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Abstract

Generally, multiple imputation is the recommended method for handling item

nonresponse in surveys. Usually it is applied as chained equations approach

based on parametric models. As Burgette & Reiter (2010) have shown classifica-

tion and regression trees (CART) are a good alternative replacing the parametric

models as conditional models especially when complex models occur, interac-

tions and nonlinear models have to be handled and the amount of variables is

very large. In large-scale panel studies many types of data sets with special data

situations have to be handled. Based on the study of Burgette & Reiter (2010),

this thesis intends to further assess the suitability of CART in combination with

multiple imputation and data augmentation on some of these special situations.

Unit nonresponse, panel attrition in particular, is a problem with high impact on

survey quality in social sciences. The first application aims at imputing miss-

ing values by CART to generate a proper data base for the decision whether

weighting has to be considered. This decision was based on auxiliary information

about respondents and nonrespondents. Both, auxiliary information and the par-

ticipation status as response indicator, contained missing values that had to be

imputed. The described situation originated in a school survey. The schools were

asked to transmit auxiliary information about their students without knowing if

they participated in the survey or not. In the end both information, auxiliary

information and the participation status, should have been combined by their

identification number by the survey research institute. Some data were collected

and transmitted correctly, some were not. Due to those errors four data situa-

tions were distinguished and handled in different ways. 1) Complete cases, that

is no missing values neither for the participation status, nor the auxiliary infor-

mation. That means that the information whether the student participated were

available and the auxiliary information were completely observed and correctly

merged. 2) The participation status was missing, but the auxiliary information

were complete. That happened when the school transmitted the auxiliary data

of a student completely, but the combination with the survey participation infor-

mation failed. 3) The participation status was available, but there were missings
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in the auxiliary information and 4) there were missings in participation status as

well as in the auxiliary information.

The procedure to handle the complete data situation 1) was a standard probit

analysis. A Probit Forecast Draw was applied in situations 2) and 4) which was

based on a Metropolis-Hasting algorithm that used the available information of

the maximum number of participants conditional on an auxiliary variable. In

practice, the amount of male and female students that participated in the survey

was known. This number was used as a maximum when the auxiliary information

were combined with a probable participation status. All missings in auxiliary in-

formation, that was situations 3) and 4), were augmented by CART. That means

that the imputation values were drawn via Bayesian Bootstrap from final nodes

of the classification and regression trees. Both, the imputation and the probit

model with the response indicator as the dependent variable resulted in a data

augmentation approach. All steps were chained to use as much information as

possible for the analysis.

The application shows that CART can flexibly be combined with data augmen-

tation resulting in a Markov chain Monte Carlo method or more precisely a Gibbs

sampler. The results of the analysis of the (meta-)data showed a selectivity due

to nonparticipation which could be explained by the variable sex. Female stu-

dents tended to participate more likely than male students. The results based

on the usage of CART differed clearly from those of the complete cases analysis

ignoring the second level random effect as well as from those outcomes of the

complete cases analysis including the second level random effect.

Surveys based on flexible filtering offer the opportunity to adjust the questionnaire

to the respondents’ situation. Hence, data quality can be increased and response

burden can be decreased. Therefore, filters are often implemented in large-scale

surveys resulting in a complex data structure, that has to be considered when

imputing. The second study of this thesis shows how a data set containing many

filters and a high filter-depth that limits the admissible range of values for mul-

tiple imputation can be handled by using CART. To get more into detail, a very

large and complex data set contained variables that were used for the analysis

of household net income. The variables were distributed over modules. Modules
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are blocks of questions reffering to certain topics which are partially steered by

filters. Additionally, within those modules the survey was steered by filter ques-

tions. As a consequence the number of respondents on each variable differed.

It can be assumed that due to the structure of the survey missing values were

mainly produced by filters or caused by the respondent intentionally and only a

minor part were missing e.g. by interviewers overseeing them.

The second application shows that the described procedure is able to consider the

complex data structure as the draws from CART are flexibly limited due to the

changing filter structure which is generated by imputed filter steering values as

well. Regarding the amount of 213 chosen variables for the household net income

imputation, CART in contrast to other approaches obviously leads to time sav-

ings as no model specification is needed for each variable that has to be imputed.

Still, there is a need to get some feedback concerning the suitability of CART-

based imputation. Therefore, as third application of this thesis, a simulation

study was conducted to show the performance of CART in a combination with

multiple imputation by chained equations (MICE) on cross-sectional data. Addi-

tionally, it was checked whether a change of settings improves the performance

for the given data. There were three different data generating functions of Y .

The first was a typical linear model with a normally distributed error term. The

second included a chi-squared error term. The third included a non-linear (loga-

rithmic) term. The rate of missing values was set to 60% steered by a missing

at random mechanism. Regression parameters, mean, quantiles and correlations

were calculated and combined. The quality of the estimation for before deletion,

complete cases and the imputed data was measured by coverage, i.e. the propor-

tion of 95%-confidence intervals for the estimated parameters that contain the

true value. Additionally, bias and mean squared error were calculated.

Then, the settings were changed for the first type of data set, that was the

ordinary linear model. First, the initialization was changed to a tree-based initial-

ization instead of draws from the unconditional empirical distribution. Second,

the iterations of the tree-based MI approach were increased from 20 to 50. Third,

the number of imputed data sets that were combined for the confidence intervals

was doubled from 15 to 30. CART-based MICE showed a good performance
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(88.8% to 91.8%) for all three data sets. Additionally, it was not worthwhile

changing the settings of CART for the partitioning of the simulated data.

Moreover, the third application shows some insights about the performance and

the settings of CART-based MICE. There were many default settings and pecu-

liarities that had to be considered when using CART-based MICE. The results

suggest that the default settings and the performance of CART in general lead

to sufficient results when conducted on cross-sectional data. Respective the

settings, changing the initialization from tree-based draws to draws from the un-

conditonal empirical distribution is recommendable for typical survey data, that

is data with missing values in large parts of the data.

The fourth application gives some insights into the performance of CART-based

MICE on panel data. Therefore, the first simulated data set was extended to

panel data containing information from two waves. Four data situations were

distinguished, that was three random effects models with different combinations

of time-variant and time-invariant variables and a fixed effects model. The last

was defined by an intercept that is correlated to a regressor, the missingness

steering variable X1. CART-based MICE showed a good performance (89.0% to

91.4%) for all four data sets. CART chose the variables from the correct wave

for each of the four data situations and waves. That means that only first wave

information was used for the imputation of the first wave variable Yt=1, respec-

tively only second wave information was used for the second wave variable Yt=2.

This is crucial as the data generation for each of both waves was conducted as

either independent of the other wave or the variables were time-variant for all

four data situations.

This thesis demonstrates that CART can be used as a highly flexible imputation

component which can be recommended with constraints for large-scale panel

studies. Missing values in cross-sectional data as well as panel data can both

be handled with CART-based MICE. Of course, the accuracy depends on the

availability of explanatory power and correlations for both, cross-sectional and

panel data. The combination of CART with data augmentation and the exten-

sion concering the filtering of the data are both feasible and promising.
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In addition, further research about the performance of CART is highly recom-

mended, for example by extending the current simulation study by changes of

the variables over time based on past values of the same variable, more waves or

different data generation processes.

Keywords: missing data, multiple imputation by chained equations, data aug-

mentation, classification and regression trees
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Basis for this thesis

This thesis is partly based on the following publications which are joined work

with other authors:

� Aßmann et al. (2014a)

� Aßmann et al. (2014b)

� Aßmann et al. (2015)

However, the thesis focuses on my contribution to those publications and only

refers to the joint work when it is crucial for a better understanding.

The data in chapter 3 differ from the scientific use file ’Organizational Re-

form Study in Thuringia (TH)’ data from the National Educational Panel Study

(NEPS) as it includes sensitive data which are only available for intern staff.

The scientific use file is available at http://dx.doi.org/10.5157/NEPS:TH:

1.0.0. In chapter 4 data from the NEPS are used as well: Starting Cohort 6 -

Adults (Adult Education and Lifelong Learning), doi:10.5157/NEPS: SC6:1.0.0.

From 2008 to 2013, NEPS data were collected as part of the Framework Program

for the Promotion of Empirical Educational Research funded by the German Fed-

eral Ministry of Education and Research (BMBF). As of 2014, NEPS is carried

out by the Leibniz Institute for Educational Trajectories (LIfBi) at the University

of Bamberg in cooperation with a nationwide network. More information about

the NEPS can be found in Blossfeld et al. (2011).

The software used is R, see R Core Team (2014).

The approach of Burgette & Reiter (2010) which gave the impulse to this thesis

is provided as R-Syntax at http://www.burgette.org/software.html. New

is an implementation of CART within the MICE -package using mice.impute.cart

which was not used for this thesis as it was not available when the process started

and continued.

http://dx.doi.org/10.5157/NEPS:TH:1.0.0
http://dx.doi.org/10.5157/NEPS:TH:1.0.0
http://www.burgette.org/software.html
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Chapter 1

Introduction

In a large-scale panel study various data types such as survey data or meta data

and different challenges related to them occur. As especially survey data are often

inflicted by nonresponse, a flexible imputation scheme is needed to avoid invalid

statistical inference. The common procedure to correct for item nonresponse

is multiple imputation (MI) which was invented and comprehensively shown in

Rubin (1977, idea), Rubin (1978, first proposed), Rubin (1987, treatment) and

many more. Unit nonresponse is often corrected by weighting, see e.g. Little

& Vartivarian (2003). Multiple imputation for example implemented as multiple

imputation by chained equations (MICE) is mostly based on parametric models.

Those parametric models are hard to implement when for example the amount

of variables is high or many nonlinear relations or interaction effects have to be

included, compare Burgette & Reiter (2010). In addition, those models have

to be specified for each variable with missing values. The same challenges oc-

cur when data augmentation is used to get inference about parameters from the

data. Data augmentation is an imputation method that alternately combines im-

putations with an analytic model which results in Markov chains, see for example

Tanner & Wong (1987) or K.-H. Li (1988). It can be seen as the stochastic

Bayesian version of the famous EM-algorithm (EM: Expectation-Maximization),

see Dempster et al. (1977). The aim of using data augmentation is to get inde-

pendent random draws from the stationary distributions for the imputation.

1
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Burgette & Reiter (2010) suggest a procedure for imputing flexibly using clas-

sification and regression trees (CART) in combination with MICE. CART is a

nonparametric algorithm for recursive partition respective to a dependent vari-

able that splits the values of this variable into subgroups using the information of

other variables. Those subgroups are generated with the goal to include values

that are as homogenuous as possible given a defined criterion which is the least

squares deviation for continuous variable and usually the Gini impurity, also re-

ferred to as Gini index, for categorical variables. The homogenous value groups

served as possible donor values for a missing value when CART was combined

with multiple imputation as they represent the nonparametric characterization of

the full conditional distribution.

The first paper about CART, used in combination with multiple imputation, was

published in 2010. Since then, a large amount of articles were published about

approaches using CART. Still, there is much more research to do in the field of

CART or more general recursive partition algorithms. In the following, a limited

literature review on current research is presented. All fields of research men-

tioned, that is Item-Response-Theory, handling interaction effects, clustering of

individuals, e.g. in institutions, by group membership or by time, are closely

related to challenges that occur when working with large-scale panel data as this

is the focus of this thesis. Following this literature review, the applications that

are handled in this thesis are introduced.

In the area of Item-Response-Theory approaches using trees came up in the last

years. Research in the field of plausible values was made e.g. by Aßmann et

al. (2014c). Mislevy (1991) presented the idea to combine multiple imputation

with latent variables that were used to estimate population characteristics when

individual values were missing in complex surveys. An example of a latent vari-

able was the ”examinees’ tendencies to give correct responses to test items”, see

Mislevy (1991, p.179). Aßmann et al. (2014c) used CART as a component of

a Markov chain Monte Carlo procedure to impute missing values in background

variables and estimated plausbile values iteratively. In the field of Rasch models,

that is a model that divides personal competencies and item difficulty, Strobl et
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al. (2013) also used trees to impute missing data.

Doove et al. (2014) showed that CART can outclass standard applications in han-

dling models including interaction effects when the data are multiply imputed.

The results were relativized, as the potential of CART ”depends on the relevance

of a possible interaction effect, the correlation structure of the data, and the type

of possible interaction effect present in the data”, see Doove et al. (2014, p.92).

Stekhoven & Bühlmann (2012) showed similar results of a tree-based approach

handling interaction effects. Though, they used an alternative method, that

is Random Forest, in using the R-package missForest instead of tree or rpart,

which are packages for the usage of CART. Another difference is that Stekhoven

& Bühlmann (2012) focused more on mixed-type data than Doove et al. (2014).

A typical challenge of large-scale panel studies arises with the clustering of in-

dividuals within e.g. institutions, families or states. When cross-sectional data

include an additional multilevel structure it has to be correctly considered when

the data are imputed. This task becomes even harder when the multilevel struc-

ture is included in longitudinal data as the already existing cluster of individual

measurements over time is enlarged by another level that has to be considered.

The question is whether CART can identify those different levels correctly and

automatically. Some research has been done in the field of longitudinal and

clustered data by Sela & Simonoff (2012) and Fu & Simonoff (2014). Sela &

Simonoff (2012) added the consideration of random effects to trees and call their

approach random effects EM tree or short RE-EM tree. Though, as trees are not

fitted with maximum likelihood methods, the name is misleading. The reason

for the EM within that name is the alternating estimation of regression trees and

random effects. See for the exact formal description of this method Sela & Si-

monoff (2012, p.175). According to Sela & Simonoff (2012, p.205) the approach

has the advantage that it is superior to trees ignoring the random effects within

the data as it constructs different trees if the trees split on time. Additionally, it

showed comparable results to linear models considering the random effects.

Fu & Simonoff (2014) adapted the algorithm of Sela & Simonoff (2012) by us-

ing a different tree approach, that is the conditional inference tree proposed by
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Hothorn et al. (2006) instead of CART by Breiman et al. (1984). The decision

was based on the property of CART to prefer covariates with higher amounts of

possible split points.

All of these approaches ignored possible missing values within the data.

In this thesis the approach of Burgette & Reiter (2010) was adapted as basis to

handle nonresponse related challenges occuring within a large-scale panel study,

that is the National Educational Panel Study (NEPS). Data from the NEPS were

used to demonstrate two applications of CART.

First, the approach was used to analyze the unit nonresponse on metadata to

decide whether nonrespondents and respondents of a study differ as correction

methods should be applicated when they do. Therefore, the approach of Burgette

& Reiter (2010) was extended to a data augmentation procedure by conducting

it as a component of a Markov chain Monte Carlo approach using a Gibbs Sam-

pler. Here, the participation status as a dichotmous response indicator containing

missing values was analyzed by a Bayesian Probit model.

Second, a large amount of variables were multiply imputed considering the high-

complex filter structure of the data on the topic of household net income. There-

fore, the method of Burgette & Reiter (2010) was used as a multiple imputation

approach as originally inteded by them, but extended with a matrix that allows

for correct implementation of all filter combinations. Thus, this matrix con-

tained lists of proper donor values for each possible filter combination steering

a variable’s values. This construct allowed for a correct implementation of the

high-complex filter hierarchy within the imputation.

Then, a simulation study was conducted to show the performance of CART-based

MICE on cross-sectional data. Additionally, it was checked whether a change of

settings improved the performance for the given data. All analysis were based on

three different data generating functions of Y .

Finally, in order to assess if CART-based MICE is suitable for imputing panel data

another simulation study was conducted. The first data generating model of the

previous simulation study was extended to two waves. Here, the performance

on three different combinations of time-variant and time-invariant variables for
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a random effects model and an additional fixed effects model were tested. For

both simulation studies, the quality of the multiple imputation mechanism was

measured by coverages comparing the results of the before deletion, complete

cases and multiply imputed data. For this purpose, coverage was defined as the

proportion of 95%-confidence intervals for the estimated parameters that con-

tained the true value.

The objective of all four applications was to assert if CART can be flexibly com-

bined with other approaches or extended to work for various challenges of data

imputation and analysis that occur within large-scale panel studies on a high-level

performance.

Summarized, the focus of the first real data based applications was the imputation

and analysis of unit nonresponse when auxiliary information, that could contain

missings values as well, are available. The target of the second real data based

application was the correct implementation of complex filter structures within

the data while imputing using CART. The objective of the third application on

simulated data was to evaluate the performance of the tree-based imputation on

cross-sectional data and to test the influence of changed settings. The fourth

application on simulated data focused on the performance of the CART-based

imputation on panel data.

