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Abstract

Purposes of Review Extracellular matrix (ECM) components modulate the interaction between pancreatic islet cells. During the
islet isolation prior to transplantation as treatment for type 1 diabetes, the ECM is disrupted impacting functional graft survival.
Recently, strategies for restoring ECM have shown to improve transplantation outcomes. This review discusses the current
therapeutic strategies to modulate ECM components to improve islet engraftment.

Recent Findings Approaches applied are seeding islets in ECM of decellularized organs, supplementation of specific ECM
components in polymeric scaffolds or immunoisolating capsules, and stimulating islet ECM production with specific
growth factors or ECM-producing cells. These strategies have shown success in improving functional islet survival.
However, the same experiments show that caution should be taken as some ECM components may negatively impact islet
function and engraftment.

Summary ECM restoration resulted in improved transplantation outcomes, but careful selection of beneficial ECM components

and strategies is warranted.

Keywords Pancreatic islets - Extracellular matrix - Islet transplantation - Type 1 diabetes

Introduction

Transplantation of pancreatic islets in patients with type 1
diabetes results in stable glycemic control and the prevention
of the development of secondary complications, such as car-
diovascular diseases, nephropathy, and retinopathy [1].
However, the shortage of islet donors, the need for lifelong
immunosuppression, and gradual decrease of islet function
over time are still obstacles for large-scale application of this
therapy [1]. Multiple factors contributing to graft failure have

This article is part of the Topical Collection on Immunology,
Transplantation, and Regenerative Medicine

<1 Alexandra M. Smink
a.m.smink @umcg.nl

Department of Pathology and Medical Biology, Section of
Immunoendocrinology, University of Groningen, University
Medical Center Groningen, Hanzeplein 1, EA11, 9713

GZ Groningen, The Netherlands

Department of Pathology and Medical Biology, University Medical
Center Groningen, University of Groningen,
Groningen, The Netherlands

Published online: 19 May 2018

been identified including lack of adequate revascularization
[2], reoccurrence of autoimmunity [3], the occurrence of an
instant blood-mediated inflammatory response [4, 5], ische-
mic injury [6], and activation of NK(T) cells [7]. Also, dam-
age to the extracellular matrix (ECM) induced during the en-
zymatic isolation of islets from the pancreas has been pro-
posed as a factor influencing function and survival of islet
grafts. However, only recently strategies have been proposed
to overcome this damage to islet ECM prior to transplantation
[8+, 9—11]. This review discusses the currently employed
therapeutic strategies to modulate ECM components to protect
and improve islet function and survival after transplantation.
Also, we review how modulation of the ECM can have detri-
mental effects on functional survival of islets as we have the
experience that ECM components or fragments might negative-
ly impact islets or processes associated with engraftment.

ECM Composition of Pancreatic Islets
The importance of ECM for islet function has been shown in

several studies demonstrating its role in organizing the con-
nections between endocrine cells, vascular endothelial cells,
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neural cells, and immune cells [12]. These interactions enable
the rapid exchange of oxygen, nutrients, metabolites, signal-
ing hormones, and of course islet hormones such as insulin
and glucagon [13]. Pancreatic islets have an extensive net-
work of ECM molecules [14—16], and these can be found in
two distinct locations, the ECM in the basement membrane
and in the interstitial ECM. In the basement membrane, the
ECM is composed of a thin layer that separates islet cells from
the exocrine cells and the blood vessels. This is the main target
of enzymatic isolation of islets from the pancreas as it con-
nects the endocrine and exocrine tissue. The interstitial ECM
is a highly variable network of ECM proteins and polysaccha-
rides in between the islet cells. In both the basement mem-
brane and the interstitial ECM, the same type of ECM mole-
cules can be found. All pancreatic ECM is composed of either
glycosaminoglycans (GAGs) or fibrous proteins [17]. There
are several types of GAGs: examples are heparan sulfate,
chondroitin sulfate, dermatan sulfate, or keratan sulfate. One
or more GAGs can bind to a core protein to form a proteogly-
can. Proteoglycans form large complexes with other matrix
components but can also bind water or growth factors [18].
GAGs are also involved in movement and stability of tissue
[12, 19], but disturbances in their synthesis can also lead to
islet amyloid formation and cellular dysfunction [20, 21].

