Universitat Stuttgart

Architecture-Aware
Online Failure Prediction
for Software Systems

Von der Fakultit fiir Informatik, Elektrotechnik und Informationstechnik
der Universitét Stuttgart zur Erlangung der Wiirde eines Doktors der
Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Teerat Pitakrat
aus Trang, Thailand

Hauptberichter: Dr.-Ing. André van Hoorn
Mitberichter: Assoc. Prof. Dr. Vittorio Cortellessa
Mitberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Tag der miindlichen Priifung: 16.04.2018

Institut fiir Softwaretechnologie
2018

ABSTRACT

Failures at runtime in complex software systems are inevitable because
these systems usually contain a large number of components. Having all
components working perfectly at the same time is, if at all possible, very
difficult. Hardware components can fail and software components can still
have hidden faults waiting to be triggered at runtime and cause the system
to fail.

Existing online failure prediction approaches predict failures by observing
the errors or the symptoms that indicate looming problems. This observable
data is used to create models that can predict whether the system will
transition into a failing state. However, these models usually represent the
whole system as a monolith without considering their internal components.

This thesis proposes an architecture-aware online failure prediction ap-
proach, called Hora. The Hora approach improves online failure prediction
by combining the results of failure prediction with the architectural knowl-
edge about the system. The task of failure prediction is split into predicting
the failure of each individual component, in contrast to predicting the whole
system failure. Suitable prediction techniques can be employed for different
types of components. The architectural knowledge is used to deduce the
dependencies between components which can reflect how a failure of one
component can affect the others. The failure prediction and the component

dependencies are combined into one model which employs Bayesian network
theory to represent failure propagation. The combined model is continuously
updated at runtime and makes predictions for individual components, as
well as inferring their effects on other components and the whole system.
The evaluation of component failure prediction is performed on three
different experiments. The predictors are applied to predict component
failures in a microservice-based application, critical events in Blue Gene/L
supercomputer, and computer hard drive failures. The results show that
the failures of individual components can be accurately predicted. The
evaluation of the whole Hora approach is carried out on a microservice-
based application. The results show that the Hora approach, which combines
component failure prediction and architectural knowledge, can predict the
component failures, their effects on other parts of the system, and the
failures of the whole service. The Hora approach outperforms the monolithic
approach that does not consider architectural knowledge and can improve
the area under the Receiver Operating Characteristic (ROC) curve by 9.9%.

/USAMMENFASSUNG

Ausfélle von komplexen Softwaresystemen sind unvermeidbar, weil die-
se Systeme aus einer Vielzahl von Komponenten bestehen. Es ist schwie-
rig, wenn iiberhaupt moglich, alle Komponenten gleichzeitig vollkommen
funktionierend zu haben. Hardware-Komponenten koénnen ausfallen und
Software-Komponenten kdnnen noch versteckte Fehler haben, die wéhrend
der Laufzeit aktiviert werden kénnten und zu einem Ausfall des Systems
fiihren.

Existierende Anséatze zur Vorhersage von Laufzeitfehlern sind in der Lage,
Ausfille durch Beobachtung von Fehlern oder Symptomen, die die entstehen-
den Probleme indizieren, vorherzusagen. Diese erhobenen Daten werden
verwendet, um Modelle zu erzeugen, die vorhersagen, ob das System in
einen Ausfallzustand {ibergehen wird. Allerdings repréasentieren diese Mo-
delle das gesamte System als Monolith, ohne die internen Komponenten zu
beriicksichtigen.

Diese Dissertation stellt einen Ansatz zur Laufzeit-Fehlervorhersage na-
mens Hora vor, der die Architektur explizit beriicksichtigt. HOrA verbessert
die Laufzeit-Fehlervorhersage durch die Kombination von Ergebnissen der
Ausfallvorhersage einzelner Komponenten und Informationen tiber die Sys-
temarchitektur. Die Aufgabe der Ausfallvorhersage ist die Vorhersage der
Fehler einzelner Komponenten, nicht jedoch der Ausfall des gesamten Sys-

tems. Passende Vorhersageverfahren konnen fiir unterschiedliche Typen
von Komponenten verwendet werden. Die Architekturinformationen wer-
den verwendet, um die Abhingigkeiten zwischen Komponenten, die bei
einem Ausfall Auswirkungen auf andere Komponenten haben, abzuleiten.
Die Ausfallvorhersagen und die Komponentabhingigkeiten werden in einem
Modell kombiniert, das Bayesian Networks verwendet, um die Fehlerausbrei-
tung zu reprasentieren. Das kombinierte Modell wird wihrend der Laufzeit
kontinuierlich aktualisiert und sagt sowohl die Fehler von einzelnen Kompo-
nenten als auch die Auswirkungen auf andere Komponenten und Ausfélle
des gesamten Systems vorher.

Die Evaluation der Ausfallvorhersage einzelner Komponenten wurde mit
drei Systemen durchgefiihrt, in denen Komponentenausfélle einer Micro-
service-basierten Anwendung, kritische Ereignisse in dem Blue Gene/L-
Supercomputer und Festplattenausfille vorhergesagt wurden. Die Ergeb-
nisse zeigen, dass die Ausfille einzelner Komponenten gut vorhergesagt
werden konnen. Die Evaluation des gesamten Hora-Ansatzes wurde mit ei-
ner Microservice-basierten Anwendung durchgefiihrt. Die Ergebnisse zeigen,
dass der Hora-Ansatz die Ausfille einzelner Komponenten, die Auswirkun-
gen auf andere Teile des Systems haben, und die Ausfille des gesamten
Services vorhersagen kann. Der Hora-Ansatz {ibertrifft den monolithischen
Ansatz, der die Informationen iiber die Systemarchitektur nicht beriicksich-
tigt, und verbessert die Flache unterhalb der Receiver Operating Characteri-
stic (ROC)-Kurve um 9.9%.

CONTENTS

Contents v
1. Introduction 1
1.1. Problem Statement, 1
1.2. Motivating Example 3
1.3. Overview of Contribution 5
1.4. Thesis StruCture ¢ o v i it ittt 7
I. Foundations and Related Work 9
2. Foundations 11

2.1. Proactive Fault Management and Online Failure Prediction 12
2.2. Online Failure Prediction Techniques 18
2.3. Architecture-based Software Quality of Service Management 33

3. Related Work 47
3.1. Monolithic Online Prediction 48
3.2. Architecture-based Offline Prediction 56
3.3. Architecture-based Online Prediction 57

II. Contribution

4. Research Design and Overview of the Approach

4.1. Goal and Research Questions
4.2. ResearchPlan..........................
4.3. Overview of the Hora Approach

5. Component Failure Prediction

5.1. ResearchQuestions
5.2. Overview of Component Failure Prediction
5.3. Requirements of Component Failure Predictors
5.4. Time Series-based Failure Prediction
5.5. Critical Event Prediction
5.6. Hard Drive Failure Prediction
S5.7. Summary ...

6. Architectural Dependency Modeling and Extraction

6.1. ResearchQuestions
6.2. Architectural Dependency Information
6.3. Architectural Dependency Model
6.4. Extraction of an Architectural Dependency Model . . .
6.5. Summary

7. Failure Propagation Modeling and Prediction

7.1. ResearchQuestionouou....
7.2. Failure Propagation Model
7.3. Transformation From ADM ToFPM

7.4. Updating the Failure Propagation Model at Runtime

7.5. Inference of the Failure Propagation Model
7.6, Summary

8. Implementation

8.1. JavaImplementation
8.2. Golmplementation

Vi

Contents

III. Evaluation

9. Evaluation Methodology

9.1. Overviewof Evaluation
9.2. Evaluation Metrics o v i it
9.3. Statistical Hypothesis Testing

10. Evaluation of Time Series-based Failure Prediction
10.1. Research QueStion v v i v v it e it e i e
10.2. Experiment Setup ittt
10.3. Results oo e
10.4. DisCuSSion v v i it e e e e
10.5. Threatsto Validity
10.6. SUMMATYottt e e e e

11. Evaluation of Critical Event Prediction
11.1. Research Question v v i v it e i e e
11.2. Experiment Setupo i vttt
11.3. Resultso o e
11.4. Threatsto Validity
11.5. Summary it

12. Evaluation of Hard Drive Failure Prediction
12.1. Research Question vi o,
12.2. Experiment Setupttt
12.3. Results oo
12.4. DisCUSSION . . . v v v v i e e e e e e e e
12.5. Threatsto Validity
12.6. SUMMATY « & . e e e e e e e e

13. Evaluation of Failure Propagation Prediction
13.1. Research QUeStions v inennn..
13.2. Experiment Setupttt
133 Resultso oo e

Contents

147

149
149
150
153

155
156
156
163
177
177
178

179
180
180
182
189
189

Vil

13.4. DiSCUSSION . . v v v v v e e e e e e e e e e e e e 226

13.5. Threatsto Validity 226

13.6. SUMMATY . . . e e e e 227
IV. Conclusions and Future Work 229
14. Conclusions 231
15. Future Work 235
Bibliography 239
List of Figures 259
List of Tables 263

Vil Contents

PUBLICATION LIST

Parts of the material in this thesis have previously appeared in the following
publications:

e T. Pitakrat, D. Okanovi¢, A. van Hoorn, and L. Grunske. “Hora:
Architecture-aware online failure prediction.” In: Journal of Systems
and Software 137 (2018), pp. 669-685

e T.F. Dilllmann, R. Heinrich, A. v. Hoorn, T. Pitakrat, J. Walter, and
F. Willnecker. “CASPA: A platform for comparability of architecture-
based software performance engineering approaches.” In: Interna-
tional Conference on Software Architecture Workshops (ICSAW). 2017,
pp. 294-297

¢ T. Pitakrat, D. Okanovic, A. van Hoorn, and L. Grunske. “An architecture-
aware approach to hierarchical online failure prediction.” In: Proceed-
ings of the 12th International ACM SIGSOFT Conference on Quality of
Software Architectures (QoSA). IEEE. 2016, pp. 60-69

* T. Pitakrat, A. van Hoorn, and L. Grunske. “Increasing dependability of
component-based software systems by online failure prediction (short
paper).” In: Proceedings of the 10th European Dependable Computing
Conference (EDCC). IEEE. 2014, pp. 66-69

* T. Pitakrat, J. Grunert, O. Kabierschke, F. Keller, and A. van Hoorn.
“A framework for system event classification and prediction by means
of machine learning.” In: Proceedings of the 8th International Confer-
ence on Performance Evaluation Methodologies and Tools (VALUETOOLS).
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering). 2014, pp. 173-180

* T. Pitakrat, A. van Hoorn, and L. Grunske. “A comparison of machine
learning algorithms for proactive hard disk drive failure detection.”
In: Proceedings of the 4th International ACM Sigsoft Symposium on
Architecting Critical Systems (ISARCS). ACM. 2013, pp. 1-10

* T. Pitakrat. “Hora: online failure prediction framework for component-
based software systems based on Kieker and Palladio.” In: Symposium
on Software Performance. Joint Kieker/Palladio Days. 2013, pp. 39-48

Contents

CHAPTER

INTRODUCTION

1.1. Problem Statement

Software has become a part of our daily life and plays an important role in
many activities. It is embedded in almost everything that we interact with,
such as smartphones, wearable devices, computers, automobiles, vending
machines, and robots. These devices or machines need to interact and
communicate with each other to provide the desired functions. For example,
a smart watch can record body movements and count the number of steps
of a person. This data can be presented to the user by providing a viewing
functionality on the device itself. However, the data can be uploaded to a
server to be presented on any device, such as a mobile phone or a computer.
Further statistics can be computed by a more powerful device to provide more
sophisticated results or combined with data collected from other sources.
To achieve the described functionalities, every device and machine needs to
operate reliably and correctly.

Avizienis et al. [ALRLO4] define a failure as a deviation of a service from
the correct service. Although software development processes have been
improved in the recent years by quality assurance [Sch08; Tia05], faults

can still exist in production software. When these faults are triggered at
runtime, they can cause a failure, e.g., performance degradation or service
outage that is noticeable by users. The effect of a failure can range from
very minimal to catastrophic. For instance, a failure of a music service or
internet radio can cause user dissatisfaction while a failure of an online
backup service can cause a business to lose revenue. On the other hand,
a failure in the control system of a power plant can cause a catastrophic
disaster that results in loss of life.

Online failure prediction [SLM10] aims to foresee looming failures at
runtime before they manifest themselves. It analyzes the data available at
runtime to make a prediction whether a component or a system is going to
fail in the very near future. Accurate failure predictions are a prerequisite
for preemptive maintenance actions, reducing the effect of problems or even
completely preventing them from occurring [BBEM15; CGK+11; CKF+04;
LLO6]. Existing online failure prediction approaches predict failures either
of the whole system or of specific parts of the system. These approaches
employ monolithic models which either view each component or the whole
system as one entity and predict failure events based on externally observable
measurements, e.g., response time [ACG12; CDC10], event logs [PGK+14;
SMO7], or system metrics [BLM+12; WPNO7].

When faced with complex software systems composed of a large number
of internal and external components, the existing approaches may not be able
to properly analyze all the measurements from components that contribute
to the failures. For instance, system failures, which are visible to users,
usually originate from complex interactions of erroneous components inside
the system. These internal errors, which can be regarded as failures on
the component level, can propagate to other parts of the system through
the architectural dependencies. This causes a chain of errors up to the
system boundary and results in a failure on the system level [ALRLO4;
CGO07; HJSO01; JS05; Nyg18]. Thus, without considering the architecture
or dependencies between components, these approaches are able to predict
only the component failures but not their consequences on other parts of
the system.

2 1 | Introduction

1.2. Motivating Example

Figure 1.1 presents an example of a typical distributed enterprise application
system, which will be used throughout this thesis and will be referred
to as Running Example 1. The example system conforms to the common
three-tier architectural style of enterprise applications [Fow02]. Each of
the tiers comprises a number of instances, to which requests are distributed
over load balancers. Each instance comprises a complex stack of software
architecture, middleware services, operating system, virtualization, and
hardware components.

In this example, it can be observed that at 4:05 PM Quality of Service (QoS)
problems manifest themselves at the system boundary as a prompt increase
in response times and failing requests for the provided service. Online
failure prediction approaches aim to predict failures before they occur in
order to allow timely actions, such as preventive maintenance, to decrease
or completely prevent system downtime. However, in this case, neither
of the two metrics measured at the system boundary gives an indication
about the upcoming problem. The traditional approaches for online failure
prediction, e.g., time series forecasting based on service response time, are
not appropriate in this case because the data does not contain any symptom
that precedes the failure.

In addition to the system architecture, Figure 1.1 includes three system-
internal measures of the business-tier instance BT2, namely the utilization of
CPU, system memory, and heap space of the Java Virtual Machine (JVM). It
can be observed that the CPU utilization increases abruptly at 4:05 PM—the
same time as the increase of the service response time. The utilization of
system memory increases linearly until 3:55PM when it reaches a level
close to 100% and remains stable. The JVM heap space utilization shows an
increasing trend until reaching almost 100%. In this scenario, by analyzing
the measurements of internal components, we can conclude that the increase
of the response times is caused by the increase of the CPU utilization. The
increase of the CPU utilization is in turn caused by garbage collection activity
inside the JVM—a common problem in Java systems. In this scenario, the

1.2 | Motivating Example 3

Presentation Tier (PT) Business Tier (BT)
PT1 BT
o eI |«
o 0K e : :
Clients Load Balancer (LB) - :) Database Tier (DT)
Service c)| BT2 DB
a1 - -
X% Lo = O
1 C -)| ~
% ! I S BT3 b
' : _ o ok ¢\
1 T
! |) /
! \

— Service response time (sec)
x Failed requests

100.0

100.0

0.0

1| Introduction

Measurements (system boundary) Measurements (system-internal)

Figure 1.1.: Running Example 1: High-level three-tier architecture and selected measurements

root cause of the failure could be a memory leak in the BT2, which causes a
chain of errors [Nyg18] that propagates to the end users.

1.3. Overview of Contribution

To overcome the challenges of predicting failures in complex systems, we
hypothesize that online failure prediction can be improved by including
architectural information of software systems, e.g., how components depend
on each other. A complex system is usually composed of many components
that work together to deliver the results [BCK12; TMDO09]. A failure of
one component in the system can cause other components to be unable to
complete their tasks. As a consequence, this failure can propagate from one
component in the backend of the system to the system boundary and, finally,
the users [ANS+04; CG07; HJSO01].

In this thesis, we propose an architecture-aware online failure prediction
approach, called Hora.! The core idea is to first predict the failures of indi-
vidual components, instead of the whole system. These prediction results are
then combined with the architectural knowledge to relate the effects to other
components. In the last step, the final failure probabilities are computed to
conclude if individual component failures can cause other components or
the whole system to fail. Both the prediction of component failures and the
architectural knowledge of the system are continuously updated at runtime
to reflect the actual state of the system. The Hora approach is divided into
three steps which are: (1) component failure prediction, (2) architectural
dependency modeling, and (3) failure propagation modeling. Figure 1.2
depicts the high-level architecture and workflow of Hora which will be
summarized in more detail in the following subsections.

1.3.1. Component Failure Prediction

The first step of the Hora approach, denoted by @ in Figure 1.2, focuses
on predicting the failure of each component in the system. The prediction

'Hora is a Thai word meaning “oracle”.

1.3 | Overview of Contribution 5

P ®(Component Component
Q —> Mo;lgarlng » Failure Failure
Q L Prediction Probabilities
System ¢ @ v
at runtime Fail Architecture-aware
Model ailure Component
Extraction Pﬁpag?tlon Failure
odeling Probabilities
' ® 1
. . Architectural
Architectural - Model
Fal Model 7| Transformation Dependency
Model
System

Figure 1.2.: High-level overview of the Hora approach

is made based on the monitoring data obtained at runtime to accurately
represent the current status of the components. In contrast to the traditional
prediction approaches, which use one monolithic prediction model for the
whole system, we aim to predict the failure of individual components as a
first step. This approach simplifies the prediction by focusing on a smaller
set of data and allowing suitable prediction techniques to be applied for
different types of components. Since different types of components provide
different types of monitoring data, some prediction techniques are more
suitable for some types of data than the others. For example, CPU utilization
and method response times are time series data while log files are event-
based data. This step investigates the failure prediction based on three
types of data, namely, Self-Monitoring, Analysis and Reporting Technology
(S.M.A.R.T.) data from hard drives, log files from supercomputers, and time
series data from resource utilization and method response times.

1.3.2. Architectural Dependency Modeling

The architecture of a system plays an important role in the propagation
of a failure. A failure of one component can affect another if there is a
dependency between them. For example, a failure of a database can cause
an update method in another component to be unable to complete the
request. In this second step of the contribution, we focus on creating a
model that can represent the dependencies between components in a system.

6 1 | Introduction

The model is able to show the dependencies between components and the
dependency weights that indicate how much each component depends on
the others. This step is denoted by @ in Figure 1.2.

In this thesis, the dependency model is extracted from a SLAstic archi-
tectural model [Hoo14] which is, in turn, extracted from the monitoring
data collected by an Application Performance Monitoring (APM) framework,
namely, Kieker [HWH12]. The monitoring data can show how a system,
including its components, behaves when deployed in a real environment.
For instance, a component that makes a lot of calls to another component
means that the first is highly dependent on the latter. If the latter fails, it is
also likely that the first will also fail. Thus, the monitoring data is obtained
from a live system so that the actual behavior of the components is observed.

1.3.3. Failure Propagation Modeling

The last step of the Hora approach, denoted by @ in Figure 1.2, is combin-
ing the results of component failure prediction and architectural dependency
modeling. The architectural dependency model in the second step is trans-
formed into a more sophisticated model. The new model employs Bayesian
network theory to relate all components in the system through the depen-
dency chain. The results from the component failure prediction are added
to the model at regular intervals to reflect the actual status of the compo-
nents. With these two pieces of information, an inference of the model can
be carried out to obtain the predicted effects of the failures, i.e., which
components will be affected by the failures of which components and what
are the failure probabilities. The results include not only the independent
failure probabilities of components, but also the probabilities that they may
fail based on the architecture of the system.

1.4. Thesis Structure

This thesis is composed of four main parts. Part I presents foundations and re-
lated work. Chapter 2 provides a foundation for proactive fault management,

1.4 | Thesis Structure 7

online failure prediction techniques, and architecture-based software QoS
management. Chapter 3 presents the existing work related to online failure
prediction and architecture-based software QoS prediction by categorizing
them into four groups.

Part II presents the contributions of this thesis which is divided into four
chapters. Chapter 4 presents the addressed research questions, the research
plan, and the overview of the Hora approach. Chapter 5 presents the
techniques that are used to predict failures based on three types of data
collected from components in software systems, namely, time-series data,
event-based data, and S.M.A.R.T. data. Chapter 6 describes the Architectural
Dependency Model (ADM), which is an architectural model used to represent
component dependency information, and how it is extracted from the existing
architectural models. Chapter 7 presents the Failure Propagation Model
(FPM), which employs the Bayesian network theory to predict the probability
of a component failure causing other components and the whole system to
fail. Chapter 8 presents two implementations of the Hora approach.

Part III presents the evaluation of the Hora approach. Chapter 9 presents
the evaluation methodology, which includes the overview of the evaluation,
the evaluation metrics, and statistical hypothesis testing. The evaluation
results of time series-based failure prediction, critical event prediction, and
hard drive failure prediction are presented in Chapters 10 to 12, respectively.

Part IV draws the conclusions for the thesis (Chapter 14) and lists the
possible future work to improve Hora and online failure prediction (Chap-
ter 15). Additionally, supplementary material, containing software, dataset,
and results, is publicly available online [Pit18].

8 1 | Introduction

Part I.

Foundations and Related Work

CHAPTER

FOUNDATIONS

The Hora approach presented in this thesis employs both online failure
prediction and architectural knowledge to predict the failures and their
impacts on the system. Online failure prediction is the first step to proactive
fault management which aims to handle unexpected events before they
cause damage to the system. Architectural knowledge provides the insight
into the system regarding how components depend on each other and how
a failure of one component can affect the others.

This chapter presents the foundations for the subsequent chapters. Sec-
tion 2.1 introduces the concepts of proactive fault management and online
failure prediction. Section 2.2 presents online failure prediction techniques,
which are time series forecasting, machine learning, and pattern recognition,
that will be used later in this thesis. Section 2.3 presents architecture-based
software performance management approaches which aim at modeling and
predicting Quality of Service (QoS) metrics of software systems based on
architectural knowledge.

11

S affects external state _

w o o
= activation A 5
& 8 3 &

L detection 55 affects external state

c Q=

) |

a)
side [effects side |effects

Symptom

Figure 2.1.: Relationship between fault, symptom, error and failure [SLM10]

2.1. Proactive Fault Management and Online Failure Prediction

This section presents the foundations of proactive fault management. Sec-
tion 2.1.1 introduces the terminology. Section 2.1.2 presents the steps
involved in proactive fault managment. Section 2.1.3 presents online failure
prediction, which is the first step to proactive fault management and the
main focus of the thesis.

2.1.1. Terminology

Avizienis et al. [ALRL04] provide the basic concepts and taxonomy of depend-
able and secure computing, which include definitions for failure, errors, and
faults. Salfner, Lenk, and Malek [SLM10] further extend these definitions
and present five different types of data that are collected at different stages
of fault manifestation. Figure 2.1 depicts these five types of data, which are
fault, undetected error, detected error, symptom, and failure, and how a
fault can manifest itself into a failure that is visible outside the system.

* A Fault is the root cause that, when activated, becomes an error and
may turn the system into an erroneous state. In the case of a memory
leak, the fault is the code in the program that allocates some amount of
memory but does not release it after use. If this code is never executed,

12 2 | Foundations

Development faults
[occur during (a) system development, (b) maintenance during the use phase,

Phase of creation and (c) generation of procedures to operate or to maintain the system]
or occurrence Operational faults

[occur during service delivery of the use phase]

Internal faults

A [originate inside the system boundary]
—— System boundaries External faults
[originate outside the system boundary and propagate errors into
the system by interaction or interface]

Natural faults

. [caused by natural phenomena without human participation]
—— Phenomenological cause
Human-Made faults

[result from human actions]

Hardware faults

X X [originate in, or affect, hardware]
—— Dimension
Software faults

[affect software, i.e., programs or data]
Faults —
Malicious faults

L [introduced by a human with the malicious objective of causing harm to the system]
—— Objective
Non-Malicious faults

[introduced without a malicious objective]

¥

Deliberate faults

[result of a harmful decision]
—— Intent
Non-Deliberate faults
[introduced without awareness]

|

Accidental faults

[introduced inadvertently]

Incompetence faults

[result from lack of professional competence by the authorized human(s),
or from inadequacy of the development organization]

Permanent faults

[presence is assumed to be continuous in time]

—— Capability

—— Persistence

Ll

Transient faults
[presence is bounded in time]

Figure 2.2.: Taxonomy of faults [ALRL04]

it remains dormant and would never cause any errors or, consequently,
failures. Avizienis et al. [ALRL04] introduce a taxonomy of faults, as
depicted in Figure 2.2, which classifies faults into eight basic view
points with two classes of faults in each view point.

* An Error is a state of the system when it has deviated from the correct
service but the effects are still not observable by the users. For example,
when the code that causes a memory leak is executed, the system then
turns into an erroneous state. In this state, the program is causing
the system to allocate more and more memory but the effect is still
not visible from outside. An error can be further categorized into two
types, which are undetected and detected errors. When an error occurs,
it remains in the undetected state until it is discovered by inspecting
the system, such as checking error messages in the log files. Although

2.1 | Proactive Fault Management and Online Failure Prediction 13

an error can be detected, it may still remain invisible from the users.

A Symptom is an observable side effect that results from an erroneous
state of the system. An example of a symptom could be a high amount
of memory usage caused by a memory leak. As long as the usage is
below the available memory, the system may continue to run without
any observable problem.

A Failure is an event of a deviation of the system from a correct ser-
vice. The event is observable outside the system boundary by its users
or third-party systems. A failure does not necessarily have to be a
total outage and can be defined in different ways depending on the
requirements of the service. For example, a slow response time or a
certain failure rate can also be regarded as failures when the Quality of
Service (QoS) requirements or the Service Level Objectives (SLOs) are
violated. Avizienis et al. [ALRLO4] divide failures into two domains,
namely content and timing failures. A content failure occurs when the
content delivered at the service boundary deviates from the desired
outcome. An example of a content failure is a fault in an algorithm
that causes the computation to deliver an incorrect result. A timing
failure occurs when the time that the service is delivered deviates from
the intended time. An example of a timing failure is an airbag in a car
that inflates before or after when it is intended to.

2.1.2. Proactive Fault Management

Proactive fault management is an approach that aims to proactively handle
failures in the system so that it can continue to provide the intended operation
in unexpected events [SLM10]. The idea originates from the attempt to

improve the QoS of information systems despite the increasing complexity.
A number of approaches have been proposed and actively researched, such

as self-aware, self-configuring, and self-healing systems, including proactive
fault management [BJM+05].

2 | Foundations

Online Diagnosis
Failure
Prediction

Action Action

Scheduling Execution

Figure 2.3.: Steps involved in proactive fault management [SLM10]

Avizienis et al. [ALRL0O4] group means to attain dependability and security
into the four following major categories.

* Fault prevention aims to prevent the introduction of faults in the system.

* Fault tolerance aims to prevent the system from failing in the presence
of faults.

* Fault removal aims to reduce the number of faults and their severity.

* Fault forecasting aims to estimate the number of faults in the system,
predict future incidence and consequences of faults.

Among these four categories, fault prevention, fault removal, and a part
of fault forecasting aim at attaining system dependability during the de-
velopment phase. On the other hand, fault tolerance and a part of fault
forecasting aim at attaining system dependability when faults are triggered
at runtime and have a tendency of leading to a failure.

In contrast to other means, proactive fault management, which falls into
the fault forecasting category, aims to prevent the faults that exist in the
system at runtime from being activated and leading to a failure. However,
if the failure cannot be completely prevented, its consequences should be
mitigated, i.e., there should be as little effect as possible on other parts
of the system. In order to achieve this goal, the four following steps are
involved in proactive fault management [SLM10]. These steps are depicted
in Figure 2.3.

1. Online failure prediction is the first step to proactive fault management.
The goal is to predict the upcoming problems that can cause a com-
ponent or a system to fail in the very near future. It takes runtime
monitoring data as input so that the predictions are made based on

2.1 | Proactive Fault Management and Online Failure Prediction 15

the current state of the system. The prediction result can be in ei-
ther a binary form, which indicates whether the system is going to
fail, or a continuous value, which represents how likely the system is
going to fail.

2. Diagnosis is optionally performed in order to obtain more information
regarding the problems so that the action can be planned accordingly.
For some recovery actions, it is sufficient to know the coarse location of
the failure. For example, if an instance of a microservice is predicted to
fail, a new instance can be spawned to replace the failing one. However,
further information may be required to pinpoint the exact location
of the fault that causes the failure. In this case, a fault localization
technique can be applied to find the location of the root cause. Another
example of the diagnosis step is deciding which countermeasure is
suitable to prevent the problem or mitigate its effects so that the
operation of the system is disturbed as little as possible.

3. Action scheduling is performed to determine when would be the best
time to apply the selected countermeasure. This step needs to consider
the results from the online failure prediction and diagnosis steps. The
result of the online failure prediction tells how likely it is that the
failure will occur, how severe it would be, and when the expected time
of occurrence is. The result of the diagnosis tells what needs to be done
to the system to prevent the upcoming problem. For example, for a
web service that is predicted to fail in a few days, the countermeasure,
e.g., a reboot, can be scheduled at night when the workload is low.
For a system that is predicted to fail very soon, the countermeasure
might be executed immediately to prevent further damage caused by
a system failure.

4. Action execution performs the planned countermeasure. This step re-
quires the action to be done while maintaining the integrity of the sys-
tem, such as data synchronization or keeping the existing sessions alive.

2 | Foundations

Online failure prediction is one of the most important steps of proactive
fault management. Accurate predictions allow the other three steps to be
carried out efficiently while wrong predictions can cause unnecessary actions
or insufficient preparations. For example, a false positive may trigger cold
backup instances to warm up. On the other hand, a false negative would
not trigger any action resulting in an unexpected failure.

The remainder of this thesis focuses on online failure prediction and
introduces an approach to improve the prediction quality. Thus, the diag-
nosis, action scheduling, and action execution steps will not be covered in
this thesis.

2.1.3. Online Failure Prediction

The goal of online failure prediction is to predict upcoming failures in a
system before they occur [SLM10]. The prediction allows the operators to
diagnose the system and to find a solution to prevent the problem from occur-
ring or to minimize the impact on the system. Many prediction techniques
can be employed depending on the types of available input data.

Figure 2.4 depicts the timeline of online failure prediction. The observation
window At, is the period in which the data is observed from the system.
During this period various parameters are monitored, e.g., log files, resource
utilization, or failure events. The lead time At; is the time between when
the prediction result is obtained and the expected time of failure occurrence.
The minimum warning time At,, is the minimum period which is needed for
preparing the countermeasure. For example, warming up spare units would
take time until they are ready to replace the failing ones. If a prediction is
made after this point, there will not be enough time to prevent the problem
from occurring. The prediction period At, is the expected time that the pre-
dicted failure will occur. A small prediction period allows countermeasures
to be scheduled and executed effectively. However, predicting the exact time
of a failure is not a trivial task. On the other hand, a large prediction period
is not very useful since the exact time of the failure is not known.

2.1 | Proactive Fault Management and Online Failure Prediction 17

Atd Atl Atp

Aty

» Time

Figure 2.4.: Timeline of online failure prediction [SLM10]

2.2. Online Failure Prediction Techniques

This section introduces techniques that will be used to predict component
failures in Chapter 5. Section 2.2.1 presents time series forecasting tech-
niques. Section 2.2.2 presents machine learning and pattern recognition
techniques. Section 2.2.3 introduces the formalism of Bayesian network
which is the core of the Failure Propagation Model (FPM) of HorA.

2.2.1. Time Series-based Failure Prediction Techniques

Time series data is a sequence of random variables that are taken or observed
at regular intervals [SS11]. The resulting data points are usually equally
spaced in time and ordered by the time they are collected. A time series
data X can be formally represented as

X={x15x2a'~"xt} (21)

where t € Z and x; is an observed random variable with 1 <i < t. Examples
of this type of data are average temperature over time, sampled sound wave,
stock market. In computer systems, time series data can be, for instance,
load average, CPU temperature, or memory utilization that are collected
at regular intervals, e.g., every second, by the operating system. Another
example is the service response time that is collected and aggregated to
provide measurements at regular intervals.

One important property of time series data is stationarity. A time series
data is strictly stationary if the probabilistic behaviors at any time points are

18 2 | Foundations

Data collection Model training Forecast

Figure 2.5.: Workflow of time series forecasting

identical [SS11]. This can be expressed as
P{x, <c}=P{x, <c} 2.2)

where s, t € Z and s # t. This property means that the mean value at time s,
us, is equal to the mean value at time ¢, u,. However, this property is hard
to prove for a single data set. Thus, a definition for weakly stationary time
series is defined as [SS11]

1. the mean value function is constant and does not depend on time

2. the autocovariance function depends on s and ¢t only through their
difference.

The goal of time series forecasting is to predict the future value of a series
based on the past values. For online failure prediction, one is interested in
knowing if the future value will exceed a predefined threshold or violate the
SLOs. Figure 2.5 depicts the workflow of the prediction. The input is the time
series data collected from the components in the system. The forecasting
algorithm uses the historical data to create a model that can best describe
the characteristics of the data. The model is then used to forecast the future
value of the data. If the forecasted value exceeds the predefined threshold, a
violation, which can lead to a failure, can be expected. On the system level,
an SLO violation can be an increasing response time of the service over a
certain value or decreasing availability of the service. On the component
level, a threshold violation can be an over-utilization of the CPU, memory, or

2.2 | Online Failure Prediction Techniques 19

network, or an increase in the method response time, which can cause that
component to fail or unable to process the requests. This section presents
selected time series forecasting techniques that can be used to predict future
values of time series data.

2.2.1.1. Mean

Time series forecasting using mean values makes an assumption that the
probabilistic behavior of the data in the future remains the same. Thus, the
future value is the mean value of the historical data points. The mean value
can be expressed as

Xpq+Xp g+ + X, 1
X, = t—1 t 2n t—n zzzxi (2.3)

where n is the number of past values to be considered.

2.2.1.2. Last

Time series forecasting using the last value is a straightforward and simple
way of prediction. It is based on an assumption that the values of two
consecutive data points are close to each other. Therefore, the last observed
value is used as the predicted value.

Xe =X¢ (2.4)

2.2.1.3. Autoregressive Moving Average

Autoregressive Moving Average (ARMA) is a model which is composed of
two parts; autoregression and moving average. The autoregressive model
uses a function of the past values x,_;, x5, ..., X,_, to forecast the current
value x,. The order p determines the number of past value considered in the

20 2 | Foundations

model. An autoregressive model of order p, which can be written as AR(p),
can be expressed as [SS11]

X :¢1xt71+¢2xt,2+...+¢pxt,p+0)t (2.5)

where ¢4, ¢,,..., ¢, are constants with ¢, # 0, and w, is white Gaussian
noise with u,, = 0 and o2 = 1. If the mean of x, is not zero, the expression
becomes

xe—p =11 —)+ ol o —)+ + (X —p)+ o, (2.6)

Xe=a+ QX tPoxe ot +Ppx, +w, 2.7)

where a =u(l1—¢; —po—...—¢,).
A moving average model of order g, written as MA(q), uses a function of
the past values of white noise [SS11]. The model can be expressed as

x[=(l)t+910)t_1 +02(Ut_2+...+9q0)t_q (2.8)

where 0,,0,,...,0, are parameters with 6, # 0 and w, is a Gaussian white
noise series with u = 0.

The autoregressive and moving average can be combined into one ARMA
model which is expressed as

Xy = (j)lxt_l + ¢2xt_2 +...+ ¢pxt_p + w; +
Orw 1+ 0,0 5+ ...+ 0,00, 2.9

The model becomes an autoregressive model when ¢ = 0 and a moving
average model when p = 0.

2.2 | Online Failure Prediction Techniques 21

Trainin istori Model
g Historical L 3 o Models
Phase Data Training

Prediction

Online > L Prediction
Phase Data Prediction Results

Figure 2.6.: Workflow of machine learning

2.2.1.4. Autoregressive Integrated Moving Average

The ARMA model described previously assumes that the time series data
is stationary. Differencing can be applied to the data in order to make it
stationary as follows [SS11].

VX, =X —Xeq (2.10)

The order of the differencing defines how many times it is applied to the data.
This step can be included in the ARMA which results in an Autoregressive
Integrated Moving Average (ARIMA) model.

2.2.2. Machine Learning and Pattern Recognition

Machine learning algorithms have been widely used in various fields of
research and have shown good performance in learning and recognizing
patterns [Bis06]. In online failure prediction, we make an assumption that
there is observable data, i.e., symptoms and detected errors, that usually
precede the failures [SLM10]. If we are able to detect them at runtime, we
will also be able to tell if a failure is likely to occur in the near future.
Figure 2.6 depicts the process of using machine learning algorithms to
predict failures. During the training phase, the data is collected from the
system and analyzed by the learning algorithms. The algorithms create the

22 2 | Foundations

models that can represent the system in different states. For example, one
model may represent the state in which the system is functioning correctly
while another model may represent the system in a faulty state. At runtime,
the data is collected from the running system and analyzed. If the pattern
of the data matches the pattern of one of the models, the system is classified
to be in the state that the model represents.

Based on the data available during the training phase, machine learning
and pattern recognition techniques can be further categorized into the three
following groups [HTFO1].

* Supervised learning. The techniques in this category learn the models
from a set of labeled data. Specifically, the input data used in the
learning phase is labeled with the desired outputs. The data is usually
labeled by experts who manually assign the desired output to each data
point. The task of the algorithm is to find a way to differentiate these
data points. An example of supervised learning is Optical Character
Recognition (OCR), which is used to recognize images of characters or
digitize physical books into a digital format. The algorithm is trained
by learning from images of characters and creating the corresponding
models for the characters.

* Unsupervised learning. The techniques in this category learn the models
from unlabeled data. The goal of the algorithm is to classify similar
data points into groups by discovering the patterns in the data. In
contrast to supervised learning, there is no correct answer in unsu-
pervised learning. An example of unsupervised learning is classifying
customers of an online shopping website into groups based on their
behaviors.

* Semi-supervised learning. Semi-supervised learning learns the models
from partially labeled data. This method reduces the effort of labeling
the data in supervised learning while providing more control of the
output than unsupervised learning. An example of semi-supervised
learning is anomaly detection. The algorithm is trained with sets of
data that represent normal states. When the algorithm finds a data

2.2 | Online Failure Prediction Techniques 23

point that does not belong to any of the model, it is then classified
as anomalous.

In this section, we classify machine learning techniques into six cate-
gories based on the underlying concepts. The techniques in each cate-
gory can be either supervised, semi-supervised, or unsupervised learning.
These techniques will be used in Chapter 5 to predict component failures
based on event logs and Self-Monitoring, Analysis and Reporting Technology
(S.M.A.R.T.) data.

2.2.2.1. Probabilistic Models

Probabilistic models are based on a concept that there are uncertainties in the
future events. In order to build models that can represent the uncertainties,
they analyze probability distributions of random variables in the dataset. At
runtime, the observed variables are fed to the models which give probabilities
of the variables of interest as output.

* Naive Bayes Classifier (NBC) is a simple but powerful learning algo-
rithm based on Bayes’ theorem [LDO5]. The learning phase analyzes
the dataset and builds probability distribution models of the attributes.
When the models are obtained, the prediction is carried out by calcu-
lating the probability of all attributes under the assumption that all
attributes are independent and identically distributed.

* Multinomial Naive Bayes Classifier (MNBC) is another application
of the Bayes’ theorem, which uses multinomial distributions as the
underlying model instead of normal distributions. This technique
allows the count of the occurrences for each value to be integrated
into the model and has been successfully used in areas such as text
classification (e.g., [KFPHO5]).

* Bayesian Network (BN) is a directed acyclic graph that represents
the conditional probability between each attribute [FGG97]. The
construction of the network comprises two steps: building the structure

24 2 | Foundations

of the network and estimating the probabilities. During runtime, the
joint probability of an instance belonging to a class is calculated.

2.2.2.2. Decision trees

Decision trees are tree-like graphs. Each node in the graph contains a condi-
tional statement that further splits the node into branches. The classification
is represented by the path from the root node to the leaf node.

* (4.5 is a top-down decision tree, introduced by Quinlan [Qui93], that
employs a greedy algorithm to find the most important attribute at
each step. At each level, the node is split until a leaf containing only
instances from one class is achieved.

* Reduced Error Pruning Tree (REPTree) constructs a decision tree by
considering the information gain of all attributes in the dataset and
splitting a node into further nodes. After the tree is built, the algorithm
reduces the overfitting problem by using reduced-error pruning.

* Random Forest (RF) is a collection of decision trees proposed by
Breiman [BreO1]. This technique can be viewed as meta-learning
[VDO02], which improves the prediction quality by casting votes among
the trees and assigning the most voted class to the predicted instance.

2.2.2.3. Rule-Based Algorithms

Rule-based algorithms are based on a certain rule or a set of rules. These
rules are constructed by analyzing some characteristic or statistics of the
training data.

* ZeroR is the simplest classifier that is used to estimate the baseline for
machine learning algorithms. The classification is done by classifying
all instances as the majority class of the training set.

* OneR denotes a one-rule algorithm introduced by Holte [Hol93] that
employs only one rule to classify instances. This rule is constructed

2.2 | Online Failure Prediction Techniques 25

by building one rule for each attribute of the dataset and comparing
their error rates. The rule of the attribute with the lowest error rate is
chosen as the final rule and used in the classification.

Decision Table (DT), proposed by Kohavi [Koh95], is a table contain-
ing a list of training instances with selected attributes. During the
classification, an instance is compared to those in the list. If there is
a match, it returns the majority class of those matched; otherwise, it
returns the majority class of the whole list.

Repeated Incremental Pruning to Produce Error Reduction (RIPPER),
proposed by Cohen [Coh95], builds rules by starting from an empty
rule set and adding more rules until all positive instances are added.

PART is a learning algorithm introduced by Frank and Witten [FW98].
The algorithm employs a divide-and-conquer approach to build the
rule set. In each step, a partial decision tree is constructed and a rule
is derived from the leaf of the tree that has the highest coverage. The
whole process is repeated until the rule set covers all training instances.

2.2.2.4. Hyperplane Separation

Hyperplane separation employs a hyperplane in the multi-dimensional space
of the dataset to separate all instances into classes. The goal is to find the

plane that provides the maximum separation between each class.

26

* Support Vector Machine (SVM), introduced by Cortes and Vapnik

[CV95], is a technique that separates instances into two distinct classes
by drawing a hyperplane between them. When working with a multiple-
class classification problem, Support Vector Machine (SVM) classifies
instances into one of the two main classes and further splits each class
into smaller ones until the final class is obtained.

Sequential Minimal Optimization (SMO), proposed by Platt [Pla99],
is an improvement technique for SVM to speed up the training phase.
SMO reduces the internal computation of quadratic problems into
smaller sub-problems that can be solved analytically.

2 | Foundations

* Stochastic Gradient Descent (SGD) is a stochastic optimization algo-
rithm used to solve linear problems [Bot10]. In our experiment, the
algorithm is used to build a linear model for SVM during the training
phase.

2.2.2.5. Function Approximation

Function approximation estimates functions that map input vectors, which
are extracted from an instance, to a value that represents an output class.

* Simple Logistic Regression (SLR) is a linear regression technique that
can be used to predict binary-class instances [LHF05]. The algorithm
uses LogitBoost [FHT00] to build the regression model and was further
improved by Sumner, Frank, and Hall [SFHO5] to increase the speed
of the model construction.

* Logistic Regression (LR) is similar to simple logistic regression but
employs ridge estimators proposed by le Cessie and van Houwelingen
[CH92] to reduce the error made by parameter estimation.

* Multilayer Perceptron (MP) is a type of neural network that contains
multiple layers of neurons [Hay99]. Each neuron holds a function that
maps an input variable to an output variable. The neurons between
layers are connected through weighted links, and the final output of
the whole network designates the class of the instance.