The thesis is organized as follows. In chapter 2, the theoretical foundations

of MI, CART and the combination of CART with MICE on the one hand and

data augmentation on the other hand is described. In chapter 3, an applica-

tion with metadata from the NEPS on respondents and nonrespondents demon-

strates the usage of CART combined with data augmentation to analyze the

unit nonresponse process. Chapter 4 deals with survey data from the NEPS that

is imputed using CART considering the objective to analyze household income

questions considering the filter hierarchy of the data. In chapter 5, a simulation

study evaluates the performance of CART-based MICE on cross-sectional data

with three variables and three different types of data generating models. Another

simulation study checks the performance of CART-based MICE for panel data

including different time-variant and time-invariant variable combinations and a

fixed effects model in chapter 6. Finally, chapter 7 concludes.
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Chapter 2

Theoretical foundations

In social sciences survey data typically is afflicted by missing values. Analyzing

this data and ignoring the missing values can lead to invalid statistical inference.

Multiple imputation is the preferential treatment for missing values due to item

nonresponse at the moment. It was invented and comprehensively shown in Rubin

(1977, 1978, 1987) and many more. This chapter is at first an introduction to the

multiple imputation theory. Additionally, classification and regression trees are in-

troduced, as they ease some of the difficulties that emerge when standard multiple

imputation approaches are used on complex data containing not only continuous

variables, as described by Burgette & Reiter (2010). Besides the usage of CART

in combination with MI, the usage in combination with data augmentation is pre-

sented as an alternative possibility to get statistically valid inference from data

with missing values. Both, MI in its common application by chained equations

and the iterative CART have special advantages. However, both approaches in

general have limitations to address the special high-dimensional complex survey

design occuring within the NEPS.

2.1 Missing Data Mechanisms and Ignorability

of missing values

As a starting point, it is assumed that values are not only missing, but are missing

for a reason. The reasons for the appearance of missings can be manifold. Impor-

7
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tant for the decision whether to impute data is the question how the mechanisms

(reasons) for missing values influence the analysis of observed data.

Therefore, Rubin (1976) as well as Little & Rubin (2002, pp.14-17, 89f) defined

three types of missing data mechanisms: missing completely at random (MCAR),

missing at random (MAR) and not missing at random (NMAR).

For clarification of these three missing data mechanisms let Y be a n × p data

matrix with i = 1, ... , n individuals and j = 1, ... , p variables. These variables

are partially observed, that is Yobs , and partially not observed (missing), that is

Ymis , so that Y = [Yobs , Ymis ]. Another matrix R with elements rij indicates

whether an element yij is missing (rij = 0) or not (rij = 1). The matrix R is

called response indicator, see e.g.Rubin (1987, p.30). A simplified illustration to

explain the usage of both matrices can be seen in figure 2.1.

Figure 2.1: Matrices Y and R indicating observed and missing values

On the left side there is the matrix as we usually see it when we look at survey

data. There are cells that are observed, illustrated with darker blue. An example

of a value in one of these cells is ’32’ in the first row and first column. This

number includes the information that the first person (i = 1) was asked about

his age (j = 1) and answered ’32 years’. The lighter blue cells indicate values

that are not observed. For example a person i = 40 did not answer about the

household net income j = 10. The fortieth row and tenth column would be

empty or have a label for a missing value. The matrix Y is the matrix that is

used as the basis for analysis of missingness. The matrix R replaces each concrete

(observed) value of Yobs with a one and each missing value, that is Ymis , with a

zero. This matrix R can be used to get an idea of the structure of the missings
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within the data. Additionally, combining both matrices helps to understand the

definition of missing data mechanisms and how R can be explained with Y .

MCAR occurs when Yobs and Ymis can be interpreted as a random subsample

of all cases. That means that the missingness does not depend on any other

variables or the variable containing missing values itself. The conditional dis-

tribution f (R |Y ,ψ), where ψ describes unknown parameters, can then be re-

duced to f (R |ψ). In a more detailed notation the equation can be written as

f (R = 0|Yobs , Ymis ,ψ) = f (R = 0|ψ).

MAR occurs when the Ymis depend on observed values in the data, that is Yobs ,

but not on missing values, Ymis . The conditional distribution f (R |Y ,ψ) can then

be written as f (R |Yobs ,ψ). Typically, multiple imputation is conducted when the

missing data mechanism is assumed to be MCAR or MAR, where the MCAR as-

sumption is testable, see e.g. Little (1988) and the MAR assumption in general

is not, see e.g. Glynn et al. (1993), Graham & Donaldson (1993) and Little &

Rubin (2002, chapter 11).

”The observed data are observed at random (OAR) if for each possible value

of the missing data and the parameter ψ, the conditional probability of the ob-

served pattern of missing data, given the missing data and the observed data, is

the same for all possible values of the observed data.”, see Rubin (1976, p.582).

When the missing data are MAR and the observed data are OAR, the missing

data can be described as MCAR, see Little & Rubin (2002, p.14)

NMAR occurs when the missingness can not be explained by the observed data

itself. So the Ymis depend on nonobserved values, the dropout is informative

or non-ignorable, see Diggle & Kenward (1994). The conditional distribution

f (R |Y ,ψ) can not be simplified. Assumptions have to be made by the scientist

to handle data under NMAR which can be based on ”scientific understanding or

related data from other surveys”, see Rubin (1987, p.202). Furthermore, Rubin

(1987, p.202) stresses that it is important to display the sensitivity under dif-

ferent assumptions for the response mechanism when analyzing data under the



10 THEORETICAL FOUNDATIONS

NMAR assumption.

A very catchy description of missing data mechanisms can be found in Koller-

Meinfelder (2009). Detailed information about missing data mechanisms in social

science data and ways to work with them can be found in Little & Rubin (1989).

In the context of missing data mechanisms two important concepts have to

be explained: distinctness and ignorability. Distinctness is formally defined as

π(θ,ψ) = π(θ)π(ψ). ”From the perspective of a Bayesian statistician this means

that the joint prior distribution can be split into the product of the marginal

prior distributions.”, see Koller-Meinfelder (2009, p.4f). θ is the unknown (vec-

tor) parameter that steers the distribution of Y , in other words, the ’explanatory

variable’ of the data analyst.

Moreover, according to Rubin (1976) and Little & Rubin (2002, p.90) the re-

quirements for multiple imputation are that the missing data should be missing at

random, the observed data should be observed at random and the parameter of

the missing data process should be distinct from the parameter θ which steers the

distribution of Y . Combining those requirements the missing data mechanism

should be ignorable. Thus, θ can be estimated without modelling the missing

data mechanism explicitely, that is the model for R , see for example Little &

Zanganeh (2013, p.2).

The following describes typical imputation methods with focus on multiple im-

putation.

2.2 Imputation approaches

When missing values occur there are some ways to handle them. The most com-

mon are: Ignore them or impute them. Ignoring them by deletion of the affected

cases is the default way of handling missing values in most statistical programms

(van Buuren, 2012, p.8). Listwise deletion (each case with at least one missing

value is deleted) and pairwise deletion (each case that is needed for the actual

analysis with at least one missing value is deleted) are options when the missing

data mechanism is MCAR, as it leads to unbiased estimates for the reduced data.

Compared to the original data, that include missing values, the standard errors
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and significance levels for the subset of the data are often larger, see van Buuren

(2012, p.8).

Imputation is a collective term that includes all techniques that replace a missing

value with one or several predicted ones. About 30 years ago Sedransk (1985,

p.451) ended a conference proceedings with the result that ”whenever possible,

model the missing data process, do a complete data analysis and avoid imputa-

tions”. Other researchers, as for example Sande (1982), came to similar results.

Time has changed: imputation techniques were modified and became a common

method. The requirements on imputation techniques are summarized by Rubin

(1987), but already denoted in Rubin (1978): standard complete-data analysis

methods, valid inference, display of the sensitivity of inferences. Most of the

procedures allow for the mentioned standard complete-data methods, but lack

for valid inferences and the display of the sensitivity of inferences.

Multiple imputation is a technique that takes the uncertainity of missing values

into account and differs concerning this matter clearly from single imputation.

Nevertheless, for a better illustration and as single imputation is sufficient and

reasonable in some cases, see e.g. Rao & Shao (1992), it is illustrated as well.

2.2.1 Single Imputation

There are several approaches to replace a missing value with a single value based

on different assumptions about the absence of data. Deductive imputation is

based on logical values, for example it is easy to understand that ’yes’ or ’no’ can

be imputed to the question whether a women has children or not if she answered

the question ’How many children do you have?’. Mean imputation replaces each

missing value with the mean of the variable. It undererstimates the variance and

biases almost every estimate besides the mean even when the missing data mech-

anism is MCAR. Hot-deck imputations use information of donor units, chosen for

example sequentially, randomly or by nearest-neighbor approaches. For a general

discussion of hot-decks, see Andridge & Little (2010). Cold-deck imputation uses

information from previous time points (last observation carried forward or base-

line observation carried forward), for example from a previous wave in a panel

study. Another approach is regression imputation. The observed values are used
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within a model and the predicted values of the fitted model serve as imputed

values. The last can be unbiased even under MAR when the variables that steer

the missingness are included within the regression model. For more information

about those procedures see for example Lohr (2009, chapter 8.6), Little & Rubin

(2002, p.61) or van Buuren (2012, p.8-13).

In general, the ’best’ single imputation method is seen in the stochastic re-

gression imputation, which produces reasonable results, even under the MAR

assumption. See for a description and a comparison to other methods Schafer

& Graham (2002, p.159-162). The approach is identical to the regression impu-

tation, besides a residual error is added to the predicted values. For a standard

linear model that error is normal distributed with mean zero and the variance es-

timated by residual mean square from the model, see Schafer & Graham (2002,

p.159).

Single imputation techniques allow for analysis with standard complete-data tech-

niques, but standard complete-data techniques do not differentiate between ob-

served and imputed values. Inference can be biased and the variability that is

caused by missing values is not taken into account. The latter causes bias on

estimates which depend on that variability as e.g. correlations or p-values, com-

pare e.g. Rubin (1987, p.12-15) and K.-H. Li et al. (1991). Hence, we focus on

multiple imputation, as it ”retains the virtues of single imputation and corrects

its major flaws”, see Rubin (1987, p.15).

2.2.2 Multiple Imputation

The idea of multiple imputation is to replace missing values by a set of plausible

values drawn from the posterior predictive distribution of the missing data given

the observed. Thus, a propability model is needed on the complete data: Ymis ∼
f (Ymis |Yobs), compare Schafer & Olsen (1998, p.550). As it is often too complex

to draw from f (Ymis |Yobs) directly, a two-step procedure can be used: θ is drawn

according to its observed data posterior distribution f (θ|Yobs). Then the Ymis

are drawn according to their conditional predictive distribution f (Ymis |Yobs , θ),

as f (Ymis |Yobs) =
∫

f (Ymis |Yobs , θ)f (θ|Yobs)dθ.

It might be too complex to derive f (θ|Yobs) as can be seen for example by
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the quote from Schafer & Olsen (1998, p.549): ”Except in trivial settings, the

probability distributions that one must draw from to produce proper MI’s tend to

be complicated and intractable”. A solution then is to draw from f (θ|Yobs , Y
(t)
mis)

with t as time index which leads to a data augmentation procedure, compare

chapter 2.3.3.

In contrast to single imputation, multiple imputation imputes M times with m =

1, ... , M and M ≥ 2. Each missing value is then replaced not by a single value,

but by a vector. After those M imputations there are M complete(d) data sets

on which standard complete-data methods can be applied, see e.g. Rubin (1987,

p.15), Little & Rubin (2002, pp. 86-87) and Lohr (2009, chapter 8.6.7). The

results of these methods can then be combined by Rubin’s combining rules which

are described in chapter 2.2.4. In general, multiple imputation has important

advantages compared to single imputation: 1) MI is more efficient in estimation

when imputations are randomly drawn, 2) due to the variation amongst the M

imputations MI takes the additional variability, caused by missing values, into

account and 3) MI allows for the display of sensitivity, see Rubin (1987, p.16)

and Little & Rubin (2002, pp. 85-86).

2.2.3 Imputation with chained equations

The chained equations approach, see e.g. van Buuren & Oudshoorn (1999) and

van Buuren & Groothuis Oudshoorn (2011), also known as fully conditional spec-

ification (FCS), see van Buuren (2007), or sequential regressions according to

Raghunathan et al. (2001), specifies an individual imputation model, that is typ-

ically a univariate general regression model, for each variable with missing values,

see Azur et al. (2011). These models are iteratively chained as each dependent

variable is used in the following model as one of the explanatory variables, fol-

lowing Little (1992) and Little & Raghunathan (1997). At first, the missing

values in all variables are initialized and afterwards the algorithm iteratively runs

through all specified (conditional) imputation models. The chained equations are

repeated several, say M , times. As each iteration consists of one cycle through all

variables considered, the algorithm provides M completely imputed data sets, see

van Buuren (2007). Before starting the multiple (sometimes called multivariate)
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imputation via chained equation algorithms, the data matrix is arranged to ensure

that the number of missing values per variable is ascending which is favorable in

terms of convergence. The implementation of chained equation imputations are

available for example in R (packages mice and mi), SAS (package IVEware) and

Stata (package ice). Information about these implementations are available e.g.

in van Buuren & Groothuis Oudshoorn (2011), Su et al. (2011), Raghunathan

et al. (2010), and Royston (2004), Royston (2005a) and Royston (2005b).

2.2.4 Rubin’s combining rules and the efficiency of an es-

timate based on M imputations

When multiple imputation is conducted with for example M = 5 imputations

there are five complete(d) data sets that can be analyzed. Instead of choosing

one of them, the results are all used in a combined form. Rubin (1987, chapter

3) lays out the following rules for multiple imputation confidence intervals. Let

θ̂ be the estimate of interest. Then the multiple imputation estimate θ̂MI can be

calculated as mean of all estimates θ̂m from each of the M data sets which are

interpreted as completely observed for the calculation:

θ̂MI =
1

M

M∑
m=1

θ̂m.

The total variance of the multiple imputation estimate that is needed for the

width of the confindence interval as well as for tests has to be split into two com-

ponents, which are the within-imputation variance and the between-imputation

variance. The within-imputation variance W is calculated analogous to the esti-

mate above as the mean of the estimated variances for the estimate θ̂ :

W =
1

M

M∑
m=1

v̂ar(θ̂m).
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The between-imputation variance B then can be described as a variance of the

multiple imputation estimate θ̂MI , calculated as:

B =
1

M − 1

M∑
m=1

(θ̂m − θ̂MI )
2.

The total variance T is calculated by summing both variances up, taking into

account, that when the number of imputations M is increased, the simulation

error for θ̂MI decreases. Hence, a correction factor is added:

T = W +

(
1 +

1

M

)
B .

Using all this information a multiple imputation confidence interval can be cal-

culated by:

θ̂MI ± tdf
√

T

with the degrees of freedom (df ) for the quantile of the Student’s t-distribution

calculated by:

df = (M − 1)

(
1 +

M ·W
(M + 1)B

)
.

For a high number of imputations (M →∞) the normal distribution can be used

instead of the Student’s t-distribution.

Typically, about M = 5 imputations are conducted before the results of the

analysis of each of the imputed data sets are combined by Rubin’s rules. This

number of imputations seems pretty low. But when calculating the efficiency of

an estimate based on M imputations by Rubin (1987) as:

1

1 +
γ

M

,
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where γ is the fraction of missing information given by:

γ =
r+2
df+3

r + 1
with r =

1 + M−1B

W
,

it can be seen, that for M = 5 the efficiency is higher than 90% for fractions

of missing information up to 50%. A table for several M- and γ-values can be

seen in Schafer & Olsen (1998). Bodner (2008) who was motivated by Royston

(2004) showed an alternative table (page 666) and argued for increased numbers

of imputations. His basis was a simulation study with a comparison of inter-

percentile ranges of 5,000 simulated 95% confidence interval half-widths, null

hypothesis significance test p-values and fractions of missing information. These

interpercentile ranges were interpreted as measure of variability between inde-

pendent multiple imputation runs. For 95% confidence interval half-widths those

interpercentile ranges for M = 5 and γ ≤ 0.50 (the exact values for γ were

0.05, 0.1, 0.2, 0.3, 0.5) lay between 0.02 and 0.30. These values are high when

compared to the ranges of M = 20 which lay between 0.01 and 0.10 and very

high when compared to interpercentile ranges of M = 100 which lay between 0.0

and 0.04. Summarized, the confidence intervals are narrower and more accurate

with higher numbers of imputation than with lower. This result is not suprising,

but the impact of the differences in accuracy have to be considered when decid-

ing about the amount of imputations in practice.

