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A Novel Reduced Model for Electrical Networks
with Constant Power Loads

Nima Monshizadeh Claudio De Persis

Abstract—We consider a network-preserved model of power
networks with proper algebraic constraints resulting from con-
stant power loads. Both for the linear and the nonlinear differ-
ential algebraic model of the network, we derive explicit reduced
models which are fully expressed in terms of ordinary differential
equations. For deriving these reduced models, we introduce the
“projected incidence” matrix which yields a novel decomposition
of the reduced Laplacian matrix. With the help of this new
matrix, we provide a complementary approach to Kron reduction
which is able to cope with constant power loads and nonlinear
power flow equations.

I. INTRODUCTION

The interdisciplinary field of power networks and micro-
grids has received lots of attention from the control community
in the last decade, see e.g. [1]-[6]. Principal components of a
power grid are synchronous generators, inverters, and loads.
The frequency behavior of the synchronous generators is often
modeled by the so called “swing equation” [7]. The frequency
of the droop-controlled inverters also admits similar dynamics,
see e.g. [3].

In a natural modeling of the power network, the generators
and the loads are located at different subsets of nodes. This
corresponds to the structure preserving or network preserving
model which is naturally expressed in terms of differential
algebraic equations (DAE), see [8], [9]. The algebraic con-
straints in these models represent the load characteristics.

The methods that have been suggested to study and an-
alyze these network-preserved models can be classified into
two distinct categories. The first one is to directly use the
differential algebraic model of the power network. This is
typically done by studying the local solvability of the load
power flow by the implicit function theorem and looking into
the associated load flow Jacobian [8], [10], [11]. The second
approach, which will be pursued in this manuscript, relies on
the derivation of a network reduced model. Along this line
of research, several aggregated models are reported in the
literature where each bus of the grid is associated with certain
load and generation; see e.g. [12], [13]. The main advantage
of the aggregated models is that they are described by ordinary
differential equations (ODE) which facilitates the analysis and
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numerical simulation of the network. Aggregated ODE models
can be reduced further using slow coherency [14]-[16] or
truncation schemes [17]-[20]. Despite, its attractive simplicity,
the explicit relationship between the aggregated model and
the original structure preserved model is often missing, which
restricts the validity and applicability of the results. Aiming
at a simplified ODE description of the model together with
respecting the heterogeneous structure of the power network
has popularized the use of Kron reduced models [21]-[24]. In
the Kron reduction method, the variables which are exclusive
to the algebraic constraints are solved in terms of the rest of
the variables. This results in a reduced graph whose (loopy)
Laplacian matrix is the Schur complement of the (loopy)
Laplacian matrix of the original graph. Notice that unlike
the aggregated models, the Kron reduced ones are obtained
by explicitly solving the algebraic equations associated with
the loads. Despite the attractive simplicity and the interesting
theory, the Kron reduction modeling essentially restricts the
class of the applicable load models to constant admittance
loads and current sources [22], [23], [25].

Algebraic constraints present in the differential algebraic
model of the power network can also be solved in the case
of frequency dependent loads where the active power drawn
by each load consists of a constant term and a frequency-
dependent term [8], [26], [27]. However, in the popular class
of constant power loads, the algebraic constraints are “proper”,
meaning that they are not explicitly solvable. To the best
of our knowledge, for nonlinear power networks with proper
algebraic constraints, an explicit reduced ODE model is absent
in the literature.!

In this paper, first we revisit the Kron reduction method for
the linear case, where the Schur complement of the Laplacian
matrix (which is again a Laplacian) naturally appears in the
network dynamics. It turns out that the usual decomposition of
the reduced Laplacian matrix leads to a state space realization
which contains merely partial information of the original
power network, and the frequency behavior of the loads is not
immediately visible. Moreover, this decomposition does not
provide useful insight for the nonlinear model which is the
main focus of the current manuscript. As a remedy for this
problem, we introduce a new matrix, namely the projected
incidence matrix, which yields a novel decomposition of the
reduced Laplacian. Then, we derive reduced models capturing
the behavior of the original network-preserved model. Next,
we turn our attention to the nonlinear case where the algebraic
constraints are not readily solvable. Again by the use of the
projected incidence matrix, we derive explicit reduced models
expressed in terms of ordinary differential equations. We

!with the exception of the abridged version of this work [28].



identify the loads embedded in the derived reduced network
by unveiling a conserved quantity of the system. Furthermore,
we carry out the Lyapunov stability analysis of the proposed
reduced model together with a distributed averaging controller
guaranteeing frequency regulation and power sharing.

The structure of the paper is as follows. Section II describes
the power network model we consider in this paper. In Section
III, we discuss the reduced models for the system obtained by
linear approximations. In addition, we introduce the projected
incidence matrix and the new decomposition of the reduced
Laplacian matrix. An explicit reduced model for the nonlinear
power network is established in Section IV. Stability of the
model together with power sharing is discussed in Section V.
Finally, the paper closes with conclusions in Section VL.

II. POWER NETWORK

The topology of the power network is represented by
a connected and undirected graph G(V,E). There are two
types of buses (nodes): generators Vg and loads Vi, with
V = Vg U Vr. The number of generators and loads are
denoted by n, and ng, respectively. The edge set £ is the
set of unordered pairs {4, j} accounting for the transmission
lines which are assumed to be inductive. The total number
of nodes is denoted by n, and that of the edges by m. Let
the matrix B denote the incidence matrix of G. Recall that
for an undirected graph G, the incidence matrix is obtained
by assigning an arbitrary orientation to the edges of G and
defining

+1 if 4 is the tail of arc k&
bir = -1 if 7 is the head of arc k
0 otherwise

with b;;, being the (i, k)" element of B.
At each node ¢ € V), the electrical active power is given by

pi= Y X;'ViVisinOy, 05 :=0; - 0; M
JEN;

where X;; is the reactance of the transmission line {i,7;},
V; is the voltage magnitude at node ¢, and 6; is the voltage
angle with respect to the nominal reference 8* = w*t. We
assume that the transmission lines are lossless and the voltage
magnitudes are constant. We consider generators admitting the
so-called swing equation

Mf; = —Aib; —pi+ui,  i€Vg 2

where M; is the angular momentum, A; is the damping
coefficient, and u,; is the controllable power generation. The
dynamics (2) can both model synchronous generators [29]
and droop-controlled inverters with virtual inertia [30], [31]
or power measurement delays [3]. In the case of inverters, M;
is the power measurement delay or virtual inertia, and A; is
a tunable droop control gain. For simplicity, in what follows
we use the term “generator” for either case.

