram of this drug was stopped due to gastro-intestinal side
effects, which appeared to be caused by blocking SGLT-1 in
the gastro-intestinal tract. More selective SGLT-2 inhibitors
were subsequently synthesized and investigated. Three of
them, dapagliflozin, canagliflozin, and empagliflozin are reg-
istered for clinical use in the USA and Europe. Ipragliflozin,
tofugliflozin, and luseogliflozin are available in Japan and
ertugliflozin and sotugliflozin, combined SGLT-1/SGLT-2 in-
hibitors, are under investigation. Table 1 shows the molecular
structure and the main pharmacokinetic parameters of these
SGLT-2 inhibitors.

SGLT-2 inhibitors increase urinary glucose excretion
by approximately 70–80 gram per day and decrease
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Current treatments to prevent or delay kidney (as well as
cardiovascular) complications in patients with diabetes focus
on lowering blood pressure, HbA1c, body weight, albumin-
uria, and cholesterol. Targeting these multiple risk factors re-
duce the risk of cardiovascular disease and kidney function
decline [6, 7]. Nevertheless, many patients do not reach their
target blood pressure, blood glucose levels, and/or lipid levels.

Recently, several strategies have been tested to improve
the prognosis of patients with diabetes. One of these strate-
gies was to examine the effects of intensive compared with
conventional glucose control on cardiovascular complica-
tions. Several large clinical trials in patients with type 2 dia-
betes showed that aggressive glucose lowering did not result
in a reduced risk for macrovascular complications [8, 9]. The
ACCORD trial even showed that intensive glucose lowering
increased mortality rates compared with conventional glu-
cose control [10]. These findings, in combination with initial
concerns about the safety of rosiglitazone, led the FDA to
mandate that the cardiovascular safety of all new
glucose-lowering drugs must be investigated in post-
marketing clinical outcome trials. As a result, many large
cardiovascular outcome trials have been completed the last
few years or are ongoing. These trials are designed to dem-
onstrate cardiovascular safety and are powered to show non-
inferiority compared with control treatment. They have pro-
vided important insight in the efficacy and safety of various
glucose-lowering drug classes which would likely have been
unknown if the FDA mandate had not been in place. The first
cardiovascular outcome trials tested the effects of dipeptidyl-
peptidase-4 (DDP-4) inhibitors and demonstrated that these
agents have largely neutral effects on cardiovascular and re-
nal outcomes [11–13]. Glucagon-like-peptide-1 receptor ag-
onist (GLP-1 RA) appeared to have a favorable cardiovascu-
lar safety profile and two of them, liraglutide and
semaglutide, reduce both cardiovascular risk and albuminuria
progression [14–17]. All these trials enrolled patients at high
cardiovascular risk. Whether these agents slow progression
of kidney function decline could not be appropriately
established since on average the enrolled population was at
low risk of kidney function loss. Two trials with sodium-
glucose cotransporter-2 (SGLT-2) inhibitors showed surpris-
ing and unexpected beneficial effects. In fact, after the neutral
DPP-4 inhibitor trials the results of the SGLT-2 inhibitor trials
took the endocrinology community by surprise. The first trial,
the EMPA-REG OUTCOME trial showed in 2015 that the
SGLT-2 inhibitor empagliflozin reduced cardiovascular risk
and had important additional benefits in terms of reducing
heart failure and slowing progression of kidney function de-
cline [18••, 19••]. These results were recently confirmed in
the CANVAS study program with the SGLT-2 inhibitor
canagliflozin [20••].

The mechanisms for cardiovascular and kidney protection
of SGLT-2 inhibitors in patients with diabetes mellitus are



HbA1c by approximately 0.5 to 0.8% [28]. SGLT-2 in-
hibitors can be used in combination with other glucose-

lowering drugs, and their efficacy to lower HbA1c is not
altered when used as adjunct to metformin, sulphonyl

Table 1 Overview of SGLT-2 inhibitors currently registered or in late phase clinical development

Drug Manufacturer Registered dose Structure Half-life 

(hrs)

Elimination

Dapagliflozin AstraZeneca 5 and 10 mg 12.2 75% urine

21% feces

Canagliflozin Janssen 100 and 300 mg 11 - 13 52% feces 

33% urine

Empagliflozin Boehringer 

Ingelheim

10 and 25 mg 12.4 54% urine

41% feces

Ipragliflozin Astellas 

Pharma 

Kotobuki 

Pharmaceutical

25 and 50 mg 10 - 13 68% urine

32% feces

Tofogliflozin Apleway

Deberza

20 mg 6.8 77% urine

22% feces

Luseogliflozin Lusefi 2.5 and 5 mg 10 - 12 N.R.