2.2.5 Using multiple imputation does not make you a wiz-

ard

Using multiple imputation seems pretty charming and in a lot of cases it is.

For instance, van Buuren (2012, p.25) calls multiple imputation the ”best gen-

eral method to deal with incomplete data in many fields”. But still there are

some ’disadvantages’ or better said limitations and requirements that have to be

considered when using it.

According to Rubin (1987, p.17f), compared to single imputation there are three

(negligible) disadvantages when using multiple imputation: 1) More work and
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knowledge about the procedure is needed, 2) multiply-imputed data sets need

more storage space and 3) it is more difficult to analyze them (when the goal

to get proper inference is ignored). The impact of these disadvantages depends

on the number of imputed values. So when M is high, the impact is high. But

as already mentioned in chapter 2.2.4 M = 5 is already suitable in most cases.

Otherwise as already mentioned, Bodner (2008) recommended a much higher

number of imputations which depends on the fraction of missing information that

has to be managed. Due to the computer power and mass storage possibilities

of our time even those increased numbers can be evaluated as unproblematic.

As already mentioned in chapter 2.1, a basic requirement of multiple imputation

is that the missing data mechanism is ignorable, see Rubin (1976) and Little &

Rubin (2002, p.90).

As described by Rubin (1987), Rubin (1996) and Allison (2000), the quality of

the imputation depends on the ’correct’ imputation model and the congruency

of the imputation model with the analyst model (’uncongeniality’), see Meng

(1994).

According to e.g. Glynn et al. (1993), Graham & Donaldson (1993) and Little &

Rubin (2002, chapter 11) it can not be tested whether the missingness mechanism

is NMAR or MAR.

2.3 CART used in Multiple Imputation and Data

Augmentation

2.3.1 Classification and Regression Trees

Classification and regression trees (CART) were originally used in the machine

learning area. Machine learning follows the idea that the computer extracts the

algorithm automatically, see Alpaydin (2009, p.2). The statistical usage was

adapted by Breiman et al. (1984). CART is a nonparametric algorithm for recur-

sive partition respective to Y (dependent variable). A classification tree is used

when Y is categorical (nominal or ordinal), a regression tree when Y is contin-

uous. The basic assumption for nonparametric estimation is not a model, as in
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parametric estimation, but the idea ”that similar inputs have similar outputs”,

see Alpaydin (2009, p.185). CART uses nonparametric recursive binary splits to

partition the data so for continuous variables the values are split in a group with

values less than or equal to the splitpoint (x ≤ xsplitpoint) and a group with values

greater than this splitpoint (x > xsplitpoint). For categorical values two groups of

values are defined, one equals a defined group of values (e.g. x = A ∪ B ∪ C )

and the other one is defined as the remaining values (e.g. x = D ∪ E ).

In figure 2.2 there is an example of what a regression tree can look like. A

classification tree would look very similar giving proportions instead of a mean

value. The ovals are value groups that still have to be partitioned (pink, blue

and orange). The rectangles (green and yellow) are the final groups that fulfill

the stop criterion (explained later), i.e. no further partition is conducted. Those

final groups are called ’final nodes’, ’end nodes’ or ’terminal nodes’ whereas the

others fields (ovals) are just called ’nodes’. In the presented tree the dependent

variable Y is e.g. representing the individual net income. Y is continuous and

has a mean of 4,000e with a total number of respondents of N = 10, 000. Both,

the mean and number of respondents are those of Y before any split is done,

where split is a synonym for partition. The whole unpartitioned group of values

is on top of the figure in pink.

A variable is chosen for the first split by CART (the rules for splitting will be

explained later) which is X1 in this example. X1 is a categorical variable with

answer choices A, B , C , D and E . In this example X1 has a split point that divides

all respondents of variable Y that answered A, B or C to variable X1 in one group

and all respondents that answered D or E to X1 in another group.

The group on the left side of the tree (blue), that is the group that answered A,

B or C to variable X1, contains 8,000 respondents and has a mean of 2,500e.

The group on the right side of the tree (orange), that is the group that answered

D or E to variable X1, contains 2,000 respondents and has a mean of 10,000e.

It is important to understand that the label X1 is only about the chosen split

variable and that the values of X1 only describe the split point. The variable that

is getting more homogenous by the split is still Y and the mean and the number

of respondents refer to Y as well.
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The group on the left side (blue) can be divided again using the same variable

as another binary split of this variable X1 is decreasing the heterogenity of the

variable Y for the 8,000 respondents of this group better than a split of any other

variable. So the group of respondents can be divided by X1 being answered with

A or B in one group and C in the other group. The final nodes of this side are

illustrated by the rectangles. Note that the number of splits on each side does

not have to be the same. Finally, we have two, according to the stop criterion,

most homogenous final nodes on this side with each of them containing 4,000

respondents (the number of respondents does not have to be equal, see second

row: 8,000 vs. 2,000 respondents). One group has a mean of 3,000e whereas

the other one has a mean of 2,000e.

On the right side of the tree (orange) we have a group of respondents that an-

swered D or E to variable X1. The best split to make this group become more

homogenous is now a split of a continuous variable X2 at split point 45. So

on the left side (yellow, on the left) we have all respondents of variable Y that

answered D or E to variable X1 and have a maximum of 45 at variable X2. This

group contains 1,000 respondents and has a mean of 9,000e. The second group

(yellow, on the right) comprises values of X2 that are higher than 45. This group

is (randomly) as large as the other one and has a mean of 11,000e.

All four rectangle groups (green and yellow) consist of respondents that are as

homogenous as they can be within their group and as heterogenous compared to

the other groups based on the given split and stop criteria.

The decision whether a binary split is conducted depends on the reduction of

heterogenity in the group of values by a possible split. Thus, for all possible

split points the least squares deviations for continuous variables or an adequate

measure for categorical variables are calculated and the split is conducted at

the split point where the reduction of heterogenity is maximized. A threshold

defining a minimum reduction of heterogenity serves as stop criterion. So the

values within one partition get more homogenous with every split whereas the

values across the partitions get more heterogenous compared to each other.

According to e.g. Breiman (1996) an adequate measure of heterogenity which
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can be used as splitting criterion for categorical variables are the entropy, Gini

index or the classification error:

� Entropy:
∑G

g=1−pg log2pg

� Gini Index: 1−
∑G

g=1 p2
g

� Classification error: 1−max{pg}

with pg as relative frequency of an attribute g = 1, · · · , G within a group.

As an example for the calculation and evaluation, imagine a variable with three

attributes, e.g red, blue and green. A possible split leads to the following pro-

portions within one of the two resultings node: 0.2 (red), 0.5 (blue) and 0.3

(green). Another possible split leads to the following proportions within one of

the two resulting nodes: 0.1 (red), 0.4 (blue), 0.5 (green). For simplification,

only one side of the split is used as basis to calculate the heterogenity. The best

split is evaluated by comparing the values of entropy, Gini index or classification

error of one possible split with values of these measures of the other possible

split(s). The best split is the one with the lowest resulting value, that is the

lowest heterogenity.

� Entropy Split 1: −0.2log20.2− 0.3log20.3− 0.5log20.5 = 1.4855

� Gini Index Split 1: 1− (0.22 + 0.32 + 0.52) = 0.62

� Classification error Split 1: 1− 0.5 = 0.5

� Entropy Split 2: −0.1log20.1− 0.4log20.4− 0.5log20.5 = 1.3609

� Gini Index Split 2: 1− (0.12 + 0.42 + 0.52) = 0.58

� Classification error Split 2: 1− 0.5 = 0.5

As can be seen in this example, the entropy and the Gini index lead to a clear

result, that is to prefer the second split as it leads to a lower heterogenity. The

classification error does not prefer one or the other.
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Alternatively to CART there are other algorithms using different numbers of splits

(binary/multiway) and/or other decision rules as splitting criteria. Kim & Loh

(2001) outlined some procedures when presenting their algorithm CRUISE. They

mentioned CART by Breiman et al. (1984) and QUEST by Loh & Shih (1997)

as binary methods. As multiway split methods FACT by Loh & Vanichsetakul

(1988), C4.5 by J. R. Quinlan (1992), CHAID by Kass (1980) and FIRM by

Hawkins (1997) were mentioned. Note that the algorithm C4.5 is a follower of

ID3 which has not separately been mentioned by Kim & Loh (2001), see thereto

J. Quinlan (1986). A newer tree-based algorithm, hence not mentioned by Kim

& Loh (2001), is CTree by Hothorn et al. (2006). The algorithm DIPOL is a

follower of Cal5 by Müller & Wysotzki (1994).

There are many more tree-based algorithms available. Dependent on the struc-

ture of the data and the measurement criteria for the performance of those algo-

rithms the results and the consequently preferred algorithm might differ. One of

many examples of the results of a performance test can be seen from the creators

of DIPOL available at the ’Technische Universität Berlin’ website (https://www

.ki.tu-berlin.de/menue/team/fritz_wysotzki/cal5_dipol/, date of ac-

cess: 17.03.2016).

2.3.2 Nonparametric sequential classification and regres-

sion trees for multiple imputation

Using MICE, conditional models have to be specified for all variables with missing

data, including interactive and nonlinear relations between variables if necessary.

However, when knowledge about the conditional distribution is low or appropriate

specifications involve high estimation costs, Burgette & Reiter (2010) proposed

specifying the full conditional distribution within the MICE algorithm via CART

(CART-based MICE). The resulting binary partition of the data along the set of

conditioning variables defines the nonparametric characterization of the full con-

ditional distribution. Hence, the final nodes can be used as donor value groups

for imputation. All respondents can be assigned to one of these identified donor

groups. Each missing value is imputed via a draw from the empirical distribution

within this donor group using a Bayesian Bootstrap. Thus, the uncertainty of

https://www.ki.tu-berlin.de/menue/team/fritz_wysotzki/cal5_dipol/
https://www.ki.tu-berlin.de/menue/team/fritz_wysotzki/cal5_dipol/
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the unobserved values is taken into account, see Burgette & Reiter (2010).

As the Bayesian Bootstrap has a very central role it is described in more detail in

the following. At first, a tree is built with the non-missing (observed or initialized)

data, as for example can be seen in figure 2.2. A missing value in Y with an

answer A in X1 would here be imputed by a value of the green node on the left. A

Bayesian Bootstrap gives a random weight or more exact a posterior probability

to each of the 4,000 (observed) donor values of this node. Those weights are

drawn from a uniform distribution and then are scaled to one.

The steps in more detail and described with an example using four donor values

are as follows:

� Draw a value from the uniform distribution (with a minimum of zero and

a maximum of one) for the number of donor values minus one, that is for

example [0.3, 0.4, 0.24] for a number of four donor values.

� Sort those values from the smallest to the largest, here: [0.24, 0.3, 0.4].

� Create two vectors from these draws: one that is added by one (last posi-

tion) and one that is added by zero (first position), here: [0.24,0.3,0.4,1]

and [0,0.24,0.3,0.4].

� Calculate the first minus the second vector, here: [0.24,0.06,0.1,0.6]. The

weights then always sum up to one.

� Use those weights to draw the needed amount of values from the donor

values with replacement.

The corresponding R-Syntax for CART defined by Burgette & Reiter (2010) can

be found in the following. The command is called bayesianboot in their provided

syntax and is defined as:

a <- sort(runif(length(eligibles) - 1))

values <- sample(eligibles, n, replace = TRUE, c(a, 1) - c(0, a))

with eligibles as a vector of donor values and n as the number of missing values

that have to be replaced by donor values from this final node. The theoretical
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background of this procedure is explained for example in Rubin (1981). As the

Bayesian Bootstrap is based on the Bootstrap which can be interpreted as gen-

eralized jackknife further information can be found in Efron (1979) and Miller

(1974).

The default of the tree-command in the R-package tree is a minimum size of 5

units in the final node and a minimum reduction of heterogenity of 0.01 that is

needed to conduct a split. Tree growth is limited to a maximum of 31 levels and

the amount of levels of a categorical variable to 32 levels. Those settings can all

influence the imputation.

2.3.3 Nonparametric sequential classification and regres-

sion trees for data augmentation

Data augmentation, as described by Tanner & Wong (1987) or K.-H. Li (1988), is

a process to calculate the posterior densities f (θ|Y ) and f (Ymis |Yobs) iteratively

with θ as the parameter of interest, Yobs as observed data and Ymis as unobserved

data with Y = [Yobs , Ymis ]. Data augmentation can be used for imputation

chaining the two steps iteratively. At first, the imputation step imputes values for

the missing values by using the information of the estimate θ from the oberserved

data. Then θ is ’updated’ using the observed and imputed data. Repeating both

chained steps, the procedure is a Gibbs Sampler, a Markov chain Monte Carlo

(MCMC) method, as described by Geman & Geman (1984), Gelfand & Smith

(1990) or Casella & George (1992) among many others.

Formally the procedure can be described as follows, compare for example Schafer

(1997, chapter 3.4.2).

1. Starting values either for θ or for Ymis

2. For an arbitrary step t:

� Imputation-Step: Y
(t+1)
mis ∼ f (Ymis |Yobs , θ

(t))

� Posterior-Step: θ(t+1) ∼ f (θ|Yobs , Y
(t+1)
mis )
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with t + 1 as iterative step following t and anaologous Y
(t+1)
mis as imputed values

of Y
(t)
mis and θ(t+1) as imputed values of θ(t). Let t run until the chain converges

to the desired stationary distributions, compare Geweke (1992).

The advantage of MCMC methods is, that no joint multivariate model has to be

constructed (but its existence has to be assumed), only the families of conditional

models have to be specified, which are already programmed, compare e.g. Liu

et al. (2013). Liu et al. (2013) additionally described the conditions under which

iterative imputation Markov chain equivalences the posterior distribution of a

joint Bayesian model and gave practical implications. Kropko et al. (2014) com-

pared joint and conditional approaches and concluded that one approach does

not outperform the other in general and that imputation algorithms should always

be chosen appropriate to the characteristics of the data which they are applied to.

The presented data augmentation procedure can be extended using CART. First,

the parameter θ is estimated by the observed data. Then, initial values are either

drawn unconditionally from the data or drawn from final nodes from an initial

(surrogate) tree to fill up the missing values. Afterwards, the Imputation-Step is

conducted by a classification or regression tree.

The Imputation-step, as well as the Posterior-step are repeated several (for exam-

ple, a thousand) times, discarding the burn-in phase. A burn-in phase is therefore

defined as an amount of iterations that is ignored for the analysis as it is assumed

to be too dependent on the starting values. One implementation is to start a

chain with one set of starting values. Only a few iterations from the chain are

chosen, the rest is discarded. For this purpose the distance of L + 1 iterations

is defined with L iterations discarded and the iteration of L + 1 used as imputa-

tion draw. Another implementation is to get M different cycles by starting with

different starting values. Then, the first L iterations of each cycle are defined as

burn-in phase. The remaining iterations of the M cycles can then be analyzed.
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2.3.4 A traveling salesman points out some problems

Regarding the partition algorithm, the splitting rule and the evaluation of how

well both work, the Traveling Salesman Problem (TSP) has to be mentioned.

The TSP is described by Dantzig et al. (1954) with an example of a salesman that

has to visit several cities and then returns to the starting point. These cities have

in the easiest case different distances between them, and the salesman wants to

find out which route is the shortest. So the aim is to find the minimum sum of

distances. In a more difficult case, not only the distances, but other variables as

for example the traveling costs have to be taken into account. What makes the

TSP so outstanding is that it is easy to explain, but hard to solve. According

to Dantzig et al. (1954) it is said, that the problem was firstly approached in a

seminar talk by Hassler Whitney in 1934. It is not solved until this day. When

partitioning the data, one has to start with a splitting criterion. However, the

splitting criterion can only be a best splitting criterion for the split that has to

be done next. The challenge, that has not been solved yet, is to find the best

criterion for all splits, derivated theoretically instead of just using trial and error.

Another limitation of CART, as it is usually based on the Gini index, is that

variables with many levels are preferred to variables with few, see e.g. Breiman

et al. (1984, chapter 4) and Kim & Loh (2001).

In addition, based on conditional models the corresponding joint distribution

might not exist, see Si & Reiter (2013). This problem especially manifests in

changes in the order of the variables within the tree structure (which can be

interpreted as a consequence of TSP) which impacts the imputation, see for

example Baccini et al. (2010) and F. Li et al. (2012).



Chapter 3

Analysis of unit nonresponse

combining CART and

data augmentation

Unit nonresponse, panel attrition in particular, is a problem with a high impact

on survey quality (not only) in social sciences, see e.g. Lugtig (2014) or Hillygus

& Schnell (2015). Unit nonresponse can be interpreted as a 100% item nonre-

sponse, see e.g. Messingschlager (2012, p.107). For this interpretation auxiliary

information which are not surveyed from the target person are not taken into

account, see for an illustration figure 3.1.

