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Highlights: 

 The endocannabinoid system (ECS) is dysregulated in obesity-associated 

diseases 

 CB1 antagonism is a potential therapeutic target for the treatment of obesity 

 CB1 antagonists have the potential for eliciting severe psychiatric side effects 

 Antagonists of CB1 that do not cross the blood–brain barrier are in development 

 Peripherally restricted CB1 antagonists are novel therapeutic targets for obesity 

 

Teaser: This Keynote review discusses the peripheral modulation of the ECS in liver, adipose 
tissue, heart, skeletal muscle, gastrointestinal tract, pancreas, kidney and the immuno-
inflammatory system. 
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Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease. 
Cannabinoid receptor 1 (CB1) is abundantly expressed in the brain but also expressed in the 
periphery. Cannabinoid receptor 2 (CB2) is more abundant in the periphery, including the 
immune cells. In obesity, global antagonism of overexpressed CB1 reduces bodyweight but 
leads to centrally mediated adverse psychological outcomes. Emerging research in isolated 
cultured cells or tissues has demonstrated that targeting the endocannabinoid system in the 
periphery alleviates the pathologies associated with metabolic disease. Further, peripheral 
specific cannabinoid ligands can reverse aspects of the metabolic phenotype. This Keynote 
review will focus on current research on the functionality of peripheral modulation of the 
ECS for the treatment of obesity. 
 
Keywords: Cannabinoid receptor; endocannabinoid system; peripherally restricted 

cannabinoid antagonist; obesity. 
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Introduction 

The prevalence of metabolic disorders has increased exponentially worldwide. Metabolic 

diseases are the result of excessive systemic adiposity (obesity), insulin resistance, type 2 

diabetes mellitus (T2DM) and cardiovascular disease (CVD). Investigation of potential 

therapeutic treatments for metabolic disease has focused, in part, on targets that are 

modulated by fatty acids or their derivatives. The endocannabinoid system (ECS) is a lipid-

derived signaling system [1] that can modulate energy expenditure. The most extensively 

characterized of the cannabinoid (CB) receptors are CB1 and CB2 [1]. Endogenous agonists for 

these receptors are synthesized on demand and degraded via cellular uptake and enzymatic 

hydrolysis [2] (Figure 1). Herein, we discuss the recent advances in research regarding the 

roles of CB1 and CB2 in metabolic disease, and how pharmaceutical agents that act as ligands 

for these receptors can be used in the prevention and treatment of metabolic diseases 

through specific modulation in the periphery. 

 

CB1 and CB2 

The ECS comprises several ligands and two main receptors: CB1 and CB2. CB1 are the most 

abundantly expressed G-protein-coupled receptor (GPCR) in the central nervous system (CNS) 

[3], with elevated expression in the hippocampus, cortex, cerebellum and basal ganglia. The 

main physiological function of CB1 is modulation of neurotransmission. CB1 has also been 

localized in the periphery, with expression in the dorsal root ganglion, myelinated nerve fiber 

bundles in the skin, macrophages, mast cells, the gastrointestinal system (predominantly in 

the cholinergic neurons of the myenteric), spleen, tonsils, leukocytes, skeletal muscle and 

renal cells [4]. By contrast, CB2 is predominately expressed in immune cells, particularly in the 

spleen, thymus and circulating immune cells [5]. In immune cells, CB2 mainly regulates 
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immune responses and inflammation. In addition, CB2 is also expressed in skeletal, 

cardiovascular and renal systems. CB2 is also localized with low levels of expression in the 

CNS, mainly in the cell bodies and dendrites of the central neurons [6]. Furthermore, CB1 and 

CB2 are also expressed in osteoblasts and osteoclasts, where they stimulate bone formation 

and remodeling [7,8]. 

In addition to CB1 and CB2, several other proteins have been suggested to be CB receptors 

based on their ability to be activated by endocannabinoids or other CB ligands. These include 

GPR18 [9], GPR55 and GPR119 [10]. These receptors display little similarity to CB1 and CB2 but 

can be activated by N-arachidonoylglycine, lysophosphatidylinositol and N-

oleoylethanolamide, respectively. However, there is no evidence that they can be activated 

by these ligands in vivo. As such, the International Union of Basic and Clinical Pharmacology 

Committee (IUPHAR) on Receptor Nomenclature and Drug Classification has not classified 

them as CB receptors and they have retained their orphan status. There is some evidence, 

however, that these receptors form heterodimers with CB receptors. GPR55 heterodimerizes 

with CB1 [11,12] and CB2 [13], which could have functional significance in tissues where both 

receptors are co-expressed. Together with other GPCRs, endocannabinoids or other CB 

ligands can activate transient receptor potential (TRP) channels [14], and potentiate glycine 

receptors [15]. 