Ertugliflozin Merck n/a 11 - 17 50% urine

41% feces

Sotagliflozin Sanofi n/a 29 N.R.

Abbreviations: N.R. not reported
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urea (SU) derivatives, DDP-4 inhibitors, GLP-1 RA or
insulin.

When compared with other glucose-lowering drugs, the
efficacy of SGLT-2 inhibitors to lower HbA1c seems modest.
However, head-to-head comparisons between SGLT-2 inhibi-
tors and SU derivatives or DPP-4 inhibitors have shown sim-
ilar efficacy [29–31], and compared with SU derivatives,
SGLT-2 inhibitors are more durable over time [31]. The gly-
cemic efficacy appears to depend on the starting HbA1c
values with less efficacious effects being observed in patients
with low HbA1c values [32, 33]. The lower efficacy at low
plasma glucose levels also accounts for the low risk of hypo-
glycemia observed with this drug class. Another possibility
for the low risk of hypoglycemia with SGLT-2 inhibitors is
that these agents may stimulate endogenous glucose produc-
tion [34]. In addition, it is important to note that only approx-
imately 50% of the total filtered glucose is blocked by SGLT-2
inhibitors [35]. This probably contributes to the low risk of
hypoglycemia.

SGLT-2 inhibitors are also associated with a consistent 2 to
3 kg weight loss. The effect on body weight, reflecting net
calorie loss due to increased glucose excretion, is observed
directly after treatment initiation and plateaus after approxi-
mately 6 months [36, 37]. The stabilization of body weight
loss is likely explained by increased food intake resulting in a
new caloric balance. In contrast with other glucose-lowering
drugs, weight loss with SGLT-2 inhibitors can be attributed to
reductions in both visceral and subcutaneous adipose tissue
whereas other glucose-lowering drugs have mainly shown to
ameliorate subcutaneous adipose tissue [37]. The clinical rel-
evance of this finding is underscored by studies demonstrating
an association of high visceral, but not subcutaneous fat, with
increased risk of adverse cardiovascular outcomes [38].

Natriuresis and Blood Pressure Effects of SGLT-2
Inhibitors

The SGLT-2 transporter is responsible for the reabsorption of
both glucose and sodium. In addition to glycosuric effects,
inhibition of the SGLT-2 transporter also leads to inhibition
of proximal sodium reabsorption. Accordingly, in patients
with type 2 diabetes who were managed in a carefully con-
trolled environment, it has been shown that dapagliflozin at
doses of 5, 25, and 100 mg cause a dose-dependent increase in
3-day sodium excretion ranging from 55 to 134 mmol after
24 h (Fig. 1) [39, 40]. Further research with consecutive 24-h
urine sampling over multiple days is ongoing to characterize
the magnitude and durability of the natriuretic/diuretic effects
of SGLT-2 inhibitors in more detail (clinical trials identifier
NCT03152084). The reduction in plasma volume of about
7%, as observed in one study with dapagliflozin in patients
with type 2 diabetes and normal renal function, is likely a
result of the increased natriuresis and diuresis [41]. In that

