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1
I N T R O D U C T I O N

1.1 motivation

The aim of evolutionary dynamics is to describe how species change.
It emerged after two fundamental insights. First, that species change
at all, and second, that this happens due to variation, heredity and
natural selection. Both have been controversially debated, but since
Charles Darwin presented a line of arguments with a large number
of supporting observations these insights became the established the-
ory of evolution. Which open questions remain after these underlying
mechanisms of evolution are discovered? Can we calculate the course
of evolution using a set of basic laws for variation, heredity and nat-
ural selection?
The starting point of such calculations is the fitness function, which
is defined as the reproductive success of an organism. The fitness de-
pends first of all on the phenotype of the organism. This part of the
fitness function, often metaphorically referred to as the “fitness land-
scape”, can be considered as the potential of evolutionary dynamics
and we can obtain the direction of evolution from the gradient of
the fitness with respect to the phenotype. While the species evolves,
the fitness landscape changes dynamically, because the fitness also
depends on the environmental conditions, on the interactions with
other individuals of the same species and on the interactions with
other individuals of other evolving species. At the same time, the in-
dividuals of the species also have an impact on the environment and
on the fitness of individuals of other species.
Taken together, these coupled fitness functions constitute a complex,
nonlinear, high dimensional, heterogeneous, stochastic system. Even
if we knew all relevant biological mechanisms, seemingly simple ques-
tions remain challenging problems. For example, which conditions
lead to extinction or speciation? Or how many species can coexist
and how stable is such a system of coexisting species? The literature
contains already a great number of answers, but each relies on a very
specific set of assumptions.
For example, let us assume a homogeneous habitat with species whose
fitness depends only on their own phenotype and on the environmen-
tal conditions. We further assume that the environmental conditions
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2 introduction

do not change and that the populations are infinitely large. Since the
species with the highest fitness outcompetes all species with a lower
fitness regardless how small the advantage is, only one species can
survive under these assumptions. This reasoning is known as the
competitive exclusion principle. However, the relevance for natural
systems is very limited, because the assumptions are almost never sat-
isfied. A famous case is the high diversity of phytoplankton species
in ocean water. Due to the supposed homogeneity of ocean water
and the limited number of resources, the surprisingly high diversity
of phytoplankton species in ocean water is called the “paradox of
the plankton”. Today, it is known that none of the aforementioned as-
sumptions is satisfied for phytoplankton in ocean water, so the com-
petitive exclusion principle does not apply to this case [1].
We can extend the example by assuming that the fitness of a species
also depends on the phenotype of other species. To keep it simple,
we further assume that the individuals interact with equal probabil-
ity with every other individual, and that no new mutations occur
except for those that are already present at the beginning. The re-
sulting coupled evolutionary dynamics is the subject of evolutionary
game theory. Imagine two species which each have a high fitness if
their population is small and a low fitness if their population is large
compared to the population of the other species. These two species
can coexist, because natural selection always favors the species that is
rare compared to the other species, which leads to an evolutionarily
stable state at the ratio of populations for which both species have an
equal fitness.
These typical assumptions for evolutionary game theory are still far
from being realistic. Changing only one of them can lead to com-
pletely different results, but can also make it difficult or even impos-
sible to find exact solutions. Hence, almost any attempt to relax one
assumption has resulted in a new direction of research, e. g. evolu-
tionary game theory with finite instead of infinite populations [2–11],
with populations on networks or spatially distributed populations in-
stead of well-mixed populations [12–19] or with mutations occurring
during the process [7, 20, 21]. The attempts to replace the assump-
tion of a constant environment with variable environments headed
in different directions because the environment can affect several pa-
rameters in the system. For example, the environment may affect the
selection strength [8], the reproduction rate [22–25], or the population
size [10, 11, 26–28] for each species independently. Typical properties
of interest in these studies are the probability of extinction or fixation
of a mutation and the mean time to extinction or fixation of a muta-
tion [3, 5, 8, 9, 27, 29–43].
In this thesis, we aim to study the effects of changing environments
on evolutionary dynamics in a different way. We assume that the
fitness of species changes depending on the environmental fluctua-
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tions and ask how this affects the stationary states of evolutionary
processes. In general, it is known that noise in a dynamical system
can change or create stationary states [44–48], but the implications of
these effects in evolutionary dynamics are largely unknown.

1.2 outline

In the first half of this thesis we study the effects caused by environ-
mental fluctuations in evolutionary game theory.
In chapter 2 we review some fundamental concepts of evolutionary
game theory that we use in the following chapter.
In chapter 3, we analyze the stationary states in evolutionary game
theory if the values in the payoff matrix, which describes how the
species interact with and depend on each other, change continuously.
We find that the positions, the number and the stability of the station-
ary states change depending on the intensity and the kind of fluctu-
ations. We show that these changes can be interpreted as transitions
between evolutionary games caused by payoff fluctuations.
In chapter 4, we show that evolutionary games on networks and in
spatially distributed populations without payoff fluctuations show
similar effects as those that we discovered in chapter 3. We show that
this allows a new perspective on key results of evolutionary games in
structured populations, in particular how the network type, the de-
gree distribution and migration affect the evolution of cooperation.

The classical models of evolutionary game theory that we study
in the first half can not be tested experimentally. These models were
developed to demonstrate qualitative differences, but not to make
predictions for any real biological system. In the second half of this
thesis we develop two different models for evolutionary processes of
microbiological species that can be tested experimentally.
In chapter 5, we develop a model for the evolution of shared antibi-
otic resistance in bacteria. This type of resistance has been observed
in experiments and suggested as a real-world example of evolution-
ary game theory. Our model successfully reproduces a number of
observations from experiments on the evolution of antibiotic resis-
tance and allows new insights in the evolutionary dynamics and the
phenospace of antibiotic resistance. However, for understanding the
impact of changing environments, e. g. a fluctuating antibiotic con-
centration, it remains a first step because predictions for changing
environmental conditions require to know the absolute fitness func-
tions which have to be measured experimentally.
In chapter 6, we develop a model for the adaptation of nematodes to
temperature fluctuations. Here, the absolute fitness functions are al-
ready partly known from experiments. This allows us to make predic-
tions that can be compared to measurements with nematode strains
from natural habitats of different local climates.





2
F U N D A M E N TA L S O F E V O L U T I O N A RY G A M E
T H E O RY

2.1 unexpected results of darwinian evolution

Figure 2.1: Oryx leucoryx (male). Im-
age: Charles Darwin, 1871

(public domain) [49].

Many animals in the wild have
to fight with other individuals of
the same species for food, terri-
tory, social status or mates. If we
assume that individuals which
are successful in these contests
have a higher chance to repro-
duce, natural selection should fa-
vor traits that give an advan-
tage in such contests, leading to
an evolutionary arms race for
strength, effective weapons and aggressive behavior. However, such
intraspecific conflicts are often surprisingly harmless. For example,
male deers fight with each other by crashing and pushing their
antlers, but usually refrain from attacking their opponent from an
unprotected side. Also males of many species among the antelopes
and goats attack each other with their horns, but the shape of their
horns does not seem to be optimized to harm others (see figure 2.1).
How can such ritualized tactics and inefficient weapons be the result
of Darwinian evolution?
Evidently, a species with less intraspecific aggression has an advan-
tage over a species with more intraspecific aggression. This argument
could explain limited intraspecific aggression if we assume that natu-
ral selection acts as “group selection“. However, group selection has
been debated controversially, because natural selection primarily acts
on the individual level.
But if we assume that aggressive individuals have an advantage over
non-aggressive individuals and that natural selection acts on the in-
dividual level, why do intraspecific conflicts not necessarily result in
an evolutionary arms race?

5



6 fundamentals of evolutionary game theory

2.2 evolutionarily stable state

In 1973, John Maynard Smith and Georg Price published a paper on
“The Logic of Animal Conflict”, where they combined Darwinian evolu-
tion with game theory [50]. They assumed that a population consists
of individuals that use inherited strategies and that the success of
these individuals depends not only on their own strategy but also on
which strategies the other individuals use. For the sake of simplicity,
we can consider a population in which only two strategies are present,
one aggressive strategy and one non-aggressive strategy. We call in-
dividuals “hawks” if they use the aggressive strategy and “doves” if
they use the non-aggressive strategy. These are symbolic names for
the strategies, the individuals could still be deers, antelopes or any
other species. If two hawks get into a conflict, they fight with each
other, hence they pay a cost C in form of energy and risk of injuries.
Each of them has a 50% chance to win the disputed resource of value
V, where we assume that C > V > 0. If two doves meet at the re-
source, they do not fight with each other but just share the resource.
If a hawk meets with a dove, the dove retires and leaves the resource
to the hawk. The payoff received by the individuals depending on the
combination of strategies can be written as a payoff matrix,

(Hawk Dove

Hawk V−C
2 V

Dove 0 V
2

)
with C > V > 0. (2.1)

Using classical game theory we could analyze which strategy a ratio-
nal player should choose to maximize the payoff under the assump-
tion that the opponent tries to maximize its payoff as well. In contrast,
in evolutionary game theory there is no rational choice about the deci-
sion, because the strategies are inheritable phenotypes. The strategies
in the population change only due to natural selection.
Let us assume that the population is infinitely large and describe the
state of the population as x = (xH, xD), where xH is the share of
hawks and xD = 1− xH is the share of doves in the population. If
the individuals get into conflicts with random other individuals, the
average payoff of the hawks is PH = V−C

2 xH + VxD and the average
payoff of the doves is PD = 0xH + V

2 xD. In short, the average received
payoff is (PH, PD) = Mx, where M is the payoff matrix 2.1.
Consider a population of doves in which suddenly one hawk appears
due to a mutation. This hawk receives a higher average payoff than
the doves, because it wins every conflict without having to pay the
costs for fighting. Hence, natural selection favors the hawk strategy
and the population share xH increases. At the same time the increase
of the population share of hawks reduces the advantage of hawks,
until the population approaches a state in which hawks and doves
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Figure 2.2: Illustration of the evolutionarily stable state. In a Hawk-Dove
game, the strategy which is rare compared to the other strategy
has a higher payoff. The rare strategy is favored by natural se-
lection until the population approaches the evolutionarily stable
state, where both strategies receive the same payoff.

receive equal average payoffs. The situation is reversed in a popula-
tion of hawks in which a mutation causes one individual to be a dove.
The payoff of the dove is zero, but the payoff of the hawks is negative
because the costs C for fighting are larger than the value V of the
resources. Hence, natural selection favors the doves until the popu-
lation approaches the state in which both receive the same average
payoff.
Consequently, for all initial states 0 < xH < 1 the evolutionary pro-
cess approaches the state where PH = PD, which is called the evolu-
tionarily stable state (see figure 2.2).
The Hawk-Dove game shows that natural selection does not always

favor the individuals with the more aggressive strategies. Aggressive
and non-aggressive individuals can coexist in an evolutionarily stable
state. However, in the introductory examples of intraspecific conflicts
between male deers or between male antelopes there are no two types
of deers with different tactics or two types of antelopes with different
horn shapes. Does the idea of hawks and doves which coexist in an
evolutionarily stable state apply to these examples?
The strategies can be interpreted in two different ways. If an indi-
vidual is either hawk or dove, they are called “pure strategies”. If
both strategies are present in every single individual and strategy
i is applied to a degree or with the probability xi, they are called
“mixed strategies”. The male deers and antelopes are examples of
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Figure 2.3: Examples of Hawk-Dove games in nature.
(A) The head-color polymorphism of Gouldian Finches corre-
lates with their hormone profile. In competitions, e. g. for the
best nest locations, the individuals with red heads behave more
aggressively than the individuals with black heads [51]. Image:
Nigel Jacques, “GouldianFinches”, CC-BY-SA 2.5.
(B) Yeast cells preferably consume glucose, but if only sucrose
is available, the wild-type can hydrolyze sucrose to glucose.
Cheater cells do not invest energy in producing glucose, but con-
sume the glucose that the wild-type loses due to diffusion [52].
(C) A satellite virus can not produce all necessary components
to reproduce itself. But if the host cell is also infected by the cor-
responding helper virus, the satellite virus can use components
produced by the helper virus to reproduce [53].

mixed strategies. Here, the evolutionarily stable state is not a coexis-
tence of two types of individuals but rather a compromise between
being to some degree aggressive and to some degree harmless. For
biological examples of Hawk-Dove games with pure strategies see
figure 2.3.

2.3 replicator equation

In 1978, Peter Taylor and Leo Jonker formalized the idea of evolution-
ary game theory [54]. They derived a coupled differential equation,
called “replicator equation”, which describes how the populations of
strategies change depending on the fitness differences between strate-
gies. In general, the replicator equation can be written as

ẋi = xi ( fi(x)− 〈 f 〉) , (2.2)

where xi is the population share of strategy i, fi is the average fitness
of individuals with strategy i, and 〈 f 〉 is the average fitness of all in-
dividuals in the population. For games that are described by a payoff
matrix M the replicator equation simplifies to

ẋi = xi

(
(Mx)i − xTMx

)
, (2.3)

https://commons.wikimedia.org/wiki/File:GouldianFinches.jpg
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where the vector x = {xi} describes the population shares.
Setting the right hand side zero yields the fixed points of the evolu-
tionary game. For example, using the payoff matrix 2.1 for the Hawk-
Dove game, the replicator equation has three fixed points. The two
fixed points at xH = 0 (no hawks) and xH = 1 (no doves) are unstable
and the fixed point at xH = V

C (coexistence of hawks and doves) is
the evolutionarily stable state.

2.4 frequency-dependent moran process

The replicator equation has the limitation that it describes a deter-
ministic process, because the populations are assumed to be infinite.
Due to the finite size of real populations, it is more realistic to de-
scribe evolutionary games as stochastic processes. A formalization of
the idea of evolutionary game theory as a stochastic process is the
frequency-dependent Moran process [3, 55]. Consider a population
of finite size N, which consists of N1 individuals with strategy 1 and
N2 = N − N1 individuals of strategy 2. If the payoff matrix of the
game is given by M = [a, b, c, d] and each individual plays one game
against every other individual, they receive the average payoff

P1(N1) =
a(N1 − 1) + b(N − N1)

N − 1
(2.4)

P2(N1) =
cN1 + d(N − N1 − 1)

N − 1
. (2.5)

Since the considered game may be just one among many contribu-
tions to the total fitness of the individual, the fitness of strategy i is
defined as

fi = 1− w + wPi, (2.6)

where w is called the selection strength. The selection strength is of-
ten assumed to be small w� 1, which is called “weak selection”.
At every time step, one of the individuals is randomly chosen to re-
produce, where the probability is proportional to the fitness of the
individuals. Next, one individual is randomly chosen to die, where
the probabilities are the same for all individuals. The result is a birth-
death process in which the size of the population remains N, but at
every time step the number of individuals with strategy 1 or 2 may
increase by one, decrease by one, or remain constant. The transition
probability that N1 increases (decreases) by one is the product of the
probability that an individual of strategy 1 (2) is chosen to reproduce
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and the probability that an individual of strategy 2 (1) is chosen to
die,

TN1,N1−1 =
f2(N1)(N − N1)

f2(N1) · N1 + f2(N1)(N − N1)
· N1

N
(2.7)

TN1,N1 = 1− TN1,N1−1 − TN1,N1+1 (2.8)

TN1,N1+1 =
f2(N1) · N1

f2(N1) · N1 + f2(N1)(N − N1)
· N − N1

N
. (2.9)

With the Moran process we can for example analyze how likely it is
that a mutation that occurred in only one individual spreads to the
whole population, in other words, that the species evolved by one
mutation. The event that the process ends at N1 = N if it started
at N1 = 1 is called the fixation of strategy 1. From the transition
probabilities it is possible to calculate the fixation probability and the
expected time to fixation [3, 6].
In the limit of infinite populations N → ∞, the frequency-dependent
Moran process converges to the replicator equation [4].

2.5 evolutionary games

The Hawk-Dove game that we discussed in section 2.2 belongs to
the class of 2× 2-matrix games, which are the games that consist of
two opponents with two strategies. In general, matrix games can also
consist of more than two opponents and more than two strategies.
Beyond matrix games, a game can also be defined by any payoff func-
tion P(s, x) that maps a strategy s of an individual and a state x of
the population to a payoff value for the individual. For example, in
chapter 5 we develop an evolutionary game based on a payoff func-
tion P(s, x) to model the interaction between antibiotic resistant and
antibiotic sensitive bacteria cells.
The number of games is infinte and theoretically every interaction be-
tween individuals can be described as a matrix game or as a payoff
function game. Only for the class of 2× 2-matrix games we can get an
overview of the possible games. The 2× 2-matrix games are tradition-
ally distinguished based on the rank of the four values in their payoff
matrix [56–58]. For simplicity, we use the four values 1, 2, 3, and 4
as payoff values and to define the ranks of the games. For instance,
if we say that a game has the payoff matrix M = [2, 3, 1, 4], we mean
that this payoff matrix is an example of this game and that this game
is defined by all payoff matrices with the same ranks, in this case all
matrices M = [a, b, c, d] where c < a < b < d.
If we ignore “tie games”, in which two payoff values are equal, 24 ma-
trices with different ranks of values can be created by swapping pairs
of values in the payoff matrix. Due to the symmetry, that swapping
the two rows and the two columns of the matrix leads to the same
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game just with a different order of the strategies, there are 12 distinct
2× 2-matrix games.
Here, we introduce six of these twelve games, because these six games
appear in chapter 3 and chapter 4. For illustrations of the dynamics
and the received payoffs in these games see figure 2.4.

Prisoner’s Dilemma: The first and certainly most famous game is
the Prisoner’s Dilemma, which is used as a prototype model for the
evolution of cooperation. The payoff matrix can be written as

(Cooperate Defect

Cooperate 3 1

Defect 4 2

)
. (2.10)

If all individuals cooperate they receive a relatively high payoff. The
dilemma arises from the fact that an individual that defects always
receives a higher payoff than an individual that cooperates. Hence,
natural selection always favors the defectors, which leads to the ex-
tinction of the cooperators and a relatively low payoff for the defec-
tors.
Typical situations of Prisoner’s Dilemmas consist of an individual
which can invest time or energy or take a risk to do something that
benefits another individual, for example providing the other individ-
ual with food or protection.
The game is similar to the Hawk-Dove game as introduced in section
2.2, payoff matrix 2.1, but with V > C instead of C > V. Therefore,
some biological examples, can be either a Hawk-Dove game or a Pris-
oner’s Dilemma, depending on the costs and the values, such as the
interaction between a helper virus and a satellite virus shown in fig-
ure 2.3C [53].

Harmony: The Harmony game is a model for agreement without a
conflict. The payoff matrix can be written as

(Cooperate Defect

Cooperate 4 3

Defect 2 1

)
. (2.11)

The Harmony game can be considered the opposite of the Prisoner’s
Dilemma, because in this game the cooperators always receive a higher
payoff than the defectors. This leads to one evolutionarily stable state
in which all individuals cooperate.
An example could be individuals which form a crowd to protect
against predators or to shelter from the cold, because both sides ben-
efit from joining the crowd.
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Hawk-Dove game: We introduced the Hawk-Dove game in section
2.2 using a parametrization of the payoff matrix with the two vari-
ables V and C. In general, all Hawk-Dove games have a payoff matrix
with the same ranks as the matrix

(Hawk Dove

Hawk 1 4

Dove 2 3

)
. (2.12)

For biological examples see section 2.2 and figure 2.3.

Stag Hunt: The Stag Hunt game is a model for coordination and
trust. The payoff matrix of a Stag Hunt game is

( Stag Hare

Stag 4 1

Hare 3 2

)
. (2.13)

If two individuals coordinate their efforts, they are able to hunt a stag
and receive a high payoff. If the two individuals work alone, they are
able to hunt a hare and receive a lower payoff. If one individual aims
for the stag and the other individual for the hare, only the second in-
dividual is successful. This game has two evolutionarily stable states,
one state where all individuals coordinate their efforts to hunt for the
stag and one where all individuals work alone to hunt for the hare.
A third stationary state, in which both strategies coexist, is unstable,
because with one additional individual hunting for stags the strategy
of hunting for stags becomes more successful and vice versa.
As the name of the game suggests, typical situations of this game are
predators hunting for prey.

