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Statistical learning of mobility 
patterns from long-term 
monitoring of locomotor behaviour 
with body-worn sensors
Sayantan Ghosh 1,2, Tim Fleiner1,3, Eleftheria Giannouli  1, Uwe Jaekel2, Sabato Mellone  4, 
Peter Häussermann3 & Wiebren Zijlstra1

Long term monitoring of locomotor behaviour in humans using body-worn sensors can provide 
insight into the dynamical structure of locomotion, which can be used for quantitative, predictive and 
classification analyses in a biomedical context. A frequently used approach to study daily life locomotor 
behaviour in different population groups involves categorisation of locomotion into various states 
as a basis for subsequent analyses of differences in locomotor behaviour. In this work, we use such 
a categorisation to develop two feature sets, namely state probability and transition rates between 
states, and use supervised classification techniques to demonstrate differences in locomotor behaviour. 
We use this to study the influence of various states in differentiating between older adults with and 
without dementia. We further assess the contribution of each state and transition and identify the 
states most influential in maximising the classification accuracy between the two groups. The methods 
developed here are general and can be applied to areas dealing with categorical time series.

Complex non-linear dynamical systems in nature can often be modelled to have latent discrete states1, and are 
investigated in diverse areas such as finance, medicine, robotics, and text analysis. Inference of the latent states and 
their causal interactions is an important aspect of such modelling where, the interplay between the various latent 
states can provide important insights for system characterisation and modelling. The role played by the indi-
vidual latent states in the model can also be analysed for developing a parsimonious description of the system2. 
Human locomotion is a complex dynamical system and various aspects of locomotor behaviour have been stud-
ied, for example in the distinction between normal and pathological gait3, analyses of gait and postural stability4–9,  
assessment of fall-risk10–12, in mobility studies13–15, in the progression of dementia16, and more recently in evalu-
ating the cognitive impairment in older adults17.

The majority of these recent studies have concentrated on feature set generation with respect to controlled 
locomotion tasks or motor states and validated the algorithms; thus were limited to a very narrow range of loco-
motor behaviour. In free living conditions, where a multitude of activities are performed (which could lead to a 
large number of underlying states), not only the classification of the typical states, but the sequences of transi-
tions from one state to the other can provide useful insight into the dynamics of locomotor behaviour. However, 
research effort in this context is usually concentrated on recognising physical activities18–21 (also called as Human 
Activity Recognition or HAR). Some effort has been made in understanding the temporal evolution of the activ-
ity in humans through actigraphy, especially in the context of circadian rhythms by investigating the two state 
(active/inactive) models22,23, which can overlook certain temporal variations in the locomotor behaviour that 
might be characteristic of certain population groups13.
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In this work, we develop a general method to address the latter issue through statistical learning approaches, 
and use the method to differentiate between two subject groups based on their locomotor behaviour. We study 
the locomotor behaviour through long-term body-worn sensor measurements and categorise them into different 
locomotor states (hereafter “states”). We then study these individual states by defining the probability of occur-
rence, designated as State Probability (SP) and the Transition Rates (TR) between the different states. As will be 
seen in the ensuing, the construction of these two feature sets is completely general over the dimensions (number 
of states), and observation time and can be adapted to study temporal variations in locomotor behaviour.

As a proof-of-concept demonstration, we study the differences in the locomotor behaviour between insti-
tutionalised patients suffering from dementia and healthy community-dwelling older adults using a variety of 
supervised classification algorithms. Neuro-degenerative diseases such as dementia manifest as wide ranging 
impairments in psycho-social and locomotor behaviour24. Sensor based evaluation of locomotor behaviour can 
be used to objectively quantify aberrations and impairments for quantitative assessment, online diagnosis, and 
development of targeted therapeutic protocols13,25. We identify the activity states and the transitions relevant for 
the classification of the two groups. The simplicity of the SP and TR methods lend to a wide generalisability of 
the features for application in many real-life scenarios, where a long term monitoring of the subjects is required. 
We show that the TR method outperforms SP method in classification tasks, thereby suggesting that the manifest 
dynamics underlying the structure of long-term locomotor behaviour can be instrumental in understanding the 
daily activities of subjects suffering from various mobility impairing diseases.