As for the loads, we consider the constant active power
loads admitting the algebraic constraint

O=pi—p;, i€V 3)

where p; is constant. Now the network model can be written
in compact form as

Mbg = —Afg — BaTsin(BT0) +u
0 = —BrT'sin(B*0) + p*

(4a)
(4b)

where 6 = col(6;) with i € Vg, and 6, = col(6;)
with ¢ € V. The sin(-) operator is interpreted element-
wise. In addition, § = col(8g,01), B = col(Bg, Br), and
I’ = diag(yg) with

Yk = Xigl‘/i‘/ja

where k is the index of the edge {i,j} in accordance with
the incidence matrix B. The notation col(Y7,Y3) is used to
denote in short the matrix [YlT YQT]T for given matrices
Y] and Ys. Again note that the voltages are assumed to be
positive and constant, and thus the matrix I is positive definite.
This is consistent with the standard decoupling assumption
[1], [2], [10], [27]. Our goal in this paper is to eliminate the
load flow equations and embed them into the dynamics of
the generators in order to obtain an explicit reduced model
described by ordinary differential equations.

Remark 1 (Load models) As long as we work under the
constant voltages premise, any constant power load can equiv-
alently be represented by a constant impedance load. Other
loads that appear in structure preserving model of power
networks are frequency dependent loads, where the active
power consumption is given by the sum of a constant and
a term proportional to the frequency deviation [8]: p; =
p; — a;w;, with a; > 0 and ¢ € Vp. It can be shown that
the differential algebraic model resulting from these loads, and
their generalization to a port-Hamiltonian form [27], can be
readily reduced to an ODE system [32]. Hence, we restrict
our attention here to constant active power loads (3).

III. LINEAR MODEL

First, we consider the linear model where sin(7) is approx-
imated by 7, with n = BT. This means that the differences
of the phase angles are assumed to be relatively small, which
is satisfied in a vicinity of the nominal condition. Then, the

system (4a)-(4b) can be written as
0
0 p
(5)

Note that the two by two block matrix on the right-hand side
of (5) can be associated with the Laplacian matrix of the graph
G with weights I":

BaT'BE
B,I'BE

BeT'BY
B,T'BT

[Még + Aég
0

L= BrBT.
By (5), the vector 6, can be computed as
0, = —(BLTBL) !B I'BLOc + (BT BI)™1p*.  (6)

Note that BLFBf is a principal submatrix of the Laplacian
matrix and thus invertible. By replacing this back to (5), we
obtain

Mbe = —Afg — Lsbc +u—p (7



where
Ls = BGT'BL — BoI'BY (B, TBY)™'B, B},

and
p= BeU'B[ (BLT'B) ™ 'p*. ®)

The matrix Lg is equal to the Schur complement of the
Laplacian matrix L. It is well-known (see [22, Thm. 3.4.])
that L is again a Laplacian matrix defined on a reduced graph

G =(Vg,€), and admits the decomposition
Lg = BI'BT )

where B is the incidence matrix of Q

A crucial issue in frequency regulation is to keep the
frequency disagreement among the buses as small as possi-
ble, and steer the frequency back to the nominal frequency
using a secondary control scheme. Notice that this frequency
disagreement is not transparent in (7). Now, let wg = 0g,
wr = 0z, and w = col(wg,wy). To capture the frequency
disagreements in the original network (4a)-(4b), we define the
vector v € R™ as

v=BTw. (10)

Observe that vy indicates the difference between the (actual)
frequencies of the nodes ¢ and j, with {4, j} being the k — th
edge of G. Similarly, let the vector n € R™ be defined as
n = BTH. Then the network dynamics (4a)-(4b) admits the
following linear differential algebraic model

n=uv=BTw (11a)
Mg = —Awg — BeI'n+u (11b)
0=—B,Tn+p* (11c)

We remark that the vector 6 is defined on the nodes, whereas
1 components live in the edge space. Exploiting the latter
variables in representing physical systems defined on graphs is
ubiquitous in passivity and port-Hamiltonian based modeling;
see e.g. [27], [32]-[36] and Remark 6.

Similarly, for the ODE model (7), we define the frequency
disagreement vector as

o = BTwg. (12)

Then by (9) the system (7) has the following state-space
representation

(13a)
(13b)

where /) = BT 0.

Although the Kron reduced model (13) provides an explicit
reduced model for the network (11), comparing the dynamics
(13a) to (11a) reveals certain disadvantages for this model.
First, unlike the vector v, the disagreement vector ¥ captures
only the mismatch among the frequencies of the generators,
whereas, clearly one would like to monitor the mismatch of
the frequencies in the entire network. Furthermore, the graph
G is in genera; a complete graph, and hence the vectors 7

g

and ¢ have nf’g elements. Therefore, the size of these
vectors increases substantially by the increase in the size of

the network, which makes the monitoring and simulations
intractable. Finally, and most importantly for this work, the
representation (13) does not extend to the nonlinear model
4.

Motivated by the above drawbacks, next we propose an
alternative decomposition of the reduced Laplacian matrix Lg,
instead of the customary one given by (9).

