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Abstract

A large class of modelling and prediction problems involve outcomes that belong to an
exponential family distribution. Generalized linear models (GLMs) are a standard way
of dealing with such situations. Even in high-dimensional feature spaces GLMs can be
extended to deal with such situations. Penalized inference approaches, such as the `1
or SCAD, or extensions of least angle regression, such as dgLARS, have been proposed
to deal with GLMs with high-dimensional feature spaces. Although the theory underly-
ing these methods is in principle generic, the implementation has remained restricted
to dispersion free models, such as the Poisson and logistic regression models. The aim
of this manuscript is to extend the di�erential geometric least angle regression method
for high-dimensional GLMs to arbitrary exponential dispersion family distributions with
arbitrary link functions. This entails, �rst, extending the predictor-corrector (PC) al-
gorithm to arbitrary distributions and link functions, and second, proposing an e�cient
estimator of the dispersion parameter. Furthermore, improvements to the computational
algorithm lead to an important speed-up of the PC algorithm. Simulations provide sup-
portive evidence concerning the proposed e�cient algorithms for estimating coe�cients
and dispersion parameter. The resulting method has been implemented in our R package
(which will be merged with the original dglars package) and is shown to be an e�ective
method for inference for arbitrary classes of GLMs.

Keywords: High-dimensional inference, Generalized linear models, Least angle regres-
sion, Predictor-corrector algorithm, Dispersion parameter.

1 Introduction

Nowadays, high-dimensional data problems, where the number of predictors is larger than
the sample size, are becoming more common. In such scenarios, it is often sensible to assume
that only a small number of predictors contributes to the response, i.e., that the underlying,
generating model is sparse. With a sparse model we mean many elements equal to zero.
Modern statistical methods for sparse regression models are usually based on using a penalty
function to estimate a solution curve embedded in the parameter space and then to �nd
the point that represents the best compromise between sparsity and predictive behaviour
of the model. Some important examples are the Least Absolute Shrinkage and Selection
Operator (LASSO) estimator (Tibshirani, 1996), the Smoothly Clipped Absolute Deviation
(SCAD) method (Fan and Li, 2001), the Dantzig selector (Candes and Tao, 2007), which
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was extended to generalized linear models (GLMs) in James and Radchenko (2009), and the
MC+ penalty function introduced in Zhang (2010), among others.

Di�erently from the methods cited above, Efron et al. (2004) introduced a new method to
select important variables in a linear regression model called least angle regression method
(LARS) which was extended to Generalized Linear Models (GLM) in Augugliaro et al.

(2013) by using the di�erential geometry. This method, which does not require an explicit
penalty function, has been called di�erential geometric LARS (dgLARS) method because
it is de�ned generalizing the geometrical ideas on which LARS is based. As underlined in
Augugliaro et al. (2013), LARS is a proper likelihood method in its own right: it can be
generalized to any model and its success does not depend on the arbitrary match of the
constraint and the objective function, as is the case in penalized inference methods. In
particular, using the di�erential geometric characterization of the classical signed Rao score
test statistic, dgLARS gains important theoretical properties that are not shared by other
methods. From a computational point of view, the dgLARS method essentially consists in
the computation of the implicitly de�ned solution curve. In Augugliaro et al. (2013), this
problem is solved by using a predictor-corrector (PC) algorithm.

Although the theory of the dgLARS method does not require restrictions on the disper-
sion parameter, the dglars package Augugliaro (2014b) is restricted to logistic and Poisson
regression models, i.e., two speci�c GLMs with canonical link function and dispersion pa-
rameter is equal to one. Furthermore, the authors do not consider the problem of how to
estimate the dispersion parameter in a high-dimensional setting. The aim of this paper is
to overcome this restriction and to de�ne dgLARS for any generalized linear model with
arbitrary link function. First, we extend the PC algorithm to GLMs with generic link func-
tion and unknown dispersion parameter; we also improve the algorithm by proposing a new
method to reduce the number of solution points needed to approximate the dgLARS solution
curve. As we shall show in the simulation study, the proposed algorithm outperforms the
old PC algorithm previously implemented in dglars package. Second, we explicitly consider
the problem of how to do inference on the dispersion parameter and we propose an extension
of the method developed in Fan et al. (2012) and then we present an iterative algorithm to
improve the accuracy of the new proposed method for estimating the dispersion parameter.

The paper is organized as follows; In Section 2, �rstly, we introduce the extended dgLARS
method by giving some essential clues to the theory underlying a generalized linear model
from a di�erential geometric point of view and present the general case of equations based on
the class of the exponential family. Secondly, we propose our improved predictor-corrector
algorithm, and thirdly we present an estimator for dispersion parameter which can be used
during the solution path, and at the end of the section we consider some model selection
strategies that are commonly used. In Section 3, we focus on the estimation of the dispersion
parameter and propose a new method to do high-dimensional inference on the dispersion
parameter of the exponential family, and after that, we propose an iterative algorithm to
achieve a more stable and accurate estimation. In Section 4, the simulation studies is given
divided into two subsections; in the �rst, a comparison in terms of performance between the
improved PC algorithm and other methods is done; in the second, we investigate how well
the new estimator of the dispersion parameter based on the proposed iterative algorithm
behaves. The application and data analysis based on continuous outcome are described in
Section 5.
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2 Di�erential Geometric LARS for general GLM

The original LARS algorithm (Efron et al., 2004) de�nes a coe�cient solution path for a
linear regression model by sequentially adding variables to the solution curve. To make this
section self container, we brie�y review the LARS method. Starting with only the intercept,
the LARS algorithm �nds the covariate that is most correlated with the response variable
and proceeds in this direction by changing its associated linear parameter. The algorithm
takes the largest step possible in the direction of this covariate until another covariate has
as much correlation with the current residual as the current covariate. At that point the
LARS algorithm proceeds in an equiangular direction between the two covariates until a
new covariate earns its way into the equally most correlated set. Then it proceeds in the
direction in which the residual makes an equal angle with the three covariates, and so on.
Augugliaro et al. (2013) generalized these notions for GLMs by using di�erential geometry.
The resulting de�nes a continuous solution path for GLM, with on the extreme of the
path the maximum likelihood estimate of the coe�cient vector and on the other side the
intercept-only estimate. The aim of the method is to de�ne a continuous model path with
highest likelihood with the fewest number of variables. The reader interested in more of
the di�erential geometric details of this method and its extensions is referred to Augugliaro
et al. (2013, 2016). In this section, after a brief overview on GLMs, we derive the equations
de�ning the dgLARS solution curve for a GLM with an arbitrary link function. Furthermore,
we explicitly consider the role of the dispersion parameter and we shall show that it acts
as a scale parameter of the tuning parameter γ. At the end of this section, we propose our
improved algorithm and estimators of the dispersion parameter.

2.1 An overview on GLMs: terminology and notation

Let Y = (Y1, Y2, · · · , Yn)> be a n-dimensional random vector with independent components.
In what follows we shall assume that Yi is a random variable with probability density function
belonging to an exponential dispersion family (Jorgensen, 1987, 1997), i.e.,

pYi (yi; θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
, yi ∈ Yi ⊆ R, (1)

where θi ∈ Θi ⊆ R is the canonical parameter, φ ∈ Φ ⊆ R+ is the dispersion parameter, and
a(.), b(.) and c(., .) are given functions. In the following, we assume that each Θi is an open
set and a(φ) = φ. We consider φ as an unknown parameter. The expected value of Y is

related to the canonical parameter by µ = {µ(θ1), · · · , µ(θn)}>, where µ(θi) = ∂b(θi)
∂θi

is called
mean value mapping, and the variance of Y is related to its expected value by the identity
Var(Y) = φV(µ), where V(µ) = diagV (µ1), . . . , V (µn) is an n × n diagonal matrix with

elements, called the variance functions, V (µi) = ∂2b(θi)
∂θ2i

. Since µi is a reparameterization,

model (1) can be also denoted as pYi (yi;µi, φ).
Following McCullagh and Nelder (1989), a Generalized Linear Model (GLM) is de�ned

by means of a known function g(·), called link function, relating the expected value of each
Yi to the vector of covariates xi = (1, xi1, . . . , xip)

> by the identity

g{E(Yi)} = ηi = x>i β
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where ηi is called the ith linear predictor and β = (β0, β1, . . . , βp)
> is the vector of re-

gression coe�cients. In order to simplify our notation we let µ(β) = {µ1(β), . . . , µn(β)}>
where µi(β) = g−1(x>i β). Therefore, the joint probability density function can be writ-
ten as p

Y
(y;µ(β), φ) =

∏n
i=1 pYi (yi;µi(β), φ). In the following of this paper we shall use

`(β, φ;y) = log p
Y

(y;µ(β), φ) as notation for the log-likelihood function. From (1), the mth

score function is given as

∂m`(β, φ;y) =
∂`(β, φ;y)

∂βm

= φ−1
n∑
i=1

(yi − µi)
V (µi)

xim

(
∂µi
∂ηi

)
= φ−1 ∂m`(β;y), (2)

where µi = g−1(x>i β), and the Fisher Information matrix has terms

Imn(β, φ) = E[∂m`(β, φ;y) · ∂n`(β, φ;y)]

= φ−1
n∑
i=1

xim xin
V (µi)

(
∂µi
∂ηi

)2

= φ−1 Imn(β), (3)

Using (2) and (3), we obtain expressions ∂mn`(β, φ;y) and rm(β, φ) to be used in Section
3 and Section 2.2, respectively, as follows:

∂mn`(β, φ;y) =
∂2`(β, φ;y)

∂βm∂βn

= φ−1
n∑
i=1

{
xim xin (yi − µi)

[
∂2θi
∂µ2i

·
(
∂µi
∂ηi

)2

+
∂θi
∂µi
· ∂

2µi
∂η2i

]

− ∂θi
∂µi
·
(
∂µi
∂ηi

)2
}

= φ−1
n∑
i=1

{
xim xin (yi − µi)

(
∂2θi
∂µ2i

·
(
∂µi
∂ηi

)2

+
∂θi
∂µi
· ∂

2µi
∂η2i

)}
− Imn(β, φ)

(4)

where ∂θi
∂µi

= 1
V (µi)

and ∂2θi
∂µ2i

= −∂V (µi)/∂µi
V (µi)2

. The Rao's score test statistic is given as

rm(β, φ) =
∂m`(β, φ;y)√
Im(β, φ)

= φ−1/2

∑n
i=1

{
(yi−µi) xim

V (µi)
· ∂µi∂ηi

}
(∑n

i=1

{
x2im
V (µi)

·
(
∂µi
∂ηi

)2})1/2
= φ−1/2 rm(β) (5)

where Im(β, φ) = Imm(β, φ). The Rao's score test statistic helps to de�ne ρm(β), the angle
between the mth basis function ∂m`(β, φ;Y) and the tangent residual vector r(β, φ,y;Y) =∑n

i=1(yi − µi)
∂`(β,φ;y)

∂µi
, de�ned as follows

ρm(β, φ) = arccos

[
rm(β, φ)

‖r(β, φ,y;Y)‖p(µ(β))

]
, (6)
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where ‖·‖p(µ(β)) is the norm de�ned on the tangent space Tp(µ(β))M, where the set M is
a p-dimensional submanifold of the di�erential manifold S (for details about theM and S
sets, see Augugliaro et al., 2013). The angle will be used in Section 2.2 to de�ne an extension
of the least angle regression (Efron et al., 2004). From (6), the Rao's score test statistic
contains the same information as the angle ρm(β). Thereby we can de�ne the dgLARS
method with respect to the Rao's score test statistic rather than the angle as respects the
smallest angle is equivalent to the largest Rao's score test statistic.