study, dapagliflozin was directly compared with hydrochloro-
thiazide. Interestingly, the decrease in body weight during the
first 2 weeks with dapagliflozin and hydrochlorothiazide was
exactly similar, suggesting that the fall in body weight is not
only explained by a net loss of calorie intake but also occurs
on the basis of a natriuretic effect. As a consequence of this
natriuresis and concurrent osmotic diuresis, blood pressure
decreases in response to SGLT-2 inhibition. Indeed, reductions
in systolic blood pressure of about 2 to 4 mmHg have been
reported in almost all clinical trials with SGLT-2 inhibitors
[42]. Based on epidemiologic studies, this would translate into
approximately 14% cardiovascular and 18% renal risk reduc-
tion [43, 44]. Blood pressure reductions appear to occur both
in day time and night time, although not all studies unequiv-
ocally demonstrated this [41, 45]. Interestingly, SGLT-2 inhib-
itors also appear to improve the ability of having a nocturnal
fall in blood pressure (dipping) in non-dipping patients with
type 2 diabetes. This is of relevance as blood pressure
non-dipping patients are at higher risk of cardiovascular
events [46]. It should be noted that the blood pressure effects
of SGLT-2 inhibitors appear independent of concomitant
blood pressure lowering medication. While some have sug-
gested that concomitant renin-angiotensin-aldosterone-system
inhibitor or diuretic use may enhance or blunt efficacy of
SGLT-2 inhibitors, clinical studies suggest this not to be true
[47].

Recently, various studies have documented that the skin can
buffer large amounts of sodium independently of extracellular
water, body weight, and 24-h urinary sodium excretion. New
techniques using 23Na-magnetic resonance imaging have be-
come available to measure skin sodium, and it has been shown
that high tissue sodium content is associated with cardiovas-
cular riskmarkers [48]. Sixweeks treatmentwith dapagliflozin
has been suggested to reduce skin sodium content which may
represent another sodium dependent mechanism by which
SGLT-2 inhibitors protect against cardiovascular and heart
failure risk [49].
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Fig. 1 Dapagliflozin induces approximately 55, 105, and 134 mEq
negative sodium balance over 3 days at 5, 25, and 100 mg per day
respectively. Data derived from reference [39]
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The diuretic effects of SGLT-2 inhibitors are also thought to
be involved in improvements in arterial compliance. Optimal
blood pressure control is difficult to achieve in patients with
DKD and is a key factor contributing to vascular rigidity and
stiffness. Aortic pulse wave velocity, an established method to
determine arterial stiffness, has been shown to decrease sig-
nificantly in response to empagliflozin treatment [50]. The
reduction in arterial stiffness observed with empagliflozin
treatment could not be explained by changes in nitric oxide,
renin-angiotensin-aldosterone system activity or sympathetic
nervous system activity. Supposedly, other factors mediate the
beneficial effects on arterial stiffness such as reduction in
weight loss or induction of a negative sodium balance which
cause relaxation of vascular smooth muscle cells.

Cardiovascular Outcome Trials

The cardiovascular protective effects of the SGLT-2 inhibitors
empagliflozin and canagliflozin are now established in the
EMPA-REG OUTCOME and CANVAS trials (Table 2)
[18••, 20••]. The EMPA-REG trial enrolled 7020 participants
with type 2 diabetes and established cardiovascular disease
who were randomly assigned to empagliflozin 10 or 25 mg
or matched placebo. The trial showed after 3.1 years
follow-up that empagliflozin resulted in a 14% relative cardio-
vascular risk reduction (HR, 0.86; 95% confidence interval
(CI), 0.74 to 0.99; p < 0.001 for non-inferiority, and p = 0.04
for superiority) [18••]. Interestingly, a subsequent prespecified
analysis showed that empagliflozin had a marked kidney pro-
tective effect. The established kidney endpoint of doubling of
serum creatinine and initiation of renal replacement therapy
occurred less frequently in patients treated with empagliflozin
vs. placebo (44 and 55% relative risk reductions, respectively;
p < 0.001), although the number of these events was small
[19••].

The results from the CANVAS program were recently re-
ported. The CANVAS program consisted of two randomized
controlled trials involving 10,142 participants with either
established cardiovascular disease or at risk of cardiovascular
disease. Participants were followed for a median of 2.4 years.
Similar to the EMPA-REG trial, in the CANVAS program,
canagliflozin reduced the relative risks of the primary cardio-
vascular endpoint by 14% (HR, 0.86; 95% CI, 0.75 to 0.97;
p < 0.001 for non-inferiority, and p = 0.02 for superiority). In
addition, canagliflozin also caused a marked 40% reduction in
the risks of the primary renal outcome consisting of a 40%
estimated glomerular filtration rate (eGFR) decline, the need
for renal replacement therapy, and renal death (HR, 0.60; 95%
CI, 0.47 to 0.77) [20••].