A. A novel decomposition of the reduced Laplacian

We make the result of this subsection self contained, and
independent of the power network interpretation. To this end,
let again G = (V,€) denote an undirected graph with n
vertices and m edges, and assume that G is connected. As
before, for each k = 1,2,...,m, let v, > 0 denote the weight
associated to the k" edge of G. The Laplacian matrix of G is
defined as L = BI'BT where B is the incidence matrix and
I’ = diag(yx). We refer to the matrix " as the weight matrix,
and we allow it in general to be time-dependent as long as the
weights remain positive for all time. Suppose that the vertex
set V' is partitioned as V = V; U Vs, with V) N Ve = &. Then
the Laplacian matrix L can be partitioned as

Ly Lis

Ly Lo

where Li; € RViIXIVil Note that the Schur complement of
L with respect to Los is given by

Ls = Ly — LiaLyy L15.

L =

This can be rewritten as

Ls = BiTB] — BiyI'BY (B,'BY)~'B,I' BT (14)

where B = col(Bj, Bs) is partitioned in accordance with the
partitioning of V. Again note that, for a connected graph G,
the matrix Lg is well defined, and is the Laplacian matrix of
an undirected graph G with |V;| vertices. Now we have the
following key definition:

Definition 2 With respect to a partitioning B = col(By, B2)
and a weight matrix I', we define the projected incidence
matrix Bg € RIV1IXm a5

Bs = Bi(I — By Bo) 15)
where Bj is a right inverse? of the matrix By given by
B =T'BY(B,I'BI)™*.
O
Observe that Bg = B1II where
O=1- BB, (16)

is the orthogonal projection to the kernel of Bs, with respect
to the inner product defined by I'. Each column of the matrix
Bg may have more than two nonzero elements, however, it
has zero column sums similar to the incidence matrix. Some
useful properties of the projected incidence matrix are captured
in the following proposition:

2this is well-defined as G is connected, and thus Bs has full row rank.



Fig. 1. Graph G in Example 4.

Proposition 3 As in (15), let Bs denote the projected in-
cidence matrix of G with respect to the partitioning B =
col(By, By) and the weight matrix T. Then the following
statements hold:

(i) im 1 = ker Bg (zero column sums)
(ii) 0 = BsT'BY
(iii) Ls = BsT'BY

(iv) Lg = BSFBg (new decomposition)

Proof. Clearly,
BsTBY = By(I — B Bo)T'BY

= BiI'BS — ByBf BoT'B; =0, (17)

which proves the second statement. From (14), we have
Lg = B,(I -TBI(B,rBI)~!'B,) BT
= Bi(I — Bf Bo)I'Bf = BsT'BY,

which verifies the third statement.
The matrix BgI'BY is computed as

BsTBL = BsTB] — BsTBY (BS)'BY . (18)

By the third statement of the proposition, BsI' B = Lg. In
addition, the second term on the right-hand side of (18) is
equal to zero by (17). Therefore, we obtain that BSFBg =
Lg.

As the matrix Lg is the Laplacian matrix of a reduced graph
G, we have Lgl = 0. Then, by the forth statement of the
proposition and positive definiteness of I', we have Bg]l =
0. Recall that Lg is the Schur complement of the Laplacian
matrix L. As G is connected, the spectral interlacing property
[37, Thm. 3.1] implies that Q is connected as well, and thus
ker Lg :keng =im1. |

Example 4 Consider the graph G with three nodes in Figure
1. The vertex set is given by V' = {1, 2, 3} which is partitioned
as Vi = {1,2}, Vo = {3}. The weight matrix I" is equal to
diag(a, b), with a,b > 0. An incidence matrix of G is obtained
as

1 0
B=| 0 _—1]=|3
-1 1 ?
Now the projected incidence matrix is computed as
b a
Bs — a+b a+b
=b —a

a+b a+bd

Clearly, the matrix above has zero column sums. Besides, the
Laplacian matrix of G, and its Schur complement are obtained
as

0 ab —ab
a L —a
I_ 707b17—li)7 , Le— at+b a-+bd ’
—a —-bla+bd —ab ab
a+b a-+bd

respectively. In agreement with Proposition 3, it is easy to ver-
ify that both BsI'BY and BsI'BY yield the same expression
as Lg given above. ]

B. A new representation of the reduced network

Consider again the model (7). Let Bg be the projected
incidence matrix with respect to the partitioning B =
col(Bg, Br) and the weight matrix I', as given by Definition
2. Note that the indices 1 and 2 in the algebraic results of
the previous subsection need to be replaced here by G and L,
respectively, i.e.,

Bs=Bg(I - BfBr), Bf =T(BITBY)™'. (19
Now, let the vector ng be defined as
ns = Blbg. (20)

Note that ng has the same size as 1 in the DAE (11), since
Bg has the same number of columns as B. By taking the time
derivate of both sides of (6) along any solution to (5), we have

wr, = —(BgB} ) wa (1)

where again Bzr denote a right inverse of B, given by B} =
I'BY(BLI'BT)~!. Now, we write the following important
equality

Blwg = BTw (22)
where we have used
Blwe = (I - Bf B)" Blwe
= Blwe — Bl (BeB}) we = Béwe + Biwr,
along with (21).Also note that, by Proposition 3(iv), we have
LsOc = BsTBL0g = BsT'ns.

Therefore the system (7) admits the following state space
model

(23a)
(23b)

is =v = Bwa
Mwg =—Awg — BsTns+u—1p
where p and v are given by (8) and (10), respectively. The

relationship among the models (5), (7), (11), (13), and (23) is
partially summarized in the following proposition:

Proposition 5 For given u and p*, let § = col(0¢, 01) satisfy
the differential algebraic equation (5). Then the following
statements hold:

(i) Oc is a solution to differential equation (7).

(ii) (n,wg,wr) with n = BT0, wg = Oc, and wy, = 0y, is
a solution to the differential algebraic equation (11).