Figure 3.1: Data with auxiliary variables

On the left side there are additional information in the form of auxiliary vari-

ables. These can be completely observed (observed values are blue) or limited

27
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by some missing values (missing values are grey). On the right side we have

the survey data. They are divided in two parts. One part, that is the upper

one, is survey data from the respondents which can have some missings, but are

generally observed. The other part, that is the lower one, is the survey data for

nonrespondents which are completely missing.

There are many procedures to correct for unit nonresponse, mostly in the field of

weighting, see e.g. Little & Vartivarian (2003). Weighting is an approach which

is usually applied when the probability to be selected is not the same for all units.

Design and base weights (inverse of the inclusion probability) correct for these

unequal selection probabilites in the first step, see Kish (1990) and Kish (1992).

In a second step, the design weights are adjusted by sample weighting adjust-

ment to correct for unit nonresponse, see Kalton & Kasprzyk (1986). Population

weighting adjustment is the third step to correct for potential bias resulting from

incomplete coverage, non-coverage or sampling error, see Brick (2013). More de-

tailed information about weighting can be found e.g. in Cochran (1977), Särndal

et al. (1992) or Bethlehem (2002).

However, there is an ongoing discussion about whether weighting should be gen-

erally applied or whether multiple imputation is an alternative.

Already Rässler & Schnell (2003) compared weighting to multiple imputation

when unit nonresponse has to be handled. They concluded with an encourage-

ment to use multiple imputation. Nevertheless, the question whether to weight or

to impute is still a topic in the last years’ publications. Peytchev (2012) implied

that multiple imputation can address (unit) nonresponse and measurement error

and so reduce bias and avoid an increasing variance. Messingschlager (2012,

p.181) came to the chastening result, that multiple imputation is not always su-

perior compared to weighting, but criticized that weighting leads to unpredictable

results. Both, Brick (2013) and Messingschlager (2012, p.182) intended to focus

more on the process that leads to unit nonresponse. Little (2013) focused in his

discussion on Brick (2013) on the relationship between unit nonresponse and

survey outcomes and underlined that the application of weighting procedures is

limited. He concluded, that multiple imputation should be used for the correction

of item and unit nonresponse and synthetic data sets should be offered.
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So the literature is very conflictive. The requirements for both weighting and

multiple imputation concerning unit nonresponse are that relevant auxiliary in-

formation are available for respondents as well as nonrespondents. Those infor-

mation can for example be information from the sampling frame, but also from

respondents connected to these respondents and nonrespondents (information

about third persons). The quality of both, imputation and weighting, depend in

their efficiency on the predictive power of the auxiliary variables on the variable

of interest, compare respective weighting e.g. Little & Vartivarian (2003, 2005).

In the following we distance ourselves a little from the discussion and look at the

characteristics of data that are crucial for the decision whether to react for ex-

ample by weighting, that is whether the participants differ from nonparticipants.

Thus, in the remainder of this chapter we use data augmentation combined with

CART to get information about the unit nonresponse process. The purpose of

this procedure is to decide whether correction methods such as the calculation of

nonresponse adjusted weights are necessary for this application. The proceeding

is a Markov chain Monte Carlo method, more precisely a Gibbs sampler. The

method is shortly described as it is more extensively shown in section 2.3.3. Then,

the application on the Thuringia study of the National Educational Panel Study

(NEPS) is presented. Section 3.3 concludes this chapter and points out some

alternative strategies as well.

Note that the whole procedure, containing an extension on calculating nonre-

sponse adjustment weights and a simulation study about the whole approach is

described in detail by Aßmann et al. (2014a). The whole setting is a joint work.

The following focuses on my contribution, that is the application to the Thuringia

study using CART. All figures and tables about the real data application used

for this thesis are identical to those in Aßmann et al. (2014a).

Note as well that the application focuses on the individual level even when the

cluster structure, that is schools, is taken into account. The decision whether the

requirements to use weights for schools not participating are met, for example

based on sampling information, is not part of this illustration. We only focus on

the demands of the correction of unit nonresponse on the individual level.
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3.1 Nonparametric data augmentation using

CART

When auxiliary variables are available, data suffering from unit nonresponse can

be imputed for example by using multiple imputation. Furthermore, data aug-

mentation is a possibility, especially when the interest is on the analysis of unit

nonresponse, interpreting the response indicator as dependent variable Y and ex-

plaining it by the available data. Data augmentation is a MCMC technique, more

precisely a two-step Gibbs sampler, see Geman & Geman (1984). Samples from

both f (θ|Y ) and f (Ymis |Yobs) are drawn iteratively instead of sampling directly

from f (θ|Yobs) with Y = [Yobs , Ymis ] and θ as unknown parameter steering the

distribution of Y . After initializing the data, a Markov chain is performed iter-

atively drawing Y
(t+1)
mis from f (Ymis |Yobs , θ

(t)) and θ(t+1) from f (θ|Yobs , Y
(t+1)
mis ),

with the values in t + 1 as the values of the next iteration step with basis t, see

for example van Dyk & Meng (2001). Using this data augmentation procedure,

the response indicator can be iteratively imputed and an explanatory model can

be conducted. Due to the binary nature of the response indicator, a binary logit

or probit model is appropriate. As imputation step CART can be applied using

the ’updated’ information from the data in every chain. An application of this

combination of data augmentation and CART can be seen in the following using

the Thuringia data from the NEPS.

3.2 (Non)Participants in the Thuringia study of

the NEPS

3.2.1 The data

NEPS is a voluntary study in Germany with six starting cohorts (SC1,...,SC6).

These six main samples include newborns, Kindergarten children, secondary school

children (fifth and ninth grade), first-year undergraduate students and adults.

Those starting cohort are accompanied over time, see for a better understanding

figure 3.2.
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Figure 3.2: NEPS Data Releases, available from https://www.neps-data.de/

en-us/datacenter/overviewandassistance/releaseschedule.aspx

(Date of download: 22.02.2016)

Beside those starting cohorts there were additional studies to explore the effect of

school reforms. One of these additional studies, the organizational reform study

in Thuringia, was about the curricular reform of the ’Gymnasiale Oberstufe’ (up-

per Gymnasium level, that is the last years of the upper secondary school) in

Thuringia. 32 upper secondary schools in Thuringia took part in 2010 (last year

group that was not affected by the reform) and 31 schools in 2011 (first reformed

year group). All students of the 12th grade that participated were surveyed and

tested once. Achievement tests (Fachleistungstests) in the fields of mathematics,

physics, biology and English, questions about the students’ social background, a

test on cognitive abilities as well as questionnaires were applied. This informa-

tion can be used to capture possible effects of the reform. Besides, parents and

subject teachers were interviewed. In 2010 the number of students within the

12th grade of the 32 upper secondary schools in Thuringia was 1,857. In 2011

the same schools minus the one not participating again contained 1,374 students.

https://www.neps-data.de/en-us/datacenter/overviewandassistance/releaseschedule.aspx
https://www.neps-data.de/en-us/datacenter/overviewandassistance/releaseschedule.aspx
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In addition to the information from survey and testing, auxiliary information

about the participation status and other related variables were available for all

students (participants and nonparticipants). As the focus of this study was on

the students, only their participation status was crucial for the definition as non-

respondent. Both information, auxiliary infomation and the participation status,

should have been combined by the survey research institute. Due to some prob-

lems in data collection and transmission in 2010, missing values occured for the

participation indicator and the auxiliary information. The missing values that

were based on a transmission error can be interpreted as measurement error.

Software used in 2011 eliminated most of those problems, so the uncertainty

declined. An overview for missing values for both years can be seen in table 3.1.

variable percent of missings
2010 2011

participation status 1.3 % 0.4 %
sex 3.8 % 2.4 %
field of subjects 1 11.9 % 5.0 %
field of subjects 2 12.0 % 5.0 %
field of subjects 3 12.1 % 5.0 %
mean school mark 1.0 % 0.0 %
complete cases 85.0 % 93.6 %

Table 3.1: Overview of missing values

Mosts missings happened for the marks in the fields of subjects (fs). Those

fields of subjects were constructs that aggregate the individual marks on related

subjects. Students in upper secondary schools in Germany have to chose their

subjects within three fields: 1) linguistic-literary-artistic (fs1), 2) social (fs2) and

3) mathematical-natural-scientific-technical (fs3). So each student can choose

a preferred combination of subjects, but has to chose a minimum number of

subjects within each field. In 2010 about 12% of all information were missing for

the three fields of subject. Only 3.8% were missing for sex, 1.3% for participation

status and 1.0% for the mean school mark. In 2011, all missings were reduced by

the new software resulting in 5.0% missing in the three fields of subject, 2.4% for



ANALYSIS OF UNIT NONRESPONSE COMBINING CART AND
DATA AUGMENTATION 33

sex and 0.4% for the participation status. The mean school mark was completely

observed. The missings were not caused by students, but the analysis of the data

led to information about the nonresponse process of students.

To evaluate the quality of the data and for further analysis, it was analyzed

whether nonrespondents differed compared to respondents. Thereby, the vari-

ables available for all students, apart from the information that were missing,

could be used to answer this question. A binary probit is appropriate for this

requirement. Even though there were just a few missing values the data were

imputed since the occured missings might have led to improper inference. The

combination of Gibbs sampling and imputation using CART results in a data

augmentation approach that will be described in more detail in the following.

3.2.2 Method

Unit nonresponse was handled as item nonresponse manifestated as values of

the variable ’participation status’ as the binary response indicator. The analysis

was performed using a binary probit model. The decision was made for a binary

probit model instead of a binary logit, because the distributional assumptions of

the binary probit model were more suitable for the analyzed model. The missing

values in the data and the coefficients for the probit model were initialized at first.

With the completed data CART was applied to replace the starting values with

new draws from the donor values (final nodes). The parameters of the binary

probit model were renewed as well based on those new values. Both approaches,

CART and the binary probit analysis, were alternately conducted combined within

a Gibbs-based sampler.

Out of a large list relevant variables have been identified for the analysis. These

were the participation status, the information about sex, all marks of all students

for the last four semesters (marks from chosen subjects), marks of final exams

and the final mean mark.

The individual marks were aggregated as arithmetic mean within the fields of

subjects for the analysis as there would have been too many structural missings

using the single subject marks. In table C.1 there is an overview of the aggregation

for all relevant subjects.
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From 2010 to 2011 the rules of subject choice changed, so the data of the

mean marks of the students referenced a different calculation basis. Due to

the fact that the calculation rule only changed slightly and in order to maintain

comparability between the estimations, both mean marks were calculated with

the 2010 calculation rule for the analysis.

The students were clustered in schools. So the cluster structure has to be taken

into account when CART is used. Only the mean school mark was used as the

clustered variable, that is the mean of all marks of all students of the 12th grade

for each school. So the mean school mark (as an initialized or updated value)

was used in a first (level 1) CART process as additional information. It was the

same for all students within a school. Then the aggregated data for all students

within a school was used in a second (level 2) CART model and the mean school

mark value was updated.

The data situation can be distinguished into four missing value situations that

were relevant for the estimation, as can be seen in figure 3.3 with Y as the

dependent variable, that is the participation status.

Figure 3.3: Missingness pattern of the Thuringia study data
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1) Complete cases: no missing values neither for the participation status, nor

in the explanatory variables

2) Complete explanatory variables, but missing values in the participation

indicator (measurement error)

3) Complete participation indicator, but missing values in the explanatory

variables

4) Missing values in the participation indicator (measurement error) and the

explanatory variables

When all variables are complete, as in situation 1), a standard probit regression

could be used. For the situations 2) and 4) a so called Probit Forecast Draw

was used for the participation status which was based on a Metropolis-Hastings

algorithm, see Chib & Greenberg (1995). This approach used the information

of the maximum number of participants in each class of students conditional on

sex. So the participants were drawn from all students within a class, using the

information of all explanatory variables (that have to be augmented for situation

4) before) and the information of the maximum number of participants.

For the situations 3) and 4) the missing explanatory variables were augmented

by CART.

In the following, the Bayesian Probit model is described. A more detailed descrip-

tion can be found in Aßmann et al. (2014a). yij were values of a dichotomous

dependent variable with i = 1, ... , Nj as an index for the students within a school

j = 1, ... , J with Nj denoting the total number of students of a school and J as

number of schools. Whereas the observed variable is binary, a latent variable zij

is assumed which works as link between explaining factors Xij and yij :

yij =

{
1, if zij ≥ 0,

0, if zij < 0,

where zij = Xijβ+ uj + eij and eij is an independent identically normal distributed

error term with unit variance and uj a cluster-specific random error term with

N (0,σ2
u).
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Pooling hence yields the complete likelihood

LP(Y |β, X , uj) =
∏J

j=1

∏Nj

i=1 Φ [(2yij − 1)(Xijβ + uj)] ,

where Φ(·) denotes the cumulative distribution function of a standard normal

distribution.

The covariance matrix σ2
u of the random coefficients is sampled from independent

inverse gamma distributions IG(ασ2
u
, βσ2

u
) with parameters

ασ2
u

= J
2

+ α0
σ2
u

and

βσ2
u

= 1
2

∑J
j=1 u2

j + β0
σ2
u

where the parameters of the conjugate inverse gamma prior distribution IG(α0
σ2
u
, β0

σ0
u
)

are α0
σ2
u

= 1 and β0
σ2
u

= 1.

As mentioned above, there were four data situations which were relevant for the

estimations. All four were handled by an initialization step and a Gibbs Sampler

step including the presented Bayesian Probit model. The whole estimation rou-

tine can then be described by the following with Xmis and Xobs representing the

missing and observed values of the explanatory variables, Ymis and Yobs repre-

senting the missing and observed values of the participation status.

Initialization:

1. Unconditionally draw new values for Xmis from Xobs (with replacement).

2. Use the maximum likelihood estimation results based on complete cases as

starting values for the β coefficients (informative prior for β).

3. Generate one run of the Metropolis-Hastings sequence to draw new val-

ues for Ymis (measurement error) based on the complete values from the

conducted initialization steps.
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Gibbs Sampler:

1. Generate new values for Xmis for level 1 and level 2 from full conditional

distributions provided by CART analysis.

2. Generate one run of the Metropolis-Hastings sequence to draw values for

Ymis (measurement error) based on the complete values from step 2 of the

initialization step for m = 1 and from step 4 of the preceding iteration for

m > 1.

3. Generate new random effects variance-components σ2
u and uj .

4. Calculate new β coefficients based on conducted steps of the Gibbs Sam-

pler.

5. Repeat the whole Gibbs procedure M times with iterations m = 1, ... , L, ... , M

with L as the last iteration of the burn-in phase.

The initialization differed from Burgette & Reiter (2010) where the initialization

equaled the imputation step with limited variable range as only completely ob-

served variables were used and stepwise imputed variables were added. As there

was no completely observed variable in the application data unconditional draws

with replacement were sampled from the observed values.

Following the practical advice of Cowles & Carlin (1996) and Raftery & Lewis

(1992) multiple long chains of length M = 20,000 with various starting values

were running. The burn-in phase had to be discarded for more correct estimates

at iteration L. Then, the values from the remaining iterations after the burn-in

phase had to be combined. The Bayes posterior mean vector of unknown param-

eters Θ̂m = {β̂, σ̂2
u} was then calculated as the mean of the remaining iterations

Θ̂ =
1

M − L

M∑
m=L+1

Θ̂m.
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3.2.3 Empirical results

The data from the Thuringia study of the NEPS was analyzed in three steps.

First, the complete cases were analyzed with a standard binary probit model.

Second, a second level random effect was added taking the multilevel structure

of the data into account. Third, the data were augmented using CART as

imputation step in combination with the binary probit model with the second

level random effect.

The results of the complete case analysis led to the suggestion that there was a

selection effect caused by nonrespondents. In the upper part of table C.2 on the

left there are the results for 2010. The confidence intervals (no null contained)

showed that the participation status depends significantly on the marks of fs1, i.e.

German, English, arts and music, fs3, i.e. maths, physics, biology and computer

sciences and on the mean school mark (msm). In 2011 the participation status

depended significantly on sex and the marks of fs3 as well.

Adding a second level random effect changed the results for the school completely.

In 2010 there were no significant effects on the participation status and in 2011

only the random effect showed a significant effect. So on the individual level

there was no effect, but concerning the homogeneous context within schools the

students differed in their participation.