Results
We have derived a seven state representation26 of the locomotor behaviour for our analysis, namely: Lying (Sup), 
Sitting Sedentary (SiSe), Standing Sedentary (StSe), Postural Transitions (PoTr), Sitting Active (SiAc), Standing 
Active (StAc), and Gait (see Methods). In the following, we initially sketch the statistical and distributional prop-
erties of the seven state probability (SP) features, and then apply the SP, and the associated TR features for sta-
tistical learning. Two exemplary groups of subjects have been studied here: community living older adults, and 
institutionalised patients suffering from dementia.

Summary statistics of features. We have represented the summary statistics and the distributional char-
acteristics of SP of the two groups in Table 1. We note here that as shown in the table with *, all relevant param-
eters such as skewness, kurtosis, results of the Shapiro-Francia test and the Mann-Whitney U test are deemed 
significant only at the p < 0.001 level, unless stated otherwise. We observe that a subset of states in the control 

Parameters

State probabilities for locomotor behaviour

Lying (Sup)

Sitting 
Sedentary 
(SiSe)

Standing 
Sedentary 
(StSe)

Postural 
Transition 
(PoTr)

Sitting Active 
(SiAc)

Standing 
Active (StAc)

Walking 
(Gait)

Mean¶
18.8 35.5 21.4 2.59 2.46 3.41 15.9

14.1 51.2 18.4 1.21 2.25 3.41 9.42

Standard Deviation¶
23.5 15.2 10.6 1.84 1.58 1.76 8.25

15.3 19.3 13.2 0.732 1.43 1.72 8.49

Median¶
11.6 39.2 20.8 2.17 2.06 3.20 15.3

10.4 56.1 16.3 1.03 2.06 3.35 7.45

25th percentile¶
0.846 24.1 14.1 1.46 1.38 2.01 10.2

2.16 39.1 9.74 0.741 1.18 1.97 4.41

75th percentile¶
24.0 47.3 26.6 2.96 3.25 4.32 20.9

19.0 64.9 20.7 1.52 2.78 4.45 12.8

Skewness†
1.91* −4.90 × 10−1 1.14 1.94* 9.48 × 10−1 4.43 × 10−1 4.36 × 10−1

1.62* −7.78 × 10−1 2.10* 1.10 1.43* 2.44 × 10−1 3.50*

Kurtosis†
3.46 −2.04 × 10−1 3.66 4.83 3.61 × 10−1 −3.90 × 10−1 3.79 × 10−1

2.32 −2.00 × 10−1 5.51 1.43 2.46 −7.31 × 10−1 1.83 × 10+1

SF test§ (p-value)
1.96 × 10−9* 5.46 × 10−2 3.98 × 10−4* 1.34 × 10−7* 4.13 × 10−4* 4.75 × 10−2 2.46 × 10−1

4.53 × 10−8* 9.23 × 10−4* 3.13 × 10−8* 6.63 × 10−4 1.45 × 10−5* 2.00 × 10−1 2.20 × 10−10*

MannU‡ (p-value) 2.38 × 10−1 1.22 × 10−7* 4.15 × 10−3 6.90 × 10−10* 2.59 × 10−1 4.74 × 10−1 1.19 × 10−7*

Table 1. Summary statistics of the probability of physical activity for the control and dementia groups. The 
first four moments (mean, standard deviation, skewness, and kurtosis), the three quartiles (first, median and 
third), and tests for normality (Shapiro-Francia), and the Mann-Whitney U test for similarity of distribution 
are shown. The cells with asterisks show significant behaviour at the p < 0.001. Refer to the table notes and 
the text for further discussion. The top and bottom rows for each parameter represent the statistics for control 
and dementia subjects respectively. ¶These rows shows the value of the state probabilities (πj × 100) for clearer 
interpretation. †The significant skewness and kurtosis are marked with asterisks, following the discussion in 
Cramer43. §The p–values for the Shapiro-Francia test are shown. The p–values marked with asterisks show 
significant difference between the two groups at 99.9% confidence level (p < 0.001). ‡The p–values for the Mann-
Whitney U test are shown. The p–values marked with asterisks (*) show significant difference between the two 
groups at 99.9% confidence level (p < 0.001).
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group exhibit significant skewness and kurtosis (Sup, StSe, PoTr and SiAc); while the dementia group show sig-
nificant skewness for Sup, StSe, SiAc, and Gait. The other states show very weak skewness. The distributional 
characteristics of the SP is ascertained through the Shpario-Francia test, which rejects the null hypothesis of nor-
mal distribution in concordance with the results obtained for significant skewness and kurtosis. The p-values are 
reported in Table 1. The differences in the distributions of the two population groups are reported through the the 
Mann-Whitney U test, and we see that the two population groups are significantly distinguished from each other 
for SiSe, PoTr, and Gait. We have also represented these results graphically in Fig. 1 (panel a), where the SP have 
been plotted on a log 10 scale for better visualisation. We also observe that StSe shows distributional difference 
between the two groups at p < 0.001 significance level.