Gamma and Inverse Gaussian GLMs

The binomial, Poisson and Gaussian GLMs are by far the most commonly used, but there are
a number of lesser known GLMs which are useful for particular types of data. The Gamma
and Inverse Gaussian GLMs are intended for continuous and right-skewed responses. They
are double-parameter GLMs and belong to the exponential dispersion family (EDF). The
Gamma distribution is a member of the additive EDF and the Inverse Gaussian distribution
is a member of the reproductive EDF (Panjer, 2006). We consider these two dispersion
parameter models as follows; For Gamma family, we assume that Yi ∼ G(ν, µiν ) so that:

fYi(yi;µi, ν) = exp

{
−yi 1

µi
− log(µi)
1
ν

+ ν log(yiν)− log(yiΓ(ν))

}
, yi > 0,

then E(Yi) = − 1
θi

= µi and Var(Yi) = φ V (µi) =
µ2i
ν , where φ

−1 = ν. We consider
three of the most commonly used link functions: (i) the canonical link function, "inverse",
ηi = −µ−1i , (ii) "log", exp(ηi) = µi, and (iii) "identity", ηi = µi. For Inverse Gaussian
family, we assume that Yi ∼ IG(µi, λ) so that:

fYi(yi;µi, λ) = exp

{
yi(− 1

2µ2i
) + 1/µi

1/λ
− λ

2yi
− 1

2
log(

2πy3i
λ

)

}
, yi > 0,

then E(Yi) = 1√
−2θi

= µi and Var(Yi) = φ V (µi) =
µ3i
λ , where φ

−1 = λ. We consider four of

the most commonly used link functions: (i) the canonical link function, "inverse-square",
ηi = −0.5µ−2i , (ii) "inverse", ηi = −µ−1i , (iii) "log", and (iv) "identity".

Table A1 in Appendix A shows all required equations for obtaining the dgLARS estimator
based on the Gamma and Inverse Gaussian models with the most commonly used link
functions.

2.2 The extended dgLARS method

Augugliaro et al. (2013) showed that the dgLARS estimator follows naturally from a dif-
ferential geometric interpretation of a GLM, generalizing the LARS method (Efron et al.,
2004) using the angle between scores and tangent residual vector, as de�ned in (6). LARS
and dgLARS algorithms de�ne a coe�cient solution curve by identifying the most important
variables step by step and including them into the model at speci�c points of the path. The
original algorithms took as starting point of the path the model with the intercept only.
This is a sensible choice as it makes the model invariant under a�ne transformations of
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the response or the covariates. However, the choice of the starting point of the least angle
approach can be used to incorporate prior information about which variables are expected
to be part of the �nal model and which ones one does not want to make subject to selec-
tion. The extended dgLARS method allows for a set of covariates, possible including the
intercept, that are always part of the model. We de�ne the set of the protected variables

P = {a01, . . . , a0b}, where b = |P| ≤ min(n, p + 1) and a0j is the index of the jth protected

variable. The idea is that variable a0j is supposed to be of interest and should always be con-
tained in the model during the path estimation procedure. The best example of a commonly
protected variable is the intercept.

In the path estimation of the coe�cients, we treat the protected variables in the set P
di�erently from the other variables which are not protected, in the sense that the tangent
residual vector is always orthogonal to the basis vector ∂j`(β̂(γ), φ;Y) for j ∈ P at any

stage (γ 1) of the path algorithm β̂(γ), and thereby by using (6) we have rj∈P(β̂(γ), φ) =

∂j∈P`(β̂(γ), φ;Y) = 0. This means that at any stage of the path algorithm, the tangent
residual vector contains only information on the non-protected variables denoted by Pc =
A(γ) ∪ N (γ), where A(γ) = {a1, . . . , ak(γ)} is the active set and N (γ) = (P ∪ A(γ))c =
{ac1, . . . , ach(γ)} is the non-active set. The numbers k(γ) = |A(γ)| and h(γ) = |N (γ)| are
the number of included and non-included variables, respectively, in the model at location γ.
Thus, we have p+ 1 = b+ k(γ) + h(γ).

Let β̂0 = (β̂P , 0, . . . , 0)> be the starting point, where β̂P = (β̂a01 , . . . , β̂a0b
) is the

MLE of the protected variables and a zero for each p + 1 − b non-protected variables
{a1, . . . , ak(γ)} ∪ {ac1, . . . , ach(γ)}. Since at the beginning (γ = γmax) the active set A(γmax)

is empty (k(γmax) = 0), we have Pc = N (γ) and h(γmax) = p+ 1− b. For a speci�ed model
(the model with the protected variables) with the starting point β̂0, we de�ne γmax to be
the largest absolute value of the Rao's score statistic at β̂0, i.e.,

γmax = max
m∈Pc

{|rm(β̂0)|}.

Since the dispersion parameter in (2)-(6) is equal for any m, we can maximize |rm∈Pc(·)|
(or minimize ρm∈Pc(·)) instead of |rm∈Pc(·, φ)| (or ρm∈Pc(·, φ)) in terms of m. The mth

variable which has the largest absolute value of rm∈Pc(β̂0) would make an excellent candidate
for being included in the model. If we do not have any protected variables, β̂0 = (0, . . . , 0)>

can be used as the starting point, and in this case, r(µ(0),y;Y) is used to rank the covariates
locally.

Before we de�ne the dgLARS method, it can be described using Figure 1 in the following
way. First the method selects the predictor, say Xa1 , whose basis vector ∂a1`(β̂(γmax);Y)
has the smallest angle with the tangent residual vector, and includes it in the active set
A(γ(1)) = {a1}, where γ(1) = γmax. The solution curve, at this point γ = γ(1), β̂(γ) =
(β̂P(γ), β̂a1(γ), 0, . . . , 0)>, where β̂P(γ) = (β̂a01(γ), . . . , β̂a0b

(γ)), is chosen in such a way

that the tangent residual vector is always orthogonal to the basis vectors ∂j∈P`(β̂(γ);Y)

of the tangent space Tp(µ(β̂P (γ)))M, while the direction of the curve β̂(γ) is de�ned by the

projection of the tangent residual vector onto the basis vector ∂a1`(β̂(γ);Y). The curve
β̂(γ) continues as de�ned above until γ = γ(2), for which there exists a new predictor, say

1γ ≥ 0 is a tuning parameter that controls the size of the coe�cients. The increase of γ will shrink the
coe�cients closer to each other and to zero. In practice, it is usually determined by cross-validation.
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∂a1ℓ(β̂P(γmax);Y)

∂a2ℓ(β̂P(γmax);Y)

M M

Tp{µ(β̂P(γmax))}M
Tp{µ(β̂(γ(2)))}M

∂a2ℓ(β̂ (γ(2));Y)

∂a1ℓ(β̂(γ
(2));Y)

r(β̂P (γmax),y;Y)

r(β̂(γ(2)),y;Y)

(a) (b)

Figure 1: Di�erential geometrical description of the LARS algorithm with two covariates:
(a) the �rst covariate Xa1 is found and included in the active set, where β̂P = (β̂a01 , . . . , β̂a0b

);

(b) the generalized equiangularity condition (7) is satis�ed for variables Xa1 and Xa2 .

Xa2 , that satis�es the equiangularity condition, namely

ρa1(β̂(γ(2))) = ρa2(β̂(γ(2))). (7)

At this point, Xa2 is included in the active set A(γ(2)) = {a1, a2} and the curve β̂(γ) =
(β̂a01(γ), . . . , β̂a0b

(γ), β̂a1(γ), β̂a2(γ), 0, . . . , 0)> continues, such that the tangent residual vector

is always orthogonal to the basis vectors ∂j∈P`(β̂(γ);Y) and with direction de�ned by the

tangent residual vector that bisects the angle between ∂a1`(β̂(γ);Y) and ∂a2`(β̂(γ);Y), as
shown on the right side of Figure 1.

The extended dgLARS solution curve, which is denoted by β̂A(γ) ⊂ Rb+k(γ) where
γ ∈ [0, γ(1)] and 0 6 γ(p−b+1) 6 · · · 6 γ(2) 6 γ(1), is de�ned in the following way: for any
γ ∈ (γ(k+1), γ(k)], the extended dgLARS estimator satis�es the following conditions:

A(γ) = {a1, a2, · · · , ak(γ)},
N (γ) = {ac1, ac2, · · · , ach(γ)},

|rai(β̂(γ))| = |raj (β̂(γ))| = γ , ∀ai, aj ∈ A(γ) , (8)

rai(β̂(γ)) = sai · γ, ∀ai ∈ A(γ) ,

|racl (β̂(γ))| < |rai(β̂(γ))| = γ, ∀acl ∈ N (γ) and ∀ai ∈ A(γ),

where sai = sign{rai(β̂(γ))}, k(γ) = |A(γ)| = #{m : β̂m(γ) 6= 0} and h(γ) = |N (γ)| =
#{m : β̂m(γ) = 0} are the number of covariates in the active and non-active sets, respec-
tively, at location γ. The new covariate is included in the active set at γ = γ(k+1) when the
following condition is satis�ed:

∃acl ∈ N (γ(k+1)) : |racl (β̂(γ(k+1)))| = |rai(β̂(γ(k+1)))| , ∀ai ∈ A(γ(k+1)). (9)

It shows that the generalized equiangularity condition (8) does not depend on the value
of the dispersion parameter. As mentioned before, the original dglars package (Augugliaro,
2014b) is developed only for Poisson and logistic regression models with canonical link
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function and φ = 1. Although, the value of the dispersion parameter φ does not change
the order of the variables included in the active set and also the solution path β̂A(γ), it is
important to take it into consideration that it causes the achieved Rao's score statistic to
be shrunk or expanded, since it a�ects the value of the log-likelihood function `(β, φ;y).
Therefore, the important point to note here is that the value of the dispersion parameter
a�ects the value of various information criteria such as AIC or BIC, and that is why the
estimation of the dispersion parameter is critically important, and will be dealt with in
Sections 2.4 and 2.5.