Still, it could not be excluded that due to the uncertainty stemming from unit and

item nonresponse the effects change. So the data were initialized and a Gibbs

sampler was conducted with a 5,000 inital iteration burn-in phase. Another

15,000 iterations were the basis for the calculation of the relevant estimates.

The whole Gibbs sequence showed a good mixing behavior, see figure B.1 and

the autocorrelation function (ACF) had only moderate dependencies up to the

last 10 iterations for sex and the three mean marks fs1, fs2 and fs3, see figure

B.2. As shown in C.3 results were independent of the chosen prior specifications

and did not change substantially. With both good mixing behaviour and only

moderate dependencies in the autocorrelation function given the results could be

interpreted. The marginal effects are presented in table 3.2.
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2010 2011
(I.1) Gibbs Cart MH P = 0.01 (I.2) Gibbs Cart MH P = 0.01

Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR
Intercept 0.3180 0.3462 -0.3587 0.9947 -0.1926 0.5988 -1.3899 0.9858
sex -0.0426 0.0209 -0.0830 -0.0016 -0.0472 0.0238 -0.0936 -0.0004
fb1 -0.0154 0.0089 -0.0329 0.0021 0.0069 0.0098 -0.0118 0.0264
fb2 0.0051 0.0082 -0.0110 0.0212 -0.0024 0.0089 -0.0201 0.0147
fb3 0.0103 0.0058 -0.0012 0.0214 0.0025 0.0060 -0.0094 0.0141
msm -0.0425 0.1476 -0.3356 0.2396 0.1304 0.2727 -0.4065 0.6803
(II.1) Gibbs Cart MH P = 0.02 (II.2) Gibbs Cart MH P = 0.02

Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR
Intercept 0.3005 0.3399 -0.3721 0.9807 -0.1420 0.5981 -1.3144 0.9957
sex -0.0427 0.0210 -0.0843 -0.0020 -0.0475 0.0242 -0.0955 -0.0001
fb1 -0.0151 0.0088 -0.0322 0.0024 0.0069 0.0098 -0.0122 0.0266
fb2 0.0047 0.0081 -0.0110 0.0206 -0.0028 0.0089 -0.0201 0.0147
fb3 0.0105 0.0058 -0.0009 0.0217 0.0025 0.0060 -0.0093 0.0141
msm -0.0351 0.1459 -0.3267 0.2510 0.1078 0.2710 -0.4148 0.6345
(III.1) Gibbs Cart MH P = 0.05 (III.2) Gibbs Cart MH P = 0.05

Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR
Intercept 0.3206 0.3513 -0.3640 1.0114 -0.1219 0.5709 -1.2220 1.0239
sex -0.0421 0.0210 -0.0832 -0.0010 -0.0470 0.0244 -0.0954 0.0007
fb1 -0.0151 0.0089 -0.0324 0.0027 0.0070 0.0098 -0.0120 0.0264
fb2 0.0049 0.0081 -0.0110 0.0210 -0.0026 0.0089 -0.0202 0.0149
fb3 0.0103 0.0057 -0.0009 0.0214 0.0023 0.0060 -0.0097 0.0139
msm -0.0442 0.1498 -0.3362 0.2473 0.1010 0.2575 -0.4175 0.5945

Table 3.2: Marginal effects of the Bayesian Probit estimation with different prior
precision; Note: Initial 5,000 draws were discarded for burn-in, MH: Metropolis-
Hastings algorithm

Sex had a very small effect on the participation status for both years with female

students more likely to take part than male students. In the model with a prior

precision of P = 0.05 for 2011 the effect of sex was not significant which was

considered as a random variation due the estimation process. This assumption

was furthermore supported by the corresponding high density region, which in-

cluded the null.

Summarizing all these results based on the Gibbs sampling procedure an effect

of variable sex was found in all models except for the mentioned model with prior

precision P = 0.05. The results differed completely from the other two proce-

dures without correcting for unit and item nonresponse. The effect of sex on the

participation status was very small, but had to be regarded. When weighting is

conducted the nonresponse adjustment weights should correct for the selectivity

of the variable sex.
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3.3 Conclusion and differences to the original ap-

proach

In most surveys unit and item nonresponse occurs. Often weighting is used to

correct for unit nonresponse whereas multiple imputation is mostly used for item

nonresponse. This chapter was concerned about the analyis of unit nonresponse

using CART combined with a Bayesian Probit analysis as the data augmentation

procedure, but also marking out the general discussion about weighting and mul-

tiple imputation as an alternative. As shown, the results differ a lot comparing

the complete cases analysis and the augmented data. The CART algorithm of

Burgette & Reiter (2010) was extended and adapted for the current application.

It used empirical values as donors for the missing values, searching for ’close

to the truth’-values by structuring the data with classification or regression trees

and drawing one of the donor values with a Bayesian Bootstrap from correspond-

ing nodes (that had the same predictive distribution), as extensively described

in chapter 2.3.2. It was necessary to start this process by defining initial val-

ues. The approach of Burgette & Reiter (2010) used the circumstance that the

tree structure is based on complete(d) variables, drawing the initial values from

complete or stepwise imputed variables. The problem of the implementation to

real data is that sometimes there are no completely observed variables available

as in the application with the Thuringia study data, so the creation of a tree

gets impossible. Consequently, the initial values were drawn unconditionally with

replacement from the observed values for each variable. The disadvantage of

this initialization is, that it invites an imputer the use of CART for every missing

rate. Theoretically, using samples from the observed values without replacement

allows to use CART even when there is only one value available for each variable

and all others are missing, see for a better understanding figure 3.4. The data

on the left side is the empirical data. The darker blue fields are observed values,

the light blue fields are missing values. Most of the data are missing for each

variable. The available data of each variable, that are the observed values, is

used to complete the missing values of the data. The completed data, displayed

on the right side of the figure consits of the observed values (dark blue) and their

unconditionally drawn replicates (middle-dark blue). Using this data for further
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analysis is possible, but not recommendable.

Figure 3.4: Empirical and initialized data

Only with a moderate missing rate it can be assured that the structure of the

data can be ’restocked’ using CART within the presented Markov chains.

Another slight change from the approach of Burgette & Reiter (2010) is that the

cluster structure in the data was taken into account by chaining two CART-steps,

one for the individual data and one for the clustered data which was the school

context. For both CART models the data from the other level was used but not

modified itself. For richer data on the second level (the Thuringia data has only

one variable on the school level) alternatives can be considered.

The most important extension and adaption was, that CART was not used as a

single approach to impute the data, but within a Gibbs sampler in combination

with a Bayesian Probit analysis as a data augmentation procedure. As the us-

age of CART is very rare in contrast to alternative parametric procedures at the

moment, the presented algorithm shows one of many further applications based

on combinations of CART with standard algorithms.
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The analysis of unit nonresponse was needed in the application of NEPS data to

decide whether the necessity for nonresponse adjustment weights was given or

not. That is whether the data included a selectivity of nonrespondents compared

to nonrespondents. The selectivity was given by the variable sex. For both years,

female students tended to participate more often than male. When weighting is

conducted the nonresponse adjustment weights should correct for that selectiv-

ity. With a higher amount of auxiliary information it can in general be suggested

to impute the item nonresponse concerning the uncertainty of unit nonresponse,

compare Rässler & Schnell (2003).

As can be seen in table 3.1 the fraction of missing values was very low in 2011

with up to 5.0% missing values. In contrast to that the missing values in 2010

were up to 12.1%. That allows for the suggestion that most of the missings were

caused by the transmission error in 2010. As the transmission error effects the

data randomly, the missigness mechanism was missing completely at random for

those values. Consequently, only about up to 5% of the variable values might be

not missing completely at random. On the one hand, it can be doubted if this

extensive approach was needed to impute the data and get information about

the nonresponse process. On the other hand, it was a good access to the subject

of embedding CART within a MCMC approach.



Chapter 4

Nonparametric imputation of

high-dimensional data containing

filters

The most common application for multiple imputation is for item nonresponse,

see e.g. Rässler & Schnell (2003). Item nonresponse is the absence of a variable’s

value which can for example occur when respondents decide not to answer a

question or questions are filtered. In the current literature ’skip patterns’ is

sometimes used as an alternative term for the patterns of missing values that

occur by filters. When filtering is integrated in surveys, the questionnaire can be

individualized and consequently increase in quality as no inappropriate questions

are asked and as the response burden reduces as the survey becomes shorter

and irrelevant questions are avoided, see e.g. Bosley et al. (1999). Besides

these advantages of using filters, there are disadvantages as for example different

amounts of responses for each variable even when the question was answered by

each person to whom it was relevant. Additionally, a coding has to be used that

makes it possible for the analyst to see which missing values occured for what

reason. The analyst has to decide how to handle these missings, as for example

when the data has to be imputed. Below, a short overview is given about some

codings that can be used for filter-concerned values. In this overview, not the

’name’ of the missing is relevant, that is whether a value is coded as ’NA’ or

43
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’-99’, but the way how the value’s missing by filters is handled due to this coding.

NA: NA is the acronym for ’not available’ and hence can be problematic for the

analyst if there is no more differentiation from conscious refusal. This can

be prevented with an additional variable that indicates the status of the

original variable’s values as answered, not answered or irrelevant. However,

an additional variable for each original variable leads to a high data volume.

NR: NR is the acronym for ’not relevant’ and is an additional category for

variables that are filtered. Additional variable categories can be problem-

atic when the data are analyzed, especially when variables are continuous.

In contrast to NA-coded values the implemented exclusion, e.g. by the

subcommand na.rm=TRUE in the statistical program R, does not auto-

matically recognize the value NR as missing value when e.g. a mean is

calculated.

Zero: Some values can be set to zero as the logical consequence of the filter

answer. So when a person did not get a Christmas bonus, the height of

the Christmas bonus was zero. This can lead to a bias, when for example

a mean for Christmas bonus receivers should be calculated as the mean

calculation only considers the values of the Christmas bonus not the fil-

tering. Consequently, the filtering has to be regarded when analyzing and

imputing the data as the original distribution is changed.

Concerning multiple imputation, filtering forces the data imputer to regard the

limited value bounds, i.e. to regard the variables’ different value ranges condi-

tional on values of steering variables. The presentation of the implementation of

CART-based MICE handling this task on empirical data is the objective of this

chapter.

The remainder of this chapter is structured as follows. First, various types of

filters are introduced. Then, the imputation method considering the filtering is

illustrated. Afterwards, an application on data from the NEPS relevant for the

analysis of household net income is described. The chapter concludes with a
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short summary and mentioning alternative ways of handling filters when the data

are imputed.

Note that the application on NEPS data is described in detail by Aßmann et al.

(2014b) and Aßmann et al. (2015). Since the whole setting is a joint work, the

chapter focuses on my contribution, that is using CART with data containing

filters. Only steps relevant for this thesis are mentioned, thus, the description of

the data and the results are shortened. The figures and tables used in section

4.3.1 show identical content to those published by Aßmann et al. (2015).

4.1 Imputation of data with filters

The usage of filters is common, especially in large-scale surveys. Filters can make

a long questionnaire shorter and more individual and consequently reduce survey

costs and response burdens, see e.g. Bosley et al. (1999). Usually questions in

large surveys are arranged by topic, see for illustration figure 4.1.

Figure 4.1: Pathway through a survey with questions arranged by topic

Usually, those topics are arranged by response burden. In the beginning there is

a short introduction and the questionnaire starts with harmless questions. Then,

the response burden increases over time, compare Schnell et al. (2011, pp. 336-

339).

There are filters that tackle single or several questions in each of these topics,

but there are also filters that steer whether all questions from a topic, a so called

module, are asked or not. Four main types of filters can be distinguished:
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Type 1: Figure 4.2 shows the most simple type of filters. No other question

within the same or another module, nor a different module as a whole is

affected. There is a single question that is asked containing a ’not relevant’

(NR) category. This type of coding answers can be interpreted as filtering,

because it is the shortform of asking if a question is relevant or not in one

question and then asking the question of interest. An example would be to

ask only ’What amount of money did you get for your Christmas bonus last

year?’ and add a ’Did not get a Christmas bonus.’ as an answer category.

The ’NR’ option is problematic when used as category within continuous

questions, because the scale of measurement changes. In this example the

NR category can be converted to a value, that is zero. In contrast, a refusal

of this question can not be interpreted as a zero.

Figure 4.2: Filter type 1, only affecting the same variable

Type 2: As shown in figure 4.3, type 2 is the extension of type 1: At first a

question is asked concerning the relevance of the question of interest, e.g.

’Did you get a Christmas bonus last year?’ and then a second question

’What amount of money was it?’ is asked. This type of filtering can

also include connections of different referenced questions, e.g. ’Are you

working full-time, part-time or not working at all?’ and ’Are you getting

unemployment compensation?’, where only persons who are unemployed

are asked the second question. This connection can happen between one

to one or one to many questions.
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Figure 4.3: Filter type 2, affecting a variable of the same topic

Type 3: Figure 4.4 shows a filter affecting a variable that concerns a different

topic. For example topic 1 could be a collection of questions from the chil-

dren module, where topic 2 could be about income. The question about

the amount of child allowance a person gets (topic 2) would only be asked

to people living together with at least one child (topic 1).

Figure 4.4: Filter type 3, affecting a variable of another topic

Type 4: As shown in figure 4.5, type 4 indicates whether a whole module is

asked. Filters of type 4 are an extended version of filters of type 3. An

example would be that the marital status is asked as a question of the

topic module sociodemography and there is a complete topic module on

partners.
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Figure 4.5: Filter type 4, affecting a whole topic module

Additionally to these four main types of filters, two procedures that create miss-

ings by design can be mentioned.

Wave-specific: Additionally to programmed filters, different questions can be

asked over time when the survey is a longitudinal survey. Those ques-

tions can be revised, extended, deleted or skipped for certain waves. Then

the interviewed persons are asked different questions or different sets of

questions at different time points.

Validity check: A validity check of the answers can be interpreted as a filter.

Given answers are checked for their consistency and can be changed to

other values or be set to a missing. For example, the net income for a

person that is not self-employed should be lower then the gross income. If

it is higher, the person perhaps confused net and gross income. The value

can then be changed as for example by substituting the net value by the

gross and the other way round or both can be set to a missing value.

When filters are considered when multiply imputing missing values, they influence

the imputation procedure by changing the admissible range of values that can

be imputed. Type 1 (’NR’ category) allows only for imputation models that can

handle categorical variables, except the case that ’NR’ can be set to the value

zero. Types 2-4 need to be taken into account when the filtered variable has to be

imputed. Type 4 reduces the number of observations for a whole module. Survey

questions that change over time or are skipped, for example questions which are
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asked only in each third wave, make it difficult to decide whether and how to

include additional information in the imputation process from other time points.

Whether to conduct a validity check or not is a very general decision, influencing

the number of missing values and the consistency of the relations of the variables.

4.2 Nonparametric imputation using CART al-

lowing for a complex filter structure

The basis of the following imputation strategy was the approach of Burgette &

Reiter (2010) in which the parametric model of the imputation step of MICE

was replaced by a classification or regression tree. At first sight, one might think

that CART is able to consider the filter structure by itself. But the criterion for

a split is only the homogenity (more precisely the reduction of heterogenity), so

’unlogical’ splits can happen when the relation between the variables combined

within filter restrictions are overruled by the homogenity criterion. Especially

with a high-complex filter structure the risk of these unlogical splits exists. Ad-

ditionally, a variance of values within the final nodes is accepted. The draws via

Bayesian Bootstrap might include values that do not fit the filter logic. There-

fore, the filters within the data have to be considered to limit the admissible

range of donors.

To implement the filter structure in the approach of Burgette & Reiter (2010)

the initialization step has to regard the filter hierarchy. Thus, the draws from

the observed values with replacement are not unconditional any longer, but un-

conditional within the limitations of filters. Here, the order of variables has to

equal the hierarchical order of the filter structure. The filter hierarchy has to be

provided with the data or has to be reproduced by the imputer. More about the

use of draws from the unconditional observations instead of tree-based draws can

be found in chapter 3.3.

The filter hierarchy can look like in figure 4.6, where there are one or many fil-

ters influencing the values of a variable. Those filter variables (questions a,b and
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Figure 4.6: Unchained filters influencing one variable

c) have to be imputed first when they have missing values. An example is the

question ”Do you get an annual bonus?”which is only asked to people who have

an employment and are working a minimum number of months.

The filter hierarchy of figure 4.7 is more complex as it shows a higher filter-depth.