We further note that, as would be expected for the older population, the mean probability of sedentary behav-
iour (combination of Sup, SiSe and StSe) is higher as compared to active behaviour during the observation period, 
with the control and the dementia subjects exhibiting mean probabilities of 0.757 ± 0.059 and 0.837 ± 0.058 
respectively. The dementia group thus exhibits a higher probability of sedentary behaviour than the control group, 
with a higher probability of being in sedentary sitting than of lying or standing. Further, for the active phys-
ical activities, the mean probabilities of postural transitions (0.259 ± 0.002 versus 0.121 ± 0.001) and walking 
(0.159 ± 0.01 against 0.01) are higher in the control group than in the dementia group. Note that all the quantities 
mentioned above are in the form of mean ± SEM where SEM represents the standard error of mean.

Panel b of Fig. 1 shows a typical TR matrix A (see Methods). The elements with zero probability of transition 
have been represented by white pixels. Since transitions between some states cannot be instantaneous; for exam-
ple between Sup and Gait without transitions through intermediate states such as PoTr, SiSe, SiAc, PoTr, StSe, 
and StAc; some of these state transitions are null, and have been excluded from the analysis. The TR matrices 
have been calculated as one step transition between the time steps tk and tk+1. Note that while the TR matrix is 
not symmetric, the null transitions are symmetric. The time window for a typical transition between two states 
is of the order of hundreds of milliseconds, while the data has been acquired at a temporal resolution of 10 ms, 
and thus, expectedly, the within-state transition (also called residence), are rather high at the one-step transition 
rates as shown by the higher values of the diagonal elements of the TR matrix. The non-null TR matrix elements 
for the two groups are also shown in the panel c of Fig. 1. We find that transitions arising from the state PoTr to 
other states show distributional differences at the p < 0.001 significance level (denoted by black stars), with the 

Figure 1. Summary statistics of features. The summary statistics of the two feature sets SP and TR are shown 
in this figure. Panels (a and c) show the box plots for SP and TR respectively for the two groups (control in 
dark, and dementia in white). The states and transitions at which the two groups differ significantly, calculated 
through the Mann-Whitney U-test (p < 0.001), have been highlighted using black stars. The panel (b) displays 
an empirically constructed transition matrix representative of the control group subjects. The dark pixels 
represent higher transition rates, the shade lowering with decreasing transition rate. The null transitions are 
shown in white. The y-axis of the transition matrix represents the numerical coding of the seven states for clarity 
in interpreting the transition matrix elements (Sup corresponds to state 1, and Gait to state 7). In the panel 
(c), diagonal elements and the null transition elements have been dropped to preserve visual clarity. Also, all 
quantities have been plotted on a logarithmic (base-10) scale to highlight the distributional variations amongst 
the groups.
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exception of the transition from PoTr to Sup. The transitions from SiSe to SiAc, StAc to StSe, and StAc to Gait also 
show significant distributional differences. Furthermore, we observe that the variance and outliers of the control 
group are smaller than for the dementia group.

The variations in the distributional characteristics, as well as the capture of null-transitions (or physically 
improbable transitions) thus inherently represent the dynamical traits of locomotor behaviour. We emphasise 
here that the dynamics of SP and TR for different states and groups can be have diverse intrinsic representa-
tions (which we refer to as structural information), and might in principle be represented by different dynamical 
systems.

Despite highlighting the differences between the two representative groups, the above statistical analysis can-
not however be used as a tool in a potentially diagnostic context where an online categorisation of individual sub-
jects is envisaged. The large number of descriptive parameters in SP and TR further pose a challenge in extracting 
the states or transitions that are instrumental in the differing locomotor behaviour in the different groups of 
populations. These objectives can be achieved by statistical learning methods, which can be used to learn the rela-
tionships between the different features (the SP and TR are now considered as predictors or features), and extract 
those relevant to the discrimination between the groups.