* Voted Perceptron (VP), introduced by Freund and Schapire [FS98], is
a classifier which finds the vector that can linearly separate data into
classes, provided that the margin between them is sufficiently large.
The performance of this method is claimed to be close to that of SVM
but with a faster training time.

2.2.2.6. Instance-based Learning

Instance-based learning or lazy learning [AKA91] is the technique that stores
the instances learned during the training phase and postpones any processing
or computation until runtime when new instances need to be classified.

2.2 | Online Failure Prediction Techniques 27

* Nearest Neighbor Classifier (NNC) compares a new instance with those
stored in the reference set. The new instance and the closest one in
the reference set are assumed to be generated from the same class,
which is the class assigned to the new instance. Euclidean distance is
a function generally used to compute the distance between instances.

* K-Star, introduced by Cleary and Trigg [CT95], is a learning algorithm
similar to nearest neighbor classifier. However, the measure for the
similarity between the new instance and the references is calculated
using an entropy function.

* Locally Weighted Learning (LWL) classifies a new instance based on the
weighted distance of the nearest neighbors [AMS97]. Specifically, the
underlying algorithm builds naive Bayes models based on the k-nearest
neighbors of the new instance and use these models to compute a class
probability of that instance [FHPO3].

2.2.3. Bayesian Network

In order to model the failure propagation between components in the sys-
tem, a model that can represent the components and their dependencies is
required. This section focuses on Bayesian network which is used by Hora
to represent this information.

A Bayesian network is a Directed Acyclic Graph (DAG) that represents
conditional probabilities between random variables [BisO6]. The vertices in
the graph represent random variables, while the edges represent conditional
probabilities between those variables. A common use case of a Bayesian
network is to represent conditional relationships between events. For ex-
ample, in the medical domain, it can be used to model the relationships
between symptoms and diseases. By observing the presence of symptoms,
the probability of having certain diseases can be computed.

Figure 2.7 illustrates a small example of a Bayesian network. The net-
work is composed of three random variables, namely, x;, x,, and x;. The
conditional probabilities represented by the edges are x; to x,, x5 to Xxs,

28 2 | Foundations

Figure 2.7.: An example of a Bayesian network with three random variables

and x; to x5. By observing the structure of the network, we can see that
there are three conditional relationships between x;, x,, and x;. Specifically,
x; has a direct effect on x, and x5 while x, has a direct effect only on x5.
Using Bayes’ theorem, these conditional relationships can be mathematically
expressed as a joint probability function of the variables, P(x;, x5, x3), which
be can written as

P(x1,X3,x3) = P(x3]x1,x2)P(xq,X5) (2.11)
P(x3]|x1,x5)P(x5]x1)P(x1) (2.12)

The joint probability function comprises three terms, which are P(x;|x1, x5),
P(x4|x1), and P(x;). This implies that the probability of x; depends on x;
and x,. The probability of x, depends only on x;. Lastly, the probability of
x; does not depend on any other variable. For a Bayesian network with n
random variables, x;, x,, ..., Xx,, the joint probability function becomes

P(xp|3q, X9, vy Xp_1) ... P(x5|x1)P(x;) (2.13)

[[PCxilpay) (2.14)

k=1

P(x1, X5, ..., X)

where pa, is the set of parent nodes of x.

2.2 | Online Failure Prediction Techniques 29

X x X2
L 1 True [False

True | False
False | 0.2 0.8

True | 0.8 | 02

(a) X4

(b) Xy

X3
True | False
False | False | 0.1 0.9
False | True | 0.8 0.2
True | False | 0.8 0.2
True | True 0.9 0.1

X1 X2

(©) x3

Table 2.1.: Condition Probability Tables (CPTs) of Bayesian network in Fig-
ure 2.7

The joint probability can be computed using the conditional probability
between variables. For example, the conditional probability of x; and x,,
P(x;|x5), is defined as

P(x; N xy)

P(xq]xy) = P(x,)

(2.15)
which represents the probability of x; given x,.

The conditional probabilities of the variables in the Bayesian network can
be represented in a table form which is called Condition Probability Table
(CPT). Each node in the network has one table associated with it. Table 2.1
illustrates an example of three tables corresponding to the three variables
of the network in Figure 2.7. Each table lists the probability of the variable
given all conditions of the dependent variables. In this example, we assume
that a variable can be either true or false. For instance, the CPT of x;, which
does not depend on other variables, contains only one row. This means that
the probability of x; is not influenced by other variables. The CPT of x,,

30 2 | Foundations

which depends on x;, contains one additional row for x;. The probability of
X4 is, thus, influenced by x;. The CPT of x5 contains two additional rows as
it depends on both x; and x,.

The probability of an event occurring can be computed using the joint
probability function and the CPTs. For example, the probability of x;, x5,
and x; being true can be computed as

P(xg=T,x;=T,x3=T)=P(x3=T|x; =T, xy=T)
P(xo=T|x; =T)P(x;=T) (2.16)

By substituting the probabilities from Table 2.1, we obtain

P(x3=T,x;=T,x;=T) = 0.9%x0.8x0.7 (2.17)
= 0.504 (2.18)

Another application of Bayesian networks is for inferring probability of
unobserved random variables. For example, if x; and x, can not be observed
and we would like to know the probability of x5 being true, the equation
becomes

Plaz=T) = > Plxs=T,x;,xp) (2.19)

x1,%,€{T,F}

However, if x; is observed to be true, the probability of x5 being true given
that x, is true can be computed as

P(x;=T,x3=T)

P(x;=T)
_ sze{T,F} P(x; =T,x3,x3=T)
- ZXZ,X3E{T,F} P(xy =T, x3,x3)

P(xg=T|x;=T)= (2.20)

(2.21)

2.2 | Online Failure Prediction Techniques 31

The numerator of Equation 2.21 can be expanded and computed as follows.

E P(X1=T,X2,X3=T)=P(X1=T,x2=T,X3=T)
x,€{T,F}
+P(X1 = T,Xz = F,X3 = T) (2.22)

={P(x3=T|x; =T, x,=T)
P(xy=T|x; =T)P(x; =T)}+
{P(x3=T|x; =T,x, =F)
P(xy=F|x; =T)P(x; =T)} (2.23)
=(0.9x0.8 x0.7)+

(0.8x0.2x0.7) (2.24)
=0.504+0.112 (2.25)
=0.616 (2.26)

Similarly, the denominator of Equation 2.21 can be expanded and computed
as follows.

Z P(xy=T,x9,x3) =P(x; =T, xy =T, x3=T)+
X,%3€{T,F}
P(x;=T,xy =T, x5 =F)+

P(x;=T,x, =F,x3=T)+

P(X1 =T,XZ=F,X3=F) (227)
=0.504+0.056+0.112+0.028 (2.28)
=0.7 (2.29)

By substituting the numerator and denominator of Equation 2.21, we obtain

0.616
P(X3 T|X1 T)— 0—7 (230)

=0.88 (2.31)

32 2 | Foundations

2.3. Architecture-based Software Quality of Service
Management

The Hora approach introduced in this thesis employs an architectural model
to capture the dependencies between components and combines it with
the monitoring data obtained at runtime to improve the failure prediction.
This section introduces the relevant foundations on architecture-based QoS
management approaches. Section 2.3.1 provides the basic concept of archi-
tecture and the definitions. Section 2.3.2 describes Architecture Description
Languages (ADLs) which are notations for modeling software architecture.
Section 2.3.3 introduces model-based software QoS evaluation that employs
models to evaluate different aspects of a system. Section 2.3.4 presents
Application Performance Monitoring (APM) which monitors the system at
runtime and uses the data to improve system performance. Section 2.3.5
presents the SLAstic approach, the SLAstic model, and Kieker, which are used
by Hora to represent architecture knowledge and to monitor the system.

2.3.1. Software Architecture

Taylor, Medvidovi¢, and Dashofy [TMDO09] define a software architecture as
the set of principal design decisions made about the system during the devel-
opment and its evolution. These design decisions characterize the system and
describe various aspects, e.g., structure, behavior, interaction, nonfunctional
properties, and implementation. ISO/IEC/IEEE 42010:2011(E) [ISO11]
provides another definition of a system architecture as follows, which will
be used in this thesis.

Definition 2.1 ((System) Architecture [ISO11])
Fundamental concepts or properties of a system in its environment embodied
in its elements, relationships, and in the principles of its design and evolution.

In this section, basic terminology related to architecture, which are com-
ponent, connector, configuration, and style will be introduced.

2.3 | Architecture-based Software Quality of Service Management 33

2.3.1.1. Component

A software component is an entity that provides functionalities required by
the system or other components. Taylor, Medvidovi¢, and Dashofy [TMD09]
define a software component as follows.

Definition 2.2 (Software component [TMDO09])

A software component is an architectural entity that (1) encapsulates a subset
of the system’s functionality and/or data, (2) restricts access to that subset via
an explicity defined interface, and (3) has explicitly defined dependencies on
its required execution context.

In other words, a component encompasses the state, which is represented
in a form of information or data, and the functionalities, which is provided by
its interface. A component may require other components to function, which
is regarded as execution context. These components can be hardware or
software resources, configurations, data, or other components that provides
functionalities required by this component.

Szyperski [Szy02] provides another definition for a software component
from another perspective.

Definition 2.3 (Software component [Szy02])

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.

This definition implies that a software component can be reused in another
system if both systems require the same functionalities provided by that
component. For example, the Apache commons mathematics library! is
a light-weight software library that provides mathematics and statistics
functionalities. The library is widely used because it provides common
functionalities required by most applications.

Thttp://commons.apache.org/proper/commons-math/

34 2 | Foundations

In order for software components to function, they need to be deployed
on hardware components. IEEE 610.10-1994 [IEE95] provides a definition
for hardware as follows.

Definition 2.4 (Hardware [IEE95])
Physical equipment used to process, store, or transmit computer programs or
data.

In Running Example 1, software components are, for example, web ap-
plications, application server, and Database Management System (DBMS).
Example of hardware components are the physical components, e.g., CPU,
memory, and hard drives.

2.3.1.2. Connector

Connectors provide interactions between components so that they can com-
municate and work together. Taylor, Medvidovi¢, and Dashofy [TMDO09]
provide a definition for software connector as follows.

Definition 2.5 (Software connector [TMDO09])
‘A software connector is an architectural element tasked with effecting and
regulating interactions among components.”

In a monolithic application, software connectors are, for example, proce-
dural calls or shared data access. A procedural call provides communications
by transferring control and data between program subroutines. The caller
passes control to the callee by invocation with parameters and the callee
returns the control with the return value to the caller. A shared data access
provides interactions between components by making certain data accessible
for multiple components. In a more complex distributed application, which
involves components that are deployed on multiple machines in different
locations, connectors are usually Application Programming Interfaces (APIs)
that allow components to interact remotely.

As opposed to software connectors, hardware connectors are physical enti-
ties that connect and provide communication between physical components.

2.3 | Architecture-based Software Quality of Service Management 35

An example of a hardware connector is physical network links that connect
multiple machines.

In Running Example 1, software connectors are entities that provide (re-
mote) procedural calls, while hardware connectors are network connections
between physical machines.

2.3.1.3. Configuration

When building a system, components and connectors need to be put together
in a certain way which is called a configuration. Taylor, Medvidovi¢, and
Dashofy [TMDO09] define a configuration as follows.

Definition 2.6 (Configuration [TMDO09])
An architectural configuration is a set of specific associations between the
components and connectors of a software system’s architecture.

An architectural configuration can be represented in a form of a diagram
or a graph. The nodes in the graph are components while the edges rep-
resent connectors. A connection between components implies that those
components can interact and communicate with each other.

An architectural configuration also creates an architectural dependency.
When two components are connected, an architectural dependency emerges
from the connection. Stafford, Wolf, and Caporuscio [SWCO03] classify
architectural dependencies into two categories, namely structure and behav-
ior. Structural dependencies come from system dependencies, e.g., import
statements, and deployment of software components on hardware compo-
nents. Behavioral dependencies come from dynamic interactions between
components.

Figure 1.1 (Page 4) depicts a configuration of Running Example 1 as a
diagram. The diagram shows how software components are deployed and
how hardware components are connected. The dependencies between both
software and hardware components are also visible.

36 2 | Foundations

2.3.1.4. Architectural Style

There are certain design decisions that result in a system with better proper-
ties than the others. These decisions are generally at high-level and are not
specific to one particular system. Examples of architectural styles are client-
server, pipe-and-filter, Representational State Transfer (REST), component-
based, Service-oriented Architecture (SOA), and microservice [New15].
Taylor, Medvidovi¢, and Dashofy [TMDO09] provide a definition for an archi-
tectural style as follows.

Definition 2.7 (Architectural style [TMDO09])

An architectural style is a named collection of architectural design decisions that
(1) are applicable in a given development context, (2) constrain architectural
design decisions that are specific to a particular system within that context, and
(3) elicit beneficial qualities in each resulting system.

Running Example 1 in Figure 1.1 (Page 4) follows a three-tier architectural
style since the system is split into three parts, namely presentation tier,
business tier, and database tier.

2.3.2. Architecture Description Language

Architecture Description Languages (ADLs) are notations that are developed
particularly for modeling software architecture [TMDO09]. ISO/IEC/IEEE
42010:2011(E) [1SO11] defines an Architecture Description Language (ADL)
as follows.

Definition 2.8 (Architecture Description Language [ISO11])
An Architecture Description Language (ADL) is any form of expression for use
in architecture descriptions.

Medvidovi¢ and Taylor [MT00] conducted a survey on the existing ADLs
and found a key property among them which is the support for modeling
component, connectors, interfaces, and configurations. Examples of early
ADLs are Darwin, Rapide, and Wright, which were developed primarily
for research projects and are no longer actively used in practice [TMDO09].

2.3 | Architecture-based Software Quality of Service Management 37

Besides, there are domain-specific ADLs, for example, Architecture Analysis
and Design Language (AADL) [FGHO6], which is developed for modeling
real-time and embedded systems, e.g., automotive, avionics, and medical sys-
tems. Additionally, there are extensible ADLs, for example, Acme [GMW10],
which provide basic constructs and allow modifications or creation of new
constructs.

2.3.3. Model-based Software Quality of Service Evaluation

Early evaluation of the system attributes based on a prototype can provide
insights of the system without having to build a real system. For example,
aerospace engineers use a model of a plane to test its aerodynamics in a
wind tunnel before it is built. Moreover, with the help of computers, the
aerodynamics can nowadays be simulated in a virtual environment.

In software engineering, the design decisions made in the early stage of
development can affect non-functional properties of the system, e.g., perfor-
mance, availability, reliability, scalability, cost efficiency, or energy efficiency.
Such aspects can be evaluated by using a measurement-based evaluation
which deploys the system in an environment that is identical or similar to the
production system and observes those aspects. For example, performance
characteristics of a system can be measured and used to improve the QoS,
for example, see [AGK+02; MAO1]. However, this approach requires a lot of
effort in setting up the environment and deploying the system. Furthermore,
for some of the aspects, more effort would be needed, for example, the
system needs to be actually scaled to evaluate its scalability.

Model-based software QoS evaluation allows such aspects to be analyzed or
evaluated without actually deploying the system or even before the software
is fully developed. This enables design alternatives to be considered and
evaluated in order to meet the non-functional requirements. Moreover, any
changes made to the architecture during the evolution can be analyzed to
see if they will affect non-functional properties of the system.

There exist two approaches for model-based software QoS evaluation. The
first approach employs analytical models while the second approach employs

38 2 | Foundations

architecture-level models [BHW+15]. Analytical models are primarily based
on mathematical models, such as queueing networks, layered queueing
networks, Petri nets, reliability block diagrams, and fault trees [ACC+14].
The models can be evaluated by the suitable model solvers to obtain the
desired QoS value. For instance, a reliability block diagram can be solved
by RBDTool [SRSD04] to obtain system reliability and a fault tree can be
solved by OpenFTA! to obtain failure probability.

Architecture-level models are based on the system architecture, including
the deployment and available resources. One example of such models is
Schedulability, Performance and Time Specification (SPT) [Obj05] which is
an Object Management Group (OMG) standard for modeling system perfor-
mance using Unified Modeling Language (UML). Modeling and Analysis of
Real Time and Embedded systems (MARTE) [Obj11] is another OMG stan-
dard for modeling real-time and embedded systems. The standard utilizes
Unified Modeling Language 2 (UML2) which has been extended to support
model-driven development of such systems. A more sophisticated example is
the Palladio Component Model (PCM) which allows an evaluation of various
QoS aspects, such as performance, reliability, maintainability, and cost, based
on architectural specifications [BKR09]. The Descartes Modeling Language
(DML) provides meta-models for modeling QoS aspects, e.g., performance
and dependability, and ensuring that these requirements are met during
the operation [KBH14]. An architecture-level model can be solved either by
simulation using the provided simulators to obtain the properties of interest,
or it can be transformed into an analytical model, e.g., Layered Queueing
Networks (LQNSs) for performance prediction or Markov chains for reliability
prediction, and solved using a respective model solver.

2.3.4. Application Performance Management

Hora employs Application Performance Monitoring (APM) to obtain moni-
toring data of components in the system. The data is used to create models
that represent the statuses, e.g., healthy or failing, of the components. At

1 http://www.openfta.com/

2.3 | Architecture-based Software Quality of Service Management 39

runtime, the failure probabilities of the components are predicted by these
models and are forwarded to the Failure Propagation Model (FPM) for fur-
ther inference. This section presents APM and the activities that are involved
in the process.

Application Performance Monitoring (APM) aims to achieve a satisfactory
level of performance during operation by continuously monitoring relevant
parameters, detecting, diagnosing, and resolving problems using the col-
lected data [HHMO17]. Examples of commercial APM tools are Dynatrace,!
New Relic,> AppDynamics,> and CA.* Examples of open-source tools are
Kieker® and inspectIT.®

Heger et al. [HHMO17] classify APM activities into four groups, which
are data collection, data storage and processing, data presentation, and
data interpretation and use. For the first activity, the data is collected at
runtime from different sources. These sources are further categorized into
six levels, which are hardware, operating system, middleware, application,
user, and business [HHMO17]. For example, resource utilization can be
collected from CPU, memory, disk, or network. Method response times can
be collected from internal or remote calls. Conversion and bounce rate can
be collected from the business level. Application call stacks can be sampled
to obtain the call graph.

In the second activity, the collected monitoring data from the first activity
can be stored locally, e.g., in a log file or a local database, or remotely,
e.g., a centralized storage system offered by the APM tool. There are two
common types of collected data, namely, time series data and execution
traces [HHMO17]. Time series data, as defined in Section 2.2.1, usually
represents statistics, such as mean or percentile, of the metrics, e.g., method
response times and resource utilization. Execution traces represent the
control flow of the application and the interaction between components,
both internally or remotely, e.g., application call stack.

Thttps://www.dynatrace.com

2https://newrelic.com

3https://www.appdynamics.com
“https://www.ca.com/us/products/ca-application-performance-management.htm]
Shttp://www.kieker-monitoring.net

Shttp://www.inspectit.rocks

40 2 | Foundations

The third activity involves presenting the collected data. The monitoring
data is usually large since it is collected from many components over a
long period of time. Presenting all the data to users or system operators is
overwhelming and, thus, not suitable for viewing or diagnosis. The APM tools
generally present the data in selected aspects to allow easier understanding
by using, for example, component diagrams, sequence diagrams, and time
series plots.

In the last activity, the data that is collected, stored, and presented can be
interpreted and used for various purposes. Examples are problem detection
and alerting, problem diagnosis and root cause isolation, and system refac-
toring and adaptation [HHMO17]. Problem detection and alerting employs
techniques, such as statistical testings, to detect symptoms that can manifest
into a failure. When such problems are detected, an alert can be triggered
and system operators can be notified. Problem diagnosis and root cause
isolation aim at locating the component which is responsible for the detected
problem. System refactoring and adaptation try to prevent or minimize the
problem by changing the configuration, e.g., scaling up the system.

2.3.5. SLAstic and Kieker

The Hora approach proposed in this thesis makes failure predictions for
components based on the monitoring data collected at runtime by an APM
tool. The prediction results are combined with the architectural knowledge
of the system to further predict their propagations. This section introduces
the SLAstic approach which provides both the monitoring data and the
architectural knowledge for Hora. In Section 6.4.3, the detailed description
and the extension to SLAstic will be introduced so that additional information
regarding the architecture can be obtained.

SLAstic is an approach to model-driven online capacity management for
component-based software systems [Hoo14]. The approach is divided into
three main parts, as depicted in Figure 2.8, which are SLAstic.Monitoring,
SLAstic.Reconfiguration, and SLAstic.Control. SLAstic provides frameworks
and models to support online capacity management. Among others, two

2.3 | Architecture-based Software Quality of Service Management 41

Adaptable Software System A
Instrumentation ||
>
-~ g
1 U ;z;vito ving Q O Reconfiguration g
: \ Actions o
é Records \\I/ i
SLAstic. SLAstic. S 4
MONITORING RECONFIGURATION A
A o) g
, H Monitoring 3 Reconfiguration 2
SLAstic M Events Plans £
. 3]
Moad Q e 2
SLAstic.CONTROL
Initialization SLAstic S Analysis
Model
Extraction
Adaptation Engine _

Figure 2.8.: SLAstic framework architecture [Hoo14]

components, which are the SLAstic model and the Kieker framework, provide
the functionalities that are required by Hora. The SLAstic model is an
architectural meta-model that is used at runtime to represent the system
while the Kieker framework provides APM capability. This section introduces
these two components of SLAstic. Section 2.3.5.1 describes the SLAstic
model and Section 2.3.5.2 describes the Kieker framework.

2.3.5.1. SLAstic Model

SLAstic model is a runtime model that represents different aspects of compo-
nent-based software systems, such as component types, deployment, recon-
figuration, and usage [Hool4]. The model provides information for system
adaptation to serve the goal of model-driven online capacity management
in the SLAstic framework. It contains both structural and behavioral infor-

42 2 | Foundations

mation of a component-based software system’s architecture, which is used
by Hora to create a failure propagation model (Chapter 7). In a SLAstic
model, the system structure is represented by four sub-models.

* Type repository model specifies a set of component types, including
their specifications, which are used to build a system or a composite
component.

* Component assembly model contains assembly components which are
instances of component types in the type repository model.

* Execution environment model specifies the available execution container
and their specifications, e.g., network links.

* Component deployment model specifies the deployment of assembly
components on the execution containers.

The system behavior is represented by three sub-models.

* Monitoring events model contains information regarding operation
execution, e.g., start and end time, and resource usage, e.g., CPU and
memory utilization.

* Trace model contains sequences of related operation executions.

* Usage model contains information regarding internal and remote calls,
e.g., how often one operation calls another.

The information contained in these sub-models is important to HOra since
it provides insights into the system, e.g., how components are connected,
deployed, and how they interact with each other. Chapter 6 introduces
Hora’s Architectural Dependency Model (ADM), which is an architectural
model that represents dependencies between components, and how it can
be extracted from a SLAstic model.

2.3.5.2. Kieker Framework

Kieker is an open-source APM framework that supports dynamic and adap-
tive monitoring of software systems and provides both offline and online

2.3 | Architecture-based Software Quality of Service Management 43

Analysis Configuration

,—1 E & & =
Monitoring] =] itoring 3] » Analysis
t Monitori Analysis /
Probe Controller "((Writer Record H oador” '(’Q‘ Visualization S Controller
2

it % Plugin
\Q ------------------------ N TR N
Management ©

Sampling Interface

Monitoring
Kieker.Monitoring Log/Stream Kieker.Analysis

Figure 2.9.: Core components and workflow of Kieker [Hoo14]

Monitoring Record

OperationExecutionRecord > - loggingTimestamp : long [<— CPUUtilizationRecord
- hostname : String - names () : String[] - timestamp : long
- operationSignature: String -type (..): ... - hostname: String
- traceld : long -value (..) : ... - cpulD : String
- sessionld : String - user, system, wait, nice,
- eoi, ess : int % irq, totalUtilization, idle: double
- tin, tout : long
ResourceUtilizationRecord MemSwapUsageRecord
- timestamp : long - timestamp : long
- hostname: String - hostname: String
- resourceName : String - memTotal, memUsed, memFree : long
- utilization : double - swapTotal, swapUsed, swapFree : long

Figure 2.10.: Class diagram of monitoring records [Hoo14]

analysis of the system behavior [HWH12]. The data collection is done by
instrumenting the application with monitoring probes. These probes are
available in multiple programming languages and can collect various infor-
mation, such as method execution time, call graph, and resource utilization.
The analysis of the collected data provides insights regarding the applica-
tion behavior, such as reconstructing and visualizing the architecture, and
detecting anomalies.

Figure 2.9 depicts the core components and workflow of Kieker to monitor
the application and analyze the monitoring data. To monitor an application,
it has to be instrumented using monitoring probes that collect and write the
monitoring records in a form of Kieker monitoring log or stream. The log
can be stored on a file system or sent to a remote server which collects logs
from distributed systems and forwards them to the analysis part. The log
is then read and processed by the analysis plugins which provide various
functionalities, such as trace reconstruction, architecture discovery, and
anomaly detection.

44 2 | Foundations

Figure 2.10 illustrates the class diagram of selected Kieker monitoring
records. The records contain the information regarding the executed method,
e.g., the fully qualified name, when it is executed, when it finishes, and
other parameters that indicate where this method is located in the call
stack. The OperationExecutionRecord, which contains information for
trace reconstruction, inherits from MonitoringRecord and contains the
following fields:

* hostname—hostname of the machine

* operationSignature—fully qualified name of the executed method
* traceID—a unique ID of the thread that executes this method

* sessionlD—a unique ID of the session

* EOI—Execution Order Index

* ESS—Execution Stack Size

* tin—the time that the method is executed

¢ tout—the time that the method finishes

The Execution Order Index (EOI) and Execution Stack Size (ESS) are
crucial parameters that are used by SLAstic to reconstruct the trace and the
call graph. EOQI is the order that a method is executed. It increments for
every internal or remote call to another method. ESS is the current size
of the call stack. It increases when a method is called and decreases when
the method finishes. Figure 2.11 illustrates an example of a trace with EOI
and ESS.

Hora employs Kieker to monitor the method response time and resource
utilization of an application. The component failure predictors read this
information and make predictions whether the components are going to
fail in the near future. The component failure predictors are presented
in Chapter 5.

2.3 | Architecture-based Software Quality of Service Management 45

46

:CRM :Catalog
|

searchBook(...) 0; getBook(...)

Mo

Legend:

—» = call message i5)
_ = trace = execution with eoi i and ess j
< - = return message

Figure 2.11.: Example of tracing with EOI and ESS [Hoo14]

2 | Foundations

CHAPTER

RELATED WORK

The online failure prediction approach proposed in this thesis employs
architectural knowledge of the system and failure prediction techniques.
The related work involves the relevant areas in online failure prediction and
architecture-based performance/reliability prediction.

The categorization of related work is based on two dimensions; 1) mono-
lithic vs. architecture-based, and 2) offline vs. online. As outlined in Chap-
ter 2, online prediction approaches aim at providing information regarding
the near future state of the running system based on runtime observa-
tions [SLM10]. As opposed to that, offline prediction approaches are not
used to trigger runtime actions, but focus on providing QoS measures to
reason on system design and evolution decisions [CDI11; Mus98].

In another dimension, monolithic prediction approaches consider the
system as a black box. A prediction model can be created using different
techniques, such as time series forecasting or machine learning. On the other
hand, architecture-based prediction approaches consider the architecture of
software systems including the components and their inter-dependencies.
Each component has its own specification that can be combined with the
others’ to form a model that represents the whole system. The relevant
measures of the system can then be obtained by solving the combined model.

47

The related work of this thesis can be classified into four categories, based
on the two dimensions, which are monolithic offline prediction, monolithic
online prediction (Section 3.1), architecture-based offline prediction (Sec-
tion 3.2), and architecture-based online prediction (Section 3.3). Due to the
lack of relevance to our approach, we do not discuss work on monolithic
offline prediction.

3.1. Monolithic Online Prediction

The Hora approach introduced in this thesis predicts online failures by
combining component failure prediction with component dependencies
present in the architectural knowledge. As a foundation, Hora still relies on
accurate online predictions of component failures in order to further predict
their consequences on other parts of the system. This section presents the
related work that has been used to predict component failures in various
systems.

The related work in this category has largely been collected and presented
in “A survey of online failure prediction methods” by Salfner, Lenk, and
Malek [SLM10]. The survey classifies related work into four main categories;
failure tracking, symptom monitoring, detected error reporting, and unde-
tected error auditing. In order not to duplicate the work, we use the same
classification as presented in the survey. However, in this section, we focus on
the work that has been published after the survey was carried out including
those that were published prior to the survey but are highly relevant to the
main contribution of this thesis. Since there is no recent work in failure
tracking and undetected error auditing, these categories are not presented
here. Section 3.1.1 presents the techniques that have been used to predict
online failures based on symptom monitoring. Section 3.1.2 presents the
prediction techniques that are based on detected error reporting.

48 3 | Related Work

3.1.1. Symptom Monitoring

Symptoms are the side effects that can be observed from an erroneous state
of a component or system. For example, a software component that has a
memory leak can cause the system to fail due to memory exhaustion. The
symptom, in this case, would be the monotonic increase of the memory
utilization over time. The work in this sub-category takes the symptoms as
input and analyzes whether the component or the system is experiencing a
failure. This section lists different techniques that have been used to predict
failures by monitoring the symptoms. The techniques include function
approximation (Section 3.1.1.1), classifiers (Section 3.1.1.2), system models
(Section 3.1.1.3), and time series analysis (Section 3.1.1.4).

3.1.1.1. Function Approximation

Function approximation techniques use mathematical functions to relate the
symptoms and the failures. The functions are created during the training
phase and used at runtime to predict failures based on the symptoms.

Alonso et al. [ATBG10], Alonso, Torres, and Gavalda [ATG09], El-Shishiny,
Deraz, and Badreddin [EDB08a], El-Shishiny, Deraz, and Bahy [EDBO8b],
Guo et al. [GJW+10], and Xue et al. [XSJC09] try to predict failures that
are caused by software aging [GVVT98]. Alonso et al. [ATBG10] and Alonso,
Torres, and Gavalda [ATGO09] focus on software memory leakage and pre-
dict whether and when the leakage will lead to memory exhaustion. The
techniques used to make prediction are linear regression and decision trees
(REPtree and M5P). Instead of observing only memory usage, El-Shishiny,
Deraz, and Badreddin [EDBO8a] and El-Shishiny, Deraz, and Bahy [EDBO8b]
include performance metrics such as reponse time, and swap space, and
use artificial neural networks to predict the aging. Similarly, Guo et al.
[GJW+10] include the system load and use a regression model to predict
the damage. Xue et al. [XSJC09] suggest that the resource exhaustion might
be influenced by the workload. Thus, they include the workload into the
prediction model, which is artificial neural networks.

3.1 | Monolithic Online Prediction 49

Eckart et al. [ECHSO08] predict failures in storage systems based on
S.M.A.R.T. data [OP95] using Markov models. Each state in the model rep-
resents the corresponding state of the hard drives, i.e., healthy, non-healthy,
and failed. The model is further extended to capture the characteristics of
hard drives with RAID technology. Zhu et al. [ZWL+13] use S.M.A.R.T. data
to predict drive failures by employing a backpropagation neural network
model. A SVM-based method is also proposed which considers not only the
raw S.M.A.R.T. data but also the rate of changes of attributes.

Baldoni et al. [BLM+12] and Baldoni, Montanari, and Rizzuto [BMR15]
introduce CASPER which is a prediction framework for distributed systems.
The input data is collected by sniffing network packets without the knowledge
of the system or causing extra workload to the system. Complex event
processing (CEP) is used to pre-process the data such as round trip time,
message rate. The aggregated data is used as input for Hidden Markov model
(HMM), in which two states represent a safe and unsafe states, respectively,
for each kind of fault.

Leitner et al. [LMRD10; LWR+10] propose the PREvent framework which
monitors system events (method or service invocation), predicts Service Level
Agreement (SLA) violations, and prevents them from occurring. Multilayer
perceptron is triggered to make prediction when a checkpoint will be crossed.

3.1.1.2. Classifiers

The techniques in this category classify the observed symptoms into a finite
number of states, e.g., healthy or failure. The data from these states are
then collected and used to create models that represent those states. At
runtime, the symptoms are classified into states according to the created
models and the one with the highest probability is chosen.

Al-Fugaha et al. [ARK+10] propose a technique, called JCAA, to predict
failures in telecommunication networks. The technique employs k-means to
create clusters of network performance data and associate these groups with
the failures. The runtime observations are classified based on these groups.

50 3 | Related Work

Gu et al. [GPYCO08] and Gu and Wang [GWO09] analyze performance
metrics such as resource usage, page-in/page-out rates and use a decision
tree classifier to predict failures.

Guan, Zhang, and Fu [GZF12] employ Bayesian submodels and decision
trees to predict failures in computer clusters based on performance metrics.
The Bayesian submodels take unlabeled data as input and classify if a data
instance is an anomaly. The trees are then constructed and trained with
labeled data from the Bayesian submodels.

Svendsen [Svell] predicts failures in Unix systems by using Naive Bayes
Classifier (NBC). The input data is collected from the system such as CPU,
memory, swap utilization, and I/0 wait.

Magalhaes and Silva [MS10] predict performance anomalies in web ap-
plications by observing resource utilization and using machine learning
algorithms, which are naive Bayes, J48, logistic model trees, and multilayer
perceptron, to create the prediction models.

Lu et al. [LWZGO09] employ supervised Hessian locally linear embedding
(SHLLE) algorithm to extract features from performance metrics, e.g., net-
work traffic, resource usage, file transfer rate, and classify whether the
system is deemed to fail.

Ganguly et al. [GCK+16] employ a two-step approach to predict failures in
hard drives. The first step is a decision tree which classifies the drives based
on the workload and SMART data. The second step is logistic regression
which makes predictions for the drives in the low separation nodes of the
decision tree.

3.1.1.3. System Models

System models are the models that represent the system in a normal state.
The techniques in this category are based on semi-supervised learning which
requires data collected during the normal state to be labeled. Models are
then created based on these data. At runtime, the deviations of the symptoms
from the models are regarded as anomalies or signs of pending failures.

3.1 | Monolithic Online Prediction 51

Abed et al. [AAKR13] propose an approach to predict failures in network
systems based on anomaly detection. The time series data of network param-
eters is split into segments and the minimum, maximum of the data in each
segment is calculated and the failures are predicted using anomaly trend.

Guan, Zhang, and Fu [GZF11a; GZF11b; GZF12] collect performance
metrics from computer clusters and use PCA for mutual information analysis
and redundancy reduction. Bayesian submodels are employed as prediction
models to classify if a data instance is anomalous.

Wang et al. [WMCT14] present a method to predict failures in hard
drives. The method is composed of two steps. First, the SSM.A.R.T. data
is aggregated and transformed by Mahalanobis distance and Box-Cox into
one index. Second, the Generalized Likelihood Ratio Test (GLRT) is used to
detect the number of anomalies in each window. If the threshold is violated,
a warning is issued.

3.1.1.4. Time Series Analysis

The techniques in this category take time series data as input and extrapolate
it to predict the value in the future. The failures can be predicted from the
future value by using a threshold. For example, if the memory utilization is
predicted to cross the threshold defined by the amount of available memory,
then a failure can be expected. The techniques in this category are also used
by Hora to predict failures based on time series data (Section 5.4).

Cavallo, Di Penta, and Canfora [CDC10] compare different time series
forecasting techniques to predict response time violations of web services.
The results are used to support QoS-aware service selection.

Cui et al. [CLL+12] investigate the difference of software aging in physical
and virtual environments and propose a way to detect and predict the
aging. Linear regression is used to detect the trend and predict the resource
exhaustion time which implies a failure.

Amin, Colman, and Grunske [ACG11; ACG12] predict the QoS of web
services based on the response time by using time series analysis. Amin, Col-
man, and Grunske [ACG11] employ a statistical approach, named CREQA,

52 3 | Related Work

to detect changes in the response time which may lead to failures. Amin,
Colman, and Grunske [ACG12] integrate Autoregressive Integrated Moving
Average (ARIMA) and Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH) models to improve the prediction. The ARIMA model is
first constructed from the QoS data and the forecast residual is used to
constructed the GARCH model.

3.1.2. Detected Error Reporting

Errors are direct effects that can be seen from a component or system in an
incorrect state. They are, for instance, error messages in the application or
system logs. The techniques in this category aim to analyze the errors or
their patterns that precede failures. When these patterns are recognized at
runtime, it is likely that a failure will follow.

3.1.2.1. Rule-Based Approaches

The techniques in this category analyze the events in the logs and create
rules of how the events occur before the failures. At runtime, the detected
events are compared against the rules and the matched rule is used to predict
failures.

Clemm and Hartwig [CH10] propose NETradamus which is a framework
for forecasting failures from event messages. The framework mines the event
messages in the log files and creates rules that represent the events. These
rules are used as case bases at runtime to predict failure events.

Gu et al. [GZL+08] present a dynamic meta-learning prediction which
allows the predictors to be re-trained at runtime. The re-training is done by
dividing data into three parts: 1) historical data except the most recent one
is used for re-training, 2) the most recent data is used for testing and rule
adjustment, and 3) the prediction set which is the current data to be used
for making prediction. The rules that result in low precision and recall are
excluded from the next generation of the predictor.

3.1 | Monolithic Online Prediction 53

Fu et al. [FRZ+12] propose LogMaster which is a set of algorithms that
mines event correlations from log messages. Apriori-LIS, which is an ex-
tension of Apriori algorithm, is proposed and used to mine the event rules.
Event correlation graphs (ECGS) is introduced to represent these rules. The
ECGs are used at runtime to match events with the rules and to calculate
the probability of a failure event.

Zheng et al. [ZLG+10] propose a method to predict failures with lead
time and failure location in the Blue Gene supercomputer. The rules are
created by analyzing log patterns that precede failures. The lead time is
calculated by the time between last event until the failure occurrence. A
genetic algorithm is then used to generate more rules during the training
for failure prediction.

Yu et al. [YZLC11] compare two widely-used approaches, which are period-
based and event-based, to predict failures in the Blue Gene/P supercomputer.
A Bayesian prediction model is used to evaluate the accuracy of both methods
and the results show that the event-based approach outperforms the period-
based approach.

Liang et al. [LZXS07b] split log files into windows and extract the statistics
of events into features. Different machine learning algorithms are applied to
learn the extracted features and predict whether a failure is pending.

3.1.2.2. Pattern Recognition

Pattern recognition analyzes the data and identifies the patterns between
errors and failures. In contrast to rule-based approaches, pattern recogni-
tion employs complex models, e.g., machine learning, to represent these
relationships. The Hora approach also employs techniques in this category
to predict failures based on event log (Section 5.5) and S.M.A.R.T. data
(Section 5.6).

Fulp, Fink, and Haack [FFHO8] employ SVM to predict failures from log
files. A sliding window is used to extract sub-sequences of log messages. The
extracted sequences are transformed to a frequency representation and used
as input to the SVM. The SVM then associates these sequences to classes
which represents failure and non-failure states of the system.

54 3 | Related Work

Gainaru et al. [GCF+11] propose an event prediction approach for High
Performance Computing (HPC) which uses an adaptive time window. The
log files are preprocessed by counting the number of occurrences of each
log pattern. These numbers are used to build memory Markov chains which
represent the probability of an event occurring after the others. At runtime,
if the the prediction quality drops, the model is updated by monitoring the
pattern distribution and recalculate their confidence values.

Fullop, Gainaru, and Plutchak [FGP12] propose an approach to predict
events based on log files. The event correlations are extracted from the
pre-processed logs and used to create a directed graph to represent inter-
relationships between events. This graph is used as a reference to detect
patterns of events at runtime which may precede certain events.

Fronza et al. [FSS+12] employ random indexing which assigns an index
vector to each event in the logs of software applications. Based on these
index vectors, context vectors are calculated and used as input for SVM.
The SVM is weighted to cope with skewed classes and is used with linear,
polynomial and radial basis kernels.

Watanabe et al. [WOS+12] propose an approach for real-time learning
failure prediction based on log files. The log files are collected from cloud
servers with several virtual machines. The similarity between each log record
is computed based on the words contained in the log message. Each record
is assigned a unique ID and the sequence of IDs is used to form an error
sequence. The Bayesian method is used to calculate the probability of a
failure that follows the sequence. The evaluation is done compared to NBC
which uses individual log records to calculate the probability model.

Ge [Gel1] proposes a failure prediction framework that predicts failures
in supercomputers. The event logs of Blue Gene/L are first categorized into
clusters where each cluster represents the same pattern of messages. Based
on these clusters, the semi-Markov CRF models are constructed and used to
predict the failures.

Theera-Ampornpunt, Zhou, and Bagchi [TZB11] present an approach to
improve the prediction of time to failure. The approach uses a set of HMMs,
where each one is trained with different lead times, e.g., 40 seconds or

3.1 | Monolithic Online Prediction 55

80 seconds. At runtime, the HMM that matches the current input sequence
with the highest probability is used to make predictions.

Sonoda, Watanabe, and Matsumoto [SWM12] predict the time of failure
occurrence based on system logs using message pattern learning. The mes-
sages are first classified into groups by using a similarity check. Bayesian
learning then calculates the probability of the failures occurring after the
message patterns. The lead times of the failures are computed by averaging
the time-to-failure of the same message pattern in the training data.

Shalan and Zulkernine [SZ13] present an approach for failure mode
prediction. The error log records are analyzed to create error signatures
which summarize error log variables for each failure mode. A predictive
function is created for each mode based on these signatures and used to
predict failures at runtime.

Nakka, Agrawal, and Choudhary [NAC11] employs data mining to pre-
dict failures in HPC. The usage data and failure logs are collected from
supercomputing clusters. The information, such as idle time and time since
last failure, is extracted from the data and used to train decision tree-based
predictors. At runtime, the predictors classify the data and make predictions
if a failure would occur in one hour.

Kimura et al. [KWTI15] propose an approach to learn the log message
patterns and predict failures in large-scale networks. The logs are categorized
into groups that have the same patterns. SVM is used to learn the patterns
that lead to the failures and make predictions at runtime.

3.2. Architecture-based Offline Prediction

The approaches in this category employ architecture-based system mod-
els annotated with specific quality evaluation models or scenarios [BG04;
BZJ04; Gru07], e.g., with respect to performance [BDIS04; Koz10], relia-
bility [GTO1], and safety [GHO8] attributes. The model can be solved by
using analytical solution or simulations to obtain the relevant properties
of the whole system. The concept of these approaches has been previously
introduced in Section 2.3.

56 3 | Related Work

Cheung [Che80] proposes a seminal software reliability model that takes
into account the reliability of individual components along with the probabil-
ity of calling other components. A Markov model is employed to combine the
reliability of components and represent the reliability of the whole system.
Cortellessa and Grassi [CGO7] present an approach for reliability analysis of
component-based software systems. Based on the system architecture, they
consider the error propagation probability between components in addition
to the reliability of individual components. Becker, Koziolek, and Reussner
[BKRO9] introduce the Palladio Component Model (PCM) which enables per-
formance prediction of component-based software systems. Brosch [Bro12]
extends the PCM by annotating the components with corresponding reli-
ability attributes. The model is transformed into a discrete-time Markov
chain and solved to obtain the reliability of the system. Uhle and Troger
[UT14] employ dependency graphs to assess dependability of microservice
applications. The graphs are used to construct qualitative and quantitative
fault trees for the corresponding applications.

3.3. Architecture-based Online Prediction

As a recent example for performance, Huber et al. [HBS+17] employ an
architecture-based performance model to predict system performance at
runtime for capacity planning and online resource provisioning. The perfor-
mance characteristics are captured in an architectural performance model
which is then solved by transforming it to an analytical model or by simu-
lation, similar to Becker, Koziolek, and Reussner [BKR09]. Although this
work can be applied to predict performance-related failures, i.e., timing fail-
ures [ALRLO4], it does not consider content failures. HoRA takes a different
approach by predicting both timing and content failures that result from the
failure of each component which propagates through the architecture until
it reaches the system boundary.