 

CB receptor ligands 

CB receptors are activated by two endogenous ligands [N-arachidonoylethanolamine (AEA) 

and 2-arachidonoylglycerol (2-AG)], plant-derived cannabinoids [including 

tetrahydrocannabinol (THC)] and a range of synthetic ligands. Based on chemical structures, 

CB receptor agonists are subclassified into four groups. Classical CBs consist of tricyclic 
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dibenzopyran derivatives that are either naturally extracted compounds of cannabis or 

synthetic analogs of these compounds. The most widely studied naturally isolated CBs are 

delta-9-tetrahydrocannabinol (Δ9-THC) and Δ8-THC [16,17]. Δ9-THC has a similar affinity to 

AEA for CB1; however, it displays lower efficacy than AEA at CB2 than at CB1 [18]. The 

nonclassical CBs contain bicyclic and tricyclic analogs of Δ9-THC, including 3-(2-hydroxy-4-

(1,1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol (CP55,940), an agonist with 

similar affinities for both CB receptors [19]. The third group of CB receptor agonists are the 

aminoalkylindole cannabinoids, including (R)-(+)-[2,3-dihydro-5-methyl-3[(4-

morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone 

mesylate salt (WIN 55212). WIN 55212 has a high affinity for both receptor subtypes, with a 

slightly greater affinity for CB1 [17,20]. The fourth group, eicosanoid CBs include AEA [21] and 

2-AG [22]. Among all eicosanoid CBs, 2-AG exhibits the highest intrinsic activities at CB1 and 

CB2. AEA has a lower affinity for CB receptors and acts as a partial agonist, exhibiting mixed 

agonist–antagonist properties at CB1 and CB2. 

 

CB receptor signaling 

CB receptors predominately couple to the inhibitory Gi/o G proteins, which inhibit adenylate 

cyclase activity and subsequently decrease intracellular cyclic AMP levels. However, as is 

common with many other GPCRs, pleotropic coupling of CB receptors to other effector 

proteins has been reported. These include activation of Gq and Gs proteins, β-arrestin 

recruitment, inhibition of voltage-gated calcium channels, stimulation of inwardly rectifying 

potassium currents and activation of mitogen-activated protein kinase (MAPK) signaling 

pathways, reviewed in [23]. Because CB receptors can couple or signal to multiple effector 

proteins, the likelihood of biased signaling to occur is increased. Biased signaling can be 
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defined as ligand-dependent selectivity for specific signal transduction pathways following 

activation of the same receptor. It is thought to occur when different ligands bind to a 

receptor to cause different receptor conformations, enabling the receptor to preferentially 

signal to one pathway over another. Biased signaling at CB1 and CB2 has been reported (i.e., 

[24,25] for CB1 and [26,27] for CB2). The significance of biased signaling is attractive, in that 

theoretically one could design a drug with fewer side effects. However, further work is 

warranted in the CB receptor field to delineate those coupled signaling pathways that are 

beneficial or detrimental following CB activation. 

 

Central dysfunction of the ECS in metabolic disease 

The ECS is well recognized to have a vital role in the regulation of eating behavior and energy 

homoeostasis [28–30]. In the brain, the ECS regulates food intake by modulating activity of 

the hypothalamus and the limbic system [31]. In the hypothalamus, endocannabinoids are 

released on demand after short-term food deprivation. Thereafter, the ECS transiently 

regulates food intake by enhancing orexigenic mediators such as ghrelin and inhibiting 

anorexigenic mediators, namely leptin and cholecystokinin [32–34]. Activation of CB1 by 

hypothalamic administration of AEA stimulates appetite [35], whereas inhibition of CB 

receptors by SR141716A (rimonabant) suppresses appetite [36]. 

Central dysfunction in the CB receptors has also been identified in metabolic disease. 

CB1 in the forebrain and in sympathetic neurons can regulate thermogenesis and energy 

balance [37]: conditional knockout mice lacking CB1 in forebrain neurons result in mice with 

a lean phenotype that are resistant to diet-induced obesity. Furthermore, CB1-deficient mice 

have increased energy expenditure [39]; and even following consumption of a high-fat diet 

(HFD) (49% of energy as fat) CB1-deficient mice do not become obese [38]. 
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Rimonabant, the most widely studied antagonist, has been shown to act as a CB1 

antagonist and inverse agonist [40,41]. Rimonabant was developed and marketed for the 

treatment of obesity but was withdrawn from the market in 2008 owing to severe 

psychological side effects. These are thought to have occurred as a result of the ability of 

rimonabant to cross the blood–brain barrier to target central CB1, located in areas of the brain 

implicated in depression (prefontal and frontal cortex, hippocampus, cerebellum) and 

anhedonia (nucleus accumbens, dorsal striatum). CB1 antagonism (CB1 knockout mice) also 

results in lower levels of several neurotransmitters, including serotonin, as reviewed in [42], 

which are thought to contribute to the adverse side effects observed. Thus, despite the 

adverse events with targeting the ECS centrally, the ability of this system to modulate food 

intake has led to more-recent research that has investigated peripheral modulation of CB1 as 

an obesity therapeutic. 

 

Peripheral modulation of CB1 and CB2 

Much of our understanding about the role of the CB receptors in normal physiology has come 

from studies focused on their activity in disease states. Crucial to the development of 

therapeutics targeting the peripheral CB system is an understanding about the role they take 

in numerous organs and systems. Importantly, several research studies have demonstrated 

links between the disruption of the ECS and metabolic disease. Specifically, altered expression 

of CB1 and CB2 has been identified in several tissues from obese animals (for review, see [43]). 

Typically, CB1 expression is increased in obesity in a tissue-specific manner, and CB2 

expression is decreased in obesity [44,45]. Moreover, diet-induced obesity increases AEA and 

2-AG concentrations in the brain and peripheral tissues of mice [46]. In a human study, 

circulating 2-AG levels were significantly elevated in obese compared with lean individuals 
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and significantly correlated with body mass index (BMI), percent body fat and visceral fat in 

males and females [47]. In addition, plasma 2-AG but not AEA levels were positively correlated 

with cardio-metabolic risk factors, including intra-abdominal adiposity in obese men [48]. A 

recent study found that the circulating levels of 2-AG are higher in insulin-resistant compared 

with insulin-sensitive obese postmenopausal women [49]. Within the periphery, the ECS 

modulates the production of hormones from the gut and pancreas, and controls functions 

within the liver, adipose tissue, heart and skeletal muscle (Figure 2) – organs that are key to 

the progression of metabolic disease. Thus, several researchers have proposed that the 

development of peripherally restricted CB receptor antagonists could yield novel and exciting 

therapeutics in obesity [50,51]. 