Supervised learning, classification and feature importance. Classification performance. We have 
applied a number of standard supervised learning methods on the two feature sets SP and TR for classifying the 
two groups with distinct locomotor behaviour (see Methods). Figure 2 represents the 10-fold cross validated 
results of testing the algorithms on the data with 140 samples, and SP (7 features), and TR (49 features) respec-
tively. The k-fold cross validation method randomly partitions the samples into k subsamples of equal length, with 
training k − 1 subsamples used for training, and one subsample used for testing. This procedure is then repeated 
k times, with the condition that in every iteration, the testing subsample is varied.

The Fig. 2 shows the accuracy (panel a), and area under the receiver-operator-characteristic curve (panel b) 
as performance indicators for the different supervised learning methods applied for the classification task. It is 
immediately clear from Fig. 2a that TR features outperform SP features in terms of classification accuracy. While 
Gaussian Processes, henceforth GP (accuracy = 0.84 ± 0.09, AUCROC = 0.91 ± 0.08), followed by Random 
Forest, henceforth RF (accuracy = 0.81 ± 0.12, AUCROC = 0.88 ± 0.11) is the best performing algorithm for 
SP, the other methods’ performance is significantly lower. In the case of TR features, with the exception of the 
Quadratic Discriminant Analysis (QDA), and Naïve Bayes (NB) algorithms, the algorithms have a high accuracy 
score of above 0.95, with the RF performing the best (accuracy = 0.99 ± 0.03, AUCROC = 1.00 ± 0.01), followed 
closely by AdaBoost (AB), Support Vector Machines (SVM) and Neural Networks (NN) at ≈0.95. Note that all 
the figures in the brackets here are CV-mean ± CV-s.d.

Figure 2. Learning performance. The classification (a) accuracy, (b) area-under-receiver-operating-
characteristic-curve (AUCROC), (c) precision, and (d) recall scores (mean of 10-fold CV) for the different 
supervised learning methods applied to the SP (white hatched) and the TR (gray) feature sets. The errorbars 
represent the standard deviation of the cross validation. We observe that the classification accuracy is 
significantly better for the TR feature sets, expect for in the cases of Näive Bayes’, and quadratic discriminant 
analysis. The dark bars represent the TR feature set, while the hatched bars represent the SP features.
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The precision and recall have also been shown in the panels c and d of the Fig. 2 as added performance indi-
cators. The precision, also known as the positive predicted value, follows the accuracy trend; and the recall, also 
known as the specificity follows the trend of the area under the ROC curve. Specifically, the highest obtained 
precision for the RF method in TR is (0.99 ± 0.04), while for the GP method in SP is (0.89 ± 0.13). However, the 
highest recall is obtained by AB 0.81 ± 0.13 for SP, and 0.99 ± 0.04.

The performance advantage of TR over SP gives evidence that the structural information captured by TR is 
better for distinguishing locomotor behaviour between different groups. Further, noting the lower performance of 
methods involving quadratic decision surfaces, and or kernels such as QDA, and NB suggests a linear relationship 
between the states and behaviour.

Feature importance. The objective of this work is not only to construct a feature set that accurately distinguishes 
between two different population groups based on their locomotor behaviour, but also to draw quantitative 
insights into which states and transitions between which of these states is relevant in such classification, thus 
highlighting the role of specific states in the locomotor behaviour in humans. It is well known (see Methods) that 
many of the statistical learning methods transform the feature sets, during the process, thereby making interpre-
tation of the selected features difficult. Thus, we have used the ensemble based methods to quantitatively analyse 
the importance of the states and the associated transitions in the classification task. The feature importances 
calculated as the Gini impurity (IG)27,28, are plotted in Fig. 3, in decreasing order of magnitude. The feature impor-
tance for SP have been shown for the three ensemble methods AB (panel a: accuracy =0.79 ± 0.12), DT (panel b: 
accuracy =0.73 ± 0.16) and RF (panel c: accuracy =0.81 ± 0.12); while for the TR features, only the RF method 
(accuracy =0.99 ± 0.03) has been represented in panel d for brevity.