Chalermarrewong, Achalakul, and See [CAS12] predict system unavail-
ability in data centers using a set of component predictors and fault tree

3.3 | Architecture-based Online Prediction 57

analysis. The component predictors employ ARMA to predict failures of
hardware components. These component failures are leaf nodes in the fault
tree which is evaluated to conclude whether the current set of component
failures will lead to system unavailability. Even though this work does not
consider software, it shares the same basic idea as Hora by having a dedi-
cated failure predictor for each component. However, the fault tree does not
incorporate the conditional probability which represents complex software
architectural relationships. On the other hand, Hora employs Bayesian
network theory which can represent conditional dependencies and infer the
probabilities of failures and their propagation.

Capelastegui et al. [CNH+13] present an online failure prediction system
for private IaaS platforms. The system takes as input both data from the
virtual and physical machines. The data, which is resource usage, applica-
tion logs, and failure data, is sent to a monitoring and prediction server.
Three different prediction mechanisms are used to predict failures based
on the three data types, namely, resource exhaustion, event-based, and
failure-based. The proposed prediction approach is tightly coupled with
the cloud infrastructure, i.e., only the vertical composition of physical and
virtual machines are considered in the failure propagation. In contrast, HorA
considers both horizontal and vertical compositions, i.e., the failure propaga-
tion between software components and the propagation between software
and hardware components. Furthermore, the proposed approach does not
consider probabilistic failure propagation while Hora explicitly considers
the propagation probabilities in the Failure Propagation Model (Chapter 7).

Mohamed [Moh12] proposes an approach to predict software functional
failures at runtime based on error spread-signature. The error spread-
signature is obtained by instrumenting the program to output the infor-
mation regarding the control flow. A connection dependency graph (CDG)
is introduced to represent this information. However, the CDG does not
consider the probabilistic propagation of the failures between components.
On the contrary, Hora aims to predict QoS-related failures and also includes
the failure propagation probabilities in the prediction model.

58 3 | Related Work

Pertet and Narasimhan [PNO5b] propose a topology-aware approach to
detect and handle cascading failures in computer networks. The idea is
that each node in the network has some knowledge about the topology, e.g.,
what is the next node it connects to. The system then uses this information
to traverse the network and identify the problematic node. This approach
focuses on predicting cascading failures of nodes in computer networks and
does not consider how a failure propagates inside a node. In contrast, Hora
aims to predict failures in software systems by considering how a failure of
one component or sub-component can propagate to the others through the
architectural dependencies.

3.3 | Architecture-based Online Prediction 59

Part II.

Contribution

61

CHAPTER

RESEARCH DESIGN AND
OVERVIEW OF THE APPROACH

This chapter presents the research design of the thesis and the overview of
the approach. Section 4.1 describes the goal and the research questions.
Section 4.2 presents the research plan. Section 4.3 describes the overview
of the proposed prediction approach.

4.1. Goal and Research Questions

This section describes the goal of this thesis and the research questions which
will be addressed. These questions will be further divided into subquestions
and described in detail.

The goal of this thesis is to improve prediction quality of online failure
prediction in software systems.

When a component in a system fails, the failure affects not only that
component but also other components in the system. We hypothesize that
the components that are affected by this failure may be determined by the

63

64

Research question

| Investigated in |

RQ1:

How can the failures of individual
components in the system be
accurately predicted?

ROL.1:

Which component measures are
available and can be used to predict
failures at runtime?

Chapter 5

RQ1.2:

Which prediction techniques should
be applied to which types of
measures?

Chapter 5

ROL.3:

What are the prediction qualities of
component failure predictors?

Chapters 10 to 12

RQ2:

How can architectural information
be used to improve online failure
prediction?

RQ2.1:

Which architectural information can
be used to improve online failure
prediction?

Chapter 6

RQ2.2:

How can the required architectural
information for online failure
prediction be modeled?

Chapter 6

RQ2.3:

Does architectural information affect
the prediction quality? If yes, to
which extent?

Chapter 13

RQ3:

How can component failure
prediction and architectural
information be combined to improve
online failure prediction?

RO3.1:

What is a suitable model to represent
the combined information?

Chapter 7

RQ3.2:

What is the prediction quality of the
combined model?

Chapter 13

RQ3.3:

What is the scalability of the
combined model?

Chapter 13

Table 4.1.: Research questions

4 | Research Design and Overview of the Approach

architectural dependency graph which describes how components depend
on each other. If the component failures can be accurately predicted and
the dependencies between components are known, it should be possible to
predict the propagation of the failures. This would allow to determine if a
failure would cause the system to fail, either partially or entirely.

In order to achieve this goal, we propose an online failure prediction
approach, called Hora. Hora employs online failure prediction techniques
to predict failures of individual components and combines the prediction
results with architectural knowledge. The combined model can infer new
probabilities of component failures taking into account the failures of other
components in the system.

In this section, three research questions are raised and described. Table 4.1
lists the questions, the subquestions, and the corresponding chapters in which
the questions are investigated and answered. The questions are detailed in
the remainder of this section.

RQ1: How can the failures of individual components in the
system be accurately predicted?

Predicting failures of each component in the system is the first step to
predicting the effects of the failures on the whole system. There already
exists a large body of work for online failure prediction. However, a system
is usually composed of different types of components, i.e., hardware and
software components. Each component produces different types of data that
can be used as input for the prediction method.

This research question, which is split into three subquestions, aims to
answer which prediction techniques are suitable for which types of compo-
nents.

4.1 | Goal and Research Questions 65

RQ1.1: Which component measures are available and can be used to predict
failures at runtime?

Predicting component failures requires the information that can represent
the status of each component. Different measures are available depending
on the type of the components. For instance, hardware components, e.g.,
CPU, memory, and hard drives, have measures related to the utilization level.
On the other hand, software components, e.g., class methods, databases,
external services, would produce response time as measures. This research
question will investigate which measures can be obtained from which types
of components and which ones can represent the status and can be used to
predict component failures.

RQ1.2: Which prediction techniques should be applied to which types of
measures?

Different types of measures can be obtained from different types of compo-
nents. However, not all failure prediction techniques can be applied to all
types of available measures. For example, time series forecasting techniques
are obviously suitable for time series data. If the data is event-based, other
techniques have to be employed. This question will investigate which pre-
diction techniques are suitable for predicting component failures based on
different types of data.

RQ1.3: What are the prediction qualities of component failure predictors?

The prediction quality of each individual component failure predictor is the
foundation of the Hora approach. In order to make an accurate prediction
for the whole system, the failure prediction of each component has to be
accurate. This question will investigate how accurate the component failure
predictors are.

66 4 | Research Design and Overview of the Approach

RQ2: How can architectural information be used to improve
online failure prediction?

Architectural dependency plays an important role in the propagation of the
failures. A failing component can cause other components to fail if there
are dependencies between them. For example, in a three-tier architecture, a
failing database can cause the business tier to fail because the transaction may
not be completed. However, this failure is not caused by the business tier itself
but it originates from the database and propagates through the dependency
chain. Thus, predicting this type of failure may not be accomplished only by
monitoring each component separately. Furthermore, although predicting
the failure of the database can be achieved, predicting its effects on other
components is not trivial.
This research question is divided into three following subquestions.

RQ2.1: Which architectural information can be used to improve online
failure prediction?

Architectural information of the system, e.g., a dependency graph, gives
information regarding the dependencies between components. However, the
granularity of this information plays an important role. For example, a high-
level dependency graph may not contain sufficient information regarding
how failures propagate. On the other hand, a fine-grained dependency graph
may contain much more information than needed, which can complicate the
analysis. This research question will investigate which information and how
much details are required in order to improve the prediction of cascading
failures.

RQ2.2: How can the required architectural information for online failure
prediction be modeled?

In order to achieve the prediction of failure propagation, a suitable repre-
sentation is needed to capture the architectural dependency information

4.1 | Goal and Research Questions 67

of components in the system. There exists already a number of architec-
tural models which represent different aspects of software system, such
as performance or reliability models (Section 2.3). This research question
aims to investigate whether the existing models are suitable for representing
architectural dependency information. If not, then a new model will be
introduced and investigated.

RQ2.3: Does architectural information affect the prediction quality? If yes,
to which extent?

The architectural dependency model can be created in different ways, either
manually or automatically. For manual creation, the model can be created
by system experts who have detailed knowledge about the system structure
and behavior. Automatic extraction can be done by gathering information
from other architectural models. The extraction algorithm also plays a role
in the final model. The resulting models from these methods can be different
and may produce different prediction results. This research question aims to
investigate if different granularity of the architectural dependency models
will affect the prediction quality.

RQ3: How can component failure prediction and architectural
information be combined to improve online failure prediction?

The component failure prediction provides predictions of when a component
in the system will fail. The architectural dependency information provides
the information of how components in the system depend on each other. In
order to predict system failure, these two pieces of information have to be
combined.

This research question is divided into the three following subquestions.

68 4 | Research Design and Overview of the Approach

RQ3.1: What is a suitable model to represent the combined information?

The architectural dependency model obtained in RQ2 contains the required
information about the dependencies. However, since it represents only the
dependencies between component pairs, it may not be suitable for inferring
failure probabilities through the dependency chain of the whole system.
This question will investigate the suitability of the architectural dependency
model for online failure prediction. If it is not suitable, then a new model
will be introduced and investigated.

RQ3.2: What is the prediction quality of the combined model?

At runtime, the prediction model, which is created by combining the architec-
tural dependency information and the component failure prediction, needs
to be solved to obtain the probability of cascading failures. This question
aims to investigate the prediction quality of the combined model.

RQ3.3: What is the scalability of the combined model?

The model that is used to predict cascading failures needs to incorporate
the architectural information of the system. For a large distributed system,
the number of components can be very high. Furthermore, the prediction
needs to be carried out in realtime which includes analyzing monitoring
data of all components and inferring failure probability from the model.
This question aims to investigate the scalability of the model when applied
to predict failures in large distributed systems.

4.2. Research Plan

In order to answer the research questions and to achieve the defined goal,
the research plan of this thesis is split into four work packages.

4.2 | Research Plan 69

4.2.1. WP1: Component failure prediction

This work package aims to investigate the prediction of individual compo-
nent failures independently from each other. Different types of monitoring
data from different components will be collected. The data will then be
investigated to see which prediction techniques are suitable for them. The
existing prediction techniques will also be investigated to see if they provide
sufficient information regarding component failures, i.e., the expected time
and probability of the pending failures. If the existing prediction techniques
cannot provide the required information, an investigation will be carried out
to determine what would be the required extensions. This work package
addresses the research questions RQ1.1 and RQ1.2.

4.2.2. WP2: Architectural dependency modeling

This work package comprises the construction of the architectural depen-
dency model that will provide propagation information. This information
will be used to predict cascading failures. An investigation will be carried
out to see which architectural information can represent the propagation
of the failures. The existing architectural models (Section 2.3) will be in-
vestigated to see if they contain the required architectural information. If
this information is not in the models, further studies will be carried out to
see if they can be obtained from the available sources of information, e.g.,
application traces, and if they can be included into the models. This work
package addresses the research questions RQ2.1 and RQ2.2.

4.2.3. WP3: Failure propagation prediction

This work package aims at combining the component failure prediction
techniques (WP1) with the architectural dependency model (WP2). The
architectural dependency model provides the information regarding com-
ponent dependencies and how failures can propagate through the system
architecture. The component failure prediction techniques provide the prob-
abilities of components failing in the near future. The result is a combined

70 4 | Research Design and Overview of the Approach

model that can predict both the failure of individual components and their
propagation. In this work package, different techniques will be investigated
to see which one is most suitable to represent the combined information.
This work package addresses the research question RQ3.1.

4.2.4. WP4: Evaluation

This work package aims to evaluate each part of the proposed approach. The
first part will focus on evaluating the prediction quality of the component
failure predictors. For this part, a quantitative evaluation will be carried out.
Different prediction techniques will be applied to different types of data. The
second part focuses on a quantitative evaluation of the failure propagation
model which combines both the component failure predictors and the archi-
tectural dependency model. This part will evaluate the prediction quality of
the failure propagation model, the effect of the architectural dependency
model on the prediction, and the scalability of the failure propagation model.
This work package addresses the research questions RQ1.3, RQ2.3, RQ3.2,
and RQ3.3.

4.3. Overview of the Hora Approach

The Hora approach aims to improve online failure prediction by combin-
ing online failure prediction techniques with the architectural knowledge
to predict if and when a failure of a component will propagate to other
components and affect other parts of the system. Figure 4.1 depicts the
architecture of the Hora approach. The approach can be divided into three
main steps. The first step, denoted by @, is component failure prediction
which focuses on predicting the failure of each individual component. The
second step, denoted by @, is architectural dependency modeling which
aims to represent the dependencies between components in the system. The
third step, denoted by @, is failure propagation modeling which combines
the results of component failure prediction from @ and the architectural

dependency model from @ The resulting model can infer the probability

4.3 | Overview of the HORA Approach 71

- @ Component Component
Q —> Mo;lgarlng >(Failure Failure
Q L Prediction Probabilities
System ¢ @ v
at runtime Fail Architecture-aware
Model ailure Component
Extraction Pﬁpag?tlon Failure
odeling Probabilities
' ® 1
. . Architectural
Architectural - Model
Fal Model 7| Transformation Dependency
Model
System

Figure 4.1.: High-level overview of the Hora approach

of component failures taking into account the propagation paths based on
the architectural dependencies.

The overall vision of the Hora approach presented here has been published
in a short paper [PHG14]. The details of the approach, which includes
all three steps, an implementation of Hora, and an extensive evaluation
have been presented in a journal paper [POHG18]. The component failure
predictors have been presented in three papers [PGK+14; PHG13; POHG16].

4.3.1. Component Failure Prediction

Predicting when a component will encounter a problem at runtime is the first
step to predicting a failure of the whole system. A system is usually composed
of a large number of different types of components, i.e., hardware and
software, which serve different purposes. Each of them produces different
types of symptoms and errors which can reflect its health status. Selecting
the relevant data and the suitable prediction technique for each component
is a non-trivial task. Furthermore, each predictor needs to be optimized for
failure prediction of that component. Three different types of monitoring
data considered in this thesis are:

e Time series data that is collected from hardware resource utilization,
e.g., CPU utilization, and software components, e.g., method and
service response times.

72 4 | Research Design and Overview of the Approach

* Event logs which are collected from High Performance Computing
(HPC) infrastructure

* Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.) data
which is collected from hard drives

For each type of data, suitable prediction techniques are selected and used
to create prediction models. The models are then used to predict failures of
each component.

Chapter 5 provides the concepts and details of component failure predic-
tion based on these three types of monitoring data.

4.3.2. Architectural Dependency Modeling

The second part focuses on creating a model (ADM) that can represent the
dependencies between components. The model will be used to deduce to
which extent a failure of one component will affect another. For example,
in Running Example 1 (Figure 1.1), business-tier instances (BT) that make
remote calls to update the database would be more likely to fail if the
database fails since there is a direct dependency. In contrast, if they do
not make remote calls to the database, they would not be affected by the
database failure because they are not dependent.

The model can be created manually or automatically either by static or
dynamic analysis. However, in this thesis, automated dynamic analysis is
employed since it can extract the actual runtime behavior of the system,
e.g., control flow, number of calls between components, and deployment
information. This information is the key to compute how much a component
depends on another. For instance, the more the business-tier instances make
remote calls to the database, the more likely the business-tier instances
would experience a problem if the database has failed. The model acts
as an intermediate step between different types of architectural models
and the final model (Failure Propagation Model (FPM)) which is used to
infer the failure propagation. The ADM that contains only the information
required for the online failure prediction allows the next step, which is failure

4.3 | Overview of the HORA Approach 73

propagation modeling, to be decoupled from the architectural models. It
also allows the ADM to be transformed from different architectural models
that already exist.

Chapter 6 describes the concept of architectural dependency modeling in
detail, including how it can be extracted from the runtime monitoring data
collected by dynamic analysis.

4.3.3. Failure Propagation Modeling

Failure propagation modeling focuses on creating a model that can combine
the results of the first two parts to predict the failure of the whole system.
The prediction results obtained from component failure predictors are used
as a basis that indicate the failures caused by the components themselves—
without effects from the others. The architectural model in the second step
is transformed into another representation (FPM) so that it is more suitable
for inferring the effects of failures across the whole architecture of the
system. At regular intervals, the component failure probabilities are fed into
the FPM and the model is solved to obtain the added failure probabilities
propagated from other components in the dependency chain. With this
method, the failure probability of the whole system, i.e., the service at the
system boundary, can then be inferred.

Chapter 7 provides the details of the FPM, how it can be obtained, and
how the inference is carried out.

4.3.4. Implementation

In this thesis, we provide two implementations of the Hora approach. The
first implementation aims at assessing whether combining component failure
prediction and architectural knowledge can improve online failure prediction.
This implementation allows the evaluation to be repeated multiple times
using different datasets to obtain statistically significant results.

74 4 | Research Design and Overview of the Approach

The second implementation aims at providing Hora as a tool that can
be used to predict failures in production systems at runtime. It provides
interfaces to services that are available at runtime which are storage for mon-
itoring data, prediction algorithms, and visualization of prediction results.

4.3 | Overview of the HORA Approach 75

CHAPTER

COMPONENT FAILURE
PREDICTION

The first step in predicting system failures is to predict failures of individual
components. Different types of components generate different types of data
that can reflect the health of the components. Thus, suitable techniques
have to be selected and optimized to predict component failures with high
prediction quality. This chapter presents three categories of techniques that
are adapted and extended to predict failures of different types of components.

Section 5.1 presents the research questions that will be answered in
this chapter. Section 5.2 presents the overview of the component failure
prediction. Section 5.3 details the requirements for the component failure
predictors. Section 5.4 presents an approach to predict failures based on time
series data. Section 5.5 presents how event logs can be used to predict critical
events. Section 5.6 presents an approach for hard drive failure prediction.
Section 5.7 summarizes the contribution of this chapter. In addition to these
three techniques, the existing techniques listed in Section 3.1 can also be
applied to predict component failures.

77

5.1. Research Questions

This chapter aims to answer the following research questions which have
been previously stated in detail in Section 4.1:

* RQ1.1: Which component measures are available and can be used to
predict failures at runtime?

* RQ1.2: Which prediction techniques should be applied to which types
of measures?

5.2. Overview of Component Failure Prediction

Figure 5.1 depicts the overview of component failure prediction of Hora. In
the first step, the monitoring data is collected and separated for individual
components in the system. For each component, there is one dedicated
failure predictor, which is responsible for predicting the failures of that
specific component. Then, the prediction is executed regularly at runtime,

Lo

(N
Cmﬁﬁgﬁﬁy > C°”£§ﬁ’u”ri”t ! 5| Component 1
Data Prediction Failure Probability
TOYA
C&Tsﬁg,ﬁ%z » CorEzﬁ:;nt 2 - Component 2
Data Prediction Failure Probability

System
at runtime
Component n Component n c
o) omponent n
Monitoring »| Failure Failure Probability
Data Prediction
Figure 5.1.: Overview of component failure prediction
78 5 | Component Failure Prediction

based on a pre-defined lead time, to provide the most up-to-date information
regarding the component status. The output of the prediction, which is
a component failure probability, indicates the likelihood of a component
failure based on the given lead time. Lastly, this information is passed on to
the Failure Propagation Model (FPM), which will be described in Chapter 7.

5.3. Requirements of Component Failure Predictors

The Hora approach to online failure prediction is designed to be modular
and extensible which means it does not enforce specific techniques to be
used as component failure predictors. Different prediction techniques can be
used for different types of components if they are suitable and produce good
results. However, they have to conform to the following input and output
interfaces:

¢ Input

— Monitoring data. The most recent monitoring data of a component
is provided to the prediction algorithm. This ensures that the
prediction is made based on the latest information regarding the
status of the component. However, the amount of data depends
on the application. A small amount of data may not sufficiently
represent the true behavior and results in an inaccurate prediction.
On the other hand, a large amount of data may include past
behavior that is outdated and no longer represents the current
status of the component.

— Lead time. The lead time indicates how far into the future should
the forecast be made. The further into the future the forecast is,
the less accurate it is. Nonetheless, a forecast in the very near
future may not provide enough time for the system administrators
to prepare for the upcoming failures.

5.3 | Requirements of Component Failure Predictors 79

* Output

— Component failure probability. The component failure probability
indicates how likely a component is going to fail at the time
indicated by the lead time. This probability is based on the
monitoring data collected from one component and does not
consider the failures of other components and the architectural
knowledge.

5.4. Time Series-based Failure Prediction

Time series data is one of the most common types of monitoring data collected
from software systems. Examples of these are service response time, method
response time, CPU utilization, and memory utilization. These data can be
interpreted to reflect the health of the component. For instance, an increasing
response time of the service may indicate an internal error or an increasing
memory utilization over a long period may be caused by a memory leak in a
software component.

Figure 5.2 illustrates the concept of a component failure predictor based
on the memory consumption of a business-tier instance in Running Exam-
ple 1 (Figure 1.1). The plot shows that the memory utilization constantly
increases over time until 3:35PM. This may indicate a fault which is a mem-
ory leak in the software component. If the utilization continues to increase
and reaches 100%, the system may crash or start swapping. The memory
swapping can cause the system to slow down and fail to respond to the
requests in a timely manner. In this example, our goal is to predict the
probability of the memory utilization reaching 100% at 3:55PM.

Predicting failures based on time series data is composed of three steps.
First, if the data is not strictly time series data, i.e., not equally spaced in
time, a preprocessing step is required to transform them into time series
data. Second, a forecasting algorithm is applied to extrapolate the observed
data into the future. Third, a method is needed to interpret the extrapolation
and estimate the failure probability. These three steps are discussed in detail
in the following subsections.

80 5 | Component Failure Prediction

100.0

|

—— Memory utilization

Utilization (%)

0.0 1

T T T

: T
3:35PM 3:55PM

Figure 5.2.: Memory utilization of a business-tier instance of Running Exam-
ple 1

5.4.1. Preprocessing

Time series data is usually collected at regular intervals, e.g., every 10
seconds, where the data points are equally spaced in time. This is true for
some data sources, e.g., CPU or memory utilization, whose data can be
directly used as input for forecasting algorithms. However, data sources
that do not generate time series, e.g., service response times which are not
invoked at regular intervals, will produce event-based data. In order to apply
forecasting algorithms, a preprocessing step is required which transforms
them into time series data.

The method used to transform data to time series is data aggregation.
Data aggregation divides a sequence of data into time windows of equal
length. Each window is large enough to make sure that there it contains
at least one data point. For each window, an aggregation method, e.g.,
mean, median, or percentile, is applied to the data points in that window to
compute a new value. The result of this process is time series data of which
data points are equally spaced by the length of the aggregation window.

5.4 | Time Series-based Failure Prediction 81

5.4.2. Time Series Forecasting

Once the data is transformed into time series, any time series forecasting
algorithms can be applied to predict future values. In the current implemen-
tation, Hora employs ARIMA (Section 2.2.1) to make forecasts for the time
series data obtained from the preprocessing step. However, only the most
recent monitoring data is fed to the prediction algorithm so that the current
behavior of the component is contained in the data. In addition to the data,
the lead time is also provided to the prediction algorithm. The output of the
time series forecasting is obtained as a predicted value and the prediction
interval, namely the upper and the lower bounds.

5.4.3. Failure Prediction

The goal of time series forecasting is to predict the future value of the
data. However, the predicted value alone is not sufficient for predicting a
pending failure because there is no definition of failure in order to classify
the predicted value. The method of predicting failure based on time series
data of Hora is based on an assumption that the component will fail if the
observed data crosses a certain threshold. This section describes how the
failure thresholds are set for different types of components.

In practice, the SLO is usually defined for the service, i.e., response time
of the service at system boundary. Thus, a solution is needed to set failure
thresholds for the internal components. Furthermore, there are virtual
resources that are obtained from the monitoring, e.g., load average, and
setting the failure threshold is a non-trivial task.

In order to define proper failure thresholds, the types of data sources are
divided into three following categories.

1. Service—Setting the failure threshold of a service is straightforward
since the required service level is usually specified by the SLO. The
threshold may be defined in two ways. First, the response time of a
service at the system boundary can be specified. The requests that
take longer than this pre-defined value are then classified as failures.

82 5 | Component Failure Prediction

However, the response time can also be specified for a certain period
of time, e.g., the 95th percentile of the response times of all requests
in a 1-minute window must not exceed the threshold. Second, the
ratio of successful Hypertext Transfer Protocol (HTTP) requests may
also be specified. For example, the ratio of successful requests over
all requests in a 1-minute window must be greater than or equal to
99.99%.

2. Software components and third-party services—The response times
of software components may vary depending on the functions that
need to be executed. Some components may take longer to execute
while some may return almost immediately. Setting these thresholds
manually is, however, not feasible since a system may contain a large
number of internal methods. A more practical way that is implemented
in Hora is to set the failure thresholds of all software components to
the same value as the service. Since the response times of internal
components are always smaller than or equal to that of the service,
this ensures that if one of the components exceeds the threshold, the
service will also exceed the threshold as well.

3. Hardware components—Similar to monitoring the response time of
software components, the failure thresholds of hardware components
can be specified by monitoring the metrics that can indicate the health
of the components. These thresholds correspond to different measures
depending on the type of the hardware. For example, the failure
threshold of the memory can be specified by the utilization which is
100%. The failure threshold of the CPU can be defined based on the
load average. The load average represents the number of tasks in the
CPU queue over time which reflects the status of the CPU better than
the CPU utilization [Wal06]. For instance, a 1-minute load average of
1.0 means that there is one task in the CPU queue on average in the
past minute. If the machine is equipped with two CPUs, the failure
threshold of the load average would be 2.

5.4 | Time Series-based Failure Prediction 83

100.0
. —— Memory utilization g’
& Futurememory | B
= utilization S
- . o
-(% . Prediction with s
N prediction interval o
5 17 i |- Failure threshold =
— Failure probability £

0.0 - - 0.0
T T T H

: T :
3:35 PM 3:55PM

Figure 5.3.: Failure prediction of a business-tier instance based on the mem-
ory utilization

Figure 5.3 depicts how a failure prediction is carried out based on the
observed memory utilization in Figure 5.2. Since the memory utilization is
time series data, we can, for instance, employ ARIMA [SS11] as a component
failure prediction technique. The goal of the prediction is to predict when
the memory utilization will reach the 100% threshold, assuming that the
machine will have a performance degradation when the memory is depleted,
which can cause a service failure. The thin solid line in the graph indicates
the monitoring data of memory utilization up to 3:35 PM. The dash-dotted
line indicates the prediction of the memory utilization in the next 20 minutes
with a prediction interval in light grey.

The probability of the monitoring data crossing the failure threshold a can
be computed using the probability density function f (x) of the predicted
performance measure as

84 5 | Component Failure Prediction

 «— Prediction Interval ——> |

93 100
Utilization (%)

Figure 5.4.: Probability density function of memory utilization at 3:55 PM
and memory failure probability

P(X >) =ff(x)dx (5.1)

=1—Jf(x)dx (5.2)

Figure 5.4 depicts the probability density function of the memory utiliza-
tion at 3:55 PM. Assuming that the input data is normally distributed, the
prediction error is also normally distributed [MRHO09]. Thus, the predic-
tion interval assembles a normal distribution and the Equation 5.2 can be
written as

1 a—u
P(X>a)—1—§[1+erf(a—ﬁ)] (5.3)

The mean and the standard deviation of the distribution can be computed
based on the predicted value and the prediction interval. In this example,
the predicted value of 93% indicates the mean of the distribution, u. The
standard deviation, o, can be computed based on the 95% prediction interval
which covers the +1.96¢ area of the distribution [MRH09]. The probability
of the memory utilization crossing the failure threshold at 100% can be
computed by substituting u, o, and a in the Equation 5.3.

5.4 | Time Series-based Failure Prediction 85

5.5. Critical Event Prediction

Log files are one of the most valuable piece of information. They contain
execution traces, warnings, error messages, etc., which represent the status
of each part of the system [OS07]. They can be used to analyze how the
problem develops and propagates to other parts. The simplest way of log
analysis is to manually investigate its contents. However, for large systems
which produce several gigabytes of log files, this is a time-consuming task
and is infeasible in practice. Furthermore, the analysis is usually done after
the system has already experienced a problem to investigate the root cause
and does not help prevent the problem from occurring at runtime.

This section introduces critical event prediction which aims to analyze the
log messages at runtime and predict the problems that may occur in advance.
The prediction employs machine learning techniques to identify and learn
the patterns in the log messages that are the signs of possible problems.

The core components of the critical event prediction are (i.) event pre-
processing, (ii.) event classification, and (iii.) event prediction. The goal of
the preprocessing is to prepare the event streams for the subsequent steps.
First, the events are normalized, e.g., replacing numbers and identifiers by
generic template placeholders. Second, the amount of log data is reduced
on-the-fly by removing redundant/similar log events observed in a config-
urable time window. The algorithm used for the preprocessing is based on
Adaptive Semantic Filtering (ASF) [LZXS07a] and Duplicate Removal Filter
(DRF) that we have developed. Both filters remove redundant messages by
considering the similarity coefficient between them. The event classification
and prediction are both based on machine learning techniques although they
have different purposes. The event classification aims to identify the type
of event based on the log messages while event prediction aims to predict
whether specific types of events will occur in the future.

The overview of the prediction is depicted in Figure 5.5. The workflow is
split into two phases, namely training and prediction phases. The prediction
models are created during the training phase and used to predict critical
events during the prediction phase. The red line denotes the critical event

86 5 | Component Failure Prediction

Ayngeqoud

JUBA® [eonlD

(Juene [eonuO)d

uondIpald JUSAS [BITILID JO MIIAISAQ :°G°G 2In31g

3|y bo
palisse|D

<
uonolpald Juang

[sa]a]iTE &)

passaosoidaid

8|y bo

<€
UOIJBOISSE|D JUBAT

<

Buissaooidaid

[0)
g =
|II| |I| g3

aseyd
uonoipalid

sjepowl

uoloIpald

8|y bo
palisse|)

<<€
Buiuresy |opoN

<OmOuw

passaosoidaid

8|y Boj

<<
UOI}eOlISSE[D JUSA]

S S

Buisseooidaid

o
2 =
T
HIERE

aseyd
Buiuiel |

87

5.5 | Critical Event Prediction

that we would like to predict. The letters A-F are example labels used to
classified events into similar groups.

5.5.1. Preprocessing

Log files of large systems usually contain huge amounts of log entries. How-
ever, many of the log entries contain redundant information, as a single root
cause may trigger multiple components of the system to write log entries to
the file. Moreover, the components may even produce different log messages
for the same root cause. Redundant log entries describe the same infor-
mation and are not of interest for machine learning purposes. In order to
remove redundant log events, we employ a combination of log message nor-
malization and filtering, as detailed in Sections 5.5.1.1 and 5.5.1.2. The key
idea behind the filtering is to remove redundant information by considering
the time gap and the semantic correlation between two log records. For the
filtering, we use the approach of Adaptive Semantic Filtering (ASF) Liang
et al. [LZXS07a] and our Duplicate Removal Filter (DRF). A part from the
original ASF is also used for the log normalization.

5.5.1.1. Log Message Normalization

As proposed by Liang et al. [LZXS07a], log messages can be normalized by
applying transformations that include the following steps:

1. Removing punctuation, e.g., . ; : 7 ! =-[1] <>+
Removing definite and indefinite articles, e.g., a, an, the

Removing weak words, e.g., be, is are, of, at, such, after, from
Replacing all numbers by the word NUMBER

Replacing all hex addresses with N digits by the word NDigitHex_Addr

A T

Replacing domain specific identifiers by corresponding words such as
REGISTER or DIRECTORY

7. Replacing all dates by DATE

88 5 | Component Failure Prediction

4 torus receiver x+ input pipe error(s) (dcr 0x02ec) detected
1 torus receiver x- input pipe error(s) (dcr 0x02ed) detected
191790399 L3 EDRAM error(s) (dcr 0x0157) detected

2 L3 EDRAM error(s) (dcr 0x0157) detected

Error receiving packet, expecting type 57

3 torus receiver y+ input pipe error(s) (dcr 0x02ee) detected
3 torus receiver z- input pipe error(s) (dcr 0x02f1) detected

(a) before normalization

number torus receiver x input pipe error detected
number torus receiver x input pipe error detected
number register edram error detected

number register edram error detected

error receiving packet expecting type number
number torus receiver y input pipe error detected
number torus receiver z input pipe error detected

(b) after normalization

Figure 5.6.: Application of normalization on log records

Figure 5.6 exemplifies the effect of applying the normalization. Six ex-
ample log messages from the Blue Gene/L log [0S07], used in the evalua-
tion (Chapter 11), are shown in Figure 5.6a; the corresponding normalized
messages are shown in Figure 5.6b. It is obvious that very similar log mes-
sages are mapped to the same normalized log message. This enables to
programmatically grasp the semantic context of log messages as identical
normalized log messages that are also mostly semantically identical.

5.5.1.2. Filtering

After the log is normalized by applying the aforementioned step, it can be
processed by the filtering step, which removes redundant information. This
section describes two types of filters used in this thesis, namely Adaptive
Semantic Filtering and Duplicate Removal Filtering.

Adaptive Semantic Filter Liang et al. [LZXS07a] propose a filtering algo-

rithm, called Adaptive Semantic Filtering (ASF), which isolates important
events in the Blue Gene/L log by removing redundant log entries. Log entries

5.5 | Critical Event Prediction 89

are considered redundant when they occur within a certain time frame and
have a certain semantic correlation. The general idea behind ASF is that
log records occurring close to each other in time most probably originate
from the same root cause, even if the semantic correlation is not extraor-
dinary high. On the other hand, log records with a larger time difference
in between more probably originate from different root causes. Hence, the
semantic correlation of two log records also needs to be higher in order to
consider them to be redundant. To face this, ASF requires a higher semantic
correlation of two log records if the time difference between them is greater
than a certain threshold.

To calculate the semantic correlation between two log entries, the log
messages are first normalized, as described in Section 5.5.1.1 and then
transformed into dictionaries of words. As the dictionaries are simply boolean
vectors, similarity coefficients such as the Phi correlation coefficient can be
used to compute the correlation. We denote c,;, € N, with a,b € 0,1 as
the number of words that are not present in any of the two log messages
(a = b = 0), that are only present in the first log message (a = 1,b = 0),
that are only present in the second log message (a =0, b = 1) and that are
present in both log messages (a = b = 1). The Phi correlation coefficient is
then defined as [LZXS07a]:

Co0C11 — Co1C
_ 00€11 — C01€10 (5.4)
/(e + co1)(c10 + €11 (oo + €10)(Co1 +€11)

The formula yields similarity coefficients between —1 to 1. The more
similar two log messages are (high c,, or high c,;), the closer the Phi corre-
lation coefficient is to 1 and the more different two log messages are (high
o1 or high ¢,4), the closer the Phi correlation coefficient is to —1. The two
messages that have a high coefficient are reduced to only one even though
they occur far apart from each other. On the other hand, two messages that
are less similar may be reduced if they occur close to each other.

90 5 | Component Failure Prediction

Duplicate Removal Filter A Duplicate Removal Filter (DRF) is a filter
that we have developed based on a straightforward idea: the log messages
that have the same information and occur within a certain time span can
be reduced to only one log record. This removal step aims to decrease
the computation complexity of the Phi correlation coefficient, while still
maintaining a high classification quality.

5.5.2. System Event Classification

The information contained in the log files can be used to conclude about
the current state of the system, whether the system is running normally or
it is experiencing a problem. Although the log messages may have certain
formats or patterns, they usually differ across different parts or different
versions of the system. Furthermore, log files can grow very large in complex
systems which makes manual classification infeasible.

Our event classification approach is based on supervised machine learn-
ing (Section 2.2.2) which takes a set of manually labeled log messages as
input to the algorithm. The algorithm learns an internal model, e.g., deci-
sion trees, data clusters, and probabilistic representations, from the data by
discovering the patterns of log messages and the relationship to the given
labels. After the model is trained, it is used to classify log messages that are
produced at runtime and tag them with a label.

Given the example in Figure 5.6a, the classification process starts by having
a subset of the log manually labeled by the system administrators [OS07].
The labeled log is presented in Figure 5.7 where the labels are added to the
beginning of the log messages. This example subset of log contains only two
types of labels: “-” and “KERNREC” which implies that the machine learning
model trained with this data will be able to classify and predict only two
types of labels. At runtime, the unlabeled log messages are fed to the model
which will classify them with the corresponding label.

To give a concrete example, Table 5.1 provides all labels contained in the
Blue Gene/L log file, which is used in the evaluation, with examples of log
messages and statistics about the number of occurrences in the data. The

5.5 | Critical Event Prediction 91

- 4 torus receiver x+ input pipe error(s) (dcr 0x02ec) detected
- 1 torus receiver x- input pipe error(s) (dcr 0x02ed) detected
- 191790399 L3 EDRAM error(s) (dcr 0x0157) detected

- 2 L3 EDRAM error(s) (dcr 0x0157) detected

KERNREC Error receiving packet, expecting type 57

- 3 torus receiver y+ input pipe error(s) (dcr 0x02ee) detected
- 3 torus receiver z- input pipe error(s) (dcr 0x02f1) detected

Figure 5.7.: Example of labeled log messages

events that are classified in this stage will serve as a basis for predicting
future events described in the next section.

5.5.3. System Event Prediction

The idea of event prediction is based on an assumption that patterns in the
event log can lead to certain events in the near future. Unlike event classifi-
cation, which aims to classify a log message with a label, event prediction
looks at the current sequence of messages and tries to predict if any type of
event will occur soon.

The training process of system event prediction starts by grouping a certain
number of log messages from the past to the most recent one. Instead of
taking the label of the current message for the training, we look ahead in
time and take the label of the message in the future. However, predicting
the occurrence of one label exactly at a specific time in the future is virtually
impossible. This is because the predicted label may occur a few seconds
earlier or later which makes our prediction a false positive. Therefore,
we employ a prediction window where a prediction is regarded as correct
if the predicted label occurs in this time window. Nonetheless, another
issue remains in the consideration of the label as there can be many labels
occurring in the prediction window. We solve this issue by dropping the type
of the labels and consider a prediction as correct if there is at least a certain
amount of any labels excluding

“

in that period.

Figure 5.8 illustrates the prediction approach. The parameters that can
be adjusted for event prediction are the number of past observations to be
taken into account, how long we look into the future (lead time), the length

92 5 | Component Failure Prediction

7/9U25 anjg woiy paida[[od o[y 3071 jo o[dwiexa pue soIs1IeIS :"1°S dqelL

2102110 10119 AJired 9D UONINISUT OANT TANYII - €0S66EY
3dn.119)ur 10119 gL BIBP TVIVA TANYUMI ATLANYD YELTST
1dnurayur 98e10s B1ep VLV TANYEY HOLSNYDA 16¥€9
39208 Weans§oI) uo FOYSSHN ZMOOA JI9yje XGM‘HQ o8essouwr wﬂ—vmw_ Jo1ry pow TYIVH ddV AASddV 15961
uonEDo[: Pr PO[q : TTONSq : QHTIVA Unow ansnT TYLVH TANYE ALNINNYDI T€ST1E
INHLNYD] 8EEET
¢ 2dA1 Jo peatsur £g 2dA) Suppadxa “1oMIaU 991 U0 19xped BUIAIRI 10115 TVIVA TANMD OTYNYN Sh19
66EEE:9T1°96°9T°CLT 01 1P0S WEINGOID UIBIIIS [01IU0D UO XIja1d 9Bessaur peal 01 pajrej :po TYIVA ddV avadddy £865
uonndaxa urddois - jorued su1 TVIVA TANYEN dSINNYEY £86€
€84TS9TT'96'9T'ZLT 03 19008 WEINSOID U0 FOVSSAN AVOT 1oxe xgad a8essow Surpeal 1011g :powd TVIVA ddV STIdAV (VA4
s[ydew enuanbassdw;,9,/18q /uoiasne /owoy/ o[y woiy dew spou SuneaId 10117 :pow TVIVA ddV AVNNddY 8v07
INO PaWN UONIAUUOD ‘6ELTH9TT96'9T TLT O 19¥20S WELINSoID uo xyaid afessaw urpear 10117 :pod TYIVA ddV 0lddv 1661
UOTIIASSY JOPBOJOIA TVIVA TANYDY OUDTANYDY €0ST
10152 Indino/anduf :pafre (€81¢/4OLAVY/B[[23s/193/d/)IPYD> NIDOT POl TVIVH ddV 1n0ddv 918
WISAS3Y JUNOW 03 S[qBUN 1011 TVIVH TANYII INIANYDI 0zL
deurdoams /doams-sadpgQ T-Twg-y WO T-004XSsxS-pedaams /Tunyed /gq8 /d/ o1y woiy dew spou Sunead 1011y :pow TYIVA ddV ASNdddv 18
adnuziul Ypayp SurReW TVIV TANYD DINNYHN The
deuryxpXg 1Xp9Xgz1 3g/sdewmau,/epueiiul/Joqed,/gq8,/d/ o]y woiy dew spou Suneaid J011g :pod TYIVA ddV ATIHDAdY 0ze
PasO 12208 GTOT- 1011 OPI qI[(JSIXOQ[IBIAIIAIS: :I0IUOINXOQ[IEIA TVLIVH TANYEN MOOSNYDY 60T
PN-OIN-S0Y :PIBADIESP 1MOd TVIVH TANYM MOANYDA T61
00000099 JJqeE22q=SMIeIs ‘V-g1N-TT TIN-CLY :Pa[rej der (Jure11aAed91::19][0nuoD Y MsauR[dPIA TVIVE QUVOMNIT dVDINIT 991
zAirediq Y9 1dew /502790 N9 T3ep/AIEUIYdUR]/123381p/Zq8/d/ o[y woiy dew apou Suneatd 1011y :Pow TVIVA ddV DOTIVddV 241
*pambar aq Aew UONOE 2IAIAS Y "GN-TIN-ELY :PoIBANOEAD [RUSIS PooD Tomod TVIVA TANYMI ATASNYEDL +6
pa1Ioqy :[euss 01 anp A[[eULIouqe PaIXe JOATDS SOWW TINTIVA YHLSVINTOE INHONEVSYIN LE
F-61N-TT-TIN-LOY :Pe102uu0dsIp 110d ()Ure1puas::1a[[onuodY2IMSURIdPIN TVIVA QIVONNIT OSIMINIT 44
orued [purey TVIVA TANYIY NVANYDI 81
LINOHNIL IMd Ol ¥¥HTOd €E0L- 1012 0PI qI[()SOXOQ[IBIARIIAISS: HIONUONXOq[IRIN TVLVA THNYHE NOONYDY 91
00000000 00000000=5M3®3s ‘A-ZZN-0T-0N-ZZY :pa[rej ded (uswusiyAited: 1s[jonuodyPIMSSURIdPIA TVIV TIVOMNIT AVDINIT ¥1
U] 32UISYID OU TVIVA TANYHN HIHONNYIN ¥1
Buiddoss st pue 1uasaid Jou 69N smpow 1emod :uondsdxguoneradpoparioddnsun-3uereael 1ySned 1o3uow TYNTIVA YOLINON MOdNOI (48
€1 9POD XD (PIM A[[EWLIOU PAIIXD IOAIDS SOUIW TYNTIVA YHLSVINIOE INYONSVIN)8
10113 SNIO} 9]qRIIDLIOUN :(QOXQ=11q ZOXQ=11un) 1dnu=iur Indur [eUIIXd TYIVA ddV SMIOLAAY 0T
adnrayur wrerdord TVIVA TANYLY DOYINYEY S
10119 [euraIUT Jofewr €T TVIVA SOININ SOININ €
T€1:00°31e3s I8 ()1T83S PoA UT NOISHAA ALITVNOSYIAdTOE == Uols1oa <-A1ieuosiod :pajrej UONIasse 11 TVIVA TANYDY VSTANYDL €
adnueyur ajqeqreaeun Jutod 3uneoy TVIVA TANYEN IVOTINYDA €
uondadxgIaiutod[[nN-Suef-eael 1y3nes gq olur ojur Jojtuouwr JunISSUT SIYM TUNTIVI YJOLINOIW TINNNOW 4
V-610-0T-0N-€9Y :pairej 11od 1esp [[q ()310d1ea]::19][0nuodyMsaurIdpI TVIVE QUVONNIT TIDINIT 4
uoneradQ TOMLNOD Sunnsaxa a[rym :uondsdxgaieisessyrSuel eael 1ydnes toyuow TYNTIVE YHO.LINOW TIINOW 1
3dnurRul J0119 g7 UORINISUI TYIVA TANYDI ATLNYDI T
Buniem 1981e1 OU (M 13PEAY 991 :([OX0=11q £0X0=11un) 1dnieut ndur [eura1xs TYIVA TANYEN IXANYEN 1
Inoswn 190uanbas ‘pafrey SULTALIS 31q JUBPUNDAT PP TVIVA TANYDL LIENYD 1
a8essa]y 19qe] junon

93

5.5 | Critical Event Prediction

i Observation window i Lead time i Prediction window i
| | | |
1 1 1 1
1 1 1 1
1 1 1 I
1 1 1 1
1 1 1 1

N AN N N N

€i Ci+l €i42 €i+3 €i+4

Figure 5.8.: Timeline of critical event prediction

4 torus receiver x+ input pipe error(s) (dcr 0x02ec) detected
1 torus receiver x- input pipe error(s) (dcr 0x02ed) detected
191790399 L3 EDRAM error(s) (dcr 0x0157) detected

(a) First group of log messages

1 torus receiver x- input pipe error(s) (dcr 0x02ed) detected
191790399 L3 EDRAM error(s) (dcr 0x0157) detected
2 L3 EDRAM error(s) (dcr 0x0157) detected

(b) Second group of log messages

Figure 5.9.: Example of grouped log messages

of the prediction window, and the percentage of the messages that have to
be labeled with a fault state so that a failure should be predicted in this
timeframe (sensitivity).