Battle: The Battle game is a model for anti-coordination with a
conflict of interests. The payoff matrix can be written as

(Leader Supporter

Leader 1 4

Supporter 3 2

)
. (2.14)

If two individuals of the same strategy meet, they receive a relatively
low payoff. If two individuals of different strategies meet, they re-
ceive a relatively high payoff. The strategy that is the minority has
an advantage over the other strategy because it has the higher chance
to meet a partner with the opposite strategy. The leads to an evolu-
tionarily stable state where both strategies coexist. The evolutionary
dynamics of the Hawk-Dove game and the Battle game is qualita-
tively the same, both have two unstable fixed points where only one
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strategy exists and an evolutionarily stable state where both strate-
gies coexist. The difference between these two games is that in the
Hawk-Dove game both strategies benefit from an increased number
of doves, but in the Battle game only leaders benefit from an increased
number of supporters and only supporters benefit from an increased
number of leaders.
Typical situations of Battle games are cases where division of labor
is an advantage for both partners, but the tasks require different ef-
fort, such like different roles of males and females in reproduction or
parental care.

Hero: The Hero game another model for anti-coordination with a
conflict of interests. The payoff matrix can be written as

(Leader Supporter

Leader 2 4

Supporter 3 1

)
. (2.15)

This game is very similar to the Battle game. The only difference is
that here two leaders receive a larger payoff than two supporters,
while in the Battle game two supporters receive a larger payoff than
two leaders. In classical game theory, this changes the incentives to
switch the own strategy if the opponent maintains its strategy. But in
an evolutionary game with two strategies, the share of one strategy
can not change independently of the share of the other strategy. The
evolutionary dynamics of the two games has the same structure and
the received payoff of the two strategies in both games change in
the same directions depending on the population shares (compare
figure 2.4E and 2.4F), hence we call these two games the Battle/Hero
game in chapter 3.
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Figure 2.4: Illustrations of evolutionary games. The lines above the plots
show the evolutionary dynamics with filled circles for stable
fixed points and empty circles for unstable fixed points. The red
and blue lines show the received average payoffs P1 and P2 result-
ing from the payoff matrices given in section 2.5, where strategy
1 is the cooperator strategy in (A) and (B), the hawk strategy in
(C), the stag strategy in (D) and the leader strategy in (E) and
(F).
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chapter is published
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Letters [59] (©
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reprint permitted by
APS Copyright
Policies), reprinted
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3.1 introduction

How species interact depends on the environment and is thus of-
ten uncertain or subject to ongoing variations. Traditional evolution-
ary game theory has assumed constant payoff structures. Here, we
demonstrate by independent methods that the dynamics of averaged
payoff values does not well approximate the dynamics of fluctuating
payoff values. We show that payoff fluctuations induce qualitative
changes in the dynamics. For instance, a Prisoner’s Dilemma with
payoff fluctuations may have the evolutionary dynamics of a Hawk-
Dove game with constant payoff values. As a consequence, cooper-
ators can coexist with defectors – without any further cooperation
maintaining mechanism such as kin or group selection [60, 61], reci-
procity [62], or spatial structures [12].
First of all, how environmental fluctuations and payoff stochastici-
ties affect the evolution of interacting species depends on the time
scales. If the fluctuations are much faster than reproduction, adapta-
tion reaches a stationary state where species are adapted to living in a
rapidly fluctuating environment. If the fluctuations are much slower
than the generation time (e. g. ice ages or geomagnetic field reversals),
adaptation quickly reaches a stationary state which slowly drifts to
follow the fluctuation. Ultimately challenging is the case when the
fluctuations and reproduction are at a similar pace such that adapta-
tion is continuously following the environmental changes. Here, we
show that such states are subject to noise-induced transitions. Noise-
induced transitions have been studied in dynamical systems, where
the most prominent models study the effects of additive noise [44–
46]. In dynamical systems, both additive and multiplicative noise can
lead to an array of anomalous noise-induced effects such as stochastic
resonance [63] and the creation of stable states [47, 48]. We wish to
investigate the consequences of multiplicative noise in evolutionary
game theory that have not been systematically studied yet.

A number of studies used stochastic models of population extinc-
tion to analyze the impact of environmental stochasticity on the ex-
tinction risk of small and large populations [29–31]. Particular atten-

15
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tion has been spent on how the species’ mean time to extinction de-
pends on a small randomly varying growth rate [32], and on the auto-
correlation of the environmental noise [33–41]. Likewise in evolution-
ary game theory, the question of how fixation, i. e. the transition to
the survival of only one species, depends on environmental stochas-
ticity attracted a lot of attention [3, 5, 8, 9, 27, 42]. Recently, how the
fixation depends on environmental stochasticity was also studied in
the case of multi-player games [43].

As opposed to these efforts, we will focus on the impact of payoff
fluctuations on the stationary states.
Environmental fluctuations have been integrated in models for evolu-
tionary games in different ways, including fluctuating reproduction
rates [22–25], selection strength [8] and population size [10, 11, 26–28].
We integrate environmental fluctuations as varying payoff values to
study situations in which the environmental fluctuations affect the
way the species interact. Thereby we assume that all individuals ex-
perience the same environment, meaning that the payoff values vary
with time but not between individuals. Payoff noise has been studied
in structured populations [17, 64] and in finite populations [9]. Op-
posed to these, we study payoff noise in unstructured populations
and aim to understand how the evolutionary dynamics change.

We explore the landscape of dynamical changes of evolutionary
games induced by such fluctuating payoffs. We consider both deter-
ministic (e. g. seasonal) as well as stochastic fluctuations with varying
intensities and correlations. For a realistic description it is necessary
to also include intrinsic noise in finite populations [2, 3, 5, 30]. How-
ever, we aim to reveal phenomena that were unknown so far because
they were hidden by the idealized assumption of constant payoffs.
Therefore we isolate the effects of fluctuating payoffs from the diverse
effects of intrinsic noise in finite populations by studying the replica-
tor equation, which describes the evolution of strategies in infinite
populations, and the Moran process [55] for finite but large popula-
tions.

3.2 anomalous evolutionarily stable states

Multiplicative growth is a common model that underlies both popu-
lation and evolutionary dynamics. In the simple case of time-discrete
exponential growth, the population number n is described by nt+1 =

rnt. Depending on the growth rate r, the population will diverge
(r > 1), remain constant (r = 1) or decay (0 ≤ r < 1). However, a
time-dependent growth rate rt can lead to intricate results. As an ex-
ample, compare a growth rate that is switching between 1 and 1.1
with a growth rate that is switching between 0.6 and 1.5. Both have
the same arithmetic average that is greater than one, but the popula-
tion will diverge in the first case because 1 · 1.1 = 1.1 and decay in the
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Figure 3.1: Selection reversal in a Hawk-Dove game with constant, peri-
odic and random payoff. (A) describes a traditional Hawk-Dove
game. The population starts at x1 = x2 = 0.5 (50 % hawks,
50% doves) and converges to an evolutionarily stable state where
x1 > x2. Periodically (B) or randomly fluctuating payoffs (C)
shift the evolutionarily stable state such that x1 < x2.

second case because 0.6 · 1.5 = 0.9. In general, the long-term growth
is determined by the geometric mean of the growth rate r, and the
population will diverge if r > 1, remain constant if r = 1 and decay
if 0 ≤ r < 1. Like in this example, multiplicative noise has generally
a net-negative effect on growth in the long-term [65–67].
Models of evolutionary game theory are more complex but share the
same underlying property, which leads to noise-induced non-ergodic
behavior.

In the classical Hawk-Dove game two birds meet and compete for
a shareable resource V, the positive payoff. If a hawk meets a dove
the hawk alone gets the resource, if two doves meet they share the
resource and if two hawks meet they fight for the resource, which
costs energy and implies the risk of getting injured, formalized by
a negative payoff −C. Since 50% of the hawks win and 50% of the
hawks loose a fight, the average payoff of a hawk meeting a hawk in
the limit of an infinite population is V−0

2 + 0−C
2 = V−C

2 .
Figure 3.1A shows that for V = 1 and C = 1.5 the time-discrete
replicator dynamics leads to an evolutionarily stable state in which
a larger population of hawks coexists with a smaller population of
doves. However, in a changing environment the payoff matrix will
not be constant. For example, the abundance of the food resource
may change periodically with the seasons, or the risk of death caused
by an injury may depend on the presence of predators. Figure 3.1B
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Figure 3.2: Fluctuations transform a Hawk-Dove game into a Prisoner’s
Dilemma and cause “unfair” stable coexistence. (A) Shown is
the anomalous stationary state (solid line: stable, dashed line: un-
stable) of the fraction of cooperators x1 as a function of the noise
intensity. Due to alternating payoff values the stationary states
consist of two periodic points (green and blue). With increas-
ing intensity, the dynamical structure of a Hawk-Dove game first
changes to a game without analog in traditional games (N.N.)
and finally to a Prisoner’s Dilemma game. (B) The difference of
the averaged payoffs received by the two players corresponding
to the stationary states of coexistence in (A). In the arithmetic
mean the received payoffs are unfair. In the geometric mean they
are equal, as predicted by equation 3.4.



3.2 anomalous evolutionarily stable states 19

and 3.1C show how the evolutionarily stable state can change if V or
C fluctuate such that their averages are still the same as in figure 3.1A.
Similar to the aforementioned example with the exponential growth
process, the noise has a net-negative effect on the long-term growth
of the strategies in replicator dynamics, too. Due to the specific struc-
ture of the Hawk-Dove game payoff matrix, the negative effect of the
noise of both V and C is stronger for the population of hawks than
for the doves, such that with sufficient noise the doves dominate the
population in the evolutionarily stationary state. Next, we show that
these anomalous effects are generic for evolutionary games.

In evolutionary game theory the interactions are usually formal-
ized in a payoff function, which specifies the reward from the inter-
action with another player that is received by a given individual. In
the simplest case, a game with two strategies is determined by a pay-
off matrix M with 2 × 2 matrix elements. We describe the state of
the population as x (∑ xi = 1), where xi ≥ 0 is the fraction of play-
ers with strategy i ∈ {1, 2}. Players with strategy i receive the pay-
off Pi = (Mx)i + b, where the background fitness b ensures that the
payoff is positive. The assumption that species that receive a higher
payoff reproduce faster can be formalized by the replicator equation,
which is used here in the time-discrete form [68]

x(t+1)
i = x(t)i · ri(x(t), M), (3.1)

with ri(x(t), M) =
(Mx(t))i + b

x(t)T Mx(t) + b
=

Pi

〈P〉 (3.2)

and the average payoff of the population 〈P〉 = x1P1 + x2P2.
Following Smith [69], “a population is said to be in an ‘evolutionar-
ily stable state’ [henceforth ESS] if its genetic composition is restored
by selection after a disturbance, provided the disturbance is not too
large.” Hence the ESS describe the long-term behavior of the system
and are stable stationary states of equation 3.1. For a constant payoff
matrix M, the stationary states x∗ satisfy ri(x∗, M) = 1. If two species
coexist, r1(x∗, M) = r2(x∗, M) implies that both receive the same pay-
off P1 = P2 = 〈P〉, as otherwise the species with the higher payoff
would move the system away from this state due to faster growth.
Now consider continuously changing payoffs with finite means. The
stationary states x∗(t) are solutions of

ri(x∗, M) := lim
T→∞

(
T−1

∏
t=0

ri(x∗(t), M(t))

) 1
T

= 1, (3.3)

where M(t) is the time-dependent payoff matrix. Equation 3.3 defines
the geometric average, indicated henceforth by the bar. If the pay-
off matrix changes deterministically with period T a stationary state
is a periodic function x∗(t) = x∗(t + T); if it changes randomly a
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stationary state is a random function x∗(t) with distribution ρ∗(x).
But how does one calculate the stationary states for periodically and
randomly changing payoff matrices? In contrast to normal ESS the
stationary states are not solutions of 〈P1〉 = 〈P2〉, where 〈Pi〉 :=
limT→∞

1
T ∑T−1

t=0

(
M(t)x∗(t)

)
i

is the arithmetic time average of the re-

ceived payoff. Equation 3.3 implies that r1(x∗, M) = r2(x∗, M) = 1,
and, using equation 3.2, that

P1 = P2. (3.4)

If the fluctuations are small, we can approximate the geometric mean

by Pi = 〈Pi〉 −
σ2

i
2〈Pi〉 + O(σ

4
i ) (see section 3.6.1), where σ2

i = Var[Pi].
Using this approximation in equation 3.4 yields

〈P1〉 −
σ2

1
2〈P1〉

= 〈P2〉 −
σ2

2
2〈P2〉

(3.5)

Equation 3.5 shows that 〈P1〉 and 〈P2〉 are generally different, which is
why we call these stationary states unfair. It includes the case of con-
stant payoff values as a special case1. Figure 3.2A illustrates how pay-
off fluctuations may change the evolutionary dynamics and thereby
transform one game into another game. Figure 3.2B shows how the
arithmetic and the geometric average of the payoffs the two species
receive deviate. Figure 3.3 shows the stationary states and the corre-
sponding received payoffs of both species for constant and varying
payoff values.

3.3 deterministic payoff fluctuations

We first consider deterministic payoff fluctuations under the replica-
tor equation (equation 3.1). To find the stationary state x∗ we solve
equation 3.3. We assume that M(t) is a sequence with period T. Con-
sequently, the stationary state x∗(t) is periodic as well and P(x, M) =
1
T ∑T

t=0 δ(x− x∗(t))δ(M−M(t)). Equation 3.3 reduces to

ri(x∗, M) =

(
t′+T

∏
t=t′

ri

(
x∗(t), M(t)

)) 1
T

= 1. (3.6)

Note that equation 3.6 has only one free variable because if one peri-
odic point x∗(t

′) is given, the others are determined by equation 3.1.
As an illustrative example, assume an alternating payoff matrix M(t) =

1 Note that σ1 and σ2 depend on the stationary state x1 and the variance and co-
variance of the payoff values M = [m1, m2, m3, m4]. If σ1 = σ2 = 0, equation
3.5 reduces to 〈P1〉 = 〈P2〉. For small fluctuations we can approximate them
as σ2

1 ≈ E[x1]
2Var[m1] + (1 − E[x1])

2Var[m2] + 2(E[x1] − E[x1]
2)Cov[m1, m2] and

σ2
2 ≈ E[x1]

2Var[m3] + (1− E[x1])
2Var[m4] + 2(E[x1]− E[x1]

2)Cov[m3, m4].
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Figure 3.3: Evolutionarily stable states for constant and periodic payoff.
An evolutionary game with a time-constant payoff matrix (left)
compared with a game with a time-varying payoff matrix (right)
to exemplify the “unfair” stationary states. The former payoff
matrix represents a Hawk-Dove game and the latter an alternat-
ing payoff matrix which has the same time-average as the con-
stant Hawk-Dove game. (A) and (B) show the dynamics of the
two games as a Verhulst diagram with an example trajectory in
red. The two blue curves in (B) correspond to even and odd time
points, with the anomalous stationary states at x?n and x†

n. (C) and
(D) show the difference of the state one (C) or two (D) time steps
later and the current state. The zero crossings of these lines are
the positions of the fixed point and the periodic points. (E) and
(F) show the payoff of species 1 (blue) and species 2 (green). In
(E), the equilibrium is at the same position as the fixed point. In
(F), species 1 receives a higher time-averaged payoff than species
2 at both periodic points.



22 evolutionary game theory with payoff fluctuations

M+(−1)tσM̃. Then x∗(t) = x∗+(−1)t∆x∗ has the same form and can
be found by solving equation 3.6, which reduces to

ri(x∗, M) =
√

ri(x∗(t), M(t)) · ri(x∗(t+1), M(t+1)) = 1. (3.7)

Figure 3.2 shows the stationary states of a game with the payoff func-
tion

M(t) =

(
1.1 0.8

2 0

)
+ (−1)tσ

(
−0.33 1

1 0

)
(3.8)

For σ = 0 this is a Hawk-Dove game. For small σ, in fact, the station-
ary states predicted by equation 3.7 slightly deviate from the ESS of
the Hawk-Dove game. There is a first bifurcation at σ ≈ 4.07, from
one stable stationary state (solid curves) to two. At σ ≈ 6.4 there is a
second bifurcation where the first branch, the stable coexistence, dis-
appears. The bifurcation behavior induces a pronounced hysteresis
effect. Ergodicity breaking causes anomalous player’s payoff expec-
tations as shown in figure 3.2B. The arithmetic mean of the payoff
difference that the players receive also shows a pronounced hystere-
sis effect. For the geometric mean, as predicted by equation 3.4, this
effect is absent.
More generally, fluctuations can even change the number, the posi-
tions and the stability of stationary states and the dynamics can be
structurally very different from the dynamics of games with constant
payoffs, as shown in figure 3.4. In figure 3.4A large fluctuations in-
duce the onset of cooperation for the Prisoner’s dilemma as it is ef-
fectively transformed to a Hawk-Dove game with stable coexistence.
Figures 3.4B, 3.4C and 3.4D show how increasing fluctuations suc-
cessively transform three other classical games either into different
classical games or into games without classical analogs (denoted at
“N.N.”).

In section 3.6.2 we show how anomalous stationary states arise
from (correlated) stochastic payoffs, which is mathematically more
involving but shows similar effects as from deterministic fluctuations.