It is worth noting that in a high-dimensional setting, n ≤ p, it is often assumed that the
true model, A0 = {m : βm 6= 0}, is sparse, i.e., the number of non-zero coe�cients |A0| is
small (any number less than min(n− 1, p)). In fact, the maximum number of variables that
the dgLARS method can include in the active set is min(n−1, p), namely |A| ≤ min(n−1, p).
Hence, when n ≤ p, the maximum number of non-zero coe�cients selected by dgLARS
method is min(n − 1, p) = n − 1, namely |A| ≤ n − 1. It means that, when n ≤ p, the
dgLARS method does not consider the cases in which n ≤ |A0|, thus, we assume that
|A0| < n.

2.3 Improved Predictor-Corrector algorithm

To compute the solution curve we can use the Predictor-Corrector (PC) algorithm (Allgower
and Georg, 2003), which explicitly �nds a series of solutions by using the initial conditions
(solutions at one extreme value of the parameter) and continuing to �nd the adjacent so-
lutions on the basis of the current solutions. From a computational point of view, using
the standard PC algorithm lead to an increase in the run times needed for computing the
solution curve. In this section we propose an improved version of the PC algorithm to de-
crease the e�ects stemming from this problem for computing the solution curve. Using the
improved PC algorithm leads to potentially computational saving.

The PC method computes the exact coe�cients at the values of γ at which the set
of non-zero coe�cients changes. This strategy yields a more accurate path in an e�cient
way than alternative methods and provides the exact order of the active set changes. Let us
suppose that k(γ) predictors are included in the active set A(γ) = {a1, · · · , ak(γ)} at location
γ, such that γ ∈ (γ(k+1), γ(k)] be a �xed value of the tuning parameter. The corresponding
point of the solution curve will be denoted by β̂A(γ) = (β̂P(γ), β̂a1(γ), . . . , β̂ak(γ)(γ))> where

β̂P(γ) = (β̂a01(γ), . . . , β̂a0b
(γ)) where b is the number of protected variables. Using (8), the

extended dgLARS solution curve β̂A(γ) satis�es the relationship

|ra1(β̂A(γ))| = |ra2(β̂A(γ))| = · · · = |rak(γ)(β̂A(γ))|, (10)

and is implicitly de�ned by the following system of k(γ) + b non-linear equations:

∂a01`(β̂A(γ);y) = 0 ,
...

...

∂a0b
`(β̂A(γ);y) = 0 ,

ra1(β̂A(γ)) = υa1γ ,
...

...

rak(γ)(β̂A(γ)) = υak(γ)γ .

(11)
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where υai = sign{rai(β̂A(γ))}.
When γ = 0, we obtain the maximum likelihood estimates of the subset of the param-

eter vector β, denoted by β̂A, of the covariates in the active set. The point β̂A(γ(k+1))
lies on the solution curve joining β̂A(γ(k)) with β̂A. We de�ne ϕ̃A(γ) = ϕA(γ) − vAγ,
where ϕA(γ) = (∂a01`(β̂A(γ);y), . . . , ∂a0b

`(β̂A(γ);y), ra1(β̂A(γ)), · · · , rak(γ)(β̂A(γ)))> and

vA = (0, . . . , 0, υa1 , . . . , υak(γ))
> starting with b zeros. By di�erentiating ϕ̃A(γ) with respect

to γ, we can locally approximate the solution curve at γ −∆γ by the following expression

β̂A(γ −∆γ) ≈ β̃A(γ −∆γ) = β̂A(γ)−∆γ ·
(
∂ϕA(γ)

∂β̂A(γ)

)−1
vA , (12)

where ∆γ ∈ [0; γ − γ(k+1)] and ∂ϕA(γ)

∂β̂A(γ)
is the Jacobian matrix of the vector function ϕA(γ)

evaluated at the point β̂A(γ). Equation (12) with the step size given in (15) is used for
the predictor step of the PC algorithm. In the corrector step, β̃A(γ − ∆γ) is used as
starting point for the Newton-Raphson algorithm that is used to solve (11). For obtaining
the Jacobian matrix we need ∂mrn(β̂A(γ), φ), which is as follows:

∂mrn(β, φ) =
∂ rn(β, φ)

∂βm

=
∂mn`(β, φ;y)√
In(β, φ)

− 1

2

rn(β, φ) ∂mIn(β, φ)

In(β, φ)
= φ−1 ∂mrn(β),

where m,n ∈ A and

∂mIn(β, φ) =
∂ In(β, φ)

∂βm

= φ−1
n∑
i=1

{
xim x2in
V (µi)

(
2
∂µi
∂ηi
· ∂

2µi
∂η2i

− ∂V (µi)/∂µi
V (µi)

(
∂µi
∂ηi

)3
)}

= φ−1 ∂mIn(β).

(13)

An e�cient implementation of the PC method requires a suitable method to compute
the smallest step size ∆γ that changes the active set of the non-zero coe�cients. Using (9),
we have a change in the active set when

∃acj ∈ N (γ) : |racj (β̂A(γ −∆γ))| = |rai(β̂A(γ −∆γ))|, ∀ai ∈ A(γ). (14)

By expanding racj (β̂A(γ)) in a Taylor series around γ, and observing that the solution curve

satis�es (11), expression (14) can be rewritten in the following way:

∃acj ∈ N (γ) :

∣∣∣∣∣racj (β̂A(γ))−
dracj (β̂A(γ))

dγ
∆γ

∣∣∣∣∣ ≈ γ −∆γ, ∀ai ∈ A(γ) and ∆γ ∈ [0; γ]

then

racj (β̂A(γ)) ≈
dracj (β̂A(γ))

dγ
∆γ + (γ −∆γ) = −∆γ

(
1−

dracj (β̂A(γ))

dγ

)
+ γ,
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or

racj (β̂A(γ)) ≈
dracj (β̂A(γ))

dγ
∆γ − (γ −∆γ) = ∆γ

(
1 +

dracj (β̂A(γ))

dγ

)
− γ,

so that, they give two values for ∆γ, namely

∆γ1 =
γ − racj (β̂A(γ))

1−
dracj (β̂A(γ))

dγ

or ∆γ2 =
γ + racj (β̂A(γ))

1 +
dracj (β̂A(γ))

dγ

,

where

dracj (β̂A(γ))

dγ
=

d

dγ

∂acj`(β̂A(γ);y)√
Iacj (β̂A(γ))



=

d ∂ac
j
`(β̂A(γ);y)

dγ · I1/2acj
(β̂A(γ))− ∂acj`(β̂A(γ);y) ·

d I1/2
ac
j

(β̂A(γ))

dγ

Iacj (β̂A(γ))

= I−1/2acj
(β̂A(γ)) · 〈∂aiacj`(β̂A(γ);y),

dβ̂ai(γ)

dγ
〉

− 1

2
racj (β̂A(γ)) · I−1acj (β̂A(γ)) · 〈∂aiIacj (β̂A(γ)),

dβ̂ai(γ)

dγ
〉 ,

=

∑
ai∈A(γ)

{
∂aiacj`(β̂A(γ);y) · dβ̂ai (γ)dγ

}
I1/2acj

(β̂A(γ))

− 1

2

racj (β̂A(γ)) ·∑ai∈A

{
∂aiIacj (β̂A(γ)) · dβ̂ai (γ)dγ

}
Iacj (β̂A(γ))

=
∑

ai∈A(γ)

dβ̂ai(γ)

dγ

∂aiacj`(β̂A(γ);y)

I1/2acj
(β̂A(γ))

− 1

2

racj (β̂A(γ)) · ∂aiIacj (β̂A(γ))

Iacj (β̂A(γ))

 ,

where 〈·, ·〉 is an inner product, ∂aiIacj (β) is given by (13), and
dβ̂ai (γ)

dγ is an element of the

matrix of dβ̂A(γ)dγ =
(
∂ϕA(γ)

∂β̂A(γ)

)−1
vA. For each a

c
j ∈ N (γ) we have a value for ∆γa

c
j as follows

∆γa
c
j =

{
∆γ1 if 0 ≤ ∆γ1 ≤ γ;
∆γ2 if o.w.

and from the set of ∆γa
c
j s, {∆γacj , acj ∈ N (γ)}, we consider the smallest value of this set as

a optimal value for the step size. It can be shown by the following expression

∆γopt = min
{

∆γa
c
j | acj ∈ N (γ)

}
. (15)
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The main problem of the original PC algorithm is related to the number of arithmetic
operations needed to compute the Euler predictor, which requires the inversion of an ade-
quate Jacobian matrix. From a computational point of view, using the PC algorithm leads
to an increase in the run times needed to compute the solution curve. We propose a method
to improve the PC algorithm to reduce the number of steps, thereby greatly reducing the
computational burden because of reducing the number of points of the solution curve.

Since the optimal step size is based on a local approximation, we also include an exclusion
step for removing incorrectly included variables in the model. When an incorrect variable
is included in the model after the corrector step, we have that there is a non-active variable
such that the absolute value of the corresponding Rao score test statistic is greater than γ.
To adjust the step size in the case of incorrectly including certain variables in the active
set, Augugliaro et al. (2013) reduced the optimal step size from the previous step, 4γopt,
by using a small positive constant ε and then the inclusion step is redone until the correct
variable is joined to the model. They proposed a half of ∆γopt for ε as a possible choice.
Augugliaro et al. (2013, 2014a) and Augugliaro (2014b) used a contractor factor cf , which is
a �xed value, (i.e., γcf = γold−∆γ, where γold = γnew +4γopt and ∆γ = ∆γopt · cf), where
cf = 0.5 as a default. In this case, this method acts like a Bisection method. However,
the predicted root, γcf , may be closer to γnew, or γold, than the mid-point between them.
The poor convergence of the Bisection method as well as its poor adaptability to higher
dimensions (i.e., systems of two or more non-linear equations) motivate the use of better
techniques. In this case, we apply the method of Regula-Falsi (or False-Position), which
always converges, for more details see Press et al. (1992) and Whittaker and Robinson
(1967). The regula-falsi method uses the information about the function, h(.), to arrive at
γrf , while in the case of the Bisection method �nding γ is a static procedure since for a
given γnew and γold, it gives identical γcf , no matter what the function we wish to solve.