Using the example in Figure 5.6a for the illustration, the training phase
groups a certain number of log messages together. Assume that the number
of past observation is three, three consecutive log messages will be grouped
as one entry. Figure 5.9a shows the first group of log messages. The next
group of messages is obtained by sliding the observation window to the next
message which is shown in Figure 5.9b.

As we are predicting whether there will be any label occurring in the near
future, we neglect the label of those messages in the group and take the
label of the future messages instead. Assume that the prediction window is
two messages ahead in the future and contains two messages which are:

KERNREC Error receiving packet, expecting type 57
- 3 torus receiver y+ input pipe error(s) (dcr 0x02ee) detected

94 5 | Component Failure Prediction

If we set the sensitivity to 50%, the first group of messages will be labeled
as a “4” as it contains at least 50% of the messages not labeled with “-”.

On the other hand, the prediction window of the second group of log
messages will also slide to the next message and contain:

- 3 torus receiver y+ input pipe error(s) (dcr 0x02ee) detected
- 3 torus receiver z- input pipe error(s) (dcr 0x02f1) detected

“ ”»

The second group of messages will be labeled as a “-”, as this prediction

window does not contain any label other than “-”.

This grouping process continues for the remaining part of the available log.
When all log messages are processed, the grouped and labeled entries are
used for training the model. At runtime, the new log messages are grouped
according to the configured parameters and fed to the trained model which

predicts the future event for that group.

5.6. Hard Drive Failure Prediction

This section describes the failure prediction approach to predict hard drive
failures. The traditional method of predicting failures in hard drives is by
using pre-defined thresholds on the S.M.A.R.T. parameters. Self-Monitoring,
Analysis and Reporting Technology (S.M.A.R.T.) is an industry-standard hard
disk drive technology embedded in the firmware which is being used in most
modern hard drives [OP95]. During the drive’s operation, its internal param-
eters, e.g., read/write error rate, servo, power-on time, and temperature, are
recorded at regular intervals and can be accessed by the operating system.
At runtime, if the value of one of the parameters exceeds the threshold, an
alarm is raised. However, some parameters may not have direct effects on
the pending failures. For example, the number of erroneous sectors may not
represent the health of the drive if it remains constant and does not increase
over time. Furthermore, a small variation of one parameter may not indicate
a pending failure, but a certain pattern of many small variations may be
a sign of a problem. For instance, a small increase of the number of bad
sectors combined with a slightly longer read time may indicate a problem

5.6 | Hard Drive Failure Prediction 95

Serialno. Hours before ~ Templ FlyHeightl Servo8 ReadErrorl7 WriteError

failure
100001 2.216 10 7962 0 0 57005
100001 2.200 12 7972 0 0 57005
100001 2.166 11 7949 0 8 57005
100001 2.133 9 7955 0 1280008 57005

Figure 5.10.: S.M.A.R.T. dataset example (excerpt)

Preprocessing W Model training
rang |nizs| TR | EDOE| T
phase i -
S.M.AR.T data Preprocessed Prediction
S.M.AR.T data models
Preprocessing | — —u" - Prediction
Prediction I —— 3 | P(Drive failure)
phase
S.M.AR.T data Preprocessed Drive failure
S.M.A.R.T data probability

Figure 5.11.: Overview of hard drive failure prediction

although each individual parameter does not. This section describes how
the SM.A.R.T. data is preprocessed and used to predict hard drive failures.

Figure 5.10 shows an example S.M.A.R.T. dataset, which can be viewed
as multiple streams of recorded parameters. Each row represents an ob-
servation which contains one monitored value for each parameter. These
parameters are recorded until the drive experiences a problem and fails.
These observations are used to create prediction models. The prediction
models are used during the prediction phase to predict whether the drive is
likely to fail in the near future. Figure 5.11 illustrates the overview of the
approach.

96 5 | Component Failure Prediction

5.6.1. Preprocessing

Before the learning algorithms are applied, the instances in the training
set that represent failing and non-failing drives have to be separated so
that they can be used to train different prediction models. However, if only
the instances that were collected at the time of failures are used to train
the failing model, this model will not be able to make predictions as it
can recognize only the instances when the drives fail, not before they fail.
Therefore, the instances that are collected before the failures should also be
used to train the failing model. To determine how long this period should
be, let us make two assumptions. First, we assume that the drive exhibits
different characteristics throughout its life time. The prediction model that is
trained with the instances collected from any operation period will be able to
recognize them at runtime. Second, we assume that a sufficient warning time
should be seven days before a drive fails. This will give system administrators
enough time to prepare for the failure. As a result, the instances that were
collected within seven days before the failures are grouped together, while
those that are collected before seven days are collected in another group.

5.6.2. Predicting Hard Drive Failures

The failure prediction of hard drives is done by applying supervised machine
learning techniques. The goal is to train the model to differentiate between
the data that are collected from the healthy drives and the data that precede
the failures. The data in the first group that were collected during the normal
operation of the drive and do not precede any failures are used to create a
model that represent a healthy drive. Those in the second group that occur
before a drive failure or exactly when the drive fails are used to create a
model that represent a failing drive. The created models are used at runtime
to predict pending drive failures. The machine learning techniques described
in Section 2.2.2 are applied to create prediction models from the S.M.A.R.T.
dataset.

5.6 | Hard Drive Failure Prediction 97

5.7. Summary

This chapter presents the component failure prediction which is the first
step of the HoraA approach and answers the research questions RQ1.1 and
RQ1.2. In this chapter, the requirements for component failure predictors
are presented. The component failure predictors based on three types of
data, which are time series, event logs, and S.M.A.R.T. data, are introduced.
These prediction techniques employ time series forecasting, machine learning
and pattern recognition algorithms. Other prediction techniques, presented
in Section 3.1, can also be applied in the Hora approach if they meet the
stated requirements.

98 5 | Component Failure Prediction

CHAPTER

ARCHITECTURAL
DEPENDENCY MODELING
AND EXTRACTION

The Hora approach employs architectural models to represent the informa-
tion regarding component dependencies required for predicting the propaga-
tion of failures. This chapter presents the model and how it can be extracted
from the monitoring data and the existing architectural models.

Section 6.1 describes the research questions that will be answered in this
chapter. Section 6.2 describes the information that is needed to represent
architectural dependencies. Section 6.3 introduces Hora’s Architectural
Dependency Model (ADM), which is the model that contains architectural
dependency information. Section 6.4 presents how an ADM can be created
and extracted from existing architectural models. Section 6.5 summarizes
the contribution of this chapter.

99

6.1. Research Questions

This chapter aims to answer the following research questions which have
been previously stated in detail in Section 4.1:

* RQ2.1: Which architectural information can be used to improve online
failure prediction?

* RQ2.2: How can the required architectural information for online
failure prediction be modeled?

6.2. Architectural Dependency Information

Software systems are usually composed of a number of both hardware and
software components. Hardware components are physical machines which
include CPU, memory, hard drives, network interface, etc. These components
have to function properly in order for the software components to work as
designed. On the other hand, software components can be broken down
to multiple sub-components depending on the perspectives. For example,
from a service perspective, a software component can be internal services,
such as business logic components, database, or third-party services. From a
programming perspective, software components are classes and methods
that are called and executed to complete a task.

The dependencies between these hardware and software components play
an important role in how a failure propagates from one component to another.
For instance, a CPU cannot continue to work if the memory is depleted. On
the other hand, the software component deployed on the machine cannot
function if the physical components are not working. Moreover, if one
software component fails, either with a timing or content failure, the failure
will propagate to the output interface. Other software components that
depend on the failing component will receive an erroneous input which will
also cause their results to be incorrect. The incorrect results then propagate
through the control flow until it reaches the system boundary at which point
the failure is visible to the users.

100 6 | Architectural Dependency Modeling and Extraction

In this thesis, the connectors are not explicitly considered in the ADM.
However, they can be included as a component that connects other com-
ponents with each other. Furthermore, it is assumed that once a failure
occurs in one component, it always propagates to the output interface. For
example, if one component makes a call to a failing component, the failure
will propagate and also cause a failure in the caller.

To be able to predict these cascading failures at runtime, the information
regarding component dependencies is required. This information has to
include 1) the dependency chain that specifies which components depend on
which ones and 2) to which extent theses components rely on one another.
The first piece of information lets us know how a failure of one component can
propagate through multiple layers to other components in the system. The
second piece of information allows us to estimate the effect of a component
failure on other components and the whole service.

6.3. Architectural Dependency Model

There are already a number of existing architectural modeling languages
and model extraction mechanisms [LMP08; SAG+06], e.g., PCM [BKR09],
Descartes [BHK14] and SLAstic [Hoo14]. However, as previously stated
in Section 2.3.3, these models are originally designed for different purposes.
For instance, PCM focuses on predicting software performance and reliability
at an early stage of the software development. Descartes aims at modeling
the quality of service and resource management. SLAstic is designed for on-
line capacity management of component-based software systems. Although
they contain architectural information of the system, the information regard-
ing how a failure of one component can affect the others is not explicitly
represented. Thus, we introduce ADM which aims at being an intermediate
model representing only the architectural dependencies and how failures
propagate between components.

The Architectural Dependency Model (ADM) lists software and hardware
components along with the dependencies between them. The dependencies

6.3 | Architectural Dependency Model 101

indicate the relationship between components according to the architectural
configuration (Section 2.3.1), e.g., calling relationships of software compo-
nents or deployments of software components on hardware components.
Each dependency is annotated with a degree of dependency, or dependency
weight. A dependency weight represents how much one component requires
another component to function correctly. In other words, it is the proba-
bility that a failure of one component will affect another one. A degree of
dependency is assigned to a pair of components with a direct dependency as
a probability. This probability represents the likelihood that a component
fails because another component that it requires fails.

An ADM can be formally defined as a set E = {e;, e,,...,e,} where n is the
number of components. Each element e is a pair (C, D) where

* (is asoftware or hardware component or sub-component that provides
a service either internally to other components, or externally to other
systems or users

* D={d,,d,,...,d,} where each element d is a pair (C",w) with
— (' is the required component

— w is the corresponding dependency weight to C”

Table 6.1 shows an example of an ADM in a table representation. The first
column lists all components in the system and the second column lists their
dependencies. Each dependency is a pair representing the dependent compo-
nent and the corresponding weight. The weight indicates the probability that
a failure of the dependent component will affect the required component.
For instance, component C; has two dependencies. The first dependency
is to component C; with the weight w¢,¢,. The second dependency is to
component C; with the weight w¢ ¢, . In this case, the component C; is called
a requiring component and the component C; and C; are called required
components. In the same manner, C; and C; can also have dependencies to
other components as well.

102 6 | Architectural Dependency Modeling and Extraction

| Component | Required components and weights |

Ci {(C]; WCiCj)y (Ck7 WC,-Ck)}
C] {(Ck: WCk)}
Cy {...}

Table 6.1.: Table representation of an ADM

6.4. Extraction of an Architectural Dependency Model

The ADM can be created manually by system experts or extracted automati-
cally from the existing architectural models. Section 6.4.1 presents a way to
manually create an ADM. Section 6.4.2 presents the concept of an automated
extraction of an ADM based on the architectural knowledge. Section 6.4.3
presents a transformation from a SLAstic model to an ADM. Section 6.4.4
presents an extraction of an ADM directly from Kieker monitoring data.

6.4.1. Manual Creation of Architectural Dependency Model

A straightforward way to identify component dependencies is by manually
specifying them. System experts, for example, software architects, develop-
ers, or system administrators, who have knowledge regarding the structure
and behavior of the system can identify components and their dependencies.

Figure 6.1 illustrates Running Example 2 that contains four software com-
ponents with calling dependencies. From the architecture, it can be observed
that component A and B depend on component C. On the other hand, com-
ponent C depends on component D. In this example, a failure of D can
cause C to fail which, consequently, can cause A and B to fail. The ADM
of Running Example 2 is shown in Table 6.2. The dependency weight in
the ADM can be interpreted as the component’s failure probability when an
adjacent component in the dependency chain fails. For example, component
A and B will fail with a probability of 1.0 if component C fails. In the same
manner, component C will fail with a probability of 1.0 if component D
fails. Component D does not have any dependency and therefore cannot be

6.4 | Extraction of an Architectural Dependency Model 103

AN

B

/@/

Figure 6.1.: Running Example 2: component diagram

| Component | Required components and weights |

A
B
C
D

{(C, 1.0)}
{(C, 1.0)}
{(D, 1.0)}

{

Table 6.2.: Table representation of the ADM for Running Example 2

LB

PT1

BT1

¢

\

/(_o/

X
Cd

AN

PT2

BT2

\

DB

AN

BT3

Y
/./

Figure 6.2.: Running Example 1: component diagram

affected by the failure of other components.

As a more realistic example, Figure 6.2 depicts a component diagram
of the three-tier application previously presented in Figure 1.1 (Page 4).
The application contains four types of components; load balancer (LB),
presentation tier (PT), business tier (BT), and data tier (DB). Each of the
layers can be scaled horizontally (scale out or scale in) depending on the
workload. In this example, the presentation tier is scaled out to two instances

and the business tier is scaled out to three instances.

104

6 | Architectural Dependency Modeling and Extraction

The component dependencies listed here can be specified by a system
expert. The dependency weights can be determined based on the architecture
of the system which assumes that the requests of each service in each layer
are equally load-balanced to the next layer.

Table 6.3 shows the table representation of the ADM. Following a topolog-
ical order, the database (DB) has no dependencies to other components; the
business-tier instances BT1-3 depend on DB; the presentation-tier instances
PT1-2 depend on the business-tier instances BT1-3; and the load balancer
depends on PT1-2. Additionally, Table 6.3 includes the weights associated
to these dependencies—in this case, assuming that requests among the tiers
are equally load-balanced to the instances of the next tier. In this example,
if one of the presentation-tier instances fails, the probability of the load
balancer failing increases by 0.5. If both PT1 and PT2 fail, the probability
becomes 1.0 which implies that the load balancer will also definitely fail.
On the other hand, the requests from presentation-tier instances are equally
forwarded to three business-tier instances. This implies that the failure
probability of a presentation-tier instance increases by approximately 0.33
for each business-tier instance failure.

The ADM shown here is created by manually analyzing the architecture
of the system. Note that for the sake of simplicity, we consider the six
nodes from the example as monolithic components. For realistic scenarios,
these components can be further decomposed into software and hardware
components with measures, such as service response time, method execution
time, or resource utilization. In other words, the entities in the ADM do
not necessarily have to be components but can be sub-component entities
and their measures that represent their statuses. For example, a software
component may provide more than one service that is fulfilled by many
functions. A failure of one function may contribute to a partial failure of the
service. Thus, the use of sub-component measures, such as method response
time and resource utilization, to represent components in the ADM allows a
more fine-grained modeling of the architectural dependencies.

Although the manual creation of an ADM may be applicable for small-
scale systems with a small number of components, manually specifying

6.4 | Extraction of an Architectural Dependency Model 105

| Component | Required components and weights |

DB O
BT1 {(DB, 1.0)}

BT2 {(DB, 1.0)}

BT3 {(DB, 1.0)}

PT1 {(BT1, 0.33), (BT2, 0.33), (BT3, 0.33)}
PT2 {(BT1, 0.33), (BT2, 0.33), (BT3, 0.33)}
LB {(PT1, 0.5), (PT2, 0.5)}

Table 6.3.: Table representation of the ADM for Running Example 1

dependencies of large systems can be error-prone and time-consuming.
Moreover, for fast-evolving systems, of which the architecture continuously
changes over time, manual creation of the ADM cannot be achieved in a
timely manner.

6.4.2. Automated Extraction of Architectural Dependency Model

Automated extraction of the ADM is carried out by means of a form of data
structures, e.g., architectural models, that provide information regarding
the system’s structure and behavior. This information can be obtained either
from static or dynamic program analysis.

Static program analysis [CE09; Lou06] is performed to obtain software
behavior, e.g., architecture, correctness, safety, without executing the ap-
plication. An example of static program analysis is source code analysis
which has an advantage that it can be done without deploying the system
in a real environment. However, since the behavior of the system can be
influenced by the workload, i.e., different types of requests can invoke dif-
ferent functionalities of the system, the resulting architectural model of
static analysis usually does not include such information, e.g., how often a
component calls the others. For example, for an online shopping website, if
a user does not store a payment method in the system, the website would
redirect him or her to another page that asks for this information. Thus,
static analysis based on the source code can provide only the dependency

106 6 | Architectural Dependency Modeling and Extraction

chains between components, i.e., which components are connected to which
ones. The dependency weights that indicate to which extent a failure of one
component will affect the others are not present.

On the other hand, dynamic program analysis [GS14], is performed by
analyzing a running system. One method of dynamic analysis is software
instrumentation where modifications are made to the software to obtain
the required data. Monitoring traces are one of the data which contain
information regarding runtime behavior of the system [Hool4; LMPO08], e.g.,
method response times and calling relationships. From this information, the
dependency weights between components can be computed.

In this thesis, the application is instrumented using Kieker [HWH12].
These traces are then analyzed to create an architectural model. The ar-
chitectural model used as the source is the SLAstic model [Hoo14] which
contains information regarding the structure and behavior of the system,
and can be automatically extracted from Kieker monitoring data.

The monitoring data required for the automated model extraction has
to contain system-level resource usage, e.g., CPU utilization, and detailed
execution traces of the application for each user request. From this data,
the hardware and software components are discovered and linked together
according to their relationships. The result of this automated extraction is
a SLAstic model [Hoo14] which includes software components and their
relationships, deployment information, and number of invocations of each
component. By combining the information from the SLAstic model, we
obtain sufficient knowledge about the dependencies of the components to
create an ADM.

Figure 6.3 depicts the overview of the automated extraction of the ADM.
At runtime, the system is monitored and the monitoring data is collected.
Architectural models, e.g., SLAstic, can be extracted from the monitoring
data. These architectural models can be transformed into an ADM. Nonethe-
less, an ADM can also be extracted directly from the monitoring data. The
ADM extracted directly from the monitoring data and the one transformed
from the architectural model are equivalent since the algorithms are based
on the same concept, which will be described in the next subsections.

6.4 | Extraction of an Architectural Dependency Model 107

Extraction

Monitoring Extraction Transformation -
> Monitoring > Architectural > /Igrec;elt:g::]rj;
Q Data Model
Model
System
at runtime

Figure 6.3.: Overview of automated extraction of the ADM

The following subsections describe the concept of how the dependencies
between different types of components can be extracted from the architec-
tural knowledge and how the dependency weights can be computed for each
component. Sections 6.4.2.1 to 6.4.2.3 present how dependencies between
software components, hardware components, and software and hardware
components, respectively, are extracted.

6.4.2.1. Dependencies Between Software Components

Software components are classes, methods, or third-party services that work
with each other to fulfill the required functionality of the software. For
example, a successful execution of one method can depend on many other
methods depending on the call graph.

There are two approaches to extract the information regarding the soft-
ware components and their dependencies from the architectural models;
analyzing the architecture of the system and analyzing the calling relation-
ships between components. The following sections describe these approaches
in detail.

Analyzing Architectural Structure This approach of extraction is rela-
tively straightforward and is based on an assumption that the invocations
between components, e.g., between software components or between archi-
tectural layers, are equally load-balanced to all instances in the next layer.
For example, in a scalable system where each type of component can be

108 6 | Architectural Dependency Modeling and Extraction

Figure 6.4.: Degrees of dependencies of Running Example 1 extracted by
analyzing architectural structure

scaled horizontally, the calls to this type of component will be distributed
to each of the instances equally. In practice, this type of load-balancing
strategy is called round-robin load balancing since all back-end components
are called in a round-robin fashion.

The degree of dependency or dependency weight, denoted by w, between
any two software components C; and C; in adjacent layers can be computed as

Wi = % (6.1)
where n¢ is the number of instances of the next layer that are directly
connected to component C;.

Figure 6.4 illustrates the degrees of dependency of Running Example 1 (Fig-
ure 1.1) extracted using this method. The system is a three-tier application
containing a load balancer, a presentation tier, a business tier, and a database
tier. The degrees of dependencies from an instance in one layer to the in-
stances in the next layer are the same and sum up to 1.0. For example, the
degrees of dependencies of LB to PT1 and PT2 are 0.5 and those of PT1 to all
three BTs are 0.33. The resulting ADM of this approach is similar to that of the
manual creation approach presented in the previous section (Section 6.4.1).

6.4 | Extraction of an Architectural Dependency Model 109

Figure 6.5.: Example of calling relationship and number of invocations (de-
noted by arrows and the corresponding numbers) of Running
Example 1 extracted from the SLAstic model

Analyzing Calling Relationships Although the previous method is simple
and straightforward, in practice, the number of invocations to the next layer
do not have to be equally distributed to all instances. The distribution can
depend on many factors, e.g., the configuration of the load balancing strategy
or the capacity of each instance at runtime. For instance, some nodes may
have more computational power while some may have more memory or disk
space. Therefore, the ADM extraction based only on the structure of the
system may not represent the true behavior of the system.

Figure 6.5 visualizes an example of calling relationships as a diagram
showing the number of invocations between components. The invocations
between layers are not equally distributed to the next layer. In order to
compute the degrees of dependencies, the numbers of invocations can be
used to represent how one component depends on the others. For example,
the higher the number of invocations, the higher the dependency between
the caller and the callee.

The degree of dependency between two software components A and B
can be computed based on the numbers of invocations as

Ve,

Wee, = Zn—
k=1YC,Ci

(6.2)

110 6 | Architectural Dependency Modeling and Extraction

Figure 6.6.: Degrees of dependencies of Running Example 1 extracted by
analyzing calling relationship

where v¢ ¢, is the number of invocations from component C; to component
Cj, v¢,c, is the number of invocations from component C; to component C;,
and n is the total number of components in the system.

In Figure 6.5, LB is invoked 600 times and PT1 is invoked by LB 150
times. Thus, the degree of dependency between LB and PT1 is % =0.25.
This implies that if PT1 fails, the probability of LB failing is 0.25. The
degree of dependencies of other components can be computed in the same
manner. Figure 6.6 shows the degrees of dependencies between components
computed by using the calling relationship.

In this example, it can be observed that the sum of the outgoing depen-
dency weights is equal to 1.0. This is because the request from one tier is
load-balanced to the instances in the next tier. Thus, only one instance in
the next tier is invoked per one invocation of the previous tier. However,
this is not always the case. Figure 6.7 illustrates a simple example of a
software component that requires three other software components. When
componentA is invoked, componentB, componentC, and componentD are
invoked once. For example, if componentA is invoked 100 times, the other
three will also be invoked 100 times each. Hence, the number of invocations
of componentA is equal to those of the other components. The numerator
and the denominator of Equation 6.2 become the same value. As a result,

6.4 | Extraction of an Architectural Dependency Model 111

public class ComponentA {
Component componentB = new ComponentB();
Component componentC = new ComponentC();
Component componentD new ComponentD () ;

public void compute () {
componentB. compute () ;
componentC.compute () ;
componentD. compute () ;

}
}

Figure 6.7.: A simple example of a software component with outgoing de-
pendency weights of 1.0

the dependency weights from componentA to each of the callees will be 1.0.

The extraction of dependency weights between software components by
analyzing calling relationships considers the dependencies emerged from the
control flow. Although the presented example illustrates a simple scenario
in which the calls are made sequentially, the loops and branches are also
considered in the extraction of the ADM. If there is a branch that results
in an additional call to another component, the control flow will indicate
that there is a branch. The extraction algorithm will be able to detect this
branch in the control flow and create a dependency to the called component.
If there is a loop that causes a component to make many calls to another
component, the number of invocations between them will increase. The
dependency weight of these two component will also increase based on the
number of invocations.

6.4.2.2. Dependencies Between Hardware Components

A physical machine is composed of various types of hardware that need to
work together properly to run the software, e.g., CPU, memory, or hard drive.
A failure of one component can lead to the failures of other components.

112 6 | Architectural Dependency Modeling and Extraction

Figure 6.8.: Degree of dependency between hardware components

For example, a server may slow down if the memory is exhausted due to
memory swapping or if the CPU is overutilized.

The Hora approach models the hardware components as parts of the
whole machine. The failure of one hardware component can definitely cause
the whole machine to fail. The degree of dependency from the machine to
each component is, thus, 1.0. In the cases where the machine is equipped
with multiple CPUs, the failure of one CPU does not necessarily have to cause
a failure to the whole machine. Thus, the degree of dependency to each
CPU, w¢, c, is computed as

We o = —— 6.3)
Ncpy
where C,, is the machine, C. is the CPU, and n¢py is the total number of
cores. For example, the degree of dependency of the machine to each CPU
core in a dual core CPU is 0.5. Figure 6.8 illustrates this concept where one
machine is composed of a dual core CPU and memory.

6.4.2.3. Dependencies Between Software and Hardware Components

In addition to the dependencies between software components or those be-
tween hardware components, there are also dependencies between software

6.4 | Extraction of an Architectural Dependency Model 113

Software
omponen
1

Software
omponen

o2
1.0 O.SH‘
{ 2o

N

Figure 6.9.: Degree of dependency between software and hardware compo-
nents

and hardware components. The software components that are deployed on
a physical node require that the hardware components of that node operate
correctly. If the machine fails, the software will also fail. Thus, the degree
of dependency of each software component to the machine on which it is
deployed becomes 1.0.

Figure 6.9 depicts an example of the ADM with dependencies between
software and hardware components. There are three software components
that are deployed on the same physical machine which is composed of
different hardware components, e.g., CPU and memory. If these hardware
components fail, the software components that are deployed on this machine
will also fail.

In addition to actual hardware components, virtual hardware components,
i.e., virtual machines, can also be modeled in a similar manner. Software
components that are deployed on a virtual machine are not aware that the
machine is not physical. If the virtual machine fails, the software components
will also fail. However, a virtual machine also depends on a physical machine.
The virtual hardware components require physical hardware components
to function. Thus, a virtual CPU would have a dependency of 1.0 to the
physical CPU, while a virtual memory would also have a dependency of 1.0
to the physical memory.

114 6 | Architectural Dependency Modeling and Extraction

- componentTypes " TypeRepositoryModel e * - executionContainerTypes

ComponentType | ExecutionContainerType w
- resources \/ *

| ResourceSpecification

- interfaces | «

- requiredinterfaces /I\ *

- providedInterfaces *

- resourceTypes

ResourceType

- connectorTypes | *

« | - operations - signatures - resourceType
Signature | | ConnectorType | " NetworkLinkType

- signature

Figure 6.10.: An excerpt of the meta-model for the type repository [Hoo14]

6.4.3. Transformation From SLAstic To ADM

In the previous section (Section 6.4.2), the concept of an automated extrac-
tion of an ADM using architectural knowledge is presented. This section
presents the SLAstic metamodels including the extension to the models and
the extension to the extraction algorithm that produces the ADM.

The transformation from a SLAstic model to an ADM requires both struc-
tural and behavioral information. This information is already present in
the SLAstic model. The structural information is obtained from the type
repository, component assembly, component deployment, and execution
environment model. The type repository, depicted in Figure 6.10, pro-
vides information regarding which types of software components implement
which operations. Specifically, it is provided by the Operation, Signature,
and Interface classes. Furthermore, the ExecutionContainerType,
ResourceSpecification, and ResourceType classes provide the speci-
fications of the execution containers. The information regarding how as-
sembly components are connected is provided by the AssemblyComponent
and Interface classes in the component assembly model illustrated in Fig-
ure 6.11. The component deployment model describes how components are
deployed in the execution environment as depicted in Figure 6.12. The exe-
cution environment model provides the information regarding the execution
containers and the network links as shown in Figure 6.13.

The dependencies and dependency weights between software compo-
nents in ADM are obtained by analyzing the number of invocations between

6.4 | Extraction of an Architectural Dependency Model 115

SystemProvidedinterfaceDelegationConnector |

*

- systemProvidedinterfaceDelegationConnectors 1_* @ ComponentAssemblyModel |__

- systemRequiredInterfaceDelegationConnectors | *

SystemRequiredinterfaceDelegationConnector |

ComponentType

- requiringComponent

- providingComponeni

1 - componentType
v VAR . 7
| SysteminterfaceDelegationCo tor | | A blyComponent
1 1 * - assemblyComponents
ConnectorType - providingComponent - requiringComponent
- connectorType _ requiringConnectors - providingConnectors

* * * - assemblyComponentConnectors

| A blyCo tor |<} I AssemblyComponentConnector "
- interface 1. - systemProvidednterfaces
1 Interface |

+ - systemRequiredInterfaces

Figure 6.11.: An excerpt of the meta-model for the component assem-
bly [Hoo14]

| ComponentDeploymentModel |

* - deploymentComponents
| DeploymentComponent

- assemblyComponenty|, 1 1 - executionContainer

| AssemblyComponent | | ExecutionContainer |

Figure 6.12.: The meta-model for the component deployment [Hoo14]

’l ExecutionEnvironmentModel IR

1

* - executionContainers - networkLinks |, *

- allocatedExecutionContainers
| ExecutionContainer ! NetworkLink:|
* * | - executionContainers - networkLinks| * *
1 - executionContainerType - networkLinkType |, 1

| ExecutionContainerType | NetworkLinkType

Figure 6.13.: The meta-model for the execution environment [Hoo14]

116 6 | Architectural Dependency Modeling and Extraction

components, as previously described in Section 6.4.2. This information
is obtained directly from the usage model, as depicted in Figure 6.14,
which contains information about the calls to operations and interfaces.
CallingRelationship records the information about a call by storing the
following information:

* Operation, which is the caller
* Signature, which is the signature of the callee,
¢ Interface, which is the interface of the callee, and

* FrequencyDistribution, which is the histogram describing the be-
havior of the calls, e.g., how many calls have been made to this callee.

However, the usage model stores only the calling information on the
assembly level, which is the information of which type of components call
which type of components. The missing information on the deployment
level creates a problem when there are multiple instances of a component
type deployed in the system. The number of invocations of each individual
deployment component is lost and their actual behavior, i.e., number of
invocations, cannot be obtained.

In order to retrieve detailed calling information on the deployment level,
the meta-model of SLAstic has to be extended. Figure 6.14 depicts the
extended meta-model of SLAstic usage model. The meta-model is extended
to include the following components:

* DeploymentOperationCallFrequency, which is a sub-class of Oper-
ationCallFrequency and stores the number of invocations of a com-
ponent on the deployment level,

* DeploymentCallingRelationship, which isasub-classof Calling-
Relationship and stores the calling information, i.e., which deploy-
ment component calls which deployment component, and

* DeploymentComponent, which is the called deployment component.

In addition to the extension to the model, the extraction algorithm from
monitoring data to the SLAstic model is also extended. The extension takes

6.4 | Extraction of an Architectural Dependency Model 117

UsageModel

- assemblyComponentConnectorCallFrequencies| .

* \I/ - operationCallFrequencies

>

OperationCallFrequency
- frequency : long

| AssemblyComponentConnectorCallFrequency |

-

- operation - callingRelationship

*

- connectory/ 1

CallingRelationship

*

| AssemblyComponentConnector |

lledSignaturg|, 1
- signature
Signature H -«
AssemblyConnectorCallFrequency
- frequency : long

- callingOperatio

-

1

Operation

- calledInterface \/ 1

=

*

Interface

- systemProvidedInten‘aceDeIegationConnectorFrequencigp

- frequencyDistribution SystemProvidedinterfaceDelegationConnectorFrequency |

FrequencyDistribution *
= 1 - connector
- values : long [*]

- frequencies : long [*] | SystemProvidedInterfaceDelegationConnector|

r- '
+ DeploymentCallingRelationship
i —eploymentatin gheatlonsh! Pz callingDeploymentComponent

P TRt 1 - callingDeploymentComponent
1 DeploymentOperationCallFrequency ! ingueploy! s 1

Figure 6.14.: The meta-model for the usage model [Hoo14] and the exten-
sions denoted by dashed boxes

into account the calling information on the deployment level that is present
in the monitoring data. The resulting SLAstic model, thus, contains all
the information required for HorA to extract the dependencies and create
an ADM.

Algorithm 6.1 illustrates the transformation from a SLAstic model to
an ADM. The algorithm first iterates through all DeploymentCalling-
Relationships and obtains the caller and callee of all internal and external
calls. It then extracts the number of calls that has been made from a specific
caller to a specific callee. After all calling relationships are extracted, the nor-
malization is done on the number of calls to obtain the dependency weights.
This normalization process is done as described in Section 6.4.2.1. The de-
pendencies of the caller to hardware components are computed as described

118 6 | Architectural Dependency Modeling and Extraction

in Section 6.4.2.3. The dependencies between hardware components are

computed as described in Section 6.4.2.2. The result of this transformation
is an ADM which represents the dependencies between components with
the corresponding dependency weights.

Algorithm 6.1 Transformation From SLAstic To ADM

Require: SLAstic model

1

2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

0 PNk

Extract DeploymentCallingRelationships from SLAstic model
Initialize count of all callers to all callees to 0
for all calling relationship R in DeploymentCallingRelationships
do
Extract caller C; and callee C; from R
Increment count for the call between C; and C;
end for
for all caller C; in callers do
Retrieve the number of invocations from any component to C;
for all callee C; in callees invoked by C; do
Retrieve number of calls from C; to C;
Normalize number of calls to 0.0-1.0
Store dependency from C; to C; and normalized value in ADM
end for
end for
for all deployment component D in DeploymentComponents do
Retrieve execution container E of D from SLAstic model
Store dependency from D to E and weight of 1.0 in ADM
end for
Extract ExecutionContainers from SLAstic model
for all execution container E in ExecutionContainers do
for all CPU P in ExecutionContainers do
Store dependency from E to P and weight of 1/n.p; in ADM
end for
Store dependency from E to memory and weight of 1.0 in ADM
end for
return ADM

6.4 | Extraction of an Architectural Dependency Model 119

6.4.4. Extraction of ADM From Kieker Monitoring Data

The extraction of an ADM from monitoring data is similar to the extraction
of a SLAstic model via dynamic analysis [Hoo14, p. 150]. However, as ADM
contains only information regarding dependencies between components,
the extraction is more straightforward than that for the SLAstic model.

Algorithm 6.2 Extraction of ADM From Kieker Monitoring Data

Require: Kieker monitoring data
: Group OperationExecutions by tracelD

—_

2: for all tracelD in traceIDs do
3: Order OperationExecutions by EOI and ESS
4: for all operation execution O in OperationExecutions do
5: Extract caller C; from O
6: Extract callee C; from the next operation execution
7: Increment count for the call between C; and C;
8: Extract execution container E of C; from O
9: Store dependency from C; to E and weight of 1.0 in ADM
10: end for
11: end for
12: for all caller C; in callers do
13: Retrieve the number of invocations from any component to C;
14: for all callee C; in callees invoked by C; do
15: Retrieve number of calls from C; to C;
16: Normalize number of calls to 0.0-1.0
17: Store dependency from C; to C; and normalized value in ADM
18: end for
19: end for
20: for all execution container E in ADM do
21: for all CPU P in ExecutionContainers do
22: Store dependency from E to P and weight of 1/n.p; in ADM
23: end for
24: Store dependency from E to memory and weight of 1.0 in ADM
25: end for
26: return ADM

Algorithm 6.2 illustrates the extraction of an ADM from Kieker monitor-
ing data. The input of the extraction is Kieker monitoring data. This data

120 6 | Architectural Dependency Modeling and Extraction

is a stream of OperationExecutions which contains the control flow in-
formation of the application. In the first step, the OperationExecutions
are split into groups according to the traceID and sorted by the EOI and
ESS values (Section 2.3.5.2). Then, for each control flow with the same
tracelD, the number of invocations between callers and callees is counted.
The normalization process is carried out similar to that of the transforma-
tion from SLAstic to ADM described in the previous section (Section 6.4.3).
However, instead of obtaining the information regarding the execution con-
tainer from the SLAstic model, this information is obtained directly from
the OperationExecution. As previously described in Section 2.3.5.2, each
OperationExecution contains the hostname of the machine on which the
operation is deployed and executed. This information is used to create the
dependencies from the operations to the corresponding execution containers.

6.5. Summary

This chapter presents the Architectural Dependency Model (ADM) which is
the second step of the Hora approach and provides answers to the research
questions RQ2.1 and RQ2.2. In this chapter, the information required for
capturing the architectural dependencies is presented and the ADM, which is
the model that represents the dependencies between components in the sys-
tem, is introduced. The concepts of the manual and automated extraction of
the ADM based on the architectural knowledge are presented. Furthermore,
the transformation of the ADM from the SLAstic model and the extraction
from the Kieker monitoring data are also presented.

6.5 | Summary 121

CHAPTER

FAILURE PROPAGATION
MODELING AND PREDICTION

The Architectural Dependency Model (ADM), introduced in Chapter 6, rep-
resents the architecture of the system with component dependencies and
the corresponding weights. However, the ADM is not suitable for failure
prediction because the probabilities of cascading failures are not explicitly
included.

Section 7.1 describes the research question that will be answered in this
chapter. Section 7.2 introduces Hora’s Failure Propagation Model (FPM)
which is the representation that is suitable for predicting cascading failures.
Section 7.3 presents the transformation from an ADM to an FPM. Section 7.4
presents how the model is kept alive at runtime. Section 7.5 presents the
inference of the FPM. Section 7.6 summarizes the contribution of this chapter.

123

7.1. Research Question

This chapter aims to answer the following research question which has been
previously stated in detail in Section 4.1:

* RQ3.1: What is a suitable model to represent the combined informa-
tion?

7.2. Failure Propagation Model

A Failure Propagation Model (FPM) is an abstraction that represents the
concept of a model that can infer failure propagations. In this work, the FPM
employs the formalism of Bayesian networks [Bis06], introduced in Sec-
tion 2.2.3, which is a probabilistic directed acyclic graph that can represent
random variables and their conditional dependencies. The FPM allows to
infer the failure probabilities of components in the dependency chain when
other components in the chain are failing.

Based on Running Example 2 in Figure 6.1 (Page 104), the extracted ADM
indicates the probabilities of a component failure if its adjacent component
fails. However, it does not provide the failure probability if a non-adjacent
component, i.e., component in the dependency chain, fails. The FPM allows
this using Bayesian inference as described in Section 2.2.3. The FPM of
Running Example 2 is illustrated in Figure 7.1. The nodes represent the com-
ponents while the edges represent the direction of the failure propagation.
For example, it can be interpreted that the failure of component D can cause
component C to fail. On the other hand, the failure of component C can
cause component A and B to fail.

For each node in the Bayesian network, there is a Condition Probability
Table (CPT) which lists marginal probability of that variable with respect
to the others. Table 7.1 shows the CPTs of the components in Figure 7.1.
Component D, which does not depend on any other component, has the
simplest CPT shown in Table 7.1d. Its failure probability is affected only by
itself. Therefore, its CPT contains only one row which indicates the probabil-
ity of component D failing (P(Dy)) and not failing (1 — P(Dy)). Component

124 7 | Failure Propagation Modeling and Prediction

Figure 7.1.: FPM of Running Example 2 in Figure 6.1

. A fails . B fails
C fails True | False C fails True | False
False | P(Cy) | 1—P(Cp) False | P(Cy) | 1—P(Cp)
True 1.0 0.0 True 1.0 0.0
(a) CPT of Component A (b) CPT of Component B
D fails C fails D fails
True | False
— 3 o True | False
True 1.0 0.0 [P(Dr) [1-P(Dy) |

(c) CPT of Component C (d) CPT of Component D

Table 7.1.: CPTs of Running Example 2

A, B, and C all depend on one other component, so, their CPTs contain
one additional column which indicate the health status of the component
they depend on. Each row of the table represents the failure probability if
the required component fails. In the case of component A, for example, if
component C fails, component A will also fail. Thus, the probability is 1.0,
as shown in the second row of Table 7.1a (‘C fails’ is true). If component C
is functioning correctly, the failure probability of component A is affected
by A itself, as shown in the first row (‘C fails’ is false).

7.2 | Failure Propagation Model 125

Figure 7.2.: FPM of Running Example 1 in Figure 6.2

Figure 7.2 depicts the FPM for Running Example 1. For simplicity reasons,
in this example we only consider each physical machine as a node in the
graph without going into the details of each machine, e.g., software sub-
components or hardware components.

The conditional dependencies between the nodes in the graph are rep-
resented by CPTs. Each node in the graph has a corresponding CPT which
contains conditional probabilities of possible failures occurring, given the
failure probability of its parent components. For instance, the database
is a node that does not depend on any other nodes. Therefore, its CPT
contains only two failure probabilities that represent the probability of a
failure occurring, and not occurring, in the database itself. The table is
shown in Table 7.2a. The failure probability is denoted by P(DB;) which
is computed at runtime by the corresponding component failure predictor,
as detailed in Chapter 5. On the other hand, the operation of a business
tier (BT1-3) requires a database (DB) with a dependency weight of 1.0,
according to the ADM in Table 6.3. This means that if the database fails, the
business-tier instances will also fail. The CPT of the business-tier instance
BT1 is presented in Table 7.2b. The first row indicates the failure probability
of the business tier itself, if the database is operating properly. The second
row indicates the probability of BT1 failing if the database fails.

126 7 | Failure Propagation Modeling and Prediction

DB fails

True |

False

| P(DB;) | 1—P(DB;) |

(a) CPT of DB

. BT1 fails
DB fails True | False
False | P(BT1,) | 1—P(BT1,)
True 1.0 0.0

(b) CPT of BT1

BT1 fails | BT2 fails | BT3 fails PT1 fails
True | False
False False False P(PT1p) | 1—P(PT1y)
False False True 0.33 0.66
False True False 0.33 0.66
False True True 0.66 0.33
True False False 0.33 0.66
True False True 0.66 0.33
True True False 0.66 0.33
True True True 1.0 0.0
(c) CPT of PT1
PT1 fails | PT2 fails LB fails
True | False

False False P(LBg) | 1—P(LBy)

False True 0.5 0.5

True False 0.5 0.5

True True 1.0 0.0

(d) CPT of LB

Table 7.2.: Selected CPTs of Running Example 1 in Figure 6.2

7.2 | Failure Propagation Model

127

A more complex relationship can be seen in the presentation tier which
requires at least one business-tier instance. If one business-tier instance fails,
the presentation tier can still operate by forwarding requests to the remaining
business-tier instances. As listed in Table 6.3, the dependency weight of each
presentation-tier instance to each business-tier instance is approximately
0.33. This implies that, for each business tier failure, the failure probability
of the presentation-tier instances will increase by approximately 0.33. Hence,
if all business-tier instances fail, this failure probability will sum up to 1.0
which means that the presentation-tier instances will also fail. The CPT of
PT1 is presented in Table 7.2c.

The CPT of the load balancer is shown in Table 7.2d. The availability of
the load balancer represents the availability of the whole service because if
the load balancer fails, users can no longer access the service. Since the load
balancer forwards the requests to the two instances of the presentation tier,
the CPT, thus, contains the dependency to those components. Given that
the load balancer is healthy, if one of the presentation-tier instances fails,
the probability of the load balancer failing becomes 0.5. If both of them fail,
the failure probability becomes 1.0.