3.4 classification of games with payoff fluctuations

A symmetric game defined by a constant 2 × 2 payoff matrix can
be classified as one out of 12 game classes with distinct dynamical
structures, e. g. Prisoner’s Dilemma, Hawk-Dove game, etc. This tra-
ditional classification (introduced in section 2.5) is based on the rank
of the four values in the payoff matrix. For a complete list of the ranks
of all 12 games see middle column in table 3.1.
The name of a game allows a more intuitive understanding than the
position in the four dimensional payoff space. However, this classifi-
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Figure 3.4: Evolutionarily stable states with increasing fluctuation in-
tensity. Stable and unstable states (solid and dashed lines)
x∗1(σ) for games with alternating payoff fluctuations (blue and
green are the two periodic points). The payoff matrices are
M(t) = [3, 1, 4, 2] + (−1)tσ[0, 0, 0, 1] in (A), M(t) = [4, 1, 3, 2] +
(−1)tσ[1, 0, 0, 1] in (B), M(t) = [2, 3, 4, 1] + (−1)tσ[0, 1.3, 1.3, 0] in
(C) and M(t) = [3, 2, 4, 1] + (−1)tσ[−0.75, 1,−2, 1] in (D). In each
example the background fitness is b = 10. The names of the
games are identified using criteria described in section 3.4.
For the same games but stochastic instead of alternating noise,
the background shows the average of three stationary distribu-
tions resulting from the initial distributions δ(x), δ(x− 0.5) and
δ(x− 1).
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cation cannot be applied to time-varying payoff matrices because the
ranks may be time-dependent as well. Therefore we propose a classi-
fication for evolutionary games based on three characteristics: (1) the
dynamics of the evolutionary game (the number of stationary states
and their stability), (2) the type of social interaction (how the payoff
differs between stationary states for one player compared to the other
player) and (3) the effect on the community (how the total payoff of
player one and two differs between stationary states). The classifica-
tion scheme and its criteria are summarized in figure 3.5. Based on
these criteria a game class is defined as a tuple [c1, c2, c3, c4], where

c1 = Sign
(

du1

dx1
(0)
)
· n∗

c2 = Sign (P1(1)− P1(0))

c3 = Sign (P2(1)− P2(0))

c4 = Sign (〈P〉(1)− 〈P〉(0)) ,

(3.9)

where u1 = dx1
dt , Pi(x) =

(
M

(
x

1− x

))
i

denotes the payoff of a

strategy i player, 〈P〉 = xP1 + (1− x)P2 the average payoff in the pop-
ulation and n∗ = ‖{x∗1 : u1(x∗1) = 0}‖ the number of stationary states.
This classification can be applied to games with varying payoff matri-
ces and even games with nonlinear payoff functions. The scheme is
developed for time-continuous dynamics. The formulation for time-
discrete dynamics is analogous. Note also that the criteria (c2-c4) of
equations 3.9 can be written in a more general form to describe also
non-monotonic payoff functions.
Table 3.1 lists the 12 traditional games defined by the payoff rank
criteria and their corresponding definitions with the presented gener-
alized criteria (for a proof see section 3.6.3).
As an illustrative example how to apply the generalized criteria we
show that the game in figure 3.2 at noise intensity 8, where the payoff
matrix is

M(t) =

(
1.1 0.8

2 0

)
+ 8 · (−1)t

(
−0.33 1

0 0

)
, (3.10)

is a Prisoner’s Dilemma.
As we can see in the figure there are two stationary states, a stable
state at x1 = 0 and an unstable state at x1 = 1, consequently c1 = −2.
From the expected payoff

Pi(x1) =
1
2

(
Meven t

(
x1

1− x1

)
+ Modd t

(
x1

1− x1

))
(3.11)
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Figure 3.5: Case differentiation of game characteristics. An evolutionary
game with two strategies and constant payoff has one out of (A)
four possible dynamical structures (either two or three station-
ary states with the first one either stable or unstable), (B) four
possible combinations of strategy 1’s impact on the payoff of the
individuals (positive or negative impact on the payoff of strat-
egy 1 and 2 players), and (C) two possible kinds of strategy 1’s
impact on the total payoff of all players (positive or negative).

evaluated at the stationary states (P1(0) = 0.8, P1(1) = 1.1, P2(0) = 0
and P2(1) = 2) it follows that c2 = +1 and c3 = +1. For the last cri-
teria we evaluate the population payoff 〈P〉(x1) = x1P1 + (1− x1)P2

at the stationary states (〈P〉(0) = P2(0) and 〈P〉(1) = P1(1)), which
results in c4 = +1. To summarize, the game satisfies the generalized
criteria [−2,+1,+1,+1]. According to table 3.1 this defines a Pris-
oner’s Dilemma.
The games in figure 3.4 were determined with this method.
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Name Payoff rank
criteria

Generalized
criteria

Hawk-Dove
[3, 2, 4, 1]
[1, 4, 2, 3]

[+3,+1,+1,+1]
[+3,−1,−1,−1]

Battle
[2, 3, 4, 1]
[1, 4, 3, 2]

[+3,−1,+1,+1]
[+3,−1,+1,−1]

Hero
[1, 3, 4, 2]
[2, 4, 3, 1]

Compromise
[1, 2, 4, 3]
[3, 4, 2, 1]

[−2,−1,+1,−1]
[+2,−1,+1,+1]

Deadlock
[2, 1, 4, 3]
[3, 4, 1, 2]

[−2,+1,+1,−1]
[+2,−1,−1,+1]

Prisoner’s Dilemma
[3, 1, 4, 2]
[2, 4, 1, 3]

[−2,+1,+1,+1]
[+2,−1,−1,−1]

Stag Hunt
[4, 1, 3, 2]
[2, 3, 1, 4]

[−3,+1,+1,+1]
[−3,−1,−1,−1]

Assurance
[4, 1, 2, 3]
[3, 2, 1, 4]

[−3,+1,−1,+1]
[−3,+1,−1,−1]

Coordination
[4, 2, 1, 3]
[3, 1, 2, 4]

Peace
[4, 3, 1, 2]
[2, 1, 3, 4]

[+2,+1,−1,+1]
[−2,+1,−1,−1]

Harmony
[4, 3, 2, 1]
[1, 2, 3, 4]

[+2,+1,+1,+1]
[−2,−1,−1,−1]

Concord
[4, 2, 3, 1]
[1, 3, 2, 4]

Table 3.1: Criteria for strict symmetric games. The middle column shows
the rank of the values in the payoff matrix M = [a, b, c, d], e. g.
[3, 2, 4, 1] means d < b < a < c [58]. The right column shows the
values of the criteria defined in the text. Some games are two dif-
ferent games according to the payoff rank criteria and the same
game according to the generalized criteria, because their evolu-
tionary dynamics is structurally the same. For the example of the
Battle and the Hero game, this structural similarity is explained
in section 2.5.
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3.5 discussion

Payoff noise in evolutionary dynamics is multiplicative and as such
causes ergodicity breaking. The consequences have intricate effects
on the coevolution of strategies. Depending on the details of the sys-
tem, on the intensity of the fluctuations and even on their covariance,
ergodicity breaking leads to shifting the payoffs out of equilibrium,
shifting the stationary states and thereby to fundamental structural
changes of the dynamics.
In evolutionary games with constant payoffs, the condition for stable
coexistence is that all species have equal growth rates. With fluctuat-
ing payoffs this condition generalizes to equal time-averaged growth
rates, which typically are different from ensemble averages in non-
ergodic systems. When one naively replaces fluctuating payoffs with
their average values, the ensemble averages of the growth rates are
recovered but these averages do not correctly predict the dynamics.

Games with fluctuating payoffs require a novel classification that
cannot be based on payoff ranking schemes as introduced in section
2.5. We developed a classification that primarily considers the dy-
namical structure. Our classification for evolutionary games may be
applied to evolutionary games where the payoff structure cannot be
described by a simple payoff matrix, or when other modifications af-
fect the dynamical structure. Examples include complex interactions
of microbes such as cooperating and free-riding yeast cells, where the
payoff is a nonlinear function of the densities [52].
Payoff fluctuations can cause two strategies that coexist in an evolu-
tionarily stable state to receive different time-averaged payoffs. How-
ever, these “unfair” stable states are not mutationally stable. Muta-
tions, in fact, would turn the “unfair” stable state into a meta-game,
where the beneficiary aims to increase and the victim aims to escape
the unfairness. Strategies of this meta-game could be tuning the adap-
tation or reproduction rate according to the environmental fluctua-
tion [25]. Phenotypic plasticity [70] and bet-hedging [71] may reduce
the necessity to adapt at all.
To conclude, caution is advised when predictions are based on aver-
aged observables, in particular, averaged payoffs structures. Depend-
ing on the amplitude and covariance of the fluctuations, the evolu-
tionary dynamics can be qualitatively different.
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3.6 proofs and methods

3.6.1 Approximation of the geometric mean

Let X be a random variable with E[X] = µ, E[(X − E[X])2] = σ2 and
E[(X− E[X])3] = 0. We can write the geometric mean of X as

X = µ + σY = lim
T→∞

T

∏
t=0

(µ + σyt)
1
T , (3.12)

where Y is a random variable with E[Y] = 0, E[(Y − E[Y])2] = 1 and
E[(Y − E[Y])3] = 0. Now we have the geometric mean as a function
of σ and can write the Taylor series of X(σ) at σ = 0,

X = X(0) +
dX
dσ

(0)σ +
d2X
dσ2 (0)

σ2

2
+

d3X
dσ3 (0)

σ3

6
+O(σ4) (3.13)

= µ− σ2

2µ
+O(σ4) (3.14)

3.6.2 Stochastic payoff fluctuations

3.6.2.1 Replicator equation

How do anomalous stationary states arise from stochastic payoffs? To
avoid unnecessary technicalities, we consider the case of two strate-
gies, in which the state is fully described by a scalar x = x1 (because

x2 = 1− x1) and the payoff M = Y =

(
Y1 Y2

Y3 Y4

)
is a random matrix,

where Yj have probability density functions PYj(yj), mean E(Yj) = µj

and variance Var(Yj) = σ2
j . In short, we can write the replicator equa-

tion as

X(t+1) = f (X(t), Y) (3.15)

with f (x, y) = x(t) · (y(t)x(t))1+b
x(t)Ty(t)x(t)+b

. In order to get a function which is
injective with respect to Y we define a new function

f ′(X(t), Y) =


f (X(t), Y)

Y2

Y3

Y4

 (3.16)
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This function is invertible, hence we can derive the joint probabil-
ity Pf ′(x(t+1), y2, y3, y4) from the joint probability PY(y1, y2, y3, y4) =

P(y1)P(y2)P(y3)P(y4) by changing variables,

Pf ′(x(t+1), y2, y3, y4) =
∣∣∣det[D f ′−1]

∣∣∣ PY( f ′−1) (3.17)

The stochastic kernel can be derived by marginalizing over y2, y3 and
y4.

K(x(t+1)|x(t)) =
∫ ∫ ∫

Pf ′(x(t+1), y2, y3, y4)×

PY2(y2)PY3(y3)PY4(y4)dy2dy3dy4 (3.18)

The Chapman-Kolmogorov equation gives the time evolution of the
probability density

P(t)
X (x) =

∫ 1

0
dx′P(t−1)

X (x′)K(x|x′), (3.19)

To ease the numerical evaluation we use the look-ahead-estimator
[72]

P(t)
X (x) =

1
n

n

∑
l=1

K(x|st−1
l ) (3.20)

where {sl} is a sample of size n drawn from P(t−1)
X (x). Starting with

an arbitrary initial distribution P(1)
X (x) and successively applying equa-

tion 3.20 converges to a stationary distribution ρ∗(x) = P(∞)
X (x) of the

stochastically driven replicator dynamics.
The background in figure 3.4 shows that the stationary distributions,
apart from the expected broadening, follow the behavior of the stable
states derived for analogous deterministic fluctuations.

We now demonstrate that the type of the distribution has only little
effect on the stationary states. As an example we use a game with the
payoff function

M(t) =

(
1 0.5

2 0

)
+ X

(
0 0

1 0

)
(3.21)

with the background fitness b = 10. Note that the zero-noise case
of this game resembles a Hawk-Dove game. Figure 3.6 shows the sta-
tionary distributions ρ∗(x1) of the replicator dynamics and the Moran
process, where X is either a uniform, discrete, normal distributed ran-
dom variable or alternations, each with variance σ = 2. The higher
moments of the noise distribution have little effect on the resulting
stationary distribution.
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Figure 3.6: Stationary distributions with different types of noise. Station-
ary distributions obtained from replicator dynamics (A) and
Moran model (B) for different noise sources with σ = 2. Red:
Uniformly distributed noise, green: discretely distributed noise,
blue: normal distributed noise, black: alternating noise.



3.6 proofs and methods 31

3.6.2.2 Moran processes

Employment of Moran processes has been shown to be imperative
for the mathematical understanding of stochastic evolutionary game
theory. Despite being conceptionally very different from replicator
dynamics, Moran processes are affected by payoff fluctuations in a
similar way.
Consider a Moran process with population size N and payoff matrix

M = Y =

(
Y1 Y2

Y3 Y4

)
, where Yj are uncorrelated random variables

with probability density functions PYj(yj) (note that also a determin-
istically changing payoff with period T = 2 can be mapped to this
formulation2). If the number of individuals playing strategy 1 is i, the
expected payoff received by an individual playing strategy 1 or 2 is

p1(t) =
1

N − 1
[y1(t)(i− 1) + y2(t)(N − i)] (3.22)

p2(t) =
1

N − 1
[y3(t)i + y4(N − i− 1)] (3.23)

With selection strength w the fitness of each strategy k = 1, 2 reads

fk(t) = 1− w + wpk. (3.24)

The (non-zero) transition probabilities are

T(i|i + 1) =
∫ f1(Y)i(N − i)

[ f1(Y)i + f2(Y)(N − i)]N
PY(y)dy

+ g(i/N) (3.25)

T(i|i− 1) =
∫ f2(Y)i(N − i)

[ f1(Y)i + f2(Y)(N − i)]N
PY(y)dy

+ g(1− i/N) (3.26)

where we use the abbreviation

PY(y)dy = PY1(y1)PY2(y2)PY3(y3)PY4(y4)dy1dy2dy3dy4 (3.27)

and add g(x) = δ(x) to achieve reflecting boundaries3. The explicit
form of the transition probabilities allows to calculate the anomalous

2 Periodic fluctuations with period T = 2 can be reinterpreted as uncorrelated noise:
The non-zero transition probabilities are T(i|i + 2), T(i|i) and T(i|i− 2) (T(i|i) does
not appear in the simplified master equation). With i′ = 2i we have the same situa-
tion as with random values from a probability distribution P(x) = δ(x + σ) + δ(x−
σ).

3 For practical purposes (instead of a half delta function) we choose g(x) = e−1000x

which is differentiable and ensures reflecting boundaries.
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Figure 3.7: Anomalous stationary distributions of the Moran model: The-
ory and simulation. Stationary distributions calculated by the
Fokker-Planck equation and measured stationary distributions
using a simulation of the Moran model in comparison. The pay-
off matrix is M(t) = [6, 5.5, 7, 5] +Xtσ[0, 0, 1, 0], with Xt randomly
switching between +1 and −1. The population size is N = 1000.

stationary state as the solution of the Fokker-Planck equation for the
Moran process [6]

∂tρ(x, t) = −∂x [a(x)ρ(x, t)] +
1
2

∂2
x
[
b2(x)ρ(x, t)

]
(3.28)

which reads

ρ∗(x) = N exp
(∫ x

0
Γ(x′)dx′

)
(3.29)

for

N =
∫ 1

0
exp

(∫ x

0
Γ(x′)dx′

)
dx, (3.30)

and

Γ(x) =
1

b(x)

(
2a(x)− db

dx
(x)
)

, (3.31)

where a(x) = T(x|x + 1/N)− T(x|x− 1/N),
b(x) =

√
(T(x|x + 1/N) + T(x|x− 1/N)) /N, and x = i

N .
Figure 3.7 shows for an example how the stationary distributions, pre-
dicted by equation 3.29, change with increasing fluctuation intensities
compared to stationary distributions of the simulated Moran model.
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3.6.2.3 Correlated fluctuations

Payoff values are not necessarily statistically independent from each
other, as for example the payoff values M11 and M12 of the Hawk-
Dove game in figure 3.1. Thus, it is informative to study the effects
of covariation. Consider the general case of a game specified by the

payoff matrix M =

(
Y1 Y2

Y3 Y4

)
. In order to show the impact of the

correlations, we keep the intensity of the fluctuations equal and con-
stant, σY1 = σY2 = σY3 = σY4 = const. The correlations between Y1, Y2,
Y3 and Y4 are specified by six independent correlation coefficients on
which the resulting stationary states depend in a nonlinear way. For
simplicity, figure 3.8 shows only the isolated impact of each pairwise
correlation keeping the others zero.

This shows that in addition to intensities, the anomalous station-
ary states are crucially determined by the correlation of the fluc-
tuations. Yet, we can show analytically that there is a special case
(corr(Y1, Y3) = corr(Y2, Y4) = 1) for which the stationary state be-
comes completely independent of the fluctuation intensities. Assume
that x∗ is the stationary state of a game with constant payoff matrix
M0, such that r(x∗, M0) = 1. If we add noise with correlation coeffi-
cient 1 between column values,

M(t) = M0 + M̃(t) =

(
a b

c d

)
+

(
f1(t) f2(t)

f1(t) f2(t)

)
, (3.32)

then

r
(
x∗, M0 + M̃(t)

)
=

(M0x∗)i + (M̃(t)x∗)i + b
x∗T M0x∗ + x∗T M̃(t)x∗ + b

(3.33)

=
(M0x∗)i + ( f1(t)x∗1 + f2(t)x∗2) + b
x∗T M0x∗ + ( f1(t)x∗1 + f2(t)x∗2) + b

= 1 (3.34)

where the second step uses x2
1 + x1x2 = x1 and x2

2 + x1x2 = x2 and
the last step uses (M0x∗)i = x∗T M0x∗ following from the assumption.
Consequently, in this case the stationary state does not depend on the
noise intensity.

3.6.3 Correspondence of payoff rank criteria and generalized criteria with
constant payoffs

In the case of constant payoffs, the payoff rank criteria and the gen-
eralized criteria of most games are equivalent. Only three pairs of
games, Battle/Hero, Assurance/Coordination, and Harmony/Con-
cord, have different payoff rank criteria but the same generalized
criteria (see table 3.1). This reflects that the evolutionary dynamics
of these games is structurally similar, as we explained for the Bat-
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Figure 3.8: Impact of correlations. Periodic points x? (upper part) and sta-
tionary distributions (lower part) for fluctuations with equal in-
tensity (σ = 5) but different correlation coefficients $. Each plot
shows the impact of the correlation between two entries of the
payoff matrix while keeping all other correlations zero.

tle/Hero pair in section 2.5.
Since the method to prove these relations is the same for all games
we show it only for the Prisoner’s Dilemma to exemplify the proof.
We assume that the dynamics of the game are described by the con-
tinuous replicator equation u1 := ẋ1 = x1((Mx)1 − xT Mx) with a

constant payoff matrix M =

(
m1 m2

m3 m4

)
. According to the general-

ized criteria a Prisoner’s Dilemma is defined as [−2,+1,+1,+1]. The
−2 tells us that the first stationary state at x1 = 0 is stable and the
second at x1 = 1 is unstable,

du1

dx1
(0) < 0⇔ m2 < m4 (3.35)

du1

dx1
(1) > 0⇔ m3 > m1. (3.36)

Further the three +1 tell us that the payoff of both players and the
total payoff of the population at x1 = 1 is higher than at x1 = 0,

P1(1) > P1(0)⇔ m1 > m2 (3.37)

P2(1) > P2(0)⇔ m3 > m4 (3.38)

〈P〉(1) > 〈P〉(0)⇔ m1 > m4. (3.39)
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Criteria (3.35) to (3.39) are equivalent to m2 < m4 < m1 < m3 or in the
payoff rank notation [3, 1, 4, 2], which defines a traditional Prisoner’s
Dilemma.





4
E V O L U T I O N A RY G A M E S O N N E T W O R K S

4.1 introduction

In chapter 3, we studied the effects of payoff fluctuations on evolu-
tionary games in unstructured populations, meaning that every in-
dividual is assumed to interact with every other individual. Since
many real organisms interact frequently only with a small subset
of the whole population, for example because of social relations or
geographical proximity, classical evolutionary game theory has been
extended to evolutionary games on structured populations, meaning
that individuals interact only with adjacent individuals on a network
or with neighbors in a spatially distributed population [12–19, 73].
Even if the payoff values are constant, the payoff the individuals re-
ceive in an unstructured population are distributed, because the pay-
off depends on the number and the strategies of the individuals it
interacts with, which can be different for every individual depending
on the position in the structured population. This distribution of re-
ceived payoffs can be considered as a payoff noise that is inherent to
the population structure. Does this inherent payoff noise cause simi-
lar effects on the evolutionary dynamics as the payoff noise that we
introduced in chapter 3?
In this chapter we argue that evolutionary games on networks differ
from their mean-field solution in a similar way as an evolutionary
game with payoff noise differs from an evolutionary game without
payoff noise in unstructured populations.

4.2 existing results on structured populations indicate

effects of inherent noise

Evolutionary games on networks and spatially distributed popula-
tions show some remarkable similarities to our results for evolution-
ary games with payoff fluctuations.
In an evolutionary Prisoner’s Dilemma with unstructured popula-
tions and without payoff fluctuations cooperation should die out. As
we have seen in chapter 3, payoff fluctuations can change the dynam-
ics from a Prisoner’s Dilemma dynamics to some other game in which
cooperation can persist. This observation is consistent with previous

37
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observations on the evolution of cooperation on networks or spatially
distributed populations.
First, introducing migration in a spatially distributed population in-
creases the inherent payoff noise, but strong migration, such that the
interactions are completely random, leads effectively to the mean-
field solution, where the inherent payoff noise is small. As this con-
sideration suggests, it has been observed that small and intermediate
migration enhances persistence of cooperation, while strong migra-
tion inhibits cooperation [74, 75].
Second, the inherent payoff noise should increase with the variance
of the node degree in a network. Studies of evolutionary games in dif-
ferent network types show that in comparison to regular networks, in
which the variance of the node degree is zero, scale-free networks, in
which the variance of the node degree can be large or even diverging,
promote cooperation [14, 76].
Third, in a fully connected network the inherent payoff noise is zero,
which necessarily leads to the extinction of cooperators [14].
Fourth, in the public goods game, also known as the N-person Pris-
oner’s Dilemma, social diversity in the sense of variable group sizes
and variable number of games in which the individuals participate,
promotes cooperation [77].
In summary, these observations indicate that the inherent noise in
networks and spatially distributed populations have similar effects
as payoff noise in unstructured populations.

4.3 implementation of evolutionary games on networks

The content of this
section is published

in the ReScience
Journal [78] (CC-BY

4.0) and reprinted
here in a modified

and rearranged form
with additional

information.