The regula-falsi method draws a secant from h(γnew) to h(γold), and estimates the root
as where it crosses the γ-axis, so that in our case h(γ) = racj (β̂A(γ)) − sacj · γ where sacj =

sign{racj (β̂A(γnew))} and acj ∈ N (γ). From (8), we have that h(γ) = rai(β̂A(γ))− saiγ = 0

for all ai ∈ A(γ). Indeed, after the corrector step, when there is a non-active variable such
that the absolute value of the corresponding Rao score test statistic is greater than γ, we
want to �nd a exact point, γrf , which is very close or even equal to the true point, called
transition point, that changes the active set, so that at the end, it reduces the number of
the points of the solution curve.

For applying the regula-falsi method to �nd the root of the equation h(γrf ) = 0, let
us suppose that k predictors are included in the active set, such that γnew < γ(k). After
the corrector step, when ∃acj ∈ N (γnew) such that |racj (β̂A(γnew))| > γnew , we �nd an γrf
in the interval [γnew, γold], where γold = γnew + 4γopt, which is given by the intersection
of the γ-axis and the straight line passing through (γnew, racj (β̂A(γnew)) − sacj · γnew) and

(γold, racj (β̂A(γold)) − sacj · γold) where sacj = sign{racj (β̂A(γnew))}. It is easy to verify that
the root γrf is given by

γrf =
γnew racj (β̂A(γold))− γold racj (β̂A(γnew))

racj (β̂A(γold))− racj (β̂A(γnew)) + sacj · (γnew − γold)
, ∀acj ∈ N (γnew), (16)

where sacj = sign{racj (β̂A(γnew))}. Then, we �rst set 4γ = 4γopt − (γrf − γnew) and then
γ = γrf , to be able to go to the predictor step.
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Table 1: Pseudo-code of the improved PC algorithm to compute the solution curve de�ned
by the extended dgLARS method for a model with the protected variables.

Step Algorithm

1 First compute β̂P = (β̂a01 , . . . , β̂a0b
)

2 A ← arg maxacj∈N (γ){|racj (β̂P)|} and γ ← |ra1(β̂P)|
3 Repeat

4 Use (15) to compute 4γopt and set 4γ ←4γopt and γ ← γ −4γopt

5 Use (12) to compute β̃A(γ) (predictor step)

6 Use β̃A(γ) as starting point to solve system (11) (corrector step)

7 For all acj ∈ N (γ) compute racj (β̂A(γ))

8 If ∃N ⊂ N (γ) such that
∣∣∣rac∗l (β̂A(γ))

∣∣∣ > γ for all ac∗l ∈ N , then

9 use (16) to compute γ
(l)
rf and set γrf ← max

l
{γ(l)rf }

10 �rst set 4γ ←4γopt − (γrf − γ) and then γ ← γrf , and go to step 5

11 If ∃acj ∈ N (γ) such that
∣∣∣racj (β̂A(γ))

∣∣∣ =
∣∣∣rai(β̂A(γ))

∣∣∣ for all ai ∈ A(γ), then

12 update A(γ) and N (γ)

13 Until convergence criterion rule is met

If at γnew there exists a set N(γnew) ⊂ N (γnew) such that |rac∗l (β̂A(γnew))| > γnew for all

ac∗l ∈ N(γnew), the equation (16) gives a vector with an element of γ
(l)
rf , so that we consider

γrf = max
l
{γ(l)rf }, and if max

l
{γ(l)rf } is greater than γold, then we consider γrf = γold. When

the Newton-Raphson algorithm does not converge, the step size is reduced by the contractor
factor cf , and then the predictor and corrector steps are repeated.

In Table 1 we report the pseudo-code of the improved PC algorithm that was proposed
in this section for a model with the protected variables {a01, . . . a0b}. In Section 4.1, we
examine the performance of the proposed PC algorithm and compare it with the original
PC algorithm.

2.4 Path estimation of dispersion parameter

Since in practice the dispersion parameter φ is often unknown, in this paper we consider φ as
an unknown parameter which is the same for all Yi. As we mentioned before, by estimating
the dispersion parameter, the solution path β̂A(γ) is not changed, although the value of the
log-likelihood function `(β, φ;y) is changed and so considerations about the selection of the
optimal model are going to be importantly a�ected.

There are three classical methods to estimate φ: Deviance, Pearson and Maximum Like-
lihood (ML) estimators. The Deviance estimator is φ̂d = D(y, µ̂)/(n− p), where D(y, µ̂) =
φD(y, µ̂, φ) = −2φ(`(µ̂, φ;y) − `(y, φ;y)) is the unscaled residual deviance. The ML esti-
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mator of φ (φ̂mle) is the solution of ∂`(µ̂, φ;y)/∂φ = 0; For instance, the ML estimators for
the Gamma and Inverse Gaussian distributions are φ̂mle,G ≈ 2DG/(n +

√
(n2 + 2nDG/3))

and φ̂mle,IG = DIG , where DG and DIG are D(y, µ̂) for the Gamma and Inverse Gaussian
distributions, respectively (Cordeiro and McCullagh, 1991). McCullagh and Nelder (1989)
note for the Gamma case that both the Deviance (φ̂d,G) and MLE (φ̂mle,G) are sensitive to
rounding errors (the di�erence between the calculated approximation of a number and its
exact mathematical value) and model error (deviance from the chosen model) in very small
observations and in fact deviance is in�nite if any component of y is zero. Commonly used
estimates of the unknown dispersion parameter are the Pearson statistic or the modi�cation
of Farrington (1996), who proposed a �rst order linear correction term to Pearson's statistic.
McCullagh and Nelder (1989) recommend the use of an approximately unbiased estimate,

Pearson method, φ̂
P∗ =

X 2
P

n−p = 1
n−p

∑n
i=1

(yi−µ̂i)2
V (µ̂i)

, where X 2
P is the Pearson's statistic, V (.)

is the variance function, and µ̂i = g−1(x>i β̂). Meng (2004) shows numerically that the
choice of estimator can give quite di�erent results in the Gamma case and that φ̂

P∗ is more

robust against model error. Since we can use φ̂
P∗ only for n > p, in the high-dimensional

setting (p ≥ n) we de�ne the dispersion estimator φ̂P (γ) at γ ∈ [0, γmax] by the Pearson-like
dispersion estimator, as proposed by Wood (2006) and Ultricht and Tutz (2011);

φ̂P (γ) =
1

n− k(γ)

n∑
i=1

(yi − g−1(x>i β̂A(γ)))2

V (g−1(x>i β̂A(γ)))
, (17)

where k(γ) = |A(γ)| = #{j : β̂j(γ) 6= 0} such that β̂j(γ) is the element of the extended

dgLARS estimator β̂A(γ). Note that, since the estimator φ̂P (γ) depends on γ, we can apply
it into the improved PC algorithm in order to calculate the value of the information criteria
such as AIC and BIC at each path point (γ), so that AIC(γ) and BIC(γ) are given in (19)
and (20).

2.5 Model selection

Model selection is a process of seeking the model in a set of candidate models that gives
the best balance between model �t and complexity (Burnham and Anderson, 2002). In the
literature, selection criteria are usually classi�ed into two categories: consistent (e.g., the
Bayesian information criterion (BIC) (Schwarz, 1978)) and e�cient (e.g., the Akaike infor-
mation criterion (AIC) (Akaike, 1974), and the k-fold cross-validation (CV) (Hastie et al.,
2009)). A consistent criterion identi�es the true model with a probability that approaches
1 in large samples when a set of candidate models contains the true model. An e�cient
criterion selects the model so that its average squared error is asymptotically equivalent to
the minimum o�ered by the candidate models when the true model is approximated by a
family of candidate models. Detailed discussions on e�ciency and consistency can be found
in Shibata (1981, 1984), Li (1987), Shao (1997), McQuarrie and Tsai (1998), and Arlot and
Celisse (2010).

Stone (1977) shows that the AIC is asymptotically equivalent to Leave-One-Out CV.
Both of these criteria are based on the Kullback-Leibler information criteria (Kullback and
Leibler, 1951). While the BIC, which is based on the Bayesian posterior probability, is
asymptotically equivalent to v-fold CV, where v = n[1 − 1/(log(n) − 1)]. Actually, it is
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well-known that CV on the original models behaves somewhere between AIC and BIC,
depending on the data splitting ratio (Shao, 1997). In Section 5, we will compare the
performance of these three criteria when the extended dgLARS method is involved as a
variable selection method. The dgLARS approach involves the choice of a tuning parameter
for variable selection. The selection of the tuning parameter γ is critically important because
it determines the dimension of the selected model. A proper tuning parameter can improve
the e�ciency and accuracy for variable selection (Chen et al., 2014). As an all-round option,
the k-fold CV has always been a popular choice, especially in the early years. In the present
paper, we use the k-fold CV deviance for the extended dgLARS, so that, data are randomly
split into k arbitrary equal-sized subsets L1, L2, . . . , Lk and each subset Lv, v = 1, . . . , k,

is used as an validation data set Lv = (y
(v)
nv ,X

(v)
nv×p) consisting of nv sample points (and

its complement Lcv is the v
th training data set consisting of the remaining nt observations,

where nv+nt = n) to evaluate the performance of each of the models �tted to the remaining
(k − 1)/k of the data, Lcv. The unscaled residual deviance D(., .) of the predictions on the
validation data set Lv is computed and averaged for the k validation subsets;

CV (γ) =
1

k

k∑
v=1

D(y(v), µ̂(v)), (18)

where µ̂(v) = g−1(X(v)β̂Av(γ)) and β̂Av(γ) is selected by Lv. The idea will be to select the
model with the lowest average CV deviance.

Classical information criteria such as the AIC and BIC can also be used. We use the
AIC(γ) and BIC(γ) for the extended dgLARS written as

AIC(γ) = −2`(βA(γ), φ;y) + 2 (k(γ) + 1) , (19)

and

BIC(γ) = −2`(βA(γ), φ;y) + log(n)(k(γ) + 1) , (20)

where k(γ) = |A(γ)| is an appropriate degree of freedom that measures complexity of the
model with the tuning parameter γ. As it can be seen, the selection criteria 19 and 20
rely heavily on the dispersion parameter which has an important impact on them. Since
the log-likelihood function `(β(γ), φ;y) depends on the unknown dispersion parameter, an
estimator (e.g., 17) is needed in order to evaluate these criteria, and as a result k(γ) becomes
k(γ) + 1 in the penalty term (Wood, 2006). In Sections 4 and 5, we will use γ̂AIC , γ̂BIC and
γ̂CV , where

γ̂AIC = arg min
γ∈R+

AIC(γ),

γ̂BIC = arg min
γ∈R+

BIC(γ),

γ̂CV = arg min
γ∈R+

CV (γ).