 

Endocannabinoids and leptin signaling 

The adipokine leptin plays a key part in food intake, bodyweight control and metabolism. The 

main role of leptin is via the modulation of neuronal signaling pathways in the hypothalamus 

where it acts as an anorexigenic mediator of food intake, acting via the leptin receptor Ob-Rb 

[52]. Because cannabinoids are orexigenic, hypothalamic concentrations of cannabinoids are 

inversely correlated with plasma concentrations of leptin [33]. Anorexigenic 

proopiomelanocortin (POMC) and orexigenic neuropeptide Y (NPY) expressing neurons in the 

arcuate nucleus (ARC) are potential targets for the action of leptin in the regulation of feeding 

behavior [53]. The peripheral CB1 antagonist JD5037 has recently been demonstrated to 

restore hypothalamic leptin sensitivity by activating anorexigenic POMC neurons [54], with 

JD5037 also demonstrated to reduce obesity by reversing leptin resistance in diet-induced 

obese (DIO) mice [55]. Further research has demonstrated that leptin directly inhibits 

endocannabinoid synthesis by reducing intracellular calcium levels and glucocorticoid-
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mediated CB release [56,57]. AEA is significantly reduced in white adipose tissues (WAT) 

following leptin infusion in rats [58]. In isolated human cytotrophoblasts, 2-AG downregulates 

leptin expression, which is reversed by CB1 and CB2 antagonists, suggesting that the 2-AG 

regulation of leptin expression is dependent on CB receptors [59]. 

 

Mitochondrial modulation by CB signaling 

Metabolic disturbances such as diabetes and obesity are associated with altered 

mitochondrial respiratory function [60,61]. Importantly, endocannabinoids have been found 

to modulate mitochondrial morphology and membrane permeability [62]. AEA promotes 

mitochondrial swelling and membrane fluidity but downregulates cytochrome release and 

membrane potential [63,64]. In isolated rat liver mitochondria, AEA inhibits oxidative 

phosphorylation by blocking F0/F1 ATP synthase activity [65]. In addition, endocannabinoid, 

phytocannabinoid and synthetic CB receptor agonists such as AEA, Δ9-THC and HU 210 reduce 

mitochondrial oxygen consumption in a dose-dependent manner in rat heart mitochondria 

[66]. This study further demonstrated that CB1 agonists induce biphasic changes in complex I 

and/or complex II/III activities. In 2008, Tedesco et al. investigated the effects of CB1 deletion 

or antagonism in W and isolated mature white adipocytes of HFD mice (60% kcal fat). They 

observed that CB1 deletion or chronic rimonabant treatment countered HFD-dependent 

reductions in endothelial nitric oxide synthase (eNOS) expression and mitochondrial 

biogenesis, an effect linked to reduced adiposity and bodyweight [67]. In addition, CB1 

deletion or chronic rimonabant treatment on WAT and isolated mature white adipocytes of 

HFD mice countered HFD-dependent reductions in eNOS expression and mitochondrial 

biogenesis, an effect linked to reduced adiposity and bodyweight [68]. 
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Recent research has demonstrated that CB1 is localized to muscle mitochondria [69]. 

In the mitochondria, CB1 activation with THC decreases mitochondria-coupled respiration, 

which was absent in CB1 knockout mice [69]. Specifically, CB1 is thought to be involved in the 

mitochondrial regulation of oxidative activity through enzymes responsible for the pyruvate 

metabolism pathway. CB1 is also present in the membrane of mouse neuronal mitochondria 

(mtCB1) which regulates brain mitochondrial activity and energy metabolism [70]. Recent 

studies have demonstrated that genetic deletion of hippocampal mtCB1 prevents CB-induced 

reduction in memory formation, suggesting that mtCB1 mediates memory processes through 

mitochondrial energy metabolism [71]. In addition, CB1 in mitochondria of POMC cells 

regulates mitochondrial adaptations and CB-induced feeding in Pomc-cre mice [72]. 

 

ECS in the liver: lipid metabolism 

Despite low expression, CB1 is expressed in liver cells, including hepatic stellate cells (HSCs) 

[73,74] and hepatocytes [75]. CB2 is undetectable in healthy liver tissue but is upregulated in 

pathological conditions such as non-alcoholic fatty liver disease (NAFLD) [76], hepatic fibrosis 

[77] and hepatocellular carcinoma (HCC) [78]. A recent human study demonstrated for the 

first time that serum levels of 2-AG, but not AEA, are significantly increased in patients with 

NAFLD, independent of obesity status of the patient [79]. 