In the case of SP, all the ensemble based methods (AB, DT, and RF) select postural transitions (PoTr) to be the 
most relevant feature facilitating the discrimination between the control and dementia subjects (represented in 
the panels a–c of Fig. 3). The interesting aspect of the feature importance ranking is the similarity in the impor-
tance of some features. For example, in the case of Random Forest (panel c), while PoTr, Gait and SiSe have high 
“relative” importance, the other four states have similarly low importance (<0.1). Since we have ∑ =I 1k G  over all 
the k–features, PoTr, Gait, and SiSe together can be interpreted to have the maximum relevance, while the rest 
have low and nearly equal relevance. For AdaBoost (panel a) and Decision tree (panel b), the importance ranking 
has a more gradual slope in comparison. However, it is clear from the three methods that PoTr is the most relevant 
feature in the classification task. This is also in concurrence with the observation earlier that postural transition 
showed significant distributional difference between the two groups. Further, we observe that Gait, SiSe and SiAc 
also appear as the highest ranking features in the three ensemble based methods. While the three methods are not 
in general agreement over the ranking of the second and third relevant features, we will see in the proceeding that 
they play an important role in the classification in terms of the transitions from these states.

The IG for the TR features are shown in the panel d of Fig. 3. Following the discussion above, again, the tran-
sitions emitting and terminating at PoTr were selected as by the RF algorithm to have have a high relevance in 
the classification task, with a visual inspection of the importance ranking revealing that the transitions PoTr to 
Gait (a47), PoTr to SiSe (a42), and PoTr to SiAc (a45) contribute in a major way, while Gait to PoTr (a74) is also an 
important transition. The relative difference in the contribution of a47 and a74 might be attributed to the asym-
metry in the transition rates. Reminding ourselves that the residence rate have a higher relative magnitude in the 
TR matrix due to the high sampling rate, we observe that a44 and a66, i.e. the residence in PoTr and StAc have an 
important role in discriminating between the two groups. A probable cause of the inclusion of a66 in this feature 
importance suggests that the control subjects are expected to be more active during the observation period which 
corresponds to day time locomotor behaviour.

Figure 3. Feature importance. The importance of the features (physical activity states) calculated through 
the Gini impurity coefficient (IG) is shown in decreasing order of their importance. The panels (a–c) represent 
AdaBoost, Decision Tree and Random Forests respectively for the state probability features. The panel (d) 
represents the feature ranking for the transition rate matrix method.
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To summarise the results, we note the following points:

 1. The feature importances obtained through the ensemble based methods confirm PoTr to be the most 
important discriminatory feature;

 2. The TR method outperforms the SP method in terms of classification accuracy, and discriminatory 
capabilities;

 3. And, ensemble based methods, owing to their easily interpretable feature importance, allow us to draw 
clinically relevant conclusions about the efficacy of the methods employed in this paper.

Discussion
In this work, we have developed a general method for studying a wide range of dynamical physical systems that 
can be observed or described as categorical time series. The SP and TR methods described here are generalisable 
to any number of dimensions and can be used to study any observation period. As a proof-of-concept application, 
we focussed on drawing insights into the locomotor behaviour in humans and derive the states which distin-
guish between groups that show distinctive behaviour. To this end, we extracted a range of core states commonly 
encountered in daily living conditions and derived the state probabilities and the transition rates between the 
underlying states. We analysed the feature sets thus obtained through conventional statistical methods, and sta-
tistical learning methods. We showed that the transitions between the states capture the rich dynamical structure 
of the locomotor behaviour which can be used with a high degree of accuracy to distinguish between two different 
groups, while automatically excluding physically unlikely transitions between states. We further identified the 
states and corresponding transitions that play a pivotal role in distinguishing these characteristic behaviours.

We showed that the probability of a patient suffering from dementia being in a sedentary state (83.7%) is 
more likely than a healthy older adult (75.7%) in our time frame, which agree with other findings29. We also 
showed that dementia subjects are less likely to be in the state of gait (9.42%) compared to the healthy older adult 
(15.9%)13,25, which can be attributed to the psycho-motor impairment in advanced dementia30.

We further used SP and TR methods to distinguish between the two older population groups and found that 
TR outperformed the SP method in classifying the two groups, showing the TR capture the dynamical structure 
of human locomotion more effectively than the SP, and has better predictive capabilities, where the ensemble 
methods outperformed the other methods, suggesting their suitability in such dimensional classification tasks, 
while automatically performing feature relevance. This could be of particular significance to the clinical and 
biomedical community, where the development of diagnostic and therapeutic protocols and interventions can 
be assisted by knowledge of specific states requiring attention. However, various factors that can have possibly 
had an impact on the performance of these methods are the different physical environmental conditions (home 
versus hospital), age difference, and the efficiency of the HAR algorithm. We have shown that these conditions 
did not have a substantial impact on the locomotion behaviour in the two population groups as evidenced by the 
results of conventional statistical tests, which was a further motivation to employ machine learning techniques 
to investigate differences in the locomotor behaviour. This is a proof-of-concept application of the methodology 
developed in this work, and while we have applied it for discrimination of dementia in the elderly, this method 
can be applied to other time dependent dynamical systems which can be described based on state changes.