Despite the impressive results on kidney function, it should
be mentioned that the EMPA-REG and CANVAS trials were
not designed to assess effects of SGLT-2 inhibitors on the
kidney. Therefore, the results should be considered hypothesis Ta
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generating in terms of kidney outcomes and future prospective
trials, as described below, are needed to confirm these findings.
Nevertheless, the consistent and impressive results highlight
the potential of SGLT-2 inhibitors for the treatment of DKD.

Renal Protective Pathways

The protective effects of SGLT-2 inhibitors on the kidney are
likely explained by multiple mechanisms. In addition to reduc-
tions in HbA1c, blood pressure and body weight, other mech-
anisms likely contribute to the marked protective effects of
SGLT-2 inhibitors on the kidney. These mechanisms include
restoration of glomerular feedback, improving renal proximal
tubule oxygenation, and suppressing anti-inflammatory and
anti-fibrotic pathways (Fig. 2).

Glomerular hyperfiltration is one of the earliest clinical
manifestations of DKD and is caused by a complex interplay
of diabetes-induced hormonal and structural changes in the
nephron. Previous studies, particular in patients with type 1
diabetes, have shown that glomerular hyperfiltration is asso-
ciated with a higher risk of microalbuminuria and progressive
kidney function decline [51]. It is assumed that decreased
sodium delivery to the macula densa leads to suppression of
tubuloglomerular feedback resulting in afferent vasodilation,
increased renal blood flow, and hyperfiltration. SGLT-2 inhib-
itors increase distal sodium delivery and thereby restore
tubuloglomerular feedback and hyperfiltration [52]. This is

clinically manifested by an acute drop in eGFR of approxi-
mately 4 to 6 ml/min/1.73m2 which is completely reversible
after SGLT-2 inhibitor cessation, even after years of treatment.
Thus, the acute fall in eGFR following SGLT-2 inhibition can
in most circumstances be interpreted as a sign of efficacy
rather than an adverse effect.

Another mechanism that could potentially explain the pro-
tective effects of SGLT-2 inhibitors relates to the improvement
in renal hypoxia that is typically observed in diabetic kidneys
[53, 54]. The proximal tubule is responsible for the reabsorp-
tion of large amounts of water, organic solutes, and electro-
lytes. These processes are oxygen dependent and cause a de-
crease in oxygen tension in kidney tissues. The reduction in
sodium and glucose reabsorption induced by SGLT-2 inhibi-
tors reduces tubular workload and could ameliorate renal ox-
ygenation resulting in improvements in tubular cell structural
integrity and possibly function. Indeed, an experimental study
reported that acute SGLT inhibition with phlorizin improved
renal cortical oxygen tension in diabetic animals, although
unfortunately medullary hypoxia increased [55]. Clearly,
more research in humans is required to determine the clinical
relevance, but given the central role of hypoxia in DKD, this
may represent an important pathway by which SGLT-2 inhib-
itors confer renal protection.

Inflammation, oxidative stress, and fibrosis are involved
in the initiation and progression of kidney disease [56, 57].
Experimental studies have linked SGLT-2 inhibitors with
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Fig. 2 Proposed pathways of
renal protective effects: firstly,
SGLT2-inhibitors may reduce
glomerular hyperfiltration
through restoration of
tubuloglomerular feedback, an
effect which is mediated by
increased sodium delivery to the
distal tubule. Secondly, SGLT2-
inhibitiors ameliorate renal
oxygenation owing to reduced
tubular workload. Thirdly, SGLT-
2 inhibitors may exert anti-
inflammatory and anti-fibrotic
effects
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reductions in anti-inflammatory, anti-oxidant and anti-
fibrotic markers. For example, MCP-1, NF-kB, levels of
8-OHdG, and L-fatty acid-binding protein (markers of ox-
idative stress and macrophages) decreased in experimental
studies after treatment with ipragliflozin and empagliflozin
[58–60]. A recent study translated these preclinical find-
ings to the human situation and demonstrated that 6 weeks
treatment with the SGLT-2 inhibitor dapagliflozin de-
creased urinary levels of the inflammatory markers
interleukin-6 and monocyte-attractive-protein-1 [61]. At
present, several preclinical and clinical studies examine
the effects of SGLT-2 inhibitors on biomarkers of inflam-
mation and fibrosis.