(iii) (f,wg) with 1) = BT and wg = O is a solution to
(13).

(iv) (ns,we) with ng = BL0 and we = O is a solution to
(23).

Proof. The proof follows by construction of the models
discussed prior to the proposition. ]

Note that, similarly, one can start with solutions of the
reduced ODE models and construct solutions for the DAE
model (5) upon certain compatibility of initial conditions. To
avoid repetition, we provide such converse relations only for
the case of the nonlinear model (4); see Theorem 7.

Remark 6 (port-Hamiltonian perspective) The proposed re-
duced model (23) admits the following port-Hamiltonian form
(see e.g. [35], [36] for a more general perspective):

om
ns 0 BL||ons .
- - 24
L.)] By 4| |onm + | (w=p) (24)
TR Op

where p = Mw¢g and the Hamiltonian is given by

1,
H(ns, p) = 5p" M~ p = 17T cos(rs).

The reduced system (13), obtained from the usual decompo-
sition of the Laplacian, also admits a port-Hamiltonian repre-
sentation similar to the above where 7¢ and Bg are replaced
by 7 and B, respectively. The corresponding Hamiltonian in
the latter case is given by

H(i), p) = %pTM‘lp — 17T cos().

Notice that the first term on the right-hand side of the above
equality represents the Kinetic energy and appears both in
#H and H. On the other hand, while the second term of H
is primarily algebraic, the one of H is associated with the
potential energy defined on the edge variables s € R™, with
the same weights, I', and the same edge space, R™, as the
original graph G of the network. ([

The main advantage of the reduced model (23) over (13) is
that the model (23) readily reflects the properties of the full
network (11). Notice that both the frequency disagreement
vector v and the weight matrix I' of the DAE (11) are
identically preserved in the reduced model; see also the remark
above. By (22), the subdynamics (23a) readily demonstrates
the time evolution of frequency in the entire network (includ-
ing both generators and loads). Note that in Kron reduction
the algebraic variables of the load buses can still be obtained
by mapping the dynamic states of the generators to the
voltage magnitudes and phase angles of the loads. On the
other hand, the reduced model (23) is independent of this
additional mapping, and readily gives the full information of
the overall network. Hence, the aforementioned shortcomings
of the model (13) do not apply. In particular, the ability of the
method to cope with the nonlinear system is dealt with in the
next section.

IV. NONLINEAR MODEL

In this section, we consider the nonlinear model (4a)-(4b),
and investigate possible elimination of purely algebraic con-
straints resulting from the constant power loads (4b). Notice
that unlike the linear case, the state components €;, cannot be
explicitly solved in terms of 65 and p.

Before proceeding with the derivation of a reduced model,
it is necessary to assume that (4a)-(4b) admits a solution. To
make this assumption more explicit, we write the differential
algebraic system (4a)-(4b) as

0e = wg (25a)

Mg = —Awg — BagI'sin(BT0) +u (25b)

0 = —BrI'sin(BT6) + p*. (25¢)

Suppose that § = col(fg.0;) and U are constant vectors
satisfying

0 = —BgTsin(BT0) + 7 (26a)

0 = —BrI'sin(BT0) + p*. (26b)

Then, the point § = 6, wg = 0, and v = % identify an
equilibrium of (25). Let the right-hand side of (25c) be denoted
by g(#). To investigate the regularity of (25¢) and existence of
the (local) solutions to the DAE (25), we compute the Jacobian
of g with respect to 0, as

0
R N (27)
00y,

where n = BT0 = Bl6s + B0, and [cos(n)] =

diag(cos(n)). Observe that the matrix ByI'[cos(n)]BY is a
principal submatrix of the Laplacian matrix

L' = BT'(n)B”

where

I"(n) = Tlcos(n)]. (28)

0
Hence, 87g is nonsingular if T is positive definite. Therefore,
L
the existence of an equilibrium and the regularity of (25c¢) is

guaranteed under the following assumption:

AssumEtion 1 Forigiven u and p*, there exists a constant
vector  with BT € Q := (—%,%)™ such that (26) is
satisfied.

The feasibility of the assumption above can be verified using
the conditions proposed in [25]. Under this assumption and
considering a compatible initial condition, i.e.,

0 = —B.T'sin(BT0(0)) + p* (29)

the DAE (25) admits a unique (local) solution, see [38§]
for more details. Also note that the assumption BT0 €
is ubiquitous in the power grid literature and is sometimes
referred to as a security constraint [1].

Next, we establish a reduced model for the system (25). Let
n = BT6 and w = col(wg,wr ) as before. Then the differential



algebraic system (25) in the 7 variables rewrites as

i = BTw = Blwg + Bl wr, (30a)
Mg = —Awg — BgI'sin(n) + u (30b)
0= —B.T'sin(n) + p*. (30c)

Note that solution (1, wqg,wr,) of (30) with given u € R"s
are defined over the domain im BT x R™s x R™. This set
is obviously positive invariant, and coincides with the whole
state space in case im BY = R" meaning that the graph G is
acyclic. Taking the time derivative of (30c) along any solution
7 yields

0 = —BrT'[cos(n)]BTw

= —BrT'[cos(n)|BEwe — BrT[cos(n)|Brwr, (1)

where [cos(n)] = diag(cos(ny)) as before. Assuming that 7 €
(2, the matrix [cos(n)] is nonsingular, and thus wy, is obtained
as

wr = —(BLI"(n)BL) ' BLI" (n)Béwe (32)

where I is given by (28). Note that by Assumption 1 and
equality (27) there exists a neighborhood around 7 = BT
such that BrT'[cos(n)]BL is nonsingular, and there exists a
solution to (25), and thus to (30), for a nonzero interval of
time Z C R, . This means that (31) and (32) are well defined
in this interval.