We further identified that the state most likely to contribute to the differences between the healthy and patients 
suffering from dementia is postural transitions, which appears to be the logical intermediate stage between two 
different states, which were confirmed by the TR method to identify the most contributory state transitions 
included PoTr.

Clinical assessment protocols in dementia are often based on the observation of behavioural symptoms. Our 
method relies on an objective quantitative assessment of locomotor behaviour, which can be performed in a 
clinical context, with minimal human intervention, and without subjective interpretation. We expect that the 
objective assessment of behavioural states and use of machine learning techniques will become relevant to sup-
port clinical decision making in dementia.

In conclusion, we have demonstrated a method for studying dynamical systems representable by categorical 
time series and have used them to derive important categories contributing to the dynamics through statistical 
learning. This method in turn, can be used not only for online prediction affording the clinical community an 
unbiased and objective method for subject classification, but can also be used for quantitative studies in the tem-
poral locomotor behaviour of subjects. This analysis could also potentially play a role in pre-clinical investigation 
of the motor dysfunctions associated with various pathologies.

Methods
Study design and participants. Subjects (n = 140) in two groups (control and dementia) were recruited 
from community living older adults31, and three specialised acute dementia care units of the LVR-Hospital 
Cologne (the randomised clinical trial was registered in the German Clinical Trial Register with reference num-
ber DRKS00006740 on October 28, 2014)13, respectively. Equal number of subjects in each group were studied in 
this investigation. The male-to-female ratio was 1:1, and 0.71:1 in the dementia (mean age = 80.93 ± 6.28 years) 
and control groups (mean age = 69.49 ± 4.15 years) respectively. The body mass index of the control and demen-
tia subjects were 24.8 ± 4.1 and 24.9 ± 4.1 respectively. Nineteen control and 7 dementia subjects had a higher 
education, while 18 control and 3 dementia subjects finished high school as their highest level of education. Of 
the control subjects 20 had middle and 12 had lower education levels, in the group of dementia subjects, these 
figures were 43 and 8, respectively. Education data for one subject was not available. All subjects were included in 
the study only upon written confirmation of non-objection from their respective physicians.
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The dementia subjects were evaluated by two senior geriatric psychiatrists (unrelated to this investigation) 
for confirmation of diagnosis Subjects with a confirmed diagnosis of dementia according to the International 
Classification of Diseases, version 10 (ICD-10)32, were included in the study. Psychiatric assessment of the 
dementia patients were performed with various assessment methods such as the Neuro-Psychiatric inventory 
(NPI = 22.4 ± 13.6), Cohen Mansfield Agitation Index (CMAI = 51.5 ± 12.5), and Mental Mini State Examination 
(MMSE = 17.8 ± 5.2). Forty subjects were administered only antipsychotics (2.4 ± 1.9 mg/day), one subject was 
administered only sedatives (3.3 mg/day), while fourteen subjects were administered both sedative (3.2 ± 1.9 mg/
day) and antipsychotic (3.3 ± 1.9 mg/day) medication.

The control subjects were included in the study only if they did not exhibit any serious neurological or psychi-
atric symptoms, and had no diseases that could hamper mobility. While 11 subjects did not report any disease, 
22 control subjects had been diagnosed with one (9 with endocrine, 7 with cardiovascular, 5 with orthopaedic 
and 1 with eye or ear) disease. 36 subjects exhibited more than one disease, 4 subjects had minor neurological or 
psychiatric symptoms, 25 had cardiovascular symptoms, 21 had symptoms of endocrine diseases, 6 showed eye 
or ear diseases, 18 had orthopaedic symptoms, and 8 subjects had tumours.

Instrumentation. The uSense and Samsung SIII acted as sensing units and raw data was exported and pro-
cessed through the same software for both devices. Commercial inertial measurement units (IMUs) MPU9150 and 
MPU6050 (TDK Invensense) are embedded in the uSense and Samsung SIII devices respectively. Both chips have 
equivalent range and resolution (±2 g for the accelerometer and ±250°/s) for the gyroscope) and have the same 
sampling rate (100 Hz). The equivalence of these two IMUs has been investigated33 and verified for the two devices.