Examples of fibrous ECM proteins in the pancreas are col-
lagen, laminin, and fibronectin. The most abundant types of
collagen in islets are collagen types I and IV, which are mostly
found in the islet basement membrane [22]. They both regu-
late fibronectin by restraining cell-fibronectin interactions.
Already in the fetal stage, collagens modulate cell-matrix in-
teractions and development of the pancreas [12, 23]. Although
it is less clear how collagen influences integrity of the mature
pancreas, its abundance suggests that also in the adult pancre-
as, it is responsible for tissue integrity and cell interactions.
Besides collagen, laminins are abundantly present in islets.
Laminins bind to several different integrin and non-integrin
receptors expressed by the islets to promote insulin secretion,
gene expression, beta-cell survival, and proliferation [12, 24].
Furthermore, fibronectin is involved in adhesion and the bind-
ing of ECM molecules, but is also involved in connecting
endocrine cells [12, 22]. Additionally, fibrin can be considered
as part of the ECM. Fibrin is naturally formed from fibrinogen
by the enzyme thrombin. The fibrin network provides anchor
sites for growth factors and cells implicated in cell migration
and tissue repair [17, 25].

ECM molecules bind to integrin receptors that are
expressed by islets. These receptors modulate cell-cell and
cell-ECM interactions to regulate functional islet survival
[12]. There are 24 of these transmembrane receptors, which
are formed by different combinations of integrin alpha and
beta subunits. For instance, binding of laminin-5 to the
«61 integrin receptor results in beta-cell proliferation and
enhanced insulin secretion [26]. Additionally, binding of
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fibronectin, laminin, collagen type I, or collagen type IV to
the o331 integrin receptor improves cell viability and prolif-
eration of the beta-cell line INS-1 [27]. Besides integrin re-
ceptors, there are also non-integrin receptors that are involved
in these interactions. Examples of non-integrin receptors are
discoidin domain receptors (DDRs), laminin-receptor 1, dys-
troglycan protein complex, and Lutheran blood group glyco-
protein [12]. Collagen type IV is one example that acts via
DDRs and several types of laminin bind to the other non-
integrin receptors [28, 29]. The described ECM effects appear
to be mediated via both integrin and non-integrin receptors,
but more research is needed to determine the exact signaling
pathways.

During the enzymatic isolation of pancreatic islets prior to
clinical transplantation, the ECM and the vasculature are
disrupted. Currently, human islets are isolated by application
of enzyme mixtures of collagenases [30]. There is laboratory-
to-laboratory variation in the content of this enzyme mixture,
but it contains collagenase, neutral protease, trypsin, and
clostripain and it selectively breaks down the basement mem-
brane that forms the connection between the exocrine and
endocrine tissue [30]. However, these enzymes also damage
the interstitial ECM. The enzyme mixture is injected via the
pancreatic duct and damages several components of the islet
ECM. It has detrimental effects on laminins [31], and it has
been shown that the collagenases digest collagen types I, III,
IV, and V [8e, 32, 33]. Furthermore, the enzyme mixture de-
stroys the intracellular stores of GAG heparan sulfate [15].
Destruction of the ECM components leads to a decrease in
cell viability and therefore also affects transplant outcomes.

Therapeutic Strategies to Modulate
and Restore Islet ECM

As restoring or supplementing ECM of islets might improve
the outcome of islet transplantation, different strategies have
been proposed for restoration of islet ECM. Some strategies
coming from the tissue-engineering field, discussed below,
might be beneficial for the islet field as well. In general, these
strategies aim on modulating the ECM of islets to mimic the
biochemical composition of the native pancreatic ECM, its
structure, and its viscoelastic properties [34, 35].

Decellularized ECM Scaffolds for Islet Transplantation

In the last few years, the use of ECM from decellularized
organs has emerged in the field of tissue engineering and islet
transplantation [36]. A major advantage of decellularized
ECM structures is the major reduction of immunogenicity
when all cellular materials are removed. The procedure leaves
behind a scaffold of ECM components that can function as a
support structure for transplanted cells. In theory, the pancreas
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would be the ideal organ to decellularize for islet transplanta-
tion since it will resemble the native pancreatic ECM. Several
studies show that islet function and survival are maintained
when cultured on decellularized pancreata [37-41], but
in vivo data are absent up till now. More in vivo data is avail-
able on application of decellularized Iung [42¢] and pericardi-
um [43¢] as ECM scaffold for islet grafts. Abualhassan and
coworkers infused 500 mouse islets into decellularized lung
tissue and transplanted the grafts into the peritoneal cavity of
diabetic mice [42¢]. Normoglycemia was obtained in 67% of
the mice, but only in 13% when islets were transplanted into
the peritoneal cavity without an ECM scaffold. Furthermore,
they demonstrate efficacy with human islets as well where
diabetes reversal was demonstrated with 1000 human islet
equivalents (IEQ) when transplanted into decellularized lung
tissue. However, normoglycemia could not be maintained un-
til the end of the study. Furthermore, Wang and coworkers
tested the efficacy of decellularized pericardium and showed
that with 250 syngeneic islets, 83% of diabetic mouse recipi-
ents became normoglycemic when transplanted in the epidid-
ymal fat pad [43+]. Even with a minimal number of 150 islets,
diabetes was reversed in 47% of the mice. Blood glucose
levels were stable during the whole study and normoglycemia
was maintained until the end of the study, which was 300 days
post transplantation.