Several studies have suggested that targeting the ECS in the liver could have benefits 

in obesity. In rodents consuming a HFD, there is an increase in CB1 protein expression in 

purified liver plasma membranes. Further, agonism of CB1 in mice consuming a standard chow 

diet elevates de novo lipogenesis via sterol regulatory element binding protein-1c (SREBP-1c), 

a lipogenic transcription factor regulating fatty acid synthase (FAS) and other lipogenic 

enzymes [80]. The mechanism for this is a reduction in fatty acid amide hydrolase (FAAH) 
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which is likely to be independent of the central modulation of the ECS. This study was 

supported by later work that confirmed a reduced rate of de novo lipogenesis in the liver of 

specific CB1 knockout mice [81]. In a diet-induced obesity mouse model, CB1 antagonism 

improves liver steatosis and lipid handling [82]; and in obese Zucker fa/fa rats CB1 antagonism 

reverses liver steatosis and reduces steatohepatitis-associated high liver tumor necrosis 

factor (TNF)-α levels [83]. These findings have been supported by in vitro studies in hepatic 

cells, which demonstrate an improved lipogenesis after CB1 antagonist treatment [84,85]. 

Reversal of HFD-induced hepatic steatosis and fibrosis by CB1 antagonism is mediated by 

adiponectin via increasing fatty acid oxidation and reducing free fatty acid uptake into the 

liver [86]. Hepatic CB1 is necessary for HFD-induced hepatic insulin resistance because 

hepatocyte-specific CB1 knockout mice receiving HFD remain insulin sensitive [87]. Studies 

have also shown that hepatic insulin resistance induced by HFD in murine models is mediated 

by CB1-dependent activation of the long-chain ceramide synthesis in liver [88]. These findings 

suggest hepatic CB1 as a potential therapeutic target for obesity-associated insulin resistance.  

In humans, CB2 is increased in individuals with liver disease [76]. Several studies report 

that CB2 agonists increase the extent of hepatic steatosis [89,90]. CB2 agonist JWH133 

enhanced HFD-induced hepatic steatosis in wild-type mice; however, the effect was blunted 

in CB2-deficient mice [89]. An in vitro study demonstrated that CB2-selective agonist AM1241 

increases the degree of steatosis in oleic-acid-treated fatty hepatocytes [90]. Thus, targeting 

the ECS in the liver directly can modulate disease phenotype. 

 

ECS in adipose tissue 

Adipose tissue contributes to the regulation of many physiological processes, and dysfunction 

fundamentally underpins obesity and related co-morbidities [91]. Further, this endocrine 

ACCEPTED M
ANUSCRIP

T



organ produces physiologically important proteins such as leptin, lipoprotein lipase and 

adiponectin [92]. Several studies suggest that endocannabinoids directly regulate lipid 

metabolism in adipose tissues in vitro [33,93]. Indeed, CB1 is expressed in adipose tissue and 

elevated during adipogenesis [30,47,93]. CB1 is expressed in epidymal adipose tissue and 

adipocytes and CB1 agonists increase adipocyte lipoprotein lipase (LPL) activity dose-

dependently in primary adipocyte cultures, whereas rimonabant reduces this effect [93]. 

Rimonabant also stimulates adiponectin expression in cultured adipocyte cells and reduces 

hyperinsulinemia in obese rats [44]. Interestingly, CB1 expression and FAAH were elevated in 

mature human adipocytes compared with preadipocytes [94], suggesting an important yet 

undiscovered role for the ECS in functional adipocytes. Cable et al. reported a correlation 

between the endocannabinoid metabolizing enzyme FAAH and bodyweight in subcutaneous 

adipocytes in metabolically healthy humans. However, another catabolic enzyme: 

monoacylglycerol lipase (MAGL), does not correlate with bodyweight [95]. Thus, the 

relationship between bodyweight and the expression of components of the ECS in adipose 

tissue might not be straightforward. Furthermore, agonism of CB1 enhances while 

rimonabant reduces insulin sensitivity in cultured adipocytes [96]. It is unlikely that this is via 

the modulation of glucose homeostasis because activation of endocannabinoids in human 

adipocytes promotes GLUT4 translocation and glucose uptake independently of insulin [97].  

A recent study identified that peripheral antagonism of CB1 in adipocytes enhances 

transdifferentiation of white adipocytes to the brown fat phenotype which would improve 

metabolism via enhancing thermogenesis [98]. In addition, chronic CB1 antagonism activates 

brown adipose tissue (BAT) thermogenesis and enhances energy expenditure and glucose 

utilization in DIO mice [99].  
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ECS in the heart: role in cardiovascular disease 

Obesity increases the risk of co-morbidities including cardiovascular disease, increasing the 

risk of developing ischemic heart disease [100]. Endocannabinoids have been studied in 

cardiac ischemia-reperfusion (I/R) injury. 2-AG and palmitoylethanolamide (PEA), but not 

AEA, protected the isolated rat heart against ischemia through agonism of CB2 [101]. Other 

studies have supported the role for CB2 but not CB1 in myocardial I/R injury [102–105]. In 

isolated cardiomyocytes, treatment with rimonabant decreases transforming growth factor 

(TGF)-β1 fibrosis [106], suggesting that CB1 antagonism does have a direct benefit to the 

heart. 

In addition to ischemic heart disease, the ECS has been shown to play a major part in 

atherosclerosis [107,108]. Low-dose CB therapy reduces the progression of atherosclerosis in 

mice, predominantly by inhibiting macrophage recruitment [107]. Increased levels of 2-AG 

were reported in aortas and visceral adipose tissue in the pro-atherosclerotic model of ApoE 

null mice fed a high cholesterol diet, although CB2 antagonism did not affect plaque formation 

[108]. However, CB1 antagonism with rimonabant reduced atherosclerosis development in 

the aortic sinus in low-density lipoprotein (LDL)-receptor-deficient mice through anti-

inflammatory effects [109]. In addition, rimonabant improves endothelial dysfunction by 

decreasing reactive oxygen species (ROS) production in the vessel wall of ApoE null mice fed 

a cholesterol-rich diet, although atherosclerotic plaque formation was not reduced [110]. 