Data acquisition. All the subjects were monitored in their daily living conditions: acute dementia care units 
of psychiatric hospitals (dementia) and home living (control), without any restrictions and without imposing 
any standardised conditions such as in a laboratory environment. The dementia subjects were monitored con-
tinuously for at least forty-eight hours, while the control subjects were monitored over five days between waking 
up and sleeping. Owing to the variations of the daily sleep-wake patterns of individual control subjects, and the 
unavailability of night-time data, the raw data obtained from both populations were synchronised to have a dura-
tion of eight hours between 12:00 and 20:00 hours. In order to preclude effects of sample size, only one eight hour 
observation period from each subject was used in the study.

The sensors were placed at the lower back (approximately the fifth vertebra of the lumbar column, L5) with 
elastic waist bands (control31), and waterproof adhesive foil (dementia13, Opsite FlexiFix, Smith & Nephew 
Medical Ltd., Hull, England). The motivation for the L5 placement was the report that the optimal placement 
position of IMU for locomotor behaviour monitoring is the lower back or the ankle34. Three dimensional acceler-
ation, and angular velocity were sampled at 100 Hz in both cases.

Signal processing and locomotor state detection. The non-commercial signal processing and fea-
ture extraction software implemented in MATLAB (MATLAB R2015b, The MathWorks, Inc., Natick, MA) 
is an outcome of the FARSEEING project (grant agreement No. 288940 funded under the European Union 
Seventh Framework Programme (FP7/2007–2013); it allows quantitative as well as qualitative data analysis and 
it has been validated to identifiy locomotion behaviour inpatients with dementia13, in older adults residing in 
independent-living retirement homes35, and in community-dwelling older adults36.

The software has been further validated within the scope of the PreventIT project (grant No. 689238 funded 
under the European Union Horizon 2020 program H2020-EU.3.1), where it was tested on two datasets of elderly 
subjects: 1) the ADAPT dataset26, where video recording was performed using ceiling mounted cameras in lab 
settings and an action camera in free-living conditions; and 2) a dataset from the University of Auckland35 where 
subjects performed both scripted and unscripted activities of daily living collected in a free-living environment. 
Making use of frame-by-frame video annotations as gold standard, the accuracy of the walking intervals detection 
is ≥90% in both datasets.

An interval is labelled as “sedentary” if associated Metabolic Equivalents (METs) are below or equal to 1.537, 
otherwise the interval is labelled as “active”. METs estimate method is in agreement with Sasaki et al.38. Detection 
of postural transitions is based on the trunk acceleration and orientation39. “Sedentary” intervals with a mean 
angle between the vertical axis and the medio-lateral or the anterior-posterior direction of the trunk below 30° are 
labelled as “lying”; the distinction between “sitting” and “standing” states is based on the identification of walking 
bouts preceding/following a postural transition. “Active” intervals are labelled as “gait” when steps are detected; 
step detector is based on Ryu et al.40.

State probability and transitions. Considering the temporal locomotor behaviour to be a discrete time 
stochastic process Xk, k ∈ {1, N}, where, N is the length of the observed time series, the probability (SP) of the 
process X being in a state j ∈ {1, d} at time k is defined as πj(k) = Pr(Xk = j). d is the total number of states in the 
system. The total probability of the state over the observation period T ≤ N is thus

∑ ∑π π= = = .
= =T

X j1 Pr( ), with 1
(1)

j
k

T

k
j

d

j
1 1

This lends to the generalisability of the SP for any time window T > 1; at T = 1, πj = 1. Similarly, denoting the 
probability of transition of the system from a state i at time k to a state j at time k + n by

∑= = | = ∈+p n X i X j i j d( ) Pr( ), , {1, };
(2)ij

k
k k n
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the transition rate (TR) is then given by

∑=a n p n p n( ) ( )/ ( ),
(3)ij ij

i
ij

making the transition matrix Ad×d = aij(n) a right stochastic matrix, i.e., ∑ =a 1i ij . As with the SP, the time win-
dow n can be varied to suit the objective of the investigation, but we set n = 1 in this work. The diagonal elements 
of the transition matrix represent the probability of being in the same state over the time window n.