First, missing values of the higher-order filter variable have to be imputed. In

other words, missing values of question a have to be imputed first, as they steer

the values of question b. Second, missing values of the next filter variable, ques-

tion b, have to be imputed conditional on the observed and imputed values of

question a. Third and last, the variable which is no filter variable itself, question

c, has to be imputed conditional on the observed and imputed values of question

b. An example of question c is ”Since when does your partner live in Germany?”

which is only asked to people who have a partner which would be the content

of question a and people who answered ”No” to ”Was your partner born in Ger-

many?” as question b.

Figure 4.7: Chained filters influencing one variable
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After initialization, the CART algorithm imputes the values of the former missing

values sequentially, regarding the hierarchical order of the filter structure. When

using MICE usually an ascending order corresponding to the amount of missing

values is necessary. This order is potentially changed.

The sequential imputation by CART is repeated L + M times with L being the

number of iterations needed to mitigate the effect of initialization (burn-in phase).

Figure 4.8: Imputation of missing values when there is a filter hierarchy to be
regarded

A simplified illustration of how the missing values can be imputed regarding the

filter structure can be seen in figure 4.8. There are four variables that have to

be imputed: X1, X2, X3 and X4 as they include not only observed (blue), but also

missing (grey) values. The first three variables are not steered by filters, thus,

they are initialized by a random draw from the unconditional empirical distribu-

tion of the observed values of this variable. Likewise, the draws via Bayesian

Bootstrap from a final node for the following iterations are not changed. For

the fourth variable, that is X4, there are three filters (F1, F2 and F3) that steer

the admissible values. The simplest filter rule would be a dichotomous one, here

illustrated by the two colors blue and white, influencing the values, e.g. having

the value 1 (blue) in the filter variable F1 does not limit the value range of X4

whereas the value 0 (white) reduces the admissible values. The three filters lead
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to seven possible combinations steering the admissible value range. Each com-

bination is linked to a list with donor values. The random draw for initialization

and the Bayesian Bootstrap that is usually conducted within the CART-step are

both restricted to these values.

As filter variables can be struggled by missing values as well, at first the filter

variables have to be imputed. Therefore, imagine that one of the filters, F1, that

is for this purpose defined as the variable X2, has a missing value in the same

row (same respondent) as X4. First the value of X2 has to be imputed as 0 or

1 in our example, then, based on the values of the other two filter variables, F2

and F3, the dedicated list of donor values is chosen. Finally, one of those donor

values is drawn for a missing in X4.

What struggles the imputer most is to define the admissible values for each com-

bination of relevant filter values. This gets even harder when variables steering

the filtering process have missings themselves. The following application uses

parts of the data from the NEPS adult cohort study which were selected by rel-

evance for the analysis of household net income. It is an extreme application

respective the amount of filters and the maximum filter-depth of five chained fil-

ter variables that have to be taken into account for the imputation of an amount

of 213 selected variables.

4.3 Nonparametric imputation of income data

from the NEPS adult cohort data

4.3.1 The data and methodological consequences for the

imputation method

Further NEPS data are used for the application, see for a better understanding of

the structure of the NEPS figure 3.2. The Scientific Use File (SUF) of Starting

Cohort 6 (SC 6) contained data from adults, so in contrast to the Thuringia

study presented in chapter 3 there was no institutional context. The number of

respondents in this study was N = 11,649. The adult cohort is an ’inhereted’

study as it was former part of the Working and Learning in a Changing World
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study (Arbeiten und Leben im Wandel; ALWA) conducted by the Institute for

Employment Research (IAB, Nuremberg). Some of the respondents of the NEPS

study were already interviewed within the ALWA study, so the information were

used as additional information for NEPS. The number of persons already inter-

viewed in the ALWA study and then interviewed in NEPS was NALWA = 6,495

and the number of first time interviewed in NEPS was NNEPS = 5,154. Note

that the data were not interpreted as panel data as there were changes in the

questionnaire and the sampling frame, so the data were regarded as combination

of two cross-sectional data sets.

The SUF contained 22 files with different topics of questions or generated vari-

ables, the earlier mentioned modules. The total number of variables within those

22 modules was 1,125, see figure 4.9.

The aim of the analysis of the data is concerned on household net income. For

that reason, the total number of variables was reduced to income variables and

all variables that possibly had a direct or indirect effect on household net income.

Consequently, out of the 1,125 variables only (with the word ’only’ referred to

the comparison with the total number) 213 variables were chosen, that is 18.93%

of all available variables. Those 213 variables were e.g. sociodemographic vari-

ables and variables about the school and employment history, compare figure 4.9.

The variables about the employment history were completely steered by the filter

question whether the respondents ever had an employment. That filter question

was part of the sociodemo-graphy module (filter type 4), so 62 variables related

to income were not asked to all participants of the survey. Hence, 151 variables

were asked to all 11,649 respondents, whereas the module for the employment

history with 62 relevant variables was only asked to 11,516. 133 respondents had

a reduced number of questions respective to the chosen variables. The imputa-

tion therefore was conducted once for 11,649 respondents based on 151 variables

and for 11,516 respondents based on 213 variables. The overlap was intended to

maximize the number of information available from the data.

Another feature that had to be considered was that the SUF contained infor-

mation in longformat. Longformat was used for the episodes of the respondents
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within life time. As CART identifies one row as one individual, the data were

converted to wideformat which means that each episode of a variable was inter-

preted as unique variable. The chosen variables from the different modules were

combined, the data were harmonized, aggregated and dummies for the study

(ALWA/NEPS) and the filtered module employment history were added, see for

further information about this Würbach et al. (2014).

Figure 4.9: Modules in the NEPS SUF SC6

The filter structure of the data came to a maximum filter-depth of five variables

steering the values of another variable with different combinations of the steering

variables possible.
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Additional to the filter structure of the data, income variables were asked as

bracketed questions when the exact amount had not been answered for gross or

net income on individual or household level. As can be seen in figure B.3 those

brackets were disjoint. Bracketed questions reduce the number of available val-

ues for the imputation as well and increase the accurateness of the imputation.

Drechsler (2011) described the special efforts that have to be made when impu-

tation bounds defined by bracketed questions have to be included in parametric

models and generally indicated on CART-based imputation models.

A validity check showed up implausible or inconsistent values which were set to

’NA’. The ’NR’-category of missing values was recoded to ’-99’ as ’-99’ does not

change the measurement of scale for continuous data.

As a consequence of all these data features, the imputation step by CART has

a limited range of values. So for every cell in the data set, that is the value

for each person at each variable, a list of all possible combinations of filters

and their corresponding values was generated. Combined within a matrix these

lists were flexibly reduced by the observed and imputed filter variable values. So

within the CART process donor values from the final remaining values are drawn

via Bayesian Bootstrap. For variables without filters steering them the ordinary

CART procedure was done.

4.3.2 Empirical results

At first, the descriptive statistics of the variable of interest are presented and it is

illustrated how it is affected by missing values. Table C.4 shows a description of

the income data estimates (quartiles, mean) obtained by complete cases analysis

for household net income, individual net income and individual gross income.

Table C.5 displays how the bracketed questions reduced the amount of missing

values of the given income questions and that they were replaced with an inter-

val of values. The proportion of missings reduced considerably when the exact

income questions (any income information missing) are enriched by bracketed

values. For the household net income the proportion reduced from 13.4% to

3.8%, for the individual net income from 8.0% to 2.1% and for the individual

gross income from 10.7% to 3.5%.
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Second, it was checked whether the MCAR assumption held or if there was a

selectivity in responses. Model I of table 4.1 displays the results of a probit model

with ’Any income information missing’ as dependent variable. Additionally, a sec-

ond probit model with a ’All income information missing’ dummy was estimated

as model II . Both dummy variables refered to the household net income. The

results illustrated that there were significant effects in both models that implied

that the MCAR assumptions did not hold.

According to model I , older respondents (61 years and older) refused to an-

swer any income question more often than young respondents (up to 30 years).

Women and people living with other adults (two or more than two adults in

the household) tended to be more likely to have missing values as well. The

occupational status had an effect on the tendency to have at least one income

information missing with workers, employed and self-employed persons having a

higher effect (more likely not to answer) compared to civil-servants (reference

category). Additionally, people with a higher ISEI-score (International Socio-

Economic Index of Occupational Status: prestige of the occupational position)

tended to respond less often. Respondents who were unemployed (in contrast

to not employed) tended to refuse the household net income question less likely.

The satsifaction with the financial situation realized as an u-shaped-effect: peo-

ple with very low and very high satisfaction with their finacial situation were less

likely to report an exact estimate of their household net income.

Note that a generated variable ’Number of missings on covariates’ was part of

both models. It can be interpreted as a tendency to refuse answers in gen-

eral. According to Jones (1996) missing indicators may bias the estimates, but

nonetheless it was included in the model as it had a central explanatory role.

The significant effects gave incidence that respondent who refused other vari-

ables were more likely to refuse the answer to the household net income as well.
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I
Any household income

information missing

II
All household income
information missing

31 to 40 years −0.0393 0.1220
41 to 50 years 0.0089 0.2353∗∗

51 to 60 years 0.0971 0.1983∗

61 years or older 0.1346∗ 0.4207∗∗∗

Gender: Female 0.1932∗∗∗ 0.0383
Adults in the household: Two 0.2442∗∗∗ 0.0919
Adults in the household: More than two 0.8909∗∗∗ 0.5115∗∗∗

One child in the household −0.0348 −0.0885
More than one child in the household 0.0237 −0.0579
Occupational status: Worker 0.2425∗∗ 0.1826
Occupational status: Employed 0.2753∗∗∗ 0.2582∗

Occupational status: Self-employed 0.3734∗∗∗ 0.2600∗

Occupational status: Other −0.0229 −0.1785
Occupational status: Not working 0.1708 −0.0966
Unemployed −0.1854∗∗ −0.0405
Satisfaction with fin. situation −0.1001∗ −0.0842
Satisfaction with fin. situation (squared) 0.0086∗∗∗ 0.0083∗

CASMIN: Group 2 −0.0364 −0.0764
CASMIN: Group 3 −0.0941 −0.1796∗

ISEI-Score 0.0026∗ 0.0010
Born in Germany 0.0850 −0.1113
Living area: 20,000 up to 100,000 inh. 0.0256 0.1921∗

Living area: 100,000 up to 500,000 inh. 0.0561 0.1395
Living area: More than 500,000 inh. 0.0981 0.2233∗∗

Number of missings on covariates 0.4068∗∗∗ 0.4017∗∗∗

Constant −1.8546∗∗∗ −2.2862∗∗∗

Observations 11649 11649
Log-Likelihhod −4371.6744 −1821.6165
Log-Likelihood, constant only −4579.5030 −1882.8145

Reference Categories: 18 to 30 years; Male; One adult in the household;
No child in the household; Occupational status: civil-servant; Working;
Born abroad; CASMIN: group 1; Not unemployed; Living area: up to 20,000 inhabitants;
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 4.1: Estimating the probability for item-nonresponse on household income
questions - Results from probit models

In model II the respondents did not only refuse to answer the exact household

net income, but all (rough) bracketed questions as well. The results indicated

that refusing only the exact household net income or all household net income
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questions was based on different motivations. Again, older respondents (but now

41 years and older) in comparison to the youngest (up to 30 years) as well as peo-

ple living with other adults (households with more than two adults) tended to be

more likely to have missing values. Employed and self-employed persons refused

the answer more likely than civil-servants (reference category). The u-shaped

effect of the satisfatction with the financial situation remained, but lost signifi-

cance. Respondents that were part of CASMIN (Comparative Analysis of Social

Mobility in Industrial Nations) group 3 (high education) refused less often com-

pared to respondents of CASMIN group 1 (low education) whereas people from

small (20,000 to 100,000 inhabitants) or very large cities (more than 500,000

inhabitants) refused more often than people from living areas up to 20,000 in-

habintants (reference category). The tendency to refuse answers in general again

had a positive effect on having a missing value.

Giving a résumé, the results showed that there was a selectivity in the data and

that a complete cases analysis was not recommendable. Although MAR can not

be tested, multiple imputation seemed reasonable.

Finally, the imputation was conducted. The focus on the imputation of the adult

cohort data from the NEPS was on the household net income. After a burn-in

phase of 10 iterations, 100 iterations of CART-based MICE were conducted and

analyzed. Each iteration served as imputation, resulting in M = 100 imputed

data sets. For each iteration a tree was built up with CART for each variable.

Those trees can vary slightly between iterations because of the uncertainty within

the imputation process. For the 100 iterations only modest variations within the

trees were found. Figures B.4 to B.6 show the results for the household and

the individual net income. Many interaction effects were captured by the tree

structure. Each tree level divides the value range in two value groups for categor-

ical variables and in ranges lowerequal and greater a cut-off value for continuous

variables. The most important variable explaining the income variables were the

bracketed questions. Note that the labeling of the bracketed questions in the

trees refers to figure B.3 with e.g. ’income split 2c - 2’ referring to split 2c,

answer 2, that is ’4,000 up to 5,000e’. The selection of the bracketed questions

was not very suprising, but, the variables additionally chosen were of special in-
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terest.

For the household net income which is shown in figure B.4 (all respondents,

without regarding the employment history module), occupational status and age

were additional explanatory variables to the bracketed questions, but only for the

highest income group (income split 2c, answer 3, that is ’more than 5,000e’, see

figure B.3). When the employment history module was added (the number of

respondents decreases by 133) for the highest income group the individual net

income replaced occupational status and age, see figure B.5.

For the individual net income which is shown in figure B.6 the bracketed ques-

tions were the most important explanatory variables as well. The exact individual

gross income was the only variable with additional explanatory impact.

Based on the advises of van Buuren (2012), the distributional similarity of all

variables were compared before and after imputation to asses the quality of the

imputation. Categorical variables were checked via Chi-square goodness of fit

test and continuous variables via Kolmogorov-Smirnov goodness of fit test com-

paring the distributions before and after imputation. No significant changes were

found for categorical variables, whereas for continuous variables the individual

gross income and the sum of special payments differed significantly between ob-

served and imputed data (with α = 0.05). In figure B.7 the Q-Q plots for both

variables show discrepancies in the higher quantiles indicating the imputation of

higher values.

For most variables the imputation only changed the absolute frequencies without

changing relative frequencies of categories or the distribution, as demonstrated

on ’Expectations of friends: achieve success on a professional level’, an ordinal

variable and ’Social circle: further education’, a binary variable, both displayed

in figure B.8. For the variable of interest, the household net income and as addi-

tionally provided for the individual net income, the kernel densities showed only

minor differences compared for before and after imputation, see figure B.9. As

this form of illustration makes it hard to see differences we decided to recode

the income information as classified data. In figure B.10 it can be seen that the

imputation added especially values in the middle category (1,500 up to 3,000e)

for the household net income and in the highest category (more than 3,000e)

for the individual net income. As mentioned, those differences were not signifi-
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cant. One of the reasons for the insignificant differences might be the very small

amount of missing values, compare table C.5.

4.4 Conclusion

Filters are a useful way to individualize surveys and decrease the response burden

by for example lowering the length of the surveying process, see e.g. Bosley et al.

(1999). Though, when the data have to be imputed, there is a marked increase

of the imputer’s effort. Each combination of filters has to be taken into account,

adding the case that the steering variable of the filter might have missings too.

In addition, as shown in chapter 4.1 there are many types of filters that have

to be taken into account. A nearby suggestion is that the imputer should avoid

high-dimensional data and focus on a small set of possibly relevant variables only.

As shown in the application on NEPS data, only a few variables were chosen for

the imputation of the variable of interest by CART. The problem of limiting the

number of variables is that the explantory variables have to be properly imputed

as well. A pyramide scheme still has to be avoided, that is dropping the variables

explaining the explanatory variables and keeping only the explanatory variables

for the variable of interest is to repudiate. So foregoing checks about the vari-

ance of the explanatory variables could minimize the imputers effort to offer an

imputation process considering the filter structure of the data.

When filters are still part of the data, the proposed approach is to define the

possible value ranges for each variable depending on the filter structure. If avail-

able, filter schemes provided by the survey programmers can be used to facilitate

this task. The whole list of value ranges depending on filter variables is then

added for each cell of the data within a matrix. These lists are then flexibly

reduced within the imputation procedure by observed or imputed filter steering

variables. For this it is necessary that the order of the variables that are imputed

follow the hierarchy of the filter structure, whereas usually an ascending order

corresponding to the amount of missing values is necessary as a prerequisite for

the consistency of the set of full conditional distributions, compare Si & Reiter

(2013).

When the number of donor values gets too low for the tree to partition the data
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the remaining process is henceforth not always CART-based for the variables

steered by filters, but constrained to the Bayesian Bootstrap on the remaining

values.