In contrast to effects of CB1 activation, selective agonism of CB2 reduces 

atherosclerosis. For instance, the selective CB2R agonist JWH015 reduced monocyte 

migration by reducing chemokine receptor expression in human cultured myocytes, which is 

generally upregulated in inflammation-mediated atherosclerosis [111]. Similarly, the CB2 

agonist JWH133 decreased atherosclerotic lesion formation, improved endothelial function 
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and reduced ROS levels in high-cholesterol-fed ApoE null mice. Interestingly, ApoE and CB2 

double knockout mice developed inflammatory cell infiltration in atherosclerotic plaques 

compared with ApoE null mice, suggesting a protective role of CB2 in atherosclerosis [112]. 

Furthermore, in vitro analysis has shown that CB2 activation reduces TNF-α-induced 

proliferation and migration of human vascular smooth muscle cells [113]. More recently, 

Netherland-Van Dyke et al. investigated the effects of CB receptor agonists on the 

development of atherosclerosis in CB2
+/+ and CB2

-/- LDL receptor null mice and observed that 

lesional apoptosis and macrophage accumulation is CB2 dependent [114]. These data provide 

strong evidence regarding the opposing roles of CB1 and CB2 in cardiovascular disease, 

suggesting selective CB2 activation and CB1 antagonism as an attractive target for the 

treatment of atherosclerosis. 

 

ECS in the skeletal muscle: insulin sensitivity 

It is now well accepted that the components of the ECS are expressed in muscle cells [115]. 

Specifically, CB1, CB2 and FAAH are expressed in human and rodent skeletal muscle [116]. The 

first study to investigate the role of the ECS in skeletal muscle showed that the CB1 antagonist 

rimonabant increases glucose uptake in isolated soleus muscle from Lepob/Lepob mice [117]. 

Further, in isolated cells AEA modulates skeletal muscle oxidative pathways [115]. However, 

not all the effects of AEA are sensitive to CB1 antagonism, suggesting the presence of other 

CB receptors [115]. CB1 expression is increased in the soleus muscle of HFD-fed mice [34], 

with Lindborg et al. reporting a decreased CB1 expression in the soleus of insulin-resistant 

obese Zucker rats compared with lean controls [118]. Similarly, CB2 expression is decreased 

and MAGL expression upregulated in skeletal muscle of HFD-fed rats [119]. A recent study 

suggested that dietary intake rather than the presence of obesity influenced ECS activity in 
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skeletal muscle, because a HFD was shown to downregulate muscle CB1 and MAGL mRNA 

expression in normal and obese individuals, whether obesity was present or not [120]. 

Further, high n-3 PUFA intake increases expression of CB1, CB2 and EC synthesis enzymes in 

quadriceps muscles [121]. This suggests that the n-3 PUFA intake controlled the expression 

of the ECS. 

Skeletal muscle accounts for ~70–90% of total glucose disposal under post-prandial 

conditions [122,123]. CB1 plays an important part in the development of insulin resistance in 

skeletal muscle. AEA and adipocyte conditioned medium (CM) impairs insulin-stimulated Akt 

(ser473) phosphorylation in a CB1-dependent manner in cultures of skeletal muscle cells 

[124]. Insulin-stimulated glucose transport is significantly increased in the isolated soleus 

muscle following the chronic treatment of rimonabant [125]. Mechanistically, Lipina et al. 

found that the mixed CB1/CB2 agonist WIN 55,212-2 downregulates insulin-stimulated ERK1/2 

but not Akt activation in cultured skeletal muscle cells, whereas rimonabant sensitizes Akt 

and ERK1/2 signaling in myotubes, suggesting a role for the ECS in regulating muscle 

metabolism and function [126]. 

 

ECS in the gastrointestinal tract 

The role of the ECS in the gastrointestinal tract is generally associated with feeding behavior 

[127–129]; however, it could also play an important part in regulating gut inflammation and 

thus permeability. Mechoulam et al. first provided evidence of the ECS in the gastrointestinal 

tract in 1995, detecting 2-AG but not AEA in canine gut [130]. Later, Izzo et al. demonstrated 

that AEA and 2-AG were present in the mouse small intestine [131]. CB1 is present in normal 

colonic epithelium, smooth muscle and the submucosal myenteric plexus, CB1 and CB2 are 
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expressed on plasma cells in the lamina propria and CB2 was present on gut-associated 

macrophages [132]. 

The main function of CBs in the gastrointestinal tract could be via the modulation of 

hormones that regulate hunger, with CB1 and CB2 co-localized with peptides regulating 

appetite in the gastrointestinal tract. Ghrelin, a circulating 28 amino acid peptide, is an 

orexigenic and adipogenic hormone [133]. During food deprivation, ghrelin levels increase 

while leptin levels decrease [133]. The orexigenic effects of ghrelin are mediated by AMP-

activated protein kinase (AMPK) and are associated with central and peripheral metabolic 

effects [134]. Tucci et al. demonstrated that rimonabant can inhibit the orexigenic effect of 

ghrelin [135] and the same group reported no orexigenic effect of ghrelin in CB1 knockout 

mice, providing strong evidence for CB1 dependence of ghrelin effects on AMPK activity [32].  