7.3. Transformation From ADM To FPM

The transformation of an ADM to an FPM allows the inference of the failure
propagation that is not possible with the ADM. To deduce this information
from the model, all dependencies of the components need to be taken into
account. This section details how this transformation can be achieved.

Assuming that a component ¢, depends on n other components with n > 1,
the CPT of a component ¢, can be expressed by a multiplication of a truth
table matrix T of size 2" x n and the weight matrix W, of size n x 2 and can
be written as

CPT, =T, W, (7.1)

Co

128 7 | Failure Propagation Modeling and Prediction

where

51 Ch—2 Cn—1 Cn
0 0 0 0
0 0 0 1
0 0 1 0
T, =) 7.2
0 0 0 1 1 (7.2)
1 1 1 1
Weoe, 1- Weoe,
WCocz 1— WCOCZ
w,=| : : , (7.3)

CoCn €oCn

with ¢;,1 < i < n, are required components and w, ., are the corresponding
dependency weights from component c, to component c;. This creates a
matrix of size 2" x 2 which is the CPT of the component.

Let us consider the component PT1 in Running Example 1 in Figure 6.2
as an example. In this example, PT1 depends on three other components,
which are BT1, BT2, and BT3. The truth table matrix Tz, can be written as

BT1 BT2 BT3

[0 0 0 \
0 0 1
0 1 0

Tpr1 = 0 1 ! (7.4

1 0 0
1 0 1
1 1 0

\ 1 1 1 }

7.3 | Transformation From ADM To FPM 129

and the weight matrix W can be obtained from the ADM in Table 6.3 which
can be written as

WprimeT1 1 —WprimpT1 0-3§ 0-6§
Wori=| Wprisera 1—Wprispre | = 0-32 0-69 (7.5)
WprioBTs 1 — WpriopT3 0.33 0.66

The final matrix then becomes

0.0 0.0\
0.33 0.66
0.33 0.66
0.66 0.33
CPTpr1=| 0.33 0.66 (7.6)
0.66 0.33
0.66 0.33
\1.0 00

The CPT of other nodes are also created in the same manner. The complete
model with all CPTs is used as a core model to infer the failure probability
of each component and failure propagation. It can be noticed that two
entries in the first row of the CPT are both 0.0. The probabilities in this
row will be updated at runtime, as described in Section 7.4, to reflect the
failure probability of that component when other dependent components
are healthy.

7.4. Updating the Failure Propagation Model at Runtime

The first row of the CPT indicates the failure probability of the component
when other dependent components are functioning correctly. This probability
depends on the health of each component and cannot be deduced from the
architectural information of the system. Therefore, it must be obtained
from another source which are the failure predictors responsible for each
component (Chapter 5).

130 7 | Failure Propagation Modeling and Prediction

At runtime, a component can exhibit many performance metrics such as
response time and resource utilization. A component failure predictor of
that component is responsible for predicting if it is going to fail. Since the
prediction result of the component failure predictor indicates the probability
of a failure occurring in the component itself, this probability then replaces
the first row of the CPT of the corresponding component in the model.

For example, assume that the predictor of BT1 predicts that it may fail in
10 minutes with a probability of 0.8. The first row of CPTyy3 in Table 7.2b,
where DB failure is False, will be set to 0.8 and 0.2, accordingly.

The online update process is periodically performed for all component
failure predictors. To provide a consistent prediction of the failure propaga-
tion, the component failure predictors are set to make predictions with the
same lead time, e.g., 10 minutes. This simplifies the inference of the failure
propagation discussed in the next section.

Algorithm 7.1 shows the updating process of the FPM. In the first step,
an ADM is obtained from the extractor and used to update the structure
of the Bayesian network. Then, the component failure probabilities are
obtained from the component failure predictors. The first rows of the CPTs
of the Bayesian network are updated according to the probabilities. In the
last step, the inference of the Bayesian network is carried out to obtain the
architecture-aware component failure probabilities.

Algorithm 7.1 Updating Failure Propagation Model

Require: ADM, component failure predictors
1: while true do
2: Obtain ADM from the extractor
3 Update Bayesian network structure
4 for all predictor in component failure predictors do
5 Obtain component failure probabilities
6: Update CPT of the corresponding component
7 end for
8 Infer new architecture-aware failure probabilities
9: end while

7.4 | Updating the Failure Propagation Model at Runtime 131

7.5. Inference of the Failure Propagation Model

The inference of the failure propagation is the last step of Hora, which
predicts what the effects of component failures can be, i.e., how likely
that failures will propagate to other components. Once the component
failure probabilities (described in Chapter 5) are updated, Bayesian infer-
ence [Bis06] (described in Section 2.2.3) is used to obtain new failure
probabilities of all components. This inference takes into account not only
their own failure probabilities but also those of their parents and ancestors.
If a node’s ancestors have high failure probabilities, its failure probability
will also be high. Therefore, the inference allows us to model and predict
failure propagation from the inside to the outside of the system. At run-
time, the inference is done at regular intervals to provide the current failure
probabilities of all components.

Let us consider the system in Running Example 1 (Figure 6.2 on Page 104),
which is composed of four types of components, i.e., load balancer (LB),
presentation tier (PT), business tier (BT), and data tier (DT). The failure
probability of a component in the system can be computed using the joint
probability function. For example, the failure probability of BT1 can be
written as a joint probability of BT1 and DB since BT1 depends on DB. This
probability can be represented as

ZDBFE{T,F} P(BT1; = T|DBy)P(DBp)

P(BT1, = T,DB,) =
(BT & 2511, p8,e(r.ry P(BT1p|DB)P(DBy)

(7.7)

The conditional probabilities and the prior probabilities are computed and
obtained from the CPTs of the corresponding components in the FPM as
presented in Section 7.3.

In the current state of failure propagation inference, all component failure
predictors are configured to provide component failure probabilities based
on the same lead time. This simplifies the way the FPM stores the compo-
nent failure probabilities and allows the existing inference algorithm to be

132 7 | Failure Propagation Modeling and Prediction

employed. The inference of the FPM is carried out periodically to obtain
new failure probabilities in order to reduce the computational complexity.
Since the failure probabilities of the components can be obtained at any
time, inferring the failure probabilities of all components in the FPM after
receiving one data point from a component failure predictor is computation-
ally expensive. Thus, the inference of the FPM is done at regular intervals
and can be defined in the HorA’s configuration.

It is important to note that there is a trade-off between the quality of
the prediction and the computational complexity. If the frequency of the
inference is high, i.e., the inference is done immediately after a new data
point arrives, the prediction results will represent the true status of the
system. However, this results in a high computational complexity since the
algorithm has to be executed at the rate that new data points arrive. On the
other hand, if the frequency is low, i.e., the algorithm waits until a number
of data points arrive or until a certain interval has passed, the prediction
results will represent the status of the system in the past. Nevertheless,
the algorithm does not have to be executed every often, thus, reducing the
computational complexity. Therefore, the frequency of the inference needs
to be configured to balance these two aspects.

7.6. Summary

This chapter presents the Failure Propagation Model (FPM) which is the last
step of the Hora approach and answers the research question RQ3.1. In this
chapter, the FPM is introduced to model the propagation of the failures using
the architectural knowledge obtained from the ADM. The transformation
from an ADM to an FPM is presented. Moreover, the update process of the
FPM at runtime and the inference of the model to obtain architecture-aware
component failure probabilities are also presented.

7.6 | Summary 133

CHAPTER

IMPLEMENTATION

This chapter presents two implementations of the Hora approach. Sec-
tion 8.1 presents the first implementation in Java, which is a proof of concept,
aiming at quantitatively evaluating HorA’s improvement on the prediction
quality over the monolithic approach. Section 8.2 presents the second im-
plementation in Go, which focuses on providing Hora as a tool that can
be used for predicting failures in production environments at runtime. The
implementations are available in the supplementary material [Pit18].

8.1. Java Implementation

The first implementation of Hora is written in Java. The goal is to prove
that the idea of Hora is feasible. Specifically, combining component failure
predictors and the architectural knowledge should improve failure prediction
of the whole system. This implementation has the following use cases:

* The implementation is executed offline. Specifically, the monitoring
data will be first collected from a running system and stored as log files.
In addition to the monitoring data, the failures and time of occurrence

135

will also be recorded. These two sources of information are used to
train the prediction models.

* The implementation should allow an extensive evaluation of the ap-
proach and provide evaluation metrics as results.

Section 8.1.1 describes the overview of the architecture and the compo-
nents that are involved in the prediction and evaluation processes. Sec-
tion 8.1.2 describes how the system is instrumented so that the monitoring
data can be obtained. Sections 8.1.3 to 8.1.5 present the implementations
of the component failure predictors, the Architectural Dependency Model
(ADM) and Failure Propagation Model (FPM), respectively.

8.1.1. Architecture Overview

The architecture of this implementation is depicted in Figure 8.1. In this
implementation, the Hora approach is split into two phases, which are data
collection and evaluation. The data collection focuses on simulating requests
from users and collecting the monitoring data from the system. The system is
instrumented with Kieker, which is an APM framework (Section 2.3.5.2), to
obtain the method response time and resource utilization. The monitoring
data is stored in a file which will later be read in the evaluation phase.
Furthermore, a SLAstic model, which describes the structure and behavior
of the system, is extracted from the data. In addition to the monitoring data,
the responses that the users receive are also recorded. This data will indicate
whether observable failures have occurred on the client side.

The evaluation, which is the second phase, focuses on creating models that
can predict the failures and on evaluating the prediction quality. The imple-
mentation is mainly based on Kieker’s pipe-and-filter architecture [HWH12].
The monitoring data is read from the file system by Kieker’s file system reader.
The data is forwarded to the component failure predictors which produce
failure probabilities of individual components. The SLAstic model that is
created in the data collection phase is transformed to an ADM. The FPM
obtains the component failure probabilities and the ADM. Then, it infers new

136 8 | Implementation

VYOH Jo uoneuswa[duwl BABl JO 9INIDRNYDIY :'1°§ 2SI

E

Jawioysuel|
NQAV oL JBv1S

Jojenjeng

E

|AO|

E

1spoN
uonebedold
ainjieq

uolnenjeAg

Jojo1paid
ainjieq
E jusuodwo)

—— (O onsvis

sasuodsay

(O opisuaig [

|
S

—_——
ISPON

—

/_\

Jojoelxg
o1}s!
E sv1s

A

60
Buuoyuopy
FENETY]

(pajuswinisuy)
awnuny je
wajsAs

O>— QQ —(0—

Jojessus
peoT

uoios|0D ejeq

137

8.1 | Java Implementation

failure probabilities taking into consideration the component dependencies.
In the last step, the prediction results are compared to the actual status of
the system and the evaluation results are obtained.

8.1.2. System Instrumentation

We employ Kieker to obtain the monitoring data from a running system. The
application is instrumented with the code that gets executed before and after
each method to trace the call and measure the response time. The code injec-
tion functionality is provided by Kieker which employs AspectJ [KHH+01]
as the underlying technology to instrument Java applications. However,
to monitor remote calls that go across multiple nodes, a new monitor-
ing probe is required to follow the calls throughout the whole distributed
system. Two new monitoring probes, i.e., OperationExecutionJersey-
ClientInterceptor and OperationExecutionJerseyServerInter-
ceptor are implemented to intercept the outgoing and incoming calls. The
header of each outgoing call is modified to include the trace information,
which are the traceID, EOI, and ESS. These variables are extracted by the
probe in the remote nodes and used as the tracelD for further calls.

In addition to the remote call monitoring, the resource utilization of the
nodes needs to be monitored as well. To achieve this, new samplers are
implemented using Sigar!, which is a library to gather system information.
These new samplers are LoadAverageSampler, DiskUsageSampler, and
NetworkUtilizationSampler.

8.1.3. Component Failure Predictors

This section presents the implementation of component failure predictors.
Section 8.1.3.1 presents the implementation of the time series-based failure
prediction. Sections 8.1.3.2 and 8.1.3.3 present the implementation of
critical event prediction and hard drive failure prediction, which aim at

Thttps://github.com/hyperic/sigar

138 8 | Implementation

predicting failures based on other types of data and are not built into the
core of the Hora implementation.

8.1.3.1. Time Series-based Failure Prediction

The time series-based failure prediction is implemented as filters in Kieker’s
pipe-and-filter architecture [HWH12]. The filters receive the monitoring
data from the reader and predict their values in the future. This data is
collected from different sources, e.g., load average and method response
time. The corresponding predictors are configured according to the pre-
defined configurations, e.g., failure threshold and lead time. The predictors
utilize an ARIMA forecaster (Section 2.2.1) implemented in OPAD, which is
an online performance anomaly detection plugin for Kieker [Bie12]. OPAD,
in turns, employs the package forecast available in R [R C15] for the
forecasting algorithms.

8.1.3.2. Critical Event Prediction

The critical event predictors are implemented separately from the main
Hora implementation and are not depicted in Figure 8.1. The predictors
are implemented as filters in Kieker’s pipe-and-filter architecture and are
designed for offline evaluation. The log files are first read by a reader filter
and forwarded to preprocessing filters to remove redundant information and
reduce the size of the logs, as described in Section 5.5.1. The filtered log
messages are classified according to the label and used to train the machine
learning algorithms that are provided by the Weka library [WFHP16].

8.1.3.3. Hard Drive Failure Prediction

Similar to the critical event predictors, the hard drive failure predictors are
implemented separately from the main Hora implementation and are not de-
picted in Figure 8.1. The hard drive failure predictors are designed for offline
evaluation and are implemented in Java. They employ Weka [WFHP16],
which is a library for machine learning algorithms. In the first step, the

8.1 | Java Implementation 139

S.M.A.R.T. data is read from a file and classified based on the time leading
to failures. This data is then used in the cross-validation to train the models
and to evaluate the prediction quality.

8.1.4. Architectural Dependency Model

The ADM is implemented in Java as a nested HashMap. The first level of the
map contains all components in the system as keys. These keys represent
the components that require other components. In other words, they are the
components that make calls to the others. The values of the first HashMap
are another HashMaps. This second map contains called components as keys
and the corresponding dependency weights as values.

8.1.5. Failure Propagation Model

The FPM is implemented as a filter in Kieker’s pipe-and-filter architec-
ture [HWH12]. The filter has two input ports to obtain the following data:

e The ADM which is extracted from the SLAstic model, and

* The failure probabilities which are produced by the time series-based
component failure predictors.

The received ADM is first transformed into an FPM as described in Sec-
tion 7.3. In the current state, HorA employs the Bayesian network formalism
as the underlying technique for the FPM. The Bayesian network library is pro-
vided by Jayes, which is a library used in the Code Recommenders project
of Eclipse.! The Jayes library provides APIs for creating, updating, and
inferring the probabilities of random variables of the network.

The received component failure probabilities are updated in the underly-
ing Bayesian network at regular intervals. After each update, the network is
solved to obtain new component failure probabilities that take into consid-
eration the dependencies between components in the architectural model.

Thttps://github.com/kutschkem/Jayes

140 8 | Implementation

8.2. Go Implementation

! The goal is to

The second implementation of Hora is written in Go.
provide an implementation that can make failure predictions in production

environments at runtime. This implementation has the following use cases:

* The implementation will be executed online in a containerized envi-
ronment [Mer14]. The monitoring will be collected from a live system
and the failures will be predicted at runtime.

* The implementation should visually present the results of the predic-
tion for all components and the service of the system under test in
realtime.

This implementation is a part of the analysis module in the CASPA plat-
form [DHH+17], which is a platform for comparability of architecture-based
software performance engineering approaches. The CASPA platform, includ-
ing the Hora as an analysis module, is publicly available online.?

The remainder of this section presents the implementation details. Sec-
tion 8.2.1 presents the overview of the architecture. Sections 8.2.2 to 8.2.4
present the implementation details of the component failure predictors, the
ADM, and the FPM, respectively. The source code of this implementation is
publicly available online.?

8.2.1. Architecture Overview

The architecture of the Go implementation is depicted in Figure 8.2. Since
the goal is to apply HoraA in a containerized environment, each component
is designed to be deployed as a Docker container.* These containers can be
deployed in a Kubernetes cluster, which is a container orchestration system.®

Thttps://golang.org/
2https://github.com/spec-rgdevops/CASPA-platform
3https://github.com/hora-prediction/hora
“https://docker.com/

Shttps://kubernetes.io/

8.2 | Go Implementation 141

Component] Failure &I =
Failure —O)— Propagation O Evaluator
Predictor Model

mm
Load Kieker
Generator [0 O— Logging —(O—
i O Server g
m
System WM:%M%“W_
at Runtime p Yy o
Model
(Instrumented) e)
xtractor
ﬁOl Client-side L 0)
Responses
e m Container

Figure 8.2.: Architecture of Go implementation of Hora

8 | Implementation

142

In this implementation, the system under test is migrated to Docker con-
tainers and instrumented with Kieker. The source code of the migrated
application is publicly available online.! In contrast to the traditional envi-
ronment, in which the system under test is deployed on physical servers,
Docker uses the libvirt toolkit? to run containers in a virtualized environ-
ment. This complicates the process of collecting monitoring data since they
are not easily accessible from other containers. Therefore, we employ Kieker
Logging Server (KLS)? to collect monitoring data from all containers and
write them to a databases. The database we use in this implementation is
InfluxDB,* which is a time series database. In addition to the monitoring
data, the client-side responses are also stored in an InfluxDB database and
will be later used by the evaluator.

For the failure prediction process, the monitoring data is read and split
into groups according to components. The corresponding component failure
predictors then make predictions and produce failure probabilities. In paral-
lel, an ADM is extracted directly from the same monitoring data, in contrast
to the first implementation, which is transformed from a SLAstic model. The
ADM extractor in this implementation is split into a separate container that
can be deployed and functions independently from the prediction part. This
allows the extracted model to be used for other purposes in the future.

In the last step, the component failure prediction results and the ADM are
combined in the FPM. New component failure probabilities are computed
based on the component dependencies. Finally, the results are compared to
the actual status of the system and the evaluation results are generated.

8.2.2. Component Failure Predictors

Similar to the first implementation, the component failure predictors are
based on time series forecasting. We utilize an R server [R C15], which is
deployed as a container and provides forecasting algorithms. The communi-

Thttps://github.com/hora-prediction/recipes-rss-kube
2https://libvirt.org/
3https://github.com/kieker-monitoring-docker/kieker-logging-server
“https://github.com/influxdata/influxdb

8.2 | Go Implementation 143

cation with the R server is done by preparing the statements that need to be
executed and sending them to the server. The results are then returned as
text and parsed to obtain the desired values.

8.2.3. Architectural Dependency Model

The ADM extractor in this implementation is re-written to provide realtime
extraction based on the monitoring data. The model is extracted directly
from the monitoring log collected by Kieker. The extraction is carried out
by analyzing the tracelD, EOI, and ESS of the traces, as described in Sec-
tion 2.3.5.2. As depicted in Figure 2.11, this information can be used to
discover the call tree of the program. This allows us to extract the component
dependencies and the number of times one component calls another.

8.2.4. Failure Propagation Model

The FPM receives component failure probabilities and the extracted ADM
through two separate channels, which resemble pipes in the pipe-and-filter
architecture. These two pieces of information are continuously sent to the
FPM at runtime. The FPM employs bnlearn, which is a Bayesian network
library available in R [SculO]. After the model is updated, an inference is
carried out in R to obtain new failure probabilities that are aware of the
component dependencies.

Figure 8.3 depicts the prediction results of Hora visualized using Grafana,
which is a platform for analytics and monitoring. The visualization presents
the monitoring data collected from the components in the system, such as
method response times, CPU utilization, memory utilization, and network
utilization. In addition to the monitoring data, the client-side responses, e.g.,
end-to-end response time and the HTTP status codes are also presented.
Along with the aforementioned monitoring data, the architecture-aware
failure probabilities made by Hora are also presented. These include not
only the component failure probabilities but also the failure probabilities of
the services that the system provides to the end users.

Thttps://grafana.com/

144 8 | Implementation

SWIIIUNI JB VYOH JO SINSa1 uonarpaid oY) Jo UONBZI[ENSIA Y :°€'g 9IN31]

145

8.2 | Go Implementation

Part III.

Evaluation

147

CHAPTER

EVALUATION METHODOLOGY

The Hora approach proposed in the previous chapters needs to be evaluated
to access whether it can improve the prediction quality of online failure pre-
diction. The evaluation is split into multiple chapters so that each part of the
approach can be independently evaluated and optimized for the best results.
This chapter provides the overview of the evaluation (Section 9.1), evalu-
ation metrics (Section 9.2) and statistical hypothesis testing (Section 9.3)
which is used to evaluate the prediction approaches.

9.1. Overview of Evaluation

The evaluation of the Hora approach is divided into two steps:

* The first step focuses on evaluating the prediction quality of component
failure predictors which is split into three chapters:

- Chapter 10 presents the evaluation of the time series-based failure
prediction. The approach introduced in Section 5.4 is evaluated
by applying it to Netflix’s RSS reader which is a distributed server-
side application. The time series data, i.e., CPU utilization and

149

method response time of software components, of the system is
monitored and used as symptom to predict upcoming failures.

- Chapter 11 presents the results of the critical event prediction
introduced in Section 5.5. The dataset used in the evaluation is
event logs that are collected from the Blue Gene/L supercomputer
system.

- Chapter 12 presents hard drive failure prediction which is intro-
duced in Section 5.6. The evaluation uses the S.M.A.R.T. data
collected from 369 hard drives.

* The second step (Chapter 13) focuses on evaluating the prediction
quality of the whole Hora approach. The ADM (Chapter 6) and the
results of component failure prediction shall be used to infer the failure
propagation probabilities by the FPM. Furthermore, the effects of the
ADM on the prediction quality will be investigated.

9.2. Evaluation Metrics

In order to evaluate the prediction quality of different approaches, evaluation
metrics are needed to determine whether the result of one approach is better
than another. At runtime, a component failure predictor may predict a
component to be healthy or to fail in the near future. In the same manner,
the actual status of a component at the predicted time can be either healthy
or failed. This results in four possible types of outcomes which are as
follows [SLM10].

* True positive (TP)—The predictor concludes that a failure is possible
and, in the predicted time frame, a failure actually occurs. This is a
correct prediction of a failure and we would like to maximize it.

* False positive (FP)—The predictor predicts that a failure will occur but
it does not. This is a wrong prediction which we would like to avoid.
It can cause unnecessary operations and have high costs to prepare for

150 9 | Evaluation Methodology

Prediction Actual
Failure | Non-failure

Failure True positive (TP) False positive (FP)
Non-failure | False negative (FN) | True negative (TN)

Table 9.1.: Contingency table

Metric | Formula |
.. TP
Precision
TP + FP
.. TP
Recall, True-positive rate (TPR) e —
TP +FN
.. FP
False-positive rate (FPR) _—
FP+ TN
TP+TN
Accuracy
TP + TN + FP + FN
2 - Precision - Recall
F-measure

Precision + Recall

Table 9.2.: Selected derived evaluation metrics

failure avoidance, e.g., spawning more instances of the services that
are predicted to fail.

* False negative (FN)—The predictor predicts that there will be no failure
but a failure actually occurs. This type of outcome is also called a miss
and is also a wrong prediction. If the failure is severe, the consequence
can be very catastrophic. For example, a failure of the database that
was not predicted can result in a permanent loss of data.

* True negative (TN)—The predictor predicts that there will be no failure
and no failure occurs. This is a correct prediction that should also be
maximized.

9.2 | Evaluation Metrics 151

Table 9.1 presents these four basic evaluation metrics as a contingency
table. Apart from these basic metrics, more complex metrics can be derived
from them and can provide more information regarding the prediction quality.
For example, a predictor that always predicts that a component is going to
fail will not miss a failure, which results in a high number of TP. However, it
will also produce a high number of FP since some of the predicted failures do
not occur. Therefore, it is necessary to consider more than one metric when
evaluating a prediction approach. The derived metrics that we consider in
the evaluation are precision, recall or True-positive rate (TPR), False-positive
rate (FPR), accuracy, and F-measure which are listed in Table 9.2. A good
predictor would produce a high precision, high recall or TPR, low FPR, and
high accuracy. F-measure is a value that represents the harmonic mean of
precision and recall [SLM10]. A perfect predictor would have the F-measure
value of 1, while the worst prediction would have 0.

Receiver Operating Characteristic (ROC) curves [Faw06] represent the
quality of the prediction by relating TPR to FPR for different prediction
thresholds, as shown in Figure 9.1. A random predictor that produces alarms
at random would achieve a curve that goes from (0,0) to (1,1) (shown as
a dotted line). The closer the curve is to the (0,1) point, the better the
prediction is. The red dashed line and the blue dotted dashed line present
two examples of typical ROC curves. The predictor 1 is better than a random
predictor and the predictor 2 is better than the predictor 1. A perfect predictor
has a curve that goes from (0,0) to (0,1) and (1, 1).

Area under ROC curve (AUC) measures the area that is covered by a
ROC curve and allows comparison between different ROC curves. A perfect
predictor would have an AUC of 1. The AUC is recommended to be used as
a single-number metric for evaluating learning algorithms [Bra97; HLOS5].
Thus, in our evaluation, the AUC is used as a representative metric for the
comparison of the prediction qualities.

152 9 | Evaluation Methodology

0{1/ P
X -7
5
\Q /'/
Q

;

.I'

1

! &8
k) { Qb\(’/
© i 7 S
Y <P S
o ! s ;.
= ! / @
= i S &Q
[%]] ’
o i / O
Q. , / ,b(\._,-
g i / ol
= i /
[i / :

False positive rate

Figure 9.1.: Example of ROC curves

9.3. Statistical Hypothesis Testing

A statistical hypothesis is a statement that describes parameters of popula-

tions [MRHO09]. An example of a statistical hypothesis is the mean value

of the response time of a service. In order to determine if the statistical

hypothesis is true, a procedure called statistical hypothesis testing is required.

An AUC described in the previous section can be obtained from one run

of the evaluation. However, a conclusion of which approach performs better
than another based on the data obtained from one run cannot be statistically
accepted. This is because there can be many random variables that can
influence the results, e.g., one data set may contain signs of failures that
are usually not present at runtime and provide advantages to one of the
approaches. Thus, comparing the prediction qualities of two prediction
approaches requires multiple runs of the experiment which produces a

9.3 | Statistical Hypothesis Testing 153

number of the AUCs. In order to make a statistical conclusion, we use two-
sided hypothesis testing [WRH+12] to compare the AUC and evaluate the
significance of the improvement. The null and alternative hypotheses are
defined as follows:

HO : AUCHORA = AUCMonolithiC ©.1)
H; : AUChors # AUConotithic (9.2)

The result of statistical hypothesis testing is reported as a p-value. The
p-value is the probability that the parameter of interest is at least as extreme
as the observed value given that the null hypothesis is true [MRHO9]. In
other words, the smaller the p-value, the more likely that the null hypothesis
can be rejected. The method used in testing is introduced by DeLong,
DeLong, and Clarke-Pearson [DDC88] to compare two or more AUC. The
ROC curves, AUCs, and the results of the evaluation are generated using
the pROC package [RTH+11] available in R [R C15].

154 9 | Evaluation Methodology

CHAPTER

EVALUATION OF TIME
SERIES-BASED FAILURE
PREDICTION

This chapter presents an evaluation of failure prediction using time series-
based prediction algorithms. The goal is to predict future observations
of time series data, e.g., CPU utilization and service response time. The
predictions are then used to estimate the probability of threshold or SLO
violations that could result in a service failure.

Section 10.1 presents the research question that will be answered in this
chapter. Section 10.2 describes the experiment setup of the evaluation.
Section 10.3 presents the results of the experiment. Section 10.4 provides a
discussion of the results. Section 10.5 presents the threats to validity of the
experiment. Section 10.6 summarizes the evaluation in this chapter.

155

10.1. Research Question

This chapter focuses on evaluating the prediction quality of the time series-
based failure prediction presented in Section 5.4. Furthermore, the eval-
uation aims to answer the following research question which has been
previously stated in detail in Section 4.1:

* RQ1.3: What are the prediction qualities of component failure predic-
tors?

10.2. Experiment Setup

This section presents the details of the experiment setup which are system
under test (Section 10.2.1), fault injection (Section 10.2.2), the definition
of failures (Section 10.2.3), and the prediction technique (Section 10.2.4).

10.2.1. System Under Test

The distributed RSS feed reader application® is originally developed by
Netflix to demonstrate their open-source software libraries.? The application
follows the microservice architectural style which is composed of small
autonomous services [New15]. Figure 10.1 shows the web user interface of
the application which allows users to view, add, or delete RSS feeds.

The RSS feed reader application is composed of four main components:

* Edge. The edge is a presentation layer that receives requests from
users and forwards them to the business layer. Once the business layer
completes the business logic, the edge receives the reply, i.e., the RSS
feeds, from the business layer and renders the web page that will be
viewed by the users.

* Middletier. The middletier is a business layer that receives requests
from the presentation layer. The requests may be one of the following

Thttps://github.com/Netflix/recipes-rss
2https://netflix.github.io/

156 10 | Evaluation of Time Series-based Failure Prediction

=

Latest Science News --
SclenceDaily

Re-assessing 'at risk' cutoffs for birth weight

Infrared links could simplify data center
communications

Flu fighter: Breath moniter to detect flu

ComputerWeekly: All Computer
Weekly Content

Finnish city takes ?10bn leap into digitisation

Cloud project success gives Aster appetite for
more

A new hope for police IT?

TechRadar

The 2020 Olympic medals will be made using
old smartphones

Best iPad games: the top free and paid-for
titles around

Best free iPad games 2017

Increasing factory and auto emissions disrupt - ““"\ch drive Classic RPG Runescape is coming to Amazon
natural cycle in East China Sea Echo...with a twist
For bonding and breastfeeding. newborns process The best Sony Xperia Z5 Premium deals in
benefit from a cheek full of dextrose February 2017
TechCrunch WIRED
Emoiji marketing startup Inmoiji raises anather Sohei Nishina Melds M and Photos Into
$1.5M / Fabulous Memories of Great Cities

For most, wearables are little
MIT researchers are using Al and wearables to mare than pedometers — ways lcome on The Chemical Engineer Who?ll School You on
detect conversational tone of gauging how much one’s Coffee
WinkBeds? new matiress has built-in heating moved during the day and, s - CNET Inside Libratus, the Poker Al That Out-Bluffed
and cooling hopefully, challenging them to do the Best Huma

more in the future. It's one of the DeNis
GoPro gives the Karma drone another try factors in the space’s seeming r Uber?s Mercedes Alliance Is a Clever New
Amazon will build its own $1.5 billion air cargo Plateau of late. Buta wristfullof ¢ i 2B Raute to Self-Driving Dominance

hub sensors can do a heck of a lot
more than what they're currently
be utilized for. Researchers at
MIT's... Read More

Addto delicio.us

Ransomware Turns to Big Targets?With Even
Bigger Fallout

Digg this
Netflix Inc. 2013

Emaithis + Add & comment

Share on Facehook

Figure 10.1.: Web user interface of the RSS feed reader application

types: view feeds, add a feed, or delete a feed. The middletier processes
each request according to the type. When a request to view all the
feeds is received, the middletier first reads the list of Uniform Resource
Locators (URLs) from the database, fetches the feed in Extensible
Markup Language (XML) format from each URL, parses them, and
returns them to the presentation layer. When a request to add a feed is
received, it writes the URL of the feed to the database. When a request
to delete a feed is received, it removes the URL of the feed from the
database.

¢ Database. The database is used to store the URL of the feeds. The data
in the database can be accessed and modified by the middletier.

10.2 | Experiment Setup 157

* Eureka. Eureka is a service discovery component that is used to register
and locate services, i.e., the edges and middletiers. The edges need
to communicate with the middletiers in order to fulfill the requests.
However, as each component can be scaled horizontally, the list of
available components also needs to be kept up-to-date. Eureka also
provides load balancing and fail-over. It keeps track of all middletiers
and their health by receiving heartbeats from them. If one or more
instances of the middletier fail, it will redirect the requests to other
running instances.

Figure 10.2 illustrates the architecture of the RSS feed reader application
and how the components communicate with each other. In the experiment,
two instances of the edge, three instances of the middletier, and one instance
of the database are deployed. The database used in this experiment is Apache
Cassandra,! which is a free and open-source distributed NoSQL database.
In addition to the application components that provide the services, two
following components are also required:

* Load balancer. A load balancer is a component that is placed between
two layers to distribute the workload according to the specified strate-
gies. In this experiment, HAProxy? version 1.5.14 is used as an entry
point of the application which forwards the requests to three instances
of edge service equally.

* RSS feed servers. The goal of the application is to provide a page where
users can view, add, and delete feeds. Thus, at least one instance of
RSS feed server is required to provide the feeds in XML format. Apache
Tomcat,® which is a free and open-source Java servlet container, version
8.0.18 is used to host the Rich Site Summary (RSS) feeds.

» Workload generator. To simulate realistic user requests, i.e., view, add,
and delete, a workload generator is required. In this experiment, the

Thttps://cassandra.apache.org/
2http://www.haproxy.org/
3http://tomcat.apache.org/

158 10 | Evaluation of Time Series-based Failure Prediction

uonedrdde 1opeal pasgy SSY JO SINIDAYIIY :"Z 0T N3

A1an02s1q 991NI8S

159

| @ouB)sU|
ByaINg
Jaysiignd SsY
| souBISU|
eyaing
Japeay pas4 SSH
| @ouB)sU| | @ouB)SU| | 8ouB)sU|
~[| espuessen 18118IPPIN abp3
" —
— 5 «—— - B Jaoueleq peoT W
S souEsy| "’ w soueIsu| uooumsu | W
BIpUBSSE) 1818IPPIN abp3 .

1811 BlRQ

J181] ssauisng

Ja1] uorelussaid

10.2 | Experiment Setup

workload generator is deployed on a separate node and uses Apache
JMeter [Hal08] version 2.9 to generate user requests. The workload
generated by each user includes view, add, and delete operations
of the RSS feed with an average 3-second think time between two
requests. The number of concurrent users is set to 150 throughout the
experiment. On average, the workload driver generates approximately
90 requests per second.

The original application by Netflix provides basic functionalities required
to demonstrate how their open-source libraries work. However, to support
the evaluation of the Hora approach, some modifications and extensions
need to be added to the application so that additional information can be
obtained. Thus, the following modifications and extensions have been added
to the application. The modified application is publicly available online.!

* Adding multi-user support. The original application provides multi-
user support in the backend of the service, i.e., middletier and database.
However, the edge does not provide this functionality. Thus, the fron-
tend has been extended so that it can provide service to multiple users
simultaneously.

* Returning error status. When the original application experiences an
error, it returns a page indicating that an error has occurred. However,
the return code is 200 OK which incorrectly indicates that the request
was successful. The return code has been changed to 500 HTTP when
an error occurs which helps tracking whether or not the users’ requests
were successful.

* Upgrading libraries. Some libraries used in the application have been
updated to newer versions as the old versions cause intermittent fail-
ures when communicating between remote hosts under heavy work-
load. Jersey,2 which is a framework for developing RESTful web ser-
vices, is updated from 1.13 to 1.19. Netty,> which is an asynchronous

Thttps://github.com/hora-prediction/recipes-rss
2https://jersey.github.io/
3https://netty.io/

160 10 | Evaluation of Time Series-based Failure Prediction

event-driven network application framework, is updated from 3.6.1.Fi-
nal to 4.0.26.Final.

* Instrumenting application. The application is instrumented using
Kieker [HWH12] to monitor application performance. The follow-
ing performance measures are collected at runtime:

— Response times of view, add, and delete operations at the system
boundary (frontend load balancer),

— Response times of methods involved in processing requests in all
presentation- and business-tier instances,

— Load average, CPU utilization, memory utilization, and swap
utilization of all physical machines.

The described system is deployed on Emulab [HRS+08], which is a large-
scale virtualized network testbed. Each of the instances is a physical machine
type pc3000 which is equipped with a 3-GHz 64-bit Xeon processor and 2 GB
of physical memory, running Ubuntu 14.04.1 LTS and Java 1.7.0 update 75.

10.2.2. Fault Injection

In our evaluation, we consider three types of faults from real world inci-
dents [PNO5a], which are memory leak, system overload, and node crash.
We inject one type of these faults into each experiment run. Each run lasts
two hours and is repeated 10 times. The reported evaluation metrics are
obtained by combining and analyzing the raw prediction results of all runs.
The details of each type of faults are described as follows.

Memory Leak—In the experiment, a code is inserted into a function of
one of the middletier instances. Every time this function is executed, 1024
bytes of memory will be allocated and never be released. This memory leak
occurs for each request that is sent from the presentation tier to this specific
instance of the middletier. The workload for this scenario contains 150 users
with a ramp-up time of 5 minutes. The experiment runs for 2 hours.

System Overload—System overloads occur when the workload increases,
either gradually or abruptly, until the system is not able to handle all the

10.2 | Experiment Setup 161

incoming requests. In this scenario, instead of injecting a fault and using a
constant workload, we increase the number of users until service failures
occur.

Node Crash—Unexpected node crashes are not uncommon in real systems.
They can be caused by both software and hardware, such as operating system
crashes, hardware failures, or power outages. We introduce this problem by
intentionally shutting down two of the business tier instances at 90 and 95
minutes into the experiment. The workload for this scenario is the same as
that of the memory leak scenario with 150 users and 5 minute-ramp-up time.

10.2.3. Failure Definition

A service failure is defined as an event that occurs when the service deviates
from the correct service [ALRLO4]. For example, the deviation of the service
can be regarded as an increase in the response time, a service outage, or an
incorrect result. In this experiment, we classify a service to be in a healthy
or failure state by observing the response time in 2-minute windows. We
consider a service to fail if the 95th percentile of the server-side response
times of all of the requests in that window exceeds 1 second.

The response time threshold of all methods is set to 1 second in the same
manner as the server-side response time. We select this value because it
eliminates the need of a training phase while still allowing the component
failure predictors to make predictions. An alternative to this is to have the
thresholds set manually. However, it is infeasible in practice when the system
contains a large number of components. A second alternative is to determine
the thresholds by learning the response times of all methods. However,
this would introduce a learning phase and the response time could vary
depending on the context in which the method would be used.

The failure definition of other architectural entities are set according to
the types of the entities. The memory utilization threshold is set to 100% ac-
cording to its physical limit because after this point, the operating system will
start swapping which uses the space on the hard drive. The heap utilization
threshold is set to 90%, since the garbage collector is triggered automatically

162 10 | Evaluation of Time Series-based Failure Prediction

when utilization becomes too high. The load average represents the number
of tasks in the CPU queue over time and provides more information than the
CPU utilization [Wal06]. For example, a 1-minute load average of 1.0 means
that there is one task in the CPU queue on average in the past minute. Since
each physical machine used in the experiment is equipped with one CPU (as
described in Section 10.2.1), we set the failure threshold of the load average
to 1.0.

10.2.4. Prediction Technique

At runtime, the monitoring data, containing execution traces and resource
measurements, are aggregated into windows of size 2 minutes, which are
then pre-processed according to the type of architectural entity measure.
The 95th percentile is calculated for the response time and method response
time while the mean is calculated for the load average, memory utilization,
and heap utilization.

As mentioned in Chapter 7, we use ARIMA as a component failure predictor.
Unless stated otherwise, the configuration parameters of ARIMA are as
follows. The size of the historical data for ARIMA is set to 10 minutes. The
prediction lead time is 10 minutes with a 95% confidence level.

10.3. Results

In this section, we provide the results and explanation for the experiments
with different types of faults.

10.3.1. Memory Leak

The memory leak in one of the business-tier instances causes the memory
utilization to increase over time. As shown in Figure 10.3a, at approximately
the 52th minute, the component failure predictor for memory in one of the
business tier instances predicts that the memory utilization will cross the
threshold at the 62th minute with a high probability.

10.3 | Results 163

ez | 2
Failure threshold
@« _|
< @
o
c
s 3 Lo 2
8 = S
= 3 s
2 g 3
- <] o
g < s e
. o <+ 2
g ° 3 r e @
£
[o
o =
S+ L 2
© IS)
T T T T T T T
0 20 40 60 80 100 120
Time (Min)
(a) Memory utilization of business tier
o
& =
L
o] o
Lo 2
% o %
g o | Failure threshold xe:
" s
° S
§ 2z -3 ks
5
Load average]
2 4 a
= T o
i
w
= o
S] o
T T T T T T T
0 20 40 60 80 100 120

Time (Min)

(b) Load average of business tier

Figure 10.3.: Timeline plots of selected components for memory leak sce-
nario

164 10 | Evaluation of Time Series-based Failure Prediction

o
3 r =
o
2
Jo3
©
{23
o ©
$. I o
© >
s e s
2 g g >
2 5 -2 £
£ o ° 3
- =] Qo
[0} (2] = [<}
2 <2 | N &
2 3 ®
2 L - 2
o«
{23 ° w
o
2
jo3
3V
L
3 Failure threshold oS
T
S Response time o
F o I o
e T T T T T T T
0 20 40 60 80 100 120
Time (Min)
(c) Response time of presentation tier
(2]
?
o - I
o ~—
o
2 | o
o o
3
&
0
B3
£ © Z
© Fe £
£ 5 , 2
o 2 Failure threshold]
@0 o - 2
5 2 o
2 5
< =
H i -3 F
o £
o ©
Z- g
(=%
© o -3
3
T
w
° Response time
= Content failures o
& - X XRRHRAA XK KKXX XK KXXXK AKX 2
o
S T T T T T T T
0 20 40 60 80 100 120
Time (Min)

(d) Response time of load balancer

Figure 10.3.: Timeline plots of selected components for memory leak sce-
nario (cont.)

10.3 | Results 165

The load average of this business tier instance in Figure 10.3b shows an
increase at approximately the same time as when the memory utilization
gets close to the threshold. This is due to the garbage collection activity
that tries to free up memory. However, this activity is triggered by the
memory utilization which is not observable from the load average itself. The
component failure predictor for load average does not take this into account
and makes predictions based solely on the load average data.

The same effect can be observed for the response time of the presentation
tier and the load balancer in Figures 10.3c and 10.3d. Since the memory leak
occurs in the business tier, the component predictors of the presentation tier
and the load balancer are not aware of the problem and cannot predict it. It
is worth noting that, although the presentation tier is closer to the business
tier, than the load balancer, the failures in both the presentation tier and
load balancer occur at almost the same time. This is due to the fact that
the failure propagates from the presentation tier to the load balancer via
the remote call. Since each of the calls made to the load balancer results in
another remote call to the presentation tier, the failure propagates almost
instantly. Thus, the differences in terms of the time of occurrence is minimal
and cannot be observed in the figures.

10.3.2. System Overload

The failures caused by overloading the system start occurring at approxi-
mately 100 minutes into the experiment. The increasing number of concur-
rent users causes the load average of the business-tier instances to exceed
the failure threshold. As a result, some of the requests sent from the presen-
tation tier to the business tier are rejected. After a pre-defined number of
unsuccessful retries, the presentation tier responds with a page indicating
that an error has occurred.

Figure 10.4b depicts the load average of one business tier instance which
gradually increases over time. The component failure predictor of the load
average predicts that there is a small probability, approximately 0.01, that
it will reach the threshold. This small probability is due to the fluctuations

166 10 | Evaluation of Time Series-based Failure Prediction

]
o
©

c o

o

T

N

=)

>

o =

£ o

5]

=
]
=]
=
IS
]
<

)

=2l

<

o

>

<

o

&

o

4
=]
IS

0.0

Figure 10.4

10.3 | Results

Failure threshold

Memory utilization

/

Failure probability

T T T T T T
20 40 60 80 100 120

Time (Min)

(a) Memory utilization of business tier

Failure threshold

Load average

Failure probability

T T T T T T
20 40 60 80 100 120

Time (Min)

(b) Load average of business tier

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Failure probability

Failure probability

.: Timeline plots of selected components for system overload
scenario

167

fo2)
< L <
° Failure threshold -
8
@
3 o
@
@
£ %] | © 2
g 8 s 3
o Qo
3 S
c o
8 o
g’.’. 3 | - =2
= $ S E
=
N
. r o
N
Response time
8+ | Failure probability .
Jod o
e T T T T T T T
0 20 40 60 80 100 120
Time (Min)
(c) Response time of presentation tier
D
< L o
2 Failure threshold -
8
@
$ N =)
@
@
s 2 Lo 2
g 8 s 3
o Qo
3 S
=4 o
8)
% S _ | < =2
i é s £
8
N
. o
N
Response time
8 Failure probability ~ Content failures |
+ - FOHHHK KKK HNX — g
Jod o
e T T T T T T T
0 20 40 60 80 100 120
Time (Min)

(d) Response time of load balancer

Figure 10.4.: Timeline plots of selected components for system overload
scenario (cont.)