The concept of degrees of freedom, which is often used for measurement of model com-
plexity, plays an important role in the theory of linear regression models. This concept is
involved in various model selection criteria such as the AIC and BIC. Within the classical
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theory of linear regression models, it is well known that the degrees of freedom are equal
to the number of covariates but for non-linear modelling procedures this equivalence is not
satis�ed. Generalized degrees of freedom (GDF) is a generic measure of model complexity
for any modeling procedure. It accounts for the cost due to both model selection and param-
eter estimation. For the dgLARS estimator, Augugliaro et al. (2013) proposed the notion of
generalized degrees of freedom (GDF) to de�ne an adaptive model selection criterion. The
authors showed that the cardinality of the active set, k(γ) = |A(γ)|, is a biased estimator
of the generalized degrees of freedom when the model is a logistic regression model, and
also proposed a possible estimator of the GDF when it is possible to compute the MLE of
the considered GLM. In general, gdf(γ) is a function of the tuning parameter γ, so that
gdf(0) ≈ p. This estimator for a general GLM is given by

ĝdf(γ) = tr{J−1A (β̂A(γ)) IA(β̂A(γ), β̂A(0))}, (21)

where JA(β̂A(γ)) is the unscaled observed Fisher Information matrix evaluated at the point
β̂A(γ) which has elements

Jajak(β̂A(γ)) =
n∑
i=1

xiaj xiak
V (µi)

{(
∂µi
∂ηi

)2

+ (yi − µi)
(
∂V (µi)/∂µi
V (µi)

·
(
∂µi
∂ηi

)2

− ∂2µi
∂η2i

)}
,

and IA(β̂A(γ), β̂A(0)) is an unscaled matrix with elements

Iajak(β̂A(γ), β̂A(0)) =
n∑
i=1

xiaj xiak
V (µi(β̂A(0)))

V (µi(β̂A(γ)))2

(
∂µi(β̂A(γ))

∂ηi

)2

,

where µi(β̂A(0)) is the maximum likelihood estimate of µi(β), and ηi = g(µi(β̂A(γ))). Note

that, the proposed estimator (21) does not depend on φ. In general, ĝdf(γ) is di�erent
from k(γ). It can be used, instead of k(γ), in the penalty term of (19) and (20) to have

alternative criteria, namely, AIC∗(γ) = −2`(βA(γ), φ;y) + 2 (ĝdf(γ) + 1) and BIC∗(γ) =

−2`(βA(γ), φ;y) + log(n)(ĝdf(γ) + 1).
Although φ̂P (γ) given in (17) can be used for estimating φ to obtain the criteria AIC(γ),

BIC(γ) and k-fold CV (γ), in the next section we provide another estimation of φ which is
�xed on γ.

3 An stable estimation of dispersion parameter

In Section 2.4, we de�ned a Pearson-type path estimator of the dispersion parameter φ.
Combined with model selection in Section 2.5 this could be used to estimate φ overall, but it
is known that in shrinkage situations this under-estimates φ. In this section, we �rst propose
an improved estimator of the dispersion parameter for high-dimensional generalized linear
models, called General Re�tted Cross-Validation (GRCV) estimator. Then, we present an
algorithm to improve the proposed GRCV estimator to obtain a more stable and accurate
estimator based on the GRCV estimator.
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3.1 General Re�tted Cross-Validation estimator of dispersion

Fan et al. (2012) introduced a two-stage re�tted procedure for estimating the dispersion pa-
rameter in a linear regression model (variance in linear model) via a data splitting technique
called re�tted cross-validation (RCV), to attenuate the in�uence of irrelevant variables with
high spurious correlations in the linear models. The RCV estimator is accurate and stable,
and insensitive to model selection considerations and the size of the model selected.

For generalized linear models, we propose a general re�tted procedure called general
re�tted cross-validation (GRCV) which is based on four stages. The idea of the GRCV

method is as follows; We split the data (yn,Xn×p) randomly into two halves (y
(1)
n1 ,X

(1)
n1×p)

and (y
(2)
n2 ,X

(2)
n2×p), where n1 + n2 = n. Without loss of generality, for notational simplicity,

we assume that the sample size n is even 2, and n1 = n2 = n/2. In the �rst stage, our high
dimensional variable selection method, extended dgLARS, is applied to these two data sets
separately, to estimate whole solution path, which yields β̂Ai(γ) selected by (y(i),X(i)) where
|Ai| ≤ min(n2 − 1, p), γ ∈ [0, γmax], and i = 1, 2. In the second stage, by using the Pearson-

like dispersion estimate (17) on the two data sets separately, φ̂(i)
P

(γ) where i = 1, 2, we

determine two small subsets of selected variables Âi where Âi ⊆ Ai and i = 1, 2, by model
selection tools such as the AIC, on each data set. Although all three criteria mentioned
in the present paper are available in our package, we recommend using the AIC criterion
because the goal is to have a accurate prediction in the third stage (Aho et al., 2014). In
the third stage, the MLE method is applied to each subset of the data with the variables

selected by another subset of the data, namely (y(2),X
(2)

Â1
) and (y(1),X

(1)

Â2
), to re-estimate

the coe�cient β. Since the MLE may not always exist in GLMs, in this stage we propose to
use the dgLARS method to estimate the coe�cients based on the selected variables, β̂Â1

(γ0)

and β̂Â2
(γ0), where γ0 is close to zero, because the dgLARS estimate β̂A(0) is equal to the

MLE of βA. Therefore, we apply MLE to the �rst subset of the data with the variables

selected by the second subset of the data (y(1),X
(1)

Â2
) to obtain β̂Â2

(0), and similarly, we

use MLE again for the second data set with the set of important variables selected by the

�rst data set (y(2),X
(2)

Â1
) to obtain β̂Â1

(0). The re�tting in the third stage is fundamental

to reduce the in�uence of the spurious variables in the second stage of variable selection.
Finally, in the fourth stage, we estimate φ by averaging the two following estimators on the

two data sets (y(2),X
(2)

Â1
) and (y(1),X

(1)

Â2
);

φ̂1(Â2) =
1

n
2 − |Â2|

n
2∑
i=1

(
y
(1)
i − g−1

(
(x

(1)>
i,Â2

β̂Â2
(0)
))2

V
(
g−1

(
x
(1)>
i,Â2

β̂Â2
(0)
)) ,

and

φ̂2(Â1) =
1

n
2 − |Â1|

n
2∑
i=1

(
y
(2)
i − g−1

(
x
(2)>
i,Â1

β̂Â1
(0)
))2

V
(
g−1

(
x
(2)>
i,Â1

β̂Â1
(0)
)) ,

2If n is odd, we can consider |n1 − n2| = 1, and then we randomly apply one of the member of the larger
data set to the smaller data set to both have the same dimension, n1 = n2 = n/2.
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where x
(l)

i,Âj
is the ith row of the lth subset of the data X

(l)

Âj
, |Âj | = #{k : (β̂Âj (γ))k 6= 0},

β̂Âj (γ) is the extended dgLARS estimator at γ, so that γ ∈ [0, γmax], and β̂Âj (0) is the

MLE estimator. The GRCV estimator is just the average of these two estimators:

φ̂GRCV (Â1, Â2) =
φ̂1(Â2) + φ̂2(Â1)

2
. (22)

In this procedure, although Â1 includes some extra unimportant variables besides the
important variables, these extra variables will play minor roles when we estimate φ by using
the second data set along with re�tting since they are just some random unrelated variables
over the second data set. Furthermore, even when some important variables are missed in
the second stage of model selection, they have a good chance of being well approximated
by the other variables selected in the second stage to reduce modeling biases. It should be
mentioned that, by applying a variable selection tool, the GRCV estimator is sensitive to
the model selection tool and the size of the model selected.

In the meantime, we can extend the GRCV technique to get a more accurate estimator.
The �rst extension is to use a k-fold data splitting technique rather than twofold splitting.
We can divide the data into k groups and select the model with all groups except one, which
is used to estimate the dispersion with re�tting. Although there are now more data in the
second stage, there are only n = k data points in the third stage for re�tting. This means
that the number of variables that are selected in the second stage should be much less than
n = k. That is why we use k = 2. The second extension is using a repeated data splitting
procedure; since there are many ways to split the data randomly, many GRCV estimators
can be obtained. To reduce the in�uence of the randomness in the data splitting we may
take the average of the resulting estimators. For an extensive review of the RCV method,
for the linear models, the reader is referred to Fan and Lv (2008) and Fan et al. (2012).

3.2 An iterative GRCV algorithm

In Section 3.1, we proposed the GRCV estimator φ̂GRCV to estimate φ. In this section,
we show how the GRCV estimator can be improved to have numerically more stable and
accurate behavior. We propose an iterative algorithm which at convergence will also result
in more stable and accurate model selection behavior. This algorithm yields a new estimate
for φ which we call it the MGRCV estimate.

As mentioned in Section 3.1 to obtain the GRCV estimate, in the third stage we need to
calculate the value of the AIC, BIC or some k-fold CV criteria which depend on the unknown
dispersion parameter itself. Hence, the dispersion parameter has to be estimated and for
this we used the Pearson-type estimator φ̂P (γ) given in (17) inside the extended dgLARS
method during the calculation of the solution path. To improve the accuracy of the estimator
φ̂GRCV , we propose an algorithm which repeats the process of �nding the GRCV estimate

iteratively, such that for the (k + 1)th iteration the kth GRCV estimate (φ̂
(k)

GRCV
) is used to

compute the new (k + 1)th GRCV estimate (φ̂
(k+1)

GRCV
), and so on. Therefore, by using this

algorithm, the GRCV estimator uses the Pearson-type estimate inside its process only for
the �rst time, and after that the algorithm applies the obtained GRCV estimates instead
of the Pearson-type estimate inside the extended dgLARS algorithm. Since the estimate
contains some random variation due to the random CV splits, D1 and D2, the algorithm
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Table 2: Pseudo code for the iterative algorithm to stabilize the GRCV estimator with T
iterations.