By substituting (32) in (30a), we have

0= (B& — BL(BLI(n)BL) ' BT (n)B)wa.  (33)

Now, let Bg denote the projected incidence matrix with respect
to the partitioning B = col(Bg, Br) and the weight matrix

I"(n) given by (28), i.e.
Bs = Ba(I = BfBr), Bjf(n) =T"(n)(BLI"(n)BL) ™"

Then, it is easy to see that the right-hand side of (33) is equal to
BE(n)wg, and hence we obtain the following reduced model

(34a)
(34b)

i = B§ (nwa
Muwg = —Awg — BgT'sin(n) + w.

This defines a valid state space model for (1, wg) € im BT x
R™s with ordinary differential equations, and in particular we
have the following theorem.

Theorem 7 Considering the models (25) and (34), for given
u and p*, the following statements hold:

(i) Let (0g,01,wa) be a solution to the differential alge-
braic equations (25), defined on the interval T = [0,T).
Assume that BT € Q, 6 = col(8g,0z), Vt € T. Then
(n,wg) with n = BT0 is a solution to the ordinary
differential equations (34), defined on the interval I.

(ii) Let (n,wq) be a solution to (34) on an interval T =
[0,T). Assume that n(0) is a compatible initial condition
for (25¢), i.e.

n(0) € {v €im BT | 0 = p* — BrT'sin(v)}.  (35)

Then there exists a vector 0 = col(0g, 01 with BT = ¢
such that (0g, 01, we) is a solution to (25) on the interval
T.

Proof. The first statement of the theorem follows from the
construction of the reduced model (34). The proof of the sec-
ond statement requires an additional treatment and is deferred
to a later moment. |

Theorem 7 promotes the system (34) as a legitimate reduced
model for (25). By this theorem, the reduced network (34) and
the original one (25) have identical behaviors once starting
from the same and compatible initial conditions.

At the first glance, it seems that the constant power loads
have disappeared in the reduced model (34). However, these
loads are actually embedded in the reduced dynamics. To see
this, we make the following crucial observation, which is also
relevant for completing the proof of Theorem 7.

Proposition 8 Ler 1(0) € Q. Then the vector BrT sin(n) is
a conserved quantity of the dynamical system (34) over the
domain T of existence of the solution.

Proof. By taking the time derivative of By I"sin(7) along the
solutions of (34), we obtain that

%BLF sin(n) = BrT[cos(n)]n = BLF’(n)Bg(n)wG

Note that the matrix I" is positive definite and the matrix Bg
is well defined in Z. By the second statement of Proposition 3
with T being replaced by I (), we find that B,I"BL (n) =0
which completes the proof. ]

Proposition 8 suggests that the constant vector BrT sin(n)
can indeed be interpreted as the constant power loads of
the reduced network. Notice that this vector has the same
expression of the active power absorbed by the loads; see (1).

Assume that v = u is constant. Then for an equilibrium
(7,W0¢) of (34), necessarily we have

0= B§(Mwa
0 = —Awg — BeTsin(7) + a.

(36a)
(36b)

Hence, by (36a) and Proposition 3(i), we have g = 1w° for
some constant w’. By multiplying both sides of (36b) from
the left by 17, we obtain that

W = —17 BgT'sin(7) + ]lTﬂ7

17 A1

which reduces to

O 17 BrTsin(n) + 17u
17T A1 ’
where we have used the fact that 17 By = —17B;, and
BrT'sin(n) is constant. Hence, 17 BT sin(n)+ 177 has to be
identically zero to avoid frequency deviation. This corresponds
to the well-known demand and supply matching condition
which again elucidates the fact that the vector BpI'sin(n)

plays the role of the loads in the reduced network (34).
By the discussion above, and the results of Theorem 7(i)
and Proposition 8, we conclude that the original network (25)
is embedded in the reduced network (34). This enables us to

(37




deduce the properties of the original model by looking at the
explicit reduced ODE model (34). We close this section by
completing the proof of Theorem 7, item (7).

Proof of Theorem 7(ii) : First let wy, be obtained from wg and
7 using (32). Let the vector § be such that 7(t) = BT§(¢). To
see such vector exists, note that by definition of Bg, we have
ker B C ker Bg and equivalently im BY C im B”. Hence,
given the fact that (0) € im B, we find that 7(¢) € im BT
by (34a). We now define

o(t) = 6(t) — 1a(t) (38)

where « is given by

1 t

alt) = LaTs) - 17 / w(r)dr) (39)
n 0

and w = col(wg,wy) as before. Notice that BT = BT6 =7

and hence BTH = 7. In addition, from the derivation of (34a),

we have 1 = BTw. Therefore, BT = BTw and thus

0=w+13

for some 5 € R. By (38), the above writes as -1 = w+1p.
Hence, 176 — né = 17w + nB. By substituting (39) in the
latter equality, we conclude that 5 = 0, and thus 0 = w,
and particularly (25a) is satisfied. Clearly, (25b) holds as well
by n = BT, and it remains to show that the equality (25c)
is satisfied. Now by Proposition 8, the compatibility condition
(35) yields BrI'sin(n(t)) = p*, for all t € Z. This in terms of
6 variables writes as By T'sin(BT6(t)) = p*, which completes
the proof. |

Remark 9 (Lossy lines) In case power lines are not purely
inductive and contain line conductances, the expression of
active power (1) modifies to [39]:

pi= gV + D [bij|ViVisin(6i;) — D giViV; cos(6y)
JEN: JEN;

for each ¢ € V, where Y;; = g;; + +/—1b;; is the admittance

of the line {7, j}, with g;; and b;; being the conductance and

susceptance of the line, respectively. In addition, g;; = §;; +

> jen; ijs where ¢;; > 0 is the shunt conductance at node .
Then the dynamics (30) in the case of lossy lines modifies to

i = BTw = B{we + Blwy, (40a)
Mg = —Awg — BaT'sin(n) + |Bg|T cos(n) + u’ (40b)
0= —B,Isin(n) + | BL|T* cos(n) + p**, (40c)
where T = diag(ViV;gi;), u* = u— col(g;; V%) with i € Vg,
and p* = p* — col(g;;V;?) with i € V. The matrices |Bg/|
and | By | are obtained by taking element-wise absolute values
of the matrices B and By, respectively. Again, by taking the

time derivative along any solution to (40c), the equality (31)
changes to

0= —(BLTfeos(n)] BE — | BT sin(n)] B Jwe
— (BiTleos(n)| B — |BrIT[sin(n)] BY) wr..