4.3.1 Motivation

In order to compare the effect of inherent payoff noise in networks
with the effect of payoff fluctuations in unstructured populations, we
implement the algorithms for the evolutionary process on networks
that has been used in the seminal paper by Ohtsuki et al. on the
evolution of cooperation in networks [16]. Although the idea of the
algorithm is quite simple, the implementation is difficult, because ac-
curate measurements require to run a large number of simulations on
millions of different networks, which requires a very efficient and par-
allelized implementation. In this section, we describe the algorithm
and use it to reproduce the numerical results of the paper by Ohtsuki
et al. [16] to ensure that our implementation is correct. The source
code of our implementation is available on GitHub1.

1 https://github.com/ReScience-Archives/Stollmeier-2017/tree/master/code

https://github.com/ReScience-Archives/Stollmeier-2017/tree/master/code
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4.3.2 Short review of Ohtsuki et al.: A simple rule for the evolution of
cooperation on graphs and social networks (Nature, 2006)

A central question in evolutionary game theory is how cooperation
can evolve in a Prisoner’s Dilemma. In an unstructured population
the defectors have always a higher payoff than the cooperators, hence
natural selection leads to extinction of the cooperators. One of the
mechanisms that promote cooperation is network reciprocity. If the
individuals do not interact with all other individuals but only with a
subset of the other individuals, e.g. the adjacent individuals in a social
network, then cooperators can form groups with other cooperators,
which increases the benefit from other cooperators and reduces the
exploitation from defectors. As a consequence, the probability that co-
operation evolves in networks can be larger than in unstructured pop-
ulations. The probability, that an evolutionary process starting with a
single cooperator in a population of defectors ends with a population
of only cooperators is called the fixation probability (see figure 4.1).
Cooperation is said to be favored by natural selection if the fixation
probability exceeds 1/N, which is the fixation probability of a neutral
mutation in a population of size N.
Beside the structure of the population, the fixation probability de-
pends on the payoff values. In section 2.5 we introduced the Pris-
oner’s Dilemma with four values in a 2× 2-payoff matrix. Here, we
use a less general parametrization of the Prisoner’s Dilemma in order
to reduce the number of variables,

(Cooperate Defect

Cooperate b− c −c

Defect b 0

)
with b > c > 0, (4.1)

where b is the benefit that an individual receives from a cooperator
and c is the cost for cooperating with another individual.
Ohtsuki et al. [16] showed that a simple rule indicates whether co-
operation is favored. For the death-birth update (explained below),
the fixation probability of cooperators exceeds 1/N if the condition
b/c > k is satisfied, where k is the average node degree of the network.
For imitation update (explained below), the fixation probability of co-
operators exceeds 1/N if the condition b/c > k + 2 is satisfied.
A comparison of the fixation probabilities predicted by this simple
rule and the fixation probabilities determined from numerical simu-
lations shows that the rule is most accurate for regular networks with
large populations. It is less accurate for networks in which the node
degree varies, e.g. random or scale-free networks, and for networks
with small population sizes. Until today, the question of the critical
benefit-to-cost ratio b/c in networks attracted much interest. Further
proofs of this rule, more precise rules, exact calculations and general-
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Figure 4.1: Illustration of the fixation probability. Starting the evolution-
ary process with only one cooperator at a random position leads
with probability p to a population of cooperators.

izations were published [19, 79–81]. Recently, Allen et al. derived an
exact solution for the critical benefit-to-cost ratio under weak selec-
tion on arbitrary graphs [82].

4.3.3 Description of algorithms

4.3.3.1 Measuring the fixation probability

In order to measure the fixation probability for a certain graph type,
we generate 1000 realizations of the graph type and start on each of
these graphs 1000 evolutionary processes.
Each process starts with the initialization of the strategies. All individ-
uals are set to “defect”, except for one randomly chosen individual
that is set to “cooperate”. At each time step, the fitness of every node
has to be calculated. According to the payoff matrix 4.1, a coopera-
tor, which interacts with m individuals of which i are cooperators,
receives the total payoff PC = bi− cm, and a defector, which interacts
with m individuals, receives the total payoff PD = bm. The fitness of
an individual is fX = 1−w + wPX, where X ∈ {C, D} is its own strat-
egy and w is the selection strength and throughout this study set to
0.01 (“weak selection”). After the calculation of the fitness, the strate-
gies of the nodes are updated (as explained below). The calculation
of the fitness and the update is repeated until all individuals have the
same strategy.
The fixation probability is the ratio of the number of processes in
which all individuals cooperate at the end and the total number of the
processes (1000× 1000). For the simulations we use the same graph
types as described in the supplementary of the paper by Ohtsuki et
al. These graph types are circle graphs, lattice graphs, random regu-
lar graphs, random graphs and scale-free graphs, where each graph
need to satisfy the condition that all nodes in the graph are part of
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one connected component to allow fixation at all [16].

4.3.3.2 Death-birth update

A death-birth update consists of two steps. First, a random individual
is chosen to die. Second, the adjacent individuals compete for filling
the vacant site with a copy of themselves. If the sum of the fitness
of adjacent cooperators is FC and the sum of the fitness of adjacent
defectors is FD, the probability that the new individual is a cooperator
is FC

FC+FD
.

4.3.3.3 Imitation updating

In imitation updating, the individuals do not die but imitate other
strategies, which mean they can include their own fitness in their
choice which strategy they want to imitate. First, a random individual
is chosen to update its strategy. With the probability FC

FC+FD+ f0
it will

imitate the cooperation strategy and with the probability FD
FC+FD+ f0

it
will imitate the defection strategy.

4.3.4 Comparison of own implementation with results in the paper by Oht-
suki et al.

Before we can measure how the fixation probability depends on the
benefit-to-cost ratio b/c, we need to choose absolute values for the
costs c and the benefit b for the simulations. Since only the ratio b/c
is given in the paper by Ohtsuki et al. [16], we first study how the
choice of c affects the results. As an example, we measure the fixation
probability curves for the cycle graph with N = 500 nodes and de-
gree k = 10 for different choices of c. The results are shown in figure
4.2, together with data taken from figure 2a of the paper by Ohtsuki
et al. [16] for comparison.
Most importantly, the position of the intersection of the fixation prob-
ability curves with the fixation probability of a neutral mutation is
almost unaffected by the choice of the absolute value c. Assuming
that this is also true for other graph types, this means that we can
choose (within a certain range) arbitrary absolute values. Since the
curve with c = 0.125 matches the data of the same graph type from
Ohtsuki et al., we use this value for all further simulations.
Figure 4.3 shows the fixation probability curves for the death-birth
process. As expected from the theory, all curves cross the line of a
neutral mutation at benefit-to-cost ratios greater than k. With larger
networks the intersection is much closer to b/c = k. This effect is
much weaker for scale-free networks than for the other network types.
These observations are consistent with the paper by Ohtsuki et al. [16].
The only visible difference is that the curves in the paper by Ohtsuki
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Figure 4.2: Fixation probability curves for a cycle graph with N = 500
nodes and degree k = 10. The colored dots are measured with
different absolute cost values c, the black dots are taken from
figure 2a of the paper by Ohtsuki et al. [16].

et al. are much steeper.
Figure 4.4 shows the fixation probability curves for imitation updat-
ing with small network sizes only, as in the paper by Ohtsuki et al.
[16]. All curves cross the line of a neutral mutation at benefit-to-cost
ratios greater than k + 2. Again, the difference to the paper by Oht-
suki et al. is that the curves there are much steeper.
For all considered graph types, network sizes and degrees the po-
sitions of the intersection are consistent with the numerical results
presented in the paper by Ohtsuki et al. and, with some deviations
that depend on the graph type and the network size, are consistent
with their theoretical results, b/c > k for death-birth updating and
b/c > k + 2 for imitation updating.
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Figure 4.3: Fixation probability curves using death-birth updating with
the same graph types and parameters as in figure 2 of the paper
by Ohtsuki et al. [16]. The only parameter that is different to the
paper by Ohtsuki et al. is the absolute cost value c, which is 0.125
here and unknown in the paper by Ohtsuki et al. The horizontal
black dashed lines indicate the fixation probability of a neutral
mutation 1/N, the vertical colored lines are at b/c = k.
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Figure 4.4: Fixation probability curves using imitation updating with the
same graph types and parameters as in figure 4 of the supple-
mentary of the paper by Ohtsuki et al. [16]. The only parameter
that is different to the paper by Ohtsuki et al. is the absolute cost
value c, which is 0.125 here and unknown in the original paper.
The horizontal black dashed lines indicate the fixation probabil-
ity of a neutral mutation 1/N, the vertical colored lines are at
b/c = k + 2.



4.4 the effect of inherent payoff noise on evolutionary dynamics 45

4.4 the effect of inherent payoff noise on evolution-
ary dynamics

4.4.1 Methods

To test the effects of inherent noise in evolutionary games on net-
works and compare the results with those from evolutionary games
in unstructured populations with payoff fluctuations, we study the
same four games that we used as examples in chapter 3 (figure 3.4).
With the implementation described in section 4.3 (death-birth update
variant), we simulate the evolutionary process of these four games on
random networks.
During the evolutionary process, we measure the stationary proba-
bility distribution that a certain number of nodes is occupied by one
strategy and we measure the transition probabilities, meaning the
probabilities that the number of nodes occupied by one strategy in-
creases or decreases by one. From these transition probabilities we
can determine the states of detailed balance, which we can compare
to the fixed points in unstructured populations.
Since the inherent noise is correlated with the average node degree,
we vary the average node degree between a fully connected network
(minimal inherent noise) and a network with a minimal node degree
(maximal inherent noise). Note that the minimal node degree here
is 2, because all nodes of the network need to be connected to one
component.

4.4.2 Results

Figure 4.5 shows how the variance of the inherent noise depends on
the average node degree. As expected, the noise decreases with the
node degree.
Figure 4.6 shows the measured stationary distributions and the states
of detailed balance. For the Prisoner’s Dilemma (A) we see that for
large degrees (small noise) the network can typically accommodate
only a small number of cooperators, while for small degrees (large
noise) cooperation becomes substantially more abundant. This noise
induced density dispersal is in qualitative agreement with the effects
observed in chapter 3 for unstructured populations with variable
payoffs (see figure 3.4A). For the Stag-Hunt game (B) and the Bat-
tle/Hero game (C) the effect is rather weak so that the comparison
to figure 3.4 is inconclusive. For the Hawk-Dove game (D) we see the
stable state in the middle moving upwards where it meets with an un-
stable state, which looks quite similar to the first half of figure 3.4D.
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Figure 4.5: Variance of the cooperator’s fitness in random networks with
100 nodes. The payoff matrices are M = [3, 1, 4, 2] in (A), M =
[4, 1, 3, 2] in (B), M = [2, 3, 4, 1] in (C) and M = [3, 2, 4, 1] in (D),
which are the same as in figure 3.4 (with σ = 0). Two curves are
shown in (B), because the Stag-Hunt game has two stable fixed
points, one where no individual cooperates and one where all
individuals cooperate. The blue and the orange curves show the
variance that was measured in the basin of attraction of the first
and the second fixed point.

Figure 4.6: Stationary distributions and detailed balance in random net-
works with 100 nodes. Solid lines (stable equilibria) and dashed
lines (unstable equilibria) represent detailed balance regarding
the transition probabilities. Arrows indicate (in)stability. The pay-
off matrices are M = [3, 1, 4, 2] in (A), M = [4, 1, 3, 2] in (B),
M = [2, 3, 4, 1] in (C) and M = [3, 2, 4, 1] in (D), which are the
same as in figure 3.4 (with σ = 0) and the same as in figure 4.6.
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4.5 discussion

The similarities between the inherent noise in structured populations
and the payoff noise in unstructured populations reported in section
4.2 and the comparison of our results in section 4.4.2 with our re-
sults in chapter 3 indicate that the difference between an evolutionary
game on structured populations and its mean-field solution is concep-
tionally the same as the difference between an evolutionary game in
unstructured populations with a fluctuating payoff matrix and with
a constant payoff matrix. This connects results from two fields that
are usually studied separately. For instance, the evolution of coopera-
tion in the Prisoner’s Dilemma on networks, that is usually explained
with network reciprocity, can also be explained with inherent payoff
noise. This alternative interpretation offers a unifying perspective to
understand the effects of network type, degree distribution and mi-
gration on the evolution of cooperation in structured populations.
However, we have demonstrated this analogy with only a few exam-
ples so far. A more systematic study is necessary to show how far
the results generalize. In particular, it would be interesting to know
if there are examples of networks and games where the results of
the evolutionary game on the network and the evolutionary game in
the unstructured population with fluctuating payoffs are exactly the
same. If such examples exist, their analytical description, which is
generally difficult on networks, could be translated to an evolution-
ary game in unstructured populations with payoff fluctuation, which
is analytically manageable, as we have shown in chapter 3.
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S H A R E D A N T I B I O T I C R E S I S TA N C E

The content of this
section is based on
an article that is
submitted to
Physical Review X
and presented here
in a slightly modified
and rearranged form
with some additional
information.

5.1 motivation

The results in chapter 3 show that environmental fluctuations can
have a strong impact on the stationary states of evolutionary games.
How can we observe these effects in a natural system and test the
predictions of the theory?
Historically, evolutionary game theory has been developed largely
without experimental evidence, because macrobiological species evolve
so slow that most of them appear static to us. Instead, evolutionary
game theory was often used as an explanation how the static observa-
tions may have evolved. For example, the fights between male deers
and the competitions between birds for the best nest locations have
been explained as Hawk-Dove games [50, 51], the mating behavior of
lizards has been explained as a rock-paper-scissor game [83], and the
competitions between plants for space for their roots and for light for
their leafs have been explained as tragedies of the commons [84, 85].
Compared to these macrobiological systems, it is much easier to study
the evolution of microbiological systems in experiments, because their
reproduction cycles are short enough to get hundreds of generations
within a few days and it is much easier to repeat experiments in
controlled conditions. A number of experiments demonstrated that
viruses [53], yeast cells [52], and bacteria [86–89] can be involved in
evolutionary games that are similar to classical evolutionary games
like the Prisoner’s Dilemma or the Hawk-Dove game.
Theoretically, each of these systems could be affected by fluctuat-
ing environmental conditions. However, in order to study the impact
of fluctuating environmental conditions, we need phenomenological
models that describe the evolutionary games. A Hawk-Dove game
may serve as an intuitive explanation for interactions between bacte-
ria or yeast cells, but it is not a realistic model.
In this chapter we aim to develop a realistic phenomenological model
of the evolution of shared antibiotic resistance in bacteria in order to
bridge the gap between evolutionary game theory and real evolution-
ary games.
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5.2 introduction

Antibiotic resistance can be a social behavior. Experiments have demon-
strated that one bacteria strain can produce enzymes to inactivate the
antibiotic and this way “cooperate” by protecting the other strain [88–
91]. Even if the other strain is not resistant, in coexistence it is able
to sustain the antibiotic-polluted environment. The coexistence of the
two strains can be an evolutionarily stable state. Bacteria that cannot
produce the enzymes suffer from the antibiotic if the density of pro-
ducers is insufficient but they have an advantage otherwise because
they do not lose energy in producing the enzyme. Thus, sensitive
strains may survive a large dose of antibiotics, and their populations
quickly recover after the treatment. On the other hand, shared antibi-
otic resistance could help to maintain an acquired resistance during
a phase of relatively low antibiotic concentrations because as long as
the sensitive bacteria need the protection from resistant bacteria they
cannot completely outcompete them.
Experiments showed that coexistence in isolated and controlled con-
ditions can be an evolutionarily stable state [88–91]. Further, a recent
study of the pairwise interactions between separated pure strains
(bacterial isolates) from patients with polymicrobial infections showed
that cooperative antibiotic resistance may be common in the wild [92].
On the other hand, strains that inactivate antibiotics cannot necessar-
ily coexist with strains that do not inactivate antibiotics [90, 91].
The competitive exclusion principle states that two species compet-
ing for the same resource should not coexist. Many mechanisms are
known that nevertheless maintain species diversity [93], including
temporal niches [94], spatial dynamics [95] and rock-paper-scissor
dynamics [86, 96]. In addition, it has been shown that coexistence
of three or more species in a well-mixed environment is possible
with three-way interactions, such as in a community of antibiotic-
producing, antibiotic-degrading and antibiotic-sensitive bacteria [97].
However, the coexistence of antibiotic-degrading and antibiotic sensi-
tive bacteria strains as observed in the experiments mentioned above
involves only two phenotypes in a well-mixed environment. The mech-
anism that can explain this type of coexistence consists of an external
influx of antibiotic which inhibits one strain and is degraded by the
other strain [98, 99]. But it remains unknown which phenotypes allow
two bacteria strains to coexist, whether a third phenotype can invade
a community of two coexisting strains, and whether coexisting strains
can be mutationally stable.
Traditionally, resistance is described as a single-valued attribute, e. g.
the minimum inhibitory concentration (MIC), which is the lowest
concentration of the antibiotic which prevents growth. In this chap-
ter, we argue that we need to describe antibiotic resistance as a two
dimensional phenospace to understand shared antibiotic resistance.
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Based on this hypothesis, we present a model for shared antibiotic
resistance that reproduces a number of well known phenomena of
bacterial antibiotic-resistance and predicts which phenotypes can co-
exist and which phenotypes can not coexist. We further show that,
although shared antibiotic resistance can be an evolutionarily stable
state, it is not mutationally stable. Surprisingly, even an antibiotic-
sensitive bacteria strain can invade and replace a pair of coexisting
strains.

5.3 the phenospace of antibiotic resistance

Self-limited antibiotic resistance results from a combination of mech-
anisms that protect the bacteria from the antibiotic. In an antibiotic-
polluted environment, bacteria with a tolerance level above the antibi-
otic concentration can reproduce but those bacteria with a tolerance
level below can not reproduce. This results in a selective pressure
towards the evolution to higher resistance that increases with the an-
tibiotic concentration. In contrast, for bacteria with high tolerance in a
low antibiotic concentration, there is a selective pressure towards the
loss of resistance since resistant bacteria tend to have a smaller fitness
(through a higher cost) than less resistant bacteria. Yet, most studies
find this selective pressure inferior to the other direction (evolving re-
sistance is usually faster than loosing resistance) [100]. Invariably, if
the antibiotic concentration is constant over a long time, the smallest
sufficient level of resistance is expected to be mutationally stable.
Shared antibiotic resistance and also the observation that resistance
may increase with population size (known as the “inoculum effect”),
do not fit into this picture of self-limited antibiotic resistance. The tol-
erance level in shared antibiotic resistance depends not only on the
bacteria itself and is therefore not a useful characteristic to describe
the resistance phenotype of a bacteria. To attack this problem we pro-
pose a model where the large diversity of mechanisms to increase
resistance are described by two phenomenologically distinct types.
The first one reduces the burden of the antibiotic. Mechanisms of this
type include a lower cell wall permeability to hinder the antibiotic to
enter the cell, efflux pumps to remove the antibiotic from the cell and
target modification or changing the metabolic pathway to reduce the
vulnerability to the antibiotic.
The second type of mechanisms inactivates the antibiotic. Examples
are bacteria that produce β-lactamase enzymes to degrade β-lactam
antibiotics [88–90], bacteria expressing chloramphenicol acetyltrans-
ferase to inactivate the bacteriostatic antibiotic chloramphenicol [91],
or simply an overproduction of the antibiotic binding target proteins.
This, in fact, suggests to quantify the resistance phenotype as a com-
bination of avoiding and inactivating the antibiotic.
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Figure 5.1: Resistance phenospace. The Cartesian coordinates are the physi-
cal properties of the bacteria, the permeability of the cell wall for
the antibiotic and the maximum antibiotic degradation rate. The
polar coordinates are the “behavioral” properties, the maximal
tolerable extracellular antibiotic concentration (“resistance”) and
the degradation rate depending on the extracellular concentra-
tion (“cooperativity”). Three prototypical phenotypes illustrate
the characteristics of the phenospace: S1 is a very sensitive strain
because of the high permeability and the low maximum degrada-
tion rate. S2 is resistant and non-cooperative because of the low
permeability and the low maximum degradation rate (a combi-
nation that is called “self-limited antibiotic resistance”). S3 is re-
sistant and cooperative because of the high permeability and the
high maximum degradation rate (a combination that is called
“shared antibiotic resistance”). S2 and S3 have exactly the same
resistance, but the S3 strain is much more cooperative than the
S2 strain.