Step Algorithm

1 pearson← 1

2 grcv.vec← 0

3 i← 1

4 while i ≤ T
5 split the data into two random groups: D1 and D2

6 apply the extended dgLARS to D1 and D2 separately to obtain whole

solution paths β̂A1
(γ) and β̂A2

(γ) (�rst stage)

7 if pearson = 1 then

8 use (17) to compute φ̂(1)
P

(γ) and φ̂(2)
P

(γ) for D1 and D2

9 use φ̂(1)
P

(γ) and φ̂(2)
P

(γ) to do model selection on D1 and D2, respectively,

to obtain Â1 and Â2 (second stage)

10 pearson← 0

11 else

12 use φ̂GRCV (Â1, Â2) for model selection on each D1 and D2 to obtain Â1

and Â2 (second stage)

13 end if

14 apply again extended dgLARS to D1 and D2 separately to obtain β̂Â1
(0)

and β̂Â2
(0) (third stage)

15 use (22) to compute φ̂GRCV (Â1, Â2) (fourth stage)

16 grcv.vec[ i ]← φ̂GRCV (Â1, Â2)

17 i← i+ 1

18 end while

19 φ̂MGRCV ← median( grcv.vec )

20 use φ̂MGRCV to do model selection

will not numerically converge, one in practice simply needs to de�ne a maximal number
of iterations T (which should not be too large). Therefore we propose as �nal GRCV
estimate the median of the T GRCV estimates, for which we call it MGRCV estimate,
φ̂MGRCV = median{φ̂(1)

GRCV
, . . . , φ̂

(T )

GRCV
}. The MGRCV estimate φ̂MGRCV is more stable and

accurate than the �rst estimate φ̂
(1)

GRCV
. Finally, the overall model selection is performed

using φ̂MGRCV .
Table 2 shows how this algorithm works. It should be mentioned that, φ̂(1)

P
(γ) and φ̂(2)

P
(γ)

are vectors of the estimates calculated during the solution path, while φ̂GRCV (Â1, Â2) is a
�xed number. In order to investigate the performance of the algorithm we test it on simulated
data in Section 4.2.
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4 Simulation studies

The simulation studies are divided into two parts: the studies on the extended dgLARS
method and the GRCV estimator. The �rst part is devoted to examining the performance
of the extended dgLARS method, which uses the improved PC algorithm, and two other
popular path-estimation methods. The second part is devoted to investigating the perfor-
mance of the GRCV estimator based on the iterative GRCV algorithm.

4.1 Comparison of extended dgLARS with other methods

In this section, we compare the behavior of the extended dgLARS method obtained by
using the improved PC algorithm (by a new package 3) with two of the most popular
sparse GLM packages; dglars: the dgLARS method obtained by using the PC algorithm
(Augugliaro, 2014b), and glmpath: the L1 Regularization Path method obtained by using
the PC algorithm developed by Park and Hastie (2007b). The dglars package is available
for the binomial and Poisson families with the canonical link function, and the glmpath

package is available for the Gaussian, binomial and Poisson families with the canonical
link function. To make the results comparable, the simulation study is based on a Logistic

regression model (binomial family with logit link), with sample size n = (50, 200) and three
di�erent values of p, namely p = (10, 100, 500). The large values of p are useful to study the
behavior of the methods in a high dimensional setting. The study is based on three di�erent
con�gurations of the covariance structure of the p predictors, such that X1,X2, . . . ,Xn∗

are sampled from an N(0,Σ) distribution, where the diagonal elements of Σ are 1 and the
o�-diagonal elements follow corr(Xi;Xj) = ρ|i−j|, where Xi and Xj are the ith and jth

covariates respectively, i 6= j and ρ = (0, 0.5, 0.75). Only the �rst �ve predictors are used to
simulate the binary response variable. The intercept term is equal to one and the non-zero
coe�cients are equal to two. We simulate n∗ = 100 data sets and let the algorithms compute
the entire path of the coe�cient estimates.

In Table 3 we report the mean number of the points of the whole solution curve (q) and
the area under the receiver operating characteristic (ROC) curve (AUC, average AUC over
100 simulations), as the performance measure. A higher AUC indicates a better performance.
The results show that, in the dgLARS method with both the original PC (PC) and improved
PC (IPC) algorithms, when the number of predictors is su�ciently large, the mean number
of the points of the solution curve (q) decreases as the correlation (ρ) increases. However,
for the L1 Regularization Path method, when n < p, q decreases as ρ increases, and when
n > p then q increases as ρ decreases. The dgLARS method obtained by using the IPC
algorithm, in all scenarios, has the lowest q identi�ed by the bold values, which leads to
potentially computational saving.

Note that since the dgLARS method obtained by using the improved PC and original
PC algorithms compute the same solution curve, their ROC curves and then the values of
their AUC are equal, as it can be seen in the corresponding AUC columns of the dgLARS
(IPC) and dgLARS (PC). The AUC value of the dgLARS (PC or IPC) method is always
greater or equal than the L1 Regularization Path method. In fact, without depending on p,
when the sample size n is small, the dgLARS method has a greater AUC value, and when
the sample size is large the AUC value of all methods are equal to one. In other word, when

3This package is being merged with the original package dglars.
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Table 3: Results of the simulation study based on the Logistic regression model; For each
p, n and ρ we report the mean number of the points of the entire solution curve (q) and the
area under the ROC curve (AUC). Bold values identify the lowest q for each scenario.

dgLARS (IPC)∗ dgLARS (PC)∗ glmpath

p n ρ q AUC q AUC q AUC

0 21.06 0.969 49.04 0.969 22.95 0.968

10

50 0.5 21.96 0.970 44.59 0.970 27.78 0.968

0.75 22.39 0.927 41.05 0.927 30.53 0.935

0 17.99 1.000 46.65 1.000 18.53 1.000

200 0.5 18.61 1.000 47.13 1.000 19.48 1.000

0.75 19.68 0.999 45.67 0.999 19.68 0.999

0 59.66 0.955 84.87 0.955 106.3 0.944

100

50 0.5 51.00 0.969 69.12 0.969 93.42 0.964

0.75 42.15 0.930 56.24 0.930 83.32 0.930

0 125.5 1.000 187.2 1.000 392.0 1.000

200 0.5 107.1 1.000 155.9 1.000 527.1 1.000

0.75 96.33 1.000 143.1 1.000 846.2 1.000

0 70.23 0.912 93.16 0.912 128.7 0.883

500

50 0.5 62.78 0.952 77.78 0.952 119.0 0.941

0.75 53.12 0.916 63.91 0.916 111.5 0.905

0 171.2 1.000 212.1 1.000 322.7 1.000

200 0.5 139.7 1.000 174.2 1.000 273.3 1.000

0.75 116.9 1.000 145.9 1.000 248.7 1.000
* The dgLARS (PC) refers to the predictor-corector implementation of Augugliaro et al. (2013), whereas
dgLARS (IPC) refers to the improved predictor-corector algorithm proposed in the present paper.

n is e�ciently large without considering the number of predictors (p > n or p < n) the value
of AUC for the methods is 1.

In Figure 2(a) we show the ROC curves (1− speci�city versus sensitivity, computed by
averaging over the 100 simulations) corresponding to the dgLARS (by using any of the PC
or IPC algorithms) and L1 Regularization Path methods with p = 500, n = 50 and ρ = 0
based on the Logistic regression model. Also, in Figure 2(b), the mean number of the points
of the solution curve (q), computed for these three algorithms, are showed as a function of
p = (10, 100, 500) with n = 50 and ρ = 0. What we mentioned above about q can be clearly
seen in this �gure.

However, the results related to the number of the covariates included in the �nal model
is not reported for the sake of brevity, we point out that the dgLARS method selects sparser
models than the L1 Regularization Path method. At the end of this section, it should be
mentioned that the dgLARS method does not use explicitly a penalized function, so that this
method is based on a theory completely di�erent from the L1 Regularization Path method
(L1-penalized MLE) implemented in the glmpath package.
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Figure 2: (a) ROC curve and (b) the mean number of the points of the solution curve q
computed by the dgLARS method with the PC and IPC algorithms, and the L1 Regular-
ization Path method from the simulation study based on the Logistic regression model with
n = 50 and ρ = 0.

4.2 Comparison of dispersion estimators

This section is divided into two parts; �rst, in order to show how the GRCV estimator
of φ and its proposed algorithm work, one simple, but illustrative, example which is a
part of a simulation study is presented. Second, we compare the performance of the three
dispersion estimators; Pearson (φ̂P ), GRCV (φ̂GRCV ) and MGRCV (φ̂MGRCV , the median of
the estimators obtained from the iterative GRCV algorithm).

In this simulation study, high-dimensional data are generated according to a Gamma
regression model with a non-canonical log link, with the shape parameter equal to ν =
φ−1 = 103 and the scale parameter µi

ν , where µi = exp (x>i β) and x>i = (1, xi1, . . . , xip) is as
ith row of the design matrixXn×(p+1) in which the �rst column is a column of all ones and the
sample size n is 40 and p = 100 (p > n). We simulate 50 data sets (y1,X1), . . . , (y50,X50),
such that Xi is sampled from an N(0,Σ) distribution, where the diagonal elements of Σ are
1 and the o�-diagonal elements are 0, and only the �rst two predictors (d = 2) are used to
simulate the response variable yi,

β = ( 0︸︷︷︸
Intercept

, 1 , 2︸ ︷︷ ︸
2

, 0 , . . . , 0︸ ︷︷ ︸
98

).

We show the result of the simulation study in two pictures (a) and (b) in Figure 3.

Figure 3(a) displays the procedure of obtaining the GRCV estimates φ̂
(k)

GRCV
, where k =

(1, 2, . . . , 30), by using the iterative GRCV algorithm, described in Table 2, with only the �rst

data set (y1,X1). The values of the 30 GRCV estimates, {φ̂(1)

GRCV
, . . . , φ̂

(30)

GRCV
}, computed
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Figure 3: (a) GRCV estimates, φ̂
(k)

GRCV
, produced by the iterative GRCV algorithm based on

a simulated data set from Gamma model. (b) ROC curve of the extended dgLARS method
computed by averaging over the 50 simulations along with some selected tuning parameters.

by the iterative GRCV algorithm, are showed as a function of the number of iterations k.
What we mentioned in Section 3.2 can be clearly seen in this �gure. It can be seen that,
after two iterations, the estimate appears to have improved signi�cantly and converges to
the true value of the dispersion parameter φTrue = 0.001, so that the median of the GRCV
estimates, φ̂MGRCV , is 0.0012. It shows that the proposed iterative algorithm can improve
the accuracy of the GRCV estimator.

In Figure 3(b), we plot the ROC curve ( computed by averaging over the 50 simulations)
corresponding to the extended dgLARS method and present the area under the ROC curve
(average AUC over 50 simulations). As seen in the �gure, the average AUC is 0.999 which
means that the accuracy of the model selected by the extended dgLARS method is quite
high. We have reported this result for low- and high-dimensional datasets in the previous
section (in Table 3).

Moreover, in the ROC curve in Figure 3(b), we also show the average values of the
tuning parameter selected by the BIC criterion ¯̂γBIC (computed by averaging γ̂BIC over 50
simulations) by means of the dispersion estimators φ̂P , φ̂GRCV and φ̂MGRCV , and also the
true dispersion parameter φTrue . As Aho et al. (2014) noted, when d � n, where d (is 2
here) is the number of parameters in the true mode, then the BIC criterion is appropriate.
That is why we prefer γ̂BIC to γ̂AIC and γ̂CV . We use (20) in which the number of non-zero
estimated coe�cients k(γ) is used as the degree of freedom to calculate the values of the

BIC criterion. The same results are obtained if we use the BIC based on the ĝdf(γ), because
the same �nal model is identi�ed in both cases (this result is not reported for the sake of
brevity).