An alternative strategy to the described procedure using a matrix with a list for

all cells of the data frame is to add the filter structure in the imputation process

by defining value ranges by ’if’-conditions. This can, dependent on the com-

plexity of filters, extend the run-time of the approach considerably, but might

be an option for simple filter structures. Another option would be an accept-

reject-procedure within the imputation process enforcing new draws when the

value drawn via Bayesian Bootstrap from the corresponding node does not fit

to the filter structure. A disadvantage of these alternative strategies is that the

produced tree structure might not end in nodes that contain reasonable values.

Another strategy, that seems to be the easiest way of handling filter structures

is to simply ignore them while multiply imputing. If existing, the discrepancies

in values could then be corrected manually which can be interpreted as manual

version of an accept-reject procedure. With many values possible for a filtered

variable one of these could be chosen by different mechanisms as for example

by sampling one of the values unconditionally. On the one hand this strategy

would ease the task of imputing, but on the other hand it would lead to improper

predictions for filtered variables as the conditional distribution of the values is not

regarded. In other words, the available information about the filtered variable’s

values would not be used.

Above all, the filter structure of the data can be interpreted as additional infor-

mation. The original CART might not regard the filter structure automatically,

especially when the filter-depth is high. Thus, it might not lead to correct tree

structures. Hence, using the filter structure as extension of the knowledge about

the data increases the quality of the whole CART-based imputation approach.

As an incidental conclusion, it can be mentioned that CART as a nonparametric

method, leads to time-savings, especially if conducted on large application data.

These time-savings are based on the fact that no specification of models or model

families as by parametric methods is needed.
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Chapter 5

Some insights into the

performance of CART

To get some insights into the performance of a new method, simulation studies

have to be performed. The literature still lacks studies with coverage statistics

and exploration of the potential of CART-based multiple imputations to create

proper imputations, see van Buuren (2012, p.84). Nevertheless, there are a few

works with promising results. The first simulation study, conducted by Burgette

& Reiter (2010), was based on nine regressors and an additional variable that

was not included in the data generation model of Y . All ten variables were

multivariate normally distributed. Data were deleted in Y and eight of those

regressor variables, that were X1 to X8, based on a MAR mechanism. The frac-

tion of missing data was on average 17% resulting in fewer than 25% complete

cases. The results of CART-based MICE were compared to those of the standard

MICE. Burgette & Reiter (2010) conclude that CART-based MICE is superior

to standard MICE respective the simulated data. Doove et al. (2014) extended

that simulation study by creating three different data generating models for Y .

The fraction of missing data of Y was approximately 50%. They showed that for

variables whose full conditional distribution include interaction effects of other

variables the performance of CART-based MICE results in more reliable infer-

ences compared to the parametric MICE. Though, the results are relativized, as

the potential of CART ”depends on the relevance of a possible interaction effect,

63
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the correlation structure of the data, and the type of possible interaction effect

present in the data”, see Doove et al. (2014, p.92). Shah et al. (2014) evaluated

the performance of Random Forest-based MICE on survival data. The basis of

one of the two conducted simulation studies was real data. The fraction of miss-

ing data ranged from 1.5% to 56.7% based on a MAR mechanism. The other

simulation study comprised three variables with one variable having 20% missing

values. Random Forest is an alternative machine learning algorithm based on de-

cision trees and is listed here due to the absence of manifold research publication

in the decision tree area. Shah et al. (2014) show that Random Forest-based

MICE is superior to parametric MICE concerning the bias of the estimates of

(log) hazard ratios. Additionally, the parameter estimation is more efficient and

narrower confidence intervals are produced. Conducted on nonlinear dependent

data, Random Forest-based MICE leads to less biased parameter estimates and

higher coverages respective parameter estimates’ confidence intervals. Stekhoven

& Bühlmann (2012) evaluated the performance of Random Forest-based impu-

tation based on ten different data sets with 10%, 20% or 30% data that were

randomly removed, resulting in a MCAR mechanism. The results were differed

by continuous variables only, categorical variables only or mixed-type data. They

conclude that the full potential of their algorithm missForest is reached ”when

the data include complex interactions or non-linear relations between variables of

unequal scales and different type”, see Stekhoven & Bühlmann (2012, p. 171).

Valdiviezo & Aelst (2015) evaluated the performance of tree-based methods on

predicitions comparing imputation and surrogate decision methods. They used

five data sets, four based on real data (with 80% of the original data used as

training set and 20% as test set) and one simulated data. The amount of pre-

dictors ranged from three to thirteen. The fraction of missing data was set to

10%, 20%, 30% and 40% for MCAR, MAR and NMAR. They conclude that the

performance clearly depends on the fraction of missing values within the data.

Ensemble methods combined with surrogates and single imputation lead to suf-

ficient results for small proportions. Conditional inference trees combined with

multiple imputation are the best choice for moderate and large fractions of miss-

ing data. Conditional bagging using surrogates can be considered as alternative,

especially for high-dimensional prediction problems. Overall, Valdiviezo & Aelst
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(2015) show that multiple imputation ensembles are superior for all of their appli-

cations. Akande et al. (2015) evaluated the performance of CART-based MICE

compared to MI-GLM (chained equations using generalized linear models) and

MI-DPM (a fully Bayesian joint distribution based on Dirichlet Process mixture

models) on categorical data. The simulation study was based on random samples

from real data. 30% respective 45% of the data were deleted randomly, resulting

in a MCAR mechanism. The results show that if only main effects appear in

the data MI-GLM is superior. Adding more complex structure MI-CART and

MI-DPM have to be preferred, thus, there is no clear winner.

The following simulation study is guided by the simulation study of Koller-

Meinfelder (2009, chapter 5.3), especially respective the data generation pro-

cess. This simulation study aims at evaluating the performance of CART-based

MICE concerning three variables with different data generating functions and a

high fraction of missing values. More precisely, the performance of CART-based

MICE is assessed respective the imputation of a non-metric variable that is cre-

ated violating linear model assumptions in two of the three data situations. The

fraction of missing data is 60% steered by a MAR mechanism. The remainder

is structured as follows. First, the setup of the data, that is especially the data

generating functions and the MAR mechanism, are presented. Then, peculiarities

of CART are illustrated. This is followed by the description of the analysis and

the presentation of the results. A conclusion ends this chapter.

5.1 Setup of the data

All simulated data sets consisted of three variables, i.e. a variable with miss-

ing values Y and two variables, X1 and X2, that were used for imputation. X1

and X2 were completely observed. Three different types of data sets were gener-

ated based on three different data generating functions of Y whereas the missing

data mechanism was missing at random (MAR). The sample size was n = 2, 000.

The variables X1 and X2 were generated identically throughout all data sets with

X1 ∼ U(0, 3); and x2 = −x1 + ε, with ε ∼ N(0, 4).
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There were three different data generating functions used for Y :

1. y1 = [1.75 + x1 − 0.5x2 + u1], with u1 ∼ N(0, 11
48

).

2. y2 =
[
1.75 + x1 − 0.5x2 + (u2 − 107

96
)
]
, with u2 ∼ χ2

107
96

.

3. y3 =
[

4 + 1.5(x1 − 1.5)3 − 0.25log(abs(x2 + 9)) + u3

]
, with u3 ∼ N(0, 0.2).

All values of Y were rounded resulting in integer values which added further

disturbance to the relation of the variables.

The rate of missing values was fixed to 60% for Y with the MAR mechanism

related to X1 which was defined by:

yi =

missing , if Fz(zi) > 0.4

yi if Fz(zi) ≤ 0.4
∀i = 1, ... , n

where Fz(z) is the empirical distribution function of Z , and

z =
1

1 + exp(0.2x1φ + ε)
with φ ∼ N(0, 16) and ε ∼ N(0, 36).

Bias, mean squared error (MSE) and coverage were used to check the perfor-

mance of CART-based MICE. The coverage was therefore defined as the propor-

tion of 95%-confidence intervals for the estimated parameters that contain the

true value.

The chosen parameters were

mean: E (Y )

proportions: P(Y < 3), P(Y < 4), P(Y < 6)

correlations: ρ(X1, Y ), ρ(X2, Y )

linear model estimates: α, β1, β2.
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DS1 DS2 DS3
E (Y ) 4.0001 4.0001 4.4907

P(Y < 3) 0.2033 0.2564 0.1335
P(Y < 4) 0.3943 0.4357 0.2187
P(Y < 6) 0.7967 0.7821 0.7837
ρ(X1, Y ) 0.7500 0.5810 0.8784
ρ(X2, Y ) -0.8278 -0.6413 -0.3136

α 1.7501 1.7498 3.9976
β1 1.0000 1.0001 1.5004
β2 -0.5000 -0.5000 0.2512

Table 5.1: Overview of the mean estimates of 20,000 data sets

All ’true values’ for those estimands were calculated as mean from 20, 000 gen-

erated data sets with 10, 000 values for each variable. The results can be seen in

table 5.1 for all three data sets (DS1, DS2 and DS3). If at all, the values differ

only by sampling errors from the values presented by Koller-Meinfelder (2009,

chapter 5.3.3).

The number of imputations was set to M = 15 and 500 runs were conducted

to get proper results especially for the coverage. The results were compared to

those of the complete data (before deletion) and the complete cases.

5.2 Peculiarities of CART

CART needs the dichotom information factorvar for each variable, that is the

information whether a variable is an (ordered) factor (factorvar=1) or not

(factorvar=0). Based on this assignation, a classification or a regression tree is

chosen. To define the values of that variable is an easy task when the number

of variables is as small as in this simultation study, but gets stressfull for large

data.

Special in this task was the rounding of Y . It seems obvious to define Y as

factor (factorvar=1) due to the integer values. However, as the creation of Y
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was based on a linear model with non-integer outcomes, a regression tree is the

better choice which needs the assignation as non-factor (factorvar=0).

CART detects proper values for the imputation based on the structure given

within the data. The results will show whether having only three variables leads

to sufficient results, especially as the missing values of Y are initialized uncondi-

tionally from the empirical distribution of the observed values which affects the

structure within the data.

Concerning the CART-based MICE R-command which was provided by Burgette

& Reiter (2010), multiple variables with missing values are needed as the pro-

gramming is made for vectors. Instead of retyping the syntax an easy solution is

to set one missing value additionally in an originally completely observed variable.

This solution comes along with a (small) loss of information. Note that when

this part of the thesis was conducted the implementation of CART within the

R-package MICE as mice.impute.cart did not exist.

The message incrementing minCut by one might pop up in R when multiply

imputing using CART. The message informs about a change in settings. If the

message appears repeatedly it can be interpreted as a warning that there is an

error within the procedure.

5.3 Analysis

Rubin’s combining rules which are explained in chapter 2.2.4 are based on the

assumption that the estimates which are combined are (approximately) normally

distributed. Since mean, proportions and regression parameters fullfil this re-

quirement Rubin’s combining rules are used to calculate confidence intervals of

those estimates. Correlations are neither normally nor approximately normally

distributed. However, correlation values can be transformed with the Fisher (’ρ

to z ’) transformation and then be combined. The confidence intervals were cal-

culated with the z-transformed values and were then transformed back to get

the ρ-values. The R-package psych assists perfectly for this task and was used

for this simulation study.
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The standard method to calculate confidence intervals for proportions is the ’nor-

mal approximation interval’, known as Wald interval or asymptotic interval, firstly

described by Laplace (1812). Alternatively, the ’exact’-method, also known as

’Clopper-Pearson’-method by Clopper & Pearson (1934) could be applied. The

name refers to the exact binomial distribution, not to exact confidence intervals,

which are usually too conservative for this method, compare Tuyl (2001). Agresti

& Coull (1998), Brown et al. (2001) and Brown et al. (2002) have shown that

the ’Agresti-Coull’-method to calculate confidence intervals is to be favored for

large n, that is the total amount of values of a variable, compared to the ’exact’-

method and the Wald interval. The ’Agresti-Coull’-method adjusts p, that is the

proportion of values of interest. For this purpose X , that is the amount of values

of interest within n and n itself, that is the mentioned total amount of values of

a variable, are adjusted by an additional term, that is
λ2
1−α

2

2
, respectively λ1−α

2
.

Then, the resulting values are used for the calculation of the adjusted p. The

’Agresti-Coull’ confidence intervals can thus be calculated by:

p̃ ± λ1−α
2

√
p̃(1−p̃)

ñ
with X̃ = X +

λ2
1−α

2

2
, ñ = n + λ1−α

2
and p̃ = X̃

ñ
.

There are some more alternatives to calculate the confidence intervals that can

for example be calculated easily for completely observed data with the binom-

package in R. For this simulation study the ’Agresti-Coull’ method was chosen.

To evaluate the impact of the settings of CART on the performance of CART-

based MICE, results using default settings were compared with outcomes from

alternative settings for DS1. First, the initialization was changed back to the

default tree-based initialization instead of draws from the unconditional empirical

distribution. Second, the iterations of the tree-based MI approach were increased

from 20 to 50. Third, the number of imputed data sets that were combined for

the confidence intervals was doubled from 15 to 30. All changes should improve

the performance of CART-based MICE.

As already mentioned in chapter 2.3.2, there are more settings that can be varied.

The default of the tree-command in the R-package tree is a minimum size of 5

units in the final node and a minimum reduction of heterogenity of 0.01 that is
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needed to conduct a split. Both can be changed. On the one hand, especially

in the context of imputation the depth of the trees can be increased by the

heterogenity criterion as the trees are not used to explain the structure of the

data. On the other hand, random combinations could be interpreted as ’structure’

by mistake. Consequently, the amount of donor values would be decreased by

an additional split and the variance of the imputed values would be reduced by

mistake. An analogous argumentation can be made for the minimum size of the

final nodes. Decreasing the amount of units lowers the variance of donor values

and might lead to improper structure identifications. Increasing the amount

might prevent CART from detecting relevant structure. Both, heterogenity and

minimum leaf size criterion are influencing each other. Finally, no changes of

those settings were conducted.

Furthermore, the setting factorvar could be changed by interpreting originally

numerical values as (ordered) factors or the other way round. However, it is not

recommendable to do, especially as the tree growth is limited to a maximum of

31 levels and the amount of levels of a categorical variable to 32. Hence, no

changes in that setting were conducted.

5.4 Results

Three different data generating functions were defined for Y . In the simulation

study of Koller-Meinfelder (2009, p.51) parametric and semi-parametric proce-

dures worked with misspecified models for the second and third data set. The

violation of the normality assumption in the second data set and the violation of

the linearity assumption affect imputation procedures which are based on linear

models. As CART is a nonparametric procedure it should not be affected by

those assumption violations. Correspondingly, the overall coverage of the first

data set, shown in table 5.2, and of the third data set, shown in table 5.4, were

not that different. Respective CART-based MICE, the first data set had an over-

all coverage of 91.8% whereas it was 90.7% for the third. The results for the

second data set differed more with an overall coverage of 88.8%. The reason for

this difference and more detailed results are given in the following.
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The results of DS1 in table 5.2 show that the CART-based imputation worked

satisfactorily with a minimum coverage of 88.8% for the constant of the linear

model, that is α. Actually, the coverages for all estimands of the linear model,

that is α (88.8%) as the constant and the two slope estimands β1 (90.2%) and

β2 (89.8%), were the lowest compared to mean (94.0%), proportion (91.2% to

94.8%) and correlation estimands (93.2% and 90.8%). The relative bias, shown

in table C.6, confirmed the relatively bad performance with an amount of 0.4% to

0.9% (absolute values). All other estimands had a relative bias located between

0.01% and 0.4% (absolute values).

The average coverage for all nine estimands was 91.8%. For comparison, the

average coverage is 97.2% for the before deletion data estimands and 62.4% for

the complete cases estimands. The complete cases analysis lead to proper re-

sults for the correlations and linear model estimands, but failed for the mean and

the proportions. Whereas the coverage for the estimand of the mean was only

73.8% for the complete cases estimand, the coverage of the CART-based MICE

estimand was 94.0%, thus, very close to the before deletion coverage (96.8%).

True parameters Coverages in %
BD (CC) CART-MICE

E (Y ) 4.0001 96.8 73.8 94.0
P(Y < 3) 0.2033 96.8 5.0 93.4
P(Y < 4) 0.3943 96.4 1.8 94.8
P(Y < 6) 0.7967 95.2 2.8 91.2
ρ(X1, Y ) 0.7500 97.8 96.4 93.2
ρ(X2, Y ) -0.8278 95.4 95.4 90.8
α 1.7501 93.8 94.8 88.8
β1 1.0000 94.0 95.0 90.2
β2 -0.5000 97.2 96.2 89.8
Average - 95.9 62.4 91.8

Table 5.2: Coverages: DS1

In spite of the violation of the normality assumption of the linear model, the

performance of CART-based MICE was still good for the second data set, that

is DS2, which can be seen in table 5.3. The average coverage for the estimands
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of the imputed values was lower with 88.8% compared to 91.8% in DS1. Still

88.8% were high compared to 93.8% for the before deletion estimands and 61.1%

for the complete cases estimands of DS2.