5.4 cell model

As the two properties that describe the ability to avoid and inactivate
the antibiotic we choose the cell wall permeability, denoted as Pc, and
the maximal ability to degrade antibiotics, denoted as Imax. If the bac-
terium is exposed to an extracellular antibiotic concentration cec, the
antibiotic diffuses through the cell wall into the cell where it is either
degraded or accumulates – resulting in cell survival or cell death, re-
spectively. To prevent the accumulation of the antibiotic in the cell it
has to degrade the antibiotic with the same rate as it diffuses through
the cell wall, I = −Pc(cic − cec). We can assume that the cell dies if
the intracellular concentration cic exceeds zero. Then the maximal ex-
tracellular concentration that the cell can cope with is max cec =

Imax
Pc

.
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Figure 5.2: Illustration and specification of the colony model. (A) Illustra-
tion of an extravascular bacteria colony of different phenotypes
(colored circles). An antibiotic (black dots) diffuses first from
the blood to the extracellular space and then to the intracellular
space of the bacteria, where it is degraded. (B) A corresponding
multi-compartment model. The antibiotic from the environment
(e. g. the blood vessel) diffuses through a barrier with permeabil-
ity Ploc to the local habitat of the bacteria and then through the
cell walls with permeability Pcell inside the bacteria cell, where it
is degraded.

Compare two strains, one having the maximal degradation rate Imax

and the permeability PC, and the other strain having 2Imax and 2PC.
Since the maximal tolerable concentration is the ratio Imax/PC, both
strains have the same resistance. The difference between the two is
that the first will degrade the antibiotic slower than the second strain.
Hence the latter is more cooperative. Thus, our model bacteria can be
characterized either by Cartesian coordinates, with permeability and
maximum degradation rate as the two axes, or by polar coordinates,
with cooperativity as the radial coordinate and resistance as the angle
(i.e. tan ϕ = Imax/PC, with 0 ≤ ϕ ≤ π/2) as shown in figure 5.1.

5.5 colony model

For shared antibiotic resistance we assume that the degradation by
one bacterium lowers the extracellular concentration of neighboring
bacteria, due to a flow barrier with a certain permeability or just a
larger distance between the colony and the antibiotic source com-
pared to the mean distance between the bacteria. In general, the
colony lives in a small habitat with a local concentration that is dif-
fusively coupled to its environment. We assume that the local con-
centration in the habitat is homogeneous (all bacteria have the same
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Figure 5.3: Fitness landscape. The green and blue line show the fitness func-
tion of two different phenotypes. Both phenotypes have a posi-
tive fitness f∗ if cec < MIC and a negative fitness f† if cec > MIC.
The negative fitness f† is always the same, but the positive fitness
f∗ is a function of the MIC (dashed black line).

extracellular concentration) and that the environment is an infinitely
large reservoir with a constant concentration.
Since the bacteria degrade the antibiotic there will be a steady flux of
antibiotic from the environment to the local habitat into the cells, as
shown in figure 5.2. The total degradation rate is Ideg = N ∑m

i=0 ni Ii,
where N is the total number of cells, ni =

Ni
N is the population share

of phenotype i, Ii = Pc,icec is the inactivation rate of a single cell of
phenotype i and the sum goes over all m present phenotypes. The in-
flux of antibiotic from the environment Iin = Ploc(cenv − cec) depends
on the permeability Ploc and the concentration gradient between habi-
tat and environment. If the concentration in the environment does
not change, then the concentration in the local habitat approaches a
stationary state, where Ideg = Iin. This balance gives the stationary
concentration

c∗ec =
Ploccenv

Ploc + N ∑i=0 niPc,i
. (5.1)
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5.6 fitness landscape

In order to study the evolutionary dynamics it is essential to define a
fitness function that depends on the antibiotic concentration and the
phenotype alone.
The definition of the minimal inhibitory concentration (MIC) implies
that the fitness is positive if the antibiotic concentration is below the
MIC and negative if the antibiotic concentration is above the MIC.
The transition close to the MIC is a rather sudden decline [101, 102],
which we model as a discontinuous step exactly at the MIC.
It is known that bacteria strains with a high level of resistance tend
to have a smaller fitness than bacteria strains with a low level [100].
Hence we assume that the positive fitness for antibiotic concentra-
tions below the MIC is a function that is monotonously decreasing
with the MIC.
For an illustration of the fitness functions see figure 5.3.
If the environmental conditions are constant, details of the actual
functional form and the absolute values of the fitness are not rele-
vant for the stationary states of the evolutionary dynamics. Relevant
is whether the fitness is positive or negative, whether it is greater
or smaller compared to the fitness of another strain, and at which
antibiotic concentration their fitness functions intersect.

5.7 evolutionary dynamics

5.7.1 Strain A alone

First, let us assume that initially N bacteria of only one phenotype A,
specified by the tuple (Imax,A; Pc,A), live in an environmental antibiotic
concentration cenv. The population will survive if cec ≤ MIC =

Imax,A
Pc,A

.
Using equation 5.1 and solving for Imax,A determines the survival
condition

Imax,A(Pc,A) ≥
PlocPc,Acenv

NPc,A + Ploc
. (5.2)

Figure 5.4A shows how this condition separates the phenospace in a
region of phenotypes that can survive in this habitat (red area) and
phenotypes that will not survive (white area).

5.7.2 Strain A invaded by B

Here we assume that the strain with phenotype A is able to sur-
vive and ask whether a second strain with a different phenotype B,
(Imax,B; Pc,B), can invade this population and if it does, whether it
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Figure 5.4: Stationary states after invasion. The axes are the relative cell
permeability and the maximal degradation rate, as explained in
Fig. 5.1. For the exact parameters of the environment and the
phenotypes used here see appendix A.1. Dashed lines are the
boundaries between the areas obtained from theory (section 5.7).
(A) shows the stationary state after the invasion of phenotype A
in an uninhabited antibiotic-polluted environment. The red area
represents the phenotypes that can colonize the environment and
the white area contains the phenotypes that die. In (B) we as-
sume that the environment is already colonized by a phenotype
A (depicted by the red filled circle) with MICA > cec. Phenotypes
in the red area are not able to invade the population of A. Pheno-
types in the green area completely replace A. Phenotypes in the
small area of gradual transition from red to green do invade A
and form a stable coexistence with A. In the third plot (B’) we as-
sume that the environment is already colonized by a phenotype
A (depicted by the red filled circle) with MICA = cec. Again, phe-
notypes in the red area can invade and phenotypes in the green
area cannot invade the population of A. In (C) we assume that
two phenotypes, A and B, coexist with each other. Phenotype A,
depicted by the circle filled with red, is the same as in plot (B).
Phenotype B, depicted by the green filled circle is in the middle
of the area of coexistence in plot (B). Phenotypes in the olive-
green area are not able to invade. At the bottom left is a small
area with a gradual transition from red to blue (the inset shows a
part of this region enlarged), meaning that the phenotype C will
replace B and coexist with A. The area above the curved dashed
line is completely blue, meaning that phenotype C replaces A
and B. The gradient from blue to green on the right hand side of
the vertical dashed line shows that here phenotype C will coexist
with phenotype B in varying ratios decreasing from left to right.
As an example, the invasion process at the position marked by
the white arrow is shown in detail in Fig. 5.5.
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outcompetes A or coexists with A. Species that have a higher fitness
reproduce faster, as formalized by the replicator equation

dni

dt
= ni( fi − 〈 f 〉), (5.3)

where 〈 f 〉 = ∑ ni fi is the average fitness of the population. A strain
of type B can invade the population of A if dnB

dt > 0 for nB = 0 (and
nA = 1− nB = 0). If dnB

dt = 0 for any nB ∈ (0, 1) the successful inva-
sion leads to a stable coexistence of the two strains and if dnB

dt > 0 for
all nB ∈ (0, 1) a strain of type B will replace any strain of type A.
Using this formalism we can divide the phenospace in regions as de-
picted in figure 5.4B. The result is intuitive. A strain of type B in the
upper red region (above a line from the origin through the position
of A) has a higher MIC than A and therefor a lower fitness, hence it
cannot invade a population of A. Strains of type B in the lower red
region have an MIC that is smaller than the antibiotic concentration.
Between these red regions there is a large green region where a strain
B has an MIC larger than the antibiotic concentration but smaller than
the MIC of A, hence B has a higher fitness and outcompetes A. Strains
between the dashed and the solid line can invade and form a stable
coexistence with A. Strains of type B in this region are less active in
the degradation than those of type A. As a consequence, the extra-
cellular concentration will increase with the increasing population of
B (and decreasing population of A). At some point, the extracellular
concentration exceeds the MIC of B, which leads to an decrease of
B (and increase of A), and a decreasing extracellular concentration.
Hence the population ratio of A and B has a stable coexistence at that
point where extracellular concentration equals the MIC of B.

5.7.3 Strain A and B, invaded by C

Next, we assume that we have two coexisting strains A and B and
ask whether a third strain C can invade. If it does, can it coexist with
either or both of the residents? Strain C can invade, if dnC

dt > 0 for
nC = 0 and nA + nB = 1. After a successful invasion, the system
goes from the initial state to the first stable stationary state, where
dnA
dt = dnB

dt = dnC
dt = 0. Figure 5.4C shows these stationary states.

The color at the position of a potential phenotype C takes the RGB
value from the composition of the three populations (nA, nB, nC) in
these stationary states. The general picture can be understood sim-
ilarly to the previous case of two strains. A strain C in the upper
region (above the line from the origin through the phenotype of A)
has a larger MIC than A, therefore has a smaller fitness and is un-
able to invade. A strain of type C in the lower region (below a line
from the origin through the phenotype B) has an MIC that is smaller
than the extracellular concentration. Only between these two regions
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Figure 5.5: Example trajectory through a phase space of three phenotypes.
Visualization of the invasion process happening in figure 5.4C
at the position marked by the white arrow. Strain A and B can
coexist and survive in high antibiotic concentrations (MICA = 5
and MICB = 2). At the state of stable coexistence of A and B,
a single cell of strain C appears in the population. This state is
the initial state marked by the black circle. The black line shows
how the population shares change. Although strain C is not re-
sistant (MICC = 2.3), it successfully invades the population and
eventually completely replaces A and B.

C can invade, but here its fate depends on how the invasion changes
the populations of A and B and how this affects the extracellular con-
centration. Note that we observe points where only A, B or C survives
and points where two of them coexist, but there is no phenotype C
whose invasion leads to a coexistence of all three strains. Also note
that in the blue area, where only strain C survives the invasion, C
has just a slightly larger MIC than B. In other words, a strongly and
a weakly resistant strain that live in a stable coexistence can be com-
pletely replaced by a strain of weak resistance.

5.8 mutational stability and the direction of evolu-
tion

So far we considered the dynamics of arbitrary but immutable pheno-
types. The fixed points of this system are evolutionarily stable states,
meaning that the ratio of the subpopulations is restored after a small
perturbation. However, these states are not necessarily mutationally
stable, where the phenotype would be restored after a small pertur-
bation caused by mutations. For simplicity we assume that mutations
are so infrequent that between two mutations the system approaches
the evolutionarily stable state.
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In the case of one phenotype A, we read off from figure 5.4B that
mutants of A with a slightly smaller resistance can replace A but mu-
tants with a slightly larger resistance cannot replace A. After mutants
with a smaller resistance have successfully replaced A the situation is
essentially restored, except for the decreased level of resistance and
a different cooperativity resulting from a random walk. The coop-
erativity changes randomly due to our assumption that the fitness
is independent of the cooperativity. Since a change of cooperativity
results in a change of the total degradation rate, the extracellular con-
centration of antibiotic is also affected. This process towards lower
resistance continues until the difference between the MIC and the ex-
tracellular concentration of the antibiotic has vanished. Note that the
mutants with slightly smaller resistance have only a slightly larger
fitness. Therefore the reduction of resistance is a very slow process.
When the evolved level of resistance reached the extracellular concen-
tration, the mutations with larger cooperativity cannot replace A (fig-
ure 5.4B’), hence the mutations move the population towards smaller
cooperativity. This causes a small but successive increase of the extra-
cellular concentration and therefore also a small increase of resistance.
The final mutationally stable state is reached when the cooperativity
is zero.
In the case of two coexisting phenotypes, we have to examine both
for mutational stability. Consider the situation in figure 5.4C, where
A is the resistant and cooperative phenotype and B is the sensitive
and non-cooperative phenotype.
First, assume that the phenotype of B is fixed and ask how A changes.
Mutants of A with slightly higher resistance cannot replace A, but
mutants with slightly lower resistance can replace A. Hence A is not
mutationally stable and has a direction of evolution towards smaller
resistance. As in the case of one phenotype, this reduction of resis-
tance is a very slow process and the cooperativity may randomly
increase or decrease. However, here the change of cooperativity af-
fects the ratio of the two populations. Only if the phenotype moves
downwards on a vertical line in the phenospace the ratio of the two
remains constant.
Second, assume that the phenotype of A is fixed and we ask how B
changes. Mutants of B with a lower resistance cannot invade the pop-
ulation, but mutants with a slightly higher resistance can invade and
replace B. With each mutation towards higher resistance, the popula-
tion share of B increases until A has completely vanished. In the strict
sense, both A and B evolve simultaneously. But since A evolves very
slowly and B has only a relatively short way through the phenospace
until A has vanished, the dominant scenario is that A does not evolve
much while B increases its resistance until A vanishes.
After A is lost, the evolution continues as described for the case of
one phenotype.
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5.9 conclusion

Experiments have demonstrated that two bacteria strains can coexist
in an evolutionarily stable state but could not tell which phenotypes
allow coexistence and how do they evolve.
To answer this, we have studied a model that is based on three real-
istic assumptions. First, bacteria can increase their resistance in two
ways. Either they degrade the antibiotic, or they prevent the antibi-
otic to make its way to its target. Second, bacteria interact via the
extracellular concentration. If they degrade the antibiotic, they are
advantageous for other bacteria. Third, the fitness of a phenotype is
determined only by its level of resistance and the extracellular con-
centration.
The fitness function is consistent with the observation that in an
antibiotic-free environment resistant bacteria strains grow slower than
not-resistant bacteria strains [100], and that the fitness is rather unaf-
fected by small antibiotic concentrations and drops suddenly when
the concentration exceeds a threshold [101, 102].
The model reproduces a number of well known phenomena in micro-
biology: (i) large populations resist higher concentrations than single
cells, known as the inoculum effect [103, 104], (ii) the evolution of
resistance in an antibiotic-polluted environment is much faster than
the loss of resistance in an antibiotic-free environment [100], and (iii)
an antibiotic concentration not too far above the MIC, in the range
known as the “mutant selection window”, strongly promotes the evo-
lution of resistance while a concentration below the MIC does not
promote and a concentration far above makes the evolution of resis-
tance unlikely [105–107].
Our framework predicts which phenotypes can invade and coexist
with the initial phenotype. Given any two coexisting phenotypes, the
model also predicts which other phenotypes can invade and which
of the three will disappear. In particular, a pair of coexisting strains
can be replaced by a third phenotype that is much less resistant than
the two coexisting strains together as shown in figure 5.5.
Besides enzymatic degradation [90, 108] one common mechanism in
microbial communities is antibiotic production [109–111]. Kelsic et al.
showed that in environments with complete mixing, the interplay of
antibiotic production, sensitivity and degradation can lead to coexis-
tence of three or more bacteria strains that is robust to large pertur-
bations of species abundances and substantial differences in inherent
growth rates [97]. We focus on coexistence of two bacteria strains in
well-mixed environments with an external antibiotic influx. In addi-
tion, our results show that two phenotypes in an evolutionarily sta-
ble coexistence are not mutationally stable. Assuming that mutations
cause a small, random step in the phenospace, the sensitive pheno-
type is expected to evolve a higher resistance while the resistant phe-
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notype slightly vanishes.
To conclude, we have demonstrated that the maximum degradation
rate and the permeability form a pertinent phenospace for shared
antibiotic resistance of bacteria strains. This contrasts exiting litera-
ture where resistance is described as a single-valued attribute [112].
This has enabled us to predict the range of phenotypes that allow
two strains to coexist and to show that, although this coexistence is
robust to perturbations of species abundances (i.e. evolutionarily sta-
ble), mutations will eventually move the strains to phenotypes that
allow only one strain to survive. More generally, our framework pro-
vides the first step towards a theoretical foundation for understand-
ing the phenospace, the evolutionary dynamics, the invadability and
the mutational stability of cooperative antibiotic resistance, and is in
agreement with experiments [88–91, 103–107].

5.10 outlook

First, our predictions regarding evolutionary stability, invadability
and mutational stability in antibiotic resistance can be tested experi-
mentally, since both the maximum degradation rate and the perme-
ability are observable parameters.
In a second step, the impact of environmental fluctuations can be
studied theoretically and experimentally. The antibiotic concentration
in a patient who takes a daily dose of antibiotic is highly variable.
What would be the effect of such fluctuations on the evolution of
shared antibiotic resistance? The results in chapter 3 suggest that
the evolutionarily stable states may change depending on the fluc-
tuations. These changes could lead to a larger or smaller range of
phenotypes that can coexist with each other, and thereby promote or
inhibit the evolution of shared antibiotic resistance.
However, reliable predictions for fluctuating antibiotic concentrations
require more detailed knowledge about the fitness functions. For con-
stant concentrations any monotonously decreasing function f∗(MIC)

leads to the same results, because the concentration where the fitness
functions equal does not change with the specific choice of f∗(MIC)

(see figure 5.3). In contrast, the variable concentration for which the
geometric means of the fitness function are equal is sensitive to the
absolute values of the fitness functions. Hence, an experimental mea-
surement of the absolute fitness function is required before the model
can be used to study the impact of fluctuating antibiotic concentra-
tions on the evolution of antibiotic resistance.
In chapter 6 we study another biological system for which we can
make predictions on the impact of fluctuating environments on the
evolution, because in this system the absolute fitness functions are
already partly known from direct measurements.
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A D A P TAT I O N T O F L U C T U AT I N G T E M P E R AT U R E S

6.1 introduction

Adaptation is often understood as an optimization process on a fit-
ness landscape towards a local maximum. If the species is perfectly
adapted to the current conditions, any change of the conditions would
reduce its fitness and consequently cause an adaptation towards the
new conditions until it reaches the new maximum in the fitness land-
scape as the stable stationary state.
However, many environmental conditions change continuously. The
temperature, for example, typically changes between day and night,
between the seasons of the year, with patterns lasting several years
like the El Niño-Southern Oscillation, and with much longer trends
like global warming and global cooling. How does a species adapt to
an ever-changing environment?
Just like in chapter 3, we ask how the stationary states of the evolu-
tionary process change depending on the environmental fluctuations.
But in contrast to chapter 3, where the evolution of each species is
coupled with the evolution of each other species, we assume here
that the adaptation of a species to the temperature is independent of
other species.
As in chapter 3, the answer depends on the time scales of the en-
vironmental changes and the adaptation rate. If the fluctuations are
faster than the reproduction, the species can only adapt to live with
the fluctuations by being tolerant to the range of conditions experi-
enced during its life or by phenotypic plasticity (such as animals that
change fur or feathers between winter and summer, or species that
can go to specialized developmental stages to survive long times of
unfavorable conditions).
If the fluctuations are much slower than the generation time, adapta-
tion quickly reaches a current optimum and almost instantaneously
follows the drift of the optimum due to the environmental change.
More challenging is the case when the fluctuations and reproduc-
tion are at a similar pace such that adaptation is always behind the
changes in a non-optimal state. Naively one could expect that a good
compromise is to adapt to the average of the changing condition. In
this chapter we demonstrate that this is generally not correct and
present a possibility to confirm this theoretical prediction.
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6.2 outline

In section 6.3 we present a simple theoretical example of a species
whose fitness, modeled as a Gaussian function, depends on an en-
vironmental parameter, e. g. the temperature, that switches between
different states or fluctuates randomly. We show that a species that
is perfectly adapted to a changing environmental conditions is not
perfectly adapted to the averaged environmental conditions and that
these deviations depend on the kind of environmental fluctuation.
Theoretically, all species that adapt to changing environments can be
subject to such deviations. The following sections are a first step to-
wards empiric evidence for the predicted deviations using the temper-
ature adaptation of nematodes. Nematodes, in particular Caenorhab-
ditis elegans, qualify for this aim for several reasons. They are well
studied regarding their temperature dependent development, strains
from different habitats exist that are adapted to different temperature
conditions, and nematodes reproduce fast enough to measure in rea-
sonable time how their fitness depends on the temperature.
In section 6.4 we develop a model for the temperature-dependent de-
velopment and reproduction of nematodes based on existing datasets.
We compare the results of the model with existing experimental data
for constant temperatures and with data from experiments with vari-
able temperatures that were conducted to test the model.
In the next step, we use this model to predict how nematodes adapt to
realistic temperature scenarios. To generate such realistic temperature
scenarios, we take historical temperature records of weather stations
on Reunion island, described in section 6.5, and use these air temper-
atures to estimate soil temperatures, described in section 6.6. From
the simulations of the model we find the phenotypes that would be
best adapted to a specific temperature scenario and we can compare
it with the phenotype that would be best adapted to the average tem-
perature of this scenario. The predicted deviations between these two
phenotypes are presented in section 6.7.
To conclude, we discuss in section 6.8 how the predicted deviations
can be tested experimentally.