Thus, considering a d–state model for the locomotor behaviour, we have d SPs and d2 TRs which can now be 
used as features for statistical learning. Noting that the πj and aij are now bounded, the features are now bounded 
and standardised which makes them amenable for use in various statistical learning algorithms.

Readers familiar with the Markov Models2, will recognise tat the SP and TR are the key building blocks of 
Markov chain models, where the current state of the system can be modelled applying the TR to the SP at the 
previous time step. However, in this work, we do not attempt to model temporal dynamics of the state of the 
system, but show that the rich structural information in the TR and the SP (which now, in our case, represent 
the structure of the system as a whole, over the observation period) can be used to distinguish between various 
locomotor behaviour.

Statistical analysis. Each of the feature sets are subjected to standard statistical analysis, in terms of the 
descriptive statistics, i.e. population mean, standard deviation, skewness, kurtosis, three quartiles (25th, 50th or 
median, and 75th percentiles). The differences in the population density of the two groups are investigated through 
the Mann-Whitney U test, while the tests for normality are performed through the use of the Shapiro-Francia test 
(which generalises Shapiro-Wilks test in the presence of skewness).

Statistical learning. We analyse the two feature sets derived above, namely the SP and TR for supervised 
classification between different groups representing different collective locomotor behaviour. To this end, we use 
a number of popular supervised classification algorithms: k-nearest neighbours (k-NN), quadratic discriminant 
analysis (QDA), Support Vector Machine (SVM), Neural Network (NNet), Naïve Bayes (NB) classifier, and ensem-
ble based methods such as Decision Trees (DT), Adaptive Boosting (AdaBoost) and Random Forests (RF). For 
the sake of brevity, the methods are not explained here, but the readers are referred to Bishop2 and Hastie et al.41  
for details on the algorithms. The supervised learning algorithms were implemented using the open-source 
machine learning library scikit-learn in Python.

We perform two different investigations here: (a) compare the performance of the simplified SP as opposed 
to the more complex TR features; and (b) determine the relevance of each of the locomotor states and associated 
transitions in distinguishing the distinct locomotor behaviour. We assert that the objective of these two investi-
gations are motivated by the desire to develop parsimonious models for analysing the locomotor behaviour and 
drawing insights into to dynamics of such behaviour.

Validation and performance. The algorithms are trained and tested through a k-fold cross validation (CV) 
scheme, and the performance accuracy is calculated. Since hyper-parameter optimisation for each method is not 
attempted here (as a proof-of-principle, the algorithms are used in their default settings), this implementation is 
deemed to be appropriate in this work. When hyper-parameter optimisation is attempted, the data should be split 
into training and testing sets, with a k–fold CV for optimisation performed on the training set, and performance 
and validation performed on only the testing set. Further analysis of the performance of the algorithms is effected 
through the Receiver-Operator-Characteristics (ROC) curves, more specifically the area under the ROC curves 
(referred to as the AUCROC here). This metric is a popular model comparison method that with higher values 
(the AUCROC is bounded in [0, 1]) suggesting better classification performance. We designate the AUCROC 
scores of [0.7, 0.8) fair, [0.8, 0.9) good, and [0.9, 1.0] excellent, as performance descriptors in this text.

Feature importance. The feature importance in the classification task is evaluated only for the ensemble based 
methods owing to their ability to provide a one-to-one correspondence between the input variables and the fea-
tures selected by the algorithms for maximising accuracy. Other methods such as neural networks often trans-
form features in the process, and are not readily interpretable in the context of the input variables. The feature 
importance here is calculated through the Gini impurity index42, defined as follows. If there exist k classes, and if 
fi are the fraction of elements labelled as i, i ∈ {1, 2, 3, …, k}, then the Gini impurity index, = ∑ −=I f f(1 )G i

k
i i1 .

Ethics approval. The experimental protocols were designed in accordance with the relevant guidelines and 
regulations in the Declaration of Helsinki. Ethical approval for the control study was obtained from the Ethical 
Committee of the German Sport University Cologne (reference numbers 05/2014 and 38/2015). Ethical approval 
for the trial at the LVR Hospital, Cologne was obtained from the Ethikkommission der Ärztekammer Nordrhein 
(Ethics Commission of the Medical Association of North Rhein) with the reference number 2014216, and was 
registered in the German Clinical Trial Register (DRKS00006740) on October 28, 2014. The trial protocol is out-
lined in Fleiner et al.25. Informed consent was obtained from all the subjects and/or their legal guardians.
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