Recently, Alen et al. reported that peripheral CB1 antagonism with LH-21 counteracted 

the orexigenic effects of ghrelin in rats [136]; however the exact mechanism remains unclear, 

although gastric CB1 modulates ghrelin production through a mammalian target of rapamycin 

(mTOR) pathway [137]. Importantly, Kola et al. suggested that the metabolic effect of ghrelin 

on AMPK in peripheral tissues is abolished in the absence of functional CB1, involving direct 

peripheral and central effects [138]. In addition, the gastrointestinal-secreted anorexigenic 

peptide hormone cholecystokinin (CCK) is also linked with the ECS, with CCK downregulating 

CB1 expression [139]. Thus, endocannabinoids could mediate satiety signaling from the 

gastrointestinal tract. 

 

ECS in the pancreas 

CB1 and CB2 are both present in the islets of Langerhans, where CB1 localizes predominantly 

to α cells and CB2 is found in α cells and insulin-containing β cells [140,141]. In vitro 
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stimulation of CB1 in β cells enhances basal and glucose-stimulated insulin secretion 

[141,142]; however, CB2 agonism lowers glucose-dependent insulin secretion [141]. 

Rimonabant reportedly decreases basal insulin hypersecretion in isolated obese rat islets 

without affecting basal secretion in islets from lean rats [143]. By contrast, Li et al. reported 

that CB1 and CB2 antagonists fail to inhibit insulin secretion, suggesting involvement of CB-

receptor-independent pathways in effects of some cannabinoids [144]. Kim et al. observed 

that CB1 blockade enhanced insulin receptor signaling in β cells through the insulin receptor 

substrate 2-Akt pathway, and increased β cell proliferation and reduced blood glucose in 

db/db mice [145]. These contrasting results regarding the effects of CB receptor agonists and 

antagonists on insulin secretion warrant further studies. Recently, studies have reported that 

peripheral blockade of CB1 reverses macrophage infiltration in Zucker diabetic fatty (ZDF) rats 

and selective knockdown of macrophage CB1 mitigates T2DM, suggesting macrophage-

expressed CB1 as a potential target for the management of T2DM [146]. The same group later 

generated CB1-deficient rats on ZDF background to observe whether there is an obligatory 

role of CB1 in T2DM. They have identified that CB1-deficient ZDF rats have improved β cell 

function and hyperglycemia [147]. 

 

ECS in renal function 

Deutsch and Chin initially proposed the presence of the ECS in the renal system in 1993, 

reporting amidase activity in rat kidneys [148]. Studies confirm the presence of CB1 

throughout the nephron, including within the glomerulus [149,150], arterioles [151], tubules 

[152], loop of Henle [153], collecting ducts [154] and interstitium [152]. The ECS could play a 

part in normal tubular physiology because proximal tubule cells (PCT) express CB1 and CB2 

[155].  
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It is well known that obesity is associated with developing end-stage renal disease 

[156,157]. Several studies have explored the role of ECS in obesity-linked kidney disease 

[158,159]. CB1 is elevated in kidneys from obese rats [158], and CB2 is downregulated in the 

kidneys of obese rats [160]. Further, CB1 antagonism improves renal function, presumably by 

a reduction in bodyweight. Jenkin et al. found that chronic CB1 antagonism improves 

albuminuria and renal tubular structure in diet-induced obese rats [158]. The effect of CBs in 

renal function could be mediated through specific renal cell types. The role of CB1 in renal 

proximal tubular cells (RPTCs) in obesity-induced renal dysfunction in RPTC-specific CB1 

knockout (RPTC CB1R-/-) mice has been recently examined. This study found that RPTC CB1R-/- 

mice are protected from obesity-induced lipid accumulation in the kidney, kidney injury, renal 

inflammation and fibrosis through the liver kinase B1/AMP-activated protein kinase pathway, 

suggesting the specific role of RPTCs in CB1-mediated nephropathy [159]. Furthermore, the 

CB2 agonist AM1241 improves obesity-related renal dysfunction, whereas CB2 antagonism 

reduces creatinine clearance and increases kidney weight leading to renal dysfunction in diet-

induced obese rats [160]. Importantly, CB2 agonism improves renal fibrosis and function, 

independent to any change in bodyweight [160]. Mechanistically, this could be via a reduction 

in circulating leptin concentrations, occurring in the absence of a reduction in bodyweight. 

Within the kidney, CB2 expression is downregulated by high concentrations of albumin [161], 

suggesting that, under normal physiological conditions, CB2 plays a part in protein handling 

by the kidney. Collectively, these studies provide strong evidence for the therapeutic 

potential of targeting CB1 and CB2 in the treatment of obesity-related renal diseases. 

 

ECS and immunoinflammatory system dysregulation 
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The effects of the ECS in these different peripheral organ systems could involve modulation 

of the immune system and inflammation [57,162–164]. Obesity is characterized by chronic 

low-grade inflammation, an effect that reinforces the obesogenic phenotype (e.g., inducing 

insulin-resistance) and increases risk of obesity-related diseases including atherosclerosis and 

T2DM. These important inflammatory processes are responsive to the endocannabinoid 

system and CB antagonism. 

The beneficial effects of CB1 antagonism in obese patients are attributed in part to an 

increase of anti-inflammatory and metabo-regulatory adiponectin [165], together with 

adiponectin receptors [166] in peripheral tissues. Experimental studies confirm a CB1-

dependent stimulatory effect of endocannabinoids on adipose tissue adiponectin [44,167], 

whereas endocannabinoids act via CB1 to suppress proinflammatory cytokines (MIP-1β and 

IL-7) in association with upregulation of adiponectin in adipose tissue of obese subjects [168]. 