=Z(n)

(41)
(42)

In case g;;sin(6;;) is sufficiently small which is valid in
dominantly inductive networks, the algebraic equation (41)
can be approximated by the one in (31), and consequently
7 is obtained as (33) and (34a). Alternatively, using again the
assumption of sufficiently small g;; sin(6;;), one can show that
the matrix Z(n) is nonsingular in 2, and obtain an explicit
expression for wy, in terms of wg. Studying the relation of
this expression with the notion of projected incidence matrix,
and investigating the properties of the resulting reduced model
are postponed to future research. Note that, however, the
presence of conductances poses a major obstacle in energy-
based stability analysis of the power network [40].

Approximations of the reduced model:

We recall that the reduced model (34) is not an approxi-
mated model of the power network (25), and in fact provides
an alternative representation in terms of ordinary differential
equations. However, if a simpler description of the network
is needed, one can perform some approximations in (34), and
ultimately recover the linear reduced model (23). This will
also highlight the relationship between the nonlinear reduced
model (34) and the linear one (23).

The first approximation is to neglect the state-dependency
in the dynamics of 7 variables. Notice that this dependency is
due to the matrix

By (1) = Cleos(n)| By, (BT [cos(n)] BL) ™.

Hence, in case the phase angles are almost uniform, the
elements of 7 are relatively small, and the matrix above can
be approximated by the state-independent matrix BZ’ in (19).
Consequently, (34a) will be replaced by

i = Biweg. (43)

with Bg given by (19). A second approximation is to replace
sin(n) by 7, which is again valid if the power network is
working in a neighborhood of the nominal conditions and thus
differences of the phase angles are relatively small. As a result

of this, (34b) rewrites as
MLDG = 7A(UG — Ban + u. (44)

Analogous to Proposition 8, it easy to see that the vector B;I'n
is a conserved quantity of (43)-(44), which we denote by the
constant vector p*:

p* = BrI'n(t).

Now the linear reduced model (23) can be recovered from
(43)-(44) by a suitable projection:

(45)

Proposition 10 Suppose that (1, wg), with n(0) € im BT, is
a solution to (43)-(44). Define the vector ng = 11Ty where

Il =1-BjfBy=1-TB(B,TB]) "By,

consistent with (16). Then (ns,we) is a solution to (23) where
p is computed from (8) with p* given by (45).

Proof. By definition of Bg, it follows that

Bg|
ker {BJ = ker B.



Now, as 7(0) € im BT, similar to the proof of Theorem 7(ii)
we find that 7(¢) € im BT Hence, the vector 7 can be written
as

n= Btzs+ Blz (46)

for some vectors zg and zy. By multiplying both sides of the
latter equality with the matrix B I', and using (45) together
with the second item of Proposition 3 we find that

Zr, = (BLFBL)_lp*.
Substituting (46), with zy given above, into (44) yields
Mg = —Awg — BaTBL 25 +u — p

where p has the same expression as in (8). Now, the vector
Blzg is computed as

Bézs =n— Bl z, =n— Bl (B,TBL) 'p*
=n— B} (B.I'By) 'BI'n=11"n = ns.

Consequently, (ns,wg) is a solution to

s = B§wg
Mwg = —Awg — BgT'ng +u — p.

The system above is identical to the linear reduced model (23)
by exploiting the identities

BeTng = BT BL 25 = BsTBL 25 = BsI'ns

where we used Proposition 3 to write the second equality. W

V. ANALYSIS AND CONTROL OF THE REDUCED MODEL

In this section, we show the practicality and usefulness
of the established reduced model for analysis and design
purposes including frequency regulation and active power
sharing. Although the reduced network (34) is expressed in
terms of ordinary differential equations, the existing control
schemes are not readily applicable to this case [4], [6],
[27]. In particular, the map Bg in (34a) is state-dependent
unlike the ordinary time-independent incidence matrix. In
addition, different to the linear model (24), it is easy to see
that the underlying Poisson structure of (34) is not defined
on a skew-symmetric matrix, and thus the stability/passivity
of the system does not readily follows from standard port-
Hamiltonian reformulation of the system [35], [36]. However,
one can show that this does not hinder the analysis thanks
to the remarkable properties of the projected incidence matrix
captured in Proposition 3 as well as the invariance property
highlighted in Proposition 8. This will be elaborated in the
current section.

To conclude stability properties of (34) and pave the way
for a controller design at the same time, we first establish the
passivity property of an incremental representation of (34).
Recall the equalities (36) with 7 € Q Nim BT, g = 1w,
and w° given by (37). By Proposition 8 and given u = 7, the
pair (7], ) is a valid steady-state solution of the system only
if

BrT'sin(n(0)) = BrI'sin(7). 47)

This is the same compatibility condition assumed in (29),
noting (26b). Existence of such 77 and W is accounted for the
feasibility condition. In fact, we shall assume that there exists
7 € QN im BT such that (36b) and (47) are satisfied, with
wg = 1wP. This condition is similar to the one in Assumption
1 and can be verified for instance using the result of [25]. Now
we write the dynamics (34) as

i = BE(n)(we — wa) (48a)
Még = —A(we —0e) — BeT(sin(y) — sin(7)) +u — .
(48b)

where in (48a) we have used the fact that W € im 1 and thus
B (n)wg is equal to zero by Proposition 3(i). The equality
(48b) is written by exploiting (36b). Now, similar to [4], [27],
let the storage function W be defined as