SGLT-2 inhibitors have been shown to lower albuminuria
dramatically, possibly by a tubuloglomerular feedback-
induced reduction in glomerular hypertension. All registered
SGLT-2 inhibitors have consistently shown to lower albumin-
uria by 30 to 40%. This effect appears to be independent of
concomitant ACEi or ARB use and could not be explained by
concomitant reductions in HbA1c, blood pressure, or body
weight [62–64]. It should be noted that almost all studies
investigating the albuminuria-lowering effects of SGLT-2 in-
hibitors were post-hoc analyses and not primarily designed for
this purpose. A recently published prospective randomized
cross-over study specifically designed to characterize the al-
buminuria lowering effect of dapagliflozin confirmed that
dapagliflozin decreased albuminuria by 40% compared with
placebo treatment [65].

SGLT-2 Inhibitors in Patients with DKD

The registered SGLT-2 inhibitors in the USA and Europe are
not recommended for use in patients with DKD, as it has been
shown that their effects on glycemic control attenuates at low-
er eGFR. It has been hypothesized that the lower glycemic
efficacy of SGLT-2 inhibitors in patients with DKD is a result
of diminished glucose filtration. Interestingly however, pooled
analyses from all phase 3 trials with dapagliflozin and
empagliflozin have shown that the efficacy of SGLT-2 inhib-
itors on other cardiovascular and renal risk factors such as
blood pressure, body weight, albuminuria, and uric acid is
not attenuated in people with DKD [66–68]. The mechanisms
as to why SGLT-2 inhibitors retain their efficacy in lowering
these risk markers in patients with DKD is incompletely un-
derstood, but it is possible that patients with DKD are more
sensitive to mild natriuretic/osmotic diuresis. Regardless of
the underlying mechanism, the observed improvements in
blood pressure, body weight, and albuminuria in patients with
DKD suggest that SGLT-2 inhibitors exert cardiovascular and
renal protective effects in this population. Indeed, subgroup
analyses of the EMPA-REG trial and the CANVAS program
have shown that the effects of empagliflozin and canagliflozin
on the primary cardiovascular endpoint are similar in patients

with baseline eGFR above and below 60 ml/min/1.73m2

[18••, 20••]. However, the number of patients with impaired
kidney function in these trials was low (e.g., 26% in the
EMPA-REG trial), and therefore the number of patients who
required dialysis, the clinically meaningful endpoint in trials
of kidney disease progression, was less than 30 [19••]. This is
no surprise since the trials were not designed to assess effects
of empagliflozin and canagliflozin on kidney endpoints. The
ongoing CREDENCE and DAPA-CKD trials (clinical trials
identifier NCT02065791 and NCT03036150) are specifically
designed to establish the safety and efficacy of canagliflozin in
slowing kidney progression in patients with DKD. Design and
patient characteristics of the CREDENCE and DAPA-CKD
trial are described in Table 3.