168 10 | Evaluation of Time Series-based Failure Prediction

of the load average which makes it difficult for ARIMA to accurately make
forecasts. Although this small probability can indicate the looming failures,
it may also cause a lot of false alarms which results in a high FPR.

The memory utilization, response time of the presentation tier, and the re-
sponse time of the load balancer remain stable as illustrated in Figures 10.4a,
10.4c and 10.4d. These measures do not exceed the failure threshold and,
thus, do not generate any failures.

10.3.3. Node Crash

In this scenario, we intentionally crash the second instance of the business
tier at 90 minutes, and the third instance at 95 minutes into the experiment.
The one remaining business tier instance has to take over the workload from
those that failed.

The crash causes the load average of the remaining instance to increase
all of a sudden as can be seen in Figure 10.5b. As a consequence, the re-
sponse time of the presentation tier and load balancer, shown in Figures 10.5c
and 10.5d, also increase unexpectedly. The memory utilization of the remain-
ing instance, as shown in Figure 10.5a, however, remains almost constant
similar to that of the system overload scenario.

The component failure predictors of all components are not able to predict
this failure because the crash occurs unexpectedly without any preceding
symptom.

10.3.4. Overall Prediction Quality

The overall evaluation of the time series component failure predictor is
computed by combining the raw results of component failure predictors
of all scenarios. A prediction result is a probability of a failure which is
annotated with a true label indicating whether a failure actually occurs
at the predicted time. The probabilities and labels of all components are
combined into one dataset and used to plot a ROC curve. The resulting ROC
curve is shown in Figure 10.6d.

10.3 | Results 169

Figure 10.5.: Timeline plots of selected components for node crash scenario

170

Memory Utilization

Load Average

0.8

0.6

0.4

0.2

0.0

Failure threshold

Memory utilization

Failure probability

0 20 40 60 80 100 120

Time (Min)

(a) Memory utilization of business tier

2
5
©
Q
o
S L
[
3
&
Failure threshold
Load average
T T T T T T T
0 20 40 60 80 100 120

Time (Min)

(b) Load average of business tier

10 | Evaluation of Time Series-based Failure Prediction

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Failure probability

Failure probability

23
2 4 L e
2 Failure threshold -
3
©
$ n T o
@
2 % o Z
I N [~ 5 =
E & ° 32
Q o
2 &
o (]
g g | L < 2
o 2 z c F
3
©
Q
[
@ Q
< e g
& 3
Response time w
8
o
F S I o
e T T T T T T T
0 20 40 60 80 100 120
Time (Min)
(c) Response time of presentation tier
(=23
2 4 L e
o Failure threshold -
3
o«
F T o
@
g % o 2
Q _ I~ =
E & ° 32
Q o
2 s
o (]
§ 3 . - 2
< é s &
8
o
& o
o
Response time
S Failure probability o
F - X HHOHXKKXXINKK = =2
o3 Content failures S
e T T T T T T
0 20 40 60 80 100 120

Time (Min)

(d) Response time of load balancer

Figure 10.5.: Timeline plots of selected components for node crash scenario
(cont.)

10.3 | Results 171

== -=
—ET
- T
ET
© _.-1I
S -F
;
i
[0} -‘.
T o | !
0 ° |
2 i
g |
2 !
Q !
o < |
J o :
[]
T
1
i
~ |
o 1
i
|
i
i
o 4 X
T T T T T T
0 0.2 0.4 0.6 0.8 1
False positive rate
(a) Memory Leak
=z
LE
o _| I
2 >
r Phs
o LT
2o P
e | I
£ ;
g]
o < | !
a o |
= :
;
'
~ i
s
1
1
i
o 4 I
T T T T T T
0 0.2 0.4 0.6 0.8 1

False positive rate

(b) System overload

Figure 10.6.: ROC curves of ARIMA predictor for different types of faults

172 10 | Evaluation of Time Series-based Failure Prediction

True positive rate

True positive rate

Figure 10.6.:

10.3 | Results

Lz
B
2 w7k
e

o | I,-‘{
o a
< .i'
s

|
N
o

1
P

T T T T T T

0 0.2 0.4 0.6 0.8 1

False positive rate
(c) Node crash
4=’V’ B
=T =
- £
@ _f _E
© I
_IT
e

g4/

!

i

|

1
<« | !
=3 [l

i

1

1
& |0
o i

1

1

1
o o &

T

0 0.2 0.4 0.6 0.8 1

False positive rate
(d) Overall

ROC curves of ARIMA predictor for different types of faults
(cont.)

173

| Faulttype | Precision | Recall, TPR | FPR | Accuracy | AUC |

Memory leak 0.84 0.758 0.024 0.945 0.881
System overload 0.352 0.564 0.059 0.92 0.764
Node crash 0.209 0.582 0.085 0.902 0.766
Overall 0.475 0.692 0.065 0.916 0.837

Table 10.1.: Comparison of all evaluation metrics for the different types of
faults

10.3.5. Parameter Impact

ARIMA has various parameters that can be configured and can affect the
prediction quality. This section investigates three prediction parameters
which are aggregation window size, historical data size, and lead time. The
reported metrics are computed by evaluating the raw prediction results of
all fault types.

Aggregation Window Size—The aggregation window represents the in-
terval that raw data points are aggregated into one data point for the predic-
tion algorithm. We vary the size of the aggregation window of ARIMA from
2 to 8 minutes. Figure 10.7a shows that the precision increases when the
window size increases. The AUC and TPR show a slightly decreasing trend
when the size is increased from 2 to 6 minutes but improve significantly
when the size becomes 8. This is because small aggregation windows pre-
serve the small variations in the data which causes the predictor to produce
a lot of false positives. On the other hand, as the aggregation window gets
larger, the small variations in the data are removed which results in the
trend becoming more prominent. Thus, the overall prediction quality tends
to increase with the size of the aggregation window.

Historical Data Size—The size of historical data denotes how many data
points further back in the past ARIMA considers for the prediction. Fig-
ure 10.7b shows that the AUC and TPR exhibit a relatively stable trend with
the window size from 10 to 40 minutes. On the other hand, the precision
and FPR become worse when the window size is 30 minutes but improve for
larger window sizes. However, when the historical data size increases to 50

174 10 | Evaluation of Time Series-based Failure Prediction

o
S
o
o o U\\U//o
o -
S o/,/ B _.-a
A-imm -/-/--/-—A _____________ »A__.—"
© | -7
o Pie
[} o
3
&
= <4 | |= Auc
S 1 |&- TPR
—o— Precision
% FPR
[qV)
S
° Xeveoeeniiiii L T T Koo x
=
T T T T T T T
2 3 4 5 6 7 8
Aggregation window (Min)
(a) Aggregation window size
o
S
. o o o o u/u
®
Amom = A —m = -A ~. . N ";’—_e
- A=
@ 4 -
o P
[} o
=) om—— " >~ -7
E ~~e”
<
s
—&— AUC
A= TPR
~ —o— Precision
o | |%- FPR
ORI PLUEEEE Koo oo [N X
e |
o
T T T T T T
10 20 30 40 50 60

Historical data (Min)

(b) Historical data size

Figure 10.7.: Prediction quality of ARIMA with different parameter configu-
rations

10.3 | Results 175

o |
-
[ee]
e Y-S0
o A
o= SA---AL
=~ SA.
\ SAa
© | \ TA-oaL
o \ A
[} \ ° A
> o—— T T
S TTTON
~
= AUC Som
< ==
o |'&- TPR
—o— Precision
% FPR
N
o
.......... x
Xeoonn Koo Kewoon X X x
o Xeoonn Xooeen X
S
T T T T
5 10 15 20

Lead time (Min)

(c) Lead time

Figure 10.7.: Prediction quality of ARIMA with different parameter configu-
rations (cont.)

and 60 minutes, all metrics show a significant improvement. This is because
a small historical data window includes only the most recent data points but
not those in the past that contain the long term trend. When the window
gets larger, those data points are included in the ARIMA for creating the
prediction model, which results in a better prediction quality.

Lead Time—When increasing the lead time, the result in Figure 10.7c
shows a decreasing trend of precision, TPR, and AUC, while the FPR shows
an increasing trend. This is caused by the uncertainty of the prediction.
As ARIMA is used to forecast the time series data, the confidence interval
becomes larger as we make prediction further into the future. Therefore,
choosing an optimal lead time depends on the application and the costs of a
false positive and a false negative.

176 10 | Evaluation of Time Series-based Failure Prediction

10.4. Discussion

The component failure prediction using ARIMA shows good prediction quality
if there are observable symptoms. In the memory leak scenario, the symptom
is the increasing memory usage which can be modeled and predicted by
ARIMA. On the other hand, if the symptom does not exhibit an obvious trend,
as in the system overload scenario, ARIMA may not be able to model and
predict future observations with acceptable prediction quality. Furthermore,
if the error does not generate any symptom, i.e., in the case of a node crash,
the failure cannot be predicted.

10.5. Threats to Validity

We inject faults that trigger application failures in our experiments, which is
a common practice in assessing dependability [IV14; NCM16], e.g., fault
tolerance or failure prediction. It is possible that the failures that occur at
runtime may be caused by other hidden problems rather than those that we
inject. In our evaluation, the failures that occur in the memory leak scenario
can be caused by a system overload if the workload is too high. As a result,
an attempt to predict failures caused by a memory leak will also predict
failures of the system overload problem. Therefore, the workload has to be
chosen carefully. If the workload is too high, it may cause system overload
while other types of faults are injected. If the workload is too low, it may
take a lot longer until an injected fault causes a failure.

Each data point of the time series data is obtained by aggregating raw
data in a time window. Different aggregation methods, e.g., mean, median,
percentile, are used to obtain the aggregated data. It is possible that the
numbers of raw data points in the windows are not equal, i.e., some windows
may contain more data points than the others depending on the workload. In
this experiment, we assume that the number of data points in each window
is sufficiently high so that the aggregated data can be accurately computed.

To systematically evaluate our approach, a controlled environment is
needed, which includes a usage profile and the types of failures. We conduct

10.5 | Threats to Validity 177

a lab study with fault injection which presents two main threats to external
validity. First, we consider only one system. Therefore, we select an open-
source application that is representative for the state-of-the-art enterprise
systems, in terms of architectural style (microservice-based [New15]) and
technology (NetflixOSS ecosystem!). Second, our experiment did not cover
all possible types of faults. Since covering all possible fault types is practically
infeasible, we select three representative fault types from real world incidents
based on Pertet and Narasimhan [PNO5a]. The possibility to reduce these
threats for future studies would be that the community makes suitable data
available and develops a benchmark for online failure prediction techniques.

10.6. Summary

This chapter presents the evaluation of the time series-based failure pre-
diction and answers research question RQ1.3. The results show that the
time series-based failure predictor using ARIMA can predict the failures
caused by memory leak. For system overload, the predictor can predict the
failures with small probabilities which may result in a high FPR. In the node
crash scenario, the predictor is not able to predict the failures since there
is no symptom that precedes the failure. Lastly, different configurations of
the ARIMA are evaluated. The results show that the configurations, which
are aggregation window size, historical data size, and lead time, can have
significant impact on the prediction quality. Nevertheless, these parameters
have to be chosen depending on the application.

Thttps://netflix.github.io/

178 10 | Evaluation of Time Series-based Failure Prediction

CHAPTER

EVALUATION OF CRITICAL
EVENT PREDICTION

The previous chapter presents the prediction techniques that can be used
to predict failures for time series data. This chapter extends the scope of
the prediction by applying them to predict failures based on event logs in
supercomputers. The goal is to 1) classify events into categories based on
the similarity of the event patterns, and 2) predict critical events in the near
future based on the past events. The results presented in this chapter are
the classification and prediction quality of two different algorithms, namely,
naive Bayes and C4.5.

Section 11.1 presents the research question that will be answered in this
chapter. Section 11.2 describes the experiment setup of the evaluation.
Section 11.3 presents the results of the experiment. Section 11.4 presents
the threats to validity of the experiment. Section 11.5 summarizes the
evaluation in this chapter.

179

11.1. Research Question

This chapter focuses on evaluating the prediction quality of the critical event
prediction presented in Section 5.5. Furthermore, the evaluation aims to
answer the following research question which has been previously stated in
detail in Section 4.1:

* RQ1.3: What are the prediction qualities of component failure predic-
tors?

11.2. Experiment Setup

This section provides details of the system under test, dataset, and the
prediction techniques used in the evaluation.

11.2.1. System Under Test

The system under test in this evaluation is Blue Gene/L. Blue Gene/L is
a supercomputer created by IBM and the Lawrence Livermore National
Laboratory to achieve the goal of a high performance at a low price and
power consumption [AAA+02]. It is a parallel system composed of 65,536
compute nodes based on a new architecture that uses system-on-a-chip
technology. Each node is equipped with IBM PowerPC embedded CMOS
processors and DRAM which allows 1024 compute nodes to be placed within
one rack. The machine has a total of 131,072 processors and 32,768 GB of
RAM, providing processing power of 360 teraFLOPS and was operational
from 2004 to 2007.

11.2.2. Dataset

The dataset used in the evaluation is a log file which contains 215 days of
log messages generated by a Blue Gene/L supercomputer [0S07]. Each
message contains the category (label), the timestamp (GMT), the date, the
name of the device, and the actual message. The category or label of each
message is identified and added by the system administrator. It indicates

180 11 | Evaluation of Critical Event Prediction

the type of the alert that the respective message represents. As presented
in Table 5.1 (Page 93), there are 42 types of labels in total, including the
empty label.

The log file of Blue Gene/L contains a large number of log messages and
all of the data cannot be processed at once in the evaluation. We, thus,
split the log file into blocks where each block contains approximately the
same number of log messages. However, the log messages are not generated
uniformly over time, i.e., some types of messages may occur more often
at the beginning of the file and vice versa. If the blocks are split by the
temporal ordering of the messages, the non-uniform distribution can affect
the evaluation since some types of messages may not occur in some blocks.
Therefore, we used stratified sampling to maintain the proportion of the
types of messages in all blocks. Stratification is the process of splitting data
into subgroups, called strata [HSMO1]. The strata are homogeneous, which
means that each group, or stratum, contains the same proportions of the
labels. For example, assuming one label accounts for 15% of the whole
dataset. The number of messages with that label in each stratum will also
be 15%. The stratification is carried out by analyzing the distribution of the
message types and distributing them across the strata while keeping the
same distribution in each stratum. This ensures that the data still maintains
the same characteristics even though it is split into smaller groups.

11.2.3. Prediction Technique

The machine learning techniques used to predict critical events are naive
Bayes, which is a probabilistic model, and C4.5, which is a decision tree-
based algorithm (Section 2.2.2). The machine learning library used in our
evaluation is Weka [WFHP16]. In order to determine the classification
quality, we use the common approach of 10-fold cross-validation which splits
the data of each block into 10 parts and uses 9 parts for training the model
and 1 part for the validation. The validation is repeated 10 times and the final
result is obtained by averaging the results of all runs. We used the standard
metrics as described in Section 9.2 to evaluate the experiment results.

11.2 | Experiment Setup 181

11.3. Results

This section presents the results of critical event prediction. The section is
divided into three parts. Section 11.3.1 presents the results of system event
classification. Section 11.3.2 presents the impact of the preprocessing of the
log messages. Section 11.3.3 presents the results of system event prediction.

11.3.1. Quality of System Event Classification

For event classification, we selected two attributes of the log messages and
used them to train the models. These attributes are the label and the actual
message of the log. The other attributes, such as timestamp and location, are
neglected as they are independent and do not contribute to the assignment
of the label of the message.

Figure 11.1 illustrates the precision and recall of classifying the label
KERNMNTF over 19 blocks. The log file is split into blocks using stratified
sampling and normalized according to Section 5.5.1.1. It can be seen from
both plots that precision and recall are similar in all blocks. This result
concludes that the log file can be split and evaluated separately without
significant deviation between blocks. In terms of computational complexity,
since the log normalization is a rule-based algorithm, its computational
complexity is very low and is not considered in this experiment.

Figure 11.2 illustrates the F-measure of three configurations of event
classification, namely (i.) naive Bayes without normalization, (ii.) naive
Bayes with normalization, and (iii.) C4.5 with normalization. Figure 11.2a is
the result of applying naive Bayes on the original unfiltered log messages. As
the log file is not normalized, the messages contain noise from the numerical
values, weak words, etc. This noise results in the highly varying F-measure
across different labels. Figures 11.2b and 11.2c illustrate the F-measure of
classification using naive Bayes and C4.5 on the normalized log file. The
results show significant improvements of all labels over the original log file.
Furthermore, on average, C4.5 performs better than naive Bayes. Specifically,
the number of labels for which naive Bayes has a recall of zero—leading to

182 11 | Evaluation of Critical Event Prediction

W 3 — £|
o _| o _| I !Eli..!i!! J.i ;l;
o o
c
Re] - = —
wv)
.= 9]
¢ 3 - 2 I
D- — —
o _| S
= TTTTTTTTTTITTITTTTTTTT = TTTTTTTTTTTTITTITTTTTT
0 3 6 9 13 17 0 3 6 9 13 17
Block Block
(a) Precision (b) Recall

Figure 11.1.: Precision and recall of KERNMNTTF label using naive Bayes on
normalized log file

an undefined F-measure—is considerably higher than for C4.5.

From the classification results, we can conclude that log normalization
helps increase the classification quality as the noise in the messages is filtered
out. Moreover, C4.5 outperforms naive Bayes with F-measure values of 1 for
classifying most of the labels.

11.3.2. Impact of Log Filtering

Figure 11.3 shows the number of log messages with INFO severity plotted
according to their temporal position in the log file. By comparing the y-axis
of the plots in Figures 11.3a and 11.3b, it can be observed that there is a
significant reduction in the number of peaks of similarly labeled records
located close to each other. While there are more than 130,000 log records
with INFO severity during the 2,932th hour, after filtering there remain
only less than 30 for ASF and 400 for tuned ASF and DRF, as depicted in
Figures 11.3c and 11.3d. This shows that the filters are capable of effectively
eliminating large amounts of redundant log records that occur close to each
other.

To evaluate the impact of the log filtering on the event classification,
the ASF and DRF techniques (see Section 5.5.1.2) are applied to the log

11.3 | Results 183

Hlo

-

(3 -

b--I}--4

1.0

T T T T I
® e I o e
o S8 o o o

ainseaNd

MOJdNOW
TINNNOW
SONIN
NHYONGVSVIN
dVIXNIT
OSIAMNIT
NI LINIIA
HOLSNY3IM
MOOSNY3IA
dS1UNY3IN
OIFANY3IN
MOdNIIA
NVYdNd3IM
HLIONNY3IA
JLINIANI3N
LNIANT3IH
OYOINNAIN
ONNY3IA
LVOTINIIA
a7LANY3IA
NOONA3IN
AVNNddVY
SNJOLddv
Olddv
AISddV
S3dddv
av3dddv
1NOddv
a1IHOddY
ASNdddv
20711vddVv

(a) Naive Bayes with original log

1.0 H

® © ¥ o
o oo o o

ainseaNd

MOJdNON
TINNNOW
SONIN
NHONEVSVYIN
dVIANIT
OSIAMNIT
INY3INITIA
HOLSNY3IM
NOOSNY3IM
dSL1INY3IN
O3FINY3IN
MOdNY3IA
NVdNY3IM
HLIONNY3N
J1INANYIA
LINANE3IM
OHOINNAIA
ONNA3IN
1VOTINIIA
g71LANI3IA
NOONH3IN
AVNNddVY
SNJOLddV
Olddv
AISddV
S3dddv
av3dddv
1NOddv
a1iHOddV
ASNdddv
20711vddv

(b) Naive Bayes with normalized log

[—————

1.00

0.95

0.90
0.85 —
0.80 —
0.75 —

ainseaNd

0.70

MOdNOW
TINNNOW
SONWIN
WNHONGVSVIN
dVIMNIT
OSIAXNIT
(A= ENRNSE
HOLSNY3IM
MOOSNHIN
dS1UNI3IA
OFUNYIN
MOdNY3IN
NVANY3IN
HL3IONNY3IMN
JLNANIIH
LNIAINI3IH
OdOINNYIA
OINY3IN
1VOTINIIN
1LANY3IN
NOONY3IN
AVNNddVY
SNJOLddVY
Olddv
AISddV
S3dddv
av3dddv
1NOddv
d1iHOddV
ASNdddv
O0T11vddv

(c) C4.5 with normalized log

Figure 11.2.: F-measure of event classification using different algorithms

11 | Evaluation of Critical Event Prediction

184

g
g] %
€ 3 4 IS
o
< g | < 4
o g
< |
o - b L ul ﬂ't Ll o
T T T T T T T 1 T T T T T T T 1
0 500 1500 2500 3500 0 500 1500 2500 3500
Time after startup [h] Time after startup [h]
(a) Original log (b) Original ASF
— o
S
o ™
= 8 7] 2 o |
€ c _
3 3 8§
S £ I
< o < 8 |
o —
- —
o - o -
T T T T T T T 1 T T T T T T T 1
0 500 1500 2500 3500 0 500 1500 2500 3500
Time after startup [h] Time after startup [h]
(¢) Tuned ASF (d) DRF

Figure 11.3.: Number of messages with INFO severity before and after ap-
plying different filters

messages to produce a reduced set of log records. The log messages that are
the output of the filters are used as a training set for the machine learning
algorithms. Once the algorithms are trained, the classification is done on
the original set of log messages excluding those that are used in the training.
It is important to note that—as the log file is large—the log messages are
split into blocks where each block contains 500,000 log messages and the
evaluation is carried out for every block.

The impact of the filtering on the system event classification is depicted
in Figure 11.4. The first and the second boxes show the F-measure of the
original ASF and the ASF that is tuned to produce the best result. The
third box shows the F-measure when applying DRF. It can be seen that the

11.3 | Results 185

1.00
I

0.98 0.99

0.96 0.97

f

I T T

T
Original ASF Tuned ASF DRF

0.95

0

Figure 11.4.: F-measure of event classification when applying different filters

F-measure of the tuned ASF and DRF are approximately the same but are
slightly higher than the original ASF.

This result concludes that, although the tuned ASF and DRF perform better
than the original ASF, the improvement is not quite significant. Moreover, the
tuned ASF is specifically adjusted for this set of data and may not produce as
good results for log files collected from other systems. Nonetheless, the DRF
which we developed proves to be as effective as the tuned ASF in filtering
out the redundant log messages with less computational complexity.

11.3.3. Quality of System Event Prediction

The system event prediction described in Section 5.5.3 has a number of
parameters, i.e., number of past observations, lead time, prediction window,
and sensitivity. These parameters are evaluated individually by varying
the value of one parameter while fixing the others. We experimented with
various machine learning algorithms, e.g., naive Bayes, C4.5, Random Forest,
RepTree, K-Star, K-nearest neighbours on the normalized log messages and
filtered by DRF. The preliminary results show that the naive Bayes and C4.5

186 11 | Evaluation of Critical Event Prediction

Algorithm Number of past observations

1 2 3 4 6 8 16

NaiveBayes | 0.603 | 0.517 | 0.506 | 0.500 | 0.501 | 0.501 | 0.503
C4.5 0.621 | 0.626 | 0.624 | 0.624 | 0.624 | 0.626 | 0.634

(a) Different numbers of past observations

Algorithm Lead time (sec)

0 60 120 300 600 1200 | 2800

NaiveBayes | 0.663 | 0.589 | 0.547 | 0.517 | 0.506 | 0.511 | 0.506
C4.5 0.877 | 0.672 | 0.634 | 0.627 | 0.624 | 0.640 | 0.625

(b) Different lead time

Algorithm Prediction window (sec)

60 120 300 600 1200 | 2800 | 4800

NaiveBayes | 0.491 | 0.493 | 0.485 | 0.506 | 0.511 | 0.532 | 0.553
C4.5 0.579 | 0.578 | 0.598 | 0.624 | 0.640 | 0.625 | 0.635

(c) Different prediction window

Algorithm Sensitivity

1% 5% 10% | 20% 40% 80% | 100%

NaiveBayes | 0.546 | 0.522 | 0.516 | 0.506 | 0.462 | 0.519 | 0.399
C4.5 0.523 | 0.572 | 0.609 | 0.624 | 0.691 | 0.234 -

(d) Different sensitivity

Table 11.1.: F-measures of system event prediction with different parameter
configurations

outperform the others. Hence, the following results are the experiment of
naive Bayes and C4.5 as the exhaustive experiment of all algorithms with all
configurations is computationally expensive and infeasible.

Table 11.1a shows the resulting F-measures for predicting the future event
when the number of past observations is varied from 1 to 16. For this
configuration, the lead time and the length of the prediction window are
set to 600 seconds, and the sensitivity is set to 20%. From the table, naive
Bayes appears to have the highest F-measure when taking into account only
one past observation while C4.5 has the highest F-measure with 16 past
observations.

11.3 | Results 187

Table 11.1b presents the resulting F-measures when the lead time varies
from O to 2,800 seconds with 3 past observations, a prediction window of
600 seconds, and sensitivity at 20%. From the table, we can observe that
the lead time of O seconds has the best F-measure. In other words, our
prediction is most accurate when the prediction window starts right after
the observation window.

Table 11.1c shows the resulting F-measures for prediction windows from
60 to 4,800 seconds with 3 past observations, a lead time of 600 seconds,
and sensitivity at 20%. It is obvious that the longer the prediction window,
the better the F-measure. This is because a longer prediction window covers
a longer time span which increases the chance of including more events in
that period. However, there is a trade-off between prediction accuracy and
the significance of the prediction since the longer the prediction window
is, the less useful it becomes. In other words, it does not provide much
information to the system operators if the system is predicted to fail during
the next months or years. Therefore, the selection of the prediction window
is context-dependent and needs to be configured according to the target
system.

The last parameter of the prediction is the sensitivity. The result is shown
in Table 11.1d. The best sensitivity for naive Bayes is 1% while C4.5 performs
best with 40%. It is worth noting that, the higher the sensitivity, the lower
the F-measure. The reason is because higher sensitivity means more log
messages have to have labels other than “-”. This is especially difficult if the
sensitivity is 100% which means there can be no “-” label in the prediction
window.

In conclusion, the parameters that result in a similar effect for both al-
gorithms are the lead time and the length of the prediction window. The
smaller the lead time, the better the accuracy. This is because it is easier and
more accurate to make predictions in the near future than further away in
time. Likewise, the longer the prediction window, the better the accuracy
because it increases the chance of having the predicted events occurring in
that time span.

188 11 | Evaluation of Critical Event Prediction

On the other hand, the number of past observations and the sensitivity
show opposite effects on the two algorithms. While the higher number
of past observations reduces the accuracy of naive Bayes, it increases the
accuracy of C4.5. However, in this case, the effect of the sensitivity does not
seem to be correlated with the prediction accuracy and, therefore, should
be adjusted specifically per application.

11.4. Threats to Validity

The evaluation of critical event prediction in this chapter is carried out
based on the event logs obtained from the Blue Gene/L supercomputer.
This poses a threat to external validity as the data is collected from one
system. Furthermore, the preprocessing, log message normalization, and
log message filtering are designed and optimized to produce the best results
based on this dataset. The event logs collected from other system may have
different characteristics that require re-tuning of these processes.

The algorithms that we used in the evaluation are implemented and
provided by the Weka library [WFHP16]. There may be other algorithms
that perform better than these selected ones but are not available in the
Weka library. Therefore, we obtained preliminary results from the available
algorithms and selected the algorithms that produce the best results, which
are naive Bayes and C4.5.

11.5. Summary

This chapter presents the evaluation of the critical event prediction and
answers research question RQ1.3. The event classification results show that
the C4.5 algorithm produces F-measure of 1 in most cases and outperforms
the naive Bayes algorithm. The results of event log filtering shows that the
DRF performs as well as the ASF in removing redundancy in the logs with less
complexity. Lastly, the results of event prediction show that critical events
can be predicted by analyzing the past events. The results also shows that

11.5 | Summary 189

the C4.5 algorithm slightly outperforms the naive Bayes algorithm in most
cases. However, in practice, the configuration of the predictors need to be set
based on the requirements and can be different according to the application.

190 11 | Evaluation of Critical Event Prediction

CHAPTER

EVALUATION OF HARD DRIVE
FAILURE PREDICTION

This chapter presents the evaluation of hard drive failure prediction tech-
niques. The goal of this chapter is to compare the prediction quality of
different machine learning techniques to predict failures in hard drives.
The evaluation results are presented and a discussion is provided regarding
which predictors should be used for different scenarios.

Section 12.1 presents the research question that will be answered in this
chapter. Section 12.2 describes the experiment setup of the evaluation.
Section 12.3 presents the results of the experiment. Section 12.4 provides a
discussion of the results. Section 12.5 presents the threats to validity of the
experiment. Section 12.6 summarizes the evaluation in this chapter.

12.1. Research Question

This chapter focuses on evaluating the prediction quality of the hard drive
failure prediction presented in Section 5.6. Furthermore, the evaluation

191

aims to answer the following research question which has been previously
stated in detail in Section 4.1:

* RQ1.3: What are the prediction qualities of component failure predic-
tors?

In addition to the prediction quality, the time required for training the
machine learning algorithms and the time required for making predictions
will also be investigated.

12.2. Experiment Setup

This section provides details of the dataset, the failure definition, and the
prediction technique used in the evaluation.

12.2.1. Dataset

The S.M.A.R.T. dataset used to evaluate hard drive failure prediction is taken
from 369 drives, 178 of which are good drives and 191 of which have failed
during operation. This dataset has originally been used by Murray, Hughes,
and Kreutz-Delgado [MHKO5] and has been made publicly available by the
authors. The total number of recorded parameters in this dataset is 64,
including the class value which indicates whether the drive eventually failed.
The whole dataset contains 68,411 instances. Similar to [MHKO5], we
select 26 indicative parameters for our experiment, which are hours before
failure, GList1-3, PList, Servol-3, Servo5, Servo7-8, Servol0, ReadErrorl-
3, ReadError18-20, and FlyHeight5-12. The excluded parameters are drive
serial numbers, hours of operation, and other parameters whose values are
constant throughout the monitoring period.

12.2.2. Failure Definition

Before the learning algorithms are applied, the instances in the training
set that represent failing and non-failing drives have to be separated so

192 12 | Evaluation of Hard Drive Failure Prediction

that they can be used to train different prediction models. However, if only
the instances that were collected at the time of failures are used to train
the failing model, this model will not be able to make predictions as it
can recognize only the instances when the drives fail, not before they fail.
Therefore, the instances that are collected before the failures should also be
used to train the failing model. To determine how long this period should
be, let us make two assumptions. First, we assume that the drive exhibits
different characteristics throughout its life time. The prediction model that is
trained with the instances collected from any operation period will be able to
recognize them at runtime. Second, we assume that a sufficient warning time
should be seven days before a drive fails. This will give system administrators
enough time to prepare for the failure. As a result, the instances that were
collected within seven days before the failures are used to train the failing
model, while those that are collected before seven days are used to train the
non-failing model.

12.2.3. Prediction Technique

We applied 21 machine learning algorithms in six categories, as described
in Section 2.2.2, which are:

* Probabilistic models: Naive Bayes Classifier (NBC), Multinomial Naive
Bayes Classifier (MNBC), and Bayesian Network (BN)

* Decision trees: C4.5, Reduced Error Pruning Tree (REPTree), and
Random Forest (RF)

* Rule-based algorithms: ZeroR, OneR, Decision Table (DT), Repeated
Incremental Pruning to Produce Error Reduction (RIPPER), and PART

* Hyperplane separation: Support Vector Machine (SVM), Sequential
Minimal Optimization (SMO), and Stochastic Gradient Descent (SGD)

* Function approximation: Simple Logistic Regression (SLR), Logistic
Regression (LR), Multilayer Perceptron (MP), and Voted Perceptron
(VP)

12.2 | Experiment Setup 193

* Instance-based learning: Nearest Neighbor Classifier (NNC), K-Star,
and Locally Weighted Learning (LWL)

These algorithms, which are implemented in Weka [WFHP16] version
3.7.5, are applied to the preprocessed dataset and evaluated for the predic-
tion quality of each technique in terms of the evaluation metrics described
in Section 9.2. The evaluation is carried out on a physical computer equipped
with a quad-core Intel Xeon E31220 processor running at 3.10 GHz with
16 GB of RAM and with Ubuntu Server 12.04.2 LTS as operating system. We
used Java version 1.7.0 (Java Virtual Machine (JVM) v. 21.0-b17; Java Run-
time Environment (JRE) v. 1.7.0-b147). The initial and maximum amount of
heap space available for the JVM are both set to 4 GB in each of the experi-
ments. No other tasks were executed on the machine during the experiment
run.

The configurations of the algorithms in the experiment are set to the
default values, as the main focus of this work is to compare the predic-
tion qualities between algorithms. The exhaustive parameter tuning of all
algorithms is computationally expensive and almost infeasible.

12.3. Results

The experiment in this section is divided into two parts. The first part is
the comparison of the prediction quality of each algorithm based on the
same dataset. The second part is the comparison of the time needed for the
algorithms to build prediction models during the training phase and making
prediction at runtime.

12.3.1. Prediction Quality

To measure the prediction quality (in terms of the metrics described in Sec-
tion 9.2), each algorithm is trained with the instances in the dataset. The
trained algorithms are used to make predictions. The results are the average
values over 10-fold cross-validation.

194 12 | Evaluation of Hard Drive Failure Prediction

Figure 12.1 illustrates the ROC curves of the 21 algorithms. In the very
high quality region, the algorithms that have approximately the same level
of prediction quality are NNC, RF, C4.5, REPTree, RIPPER, PART, and K-Star.
Among the best algorithms, the one that has the highest TPR with low FPR is
NNC. However, when the FPR increases, NNC is outperformed by RF. On the
other hand, the algorithms that perform poorly are SLR, SGD, SMO, SVM,
and ZeroR, showing a prediction quality close to a random predictor.

The algorithms that exhibit only one or two points in the curve are the
ones that do not produce class probability but rather give out the predicted
class (failure or non-failure) as output. In other words, the threshold that
separates failing and non-failing instances is fixed and cannot be varied to
adjust the trade-off between TPR and FPR. Thus, these algorithms result
in straight lines that go diagonally from (0,0) to (1,1) in the plot. These
algorithms are NNC, K-Star, OneR, ZeroR, SGD, SMO, MNBC, and SVM.

Table 12.1 summarizes the prediction quality of all machine learning
algorithms. The decision threshold for all classifiers is set to the point with
the maximum F-measure. This algorithm configuration is used to obtain the
values of the evaluation metrics.

By using the F-measure as the primary metric, the best algorithm appears
to be the NNC with F-measure 0.976, followed by RF and C4.5 at 0.957 and
0.946, respectively. Nevertheless, the algorithms in the upper half of the
table have F-measure values higher than 0.6, while four algorithms in the
lower half score lower than 0.1. For the highest TPR, recall, accuracy, and
F-measure, NNC outperforms all other algorithms. On the other hand, for
the highest precision, SVM performs best, followed by NNC. However, if a
low FPR is the most important metric, for example, when the cost of a false
alarm is very high, SMO, and SVM might be the best choices as they can
achieve the lowest possible FPR, namely 0, although the other metrics are
not very high.

12.3 | Results 195

True positive rate

0 I I I I I I
0 01 02 03 04 05 06 07 08 09 1

False positive rate

Figure 12.1.: ROC curves of different prediction algorithms

True positive rate

0.8 LL

False positive rate

Figure 12.2.: ROC curves of different prediction algorithms (excerpt from Fig-
ure 12.1)

196 12 | Evaluation of Hard Drive Failure Prediction

[Algorithm | TPR | FPR [Precision | Recall | Accuracy | F-Measure | AUC |

NNC 0.974 | 0.003 0.977 0.974 0.993 0.976 0.986
RF 0.943 0.004 0.971 0.943 0.989 0.957 0.998
C4.5 0.942 0.008 0.95 0.942 0.986 0.946 0.973
REPTree 0.913 0.012 0.921 0.913 0.978 0.917 0.982
RIPPER 0.907 0.013 0.915 0.907 0.976 0.911 0.954
PART 0.89 0.012 0.921 0.89 0.975 0.906 0.975
K-Star 0.875 0.012 0.921 0.875 0.973 0.898 0.981
DT 0.668 0.028 0.785 0.668 0.931 0.722 0.936
BN 0.735 0.078 0.592 0.735 0.897 0.656 0.934
MP 0.585 0.032 0.739 0.585 0.917 0.653 0.89
OneR 0.624 0.06 0.616 0.624 0.897 0.62 0.782
LWL 0.652 0.082 0.552 0.652 0.883 0.598 0.833
MNBC 0.252 0.061 0.388 0.252 0.846 0.305 0.603
LR 0.124 0.012 0.618 0.124 0.872 0.206 0.697
NBC 0.118 0.022 0.457 0.118 0.863 0.188 0.789
VP 0.094 0.013 0.527 0.094 0.867 0.16 0.544
SLR 0.08 0.008 0.598 0.08 0.87 0.14 0.665
SGD 0.022 0.001 0.792 0.022 0.868 0.044 0.511
SMO 0.015 0 0.86 0.015 0.868 0.029 0.507
SVM 0.007 0 0.984 0.007 0.867 0.014 0.503
ZeroR 0 0 0 0 0.866 0 0.5

Table 12.1.: Prediction quality of the selected algorithms ordered by
F-measure

12.3.2. Training and Prediction Time

The measurement of training and prediction time of the algorithms is done
by measuring the time the algorithms take to train and make predictions
for 68,411 instances of data. This large number of instances is used so as
to emphasize the difference between slow and fast algorithms, as shown
in Figure 12.3. The results are the average of the training and prediction
time across 100 runs, except for the results of IWL, K-Star, and SVM. Their
results are the average across 10 runs since these algorithms require a very
long training or prediction time.

Table 12.2 provides further time statistics for each algorithm. As can be
seen, the fastest algorithms in terms of training time are those in the category
of instance-based learning and simple classifiers, i.e., IWL, K-Star, and NNC,
which take less than 0.01 seconds to train the model using 68,411 instances.
The highest training time is required by SVM, which takes approximately 33
minutes, followed by SLR and MP at approximately four and three minutes,

12.3 | Results 197

>52403
M_ >11222
2000 \‘_MM\M\
15
B Training wf
1500 O Prediction Lom
2 8
g g
g -5 =
5 1000
—al
] 7, % 9, % 4o o On A @ 0
\v\N@o@v@eayo Qy > TR S
500 — S
0 : I|I|I|LUIII|FFF
Q4 fo Y o<e. Yy O @%«oe@»%\oov\ob\v\@@o@@v
@N GV@\, %0 0\,0\0 \N\Q \V@ Au YV AA/\O\\NQ e 00 \%\v\, \OAA/\vA\ < 7,

Figure 12.3.: Mean training and prediction time of the selected algorithms. The inner barplot is an enlarged
version of the times for selected algorithms.

12 | Evaluation of Hard Drive Failure Prediction

198

"+ £q pajouap
oIk SunI QT yam mELuEOMR o[], 'suni QQT sso1oe ﬁowmuw\a SITISTIE]S oW} Goﬁoﬁ—uwhm pue Mﬁﬁcﬁm‘ﬂ. YA (AR
81°GLE S1°S9¢ 98'¥S€ Or'6F) 9T'¥9¢€ S¥'240C | SO'120C 10°T00C (S8+¥F) #9'620T +INAS
0€°0 0€'0 62°0 (10°0>%) 0€°0 CTL'TLT €1°CLT 28°04T (€€°0F) S9°14T dT1S
820 420 420 (10°0>¥F) 420 5861 0261 £9°961 (I€°0F) 94°L61 dIN
+¥0°0 ¥0°0 +0°0 (10°0>%F) +0°0 LLTLT S8'8Y1 Y LYT (8%°2F) 09'9ST OIS
€0°0 €0°0 €0°0 (10°0>%F) €0°0 8C°66 99'86 01°86 (92°0%F) CL'86 ddddrd
60°0 60°0 60°0 (10°0>%F) 60°0 06'€y 18°¢h €LEY (91°0F) L6'EY Idvd
0€'SL 86°EL 9'CL (IS'0F) 08°€L 99'¢c 9v'ce €€CC (90°0F) 8¥°CC dA
200 200 200 (10°0>%F) 200 cEYT LTVl j4adt (10°0F) 8CTHIT S¥D
0C0 0c'0 910 (10°0F) 81°0 9T'€l YI'€T CIEl (10°0%F) PT'ET ad
900 900 90°0 (10°0>%) 90°0 82°C1 12°¢CT 1121 (20'0F) oc'ct 1d
¥0°0 ¥0'0 €0°0 (10°0>¥F) ¥0°0 04’2 892 99'2 (10°0F) 89/ ans
900 900 90°0 (10°0>%F) 90°0 08¢ €L°€ 1L°€ (10°0F) 9L°€ gl
100 10°0 100 (10°0>%F) 100 09°¢ 9s°¢ €5°¢ (20'0%F) 9s°¢ 9911dHY
61°0 61°0 81°0 (10°0>%) 61°0 6y’ 1 LY'T o'1 (10'0>¥) 8’1 N4
9¥°0 90 9t°0 (10°0>¥F) 9t°0 90 S0 S¥'0 (10°0F) St'0 0dN
10°0> 10°0> 10°0> (10°0>%F) 10°0> 8¢€0 L€°0 LEO (10°'0>¥F) 8€0 douQ
100 10°0 100 (10°0>%F) 100 100 10°0 100 (10°'0>%F) 200 DANIN
10°0> 10°0> 10°0> (10°0>%F) 10°0> 100 100 100 (10'0>¥F) 100 YOoIZ
01°62% cy'8cy 10°8¢y O1°0F) ¥9°8¢h 100 10°0 100 (10'0>¥F) 10°0 ONN
19°L0LTT €L°L9ETT £S°CCC11 (80°LL1F) 86'9¥¥I1 100 10°0 100 (10°0>¥F) 10°0 £ 18IS
croveyS | ¥2'86S6v | LT'88S8Y (66°L06EF) ££'€0¥CS 100 10°0 100 (10°'0>%F) 10°0 +TMT
[‘o © | ™ [(D%se) uespw o) @ | ™ | mD%se) ueow |
_ (Spu023s) UOIPIPaId (spuo23s) Jururesy, _ w3y

199

12.3 | Results

respectively. Moreover, SMO—which is an optimization of SVM—performs
significantly faster than SVM by a factor of 13.

On the other hand, the prediction time required by the instance-based
learning algorithms are very high. NNC needs seven minutes to make 68,411
predictions, while K-Star requires roughly three hours and IWL takes almost
fifteen hours to predict all of them. Furthermore, SVM that requires the
longest training time also needs as much time as NNC to make predictions.
The prediction time of other algorithms are negligible compared to the five
slowest algorithms and are almost not visible in Figure 12.3.

12.4. Discussion

This section discusses why some prediction algorithms are slow while the
others are fast, why they achieve different prediction quality and which one
should be chosen in specific practical applications.

12.4.1. Experimental Results

During the training process, the instance-based algorithms are very fast as
they require virtually no computation and the learned instances only need
to be stored in the database. However, during the prediction phase, these
algorithms perform very slowly. LWL, which is the slowest algorithm during
the prediction, has to build naive Bayes models from the k-nearest neighbors
of a test instance to make one prediction. This model construction dramati-
cally slows down the prediction process. For NNC and K-Star, the distance
between the test instance and all learned instances has to be computed.
While Euclidean distance is used in NNC, an entropy function is used in
K-Star and, as a result, requires more computation power than NNC.
ZeroR is a rule-based algorithm which performs very fast for both training
and prediction phases. The reason of the fast processing is obvious as it only
counts the number of instances in each class during the training and assigns
the test instance to the majority class during the prediction. OneR, DT,
PART, and RIPPER are other rule-based algorithms with different training
and prediction speeds. These algorithms analyze the training instances and

200 12 | Evaluation of Hard Drive Failure Prediction

create rules according to their specific methods which causes the training
time to vary. When a test instance has to be classified, it has to be checked
against the rules—typically conditional statements—which is a very fast
process.