6.3 theoretical examples

6.3.1 Periodically changing temperature

Consider a species that reproduces exponentially with a growth rate
r(T), which depends on the temperature T. It has a maximum growth
rate r(Tid) = rmax at an ideal temperature Tid and a smaller growth
rate the further the temperature deviates from the ideal temperature.
In general, deviations to high or low temperatures may affect the
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fitness differently (as we will see in chapter 6.4), but for this simple
example we assume a symmetric Gaussian fitness function

f (T; Tid) = fid exp
(
− (T − Tid)

2

2σ2

)
, (6.1)

as depicted in figure 6.1A.
In a constant temperature T 6= Tid, a mutant has an advantage if its
ideal temperature T′id is closer to the environmental temperature than
the ideal temperature Tid of the other individuals. In the long-term
such mutations replace the individuals of the original phenotype and
the species adapts its ideal temperature to the environmental temper-
ature such that Tid = T.
What happens if the environmental temperature is changing? For our
simple example we assume that the temperature switches between T1

and T2 with duration 0 ≤ p ≤ 1 at T1 and q = 1− p at T2, as shown
in figure 6.1B.
We analyze the situation in a simple exponential growth process, first
in the discrete time variant, which is the common model for syn-
chronously reproducing species (e. g. annual plants), and second in
the continuous time variant, which is the common model for asyn-
chronously reproducing species (e. g. bacteria).
In the case of discrete time, the size of the population nt at time step
t ∈N can be described as

nt = rtnt−1 = (1 + f (Tt; Tid))nt−1. (6.2)

With a constant growth rate we can compute the size of the popula-
tion at time t as nt = rtn0. With a varying growth rate, the population
at time t is

nt = n0

t

∏
t′=1

(1 + f (Tt′ ; Tid)) (6.3)

= n0(1 + f (Tt; Tid))
t
, (6.4)

where Tt is the environmental temperature at time step t.
In the case of continuous time, the growth of the population size n
can be described as

dn
dt

= rtn = f (T(t); Tid) · n (6.5)

With a constant growth rate r the size of the population at time t is
n(t) = n0ert, and with a varying growth rate the size of the population
at time t is

n(t) = n0 exp
(∫ t

t̃=0
f (T(t̃); Tid)dt̃

)
. (6.6)
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If T(t) is a periodic function with period τ and we evaluate n(t) only
at multiples of the period, we can write this as

n(kτ) = n0 exp (〈 f 〉 · kτ), (6.7)

where k ∈N and 〈 f 〉 denotes the arithmetic average of f .
In general, the time-average of the growth rate is the geometric av-

erage of the growth rate rdiscrete = (1 + f ) in the case of discrete time
and the arithmetic average of rcontinuous = f in the case of continuous
time. In the special case of our example with a temperature switching
between two values, the time-averaged growth rates are

rdiscrete(T1, T2, p; Tid) = (1 + f ) (6.8)

= (1 + f (T1; Tid))
p · (1 + f (T2; Tid))

(1−p)

rcontinuous(T1, T2, p; Tid) = 〈 f 〉 (6.9)

= p f (T1; Tid) + (1− p) f (T2; Tid)

Adaptation changes the phenotype Tid to maximize these time-averaged
growth rates for the specific temperature fluctuation. Figure 6.2 shows
for two examples (p = 0.25 and p = 0.5) how the time-averaged
growth rates depend on the phenotype Tid. In the case of unequal
durations (p = 0.25), the maximal growth rate deviates to the same
direction in both continuous time and discrete time growth model. In
the case of equal durations (p = 0.5), the position of the maximum
matches the average temperature in the discrete time growth model
and in the continuous time growth model there is a local minimum,
an unstable fixed point of adaptation, at the average temperature.
It can be shown analytically that

drdiscrete

dTid

∣∣∣∣
〈T〉

=
drcontinuous

dTid

∣∣∣∣
〈T〉

= 0 if p ∈ {0,
1
2

, 1} (6.10)

and

d2rdiscrete

dT2
id

∣∣∣∣∣
〈T〉

=
d2rcontinuous

dT2
id

∣∣∣∣∣
〈T〉

= − fid

σ2 if p ∈ {0, 1}. (6.11)

Hence, Tid = 〈T〉 is a stable fixed point for p = 0 and p = 1 and a
stable or unstable fixed point for p = 0.5. For other values of p, the
fitness maximum may deviate from the average temperature 〈T〉, as
shown in figure 6.3.
The different stability of the fixed point in the discrete time model and
the continuous time model using the same parameters, as shown in
the example in figure 6.2B with p = 0.5, is caused by the different im-
pact of small and large numbers on the geometric and the arithmetic
mean. Consider the two Gaussian fitness functions f1 = f (T1; Tid)

and f2 = f (T2; Tid) with a maximum at T1 = Tid and at T2 = Tid,
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Figure 6.1: Simple example for adaptation to variable temperatures. The
fitness is modeled as a Gaussian (A) and the temperature
switches between T1 and T2 with durations p and q = 1 − p
(B).

respectively. If the Gaussian functions do not have much overlap, the
arithmetic mean of f1 and f2 has two peaks, one where f1 has its
maximum and another one where f2 has its maximum. In contrast,
the geometric mean of f1 and f2 has a small value at these positions,
because the maximum of f1 coincides with a low value of f2 and vice
versa due to the small overlap of f1 and f2. The geometric mean of
f1 and f2 has its maximum where the product of the two functions
is maximal, which is in this case the position of the largest overlap
of the two functions. Hence, the discrete time model, where the time-
averaged fitness is given by the geometric mean, has a stable fixed
point and the continuous time model, where the time-averaged fit-
ness is given by the arithmetic mean, has an unstable fixed point at
the position of the largest overlap, Tid = 〈T〉. For an illustration of
this effect see figure 6.4.

6.3.2 Randomly fluctuating temperature

The calculation of time-averaged growth rates with randomly fluc-
tuating temperatures is conceptually slightly different, but leads to
similar results.
We assume that the temperature is a random variable T with a proba-
bility density function pdf(T). In order to calculate the time-averaged
growth for the continuous time case (analogous to equation 6.9), we
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Figure 6.2: Time-averaged growth rates resulting from the fitness function
and temperature fluctuation depicted in figure 6.1. (A) shows
the result from a temperature fluctuation with unequal durations
and (B) with equal durations. The vertical black lines show the
average temperatures, the blue curves are time-averaged growth
rates in the discrete-time case (equation 6.8) and the orange
curves are the time-averaged growth rates in the the continuous-
time case (equation 6.9). The parameters of the Gaussian fitness
function are σ2 = 5 and fid = 2. The temperature switches be-
tween T1 = 19 and T2 = 24.5 with the duration p = 0.25 in (A)
and p = 0.5 in (B).

Figure 6.3: Direction of evolution at average temperature. The two curves

show dr
dTid

∣∣∣
〈T〉

for the discrete and continuous time growth model

with the same parameters as in figure 6.2. Positive/negative val-
ues indicate that the fitness maximum is shifted to the right/left
with respect to the average temperature.
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Figure 6.4: Effect of geometric and arithmetic mean on the stability of the
fixed point of adaptation. The two curves in (A) show the fit-
ness at temperature T1 and T2. The two curves in (B) show the
arithmetic and the geometric mean of the two curves in (A).

can write the arithmetic average as an integral over the probability
density function

rcontinuous(pdf(T); Tid) = 〈 f 〉 (6.12)

=
∫ ∞

−∞
f (T)pdf(T)dT. (6.13)

In order to calculate the time-averaged growth rate for the discrete
time case (analogous to equation 6.8), we need to compute the geo-
metric mean integrated over the probability density function pdf(T).
The most convenient way to express this is the product-integral [113,
114].

rdiscrete(Tid) = (1 + f ) (6.14)

=
∞

P
−∞

(1 + f )pdf(T)dT (6.15)

= exp
(∫ ∞

−∞
pdf(T) log (1 + f )dT

)
(6.16)

Just like the usual integral is the continuous limit of the sum, the
product-integral is the continuous limit of a product, here denoted1

by P . By taking the logarithm the geometric mean can be trans-

1 Although the product-integral has already a long history in mathematical biology
going back at least to Vito Volterra, there is not yet an agreement on which symbol
to use. Common forms are

∫
g(x)dx and ∏ g(x)dx. Here we useP g(x)dx following

N. Arley [115], because this form is consistent with using capital Greek letters Σ and
Π for discrete sums and discrete products and the stylized capital Latin letters S and
P for their integral counterpart.
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formed to the slightly more complex form using only the sum-based
integral.
For an example we use again a Gaussian fitness function as defined in
equation 6.1 with σ2 = 2, fid = 2 and the ideal temperature Tid that is
subject to adaptation. As the probability density function of the tem-
perature we take the skew normal distribution pdf(ξ, ω, α), where
ξ determines the location, ω the width and α the skewness of the
distribution [116]. With zero skewness (α = 0) the skew normal dis-
tribution equals the normal distribution with variance σ2 = ω2 and
location µ = ξ. Figure 6.5 shows three distributions with different
skewness values and the corresponding numerical solution of equa-
tion 6.13 and 6.16. Similar to the unequal durations p and 1− p for the
two temperatures in section 6.3.1, the skewness results in a deviation
of the fitness maximum from the average temperatures. Consequently,
a phenotype with the ideal temperature Tid = 〈T〉 is subject to an
adaptive pressure and evolves towards higher temperatures if the
probability density of the random temperature is right-skewed and
towards lower temperatures if the probability density is left-skewed,
as shown in figure 6.6.

6.4 modeling the growth of nematodes

6.4.1 Development

The normal development of nematodes consists of four stages (also
known as molts) that each end with a lethargus phase. Some time
after the fourth-molt lethargus the nematode starts laying eggs for a
limited period of time. To survive unfavorable conditions nematodes
may develop into an alternative third stage known as the “dauer
stage”, in which it can survive long times of unfavorable conditions
[117]. If the conditions become better the dauer larvae can continue
their development to adults.
Here we aim to model the temperature dependence of the normal de-
velopment and assume that, besides the temperature, all conditions
are favorable enough that the nematodes do not develop to the dauer
stage.
Experiments show that the duration of the normal developmental
stages changes substantially with the temperature. Figure 6.7A shows
the mean ages at these stages observed in cultures of C. elegans strain
N2 at three different temperatures [118]. However, if we look at the
relative durations, e. g. by dividing all ages by the age at which the
nematodes stop laying eggs as shown in figure 6.7B, these relative
ages are almost independent of the temperature. This suggests that
the temperature does not affect the development except for the time
a nematode needs to progress in its development. To formalize this
idea, we introduce a biological age a that corresponds to the devel-
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Figure 6.5: Time-averaged growth rates resulting from randomly fluctuat-
ing temperatures. The fitness is modeled as a Gaussian as de-
fined in equation 6.1 with σ2 = 2 and fid = 2. (A), (B) and
(C) show a left-skewed, symmetric, and right-skewed probabil-
ity density function. In (D), (E) and (F), the vertical black lines
show the average temperatures 〈T〉, the blue curves show the
time-averaged growth rate in the discrete-time variant (equation
6.16) and the orange curve shows the time-averaged growth rate
in the continuous-time variant (equation 6.13).

Figure 6.6: Direction of evolution when the ideal temperature equals the
average temperature. The two curves show dr

dTid

∣∣∣
〈T〉

for the dis-

crete and continuous time growth model depending on the skew-
ness of the probability density pdf(T). Positive/negative values
indicate that the fitness maximum is shifted to the right/left with
respect to the average temperature.
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developmental stage biological age

Egg laid 0

Egg hatches 9.23

First-molt lethargus 20.35

Second-molt lethargus 27.53

Third-molt lethargus 34.18

Fourth-molt lethargus 43.24

Egg-laying begins 51.40

Egg-laying ends 100

Death 282.20

Table 6.1: Temperature-independent biological ages at developmental stages
of C. elegans.

opmental progress and an ageing rate da
dt (T) that depends on the

temperature T. The ageing rate determines how much the nematode
ages per hour in real time. We define the biological age at ’Egg-laying
ends’ as a := 100 and the ageing rate as

da
dt

(T) =
100

ele(T)
(6.17)

≈ 100
0.843 · T2 − 44.774 · T + 680.641

, (6.18)

where ele(T) is a quadratic function fitted to the ’Egg-laying ends’-
data in figure 6.7A. We define the biological ages of the developmen-
tal stages as the average of the relative ages obtained from the data
multiplied with 100 to scale biological age of ’Egg-laying ends’ to 100.
These averages are shown as vertical lines in figure 6.7B.
The resulting values are listed in table 6.1. Since the dataset does not
include the ages at which the nematodes died, this value was calcu-
lated using an additional data set (table 1 in [119], strain N2).

6.4.2 Reproduction

The biological ages in table 6.1 define when the individuals in our
model begin and when they stop laying eggs. In order to model the
population growth we further need to define an egg-laying rate. For
C. elegans strain N2, the observed data in Figure 6.8 show how the
total number of eggs depends on the temperature and, for three tem-
peratures, how the egg-laying rate depends on the age. From these
two observations, we aim to infer the egg-laying rate reggs(T, a) that
depends on the temperature and the biological age.
The total number of eggs produced by one nematode depending on
the temperature is shown in figure 6.8A. Since the number of eggs
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Figure 6.7: Development of C. elegans at different temperatures. The dots
in (A) show the mean age of a nematode in hours from when
the egg was laid at the developmental stages for three different
temperatures (data from table 2 in [118]). The green curve is a
fit of a quadratic function to the ages at ’Egg-laying ends’ which
is used to define the ageing rate (see main text). (B) shows the
same data points but with the ages relative to the age at ’Egg-
laying ends’. The dashed vertical lines are at the mean age of the
three corresponding points, which define the biological ages of
the developmental stages (see main text).
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varies a lot between individuals, we model the total number of eggs
as a random variable. We use two quadratic functions f1(T) and f2(T)
fitted to the upper and lower values of the data for each temperature
(see figure 6.8A) and define the probability density P(Neggs, T) of the
lifetime fecundity as a uniform distribution between the upper and
lower fit (restricted to positive values)

P(Neggs, T) = U (max {0, f1(T)}, max {0, f2(T)}) , (6.19)

where f1(T) = −4.64 · T2 + 169.06 · T − 1136.63 and f2(T) = −2.92 ·
T2 + 105.85 · T − 734.95.
The egg-laying rate depending on the age is shown in figure 6.8B. At
all three temperatures the rate reaches a maximum approximately in
the middle of the egg-laying period. We model the rate with a simple
piecewise linear function that is zero below the biological age when
egg-laying begins a1 = aEgg-laying begins and above the biological age
when egg-laying ends a2 = aEgg-laying ends as defined in table 6.1, and
has a temperature-dependent maximum rmax

eggs(T) in the middle of this
period,

reggs(T, a) =



0 if a < a1
(a−a1)rmax

eggs(T)
0.5(a2−a1)

if a1 ≤ a < a2−a1
2

rmax
eggs(T)−

(a−0.5(a2+a1))rmax
eggs(T)

0.5(a2−a1)
if a2−a1

2 ≤ a ≤ a2

0 if a > a2

.

(6.20)

Now we choose the maximum egg-laying rate rmax
eggs(T) such that the

integral of the egg-laying rate function equals the lifetime fecundity.

Neggs(T) =
∫ ∞

0
reggs(T, a)da (6.21)

=
1
2

rmax
eggs(T)(a2 − a1) (6.22)

⇒ rmax
eggs(T) =

2 · Neggs(T)
a2 − a1

(6.23)

The egg-laying rate function reggs(T, a) is shown for three tempera-
tures and an average lifetime fecundity 〈Neggs(T)〉 as solid lines in
figure 6.8B (with the biological age translated to real time to allow
comparison with the data). For 16 ◦C and 20 ◦C the model rate exceeds
the data and for 25 ◦C the data exceeds the model rate. However, this
deviation is within the typical variation of the lifetime fecundity seen
in (A), where the three red squares mark the lifetime fecundity of the
data shown in (B).
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Figure 6.8: Reproduction of C. elegans at different temperatures. (A)
shows the total number of eggs produced by one nematode at dif-
ferent temperatures. The data set named “Begasse” is published
in [120], the raw data for reproducing the figure were provided
by Dr. Mark Leaver. The data set named “Byerly” is taken from
table 2 of [118]. The two blue curves are quadratic functions fit-
ted to the upper and lower values for each temperature in the
data set “Begasse” (set to zero where these quadratic functions
have negative values, see equation 6.19). (B) shows the rate of
eggs laid by one nematode at three different temperatures (data
extracted from figure 8 in [118]). The solid lines show the piece-
wise linear model for the egg-laying rate explained in the main
text (equation 6.20).

6.4.3 Population growth

With the ageing rate from section 6.4.1 and the egg-laying rate from
section 6.4.2 we could set up an agent-based simulation to model a
set of individuals that develop and reproduce. However, the popula-
tion size that can be simulated in such an agent-based simulation is
very limited because the number of calculations per time step and the
required memory increase with the number of individuals.
We need a method to simulate large populations, because in section
6.7 we want to use this model to measure the average growth rate
in realistic temperature conditions. Since a realistic temperature sce-
nario has a period of one year, we need to simulate the growth of a
population for at least one full year. In such long time intervals the
populations reach a size where an agent-based simulation is practi-
cally impossible.
Instead of an agent-based model, we discretize the age and solve a
system of equations that describe how the age distribution of the
population evolves in time. The discrete age is defined as ai = iα,
where α is a small constant (the age increment) and i ∈ N. In addi-
tion, we discretize the uniform distribution for the lifetime fecundity
(equation 6.19) in equidistant steps Neggs,j(T) between the minimal
lifetime fecundity (j = 0) and the maximal lifetime fecundity (j = m).
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Now we can describe the population by an age distribution defined as
the number of individuals n(i, j) at age ai and with lifetime fecundity
Neggs,j(T), such that the total population size is N = ∑∞

i=0 ∑m
j=0 n(i, j).

With every time step from t to t + α
(

da
dt (T)

)−1
, where da

dt (T) is the
temperature-dependent ageing rate defined in equation 6.18, the age
of all individuals increases by α. During this step the distribution
n(i, j) changes by two processes, each individual gets one step older
and some individuals will produce eggs that appear in the distribu-
tion after the step n′(0, j) at age a0 and with a random fecundity
phenotype j. These changes can be written as

n′(i, j) = n(i− 1, j) (6.24)

n′(0, j) =
E

∑
k=1

δj,ek , (6.25)

where E = bα ∑m
j=0 ∑∞

i=0 reggs,j(T, iα) · n(i, j)c is the number of new
eggs, reggs,j(T, iα) is the egg-laying-rate corresponding to the lifetime
fecundity Neggs,j(T) (as defined in equation 6.20), δ is the Kronecker
delta, and ek is a random number for each new egg k drawn from
the discrete uniform distribution U (0, m) to determine the fecundity
phenotype of the new eggs. The initial condition at time t = 0 can be
any distribution n(i, j) and the boundary conditions at any time t are
n(i, j) = 0 for all i < 0 and n(i, j) = 0 for all i > b aDeath

α c (with the
value aDeath as given in table 6.1).