SGLT-2 Inhibitors in Non-diabetic Kidney Disease

The EMPA-REG trial and CANVAS trials showed that the
Kaplan-Meier curves for the renal endpoint diverged already
during the initial months of the trial. Remarkably, a 2-year
clinical trial comparing head-to-head canagliflozin with
glimepiride showed that with canagliflozin the rate of kidney
function decline was significantly lower while glycemic con-
trol was similar between the two classes (Fig. 3) [69]. These
data combined indicate that the protective effects of SGLT-2
inhibitors are unlikely to be mediated by improvements in
glycemic control. The restoration of tubuloglomerular feed-
back along with glomerular afferent vasoconstriction is
thought to be an important mechanism accounting for the
protective effects of SGLT-2 inhibitors on kidney function.
Based on these non-glycemic effects, there is a strong imper-
ative to extend the use of SGLT-2 inhibitors to non-diabetic
chronic kidney diseases (CKD) that are also characterized by
glomerular hypertension, hyperfiltration, and significant albu-
minuria. For example, various studies have documented that
obesity induced CKD is associated with altered kidney hemo-
dynamics leading to increased renal plasma flow and GFR
(i.e., hyperfiltration) [70]. The mechanism is likely a result
of increased reabsorption of sodium in the proximal tubule
leading to altered tubule-glomerular feedback. In hypertensive
nephrosclerosis, loss of autoregulation of the afferent and ef-
ferent arteriole in the kidney drive a hyperfiltration type of
glomerular lesion and subsequently kidney damage [71].
Immunoglobulin A (IgA) nephropathy is another CKD sub-
type which could benefit from SGLT-2 inhibitors. Patients
often present with significant proteinuria which is a strong
determinant of renal prognosis. Current therapy for these pa-
tients consists of RAAS inhibition, as well as immunosuppres-
sion, but is insufficient in a considerable proportion of patients
[72–74]. SGLT-2 inhibition may be a promising adjunctive
therapy to further lower intra-glomerular pressure and protein-
uria. Secondary focal segmental glomerulo-sclerosis (FSGS)
is characterized by hypertension, significant proteinuria, and
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is caused by a reduction in renal mass due to various causes
such as surgical ablation, sickle cell anemia, or episodes of
active glomerulonephritis [75]. Importantly, hyperfiltration is
common in all the aforementioned disorders. Reversing the
hyperfiltering state through pharmacological interventions,
such as with SGLT-2 inhibitors, may improve the renal out-
come of these patients [76].

An important question to be addressed is of course wheth-
er it is safe to use SGLT-2 inhibitors in non-diabetic CKD
patients. As described above, the risk of hypoglycemia with

SGLT-2 inhibitors in non-diabetic patients is likely low as
the degree of glucose-lowering positively correlates with the
filtered glucose load which is low in non-diabetic CKD pop-
ulations. Clinical experience with SGLT-2 inhibitors in non-
diabetic conditions is currently limited, but studies in healthy
volunteers have shown that SGLT-2 inhibitors can be safely
used at high doses, even up to 50-fold the dose used in
clinical practice, without inducing hypoglycemia [77].
Thus, the currently available data suggest that SGLT-2 inhib-
itors can be safely used in non-diabetic conditions at least
with respect to hypoglycemia. A number of trials, such as the
D IAMOND (NCT03190694 ) and DAPA-CKD
(NCT03036150), are currently ongoing to investigate the
efficacy and safety of SGLT-2 inhibitors in patients with
non-diabetic CKD. These trials are due to report in 2019
and 2021.

Who Should Be Treated with SGLT-2 Inhibitors?

Current guidelines recommend to use SGLT-2 inhibitors as
adjunct to metformin therapy in patients with type 2 diabetes
and established cardiovascular disease [78]. This recommen-
dation is based on the EMPA-REG trial. A well-known side
effect of SGLT-2 inhibitors is genital infections, probably me-
diated by glycosuria. Patients with multiple episodes of geni-
tal infections are therefore not the ideal candidates to start an
SGLT-2 inhibitor. Physicians are also advised to be careful
with SGLT-2 prescription in patients at risk of diabetic
ketoacidosis (DKA), as this may be an important although rare
serious adverse event related to this drug class. Of note, the
risk of DKA with SGLT-2 inhibitors is low in patients with
type 2 diabetes, which may explain why DKA signals were
not detected in clinical trials. However, based on administra-
tive databases and real-world evidence a 2-fold increased risk

Table 3 Study characteristics of the CREDENCE and DAPA-CKD trials

CREDENCE DAPA-CKD

Clincial trials identifier NCT02065791 NCT03036150

Design Randomized placebo-controlled double-blind trial Randomized placebo-controlled double-blind trial