Beneficial effects of CB1 antagonism on HFD-induced hepatic steatosis and fibrosis (but not 

improved adiposity and glycemic control) are adiponectin-receptor-dependent in mice [86]. 

Vascular dysfunction and atherosclerosis in obesity could also be responsive to anti-

inflammatory actions of the ECS, with activation of CB2 shown to limit TNF-α-induced human 

endothelial cell activation, adhesion and transendothelial migration of monocytes [169], and 

CB1 and/or CB2 is implicated in inhibiting endothelial inflammatory responses and TNF-α-

dependent vascular smooth muscle cell proliferation and migration (important in 

atherosclerosis) [113,170]. 

Circulating endocannabinoid levels appear to be modulated in disease states 

associated with inflammation. Proinflammatory cytokines upregulate CB1 and CB2 expression 

in whole blood and mononuclear cells [171] and CB1 in T lymphocytes [172,173]. CB1 and CB2 

expression can be differentially regulated in association with altered cytokine levels in 
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inflammatory disease models [174,175]. Coupled with generally anti-inflammatory actions of 

the ECS, such observations support a regulatory feedback loop between inflammatory 

activation and the ECS. Indeed, endocannabinoids have been shown to suppress excess 

inflammation in experimental models of hepatic ischemia [176,177], LPS-dependent 

pulmonary inflammation [178], inflammatory pain [179,180], polymicrobial sepsis [181] and 

multiple sclerosis [182]. This feedback control of inflammatory cell recruitment and 

inflammatory mediator release by the ECS, which is potentially disrupted in disease, presents 

a potential therapeutic target. 

Activation of CB1 and CB2 regulates cell migration and cytokine and chemokine 

production, with CB2 activation by 2-AG inhibiting migratory activities of immune cells 

[183,184]. AEA also inhibits production of proinflammatory cytokines, so that it reduces 

human monocyte interleukin (IL)-6 and IL-8 [185]; and IL-2, TNF-α and interferon (IFN)-γ from 

activated human T lymphocytes [186]. In T cells, CB2 activity can inhibit proliferation and 

release of IL-2, TNF-α, IL-17 and IFN-γ [186], and reduce differentiation and IL-17 release in T 

helper cells [187]. 2-AG also inhibits chemokine-induced chemotaxis of T cells [188]. In B cells, 

CB2 activity promotes homing and retention to marginal zone in T-independent immune 

responses [189,190], modulates immunoglobulin class switching [191] and maintains 

germinal center B cells in T-dependent immunity [192]. In macrophages, CB2 inhibits 

production of proinflammatory cytokines including IL-6, TNF-α and high mobility group box 

(HMGB)1 [193]. 

Despite evidence of anti-inflammatory effects of endocannabinoids, there is 

nevertheless evidence for proinflammatory effects in settings of doxorubicin-induced 

cardiomyopathy [194], nephropathy [194] and experimental dermatitis [195]. 

Endocannabinoids can also increase activated leukocyte function, and 2-AG could play a part 
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in leukocyte recruitment and inflammatory mediator release [196]. Interestingly, 

proinflammatory effects are more consistently linked to 2-AG rather than AEA, which, 

coupled with lack of effect of CB receptor agonists on leukocyte function in models of 

inflammation, suggests these stimulatory effects of endocannabinoids could be receptor 

independent and involve metabolite effects. 

 

Development of peripheral specific CB ligands 

Owing to the adverse effects of centrally targeted therapeutics, emerging research has 

focused on ligands that do not cross the blood–brain barrier. Several therapeutics have been 

developed that specifically antagonize CB1 in the periphery. For example, the non-brain-

penetrant neutral CB1 antagonist AM6545 reduces food intake and bodyweight in rodents 

consuming a chow diet [197] and blocks hyperphagia in western-diet-induced obese mice 

[198]. AM6545 also improves leptin sensitivity and reduces adiposity in DIO mice [199]. It 

further reduces corticosterone-induced adiposity and attenuates the metabolic phenotype 

induced by corticosterone [200]. Furthermore, another compound: JD5037, a peripherally 

restricted CB1 inverse agonist, decreases adipose tissue leptin secretion [55], which leads to 

a reversal of hypothalamic leptin resistance in diet-induced obese mice. JD5037 is also found 

to be effective in reducing bodyweight, hyperphagia and adiposity in an obese Magel2-null 

mouse model, an established experimental model for Prader–Willi syndrome (PWS), 

proposing a potential strategy for the management of obesity in PWS [201]. Finally, LH-21, a 

neutral CB1 antagonist with poor brain penetration, has also been shown to reduce food 

intake [202], decrease leptin expression in visceral adipose tissue of diet-induced obese rats 

[68] and block the orexigenic effect of ghrelin [136]. Thus, research using several peripherally 
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acting CB1 ligands suggests its central effects do not solely control the benefit of targeting this 

receptor in obesity.  

Recent development in the area of CB therapeutics has led to the identification of 

drugs that can target CB1 in the periphery as well as CB2. Limited investigations have 

demonstrated the CB1/CB2 dual agonist CB-13 can inhibit cardiomyocyte hypertrophy via 

AMPK–eNOS signaling in isolated rodent neonatal cardiomyocytes [203]. In an additional 

study, a peripherally restricted CB1/CB2 dual agonist naphthalen-1-yl-(4-

pentyloxynaphthalen-1-yl)methanone (SAB378), in a whole mouse model of experimental 

colitis [204], inhibited colonic propulsion in CB1 knockout mice, but not CB2 knockout mice. 