Artificial Replacement of ECM Components

Another therapeutic strategy to enhance functional survival
ofislets is by adding specific ECM molecules. The efficacy
of such an approach has been shown in the field of
immunoisolation by encapsulation of islets [8e, 9, 44, 45].
Encapsulation of islets in an immunoprotective and semi-
permeable membrane allows for successful transplantation
of islets in the absence of immunosuppression [46]. To en-
hance longevity of encapsulated pancreatic islets in
immunoprotective alginate-based microcapsules, single
ECM molecules and their combinations have been tested
[8¢, 9]. The efficacy of such an approach was demonstrated,
but it was also shown that a stepwise and careful method has
to be chosen as not all ECM molecules are beneficial for
islet function and concentrations that are too high may even
kill islet cells. For example, excessively high concentrations
of collagen IV had detrimental effects on glucose-induced
insulin secretion [8+, 9]. Also, only the laminin sequences
RGD, LRE, and PDSGR in combination with collagen IV
had a positive impact on the function of human islets, and
interestingly, islet function-promoting effects were laminin-
type dependent. The three laminin sequences RGD, LRE,
and PDGRS had a positive effect on glucose-induced insu-
lin release of islets in vitro [8¢]. All three molecules were
also effective in reducing cytokine-mediated cell death in
islet cells, whereas other laminin sequences did not have

these effects. All combinations of collagen IV with either
RGD, LRE, or PDGRS improved islet cell survival and
reduced necrosis and apoptosis after interleukin-13,
interferon-y, and tumor necrosis factor-oc exposure [9].
However, there were also laminin-specific effects.
Collagen IV-RGD and collagen IV-LRE reduced the release
of danger-associated molecular patterns from islets, while
collagen IV-PDGRS was ineffective. Collagen IV-RGD and
collagen IV-PDSGR, but not collagen IV-LRE, reduced ni-
tric oxide release from encapsulated human islets [9].
Moreover, the oxygen consumption rate of islets was only
beneficially influenced by collagen IV-LRE and collagen
IV-PDGRS and to a lesser extent by RGD inclusion [9].
Campanha-Rodrigues and coworkers conducted islet trans-
plantations with laminin-1-alginate microcapsules [44].
Laminin-1 significantly improved the long-term survival
and function of the islets compared with alginate capsules
without laminin-1.

ECM components have also been tested in combination
with polymeric scaffolds. These polymeric scaffolds are
not immunoprotective but serve as a retrievable transplan-
tation site for insulin-producing cells. This approach may
be instrumental for replenishable cell sources such as stem
cells that still suffer from issues making retrievability a
mandatory criterion for human application [47]. In this
setting, Naijar and coworkers tested a fibrin scaffold for
islet transplantation under the skin and in the epididymal
fat pad [48]. Vascular growth factors could easily be incor-
porated in these fibrin scaffolds resulting in improved vas-
cularization, engraftment, and functional graft survival at
both transplantation sites. The efficacy of fibrin as an islet
scaffold has recently also been clinically demonstrated, as
successful islet transplantation was performed in a fibrin
scaffold placed in the omentum of a patient with type 1
diabetes (ClinicalTrials.gov number: NCT02213003)
[49+]. After receiving 11,280 TEQ/kg, the patient became
normoglycemic and insulin independent, which was
maintained up to 12 months after transplantation.

Coating of scaffolds with collagen IV can induce faster
restoration of normoglycemia compared to islet transplanta-
tion in untreated scaffolds [50]. The collagen IV coating pro-
moted islet cell viability and decreased islet apoptosis, which
lead to an enhanced islet-metabolic function. Similar benefi-
cial effects have been shown for laminins [51]. Coating scaf-
folds with the human laminin sequence 332 improved insulin
secretion in response to glucose stimulation. Furthermore,
Beenken-Rothkopf and coworkers supplemented hydrogel
scaffolds with collagen type IV, fibronectin, and laminin
[52]. These scaffolds supported function and survival of cells
in vitro. In addition, our group performed several studies in
which polymeric scaffold were supplemented with ECM. In
these studies, fibrin was used to fill the pores of a porous
polymer scaffold [2]. After 4 weeks of prevascularization
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under the skin of diabetic nude mice, transplantation of 800
islets resulted in diabetes reversal in 80% of the mice, while
transplantation of islets without a scaffold never resulted in
normoglycemia.