W(U7WG) = %(wg — wg)TM(wG — wg)

+ 17T cos(n) — 17T cos(7) — (T'sin(7)) " (n —7) (49)

First, notice that W (7,@¢) = 0. In addition, (77,wW¢) consti-
tutes a strict minimum of W in Q x R"s. In particular, the
partial derivatives of W are computed as

oW . in (7
v = T'(sin(n) — sin(7)) (50)
and
151%%

which vanish at (7, wg) = (7,W¢). The Hessian of W is given
by the matrix

blockdiag (T'[cos(n)], M),

which is positive definite in 2 x R™s. Now, passivity of (48)
with output variables y = wg —w¢g follows from the following
proposition:

Proposition 11 Letr W be defined as in (49). Then the
time derivative of W along the solution (n,wg) of (34),
initialized in a neighborhood of (7}, w¢) with BT sin(n(0)) =
B T'sin(7), satisfies the following dissipation equality
W = — (wG — QG)TA(WG — Gg)
+(we —we)" (u—1) (52)
for the interval of definition T of the solution.

Proof. Recall that (34) can be equivalently written as (48). By
using (50) and (51), we obtain that

W = (sin(n) - sin(77)) " T BE (n)(we — We)
— (we —we)" Alwe —wg) + (wa —wa)" (u— 1)
— (wg —wa)" Bal (sin(n) — sin(7))
Hence, it suffices to show that
(wa —wa)" (Bs(n) — Ba)(sin(n) — sin(77)) = 0.
for all ¢ € Z. Recall that
Bs(n) = Bg — BeU'BE(BLT'BY) By,

(53)



with T/ = T'[cos(n)]. Then (53) holds if

BT (sin(n) — sin(7)) = 0. (54)

As BrT'sin(n(0)) = BrI'sin(7), the above reduces to
BrT'sin(n) = BrI'sin(n(0)) which holds true by Proposition
8. This completes the proof. |

Now, by using Proposition 11, attractivity of the equilibrium
(77,we) is established next.

Theorem 12 Let uw = U with a constant vector u, and assume
that (0,wg) with 1 € Q Nim BT is an equilibrium of
(34). Then solutions (n,wg) of (34) with BrT' sin(n(0)) =
BT sin(7) locally converge to (7], wg).

Proof. By (52), we obtain W = —(wg — 5g)T Alwg — @a).
Noting again that (7, w¢) is a (local) strict minimum of W,
one can construct a compact level set around (7,wg) €
(im BT N Q) x R which is forward invariant. By invoking
LaSalle’s invariance principle on the invariant set we have
wag = wg and

i = By (n)we = By (n)wg =0
0 = —Awg — BeIsin(n) + a.

(55a)
(55b)

By (36b), the equality (55b) yields BT sin(n) = BgI sin(7).
Moreover, again by Proposition 8§, and the fact that
BrT'sin(n(0)) = BrI'sin(7), the equality (54) holds. There-
fore, by continuity

BT'(sin(n) — sin(7)) = 0 (56)

on the invariant set. Now, as 7,7 € im BY, we have n = BT
and 7 = BT for some vectors 6,0 € R". Then multiplying
(56) from the left by (6—0)7 gives (n—n)TT'(sin(n)—sin(7)).
Since sin(+) is strictly monotone in 2, we conclude that n = 7}
on the invariant set, which completes the proof. ]

Next, we include a controller in order to regulate the fre-
quency deviation to zero while achieving certain power sharing
properties. By Theorem 12, for u = @, the solutions of (34)
locally converge to a common steady-state frequency identified
by wg = 1w, where w° is calculated as in (37). A nonzero
w? indicates a static deviation from nominal frequency, which
must be eliminated. The choice of @ to eliminate this deviation
is in general not unique. The corresponding degree of freedom
can be leveraged to achieve an optimal deployment of the
control effort. In particular, similar to [1], [4], we consider
the following optimal frequency regulation problem:

L 1,
—a'Qu = ; 57
minipize  WQU=D 50T 5T
subject to 0=1Ta+1%p*, (57b)

where p* := B I'sin(7), and we minimize the total quadratic
cost of generation (57a) subject to the power balance (57b).
Here, Q = diag(g;) with ¢; € R, being the cost coefficient,
and %qluf being the local generation cost at the ¢th generator.
Notice that (57b) amounts to matching “supply” and ‘“de-
mand”, and enforces the zero frequency deviation. Following
the standard Lagrange multipliers method, the optimal control

uwy that minimizes (57a) subject to the constraint (57b) is
computed as

uf = —Ag; ! (58)

where

]lT p*
-
EiEVG q;
is the multiplier of the constraint (57b), and can be interpreted
as the “price” per unit of generation. The equality (58) implies
that uq; = ujg; forall i, j € V¢, meaning that the generators
should provide power at identical marginal costs.

Note that substituting the zero frequency deviation wg = 0
and optimal control @ = u* := col(u}) in (36) yields

0 = —BgTsin(7) — AQ 1.

)\:

(59)

Similar to before, we assume that the above equality has a
solution 77 € im BT N €. This is the same as Assumption 1
by setting ©w = u*.

To avoid centralized information in (58), and to distribute
the solution of the optimal control deployment problem in
real-time, distributed averaging integral controllers have been
proposed in the literature [1], [2], [4]; see also [41]-[44] for
related work on distributed secondary frequency controllers.
These controllers are defined on a connected communication
graph G. = (V,, £.) and take the form

=— Y (&-&) —q 'wi (60a)
{i,j}eéc
u =q; & (60b)

for each 7 € V. Here, the state & acts as a local copy of
the multiplier A for each unit, the term ¢, lw; attempts to
regulate the frequency deviation to zero, and the consensus
based algorithm (i es. (&;—¢;) enforces identical marginal
costs at steady-state.