MNBC, NBC, and BN are classifiers that build probabilistic models from
the learned instances. MNBC creates the model by counting the occurrences
of the instance features while NBC builds normal distribution models out
of them. Thus, NBC is slower than MNBC as the parameters of the models
have to be estimated. Besides, BN has to build both the network structure
and the probabilistic models, which results in a slower training time than
the other two algorithms in this category. However, for the prediction, NBC
needs longer time than the other two since the class probabilities have to be
computed from continuous distributions.

C4.5, REPTree, and RF are fast algorithms but still require some training
time due to the tree construction phase, which searches for the best splitting
nodes. Nonetheless, the prediction times of these algorithms are relatively
very fast, similar to rule-based algorithms, since the splitting nodes also use
conditional statements to classify instances.

SVM, which uses a hyperplane to separate the instances into classes,
has the slowest training time because it requires very high computational
power for quadratic programming optimization. SMO and SGD use other
approaches to solve the optimization problem which significantly improve
SVM and reduce both training and prediction time.

For the prediction quality, NNC is the best algorithm as we assume that
when the parameters are mapped to a multi-dimension space, they do not
form distinct clusters but rather spread throughout the area. During the
prediction phase, a test instance is then mapped to the point where it is
closest to the one with the highest similarity. NNC can thus take advantage
of this similarity and correctly classify that instance. In addition, RF, C4.5,
and REPTree are decision trees that achieve very high prediction quality.
However, as RF contains a number of decision trees and uses voting to decide
the final outcome, it tends to perform better than C4.5 and REPTree.

On the other hand, BN, MNBC, and NBC do not achieve as good prediction
quality as we expected. One of our assumptions is that as the data does

12.4 | Discussion 201

not form clusters, these algorithms can not create probabilistic models that
clearly separate the failing and non-failing instances. This assumption also
applies to SVM, SMO, and SGD which use a hyperplane to classify instances
and, therefore, perform worse than our expectation.

12.4.2. Selection of Algorithms

The decision of selecting an algorithm in practice depends on the application
and the constraints. Two factors that should be considered are the prediction
quality and time needed for training and prediction. If the algorithm is to
be trained in an offline manner and later deployed under operation, the
training time can be neglected, as it can be done separately in advance. If
the algorithm will be used in online learning approaches, its training time
needs to be very fast to be able to process new instances and to update the
prediction model at runtime. However, the prediction time of the algorithm
should be considerably fast to make a prediction based on the most recent
instance, before a new one arrives. When the training and prediction times
are not the primary factor, the prediction quality becomes the first factor
to be considered. The TPR should be taken into account when the cost of
missing a failure is high. When the cost of a false alarm is high, the FPR
should be considered. The overall prediction quality can be determined by
F-measure value, which combines both precision and recall.

From our experiment, the algorithms which are suitable for applications
that require high prediction quality without time constraint are NNC, RF,
C4.5, REPTree, RIPPER, PART, and K-Star. The algorithms applicable for
online learning approaches are BN and OneR since they require both short
training and prediction times while maintaining relatively high prediction
quality. When a low or closest-to-zero false alarm rate is desired, SMO, and
SVM appear to be the best options, even though their TPRs are quite low in
comparison to other algorithms.

Nonetheless, the algorithms with comparable prediction qualities may
perform differently in practical applications. Even though NNC has the
highest TPR in the lower range of FPR, other algorithms may outperform it

202 12 | Evaluation of Hard Drive Failure Prediction

when they are deployed. Therefore, the algorithms should be specifically
evaluated against a certain task before being selected for real use.

12.5. Threats to Validity

One assumption we made to separate failing instances from non-failing ones
is the seven-day time frame before failure. We assume that the signs of
a failure are observable during this period independently from the failure
type. However, this period could be shorter, or closer to the failure than
seven days, and the characteristic of the captured data is actually from the
non-failing drives. Consequently, the failure model could be tampered with
good instances, which could cause the results to have high FPRs. Moreover,
the algorithms in our experiment are set to their default configurations
provided by Weka. Some algorithms that allow parameter tuning or internal
modification, such as SVM with kernel trick, may perform better if their
parameters are properly set to match the property of the data. Thus, our
results are valid only for specific settings of the tested algorithms.

The experiment carried out in this chapter is based on a single dataset.
Some characteristics embedded in the data may give advantages to some
algorithms over the others. This may cause biases in the results with overly
optimistic or pessimistic prediction qualities of some algorithms.

12.6. Summary

This chapter presents the evaluation of the hard drive failure prediction and
answers research question RQ1.3. The results of the prediction show that
different machine learning algorithms produce different prediction qualities.
The best algorithms for predicting failures in hard drives based on S.M.A.R.T.
data are NNC, RF, and C4.5. However, the NNC takes longer to make
predictions than the other two. Thus, different parameters, e.g., available
time for training and prediction phases, need to be taken into account when
selecting these algorithms.

12.6 | Summary 203

CHAPTER

EVALUATION OF FAILURE
PROPAGATION PREDICTION

The previous three chapters present the evaluation results of three types
of component failure prediction. This chapter presents the evaluation of
the FPM which combines the time series-based failure prediction and the
architectural dependency modeling.

Section 13.1 presents the research questions that will be answered in
this chapter. Section 13.2 describes the experiment setup of the evaluation.
Section 13.3 presents the results of the experiment. Section 13.4 provides a
discussion of the results. Section 13.5 presents the threats to validity of the
experiment. Section 13.6 summarizes the evaluation in this chapter.

13.1. Research Questions

This chapter focuses on evaluating the prediction quality of the Failure Prop-
agation Model (FPM) presented in Chapter 7. Furthermore, the evaluation
aims to answer the following research questions which have been previously
stated in detail in Section 4.1:

205

* RQ2.3: Does architectural information affect the prediction quality?
If yes, to which extent?

* RQ3.2: What is the prediction quality of the combined model?

* RQ3.3: What is the scalability of the combined model?

13.2. Experiment Setup

This section provides details of the system under test, the fault injection, the
failure definition, and the prediction technique used in the evaluation.

13.2.1. System Under Test and Fault Injection

The evaluation of FPM is carried out based on the same dataset used to
evaluate time series-based component failure prediction (Chapter 10). The
dataset is collected from the RSS reader application previously described
in Section 10.2.1. Fault injection includes three types of faults, namely,
memory leak, system overload, and node crash.

13.2.2. Failure Definition

In Chapter 10, response time is used as a failure indicator. A request is
considered a failure if the 95th percentile of the response times in a 2-
minute window exceeds 1 second. This type of failure is called timing
failures according to the terminology presented in Section 2.1.1. In this
chapter, in addition to the timing failures, we also consider content failures.
Examples of content failures are unsuccessful requests, i.e., service outage
and incorrect responses. A service outage occurs when the server does not
accept requests from the client. The client will wait for a reply from the
server and terminate the connection after a pre-defined timeout is reached.
An incorrect response occurs when the connection is accepted but the server
encounters an internal problem. The problem causes the server to be unable
to fulfill the request and returns an error message indicating that the request
cannot be completed.

206 13 | Evaluation of Failure Propagation Prediction

However, if the system cannot provide correct services for only one or two
requests from hundreds or thousands of requests, it does not necessarily
mean that the system is encountering a problem. These failures that occur
infrequently may be caused by random factors, e.g., garbage collection on
the server side. Thus, we use the ratio of successful requests over all requests
as a measurement that represents the service status. The success ratio can
be computed as

#successes
success ratio = - (13.1)
#successes + #failures

This ratio is computed for every 2-minute window. If this value falls below
99.99%, it is regarded that a failure has occurred in that time window.

13.2.3. Prediction Technique

As described in Chapter 7, the FPM aims to predict the propagation of the
failures based on two pieces of information. The first piece of information is
the dependencies between components which describes how a failure of one
component can affect and propagate to other components. This information
is stored in the ADM, which is extracted from the monitoring data collected
from the system as described in Chapter 6.

The second piece of information is the failure probabilities of components
in the system. Theses probabilities indicate the probability that a component
will experience a failure in the near future. A component failure predictor
is responsible for predicting this value for each individual component at
runtime. The predictor used in the experiment is the time series-based
component predictors described in Section 5.4. The predictor is triggered
at regular interval, thus, producing a time series of failure probabilities for
each component.

With these two pieces of information, the next step is to combine and
use them to predict the failure propagation. The extracted ADM is first
transformed to an FPM as described in Section 7.3. The FPM at this stage

13.2 | Experiment Setup 207

contains incomplete CPTs in which the component failure probabilities are
missing. At runtime, the component failure probabilities obtained from the
predictors in Chapter 10 are added to the CPTs. The update process is done
continuously as the component failure predictors generate new component
failure probabilities, as described in Section 7.4. The inference of the FPM is
carried out at regular intervals in order to provide the failure probabilities
of all components while keeping a low computational complexity. In this
experiment, the interval is set to every two minutes according to the length
of the window used to compute the failure ratio (Section 13.2.2).

13.3. Results

This section presents the result of each step of the prediction which includes
the resulting ADM and FPM, and the prediction results.

13.3.1. Architectural Dependency Model

The first step in predicting failure propagation is to obtain the ADM that
represents the system. To achieve this, the monitoring data in the Kieker
logging format is used to create a SLAstic model of the system. The SLAstic
model is then transformed into an ADM as described in Section 6.4.2. In
the experiment, two instances of edges and three instances of middletiers
from the RSS reader application are deployed. The size of the extracted
ADM can be configured by including or excluding some components. Thus,
the resulting number of components in the ADMs varies from 48 to 98. The
effects of different ADM will be investigated in detail in Section 13.3.7. The
complete ADMs are included in the supplementary material [Pit18].

13.3.2. Failure Propagation Model

The extracted ADM is transformed into an FPM as described in Section 7.3.
An excerpt of the FPM is depicted in Figure 13.1. The FPM is composed of
nodes, each of which represents one entity in the ADM. Each node has one

208 13 | Evaluation of Failure Propagation Prediction

CPT that lists conditional probabilities for different states of the dependent
components. However, the CPTs are very large and are not shown here. The
complete FPMs are included in the supplementary material [Pit18].

13.3.3. Prediction Result of Memory Leak

This section presents the prediction result of the FPM in comparison with
that of the time-series based predictor in Chapter 10.

The prediction results of the component failure predictors in Chapter 10
has shown that the individual predictors are able to predict the problem if
that component is the root cause. In this chapter, we use FPM which takes
into account the failure probabilities of other components and computes
the probabilities that a failure of the memory, caused by memory leak, will
cause other components to fail. Figure 13.2 depicts the prediction results
of the FPM with ARIMA as component failure predictors. The figures also
show the results in comparison to that of the ARIMA without FPM.

The increasing memory utilization of a business-tier instance shown in Fig-
ure 13.2a is predicted by ARIMA to reach the failure threshold at the 62th
minute with a probability close to 1.0. The FPM then receives this failure
probability and updates the CPT of the corresponding component. After
this update, the failure probabilities of all components are recomputed by
solving the FPM. The failure probability of the memory then propagates to
other components that depend on it, i.e., software components deployed on
that business-tier instance. There are also other instances that depend on
these software components of this business-tier instance. Thus, the failure
probabilities propagate to those instances as well.

The propagation of failure probabilities from the memory component to
the operations of the presentation tier and the load balancer can be seen
in Figures 13.2c and 13.2d. Since the memory leak is occurring in only one
of the three business tier instances, the failure probability is reduced by the
inference by a factor of 3. The effect of the garbage collector also causes the
load average to increase, as depicted in Figure 13.2b. The failure probability
from the load average further increases the failure probability of the service

13.3 | Results 209

:

L~ A
S T

Figure 13.1.: An excerpt of the FPM of RSS reader application

13 | Evaluation of Failure Propagation Prediction

210

at the presentation tier and the load balancer as can be seen in Figures 13.2¢c
and 13.2d.

The results show that the memory leak causes the system to slow down
which results in a sudden increase in the service response time and the ser-
vice failure rate. This increase cannot be predicted by the failure predictor
that considers only the response time. On the other hand, Hora consid-
ers the memory utilization of the business tier and propagates the failure
probability to the service boundary. The results show that Hora can predict
the service failure 10 minutes before it occurs with a failure probability of
approximately 0.3. The ROC curves of Hora and the monolithic approach
are depicted in Figure 13.5a.

13.3.4. Prediction Result of System Overload

Figure 13.3b depicts the increasing number of concurrent users that causes
the load average of the business-tier instances to constantly increase over
time. The small failure probability that is predicted by the component failure
predictor of the load average is updated in the FPM and propagates to other
components. Since there are three instances of the business tier and all
of them get the same increasing workload, the small failure probability
gets amplified and propagates to other parts. Figures 13.3c and 13.3d
depict the failure probabilities of the presentation tier and the load balancer,
respectively. It can be observed that the probabilities of these components
are larger than that of the load average of the business tier. Furthermore,
these failure probabilities are predicted in advance even before the service
failures at the load balancer can be observed.

The results show that Hora can predict this type of service failure since it
takes into account the dependency of the presentation tier on the business
tier. On the other hand, the predictor that observes only the increase in
the response time at the system boundary is not able to predict this type of
service failure since the response time does not exceed the threshold. The
ROC curves of both approaches are presented in Figure 13.5b.

13.3 | Results 211

I
f % -
Failure threshold |
@« _|
© ©
r s
©
S © £
£ o7 - L © 2
N cio © 3
= Ti= 8
2 ERE [
> ZiE a
g 818 <
< | Si3 < =2
g s e F3F
[N
3!3
Eid
[o
o o
4 [©
o o
T T T T T T T
0 20 40 60 80 100 120
Time (Min)
(a) Memory utilization of business tier
o
o -2
i L ®
w | ! e
7 |
i
i
o
= Lo 2
Y g2 ° 3
g o | Failure threshold 2 }§° S
< 7 22 s
k] PR 5
@ ® i © =2
5 8¢ IR
N Load average g i g
o 7] \/ E: E
I [o
] o
i
i
i
!
o] H L 2
o o
T T T T T T T
0 20 40 60 80 100 120
Time (Min)

(b) Load average of business tier

Figure 13.2.: Timeline plots of selected components for memory leak sce-
nario

212 13 | Evaluation of Failure Propagation Prediction

o
3 [E—— =
o i
o i
Jo3 q
© {
i
i
3 io)
$ g = e
© S N ©
5
=~ @ =12
(4 o =0 -
2 i £y
s & giNs Lo 2
£ ol g ° 3
2 g s 3 3
2 <2 | 50 2 =Y
2 3 Si 3 2
@ @ wi = =1
i3 S L <« =
v i w <] ﬁ
{23 ;
=3 frmm e e
2 ‘
o) !
A i
i
i o
3 Failure threshold | o
¢ |
S Response time °
$ 1 I o
e T T T T T T T
0 20 40 60 80 100 120
Time (Min)
(c) Response time of presentation tier
(2]
?
o JRERSS—
o i =
w i
i
i
2 | o
< o
3
&
0
B3
£ © Z
o i Fe £
£ g . i 3
5 2 Failure threshold e)
2 87 E= 5
o 1 =
8 - i s o
$ B /18 -3 3
i 2 - s ¢
s ‘/ S
3 H 3
& 8 a
< [} g N
© o! o °
3 =
° Response time & It
< | o o Content failures °
8 =4
o T T T T T T T
0 20 40 60 80 100 120
Time (Min)

(d) Response time of load balancer

Figure 13.2.: Timeline plots of selected components for memory leak sce-
nario (cont.)

13.3 | Results 213

L <
Failure threshold -
@
@
L ®
o
©]
c o
2 © Z
© e £
5 o
b (s}
g 3)
i <+ 2
g r e &
N
o)
o
Failure probability: Hora
o | Failure probability: Monolithic | o
o o
T T T T T T T
0 20 40 60 80 100 120
Time (Min)
(a) Memory utilization of business tier
L <
0 | =
L
o
o | Failure threshold !
- i | © 2
2 ,. E
1] i <]
< | s
° i =4
@ =
3 | S F
0 | i
S Load average |
i
i L«
H o
i
i
i
i
o | g L <
o o
T T T T T T T
0 20 40 60 80 100 120
Time (Min)

(b) Load average of business tier

Figure 13.3.: Timeline plots of selected components for system overload
scenario

214 13 | Evaluation of Failure Propagation Prediction

23
? L 2
o Failure threshold -
3
©
& o
© Failure probability: Hora /'
N
T o ; .
£ 3 A © =
é é 7 Failure probability: Monolithic I o T‘Eé
2 8
c o
o (]
g g | <+ 2
T 3 Failure probability: Hora ; s P
i
OOD ;
/ o
F i I~ o
o !
Response time {
8
- e) | ©
o S
e T T T T T T T
0 20 40 60 80 100 120
Time (Min)
(c) Response time of presentation tier
(=23
2 4 L 2
° Failure threshold -
3
o«
& I~ o
@
@ Failure probability: Hora
2 o
- ~ ~~-°\ .~ L o &
é é v N s = g
g - Content failures g
o
8w HKXKAKHKXKAKXK . 8
2 S Failure probability: Monolithic T =} Lcl_?s
2 /
8
o
& I~ o
o
Response time
8
o
& I~ o
e T T T T T T T
0 20 40 60 80 100 120
Time (Min)

(d) Response time of load balancer

Figure 13.3.: Timeline plots of selected components for system overload
scenario (cont.)

13.3 | Results 215

13.3.5. Prediction Result of Node Crash

The two instances of the business tier that crash at the 90th and 95th minutes
causes the remaining instance to overload and, eventually, cause the service
to fail. The component failure predictor, which is ARIMA, cannot predict the
first crash because it is a sudden crash and there is no preceding symptom.
However, during the five-minute gap between the first and the second crash,
the two remaining instance experience a higher workload and start to pro-
duce a symptom. This symptom is a noticeable increase in the load average
of the remaining instances. The corresponding component failure predictors
predict that there is a small probability that this can lead to a failure. This
failure probability gets propagated to other dependent components by the
FPM. This propagation can be seen in the failure probability of the service
in Figures 13.4c and 13.4d. In contrast, the predictors that consider only
the response time cannot predict the failures since they are not aware of the
problem manifesting in another part of the system.

The result shows that Hora performs slightly better than the monolithic
approach due to the unintended preceding symptom. However, if both
instances crash at the same time, the component failure predictors would
not be able to predict this failure. As a consequence, the FPM would not
have any failure information to propagate to other components.

13.3.6. Overall Prediction Result

We evaluate the overall prediction quality of Hora by analyzing the com-
bined raw prediction data of all three scenarios. The results in Figure 13.5d
depicts the ROC curves of Hora against that of the monolithic approach.
Although the monolithic approach performs better in the low FPR region
(0-0.04), Hora outperforms it in the higher FPR region. Table 13.1 lists
the prediction metrics of both approaches in detail and shows that Hora
improves the overall AUC by 9.9%, compared to the monolithic approach.
However, as can be observed from the table, the monolithic approach pro-
duces higher precision and accuracy that those of the Hora approach. This is

216 13 | Evaluation of Failure Propagation Prediction

L 2
Failure threshold -
©
@
L <
o
© |
f= o
2 |l © &
;_5‘“ Memory utilization ° %
> 8
fal =%
g o 1<
o 3
o) | <« =
s s £
o
S L
o
Failure probability: Hora
o | Failure probability: Monolithic | o
o o
T T T T T T T
0 20 40 60 80 100 120
Time (Min)
(a) Memory utilization of business tier
L <
<
L <«
H o
L
I £
o il.s
i §5 © 2
g T2 [Fo 3
g 22 g
$ 28 &
< HE-E-] ')
TN iee 5
o iiaa | < =
= oo s £
133
‘," g8
Failure threshold
A L
Load average °
/\
o4 v AW - g
T T T T T T T
0 20 40 60 80 100 120

Time (Min)

(b) Load average of business tier

Figure 13.4.: Timeline plots of selected components for node crash scenario

13.3 | Results 217

fo2)
< L o
° Failure threshold -
8
T - ~ - g
g Bo |
d £
z H
— = g
L £ 2, o 2
2 & K 2! o o 3
E o Qa = < S
Py S 2\ s = Q
g 5 g § g
[I 5
2 o E & \ i = @
=1 o =3
3 2 | 3 e \ = L=< =
C o = o ! = IS
¥ & 8138
Qi Q
8i 9
Q o
8
o
d o
e T T T T T T T
0 20 40 60 80 100 120
Time (Min)
(c) Response time of presentation tier
D
2 | L <2
2 Failure threshold -
O
@
4 @
i R R e
3 5o
Se | gs
% 88 . °3
£ 8 _ o * l “ g 5 N o 2
2 3 2 e 52 = T o 3
£ e S 5 £ 8
g / . g g S
& ’ 2 §° a
g 8 5 5 g
g < | KKK X X X 22 L+ 2
o) . 8 o ° 0
- Content failures 8.5
ol
oQ
* pig
5} 22 o
N EiE TS
i
8
o
F “ I s
e T T T T T T T
0 20 40 60 80 100 120
Time (Min)

(d) Response time of load balancer

Figure 13.4.: Timeline plots of selected components for node crash scenario
(cont.)

218 13 | Evaluation of Failure Propagation Prediction

0.8

0.6

True positive rate
0.4

0.2

0.4 0.6 0.8

True positive rate

0.2

Figure 13.5.:

13.3 | Results

] AUC: 0.931
AUC: 0.881 | P = < 2226716
' —— Hora
i -=+= Monolithic
T T T T T T
0 02 0.4 06 08 1

False positive rate

(a) Memory Leak

] AUC: 0.894
AUC: 0.764 | P = < 2226716
—— Hora
| -=-= Monolithic
T T T T T T
0 0.2 0.4 0.6 0.8 1

False positive rate

(b) System overload

Comparison of ROC curves for the different types of faults

219

- 4
@
o
[}
T o |
= o
[}
2 b
o .
o !
o < | !
2 ° AUC: 0.771
'_ =
AUC: 0.766 | P = 074612
N
o
—— Hora
o J -=-= Monolithic
T T T T T T
0 0.2 0.4 0.6 0.8 1
False positive rate
(¢) Node crash
- 4
@
o
[}
T < |
= o
2
B
o
Q.
g =
S © AUC: 0.920
= = -
AUC: 0.837 p=<2.22e-16
N
o
—— Hora
o ---- Monolithic
T T T T T T
0 0.2 0.4 0.6 0.8 1

False positive rate

(d) Overall

Figure 13.5.: Comparison of ROC curves for the different types of faults
(cont.)

220 13 | Evaluation of Failure Propagation Prediction

sIneJ Jo sadA1 JUSIaJJIp S I0J SOLIISUWI UOBN[BAS [[e Jo Uostiedwo) *1°¢T 9[qeL,

LESO 9160 S90°0 T69°0 SL¥0 OTPI[OUOI
_ X ‘C > %6 BIDA
-0 xcee %66 T6°0 £06°0 160°0 £€8°0 61¥°0 VIOH [[E210
99/°0 T06°0 S80°0 7850 602°0 OII[OUO
. %10 > SBID 3P0,
Lo wro 1240 | soro | 8620 £L°0 6500 v¥oH HSE> SPON
$9L°0 260 650°0 ¥95°0 TSE0 OII[OUO
_ T > [BO[IDA0 WISA
oi-01 xzee LT v63°0 | 68,0 | 9170 | 9/8°0 18T°0 vioy | PP S
188°0 S¥6°0 $20°0 8540 ¥8°0 SII[OUOIN]
01 X22C> %/ o[A10UID
or-01 X 2eT %L’ 1€6°0 16°0 960°0 S¥6°0 2190 VHOH TRl n
JuduwaAoxdur yoeoadde
anfea-d onv oNV | Adeanddy | ¥dd | ¥dL ‘TedSY | UoIspald | uomdIpald ad£3 ymey

221

13.3 | Results

due to the fact that Hora produces more false positives because it considers
the propagation from all components in the system. A small failure prob-
ability in one of the component failure predictors can propagate through
the architecture to other components. This results in a higher number of
false positives. Since the calculations of precision and accuracy include false
positives, these metrics of HORA are, thus, lower. Nevertheless, the number
of true positives, which is used to calculate recall, of Hora is higher. This
means that Hora can correctly predict more failures than the monolithic
approach.

13.3.7. Architectural Dependency Model Impact

The automated extraction of the ADM allows fine-tuning of the model, e.g.,
adjusting the degrees of dependencies and excluding some components. This
section investigates the impact of the ADM configurations on the prediction
quality.

Degree of dependency—The degree of dependency between software
components can be directly computed from the number of invocations de-
scribed in Section 6.4.2. However, the computation of the degree of depen-
dency from software to some hardware measures are not straightforward.
For example, the load average measure contains three different values, i.e.,
1-minute, 5-minute, and 15-minute averages. There are no clear guidelines
what might be the effect on the operation of the physical machine if these
measures exceed the threshold.

To investigate the impact of the degree of dependency, we vary the degree
of dependency of the load average from 0.2 to 1.0. The results in Figure 13.6a
show that the AUC, TPR, precision, and FPR remain almost constant. This is
because the failure probabilities are always propagated to other parts of the
system by the FPM regardless of how small they are. Those small propagated
probabilities at the system boundary still provide the signs that the failure
is imminent which are sufficient to trigger the warning. Therefore, we can
conclude that varying the degree of dependency does not significantly affect
the prediction quality.

222 13 | Evaluation of Failure Propagation Prediction

Size of ADM— We evaluate four different ADMs which contain different
numbers of architectural components:

* Auto-Large—The model is automatically generated and contains 98
components which include software components, as well as CPU uti-
lization, memory utilization, swap utilization, and load average of all
physical nodes.

* Auto-Medium—The model is automatically generated and contains
80 components which include software components, as well as mem-
ory utilization, and load average. Compared to Auto-Large, the CPU
utilization and swap utilization are removed.

* Auto-Small—The model is automatically generated and contains 56
components which include only important software components, as
well as memory utilization, and load average. Compared to Auto-
Medium, the intermediate software operations are removed.

* Manual—The model is manually created by system experts and con-
tains 48 components which include only the important software com-
ponents, as well as memory utilization, and load average.

The complete details of these four models can be found in the supplemen-
tary material [Pit18]. The evaluation results of the models are presented in
Figure 13.6b. Although all ADMs have approximately the same AUC, TPR,
and FPR, the manually created ADM achieves the highest precision. This
is because the automated extraction includes all components in the system
whether they play a role in the failure of the whole system. Some component
may not have any symptoms that contribute to the system failure. In other
words, they do not help predict more failures, but rather produce more false
alarms. Thus, in the manual creation of the ADM, these component can be
excluded by the system expert to optimize the prediction. However, the auto-
mated extraction of the model has an advantage that it can create the ADM
for a large system which is infeasible for a manual creation. Therefore, it is a
trade-off between the ease in the model creation and the prediction quality.

13.3 | Results 223

o
S
=] o o o o
A= mo o —Amim e o - A—m o —Ammm = -A
[oe]
®
© —&- AUC
S | |2- TPR
g —o— Precision
g % FPR
<
Sl ome===—= 06— ———— = e ———— = o——____ .
N
S
P S [S Koo PR R X
o
=
T T T T T
0.2 0.4 0.6 0.8 1.0
Degree of dependency
(a) Degree of dependency to load average
o
S
- B Auto-Large
B Auto-Medium
O Auto-Small
o | | O Manual
o
o |
o
(]
=
S
<
o
o
o
Nl N N
o

AUC TPR Precision FPR

Prediction metric

(b) Size of ADM

Figure 13.6.: Prediction quality of Hora with different ADM configurations

224 13 | Evaluation of Failure Propagation Prediction

400
|

O Memory leak
@ System overload
O Node crash

Duration (s)

Auto-Large Auto-Medium Auto-Small Manual

Architectural Dependency Models

Figure 13.7.: HorA’s average analysis and prediction duration (including
95% confidence interval) for 2-hour monitoring data

Nonetheless, the automatically generated model can still be fine-tuned by
the system experts to produce even better prediction results.

13.3.8. Runtime Overhead

The prediction results are obtained by collecting the monitoring data from
the system described in Section 10.2.1 and executing the offline analysis (Sec-
tion 8.1 on a separate machine equipped with 3.10 GHz Intel Xeon E31220
running Ubuntu 12.04.5 LTS. Figure 13.7 illustrates the runtime overhead
of Hora for the four different ADMs. It can be observed that the larger
the model is, the more time it requires for the analysis and prediction. On
average, the analysis for 2-hour monitoring data is completed in less than
six minutes. This demonstrates that Hora can be deployed and make timely
predictions at runtime.

13.3 | Results 225

It needs to be emphasized that Hora’s prediction process is triggered
by every new data point. For the model with 98 components, this leads
to 98 predictions every 2 minutes, i.e., 5880 predictions in two hours. In
this work, we focus on investigating the prediction quality of Hora rather
than its prediction efficiency. Particularly, HorA has not been optimized for
performance. A possible future optimization could be to configure it to make
predictions at regular time intervals, e.g., every one minute.

13.4. Discussion

The FPM exploits the knowledge of the component dependencies and a
set of predictors, which can predict individual component failures, to infer
the failure propagation. Our results show that in the memory leak and
system overload scenarios, HORA can predict the failures with high TPR. This
demonstrates that the problems that develop internally can be detected early
and the failure probability can be propagated to other parts of the system.

Although the results in Table 13.1 and Figure 13.5 show that Hora
achieves higher TPR and higher AUC, the number of FP is also high. This
results in a low precision and high FPR. In other words, the monolithic
approach performs better in the low false-positive-rate range between 0
and 0.1. On the other hand, if a higher FPR is acceptable, Hora will be able
to correctly predict more failures than the monolithic approach.

13.5. Threats to Validity

In the evaluation, we compare the prediction results of the Hora approach
with those of the monolithic approach. Both of them employ ARIMA as
component failure predictors but Hora considers the architecture of the
system to propagate the failure probabilities. There are existing works
of other techniques for predicting component failures. However, they are
specifically applicable for different types of monitoring data or different types
of components. For instance, Fronza et al. [FSS+12], Liang et al. [L.ZXS07b]
and Salfner and Malek [SM07] employ machine learning techniques to

226 13 | Evaluation of Failure Propagation Prediction

analyze event logs and classify the system into healthy and failure states.
These techniques are not directly applicable as the monitoring data obtained
in our experiment is time series data. Therefore, we utilize ARIMA which is
a suitable and commonly used prediction technique for this type of data.

The evaluation of the HorA approach is carried out on the RSS reader
application which is based on microservice architecture. The Blue Gene/L
supercompter and the computer hard drives are used to evaluate the com-
ponent failure predictors (Chapters 11 and 12, respectively). However, since
the data collected from Blue Gene/L supercomputer does not contain ar-
chitectural information and the hard drives are individual components that
do not have architectural information, they are not included in the eval-
uation of the Hora approach. Additionally, the prediction quality of the
Hora approach is not compared to those of other prediction approaches that
employ architectural information. This is because they focus on predicting
other QoS attributes, e.g., performance or reliability, which makes the re-
sults not directly comparable. Furthermore, other online failure prediction
approaches either focus on predicting the failures of one specific system, e.g.,
event log-based failure prediction, and cannot be applied to other systems,
or they do not consider the architecture of the system in the prediction.

13.6. Summary

This chapter presents the evaluation of the Failure Propagation Model (FPM)
and answers research questions RQ2.3, RQ3.2, and RQ3.3. The evaluation
results show that the FPM, which is the model that combines component
failure prediction and architectural knowledge, outperforms monolithic
failure prediction and can improve the overall AUC by 9.9%. Different
configurations of the ADM, namely the degree of dependency and the size,
are investigated and the results show that they have minimal impacts on
the prediction quality. Lastly, the evaluation of runtime overhead shows that
the Hora approach can make predictions in a timely manner and can be
applied to predict failures at runtime.

13.6 | Summary 227

Part IV.

Conclusions and Future Work

229

CHAPTER

CONCLUSIONS

Failures in software systems usually develop inside the system and propa-
gate to the boundary. Existing online failure prediction approaches do not
explicitly consider the software system architecture and failure propagation
paths. They see the system as a monolith and make predictions based only
on the available measurements, such as response time or memory utilization.

This thesis presents Hora, an architecture-aware approach for online
failure prediction in software systems, which combines the traditional fail-
ure prediction with architectural knowledge to provide architecture-aware
failure predictions. The approach is divided into three parts, which are com-
ponent failure prediction, architectural dependency modeling, and failure
propagation modeling.

Component Failure Prediction In contrast to predicting the failure of the
whole system, the Hora approach focuses on predicting the failure of each
individual component in the system based on the monitoring data. However,
since a system is composed of different types of hardware and software
components, different types of data that reflects component status can be
obtained at runtime. Therefore, different prediction techniques can be

231

selected and applied to each type of data independently from the others.
This allows the predictors to be reusable and optimized for the best prediction
quality. In this thesis, three different types of monitoring data are considered.
The first type of data is time series which is collected from resource utilization
and software method response time. The second type is event logs collected
from a supercomputer. The third type is hard drive S.M.A.R.T. data. The
results show that different prediction techniques can be applied to different
types of data and can predict component failures with high prediction quality.

Architectural Dependency Modeling The Architectural Dependency Model
(ADM) introduced in this thesis stores information regarding the dependen-
cies between components and how much they depend on each other. This
information represents how, and to which extent, a failure of one component
can propagate to the others. The ADM can be created manually by system ex-
perts that have detailed knowledge about the system structure and behavior.
It can also be created automatically by analyzing the monitoring data that is
collected from APM tools, such as Kieker. In this thesis, the ADM is obtained
by an automated transformation from the SLAstic model which contains
the structural and behavioral information of the system. The SLAstic is, in
turn, automatically extracted from Kieker monitoring logs obtained from
the system at runtime. Moreover, the extraction of an ADM from Kieker
monitoring data is also presented. Thus, the resulting ADM can represent
the component dependencies based on the structure and behavior of the
actual system at runtime.

Failure Propagation Modeling The FPM is the model that combines the
results of component failure predictors and the ADM to infer the failure
probabilities of the components and the whole system based on the architec-
tural knowledge. The ADM presented in the previous step is transformed
into an FPM, which employs Bayesian network theory to model the failure
propagation. The prediction results from component failure predictors in
the first step are incorporated into the model and updated periodically so

232 14 | Conclusions

that the model represents the actual status of the system. In the last step,
the model is solved at regular intervals to obtain the failure probability of
each component, as well as the whole system and the provided service. This
approach allows a higher degree of modularity as different failure prediction
techniques can be applied and reused among similar types of components.
The evaluation shows that HOraA can improve online failure prediction for
software systems by explicitly considering architectural knowledge. The
results show that Hora provides a significantly higher prediction quality
than the monolithic approach and can improve the overall AUC by 9.9%.

233

CHAPTER

FUTURE WORK

This chapter discusses the future work of the Hora approach introduced in
this thesis.

Component Failure Prediction The types of data considered in component
failure prediction are time series, event logs, and S.M.A.R.T. data. These
types of data are collected from CPU, software components, logs files of
supercomputer, and hard drives. There are other components that provide
the same types of data, e.g., network utilization, disk utilization, application-
level logs. These sources of information can provide more information that
may help predicting the failures. However, further investigation is required
to discover the relationship between these components and the failure of
the system. Moreover, suitable prediction techniques for these components
need to be investigated and optimized to produce high prediction quality.

Architectural Dependency Modeling The ADM in this thesis is automati-
cally transformed from a SLAstic model which is extracted from the Kieker
monitoring data. The extraction can be extended to support other types of
architectural models, such as PCM or Descartes.

235

The extraction of the ADM can also be extended to support architectural
changes at runtime. The possibility of an automatic architectural change
detection, which triggers the extraction of a new ADM, may be investigated.
This will allow the ADM to be kept synchronized with the actual architecture
of the system.

Failure Propagation Modeling The FPM in this thesis employs Bayesian
network theory to represent the propagation of the failures. The Bayesian
network is chosen because it can model the relationships between compo-
nents using its CPTs. However, there might be other types of models that are
also suitable for this purpose. Further investigation is needed to evaluate
their suitability and the prediction quality.

The current limitation of the FPM is that the lead time of all component
failure predictors need to have the same value. In our evaluation, this value is
set to ten minutes. In the future work, an extension of the Bayesian network
can be investigated so that different lead times for different components can
be employed. This will allow more flexibility when selecting and optimizing
component failure predictors as different techniques and different types of
components may produce different prediction qualities with different lead
times. However, this means that the final result of failure prediction will
no longer be a probability and the expected time of occurrence. The result
would become a failure probability distribution over time. The existing
evaluation method will no longer suffice since it only considers one value
of failure probability. A new way of evaluating the prediction quality also
needs to be investigated to handle probability distributions as prediction
results.

Furthermore, the architectural patterns that aim to improve system relia-
bility can also be integrated into the FPM. For example, a circuit breaker is a
pattern that aims to prevent a failure of one component from propagating to
the next component [Nyg18]. More research is required to investigate the
effects of such patterns on the failure propagation and how these patterns
can be modeled in the FPM.

236 15 | Future Work

Failure Diagnosis At runtime, when a failure is predicted, the next step in
proactive fault management is to diagnose the problem. The diagnosis is
carried out to gather more information so that the countermeasures can be
planned and applied effectively. One example of failure diagnosis is fault
localization. A fault that causes a failure that propagates to the system
boundary will usually cause other components along the propagation path
to fail. The fault localization needs to consider the architecture of the
system and trace it back from the system boundary to the origin of the
fault. In the Hora approach, this information is already available in the
ADM. The results of the component failure predictors can be linked with the
ADM to provide a failure propagation diagram. The diagram can assist the
developers or operators to better visualize and understand the root cause
and the propagation of the failures.

Automatic Failure Avoidance After a failure has been predicted and the
location of the fault has been identified, countermeasures can be applied to
prevent the failure from occurring. The information which is available from
the diagnosis step can help in the planning and execution of the preventive
maintenance. For example, if one instance of a microservice is predicted to
fail in the near future, a new instance can be spawned and the problematic
instance can be terminated before it causes a failure. Another example is
when a new version of a microservice, which contains a software bug, has
been deployed to a production environment. If online failure prediction can
predict that all instances of the new version are going to cause a failure, a
countermeasure can trigger a rollback mechanism that reverts all instances
back to an older version. In addition to the execution of a countermeasure,
if the lead time of the failure prediction is sufficiently long, different coun-
termeasures can be investigated and simulated. This will allow the best
countermeasure to be chosen and applied to produce the best result.

237

[AAA+02]

[AAKR13]

[ACC+14]

[ACG11]

[ACG12]

[AGK+02]

BIBLIOGRAPHY

N.R. Adiga, G. Almasi, G.S. Almasi, Y. Aridor, R. Barik, D. Beece,
R. Bellofatto, G. Bhanot, R. Bickford, M. Blumrich, et al. “An overview
of the BlueGene/L supercomputer.” In: Proceedings of ACM/IEEE Confer-
ence on Supercomputing (ICS). IEEE. 2002, pp. 60-60 (cit. on p. 180).

H.J. Abed, A. Al-Fugaha, B. Khan, A. Rayes. “Efficient failure predic-
tion in autonomic networks based on trend and frequency analysis of
anomalous patterns.” In: International Journal of Network Management.
Vol. 23. 3. May 2013, pp. 186-213 (cit. on p. 52).

D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, W. Wang. “Quality-
of-service in cloud computing: modeling techniques and their appli-
cations.” In: Journal of Internet Services and Applications 5.1 (Sept.
2014), p. 11 (cit. on p. 39).

A. Amin, A. Colman, L. Grunske. “Using automated control charts
for the runtime evaluation of qos attributes.” In: Proceedings of the
13th International Symposium on High-Assurance Systems Engineering
(HASE). 2011, pp. 299-306 (cit. on p. 52).

A. Amin, A. Colman, L. Grunske. “An approach to forecasting QoS
attributes of web services based on ARIMA and GARCH models.” In:
Proceedings of the 19th IEEE International Conference on Web Services
(ICWS). 2012, pp. 74-81 (cit. on pp. 2, 52, 53).

L. Abeni, A. Goel, C. Krasic, J. Snow, J. Walpole. “A measurement-
based analysis of the real-time performance of linux.” In: Proceedings
of the 8th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). 2002, pp. 133-142 (cit. on p. 38).

239

[AKA91]

[ALRLO4]

[AMS97]

[ANS+04]

[ARK+10]

[ATBG10]

[ATGO9]

[BBEM15]

[BCK12]

[BDIS04]

240

D. W. Aha, D. Kibler, M. K. Albert. “Instance-based learning algorithms.”
In: Machine Learning 6 (1 1991), pp. 37-66 (cit. on p. 27).

A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr. “Basic concepts and
taxonomy of dependable and secure computing.” In: IEEE Transactions
on Dependable and Secure Computing. Vol. 1. 1. Jan. 2004, pp. 11-33
(cit. on pp. 1, 2, 12-15, 57, 162).

C. G. Atkeson, A. W. Moore, S. Schaal. “Locally Weighted Learning.” In:
Artificial Intelligence Review 11 (1-5 1997), pp. 11-73 (cit. on p. 28).

W. Abdelmoez, D. M. Nassar, M. Shereshevsky, N. Gradetsky, R. Gun-
nalan, H. H. Ammar, B. Yu, A. Mili. “Error propagation in software
architectures.” In: Proceedings of the 10th International Symposium on
Software Metrics. Sept. 2004, pp. 384-393 (cit. on p. 5).

A. Al-Fuqgaha, A. Rayes, D. Kountanis, H. Abed, A. Kamel, R. Salih. “Pre-
diction of performance degradation in telecommunication networks
using joint clustering and association analysis techniques.” In: GLOBE-
COM Workshops (GC Wkshps). 2010, pp. 534-538 (cit. on p. 50).

J. Alonso, J. Torres, J.L. Berral, R. Gavalda. “Adaptive on-line soft-
ware aging prediction based on machine learning.” In: Proceedings of
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 2010, pp. 507-516 (cit. on p. 49).

J. Alonso, J. Torres, R. Gavalda. “Predicting web server crashes: A case
study in comparing prediction algorithms.” In: Proceedings of the 5th
International Conference on Autonomic and Autonomous Systems (ICAS).
IEEE. 2009, pp. 264-269 (cit. on p. 49).

Y. Brun, J. young Bang, G. Edwards, N. Medvidovic. “Self-adapting
reliability in distributed software systems.” In: IEEE Transactions on
Software Engineering 41.8 (2015), pp. 764-780 (cit. on p. 2).

L. Bass, P. Clements, R. Kazman. Software Architecture in Practice. 3rd.
Addison-Wesley Professional, 2012 (cit. on p. 5).

S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni. “Model-Based
Performance Prediction in Software Development: A Survey.” In: IEEE
Transaction on Software Engineering 30.5 (May 2004), pp. 295-310
(cit. on p. 56).

15 | Bibliography

[BGO4] M. A. Babar, L. Gorton. “Comparison of scenario-based software archi-
tecture evaluation methods.” In: Proceedings of the 11th Asia-Pacific
Software Engineering Conference (APSEC). IEEE. 2004, pp. 600-607
(cit. on p. 56).

[BHK14] F. Brosig, N. Huber, S. Kounev. “Architecture-level software perfor-
mance abstractions for online performance prediction.” In: Science of
Computer Programming 90 (2014), pp. 71-92 (cit. on p. 101).

[BHW+15] A. Brunnert, A. van Hoorn, F. Willnecker, A. Danciu, W. Hasselbring,
C. Heger, N. Herbst, P. Jamshidi, R. Jung, J. von Kistowski, A. Kozi-
olek, J. Krof3, S. Spinner, C. Vogele, J. Walter, A. Wert. Performance-
oriented DevOps: A Research Agenda. Tech. rep. SPEC-RG-2015-01.
SPEC Research Group — DevOps Performance Working Group, Stan-
dard Performance Evaluation Corporation (SPEC), Aug. 2015 (cit. on
p- 39).

[Biel2] T. C. Bielefeld. “Online performance anomaly detection for large-scale
software systems.” MA thesis. Kiel University, 2012 (cit. on p. 139).

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006
(cit. on pp. 22, 28, 124, 132).
[BJM+05] O.Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. v. Moorsel,

M. v. Steen. Self-star Properties in Complex Information Systems: Con-
ceptual and Practical Foundations. Springer, 2005 (cit. on p. 14).

[BKRO9] S. Becker, H. Koziolek, R. Reussner. “The Palladio Component Model
for Model-driven Performance Prediction.” In: Journal of Systems and
Software 82.1 (Jan. 2009), pp. 3—-22 (cit. on pp. 39, 57, 101).