6.4.4 Growth rates at constant temperatures

As a first test how the model works we can use it to measure the
growth rates at constant temperatures and compare it with experi-
mental data.
First, we need to define two different growth rates that we measure.
If the temperature is constant and in the range where each nematode
produces at least one egg during its life, the long-term growth can
be approximated by an exponential growth. In this case we measure
the growth rate r of an exponential growth process N(t) = N0ert

that approximates the long-term growth obtained from the simulated
population. If the constant temperature does not allow the nematodes
to reproduce, the population declines with a certain percentage per
time, because the population ages with a constant ageing rate, the old
individuals die and no new eggs are produced. In this case we define
r′ as the growth rate with which the function N(t) = N0(1 + r′t) ap-
proximates the decline of the simulated population.
Figure 6.9A shows some example realizations for growth and decline
with different constant temperatures. The simulations with temper-
atures that allow growth started with one initial individual at age
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0 and the simulations with temperatures that result in a declining
population started with a homogeneous age distribution of 1000 indi-
viduals. The curve for 15 ◦C shows a sudden increase after four days,
indicating that the starter nematode begins laying eggs. The curve for
20 ◦C has a second increase after six days when the first offspring of
the starter begin laying eggs. The curve for 25 ◦C includes even a third
generation of offspring. The curves of the declining populations are
just straight lines in these examples, which is a result of the initially
homogeneous age distribution.
Figure 6.9B shows the approximated growth rates depending on the
temperature.
Note that the ageing rate between 16 ◦C and 25 ◦C is an interpolation
of the available data (figure 6.7), while outside this range it is an ex-
trapolation. This extrapolation is certainly incorrect for temperatures
above 28 ◦C, because higher temperatures are harmful to C. elegans
strain N2 [119]. However, this does not affect the resulting growth
rates because the lifetime fecundity is already zero at 27.15 ◦C. The
extrapolation for low temperatures below 16 ◦C is perhaps also not
perfect, but low temperatures (above 0 ◦C) are not harmful and also
the slowdown of the cell division process can be well extrapolated
from temperatures between 10 ◦C and 20 ◦C [120]. For the same rea-
son as for high temperatures, an incorrect extrapolation of the ageing
rate below 9.18 ◦C does not corrupt the predicted growth rates.

6.4.5 Growth rates with switching temperatures

The model is designed based on data that were measured at constant
temperatures and as shown in the previous chapter the predicted
growth rates for constant temperatures agree well with experimental
results. Can we use the model for changing temperatures as well? Do
nematodes behave at a current temperature as if it were a constant
temperature or are temperature changes stressful for them?
In order to test how the nematodes react to changing temperatures
it is necessary to do experiments long enough to get more than one
generation. On the other hand, since the populations grow exponen-
tially, it is difficult to do more than two generations because the ne-
matodes need to have always enough food and space and they need
to be counted several times during the experiments. As a compro-
mise, we decided to do one experiment repeated six times with rela-
tively strong and therefore potentially stressful temperature changes
between 13 ◦C and 25 ◦C. These two temperatures switch instanta-
neously every 12 hours during 8 days.
The results are shown in figure 6.10. In general, the results follow the
shape of the predicted growth curve with the bumps that indicate the
generations. For the last measurement after 8 days we have only two
data points, because the others are still to be analyzed. These two data
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Figure 6.9: Population growth with constant temperatures. (A) shows three
examples of growing populations (starting from one nematode of
age 0) as predicted by the model for temperatures which allow re-
production. (C) shows declining populations (starting from 1000
nematodes of a homogeneous age distribution) as predicted by
the model for temperatures which do not allow reproduction. (B)
and (D) show the growth rates that approximate the simulated
long-term population growth. Filled circles indicate that the tem-
perature is in the range where the ageing rate is an interpolation
of the data (16 ◦C to 25 ◦C) and empty circles indicate that the
temperature is in the range where the ageing rate is an extrap-
olation of the data. The red crosses are experimental data from
Venette and Ferris [121]. In (B), r is the growth rate which ap-
proximates the long-term population growth with N(t) = N0ert.
In (D), r′ is the growth rate which approximates the population
growth with N(t) = N0(1 + r′t).
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Figure 6.10: Population growth with switching temperatures. The blue line
shows the expectation value and the blue area shows the 95%
confidence interval of the population size based on the model.
The black crosses show the experimental results. The initial pop-
ulation in the model and the experiments consists of one adult
nematode. The temperature switches between 13 ◦C and 25 ◦C
every 12 hours for 8 days. The experiment was repeated six
times, but at day 8 only two data points are shown because the
analysis is not yet completed. The experiments were done by
Dr. Mark Leaver (Biotechnology Center (BIOTEC), TU Dresden)
using C. elegans strain N2.

points are about 50% below the predicted population size. More data
points are necessary to conclude whether the results are scattered or
show a systematic deviation between model and experiments. Possi-
ble reasons for a systematic deviation are that the nematodes had not
always enough food or space, that the counting is incomplete (in par-
ticular counting the eggs is difficult due to their small size), and that
the model overestimates the growth because it does not include any
negative effect on the growth rate due to stress caused by temperature
fluctuations.

6.5 weather data

In order to measure the long-term growth rates in realistic tempera-
ture conditions using the model described in section 6.4, we need one
year long records of the temperature with a temporal resolution that
includes the daily fluctuations. Since one year can substantially de-
viate from another year, the results should ideally be averaged over
several years. Since the results are going to be compared to exper-
imentally measured growth rates using nematode strains that were
collected from different locations on Reunion island, we need temper-
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ature records from several regions on Reunion island.
The national meteorological institute of France “Météo-France” op-
erates a number of weather stations on Reunion island. Only sum-
maries of the data are published, but the raw data can be purchased
or, as in the case of this project, limited access for research can be
granted on application. The database2 contains about 260 weather
stations located on the island, which includes all stations that were
active in the past. About 20% of these are currently active weather
stations. For the selection of the data we had to make compromises,
because the stations have data for different time windows, not all
records are without gaps, the granted access is limited to data worth
of 50 000 Euro, and processing and analyzing the data takes time.
Hence, the weather stations were first selected to give a good cov-
erage of all regions and all altitudes of the island and then two years
long time windows for each station were selected. In order to allow a
comparison of the results between different locations, a time window
was chosen for which as many stations as possible have data. For
the remaining stations, a second time window was chosen for which
again as many stations as possible have data, and so on for another
8 time windows. This way we acquired hourly temperature records
of several two years long time windows from a total of 59 weather
stations. The details of these stations and the time windows are listed
in the appendix A.2.

6.6 estimation of soil temperatures

In order to model the growth of nematode populations we need the
temperatures in their natural habitat. The natural habitats of C. ele-
gans include for example rotting fruits, stems, invertebrates, and the
upper few centimeters of the soil where oxygen is abundant [122,
123]. The temperatures in these habitats are, to a good approxima-
tion, a result of heat diffusion from the surface. Here we try to get
viable estimates for the soil temperatures from air temperatures.
For an ideal estimation of the soil temperatures we would need to
know the local conditions, e. g. the vegetation, soil color, relief and
the thermal diffusivity of the soil, which depends mostly on the type
of soil and its composition, the density, and the temporally varying
water content. However, for this project it is not important to get an
accurate estimate of the temperature series at a specific depth. It is suf-
ficient to get an estimated temperature series with reasonably correct
statistical features, in particular the probability distribution and the
extreme values, and to know how these features change with depth.
On Reunion island is only one weather station that measures air
temperature and soil temperatures (Météo-France station 97418110

in Sainte-Marie). We use the data from this station to infer the nec-

2 https://publitheque.meteo.fr/

https://publitheque.meteo.fr/
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essary parameters to reproduce the soil temperatures by numerically
solving the heat equation with the air temperatures as a boundary
condition, and use these parameters also for the estimation at other
weather stations that do not measure soil temperatures.
The one-dimensional heat equation reads

du
dt

= ϑ
d2u
dx2 , (6.26)

where u = u(x, t) is the temperature, x the depth and ϑ the thermal
diffusivity.
The boundary condition at the surface is u(0, t) = uair(t) + c, where
uair is the air temperature and c a constant value to include the differ-
ence of air and surface temperature due to the absorption of sunlight
and evaporation.
Since we are interested only in the upper few meters of the soil, we
can ignore geothermal heat and assume as the lower boundary con-
dition that the temperature at a certain depth xdeep is the average
of the surface temperature, u(xdeep, t) = 〈u(0, t)〉. In order to choose
a reasonable depth xdeep where the temperature is almost constant,
we can calculate the amplitude A(x) of a temperature sine wave that
travels from the surface to the ground. The upper boundary condi-
tion is a sinusoidal temperature u(0, t) = 〈u(0, t)〉 + A(0) sin (ωt)
and the lower boundary condition is u(∞, t) = 〈u(0, t)〉. The an-
alytical solution of the heat equation with these boundary condi-
tions is u(x, t) = 〈u(0, t)〉 + A(x) sin

(
ωt− x

√
ω
2ϑ

)
, where the am-

plitude A(x) = A(0) exp
(
−x
√

ω
2ϑ

)
decreases exponentially with the

depth [124]. For a typical annual temperature variation between 20 ◦C
and 30 ◦C over the year (A(0) = 5 ◦C), and a thermal diffusivity of
ϑ = 0.6× 10−6 m2/s, the amplitude decreases to A(x) < 0.1 ◦C if
x > 9.58 m. Since the thermal diffusivity used for this calculation is
a relatively large value for soil [125], x > 9.58 m can be considered
an upper bound for the depth where the amplitude is smaller than
0.1 ◦C. Hence, for the numerical solution of the heat equation we as-
sume as a lower boundary condition that the temperature is constant,
u(xdeep, t) = 〈u(0, t)〉, at depth xdeep = 10 m.
Next, we compare the numerical solution of the heat equation with
soil temperature records from a weather station on Reunion island
to infer the temperature shift c and the thermal diffusivity ϑ. The
available soil temperatures were recorded at depths of 20 cm, 50 cm
and 100 cm. These soil temperature records can be reproduced to a
satisfying degree by solving the heat equation as described above
using the temperature shift c = 2 cm and a thermal diffusivity of
ϑ = 0.25× 10−6 m2/s. The value for the thermal diffusivity resem-
bles typical values for soils of dry sand or wet clay [125]. Figure 6.11

shows a comparison of the measured and estimated soil temperatures
using these parameters. While the measured and estimated tempera-
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tures are quite close in times without precipitation (e. g. figure 6.11A),
the larger time windows (figure 6.11B and figure 6.11C) show larger
deviations due to sudden temperature drops in the measured soil
temperatures. These temperature drops coincide with high precipita-
tion.
Figure 6.12 shows a comparison of the probability distributions of
measured and estimated temperatures. In all three cases the mea-
sured data show higher probabilities for low temperatures compared
to the estimated data, which is likely due to the effect of precipitation.
More importantly, the overall shape of the distribution and the shrink-
ing width of the distribution with depth seems to be sufficiently well
reproduced.

6.7 results

Theoretically, the model described in section 6.4 could be used to sim-
ulate different species and strains of nematodes. However, sufficient
data is available only for C. elegans strain N2. In order to simulate
strains that are adapted to higher or lower temperatures than N2,
we can create virtual strains by assuming that they behave exactly
the same as N2 except that they experience shifted temperatures. For
example, N2 has a maximum growth rate at the constant tempera-
ture Tid = 24 ◦C (see figure 6.9B). To simulate a virtual strain with
Tid = 23 ◦C we shift all temperature by 1 ◦C.
With this method we can simulate the population and measure the
growth rates for different phenotypes by varying the ideal tempera-
ture Tid and find the best adapted ideal temperature T∗id for a spe-
cific temperature record. The temperature records we use are the es-
timated soil temperatures (as described in section 6.6) from the ac-
quired air temperature records (see section 6.5).
As a first example, figure 6.13 shows the growth rate depending on
the ideal temperature for one of these temperature scenarios. From
the growth rate curve we can measure the deviation δ = T∗id − 〈T〉,
where 〈T〉 is the average soil temperature.
The deviations for all available weather stations and with soil tem-
peratures estimated at different depths are shown in figure 6.14 (for
specific values see appendix A.2).
In contrast to the deviations in the theoretical examples that are pos-
itive or negative (see section 6.3), all predicted deviations for the ne-
matodes are positive. This difference is a consequence from the dif-
ferent shapes of the fitness functions. In the theoretical examples we
used symmetric Gaussian fitness functions, but the fitness function of
the nematodes is strongly asymmetric (see figure 6.9B), with a long
increase at low temperatures followed by a sudden decline shortly
above the temperature of the fitness maximum. Therefore a temper-
ature series with a mean temperature above the ideal temperature
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Figure 6.11: Comparison of measured and estimated soil temperatures.
The plot shows the soil temperature data and the soil tempera-
tures that were estimated from the air temperature as described
in the main text (at the three different depths where soil temper-
ature data is available). Independent of the depth, each plot also
shows the raw data of the air temperature and the precipitation.
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Figure 6.12: Probability densities of measured and estimated soil temper-
atures. (A) shows the probability density of the surface temper-
ature (u(0) = uair + c), which is used as the upper boundary
condition for the solution of the heat equation. (B), (C) and (D)
show the probability density of the measured soil temperatures
and the estimated soil temperatures. All curves are results of a
kernel-density estimation using Gaussian kernels.
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would result in a small average fitness, unless the temperature range
is unusually small.
From the surface to 5 cm depth the deviations increase approximately
by one degree. The reason for this increase is that the temperature
range that allows survival has to include the whole range of environ-
mental temperatures. Since the range of environmental temperatures
shrinks with the depth (see figure 6.12), the range of temperatures in
which the ideal temperature Tid can be optimized increases with the
depth.
From 10 cm to 20 cm the deviations slowly decrease, because the dis-
tributions of all temperature series approach the average temperature
at high depth, hence the deviations have to approach zero deep in the
soil.
Since the deviations do not change much from 5 cm to 20 cm and since
nematodes can avoid unfavorable temperatures by moving deeper in
the soil [122], we will use the deviations at 10 cm as representative
results in the next steps.
Two years long temperature records may give a biased view on the
local climate. The check whether the results change over time, fig-
ure 6.15A shows the deviations for different years. Most temperature
records start at 2010, but the few other records do not indicate that
the results are very sensitive to the year.
Further, it would be interesting to know whether the deviations de-
pend on the location of the weather station. Figure 6.15B shows that
the deviations tend to increase with the altitude of the weather sta-
tion. A similar trend can be observed on the map shown in figure 6.16,
where the weather stations with the small deviations are mostly lo-
cated along the coast and weather stations with large deviations are
more often on the mountains in the central part of the island.
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Figure 6.13: Example to illustrate the analysis. The blue curve shows the
growth rates r predicted by the nematodes growth model as-
suming a shifted ideal temperature Tid to simulate adaptation
and using a two years long temperature series from the weather
station in Sainte-Marie on Reunion island. The vertical blue
line marks the best ideal temperature T∗id, where the growth
rate is at the maximum. The vertical black line marks the time-
average of the temperature 〈T〉. The deviation between the two
is δ = T∗id − 〈T〉.

Figure 6.14: Predicted deviations depending on depth. The predictions are
based on the estimated soil temperatures. The lines connect the
values that belong to the same weather station.
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Figure 6.15: Dependence of the predicted deviation on altitude and year.
Shown are the predicted deviations δ versus the starting date of
the two years long temperature record (A) and the altitude of
the weather station (B). All deviation values based on soil tem-
perature estimates at 10 cm. Lines are linear regressions with the
shaded area showing the 95% confidence interval of the slope.
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Figure 6.16: Geographic map of the weather stations color-coded by the
deviation. The colors show the deviations δ calculated at 10 cm.
The numbers are labels assigned to the weather stations in arbi-
trary order to identify the stations in the lists in appendix A.2.
Background image: Eric Gaba, “La Réunion department relief
location map”, CC-BY-SA 3.0.

https://commons.wikimedia.org/wiki/File:La_R%C3%A9union_department_relief_location_map.jpg
https://commons.wikimedia.org/wiki/File:La_R%C3%A9union_department_relief_location_map.jpg
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6.8 discussion

The ultimate goal of this project is to compare the predicted devia-
tions with deviations measured with nematode strains from different
locations on Reunion island. If the measurements confirm the predic-
tions, we know that nematodes do not simply adapt to the average
environmental temperature in their natural habitat, but adapt to a dif-
ferent temperature that is optimal for the specific temperature fluctu-
ation in their environment. In addition, this would be an example of
a general effect for adaptation to varying environments, that is likely
relevant for many other species in changing environments as well.
However, the experiments to measure the deviations with nematodes
take time and it is possible that the comparison of predictions with
only a few real strains is inconclusive because the presented method
of prediction has some sources of errors. One problem is that the
original locations of the nematode strains that are available from Re-
union island are not exactly the same as the locations of the weather
stations and in mountainous regions like Reunion island the tempera-
tures at a few hundred meter distance can be very different. Secondly,
we assume that the growth rate curves of strains which are adapted
to different temperatures have the same shape and are just shifted to
higher or lower temperatures. Third, the estimation of soil tempera-
tures is certainly not precise. Since the results between 5 cm and 20 cm
do not change much, assuming a wrong thermal diffusivity would
not have a substantial impact. But ignoring the effect of precipitation
and assuming a wrong shift between air and surface temperature
cause systematic errors in the calculations of the deviations. Fourth,
the yearly average temperatures on Reunion island increases [126],
which causes a systematic error if the time window of the weather
data is not the same as the time frame to which the nematode strains
are adapted.
An ideal setup would be to directly measure soil temperatures for sev-
eral years at the same locations where the nematodes were collected.
The results so far are a proof-of-concept, because the predicted range
of deviations is between 0.5 ◦C and 1.5 ◦C, which should be strong
enough to detect in experiments with nematodes.
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C O N C L U S I O N

7.1 summary and discussion

7.1.1 Overview

Almost all real species evolve in changing environments. How do en-
vironmental fluctuations affect the evolutionary dynamics of species?
In this thesis, we addressed this question in two ways.
First, we studied the implications of changing payoff values in evolu-
tionary game theory (chapter 3) and their connection to evolutionary
games in structured populations (chapter 4). In chapter 3 we learned
that averaged payoff values are generally not suited as a simplified
representation of changing payoff values, because the resulting evo-
lutionary dynamics can be qualitatively different. Building on this,
we learned in chapter 4 that stochastically fluctuating payoff values
might serve as a simplified representation of evolutionary games on
networks and in spatially distributed populations, because the payoff
in structured populations is subject to inherent noise due to the fact
that every individual interacts with a different subset of other indi-
viduals.
Second, we developed two models for evolutionary processes of mi-
crobiological species in which the effects of changing environments
can be tested experimentally (chapter 5 and chapter 6). To summarize,
our model for the evolution of shared antibiotic resistance in bacteria
allows new insights in the evolutionary dynamics, the invadability,
and the mutational stability of shared antibiotic resistance, but pre-
dictions for fluctuating antibiotic concentrations require experimental
measurements of the fitness functions. Our model for the adaptation
of nematodes to changing temperatures predicts that the constant
temperature at which the nematodes have the maximum growth rate
is typically about 1 ◦C higher than the average temperature of the
changing temperatures in their natural habitats. With ongoing exper-
iments we aim to test these predictions.

91



92 conclusion

7.1.2 Chapter 3: Evolutionary game theory with payoff fluctuations

In fluctuating environments it is unlikely that the payoff values of
evolutionary games are constant. In chapter 3 we studied the more
realistic case of time-dependent payoff values and showed that the re-
sulting dynamics is qualitatively different to the dynamics resulting
from the averaged payoff values.
Depending on the type, the intensity, and the correlations of the pay-
off fluctuations, the stationary states can be shifted or change their
stability and stationary states can emerge or disappear.
In evolutionary game theory with constant payoff values, two species
that coexist in an evolutionarily stable state necessarily receive equal
payoffs. We showed that with fluctuating payoff values, the time-
averaged payoff that two coexisting species receive is generally not
equal.
Evolutionary games with constant payoff values are traditionally clas-
sified regarding the order of the values in their payoff matrix. Since
this method is limited to constant payoff values, we developed a new
classification that is based on the evolutionary dynamics instead of
the payoff matrix. Using this method we can understand the change
of the evolutionary dynamics due to payoff fluctuations as transitions
from one game to another game. An interesting example is the transi-
tion from a Prisoner’s Dilemma to a Hawk-Dove game. Since decades,
a central question in evolutionary game theory is how cooperation
can evolve despite the theoretical result that cooperators should be
outperformed by defectors in an evolutionary Prisoner’s Dilemma.
With the transition from a Prisoner’s Dilemma to a Hawk-Dove game
caused by payoff fluctuations we found a new mechanism that can
enable the evolution of cooperation.