Study Population Type 2 diabetes Chronic kidney disease

UACR 300–3500 mg/g UACR 200–3500 mg/g

eGFR 30–90 ml/min/1.73m2 eGFR 30–75 ml/min/1.73m2

Primary endpoint Composite of end-stage renal disease, doubling of
serum creatinine, renal or cardiovascular death

Composite of end-stage renal disease, ≥ 50% eGFR
decline, renal or cardiovascular death

Secondary endpoints -Cardiovascular death
-All-cause death
-Cardiovascular composite endpoint (myocardial

infarction, stroke, CV death)
-Renal composite endpoint (end-stage renal disease,

doubling of serum creatinine, renal death)

-All-cause death
First occurrence of:
-End-stage renal disease, ≥ 50% eGFR decline, renal death
-Cardiovascular death or hospitalization for heart failure

Number of patients 4464 4000

Anticipated trial completion June 2019 November 2020

Least squares
mean
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Fig. 3 Canagliflozin induces an acute fall in eGFR during the first
4 weeks of treatment followed by a stabilization of eGFR decline
during subsequent 2 years follow-up, whereas eGFR progressively
declined over time during treatment with glimepiride. HbA1c levels
were similar at baseline and during follow-up in the canagliflozin and
glimepiride group. (Republished with permission from the American
Society of Nephrology from Heerspink et al. [69])
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of DKA has been suggested when compared with DPP-4 in-
hibitors [79]. It should be noted however that other database
studies suggested no increased risk of DKAwith SGLT-2 in-
hibitors [80].

Volume depletion is another adverse effect detected in
clinical trials. Patients at risk of volume depletion, such as
those with gastrointestinal fluid losses or reduced oral in-
take, are therefore not good candidates to start SGLT-2
inhibitors. In addition, SGLT-2 inhibitors should be with-
held during procedures that may reduce renal perfusion
such as elective surgery or intravenous contrast procedures
in the same way as is done with ACE inhibitors and angio-
tensin receptor blockers. Along the same line, SGLT-2 in-
hibitors should not be continued during short-term periods
of NSAID use, as the combination of these two drug classes
may reduce renal perfusion and may evoke acute kidney
injury.

The CANVAS program unexpectedly showed that pa-
tients treated with canagliflozin had a 2-fold higher risk of
lower limb amputations compared with placebo-treated pa-
tients. Patients with a history of amputations or with pe-
ripheral vascular disease were at highest absolute risk for
amputations during the trial, but the relative effect of
canagliflozin was similar across subgroups [20••]. The un-
derlying mechanism of this potential adverse event is un-
clear nor is it known whether this represents a class effect
or an effect particularly associated with canagliflozin. A
recent analysis of the FDA pharmacovigilance database
suggested that canagliflozin use, but not dapagliflozin or
empagliflozin use, may be associated with an increased
risk of amputations [81]. However, causality cannot be
assessed based on pharmacovigilance databases and future
trials in high-risk populations are needed to determine
whether peripheral ischemia necessitating amputations are
a serious adverse event of this drug. This adverse event
complicates the management of patients with peripheral
vascular disease. On the one hand, they had the highest
risk of amputations in CANVAS, but they also experienced
a marked benefit with respect to cardiovascular outcomes.
Until other data becomes available, it seems reasonable to
treat these individuals with dapagliflozin or empagliflozin,
since to date no safety signal has emerged with these two
SGLT-2 inhibitors.

Conclusion

SGLT-2 inhibitors are promising. Not only do they improve
glycemic control but they also offer substantial protection
against progression of cardiovascular and kidney disease in
patients with diabetes independent of glucose control. In the
last 2 years, several hypotheses emerged that could explain
the underlying mechanisms of these protective effects. With

respect to the kidney, restoring tubuloglomerular feedback,
and attenuating intra-renal hypoxia and inflammation seem
plausible mechanisms by which SGLT-2 inhibitors delay the
rate of kidney function decline. These glucose-independent
effects offer the opportunity to reposition SGLT-2 inhibitors
to the non-diabetic CKD population. Ongoing trials will de-
termine whether this novel drug class is indeed an important
asset to combat the epidemic of diabetic as well as non-
diabetic CKD.
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