The point on the ROC curve in the most upper left corner has the highest sensitivity
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and speci�city. A higher sensitivity and speci�city indicates superior performance among
the tuning parameters obtained by di�erent dispersion estimators. Our results demonstrate
that all three �nal models selected by the chosen tuning parameter ¯̂γBIC , obtained by the
three dispersion estimators φ̂P , φ̂GRCV and φ̂MGRCV , have the highest sensitivity (100%),
while the speci�cities of them are 83%, 93% and 97%, respectively. Although these �nal
models selected by means of the three dispersion estimators have a high sensitivity and
speci�city, the model selected by means of the MGRCV estimator φ̂MGRCV has the best
performance. That means, the dispersion estimator φ̂MGRCV is a good compromise between
speci�city and sensitivity. The results also show that our proposed GRCV estimator has a
better performance than the Pearson estimator. In addition, since the MGRCV estimate
φ̂MGRCV has a better performance than the GRCV estimate φ̂GRCV , the iterative GRCV
algorithm can improve the GRCV estimate to have a more stable and accurate estimate,
which proves our claim in Section 3.2.

As a result, the results indicate that the extended dgLARS method with φ̂MGRCV provides
a highly speci�c and sensitive model for high-dimensional GLMs.

5 Application to a diabetes dataset

In this section we consider the benchmark diabetes data used in Efron et al. (2004) and
Ishwaran et al. (2010), among others. The response y is a quantitative measure of disease
progression for patients with diabetes one year later. The data includes 10 baseline measure-
ments for each patient, such as age, sex (gender, which is binary), bmi (body mass index),
map (mean arterial blood pressure), and six blood serum measurements: ldl (high-density
lipoprotein), hdl (low-density lipoprotein), ltg (lamotrigine), glu (glucose), tc (triglyceride)
and tch (total cholesterol), in addition to 45 interactions and 9 quadratic terms, for a total of
64 variables for each patient, so that this data has n = 442 observations on p = 64 variables.
The aim of the study is to identify which of the covariates are important factors in disease
progression. Since the original diabetes data is a low-dimensional data (p = 64), we add a
thousand noise variables to the original data to also have a high-dimensional dataset with
p = 1064. These low- and high-dimensional diabetes data can be found in our package.

In the recent literature, variable selection techniques, such as LARS and Spike and
Slab, were used in a linear regression model applied to this diabetes data. While we spot
from Figure 4(a) that, surprisingly, the response y is markedly right-skewed which can arise
from a non-normal distribution, for example, a Gamma (or Inverse Gaussian) distribution.
Therefore, we �t a Gamma regression model for the (low- and high-dimensional) diabetes
data and use the extended dgLARS method by means of the proposed algorithm (IPC).
According to the results of the previous section (Section 4.2), the MGRCV estimate φ̂MGRCV

is applied as the dispersion estimator to the data.
Since we do not have prior information on the link function, before starting analyzing

we have to choose between three of the most commonly used link functions inverse, log
and identity. Therefore, for each of the low- and high-dimensional diabetes data, we �t the
Gamma model with these three link functions and then choose the most suitable link function
in two ways. First, we plot the adjusted dependent variable z = η̂+(y− µ̂)(∂η/∂µ) against
the estimated linear predictor η̂ = Xβ̂A(γ), suggested by McCullagh and Nelder (1989),
where µ̂ = g−1(Xβ̂A(γ)) is the �tted value, β̂A(γ) is the extended dgLARS estimator at γ,
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Figure 4: (a) Histogram of the response y for the diabetes data. (b) Plot of z versus η̂ with
the log link function, computed for the low-dimensional diabetes data, p = 64.

and ∂η/∂µ can be found in Table A1 in Appendix A. The plot should be linear, departure
from linear suggests a poor choice of link function (Littell et al., 2002). Second, after �tting
these three models (the Gamma model with the three link functions), we choose the best
model by comparing the BIC values to see which link function would be more suitable for
the data.

The results based on the low- and high-dimensional diabetes data are reported in Sections
5.1 and 5.2, respectively.

5.1 Low-dimensional diabetes data

For the low-dimensional scenario, when p < n, we consider the diabetes data with n = 442
and p = 64 used in Efron et al. (2004). For this dataset, we plotted the adjusted dependent
variable z versus the estimated linear predictor η̂ for the Gamma model with the inverse,
log and identity link functions, but for the sake of brevity we only show the plot related to
the log link (Figure 4(b)). The plots illustrate that while there are scatter in all three plots,
there are no overt departure from linearity and hence no obvious evidence of the poor choice
of these link functions. In addition, the results (not reported) show that, the model with
the log link performs the best among these models with BIC of 4806, and the model with
the identity link (with BIC 4814) �ts better than the model with the inverse canonical link
(with BIC 4829). Finally, we �nd out that the log link function is the most suitable link
for the low-dimensional diabetes data and we choose it, in the following, as the selected link
function.

We �rst apply a number of variable selection methods such as LARS (Efron et al., 2004),
LASSO (Tibshirani, 1996), Ridge (Hoerl and Kennard, 1970), Elastic Net (Zou and Hastie,
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Table 4: The sequences of the top 20 predictors selected by the LARS, LASSO, Ridge,
Elastic Net, Spike and Slab and dgLARS algorithms obtained for low-dimensional diabetes
data.

Algorithm Selected Variables

LARS 3 9 4 7 37 20 19 12 22 28 2 10 27 11 30 46 33 52 24 29
LASSO 3 9 4 7 37 20 19 12 22 28 2 10 27 11 30 46 33 52 24 29
Ridge 3 9 4 8 7 10 12 5 1 6 13 43 24 37 19 63 64 16 39 17
Elastic Net 3 9 4 7 37 12 20 19 10 22 28 2 27 30 11 52 46 33 24 29
Spike and Slab 3 9 4 7 2 20 37 19 12 27 52 11 10 22 63 30 24 58 43 5
dgLARS (log) 3 9 4 7 20 2 28 60 11 46 19 29 18 30 22 10 37 24 58 25

dgLARS (inverse) 3 9 4 7 20 60 2 46 18 10 42 28 11 19 30 35 29 40 24 63

2005a), and Spike and Slab (Ishwaran et al., 2010) by using the lars (Hastie and Efron,
2013), glmnet (Friedman et al., 2010b) and spikeslab (Ishwaran et al., 2010b) packages,
and then compare the results to the results obtained from the proposed dgLARS method
implemented by our package. Note that, for the dgLARS method we use the Gamma family
in our package, while this family is not available in other packages, so that we �t the Gaussian
family to the data to be able to use these packages.

The top 20 selected variables obtained by these algorithms (without considering any
model selection criterion) are reported on Table 4, where we used type =`lar' and type =`lasso'

in the lars package for the LARS and LASSO methods, respectively, and for the Ridge and
Elastic Net methods we used α = 0.001 and α = 0.5 in the glmnet package, respectively.
For the Spike and Slab method we considered set.seed(112358) in the spikeslab package,
and for the dgLARS method we �tted the Gamma model with the log link and also the
canonical inverse link, so that for this dataset we calculated the dispersion estimates based
on each link function as φ̂

log

MGRCV
= 0.140 and φ̂

inverse

MGRCV
= 0.145.

When we compare the results of the dgLARS Gamma method to the results obtained
from other algorithms, we �nd out the remarkable results. From Table 4 we can see that,
the variables selected by the LARS, LASSO and Elastic Net methods are the same, and
almost in all models the �rst 4 variables (3, 9, 4 and 7) are the same. Moreover, importantly,
all models (except the dgLARS) have the same selected variables just in the di�erent order.
While all algorithms (except the dgLARS) select the covariates 12, 27, 33 and 52 in the
�rst 20 variables, our proposed algorithm does not select them among the top 20 variables.
Instead, the dgLARS algorithm by the Gamma model selects several new other variables
(indicated in bold in Table 4) which none of the other algorithms do. For instance, the
variables 60, 18 and 25 are selected into the �rst 20 selected variables by the dgLARS Gamma
model with the log link function, and the variables 60, 18, 42, 35 and 40 are selected when
the link function is the inverse. As a result, the extended dgLARS method based on a
Gamma model, with the log link function, �nds out that the variables "hdl : ltg", "ltg�2"
and "map : ltg" (60, 18, and 25) are more important factor in disease progression than the
variables "bmi�2", "age : ltg", "sex : hdl" and "tc : tch" (12, 27, 33 and 52).

To identify and rank the most important variables, by the dgLARS Gamma regression
model with the log link function, we use three model selection criteria; cross-validation
deviance (CV), AIC and BIC, so that in Table 5, we report the sequence of the top 20
variables and their parameter estimates obtained based on all three model selection criteria.
In interpreting the table, we note that the selected variables are those having non-zero
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Table 5: A list of the top 20 selected variables and their parameter estimates obtained
using the dgLARS Gamma method (with log link, ηi = logµi) for low-dimensional diabetes
data. In each criterion, variables selected are those having non-zero coe�cient estimates;
|ACV | = 16, |AAIC | = 16 and |ABIC | = 9.

Variable Coe�cient Estimate

Step Name Number CV AIC BIC

1 bmi 3 3.0757 3.0783 2.9998
2 ltg 9 3.4997 3.5071 3.2909
3 map 4 1.9033 1.9181 1.5009
4 hdl 7 -1.7297 -1.7416 -1.3879
5 age : sex 20 0.9493 0.9551 0.6846
6 sex 2 -1.2282 -1.2489 -0.6400
7 age : glu 28 0.2091 0.2109 0.1542
8 hdl : ltg 60 0.4284 0.4355 0.1377
9 age�2 11 0.2715 0.2815 0
10 map : hdl 46 0.2929 0.3077 0
11 glu�2 19 0.2497 0.2599 0
12 sex : bmi 29 0.1282 0.1380 0
13 ltg�2 18 0.0021 -0.1202 0
14 sex : map 30 0.1087 0.1206 0
15 age : map 22 0.0091 0.0116 0
16 glu 10 0 0 0
17 bmi : map 37 0 0 0
18 age : ldl 24 0 0 0
19 ldl : glu 58 0 0 0
20 map : ltg 25 0 0 0

coe�cient estimates. First, we use a tenfold cross-validation to obtain the tuning parameter
(γ) of the dgLARS Gamma model. Figure 5(a) shows the 10-fold cross-validation deviance
curve as a function of the tuning parameter (γ), where the vertical red dashed line shows the
optimal value of γ, which is γ̂CV = 1.011, with the number of non-zero estimated coe�cients,
which is |ACV | = 16, where ACV = P ∪ A(γ̂CV ) = {m : β̂m(γ̄CV ) 6= 0 ,m = 0, 1, . . . , p}.
Since we consider the protected variables set P contains only the intercept, |P| = b = 1.
Second, by means of the BIC criterion the dgLARS method estimates a Gamma regression
model with a high level of sparsity, so that only |ABIC | = |P ∪ A(γ̂BIC )| = 9 covariates
(i.e.,the intercept plus a subset of 8 parameters) are found to in�uence disease progression,
where γ̂BIC = 1.87. While by using the AIC criterion the number of non-zero estimated
coe�cients is |AAIC | = |P ∪ A(γ̂AIC )| = 16, where γ̂AIC = 0.98 with AIC 4000.