The results of this chapter can be useful for understanding evolu-
tionary games of real species in experiments.
The traditional terminology for evolutionary games is based on lin-
ear fitness functions Mx, where M is the payoff matrix which defines
the type of the game, e. g. Prisoner’s Dilemma, Hawk-Dove game,
etc. However, all experiments on evolutionary games with microbes
show that realistic fitness functions are typically nonlinear, hence the
traditional terminology can not be applied. Our new method of classi-
fication contains the classic games of linear fitness functions as special
cases and in addition can also be applied to evolutionary games with
nonlinear fitness functions.
Further, experiments on evolution of microbes which were transferred
from their natural environment to the controlled conditions in a lab
need to take into account that the evolutionary dynamics may be
different and consider to imitate the fluctuations of the natural envi-
ronment in order to study their evolution in the wild.
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7.1.3 Chapter 4: Evolutionary games on networks

It is well known that the dynamics of evolutionary games on net-
works and in spatially distributed populations is different to evolu-
tionary games in well-mixed populations. In chapter 4 we showed
that this difference is similar to the difference between evolutionary
games with and without payoff fluctuations. The reason for this sim-
ilarity is that the payoff in a network game is subject to noise that is
inherent to the network, because every node interacts with a different
subset of other nodes.
Evolutionary games in unstructured and in structured populations
share many concepts, but are studied with different methods. The
introduction of fluctuating payoffs in unstructured populations and
the interpretation of structured populations as inherent payoff noise,
could result in a common method and comparable results.
We demonstrated the similarity only in four evolutionary games on
random networks. It would be interesting to study more systemat-
ically whether results from evolutionary games in structured pop-
ulations can be reproduced in evolutionary games in unstructured
populations with payoff fluctuations. This may help to understand
the effects of different network types on the evolutionary dynamics
because it reduces a network to a stochastic process.

7.1.4 Chapter 5: Shared antibiotic resistance

Experiments demonstrated that bacteria can inactivate an antibiotic
and thereby protect other bacteria. This is an example of a real evo-
lutionary game, but the classical models of evolutionary game theory
can not be applied to this example because they are based on abstract
parameters like payoff values and on linear fitness functions. In order
to bridge this gap we developed a model for the evolution of shared
antibiotic resistance based on measurable parameters such that the
predictions can be tested in experiments.
At this time, only predictions for constant antibiotic concentrations
are possible, because predictions for variable antibiotic concentrations
require to know the exact fitness functions of the bacteria strains.
Therefore, the results remain preliminary in the context of this the-
sis, but apart from the aim to study the effect of fluctuating environ-
ments the results are interesting on their own because they allow new
insights in the evolution of antibiotic resistance.
First of all, common one-dimensional measures of resistance like the
minimum inhibitory concentration are insufficient to understand shared
antibiotic resistance. We showed that we need to consider resistance
as a two-dimensional property of bacteria to understand this phe-
nomenon.
Second, our model reproduces a number of phenomena that are known
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from experiments, including the inoculum effect, the observation that
the evolution of resistance is usually faster than the loss of resistance,
that evolution of resistance is most likely for intermediate concen-
trations of the antibiotic, and that resistant and sensitive strains can
coexist in an evolutionary stable state.
Third, the model shows that shared antibiotic resistance, although
evolutionarily stable (regarding perturbations of the population sizes),
is not mutationally stable (regarding perturbations of the phenotypes).
Surprisingly, a resistant and a sensitive strain which coexist due to
shared antibiotic resistance and therefore are together resistant to the
antibiotic, can be invaded and completely replaced by a third strain
that is sensitive to the antibiotic.

Although we developed the model to understand shared antibi-
otic resistance, it could be extended in the future to include other
phenomena which are related to antibiotic resistance, for example
antibiotic-producing bacteria strains, biofilms, or more than one type
of antibiotic, which leads to synergistic or antagonistic effects and the
evolution of cross-resistance and cross-sensitivity.

7.1.5 Chapter 6: Adaptation to fluctuating temperatures

In chapter 6 we studied how a species adapts to changing environ-
ments. We showed that the environmental fluctuations result in a
deviation between the ideal environmental condition, in which the
species has the highest fitness, and the average of the environmental
conditions to which the species is adapted.
An ideal species for an experimental test of this effect would be a
microbial species for which strains are available which have adapted
to different changing conditions, and for which the general sensitiv-
ity to these conditions is already well known. Nematodes qualify for
this attempt because their temperature sensitivity is an active field of
research and strains that adapted in different local climates are avail-
able. Based on existing data on the temperature sensitivity of the de-
velopment and reproduction of C. elegans, we developed a model for
the growth of nematode populations. We tested the model by compar-
ing predicted growth rates to existing results from the literature for
constant temperatures and to new experimental results for switching
temperatures. Using this model, we predicted the deviations between
the ideal temperature and the average environmental temperature
based on temperature records from weather stations of Reunion is-
land. The predicted deviations are between 0.5 ◦C and 1.5 ◦C, with
the tendency of lower values at weather stations near the coast and
higher values in the central part of the island at high altitudes.
The next step will be the comparison of the predicted deviations with
measurements from ongoing experiments conducted at the Biotech-
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nology Center (TU Dresden) using nematode strains from different
locations on Reunion island.

The temperature adaptation of nematodes is just one example of a
general effect in the adaptation to changing conditions. Theoretically,
many other species and other fluctuating environmental parameters
should show similar deviations between ideal and average conditions.
Consequently, when evaluating the impact of changing environments
such as global warming or ocean acidification on ecosystems, it is not
sufficient to consider only the change of the average values.

7.2 outlook : towards applied evolutionary dynamics

Figure 7.1: Time scales of evolution.

During the history of evolution-
ary dynamics it was widely ac-
cepted that evolution is a slow
process. “We see nothing of
these slow changes in progress,
until the hand of time has
marked the long lapse of ages,
and then so imperfect is our
view into long past geological
ages, that we only see that the
forms of life are now different
from what they formerly were.”
(Charles Darwin, On the Origin
of Species, 1859). As a consequence of this hypothesis, the aim of evo-
lutionary dynamics in the past was mainly to understand how species
have evolved.
Today, we know from many experiments in microbiology that evo-
lution can be fast enough that we can observe it and even perform
experiments. For example, bacteria can increase their antibiotic resis-
tance by a factor of 3000 in just a few days [127]. This naturally raises
the question whether we can also control and manipulate the evolu-
tionary process.
In antibiotic resistance management it is already common practice to
consider the evolutionary dynamics of bacteria. Strategies like reduc-
ing the number of unnecessary antibiotic treatments, avoiding too
early discontinuation of treatments, and the use of drug cycling in
hospitals have the goal to prevent the evolution of resistance. But
these are just the obvious applications of evolutionary dynamics to
avoid antibiotic resistance of bacteria. Taking into account the interac-
tions and the coevolution of bacteria strains could show more effec-
tive methods. In addition, there are many other interesting and rele-
vant examples of microbial evolution where evolutionary dynamics
could be applied to manipulate the evolutionary process in a desired
way, for example the coevolution of pathogens and antibodies [128],
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virus strains [129], cancer cells [130], or the human microbiome [131].
And the list of equally relevant but unknown cases of microbial evo-
lution is probably much longer.
As noted in the introduction of this thesis, understanding evolution
can be challenging because evolving species constitute a complex,
nonlinear, high dimensional, heterogeneous, stochastic system. But
for the same reason, there is a high chance that small changes of
the conditions can lead to different and unexpected results. With bet-
ter models for the evolution of specific microbial systems that can
predict how changing a condition affects the evolutionary dynamics,
more sophisticated applications of evolutionary dynamics could be
developed.
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A P P E N D I X

a.1 parameters for figure 5 .4

Table A.1 contains all parameters to reproduce figure 5.4. In the fol-
lowing we give further explanation of the meaning and choice of the
parameters.
If the environmental concentration cenv is too large all bacteria die
and if it is too low no bacteria strain suffers from the antibiotic. We
choose the value to be in the range where coexistence is possible. The
boundaries of this range depend on the present phenotypes and the
permeability of the surface between the environment and the local
habitat.
The extracellular concentration cec is an equilibrium of the total in-
flux and the total degradation of antibiotics. Since the influx depends
on the surface As through which the antibiotics diffuses from the en-
vironment to the local habitat, and the degradation depends on the
population size N, the equilibrium depends on the ratio of As and
N. For simplicity, we assume this ratio to be constant. A constant ra-
tio could result from a constant population size N, e. g. because of
limited availability of space and nutrition. Another possible scenario
with a constant ratio is a bacteria culture that lives on a surface, as il-
lustrated in figure 5.2A, since the area As of the covered surface scales
linearly with the number of cells N. The latter interpretation is useful
to get a simple estimate. If we assume the surface is densely covered
by bacteria of size 1 µm and we ignore boundary effects the ratio is
As
N = 1 µm2/cell.

The permeability Ploc is the diffusion coefficient of the surface be-
tween the environment and the local habitat multiplied with the ratio
As
N , such that Ploc(cenv − cec) is the antibiotic influx the culture has to

deal with per cell. As described above, the value is chosen to be in
the range where coexistence is possible.
In figure 5.4A and 5.4B we assume the presence of a phenotype
A. As the maximum degradation rate for this phenotype we use
1× 106 molecules

cell·second , which has been estimated for E. coli bacteria which
are ampicillin-resistant due to a β-lactamase gene [89].
We chose the resistance of phenotype A to be MICA = 500 µg/mL
and its maximum degradation rate Imax,A = 1× 106 molecules

cell·second . This
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Figure Description Variable Value

A,B & C
Environmental

antibiotic concentration
cenv 5000 µg/mL

A,B & C

Surface area, through which
the antibiotic diffuses

from the environment and the
local habitat, per bacteria cell

As
N 1 µm2/cell

A,B & C
Permeability of the surface
between the environment

and the local habitat
Ploc 0.05 µm4/s · cell

B & C
Maximum degradation rate

of a cell of phenotype A
Imax,A

1× 106 molecules
cell·second

≈ 5.8× 10−10 µg
cell·second

B & C
Relative cell wall permeability

of cells of phenotype A
Pc,A
Ploc

2.3248

C
Maximum degradation rate

of a cell of phenotype B
Imax,B 0.7× 10−10 µg

cell·second

C
Relative cell wall permeability

of cells of phenotype B
Pc,B
Ploc

0.7

Table A.1: Parameters for figure 5.4. The first three rows define the environ-
ment, which is the same in all three figures. The following two
rows define the phenotype A, which is the same in figure 5.4B
and 5.4C. The last two rows define phenotype B, which is re-
quired only in figure 5.4C.

determines the permeability of phenotype A. The phenotype of B is
chosen such that A and B coexist and their population share is close
to 50%.
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a.2 metadata and results of weather data analysis

Label ID Coordinates Altitude [m] Years

00 97402240 55.622 E; 21.005 S 480 2010 and 2011

01 97422465 55.53 E; 21.252 S 860 2010 and 2011

02 97416455 55.505 E; 21.308 S 285 2002 and 2003

03 97413512 55.338 E; 21.123 S 1380 2004 and 2005

04 97414409 55.408 E; 21.198 S 980 2010 and 2011

05 97418123 55.532 E; 20.903 S 68 2010 and 2011

06 97406220 55.627 E; 21.135 S 1032 2010 and 2011

07 97415566 55.375 E; 21.072 S 2149 2010 and 2011

08 97416463 55.425 E; 21.32 S 21 2010 and 2011

09 97417360 55.732 E; 21.358 S 115 2010 and 2011

10 97416465 55.485 E; 21.318 S 156 2010 and 2011

11 97403410 55.48 E; 21.188 S 1808 2014 and 2015

12 97413524 55.297 E; 21.137 S 520 2010 and 2011

13 97412376 55.613 E; 21.377 S 37 1998 and 1999

14 97408580 55.423 E; 21.077 S 1415 2002 and 2003

15 97424410 55.472 E; 21.133 S 1197 2010 and 2011

16 97421210 55.512 E; 21.027 S 870 2010 and 2011

17 97414431 55.427 E; 21.245 S 365 2010 and 2011

18 97407520 55.282 E; 20.945 S 9 2010 and 2011

19 97412336 55.63 E; 21.302 S 1085 2010 and 2011

20 97417380 55.762 E; 21.36 S 30 2010 and 2011

21 97415590 55.247 E; 21.105 S 5 2010 and 2011

22 97411111 55.457 E; 20.883 S 36 2010 and 2011

23 97405480 55.558 E; 21.365 S 155 2010 and 2011

24 97413545 55.3 E; 21.187 S 222 2006 and 2007

25 97403435 55.473 E; 21.228 S 510 2014 and 2015

26 97413550 55.308 E; 21.173 S 429 2010 and 2011

27 97411126 55.452 E; 20.898 S 138 2010 and 2011

28 97418167 55.52 E; 20.938 S 383 2004 and 2005

29 97419320 55.763 E; 21.158 S 820 2010 and 2011

30 97410238 55.718 E; 21.058 S 43 2010 and 2011

31 97415541 55.298 E; 21.068 S 750 2010 and 2011

32 97412384 55.607 E; 21.382 S 17 2010 and 2011

Continued on next page
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Label ID Coordinates Altitude [m] Years

33 97401540 55.327 E; 21.238 S 180 2010 and 2011

34 97420150 55.577 E; 20.93 S 262 2010 and 2011

35 97416480 55.487 E; 21.343 S 52 2002 and 2003

36 97413580 55.325 E; 21.215 S 530 2010 and 2011

37 97409230 55.663 E; 20.933 S 16 2006 and 2007

38 97419350 55.828 E; 21.178 S 181 2010 and 2011

39 97415511 55.325 E; 20.975 S 186 2010 and 2011

40 97409240 55.625 E; 20.96 S 181 2010 and 2011

41 97410265 55.685 E; 21.075 S 255 2006 and 2007

42 97416410 55.475 E; 21.273 S 310 2010 and 2011

43 97415516 55.34 E; 20.997 S 595 2010 and 2011

44 97416415 55.437 E; 21.308 S 61 2010 and 2011

45 97413520 55.303 E; 21.13 S 798 2010 and 2011

46 97411170 55.443 E; 20.987 S 1834 2010 and 2011

47 97422440 55.572 E; 21.208 S 1560 2010 and 2011

48 97410280 55.702 E; 21.113 S 465 2002 and 2003

49 97405420 55.572 E; 21.32 S 813 2010 and 2011

50 97410286 55.572 E; 21.128 S 1332 1997 and 1998

51 97415535 55.335 E; 21.042 S 1120 1997 and 1998

52 97415536 55.342 E; 21.045 S 1200 2010 and 2011

53 97404520 55.337 E; 21.265 S 5 2006 and 2007

54 97419380 55.687 E; 21.217 S 2245 2010 and 2011

55 97418110 55.528 E; 20.892 S 8 2010 and 2011

56 97410202 55.693 E; 21.007 S 16 2010 and 2011

57 97420180 55.587 E; 20.968 S 556 2010 and 2011

58 97404540 55.38 E; 21.265 S 19 2010 and 2011

59 97415550 55.24 E; 21.052 S 147 2010 and 2011

Table A.2: Metadata of the weather stations. The label is the unique iden-
tifier within this project. The labels on the geographic map in
figure 6.16 refer to these. The ID is the unique identifier of a sta-
tion within the Météo-France network. The years specify the time
window of the temperature record that was used for the analysis.
For further description see section 6.5.
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Label 〈T〉[◦C] Deviation [◦C] at 0 cm at 5 cm at 10 cm at 15 cm at 20 cm

00 22.53 0.52 0.82 1.02 1.02 0.82

01 20.57 0.77 1.07 1.17 1.07 0.97

02 23.80 0.55 1.05 1.05 0.95 0.75

03 16.44 1.39 1.89 1.99 1.89 1.79

04 19.22 1.01 1.31 1.42 1.31 1.31

05 26.17 0.68 0.89 0.99 0.79 0.89

06 18.76 0.87 1.28 1.38 1.38 1.28

07 13.92 1.19 1.39 1.39 1.39 1.29

08 26.65 0.51 1.01 0.91 0.81 0.71

09 25.33 0.62 1.02 1.12 1.02 1.02

10 25.41 0.24 0.74 0.94 0.74 0.74

11 15.41 1.01 1.41 1.51 1.31 1.21

12 22.43 0.81 1.31 1.41 1.31 1.31

13 25.61 1.15 1.65 1.55 1.45 1.45

14 16.48 1.25 1.45 1.55 1.45 1.45

15 18.84 0.79 1.19 1.39 1.29 1.29

16 20.38 0.56 1.16 1.36 1.36 1.26

17 23.52 0.42 1.03 1.13 1.03 0.93

18 27.33 0.73 0.93 0.93 0.83 0.73

19 18.61 0.92 1.32 1.32 1.22 1.12

20 26.64 0.42 0.92 0.92 0.82 0.92

21 27.27 0.69 1.09 1.19 1.09 1.09

22 26.94 0.92 1.12 1.12 1.02 0.92

23 26.05 0.30 0.80 0.90 0.90 0.80

24 25.01 0.24 0.84 1.04 0.84 0.74

25 21.84 0.50 0.90 1.20 1.10 1.00

26 23.01 0.74 1.14 1.04 1.14 0.94

27 25.89 0.47 0.87 0.97 0.87 0.77

28 24.16 0.79 1.29 1.39 1.39 1.29

29 20.08 0.96 1.16 1.26 1.06 1.16

30 25.75 0.41 0.81 1.01 0.91 1.01

31 20.44 0.90 1.40 1.40 1.40 1.30

32 26.60 0.56 0.96 0.86 0.76 0.76

33 25.59 0.46 1.06 0.96 0.96 0.96

34 24.49 0.56 0.96 1.06 1.06 0.96

Continued on next page
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Label 〈T〉[◦C] Deviation [◦C] at 0 cm at 5 cm at 10 cm at 15 cm at 20 cm

35 25.60 0.56 0.96 0.96 0.96 0.86

36 22.14 0.81 1.21 1.21 1.21 1.11

37 25.66 0.39 0.79 1.09 0.89 0.79

38 25.55 0.40 0.70 0.90 0.80 0.80

39 25.61 0.34 0.84 0.84 0.84 0.74

40 24.78 0.48 0.88 1.08 0.98 0.98

41 23.68 0.57 0.97 0.97 1.07 0.97

42 23.90 0.45 0.95 1.05 0.85 0.85

43 22.04 0.40 0.90 1.11 1.01 0.90

44 25.93 0.12 0.82 0.82 0.72 0.62

45 21.11 1.03 1.13 1.13 1.13 1.13

46 15.06 1.16 1.56 1.56 1.56 1.36

47 15.98 1.14 1.44 1.54 1.54 1.34

48 21.45 0.69 0.99 1.09 0.99 0.89

49 20.48 0.75 1.16 1.06 1.06 0.86

50 15.59 0.83 1.03 0.93 0.73 0.63

51 17.43 0.80 1.20 1.10 0.90 0.80

52 17.33 1.30 1.50 1.60 1.40 1.40

53 26.23 0.53 1.33 1.33 1.33 1.23

54 13.41 0.71 1.31 1.51 1.41 1.31

55 26.46 0.70 1.10 1.00 0.90 0.90

56 26.09 0.36 0.86 0.86 0.86 0.96

57 21.49 0.55 0.85 0.75 0.75 0.55

58 26.43 0.33 1.13 1.03 0.93 0.83

59 25.45 0.30 0.80 0.90 0.90 0.90

Table A.3: Numerical values of the results of section 6.7. The label is the
unique identifier within this project. 〈T〉[◦C] is the average air
temperature of the temperature record in the time window spec-
ified in tabular A.2. For the definition of the deviation see sec-
tion 6.7. For visualizations of this dataset see figure 6.16 and fig-
ure 6.14.
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