[BLM+12] R. Baldoni, G. Lodi, L. Montanari, G. Mariotta, M. Rizzuto. “Online
black-box failure prediction for mission critical distributed systems.” In:
Computer Safety, Reliability, and Security. Springer, 2012, pp. 185-197
(cit. on pp. 2, 50).

[BMR15] R. Baldoni, L. Montanari, M. Rizzuto. “On-line failure prediction in
safety-critical systems.” In: Future Generation Computer Systems 45
(2015), pp. 123-132 (cit. on p. 50).

241

[Bot10]

[Bra97]

[BreO1]

[Bro12]

[BZJ04]

[CAS12]

[CDC10]

[CDI11]

[CE09]

[CGO7]

242

L. Bottou. “Large-Scale Machine Learning with Stochastic Gradient
Descent.” In: Proceedings of the 19th International Conference on Com-
putational Statistics (COMPSTAT). Springer, Aug. 2010, pp. 177-187
(cit. on p. 27).

A.P. Bradley. “The use of the area under the ROC curve in the eval-
uation of machine learning algorithms.” In: Pattern Recognition 30.7
(1997), pp. 1145-1159 (cit. on p. 152).

L. Breiman. “Random Forests.” In: Machine Learning 45 (1 2001),
pp- 5-32 (cit. on p. 25).

F. Brosch. Integrated software architecture-based reliability prediction
for IT systems. Vol. 9. KIT Scientific Publishing, 2012 (cit. on p. 57).

M. A. Babar, L. Zhu, R. Jeffery. “A framework for classifying and
comparing software architecture evaluation methods.” In: Proceedings
of 2004 Australian Software Engineering Conference (ASWEC). 2004,
pp. 309-318 (cit. on p. 56).

T. Chalermarrewong, T. Achalakul, S. C. W. See. “Failure Prediction of
Data Centers Using Time Series and Fault Tree Analysis.” In: Proceed-
ings of the IEEE 18th International Conference on Parallel and Distributed
Systems (ICPADS). 2012, pp. 794-799 (cit. on p. 57).

B. Cavallo, M. Di Penta, G. Canfora. “An empirical comparison of
methods to support QoS-aware service selection.” In: Proceedings of
the 2nd International Workshop on Principles of Engineering Service-
Oriented Systems (PESOS). ACM. 2010, pp. 64-70 (cit. on pp. 2, 52).

V. Cortellessa, A. Di Marco, P. Inverardi. Model-based software per-
formance analysis. Springer Science & Business Media, 2011 (cit. on
p. 47).

B. Chelf, C. Ebert. “Ensuring the Integrity of Embedded Software with
Static Code Analysis.” In: IEEE Software 26.3 (May 2009), pp. 96-99
(cit. on p. 106).

V. Cortellessa, V. Grassi. “A modeling approach to analyze the impact
of error propagation on reliability of component-based systems.” In:
Proceedings of International Symposium on Component-Based Software
Engineering (CBSE). Springer. 2007, pp. 140-156 (cit. on pp. 2, 5, 57).

15 | Bibliography

[CGK+11]

[CH10]

[CH92]

[Che80]

[CKF+04]

[CLL+12]

[CNH+13]

[Coh95]

[CT95]

[CV95]

R. Calinescu, L. Grunske, M. Z. Kwiatkowska, R. Mirandola, G. Tambur-
relli. “Dynamic QoS Management and Optimization in Service-Based
Systems.” In: IEEE Transaction on Software Engineering 37.3 (2011),
pp. 387-409 (cit. on p. 2).

A. Clemm, M. Hartwig. “NETradamus: A forecasting system for system
event messages.” In: Proceedings of Network Operations and Manage-
ment Symposium (NOMS). IEEE. 2010, pp. 623-630 (cit. on p. 53).

S. le Cessie, J. van Houwelingen. “Ridge Estimators in Logistic Regres-
sion.” In: Applied Statistics 41.1 (1992), pp. 191-201 (cit. on p. 27).

R. C. Cheung. “A User-Oriented Software Reliability Model.” In: IEEE
Transaction on Software Engineering 6.2 (Mar. 1980), pp. 118-125
(cit. on p. 57).

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, A. Fox. “Microreboot—
A technique for cheap recovery.” In: Proceedings of Symposium on
Operating Systems Design & Implementation (OSDI). 2004, pp. 31-44
(cit. on p. 2).

L. Cui, B. Li, J. Li, J. Hardy, L. Liu. “Software aging in virtualized
environments: detection and prediction.” In: Proceedings of the 18th
International Conference on Parallel and Distributed Systems (ICPADS).
IEEE. 2012, pp. 718-719 (cit. on p. 52).

P. Capelastegui, A. Navas, F. Huertas, R. Garcia-Carmona, J. C. Dueias.
“An online failure prediction system for private IaaS platforms.” In:
Proceedings of the 2nd International Workshop on Dependability Issues
in Cloud Computing (DISCCO). ACM. 2013, p. 4 (cit. on p. 58).

W.W. Cohen. “Fast Effective Rule Induction.” In: Proceedings of the
12th International Conference on Machine Learning (ICML). Morgan
Kaufmann, 1995, pp. 115-123 (cit. on p. 26).

J. G. Cleary, L. E. Trigg. “K*: An Instance-based Learner Using an En-
tropic Distance Measure.” In: Proceedings of the 12th International
Conference on Machine Learning (ICML). Morgan Kaufmann, 1995,
pp. 108-114 (cit. on p. 28).

C. Cortes, V. Vapnik. “Support-vector networks.” In: Machine Learning
20 (3 1995), pp. 273-297 (cit. on p. 26).

243

[DDC88]

[DHH+17]

[ECHSO08]

[EDBO8a]

[EDBO8D]

[Faw06]

[FFHO8]

[FGG97]

[FGHO6]

244

E.R. DeLong, D. M. DeLong, D.L. Clarke-Pearson. “Comparing the
Areas under Two or More Correlated Receiver Operating Characteris-
tic Curves: A Nonparametric Approach.” In: Biometrics 44.3 (1988),
pp. 837-845 (cit. on p. 154).

T.F. Diillmann, R. Heinrich, A. v. Hoorn, T. Pitakrat, J. Walter, F. Will-
necker. “CASPA: A platform for comparability of architecture-based
software performance engineering approaches.” In: International Con-
ference on Software Architecture Workshops (ICSAW). 2017, pp. 294—
297 (cit. on pp. IX, 141).

B. Eckart, X. Chen, X. He, S.L. Scott. “Failure prediction models for
proactive fault tolerance within storage systems.” In: Proceedings of
IEEE International Symposium on Modeling, Analysis and Simulation of
Computers and Telecommunication Systems (MASCOTS). IEEE. 2008,
pp- 1-8 (cit. on p. 50).

H. El-Shishiny, S. S. Deraz, O. B. Badreddin. “Mining software aging:
A neural network approach.” In: Proceedings of IEEE Symposium on
Computers and Communications (ISCC). IEEE. 2008, pp. 182-187 (cit.
on p. 49).

H. El-Shishiny, S. Deraz, O. Bahy. “Mining software aging patterns

by artificial neural networks.” In: Artificial Neural Networks in Pattern
Recognition. Springer, 2008, pp. 252-262 (cit. on p. 49).

T. Fawcett. “An introduction to ROC analysis.” In: Pattern Recognition
Letters 27.8 (2006), pp. 861-874 (cit. on p. 152).

E.W. Fulp, G. A. Fink, J. N. Haack. “Predicting Computer System Fail-
ures Using Support Vector Machines.” In: Proceedings of the First
USENIX Conference on Analysis of System Logs. Vol. 8. 2008, pp. 5-5
(cit. on p. 54).

N. Friedman, D. Geiger, M. Goldszmidt. “Bayesian Network Classifiers.”
In: Machine Learning 29 (2-3 1997), pp. 131-163 (cit. on p. 24).

P. H. Feiler, D. P. Gluch, J.J. Hudak. The architecture analysis & design
language (AADL): An introduction. Tech. rep. Carnegie-Mellon Univ
Pittsburgh PA Software Engineering Inst, 2006 (cit. on p. 38).

15 | Bibliography

[FGP12]

[FHPO3]

[FHTO00]

[Fow02]

[FRZ+12]

[FS98]

[FSS+12]

[FW98]

[GCF+11]

J. Fullop, A. Gainaru, J. Plutchak. “Real time analysis and event pre-
diction engine.” In: Proceedings of the Cray User Group meeting. 2012
(cit. on p. 55).

E. Frank, M. Hall, B. Pfahringer. “Locally weighted naive Bayes.”
In: Proceedings of the 19th Conference on Uncertainty in Artificial In-
telligence (UAI). San Francisco, CA, USA: Morgan Kaufmann, 2003,
pp. 249-256 (cit. on p. 28).

J. Friedman, T. Hastie, R. Tibshirani. “Additive logistic regression: a
statistical view of boosting.” In: The annals of statistics 28.2 (2000),
pp. 337-407 (cit. on p. 27).

M. Fowler. Patterns of Enterprise Application Architecture. Addison
Wesley, 2002 (cit. on p. 3).

X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, G. Lu. “LogMaster: mining event
correlations in logs of large-scale cluster systems.” In: Proceedings of
the 31st Symposium on Reliable Distributed Systems (SRDS). IEEE. 2012,
pp. 71-80 (cit. on p. 54).

Y. Freund, R. E. Schapire. “Large margin classification using the per-
ceptron algorithm.” In: Proceedings of the 11th Annual Conference on
Computational Learning Theory (COLT). ACM, 1998, pp. 209-217 (cit.
on p. 27).

L. Fronza, A. Sillitti, G. Succi, M. Terho, J. Vlasenko. “Failure prediction
based on log files using Random Indexing and Support Vector Ma-
chines.” In: Journal of Systems and Software (2012), pp. 1-10 (cit. on
pPp. 55, 226).

E. Frank, L. H. Witten. “Generating Accurate Rule Sets Without Global
Optimization.” In: Proceedings of the 15th International Conference
on Machine Learning (ICML). Morgan Kaufmann, 1998, pp. 144-151
(cit. on p. 26).

A. Gainaru, F. Cappello, J. Fullop, S. Trausan-Matu, W. Kramer. “Adap-
tive event prediction strategy with dynamic time window for large-scale
HPC systems.” In: Managing Large-scale Systems via the Analysis of
System Logs and the Application of Machine Learning Techniques. ACM.
2011, p. 4 (cit. on p. 55).

245

[GCK+16]

[Gell]

[GHO08]

[GJW+10]

[GMW10]

[GPYCO8]

[Gru07]

[GS14]

[GTO1]

246

S. Ganguly, A. Consul, A. Khan, B. Bussone, J. Richards, A. Miguel. “A
Practical Approach to Hard Disk Failure Prediction in Cloud Platforms:
Big Data Model for Failure Management in Datacenters.” In: Proceed-
ings of the 2nd International Conference on Big Data Computing Service
and Applications (BigDataService). IEEE. 2016, pp. 105-116 (cit. on
p- 51).

W. Ge. “Prediction-based failure management for supercomputers.”
PhD thesis. University of Manchester, 2011 (cit. on p. 55).

L. Grunske, J. Han. “A comparative study into architecture-based safety
evaluation methodologies using AADL’s error annex and failure prop-
agation models.” In: Proceedings of the 11th High Assurance Systems
Engineering Symposium (HASE). 2008, pp. 283-292 (cit. on p. 56).

J. Guo, Y. Ju, Y. Wang, X. Li, B. Zhang. “The prediction of software aging
trend based on user intention.” In: Proceedings of Youth Conference
on Information Computing and Telecommunications (YC-ICT). 2010,
pp. 206-209 (cit. on p. 49).

D. Garlan, R. Monroe, D. Wile. “Acme: An Architecture Description
Interchange Language.” In: CASCON First Decade High Impact Papers.
Riverton, NJ, USA: IBM Corp., 2010, pp. 159-173 (cit. on p. 38).

X. Gu, S. Papadimitriou, P.S. Yu, S.-P. Chang. “Online failure fore-
cast for fault-tolerant data stream processing.” In: Proceedings of the
24th International Conference on Data Engineering (ICDE). IEEE. 2008,
pp. 1388-1390 (cit. on p. 51).

L. Grunske. “Early quality prediction of component-based systems - A
generic framework.” In: Journal of Systems and Software 80.5 (2007),
pp. 678-686 (cit. on p. 56).

A. Gosain, G. Sharma. “A Survey of Dynamic Program Analysis Tech-
niques and Tools.” In: Proceedings of the 3rd International Conference
on Frontiers of Intelligent Computing: Theory and Applications (FICTA).
Vol. 1. 2014, pp. 113-122 (cit. on p. 107).

K. Goseva-Popstojanova, K. S. Trivedi. “Architecture-based approach to
reliability assessment of software systems.” In: Performance Evaluation
45.2-3 (2001). Performance Validation of Software Systems, pp. 179-
204 (cit. on p. 56).

15 | Bibliography

[GVVT98]

[GWO09]

[GZF11a]

[GZF11b]

[GZF12]

[GZL+08]

[Hal08]
[Hay99]

[HBS+17]

S. Garg, A. Van Moorsel, K. Vaidyanathan, K. S. Trivedi. “A methodology
for detection and estimation of software aging.” In: Proceedings of
the 9th International Symposium on Software Reliability Engineering
(ISSRE). IEEE. 1998, pp. 283-292 (cit. on p. 49).

X. Gu, H. Wang. “Online anomaly prediction for robust cluster systems.”
In: Proceedings of the 25th International Conference on Data Engineering
(ICDE). IEEE. 2009, pp. 1000-1011 (cit. on p. 51).

Q. Guan, Z. Zhang, S. Fu. “Ensemble of bayesian predictors for auto-
nomic failure management in cloud computing.” In: Proceedings of
the 20th International Conference on Computer Communications and
Networks (ICCCN). IEEE. 2011, pp. 1-6 (cit. on p. 52).

Q. Guan, Z. Zhang, S. Fu. “Proactive failure management by integrated
unsupervised and semi-supervised learning for dependable cloud sys-
tems.” In: Proceedings of the 6th International Conference on Availability,
Reliability and Security (ARES). IEEE. 2011, pp. 83-90 (cit. on p. 52).

Q. Guan, Z. Zhang, S. Fu. “Ensemble of bayesian predictors and decision
trees for proactive failure management in cloud computing systems.”
In: Journal of Communications 7.1 (2012), pp. 52-61 (cit. on pp. 51,
52).

J. Gu, Z. Zheng, Z. Lan, J. White, E. Hocks, B.-H. Park. “Dynamic meta-
learning for failure prediction in large-scale systems: A case study.” In:

Proceedings of the 37th International Conference on Parallel Processing
(ICPP). IEEE. 2008, pp. 157-164 (cit. on p. 53).

E. Halili. Apache JMeter. Packt Publishing, 2008 (cit. on p. 160).

S. S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall, 1999 (cit. on p. 27).

N. Huber, F. Brosig, S. Spinner, S. Kounev, M. Bahr. “Model-Based Self-
Aware Performance and Resource Management Using the Descartes
Modeling Language.” In: IEEE Transactions on Software Engineering
43.5 (May 2017), pp. 432-452 (cit. on p. 57).

247

[HHMO17] C. Heger, A. van Hoorn, M. Mann, D. Okanovi¢. “Application Perfor-
mance Management: State of the Art and Challenges for the Future.”
In: Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering (ICPE). ACM, 2017, pp. 429-432 (cit. on
pp. 40, 41).

[HJSO01] M. Hiller, A. Jhumka, N. Suri. “An approach for analysing the prop-
agation of data errors in software.” In: Proceedings of International
Conference on Dependable Systems and Networks (DSN). IEEE. 2001,
pp. 161-170 (cit. on pp. 2, 5).

[HLO5] J. Huang, C.X. Ling. “Using AUC and accuracy in evaluating learning
algorithms.” In: IEEE Transactions on Knowledge and Data Engineering
17.3 (Mar. 2005), pp. 299-310 (cit. on p. 152).

[Hol93] R. C. Holte. “Very Simple Classification Rules Perform Well on Most
Commonly Used Datasets.” In: Machine Learning 11 (1 1993), pp. 63—
90 (cit. on p. 25).

[Hoo14] A.van Hoorn. “Model-driven online capacity management for component-
based software systems.” PhD thesis. 2014 (cit. on pp. 7, 41, 42, 44,
46, 101, 107, 115, 116, 118, 120).

[HRS+08] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, J. Lepreau. “Large-scale Virtualization in the Emulab Network
Testbed.” In: USENIX Annual Technical Conference. 2008, pp. 113-128
(cit. on p. 161).

[HSMO1] D.J. Hand, P. Smyth, H. Mannila. Principles of Data Mining. MIT Press,
2001 (cit. on p. 181).

[HTFO01] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learn-
ing. Springer, 2001 (cit. on p. 23).

[HWH12] A. van Hoorn, J. Waller, W. Hasselbring. “Kieker: A framework for
application performance monitoring and dynamic software analysis.”
In: Proceedings of the 3rd ACM/SPEC International Conference on Per-
formance Engineering (ICPE). ACM. 2012, pp. 247-248 (cit. on pp. 7,
44, 107, 136, 139, 140, 161).

[IEE95] IEEE 610.10-1994. “IEEE Standard Glossary of Computer Hardware
Terminology.” In: IEEE Std 610.10-1994 (1995), pp. i- (cit. on p. 35).

248 15 | Bibliography

[ISO11]

[TV14]

[JSO5]

[KBH14]

[KFPHO5]

[KHH+01]

[Koh95]

[Koz10]

[KWTI15]

ISO/IEC/IEEE 42010:2011(E). “ISO/IEC/IEEE Systems and software
engineering — Architecture description.” In: ISO/IEC/IEEE 42010:2011
(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000) (Dec.
2011), pp. 1-46 (cit. on pp. 33, 37).

L. Irrera, M. Vieira. “A practical approach for generating failure data
for assessing and comparing failure prediction algorithms.” In: Pro-
ceedings of the 20th Pacific Rim International Symposium on Dependable
Computing (PRDC). IEEE. 2014, pp. 86-95 (cit. on p. 177).

A. Johansson, N. Suri. “Error propagation profiling of operating sys-
tems.” In: Proceedings of International Conference on Dependable Systems
and Networks (DSN). IEEE. 2005, pp. 86-95 (cit. on p. 2).

S. Kounev, F. Brosig, N. Huber. The Descartes Modeling Language. Tech.
rep. Department of Computer Science, University of Wuerzburg, Oct.
2014, p. 91 (cit. on p. 39).

A. M. Kibriya, E. Frank, B. Pfahringer, G. Holmes. “Multinomial Naive
Bayes for Text Categorization Revisited.” In: AI 2004: Advances in
Artificial Intelligence. Vol. 3339. LNCS. Springer, 2005, pp. 488-499
(cit. on p. 24).

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold.
“An overview of Aspect].” In: European Conference on Object-Oriented
Programming. Springer. 2001, pp. 327-354 (cit. on p. 138).

R. Kohavi. “The power of decision tables.” In: Proceedings of the 8th
European Conference on Machine Learning (ECML). Vol. 912. LNCS.
Springer, 1995, pp. 174-189 (cit. on p. 26).

H. Koziolek. “Performance evaluation of component-based software
systems: A survey.” In: Performance Evaluation 67.8 (2010). Special
Issue on Software and Performance, pp. 634-658 (cit. on p. 56).

T. Kimura, A. Watanabe, T. Toyono, K. Ishibashi. “Proactive failure
detection learning generation patterns of large-scale network logs.”
In: Proceedings of the 11th International Conference on Network and
Service Management (CNSM). IEEE. 2015, pp. 8-14 (cit. on p. 56).

249

[LDOS5]

[LHFO05]

[LLO6]

[LMPO8]

[LMRD10]

[Lou06]

[IWR+10]

[LWZG09]

[LZXS07a]

250

D. Lowd, P. Domingos. “Naive Bayes models for probability estima-
tion.” In: Proceedings of the 22nd International Conference on Machine
Learning (ICML). ACM, 2005, pp. 529-536 (cit. on p. 24).

N. Landwehr, M. Hall, E. Frank. “Logistic Model Trees.” In: 95.1-2
(2005), pp. 161-205 (cit. on p. 27).

Y. Li, Z. Lan. “Exploit failure prediction for adaptive fault-tolerance
in cluster computing.” In: Proceedings of the 6th IEEE International
Symposium on Cluster Computing and the Grid (CCGRID). Vol. 1. IEEE.
2006, 8—pp (cit. on p. 2).

D. Lorenzoli, L. Mariani, M. Pezze. “Automatic generation of software
behavioral models.” In: Proceedings of the 30th International Conference
on Software engineering (ICSE). ACM. 2008, pp. 501-510 (cit. on
pp. 101, 107).

P. Leitner, A. Michlmayr, F. Rosenberg, S. Dustdar. “Monitoring, pre-
diction and prevention of sla violations in composite services.” In:
Proceedings of International Conference on Web Services (ICWS). IEEE.
2010, pp. 369-376 (cit. on p. 50).

P. Louridas. “Static code analysis.” In: IEEE Software 23.4 (2006),
pp- 58-61 (cit. on p. 106).

P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, F. Ley-
mann. “Runtime prediction of service level agreement violations for
composite services.” In: Service-Oriented Computing. ICSOC/Service-
Wave 2009 Workshops. Springer. 2010, pp. 176-186 (cit. on p. 50).

X. Lu, H. Wang, R. Zhou, B. Ge. “Using Hessian Locally Linear Em-
bedding for autonomic failure prediction.” In: Proceedings of World
Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE.
2009, pp. 772-776 (cit. on p. 51).

Y. Liang, Y. Zhang, H. Xiong, R. Sahoo. “An adaptive semantic filter
for Blue Gene/L failure log analysis.” In: Proceedings of Symposium of
International Parallel and Distributed Processing (IPDPS). IEEE. 2007,
pp. 1-8 (cit. on pp. 86, 88-90).

15 | Bibliography

[LZXS07b]

[MAO1]

[Mer14]

[MHKO5]

[Moh12]

[MRHO09]

[MS10]

[MTO00]

[Mus98]

[NAC11]

Y. Liang, Y. Zhang, H. Xiong, R. Sahoo. “Failure prediction in IBM
BlueGene/L event logs.” In: Proceedings of the 7th International Confer-
ence on Data Mining (ICDM). IEEE. 2007, pp. 583-588 (cit. on pp. 54,
226).

D.A. Menasce, V. Almeida. Capacity Planning for Web Services: Metrics,
Models, and Methods. 1st. Prentice Hall, 2001 (cit. on p. 38).

D. Merkel. “Docker: lightweight linux containers for consistent devel-
opment and deployment.” In: Linux Journal 2014.239 (2014), p. 2
(cit. on p. 141).

J. F. Murray, G. F. Hughes, K. Kreutz-Delgado. “Machine learning meth-
ods for predicting failures in hard drives: A multiple-instance applica-
tion.” In: Journal of Machine Learning research 6 (2005), p. 816 (cit. on
p. 192).

A. Mohamed. “Software Architecture-Based Failure Prediction.” In:
(2012) (cit. on p. 58).

D. C. Montgomery, G. C. Runger, N. F. Hubele. Engineering statistics.
John Wiley & Sons, 2009 (cit. on pp. 85, 153, 154).

J. P. Magalhaes, L. M. Silva. “Prediction of performance anomalies in
web-applications based-on software aging scenarios.” In: Proceedings
of the 2nd International Workshop on Software Aging and Rejuvenation
(WoSAR). IEEE. 2010, pp. 1-7 (cit. on p. 51).

N. Medvidovi¢, R. N. Taylor. “A Classification and Comparison Frame-
work for Software Architecture Description Languages.” In: IEEE Trans-
action on Software Engineering 26.1 (Jan. 2000), pp. 70-93 (cit. on
p- 37).

J. D. Musa. Software reliability engineering. McGraw-Hill, 1998 (cit. on
p. 47).

N. Nakka, A. Agrawal, A. Choudhary. “Predicting node failure in high
performance computing systems from failure and usage logs.” In:
Proceedings of International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW). IEEE. 2011, pp. 1557-
1566 (cit. on p. 56).

251

[NCM16]

[New15]

[Nyg18]

[Obj05]

[Obj11]

[OP95]

[0S07]

[PGK+14]

[PHG13]

252

R. Natella, D. Cotroneo, H. S. Madeira. “Assessing Dependability with
Software Fault Injection: A Survey.” In: ACM Computing Surveys (CSUR)
48.3 (2016), p. 44 (cit. on p. 177).

S. Newman. Building Microservices. 1st. O’Reilly Media, 2015 (cit. on
pp- 37, 156, 178).

M. Nygard. Release It!: Design and Deploy Production-Ready Software.
Pragmatic Bookshelf, 2018 (cit. on pp. 2, 5, 236).

Object Management Group (OMG). UML Profile for Schedulability, Per-
formance, & Time. OMG Document Number formal/05-01-02 (http:
//www.omg.org/spec/SPTP/). Jan. 2005 (cit. on p. 39).

Object Management Group (OMG). UML Profile for MARTE: Modeling
and Analysis of Real-Time Embedded Systems. OMG Document Number
formal/11-06-02 (http://www . omg . org/spec/MARTE/). June
2011 (cit. on p. 39).

E. Ottem, J. Plummer. Playing it SMART: The emergence of reliability
prediction technology. Tech. rep. Technical report, Seagate Technology
Paper, 1995 (cit. on pp. 50, 95).

A. Oliner, J. Stearley. “What Supercomputers Say: A Study of Five Sys-
tem Logs.” In: Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2007,
pp. 575-584 (cit. on pp. 86, 89, 91, 180).

T. Pitakrat, J. Grunert, O. Kabierschke, F. Keller, A. van Hoorn. “A
framework for system event classification and prediction by means
of machine learning.” In: Proceedings of the 8th International Confer-
ence on Performance Evaluation Methodologies and Tools (VALUETOOLS).
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering). 2014, pp. 173-180 (cit. on pp. X, 2, 72).

T. Pitakrat, A. van Hoorn, L. Grunske. “A comparison of machine
learning algorithms for proactive hard disk drive failure detection.”
In: Proceedings of the 4th International ACM Sigsoft Symposium on
Architecting Critical Systems (ISARCS). ACM. 2013, pp. 1-10 (cit. on
pp- X, 72).

15 | Bibliography

http://www.omg.org/spec/SPTP/
http://www.omg.org/spec/SPTP/
http://www.omg.org/spec/MARTE/

[PHG14]

[Pit13]

[Pit18]

[Pla99]

[PNO5a]

[PNO5D]

[POHG16]

[POHG18]

[Qui%3]

T. Pitakrat, A. van Hoorn, L. Grunske. “Increasing dependability of
component-based software systems by online failure prediction (short
paper).” In: Proceedings of the 10th European Dependable Computing
Conference (EDCC). IEEE. 2014, pp. 66-69 (cit. on pp. IX, 72).

T. Pitakrat. “Hora: online failure prediction framework for component-
based software systems based on Kieker and Palladio.” In: Symposium
on Software Performance. Joint Kieker/Palladio Days. 2013, pp. 39-48
(cit. on p. X).

T. Pitakrat. An Architecture-aware Approach to Hierarchical Online
Failure Prediction. May 2018. URL: https://doi.org/10.5281/
zenodo . 1247872 (cit. on pp. 8, 135, 208, 209, 223).

J. C. Platt. “Advances in kernel methods.” In: Cambridge, MA, USA:
MIT Press, 1999. Chap. Fast training of support vector machines using
sequential minimal optimization, pp. 185-208 (cit. on p. 26).

S. Pertet, P. Narasimhan. “Causes of failure in web applications (cmu-
pdl-05-109).” In: Parallel Data Laboratory (2005), p. 48 (cit. on pp. 161,
178).

S. Pertet, P. Narasimhan. “Handling cascading failures: the case for
topology-aware fault-tolerance.” In: Proceedings of the 1st Workshop
on Hot Topics in System Dependability (HotDep). Citeseer. 2005 (cit. on
p. 59).

T. Pitakrat, D. Okanovic, A. van Hoorn, L. Grunske. “An architecture-
aware approach to hierarchical online failure prediction.” In: Proceed-
ings of the 12th International ACM SIGSOFT Conference on Quality of
Software Architectures (QoSA). IEEE. 2016, pp. 60-69 (cit. on pp. IX,
72).

T. Pitakrat, D. Okanovi¢, A. van Hoorn, L. Grunske. “Hora: Architecture-
aware online failure prediction.” In: Journal of Systems and Software
137 (2018), pp. 669-685 (cit. on pp. IX, 72).

J.R. Quinlan. C4.5: Programs for machine learning. Vol. 1. Morgan
Kaufmann, 1993 (cit. on p. 25).

253

https://doi.org/10.5281/zenodo.1247872
https://doi.org/10.5281/zenodo.1247872

[R C15]

[RTH+11]

[SAG+06]

[Sch08]

[Scul0]

[SFHOS5]

[SLM10]

[SMO07]

[SRSD04]

[SS11]

254

R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria, 2015. URL:
http://www.R-project.org/ (cit. on pp. 139, 143, 154).

X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez,
M. Miiller. “pROC: An open-source package for R and S+ to analyze
and compare ROC curves.” In: BMC bioinformatics 12.1 (2011), p. 77
(cit. on p. 154).

B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, H. Yan. “Discovering Ar-
chitectures from Running Systems.” In: IEEE Transactions on Software
Engineering 32.7 (July 2006), pp. 454-466 (cit. on p. 101).

G. Schulmeyer. Handbook of Software Quality Assurance. Artech House,
2008 (cit. on p. 1).

M. Scutari. “Learning Bayesian Networks with the bnlearn R Package.”
In: Journal of Statistical Software 35.3 (2010), pp. 1-22 (cit. on p. 144).

M. Sumner, E. Frank, M. Hall. “Speeding up Logistic Model Tree
Induction.” In: Proceedings of the 9th European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD). Springer,
2005, pp. 675-683 (cit. on p. 27).

F. Salfner, M. Lenk, M. Malek. “A survey of online failure prediction
methods.” In: ACM Computing Surveys 42.3 (Mar. 2010), 10:1-10:42
(cit. on pp. 2, 12, 14, 15, 17, 18, 22, 47, 48, 150, 152).

F. Salfner, M. Malek. “Using hidden semi-markov models for effective
online failure prediction.” In: Proceedings of the 26th International Sym-
posium on Reliable Distributed Systems (SRDS). IEEE. 2007, pp. 161-
174 (cit. on pp. 2, 226).

M. Sahinoglu, C. Ramamoorthy, A. E. Smith, B. Dengiz. “A reliability
block diagramming tool to describe networks.” In: Annual Reliability
and Maintainability Symposium (RAMS). IEEE. 2004, pp. 141-145
(cit. on p. 39).

R. H. Shumway, D. S. Stoffer. Time Series Analysis and Its Applications:
With R Examples. 3rd. Springer Texts in Statistics. Springer, 2011 (cit.
on pp. 18, 19, 21, 22, 84).

15 | Bibliography

http://www.R-project.org/

[Svell]

[SWCO03]

[SWM12]

[SZ13]

[Szy02]

[Tia05]

[TMDO09]

[TZB11]

[UT14]

[VDO2]

P. A. Svendsen. “Online failure prediction in UNIX systems.” MA thesis.
University of Agder, 2011 (cit. on p. 51).

J. A. Stafford, A. L. Wolf, M. Caporuscio. “The Application of Depen-
dence Analysis to Software Architecture Descriptions.” In: Formal
Methods for Software Architectures: Third International School on For-
mal Methods for the Design of Computer, Communication and Software
Systems: Software Architectures (SFM). Springer, 2003, pp. 52-62 (cit.
on p. 36).

M. Sonoda, Y. Watanabe, Y. Matsumoto. “Prediction of failure occur-
rence time based on system log message pattern learning.” In: Pro-
ceedings of Network Operations and Management Symposium (NOMS).
IEEE. 2012, pp. 578-581 (cit. on p. 56).

A. Shalan, M. Zulkernine. “Runtime Prediction of Failure Modes from
System Error Logs.” In: Proceedings of the 18th International Conference
on Engineering of Complex Computer Systems (ICECCS). IEEE. 2013,
pp. 232-241 (cit. on p. 56).

C. Szyperski. Component Software: Beyond Object-Oriented Program-
ming. 2nd. Addison-Wesley Longman, 2002 (cit. on p. 34).

J. Tian. Software quality engineering: testing, quality assurance, and
quantifiable improvement. John Wiley & Sons, 2005 (cit. on p. 1).

R. N. Taylor, N. Medvidovi¢, E. M. Dashofy. Software Architecture: Foun-
dations, Theory, and Practice. Wiley Publishing, 2009 (cit. on pp. 5,
33-37).

N. Theera-Ampornpunt, B. Zhou, S. Bagchi. “Predicting Time to Fail-
ure for Large Scale Distributed Systems.” In: Proceedings of the 42nd
Annual IEEE/IFIP International Conference On Dependable Systems And
Networks (DSN). 2011, pp. 27-30 (cit. on p. 55).

J. Uhle, P. Troger. “On Dependability Modeling in a Deployed Mi-
croservice Architecture.” MA thesis. Universitat Potsdam, 2014 (cit. on
p. 57).

R. Vilalta, Y. Drissi. “A Perspective View and Survey of Meta-Learning.”
In: Artificial Intelligence Review 18 (2 2002), pp. 77-95 (cit. on p. 25).

255

[Wal06]

[WFHP16]

[WMCT14]

[WOS+12]

[WPNO7]

[WRH+12]

[XSJC09]

[YZLC11]

[ZLG+10]

256

R. Walker. “Examining Load Average.” In: Linux Journal 2006.152
(2006), pp. 5-16 (cit. on pp. 83, 163).

I.H. Witten, E. Frank, M. A. Hall, C.J. Pal. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016 (cit.
on pp. 139, 181, 189, 194).

Y. Wang, E. Ma, T. Chow, K.-L. Tsui. “A Two-Step Parametric Method
for Failure Prediction in Hard Disk Drives.” In: IEEE Transactions on
Industrial Informatics 10.1 (Feb. 2014), pp. 419-430 (cit. on p. 52).

Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi, Y. Matsumoto. “Online
failure prediction in cloud datacenters by real-time message pattern
learning.” In: Proceedings of the 4th International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE. 2012, pp. 504—
511 (cit. on p. 55).

A.W. Williams, S. M. Pertet, P. Narasimhan. “Tiresias: Black-box failure
prediction in distributed systems.” In: Proceedings of International
Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2007,
pp. 1-8 (cit. on p. 2).

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén.
Experimentation in software engineering. Springer Science & Business
Media, 2012 (cit. on p. 154).

K.-X. Xue, L. Su, Y.-F. Jia, K.-Y. Cai. “A neural network approach
to forecasting computing-resource exhaustion with workload.” In:
Proceedings of the 9th International Conference on Quality Software
(QSIC). TEEE. 2009, pp. 315-324 (cit. on p. 49).

L. Yu, Z. Zheng, Z. Lan, S. Coghlan. “Practical online failure prediction
for Blue Gene/P: Period-based vs event-driven.” In: Proceedings of
the 41st International Conference on Dependable Systems and Networks
Workshops (DSN-W). IEEE. 2011, pp. 259-264 (cit. on p. 54).

Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, P. Beckman. “A practical
failure prediction with location and lead time for Blue Gene/P.” In:
Proceedings of International Conference on Dependable Systems and
Networks Workshops (DSN-W). IEEE. 2010, pp. 15-22 (cit. on p. 54).

15 | Bibliography

[ZWL+13] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, J. Ma. “Proactive drive failure
prediction for large scale storage systems.” In: Proceedings of the 29th
Symposium on Mass Storage Systems and Technologies (MSST). May

2013, pp. 1-5 (cit. on p. 50).

All URLs were last checked on 10.06.2018.

257

1.1.

1.2.

2.1.
2.2,
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.

4.1.

5.1.

LIST OF FIGURES

Running Example 1: High-level three-tier architecture and

selected measurements 4
High-level overview of the Hora approach 6
Relationship between fault, symptom, error and failure ... 12
Taxonomyof faults 13
Steps involved in proactive fault management 15
Timeline of online failure prediction 18
Workflow of time series forecasting 19
Workflow of machine learning 22
An example of a Bayesian network with three random variables 29
SLAstic framework architecture 42
Core components and workflow of Kieker 44
Class diagram of monitoring records 44
Example of tracing with EOland ESS 46
High-level overview of the Hora approach 72
Overview of component failure prediction. 78

259

5.2

5.3.

5.4.

5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.

6.1.
6.2.
6.3.
6.4.

6.5.

6.6.

6.7.

6.8.
6.9.

6.10.
6.11.
6.12.
6.13.

260

Memory utilization of a business-tier instance of Running
Example 1 81
Failure prediction of a business-tier instance based on the

memory utilization L. 84
Probability density function of memory utilization at 3:55

PM and memory failure probability 85
Overview of critical event prediction 87
Application of normalization on log records 89
Example of labeled log messages 92
Timeline of critical event prediction. 94
Example of grouped log messages 94
S.M.A.R.T. dataset example (excerpt) 96
Overview of hard drive failure prediction 96
Running Example 2: component diagram 104
Running Example 1: component diagram 104
Overview of automated extraction of the ADM 108

Degrees of dependencies of Running Example 1 extracted by
analyzing architectural structure 109
Example of calling relationship and number of invocations
(denoted by arrows and the corresponding numbers) of Run-

ning Example 1 extracted from the SLAstic model 110
Degrees of dependencies of Running Example 1 extracted by

analyzing calling relationship. 111
A simple example of a software component with outgoing

dependency weightsof 1.0 112
Degree of dependency between hardware components 113
Degree of dependency between software and hardware com-

PONENLSt i e 114
An excerpt of the meta-model for the type repository. 115
An excerpt of the meta-model for the component assembly . 116
The meta-model for the component deployment 116
The meta-model for the execution environment 116

List of Figures

6.14.

7.1.
7.2.

8.1.
8.2.
8.3.

9.1.

10.1.
10.2.
10.3.
10.3.
10.4.
10.4.

10.5.
10.5.

10.6.
10.6.

10.7.

10.7.

11.1.

11.2.

The meta-model for the usage model and the extensions .. 118

FPM of Running Example 2 in Figure 6.1 125
FPM of Running Example 1 in Figure 6.2 126
Architecture of Java implementation of Hora 137
Architecture of Go implementation of Hora 142

A visualization of the prediction results of Hora at runtime 145

Example of ROCcurves 153
Web user interface of the RSS feed reader application 157
Architecture of RSS feed reader application. 159

Timeline plots of selected components for memory leak scenario164
Timeline plots of selected components for memory leak sce-
nario (CONL.) v v v e e e e e e 165
Timeline plots of selected components for system overload
SCENATIO . . v v vt e 167
Timeline plots of selected components for system overload
scenario (COML.) v v v it i e e e e e e e e e e e 168
Timeline plots of selected components for node crash scenariol70
Timeline plots of selected components for node crash sce-
nario (CONL.) . . v v v v i e e e e e e e e e e e e 171
ROC curves of ARIMA predictor for different types of faults. 172
ROC curves of ARIMA predictor for different types of faults

(COML.) .t e e 173
Prediction quality of ARIMA with different parameter con-
figurations 175

Prediction quality of ARIMA with different parameter con-
figurations (CONt.) v v vt ittt e 176

Precision and recall of KERNMNTF label using naive Bayes
on normalized logfile 183
F-measure of event classification using different algorithms . 184

List of Figures 261

262

11.3.

11.4.

12.1.
12.2.

12.3.

13.1.
13.2.
13.2.
13.3.

13.3.

13.4.
13.4.

13.5.
13.5.

13.6.
13.7.

Number of messages with INFO severity before and after
applying different filters 185
F-measure of event classification when applying different filters186

ROC curves of different prediction algorithms 196
ROC curves of different prediction algorithms (excerpt from Fig-

ure 12.1) . . e e e e e 196
Mean training and prediction times of the selected algorithms198

An excerpt of the FPM of RSS reader application 210
Timeline plots of selected components for memory leak scenario212
Timeline plots of selected components for memory leak sce-
nario (Cont.) i i e 213
Timeline plots of selected components for system overload
SCENATIO .« v v v it e e e e e e e e 214
Timeline plots of selected components for system overload
scenario (COML.) v v v it e e e e e e e e 215
Timeline plots of selected components for node crash scenario217
Timeline plots of selected components for node crash sce-
nario (CONt.) . . v v v v i it e e e e 218
Comparison of ROC curves for the different types of faults . 219
Comparison of ROC curves for the different types of faults
(COML.) .« vt e e e e 220
Prediction quality of Hora with different ADM configurations224
Hora’s average analysis and prediction duration (including
95% confidence interval) for 2-hour monitoring data 225

List of Figures

2.1.

4.1.

5.1.

6.1.
6.2.
6.3.

7.1.
7.2.

9.1.
9.2.

10.1.

11.1.

LiST OF TABLES

CPTs of Bayesian network in Figure 2.7 30
Research questionsc.uuuuunn... 64

Statistics and example of log file collected from Blue Gene/L 93

Table representation of an ADM 103
Table representation of the ADM for Running Example 2 . . 104
Table representation of the ADM for Running Example 1 . . 106
CPTs of Running Example 2 125
Selected CPTs of Running Example 1 in Figure 6.2. 127
Contingencytable 151
Selected derived evaluation metrics 151

Comparison of all evaluation metrics for the different types
offaults 174

F-measures of system event prediction with different param-
eter configurations 187

263

264

12.1.

12.2.

13.1.

Prediction quality of the selected algorithms ordered by
Fmeasure e 197
Training and prediction time statistics averaged across 100
TUDS « v vttt e e e e e e e e e e 199

Comparison of all evaluation metrics for the different types
offaults 221

List of Tables

	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Motivating Example
	1.3 Overview of Contribution
	1.4 Thesis Structure

	I Foundations and Related Work
	2 Foundations
	2.1 Proactive Fault Management and Online Failure Prediction
	2.2 Online Failure Prediction Techniques
	2.3 Architecture-based Software qos Management

	3 Related Work
	3.1 Monolithic Online Prediction
	3.2 Architecture-based Offline Prediction
	3.3 Architecture-based Online Prediction

	II Contribution
	4 Research Design and Overview of the Approach
	4.1 Goal and Research Questions
	4.2 Research Plan
	4.3 Overview of the Hora Approach

	5 Component Failure Prediction
	5.1 Research Questions
	5.2 Overview of Component Failure Prediction
	5.3 Requirements of Component Failure Predictors
	5.4 Time Series-based Failure Prediction
	5.5 Critical Event Prediction
	5.6 Hard Drive Failure Prediction
	5.7 Summary

	6 Architectural Dependency Modeling and Extraction
	6.1 Research Questions
	6.2 Architectural Dependency Information
	6.3 Architectural Dependency Model
	6.4 Extraction of an Architectural Dependency Model
	6.5 Summary

	7 Failure Propagation Modeling and Prediction
	7.1 Research Question
	7.2 Failure Propagation Model
	7.3 Transformation From ADM To FPM
	7.4 Updating the Failure Propagation Model at Runtime
	7.5 Inference of the Failure Propagation Model
	7.6 Summary

	8 Implementation
	8.1 Java Implementation
	8.2 Go Implementation

	III Evaluation
	9 Evaluation Methodology
	9.1 Overview of Evaluation
	9.2 Evaluation Metrics
	9.3 Statistical Hypothesis Testing

	10 Evaluation of Time Series-based Failure Prediction
	10.1 Research Question
	10.2 Experiment Setup
	10.3 Results
	10.4 Discussion
	10.5 Threats to Validity
	10.6 Summary

	11 Evaluation of Critical Event Prediction
	11.1 Research Question
	11.2 Experiment Setup
	11.3 Results
	11.4 Threats to Validity
	11.5 Summary

	12 Evaluation of Hard Drive Failure Prediction
	12.1 Research Question
	12.2 Experiment Setup
	12.3 Results
	12.4 Discussion
	12.5 Threats to Validity
	12.6 Summary

	13 Evaluation of Failure Propagation Prediction
	13.1 Research Questions
	13.2 Experiment Setup
	13.3 Results
	13.4 Discussion
	13.5 Threats to Validity
	13.6 Summary

	IV Conclusions and Future Work
	14 Conclusions
	15 Future Work
	Bibliography
	List of Figures
	List of Tables