One points should be mentioned here that, for this low-dimensional data set, the number
of the points of the solution curve (q) by using the original PC and improved PC algorithms
are 121 and 82, respectively, which shows that the improved algorithm works faster than
the original one.
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Figure 5: (a) Plot of the 10-fold cross-validation deviance computed for the low-dimensional
diabetes data with p = 64. (b) Plot of z against η̂ computed with the high-dimensional
diabetes data, p = 1064, when the link functions is log.

5.2 High-dimensional diabetes data

For a p larger than n setup, we expanded the original diabetes data to become n = 442 and
p = 1064, so that the 1000 additional variables are in reality just noise. We �t a Gamma
regression model for this high-dimensional data and use the extended dgLARS method by
means of the proposed algorithm (IPC). For the high-dimensional diabetes data, based on
the plots of the adjusted dependent variable z versus the estimated linear predictor η̂ (not
shown here except for the log link, Figure 5(b)), we obtained the same results for all three
considered link functions, but based on the BIC values (not reported here) we chose the
Gamma model with the log link function as the best model. Moreover, for this dataset
we calculated the dispersion estimate based on this model by using the MGRCV estimator
φ̂MGRCV = 0.147.

Figure 6 consists of four images which are outputs of our package. The �gure displays
the dgLARS Gamma solution path, the Rao score path and the CV, AIC and BIC criteria
obtained using the improved PC algorithm and the full data. Like Section 5.1, we consider
three criteria; Firstly, Figure 6(a) shows the 10-fold cross-validation deviance curve in which
the optimal value of the tuning parameter is γ̂CV = 1.77, with the number of non-zero
estimated coe�cients, which is |ACV | = |P ∪ A(γ̂CV )| = 57, where P contains only the
intercept. Secondly, by the BIC model selection criterion the dgLARS method estimates a
Gamma regression model with a high level of sparsity, so that γ̂BIC = 2.76 with BIC of 4817
and |ABIC | = 11 covariates (i.e., the intercept plus a subset (A(γ̂BIC )) of 10 parameters) are
found to in�uence disease progression. While by the AIC model selection criterion, γ̂AIC =
1.79 (with AIC of 4760) and the number of non-zero estimated coe�cients is |AAIC | = 53
(i.e., the subset A(γ̂AIC ) has 52 covariates).
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Figure 6: (a) Plot of the 10-fold cross-validation deviance, (b) Model selection criteria, (c)
Rao score statistics path, (d) Regression coe�cients path for the dgLARS Gamma regression
model for the high-dimensional diabetes data with p = 1000 noise variables.

In addition, we report the sequence of the 25 selected variables and their parameter
estimates based on all three criteria in Table 6. In interpreting the table, we note that
variables starting with �n.� are noise variables and the rest are the original variables.

Using Figure 6 and Table 6 we can see that, while only 4 variables (3, 9, 4 and 7) have
path-pro�les that clearly stand out in all three criteria, signi�cantly these variables are the
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Table 6: The top 25 variables and their parameter estimates obtained using the dgLARS
Gamma method (with log link) for high-dimensional diabetes data. In each criterion, vari-
ables selected are those having non-zero coe�cient estimates; |ACV | = 57, |AAIC | = 53 and
|ABIC | = 11.

Variable Coe�cient Estimate

Step Name Number CV AIC BIC

1 bmi 3 3.0794 3.0762 2.9489
2 ltg 9 3.3787 3.3746 3.0971
3 map 4 1.4391 1.4337 1.0788
4 hdl 7 -1.2253 -1.2228 -0.9491
5 n.312 376 0.0551 0.0548 0.0387
6 n.545 609 0.0320 0.0318 0.0155
7 n.543 607 -0.0341 -0.0338 -0.0142
8 age : sex 20 0.6080 0.6033 0.2545
9 n.423 487 0.0113 0.0112 0.0034
10 n.770 834 0.0177 0.0175 0.0036
11 n.657 721 0.0115 0.0113 0
12 sex 2 -0.4608 -0.4550 0
13 n.636 700 -0.0170 -0.0167 0
14 n.283 347 0.0124 0.0123 0
15 n.337 401 -0.0162 -0.0160 0
16 n.404 468 0.0090 0.0088 0
17 n.62 126 -0.0121 -0.0118 0
18 n.988 1052 0.0089 0.0086 0
19 age : glu 28 0.1465 0.1440 0
20 n.71 135 -0.0090 -0.0088 0
21 n.160 224 -0.0083 0.0083 0
22 n.635 699 -0.0080 -0.0087 0
23 n.466 530 -0.0085 -0.0083 0
24 n.612 676 -0.0084 -0.0082 0
25 n.969 1033 -0.0045 -0.0045 0

top 4 from our previous analysis obtained using the low-dimensional data (Section 5.1).
It is interesting that 3 other non-noise variables, �age : sex�, �sex� and �age : glu� (with
variable numbers: 20, 2 and 28) are in the top 25 variables, so that in Table 5, they have
the variable number: 5, 6 and 7, respectively, and along with �bmi�,�ltg�,�map� and �hdl�
are the �rst 7 variables in Table 5. Regardless of the criteria used, when we inspected the
�rst 100 variables selected by the improved PC algorithm, we found that 8 were from the
original 64 variables, and 7 were from the top 25 variable from Table 6. This demonstrates
stability of the improved PC algorithm even in ultra-high dimensional problems.

Moreover, for this data set the number of the points of the solution curve by using the
original PC and improved PC algorithms are 482 and 465, respectively.
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6 Conclusions

In this paper we extended the dgLARS method for a GLM to a larger class of the expo-
nential family, namely the exponential dispersion family (when the dispersion parameter,
φ, is unknown), and obtained the general framework of the dgLARS estimator for general
GLM with general link function. We implemented explicitly the method for Gamma and
Inverse Gaussian with a variety of link functions. To estimate the dispersion parameter we
�rst presented an classical estimator which can be used during the solution path, and then
proposed a new method to do high-dimensional inference on the dispersion parameter. We
also proposed an iterative algorithm that produces a more stable and accurate estimation.
Moreover, we proposed an improved version of the predictor-corrector (PC) algorithm to
compute the solution curve. The improved PC algorithm allows the dgLARS method to be
implemented using less steps, greatly reducing the computational burden because of reduc-
ing the number of points of the solution curve. The method was compared well with some
well-known methods where can be used. The results show that the improved PC algorithm
is better and quicker than the original PC algorithm, and now the dgLARS method can be
used for a variety of distributions with di�erent types of the canonical and non-canonical
link functions.
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Appendices

A Required equations of extended dgLARS Gamma and In-

verse Gaussian

Table A1 provides the list of equations required to obtain the general framework of the
extended dgLARS estimator for the Gamma and Inverse Gaussian GLM with general link
functions.

Table A1: Required Equations for obtaining extended dgLARS estimator based on Gamma
(G) and Inverse Gaussian (IG) regressions, where i = 1, . . . , n and m,n = 1, . . . , p.

Equations fYi(yi)
g(µi) = ηi = x>i β

− 1
2µ2i

∗ − 1
µi

∗∗
log(µi) µi

∂m`(β, φ;y)
G - ν

n∑
i=1

(yi − µi) xim ν
n∑
i=1

(yi−µi)
µi

xim ν
n∑
i=1

(yi−µi)
µ2i

xim

IG λ
n∑
i=1

(yi − µi) xim λ
n∑
i=1

(yi−µi)
µi

xim λ
n∑
i=1

(yi−µi)
µ2i

xim λ
n∑
i=1

(yi−µi)
µ3i

xim

∂mn`(β, φ;y)
G - −ν

n∑
i=1

xim xin µ
2
i −ν

n∑
i=1

yi
µi
xim xin −ν

n∑
i=1

(
2yi
µ3i
− 1

µ2i

)
xim xin

IG −λ
n∑
i=1

xim xin µ
3
i −λ

n∑
i=1

xim xin yi −λ
n∑
i=1

(
2yi
µ2i
− 1

µi

)
xim xin −λ

n∑
i=1

(
3yi
µ4i
− 2

µ3i

)
xim xin

Imn(β, φ)
G - ν

n∑
i=1

xim xin µ
2
i ν

n∑
i=1

xim xin ν
n∑
i=1

xim xin
µ2i

IG λ
n∑
i=1

xim xin µ
3
i λ

n∑
i=1

xim xin µi λ
n∑
i=1

xim xin
µi

λ
n∑
i=1

xim xin
µ3i

∂mIn(β, φ)
G - 2 ν

n∑
i=1

xim x2in µ
3
i 0 −2 ν

n∑
i=1

xim x2in
µ3i

IG 3 λ
n∑
i=1

xim x2in µ
5
i λ

n∑
i=1

xim x2in µ
2
i −λ

n∑
i=1

xim x2in
µi

−3 λ
n∑
i=1

xim x2in
µ4i

rm(β, φ)
G -

√
ν

n∑
i=1

(yi−µi) xim√
n∑
i=1

x2im µ2i

√
ν

n∑
i=1

xim(yi−µi)/µi√
n∑
i=1

x2im

√
ν

n∑
i=1

xim(yi−µi)/µ2i√
n∑
i=1

x2im/µ
2
i

IG
√
λ

n∑
i=1

(yi−µi) xim√
n∑
i=1

x2im µ3i

√
λ

n∑
i=1

xim(yi−µi)/µi√
n∑
i=1

x2im µi

√
λ

n∑
i=1

xim(yi−µi)/µ2i√
n∑
i=1

x2im/µi

√
λ

n∑
i=1

xim(yi−µi)/µ3i√
n∑
i=1

x2im/µ
3
i

∂µi
∂ηi (−2ηi)

−1.5 = µ3i η−2i = µ2i exp(ηi) = µi 1

* Canonical for IG
** Canonical for G
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