In vivo Stimulation of ECM Production

Approaches to restore the whole islet ECM are also being
investigated, as an alternative to the supplementation of
ECM components. In the native pancreas, ECM can be pro-
duced by fibroblasts in and around the islets. Co-incubation of
fibroblast and islets results in improved functional survival of
islets and a well-preserved ECM including high amounts of
fibronectin [53]. Also, mesenchymal stromal cells (MSCs)
have shown to have such beneficial effects on islets due to
the secretion of fibronectin and laminin [54, 55]. An in vivo
study showed that co-transplantation of MSCs and syngeneic
islets under the kidney capsule of diabetic mice improved islet
function and survival in the early post-transplantation period
[56]. An advantage of this approach is that not only one com-
ponent of the ECM is restored, but also multiple components
are modulated which will be a better representation and resto-
ration of the native ECM.

Another approach, not tested yet with islets but successful
in other fields, is to restore the ECM in vivo by injecting

positive effects
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Fig. 1 The positive and negative effects of modulating the extracellular
matrix (ECM) of pancreatic islets. The enzymes used for isolating islets
from the pancreas damage the native ECM of the islets influencing
functional graft survival. Recently, strategies for restoring ECM have
shown to improve islet function and engraftment and reduce sensitivity
for cytotoxicity of cytokines resulting in better transplantation outcomes.
The currently confirmed positive effects of restoring ECM before islet
transplantation are depicted on the left side of the figure. For example, the
laminin sequences RGD, LRE, and PDSGR have shown to improve the
glucose-induced insulin response and thereby the function of beta cells,

@ Springer

factors that stimulate the fibroblasts and other cells around
the transplanted islets to produce ECM components.
Transforming growth factor (TGF)-3 is important for tissue
repair after injury and might be a suitable candidate [57].
TGF-{ stimulates the proliferation of fibroblasts and the pro-
duction of fibronectin and collagen [57]. Connective tissue
growth factor might be another candidate since it is known
to stimulate ECM production [58]. Up to now, these ap-
proaches are only tested in vitro and not extensively within
the context of pancreatic islets. Some unconventional methods
were also investigated, for example, high frequency vibrations
to enhance TGF-{3 production of fibroblasts in vitro leading to
increased production of fibronectin and collagen I [59].

Potential Detrimental Effects of ECM

It has been shown that ECM restoration results in reduced
cytotoxicity and improved islet function [2, 8, 9, 42¢, 43¢,
45, 49¢]; caution is also warranted as modulation of the
ECM can also have detrimental effects on functional survival
of islets (Fig. 1). It is not sufficiently taken into account that
not all ECM molecules will be beneficial for engraftment. We
have shown that high concentrations of collagen IV hamper
islet function [8e, 9] and some proteolytic fragments of ECM

negative effects
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whereas addition of collagen IV or the laminin sequences RGD and
PDSGR to the isolated islets protects them from cytokine-mediated cell
death. However, research has also shown that restoring ECM can have
negative effects on islets, which is depicted on the right side of the figure.
For example, high concentrations of some ECM components, such as
collagen IV, can be detrimental for islet function, and proteolytic
fragments of ECM components are known to have adverse effects on
processes involved in engraftment; they can inhibit angiogenesis,
migration, differentiation, and tissue growth
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components are known to have adverse effects on processes
involved in engraftment. These fragments inhibit angiogene-
sis, migration, differentiation, and tissue growth [60]. For ex-
ample, the non-collagenous fragments of several collagen
types such as collagen o2 (IV), collagen «3 (IV), collagen
6 (IV), and collagen a1 (XV) have anti-angiogenic effects
and inhibit tumor growth [60, 61]. Due to these properties,
ECM fragments are used as anti-tumor treatment [62].

Future Perspectives

Many strategies discussed in this review have shown to be
effective in vitro. However, more in vivo data should be ob-
tained for adequate translation of feasibility in humans. ECM
modification by using decellularized organs has currently
shown promising in vivo results [42e, 43+]. Studies in larger
animal models, such as pigs or non-human primates, should
give more insight in which organ should be used for
decellularization and if it is applicable in humans.
Transplantation of islets in a fibrin scaffold has already shown
to be beneficial in the clinic [49¢]. Although beneficial effects
have been described, further understanding of the exact mech-
anisms underlying the beneficial effects of ECM molecules,
integrin receptors, and pathways is needed, as it also has been
shown that ECM effects on pancreatic islets are ECM-type
dependent. Besides ECM components, the integrin and non-
integrin receptors regulate the interaction between islets and
the ECM. The implications of isolation-related integrin dam-
age should also be further investigated.

Conclusion

In this review, we have discussed current strategies to improve
islet transplantation outcomes by modulating the ECM.
Modulation of the ECM has been shown to be an efficacious
approach to enhance pancreatic islet function and survival and
thereby improve transplantation outcomes. However, we also
note that caution is warranted as ECM manipulation might
also negatively impact islet function and/or engraftment.
More systematic research is needed to provide a clinically
applicable strategy to improve and restore the ECM in islets
for transplantation and cure of patients with type 1 diabetes.
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