The controller above can be written in the vector form as

£=-Lcé—Q 'wg (61a)
u=Q ¢ (61b)

where L¢ is the Laplacian matrix of G., and £ = col(¢;),
Q = diag(Q;), with i € V. It is easy to see that £ = Qu* and
wg = 0 is a solution to (61). Interconnecting this controller
to the model (34) results in a zero frequency deviation and
optimal deployment of the active power (58) as shown in the
following theorem:

Theorem 13 Let W = 0, € = Qu*, and assume that the
vector 1 is such that (59) holds. Consider the model (34)
in closed loop with (61). Then solutions (n,wg,§), with
BrT'sin(n(0)) = BpI'sin(7), locally converge to the point

(7, Wa, £). Consequently, the vector u locally converges to the
optimal input u* given by (58).

Proof. Let W be defined as W (€) = (6 — &7 (¢ - &).
Then the time derivative of W along the solutions of (61) is
computed as

We=-(-8"Leé — (£ 9TQ 'we
=—(-9"Le(¢ - &) — (u—u")T (we — wa)



where we have used the facts that £ = —\1 and @Wg = 0 to
write the second equality. Now, let

V(U»WG,E) = W(nva) + WC(&)

Then, by (52) and noting & = Q'€ = u*, the time derivative
of V' along the solutions of (34),(61), is calculated as

V=—(wg —wg) Alwe —wg) — (€ =T Lc(€ - §).

Noticing that (7,, &) is a (local) strict minimum of V, by
applying LaSalle’s invariance principle we obtain wg = Wg =
0, and

0=Lc(§—¢)
0 = —BgT'sin(n) + Q€.

on the invariant set. The first equality gives & = & + ol for
some o € R. By multiplying both sides of the second equality
with 17, we obtain

0=17B.I'sin(n) + 17Q ¢+ al1TQ7 1.  (62)

By Proposition 8 and continuity, ByI'sin(n(0)) =
By T'sin(n). Hence, the equality (62) can be rewritten as

0=17"B;T'sin(@) + 17u* + a17Q 1.

Noting that w = u* given by (58) satisfies (57b), we conclude
that & = 0, and thus £ = £ and v = u* on the invariant set.
Analogous to the proof of Theorem 12, 7 also coincides with
7 on this invariant set, and the proof is complete. ]

Remark 14 (Control of linear reduced model) Note that the
same controller (61) can be used to regulate the frequency and
optimally deploy the active power in the linear reduced model
(23). In this case, the Lyapunov function of the closed-loop
system takes a quadratic from and is obtained by replacing W
in (49) with

1
W(ns,wa) =§(wG ~we) ' M(wg —©g)
1
+ (s — M)l (ns —7Ms),

2

where W = 0 as before, and (7j¢, W) constitutes an equilib-
rium of (23) with u = u*. It is easy to observe that W given
above satisfies the dissipation equality (52), and the subsequent
stability results analogously hold. ]

We close this section by a numerical example.

A. Case study

We consider the power network model [45] consisting of
three generators and three loads as shown in Figure V-A.
The power network parameters are chosen as: M; = 4.62,
My = 4.17, M3 = 5.10, A; = 141, Ay = 1.28, A3 = 1.72.
The lines are dominantly inductive, and their resistances R;;
and inductances X;; are chosen as in Table I.

The quadratic cost function in (57a) is considered as
@ = diag(0.20,0.17,0.15). We employ the controllers (61)
at the synchronous generators, with an additional first order
generation dynamics accounting for the fact the active power
may not be instantly regulated [46]. The system is initially
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Fig. 3. Numerical simulation of the results

TABLE I
LINE PARAMETERS

Lines 1-2 1-4 1-5 2-3 2-4 2-5 2-6 3-5 3-6 4-5 5-6
R;j 0.01 005 0.08 007 005 005 010 0.12 002 020 0.10
Xij 020 020 030 020 025 010 030 026 010 040 0.30

at steady-state with constant power loads. At time ¢ = 4 sec,
the active power load at Bus 4 is increased by 10 percent
of its nominal value. As we consider a constant power load
model, this increase results in a step in the phase angle of
Bus 4, and thus affects the frequency response of the system
(34) as can be seen from Figure 3. The frequency evolution
and the active power injections of the closed-loop system are
depicted in Figure 3. It is observed that the controller restores
the frequency at 50 Hz (the frequencies at the various buses
are so similar to each other that no difference can be noticed
in the plot). In addition, the generation costs are minimized
meaning that power is shared according to the cost coefficients
given by the diagonal elements of !, consistent with (58).



VI. CONCLUSIONS

We have considered structure preserving power networks
expressed as differential algebraic equations, where the proper
algebraic constraints are the result of the presence of constant
power loads. We have introduced the notion of the projected
incidence matrix, which provides a novel decomposition of
the reduced Laplacian matrix. For the linear network model,
by exploiting this new matrix, we have derived a novel
reduced model which preserves many structural properties of
the original network. We have also addressed the elimination
of algebraic constraints in the nonlinear network model. Again,
by using the projected incidence matrix, we have established
a reduced model under a suitable regularity assumption. The
reduced model is expressed in terms of ordinary differential
equations, and thus facilitates the analysis, controller design,
and simulation of the power network. Frequency regulation
and active power sharing of the reduced model are addressed
by using a distributed averaging controller. Possible extension
of our approach to the case of more general passive network
dynamics with dynamical nodes and edges along the lines of
[27], [33], [34] is of interest for future research. In addition,
elimination of algebraic constraints in voltage dynamics and
reactive power loads is a challenging open problem. Other
future research directions include investigating the use of the
projected incidence matrix in other model reduction techniques
which are based on Schur complements of the Laplacian
matrix, see. e.g. [47]. Possible relation and applications to
clustering [48]-[52], and slow coherency, see e.g. [14]-[16]
also deserve attention.
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