Thus, these data suggest that targeting the ECS in the gastrointestinal tract is beneficial.  

One significant limitation in these studies, in terms of the development of 

therapeutics for metabolic disease, is the observation that in obesity CB1 is upregulated, 

whereas CB2 is downregulated [158]. Therapeutics that act as dual agonists could therefore 

have mixed or limited efficacies. In this therapeutic area, a more relevant therapeutic would 

be to antagonize CB1 and agonize CB2. Recent investigations of the previously characterized 

CB2 agonists: GW405833 [1-(2,3-dichlorobenzoyl)-5-methoxy-2-methyl-3-[2-(4-

morpholinyl)ethyl]-1H-indole] and AM1710 [1-hydroxy-9-methoxy-3-(2-methyloctan-2-

yl)benzo[c]chromen-6-one], demonstrate that they are indeed dual CB2 agonists and CB1 

antagonists [205]. Although not yet investigated as an antiobesity therapeutic, AM1710 is not 

brain penetrant [206], which is suggestive of a potential therapeutic that warrants further 

investigation. Recently, a dual target peripheral CB1 antagonist/iNOS inhibitor was reported 

to be effective in mitigating liver fibrosis, reducing bodyweight, hepatic steatosis and 

improving glucose tolerance in mice without inducing anxiety-like behavior [207,208]. A list 

of the emerging therapeutics is provided in Table 1. 
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Concluding remarks 

Obesity and metabolic disease constitute a major health burden throughout the world. ECS 

dysfunction has been identified in several target organs where expression of the ECS is altered 

in metabolic disease. CB1 is abundantly expressed in the brain, and globally targeting CB1 leads 

to significant adverse outcomes. CB2 is more abundant in the periphery, including the immune 

cells. Research using isolated cells in culture or tissues has demonstrated that modulation of 

the ECS in the periphery might be a potential therapeutic for metabolic disease. More-recent 

identification of peripheral specific CB ligands can reverse aspects of the metabolic 

phenotype. Further, dual CB ligands could be investigated as a potential therapeutic. Further 

work on the ECS is warranted for the targeting of metabolic disease. 
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Figure legends 

Figure 1. Biosynthesis, degradation and metabolism of endocannabinoids. Abbreviations: AA, 

arachidonic acid; AEA, N-arachidonoylethanolamine; 2-AG, 2-arachidonoylglycerol; NAPE-

PLD, N-acyl phosphatidylethanolamine-specific phospholipase D; DAGL, diacylglycerol lipase; 

MAGL, monoacylglycerol lipase; AC, adenylyl cyclase; AMPK, 5' adenosine monophosphate-

activated protein kinase; PKA, protein kinase A; NOS, nitric oxide synthase; FA, fatty acid. 

 

Figure 2. Peripheral modulation of the endocannabinoid system (ECS). Abbreviations: FA, 

fatty acid; SREBP-1, sterol regulatory element-binding protein 1; LPL, lipoprotein lipase; GI 

tract, gastrointestinal tract. 
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Table 1. Novel therapeutic targets modulating ECS for the treatment of obesity and metabolic disease 
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Peripherally restricted cannabinoid receptor blockers 

SN Compound Chemical structure Target Effects Refs 

1 AM6545 
 
 

 

Peripherally restricted CB1 neutral 
antagonist 

Reduce food intake and bodyweight 
 
Improve dyslipidaemia by activating BATa 

[197] 

2 TM38837 
 
 
 
 
 
 

 

 
 
 

Peripherally selective CB1 inverse 
agonist 

Predicated to improve metabolic profile  
 
(Currently in Phase I clinical trial) 

[209]  

3  JD5037 
 

 

Peripherally selective CB1 inverse 
agonist 

Attenuate glucose intolerance and insulin 
resistance 
 
Reverse leptin resistance 

[199] 

4  Compound-1 
 

 

 

Peripheral CB1 selective antagonist Reduce food intake and bodyweight 
 
Decrease hepatic SREBP-1cb 

[210] 

5 LH-21  Neutral CB1 antagonist (poor brain 
penetration) 

Decrease food intake and bodyweight 
 
Reduce lipogenic enzymes 
 

[202]  
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Improve glucose handling 

6 BPR0912  

 

Peripheral CB1 antagonist Increase β-oxidation and thermogenesis 
in adipose tissue 

[211] 

Mixed CB1 antagonist/CB2 agonist 

1 URB447 

 

 
Mixed CB1 antagonist/CB2 agonist 

Reduce food intake and bodyweight gain 
in mice 

[212] 
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2  GW405833 
 

 

 

 
 
Mixed CB1 antagonist/CB2 agonist 

 
Not known in obesity 

[27] 

3 AM1710 
 

 

 

 
 
Mixed CB1 antagonist/CB2 agonist 

 
Not known in obesity 

[27] 

Negative allosteric modulator 

1 Cannabidiol 
(CBD) 

 

 

Noncompetitive negative allosteric 
modulator of CB1 

Browning of 3T3-L1 adipocytes 
 
Inhibition of lipogenesis 

[24] 

aBrown adipose tissue. 
bSterol regulatory-element-binding protein 1. 
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