Eye-catching was the low coverage of the correlation estimands, especially of

ρ(X2, Y ). It was the lowest coverage for before deletion with 86.6% and for

CART-based MICE with 83.8%. In contrast, the relative bias, shown in table

C.8, was striking for ρ(X1, Y ) with 0.6% and unremarkable for ρ(X2, Y ) with

0.1% (absolute values).

The findings indicate that the low coverages were caused by the violation of cen-

tral assumptions of the pearson correlation coefficient, that is the assumption of

linearity of the correlation and the need for two normally distributed random vari-

ables. Above all, the non-linearity of Y in DS2 due to the chi-square distributed

error term disturbed the correct calculation leading to too low coverages, espe-

cially for ρ(X2, Y ). The highest coverages for CART-based MICE were reached

for the proportion estimands (90.6% to 92.4%).

True parameters Coverages in %
BD (CC) CART-MICE

E (Y ) 4.0001 95.6 76.2 87.0
P(Y < 3) 0.2564 95.4 2.6 92.4
P(Y < 4) 0.4357 95.0 3.2 91.2
P(Y < 6) 0.7821 95.8 5.6 90.6
ρ(X1, Y ) 0.5810 90.6 90.2 87.0
ρ(X2, Y ) -0.6413 86.6 85.4 83.8
α 1.7498 95.0 96.0 89.8
β1 1.0001 93.4 95.2 88.0
β2 -0.5000 96.6 95.6 89.6
Average - 93.8 61.1 88.8

Table 5.3: Coverages: DS2

On the whole, the results of the performance of CART-based MICE did not

change for DS3 which can be seen in table 5.4. The average coverage for the

imputed values was 90.7% compared to 94.8% for the before deletion estimands

and 61.6% for the complete cases estimands. With 82.4%, the lowest coverage
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for CART-MICE was reached for the slope β2 of the ’linear model’. The slope β2

steered the logarithmic term. As in DS1, the coverages for the estimands of the

’linear model’ were the lowest (82.4% to 88.2%) compared to mean, proportion

and correlation estimands. The relative bias, shown in table C.10, underlined this

low coverages with relative biases of 1.8% for α, 0.2% for β1 and 14.6% for β2

(absolute values).

Comparing table 5.2 and table 5.4, that are the two tables showing the cover-

ages for DS1 and DS3, it can be seen that the coverage of the before deletion

correlation estimand ρ(X1, Y ) was too high. As Y was rounded to an integer

and the assumptions of the pearson coefficient were violated due to the missing

linearity and the normality of the variables, this is not remarkable.

True parameters Coverages in %
BD (CC) CART-MICE

E (Y ) 4.4907 95.6 69.0 92.8
P(Y < 3) 0.1335 94.2 4.2 93.6
P(Y < 4) 0.2187 94.0 3.2 93.8
P(Y < 6) 0.7837 95.2 2.2 93.2
ρ(X1, Y ) 0.8784 98.6 97.8 96.2
ρ(X2, Y ) -0.3136 93.6 94.6 93.8
α 3.9976 94.4 94.4 82.6
β1 1.5004 93.8 95.0 88.2
β2 0.2512 93.8 94.2 82.4
Average - 94.8 61.6 90.7

Table 5.4: Coverages: DS3

All tables containing the relative bias and the mean squared error (MSE) informa-

tion for all three data sets, that is table C.6 to C.11, can be found in the appendix.

An aggregated version of the results of (Koller-Meinfelder, 2009, p.55) can be

seen in figure 5.1. The abbreviations stand for ’ROV’: Rounding to the near-

est Observed Value, ’PPMM’: Posterior Predictive Mean Matching, ’BBPMM’:

Bayesian Bootstrap Predictive Mean Matching and ’RPMM’: Rounded Predictive

Mean Matching.



74 SOME INSIGHTS INTO THE PERFORMANCE OF CART

Figure 5.1: Results from the analysis of Koller-Meinfelder (2009)

The analysis was more extensive and with a focus on different aspects. The overall

coverages include the coverage of the variance estimator. The missingness was set

to both, missing completely at random (MCAR) and missing at random (MAR)

and the sample sizes were n = 200 (small) and n = 2, 000 (big). Nethertheless,

broadly spoken, it can be seen that at least the coverages were in a comparable

range to the results of PPMM and BBPMM and much higher compared to the

results of ROV and RPMM. Basis for the comparison is the row MAR of table

5.1. The values represent the average coverage of the three data sets with big

and small sample size, including the variance estimation coverage. The average

coverage of CART-based MICE of this simulation study was 90.45% for all three

data sets with the big sample size, not including a variance estimation.

As the results for each data situation are available in the appendix in Koller-

Meinfelder (2009), in table 5.5 the adjusted average coverages are presented for

comparison, leaving out the variance estimation coverage for the calculation of

the average coverage of all methods.

The results can only be compared with constraints as the methods were not con-

ducted on the same values, only the same data generation processes. Moreover,

the results depend on the design of the simulation study, e.g. no interaction

effects were included and the complete cases data were not sufficient for a tree-
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DS ROV PPMM BBPMM RPMM CART-MICE
DS1 95.73 92.09 93.09 81.78 91.80
DS2 89.33 90.76 91.90 87.70 88.82
DS3 45.00 92.51 94.90 70.24 90.73
Average 76.69 91.79 93.30 79.91 90.45

Table 5.5: Coverages in percent for all three data sets (BIG, MAR)

based initialization of CART (more about this circumstance is described below).

Still, it can be seen that for the ordinary linear model without any assumption

violations, CART-based MICE is only superior to RPMM, close to the values of

PPMM and BBPMM, but clearly inferior to ROV. For DS2, that is the model in-

cluding a chi-squared error term, CART-based MICE is again superior to RPMM,

though close to ROV and PPMM and inferior to BBPMM. When the logarithmic

term is added, CART remains superior to RPMM, is additionally superior to ROV,

close to PPMM and inferior to BBPMM. Averaging all the results, CART-based

MICE is superior to ROV and RPMM and inferior to PPMM and BBPMM as

already shown respective the comparison with the results from table 5.1.

The results of CART-based MICE were compared to those of the before deletion

and complete cases analysis using three different data generating models of Y .

Additionally, the performance using different settings on the first data set (DS1)

were checked changing the initialization, increasing the number of iterations and

the amount of imputed data that had to be combined.

Changing the initialization back from an unconditional draw from the empirical

distribution to a tree-based draw like originally intended by Burgette & Reiter

(2010) seems to be a good decision at first view. Trying to implement this, the

following error appeared:

Error in runif(length(eligibles) - 1) : invalid arguments

In addition: Warning message:

In node.match(nodes, node, treeframevar == ”<leaf>”) :

supplied nodes 0 are not in this tree
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Here, a shortfall of CART and other methods based on empirical data as donor

values instead of predicted values becomes apparent. Due to the missingness

the bandwith of value combinations is limited. For example, all possible donors

of Y combined with X1 ≤ 0.3 and X2 ≥ 5.0 are missing. Using only complete

cases received by listwise deletion the learning data are insufficient to initialize

the application data. Drawing unconditionally from the empirical values might

weaken distinct combinations, but might recreate some lost structure. Addi-

tionally, CART-based MICE can be applied afterwards in contrast to the the

tree-based initialization which ended with an error message.

The learning data used were the complete cases data generated via the R-

command na.omit). The command conducts a listwise deletion, that is that

each row from the data set was deleted when any missing value existed in a

column. With a deletion of 60 percent of the data set the structure of the data

got partially lost. Thus, CART was not able to get enough information from the

learning data to partition the data containing missing values.

As can be seen regarding the results from DS1 to DS3, the performance of CART

was sufficient even with an initialization that was not only non-informative, but

in addition might decrease the correlation of the variables. CART was able to

mitigate those effects with 20 iterations.

Suprisingly, increasing the number of iterations from the initialization to the im-

puted data set (burn-in phase) from 20 iterations up to 50 did not increase the

quality of imputation. As can be seen in tables C.12, C.13 and C.14 neither cov-

erage and relative bias (in percent) nor the mean squared error differed much.

Consequently, it seems not worth worrying about increasing the number of iter-

ations.

Unexpectedly, the findings indicate in the same way that increasing the amount

of imputed data sets from 15 to 30 was not worthwhile in case of the simulation

data. As it can be seen in table C.15 to C.17 the results for the coverages,

relative bias (in percent) and the mean squared error did not improve due to the

doubling.

Summarized, changes of the default settings or the initialization did not increase

the performance of CART-based MICE. 20 iterations for each imputed data set

and 15 imputations to calculate the MI estimates were sufficient for the simula-
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tion data. Furthermore, the ’easy task’ of using tree-based initialization values

can lead to problems in structure identification in the application data. This

happens when the learning data does not contain the needed value combinations

due to listwise deletion. In this case, the tree resulting from the learning data

fails to represent the correctly related final nodes that are needed to serve donor

values for the imputation available.

5.5 Conclusion

The conducted simulation study had the objective to give some insights about the

performance and settings of CART in combination with multiple imputation. The

data generation was based on the simulation study of Koller-Meinfelder (2009,

chapter 5.3). Additionally, a tree-based initialization and changed settings, that

is the number of iterations and imputations, were checked. The performance was

assessed by coverage, bias and mean squared error.

The performance results of CART-based MICE show that the method can be

used as adequate imputation method. The overall coverage was at a minimum

of 88.8% for DS2, the highest value was reached for DS1 with 91.8%. Indendent

of a direct comparison to the methods presented by Koller-Meinfelder (2009), it

can be seen that the CART-based MICE approach performed satisfactorily, that

is that the CART-based MICE results were close to the before deletion results

respective coverage, bias and mean squared error.

Some changes of the settings were conducted on DS1 to check their influence

of the performance of CART-based MICE. First, the initialization was changed

back from unconditional draws from the empirical distribution to tree-based. The

tree-based initialization was not feasible as the recreation of the structure of the

simulated data structure by the learning data (with 60% missing values steered

by a MAR mechanism) was not complete. Second, the amount of iterations

for each data set from the initialization to the chosen imputed value was set

to 20. Increasing that number to 50 did not improve the performance of the

procedure. Third, the same result shows for doubling the amount of imputed
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data sets. The originally chosen 15 imputations were sufficient. Surprisingly, it

can be summarized that none of the setting manipulations had a positive effect

on the performance of CART-based MICE.

As CART is a nonparametric method, it was assumed that the violence of the

linear model assumptions has no negative effect on the results of CART-based

MICE. The first data set, that is DS1, included a typical linear model as the

data generation of Y . No violations were included. The results of DS1 show by

far the highest coverage (91.8%) of all three data sets. Second, the non-linear

term in DS3 leads to a coverage of 90.7%, that is not much lower and could have

happened by chance. Certainly, the chi-squared error term in the data generation

function of Y in DS2 lead to the lowest result with 88.8%. As the pearson cor-

relation coefficient coverages were affected by the violences too, the two values

could be ignored for the calculation of the average coverage. Then, the following

values resulted: 91.7% (DS1), 89.8% (DS2) and 89.5% (DS3). There was still a

clear difference between DS1 and the other two data sets respective the average

coverage. Consequently, it can be assumed that the violences of the linear model

assumptions have a negative effect of the recreation of a variable’s values by

CART.

In chapter 5.2 it was speculated if three variables are enough to recreate the

structure of a variable with missing values by CART. The results of this simulation

study indicate that they are. However, it can be assumed, that a tree-based

initialization and data enabling the creation of surrogate splits to compensate

the missingness, increase the performance of CART.



Chapter 6

Nonparametric imputation of

panel data

Panel data can be described in contrast to cross-sectional data by including dif-

ferent points in time and in contrast to longitudinal data by including the same

units for those points in time. For panel data, especially in the context of survey

data, those points in time are also called waves. In contrast to this description,

panel data can include units that have information available only for one wave.

Consequently, not each wave contains the same amount of units. Alltogether,

a definition for panel data is pretty hard to find. A very rough one summarizes

that all have in common, that the objective is to collect ”multiple observations on

each individual in the sample”, see Hsiao (2003, p.2). This definition points out

that panel data are defined by the sample, that can be different to the realiza-

tion. Furthermore, the original sample can change as refreshments and the loss

of units over time is taken into account as well for some panel data. In addition,

data can be available for example as survey data, observations or metadata. An

example for metdadata are changing statistics such as the unemployment rate in

different countries over time. Due to these multifarious kinds of data, there is

no embracing literature about panel data, but only on special kinds of panel data.

At least, all panel data have a multilevel structure in common, that is that

different time points are clustered in units. With this additional level the amount

79
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of types of missing values that can occur increases. In the following those types

are summarized using the example of collecting survey data of individuals over

time:

� Individuals that are in the sample can be missing in the data completely as

a survey was never realized with them.

� Individuals do not take part in one or several waves, but took part at least

once.

� Individuals leave the panel by not taking part any longer after a certain

point in time.

� Individuals refuse to answer some questions at some points in time.

As there is no embracing literature about panel data, consequently, there is no

embracing literature about the correction of missing values in panel data either.

In the following, there is a short literature review with attention to challenges

that occur to imputers when handling surveyed panel data.

When we look at the literature, there are some ways of correcting for nonresponse

with several definitions of panel data as basis. Shao et al. (2012) define their

panel population by the observed entirety of the first wave of their survey and

not by a previously defined sample in contrast to the definition of Hsiao (2003).

So in the baseline, that is t = 1 with the time index defined as t = 1, ... , T

in general, there is no unit nonresponse by definition. Based on the past-value-

dependent response propensity assumption by Little (1995) and Little & Rubin

(2002) and the work of Vansteelandt et al. (2007) they offer an approach to han-

dle monotone and nonmonotone nonresponse. The imputation regressions are

always based on past observations. This procedure is not transferable for survey

panel data when survey data are defined by a sample and not by the realizations

of this sample. Additionally, the usage of only past observations for imputations

limits the information available for imputations very restrictively.

Kleinke et al. (2011) compared different methods to handle missing values in

panel data. They summarize that techniques such as case deletion (which is only
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suitable when the missing mechanism is MCAR) and single imputation techniques

such as mean imputation or regression imputation do not cope with the require-

ments of panel imputation, as shown e.g. by Schafer & Graham (2002). The

missing indicator method, described by Allison (2001), yields biased estimates.

Furthermore, as shown by Carpenter et al. (2004) and Cook et al. (2004), the

’last observation carried forward’-method also suffers in producing biased esti-

mates. Kleinke et al. (2011) recommends multiple imputation techniques and

show their application in the statistical software R. Multiple imputation as used

in the R-packages norm: Analysis of multivariate normal datasets with missing

values, cat: Analysis of categorical-variable with missing values, mix: Estima-

tion/multiple imputation programs for mixed categorical and continuous data

and pan: Multiple imputation for multivariate panel or clustered data are all

recommended. Not shown in their application but mentioned with the hope for

further research was predictive mean matching (PMM). Meanwhile, there are

many PMM approaches in R, as for example BBPMM in the BaBooN-package,

mice.impute.pmm in the mice-package or mi.pmm in the mi-package. Kleinke

et al. (2011) critisize that the extension to panel data is still missing, especially

the expansion to the multilevel structure of the data. At least for some kinds of

regressions those expansions exist, as for example an add-on to the mice-package

for binary data by Zinn (2013).

There is no general recommendation in the literature to deal with nonresponse

within panel data. The literature review on simulation studies based on decision

trees in chapter 5 includes no data set considering panel structures. The aim

of this study is to provide a method to handle this issue using CART. First, the

method is presented. Then, some peculiarities of CART relevant for this study

are outlined. The next section describes how the performance of the imputation

method was assessed. Afterwards, results concerning the suitability of CART-

based MICE for panel data are presented followed by a conclusion.
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6.1 Proposed procedure for handling nonresponse

within a panel study using CART

When looking at panel data from the imputer’s perspective, whole units can be

missing and item nonresponse can occur. When additional data are available,

a sensitivity analysis is recommended to check whether respondents and nonre-

spondents differ. If they do, a method to correct the data should be applied, for

example weighting.

If the additional data about the units besides their surveying are rich enough,

unit nonresponse should be handled as item nonresponse, see Rässler & Schnell

(2003). When t > 1 unit nonresponse can be handled as item nonresponse if

people who refused or were not able to take part in some waves have survey

data available for at least one wave. Especially sociodemographic variables are

often time-invariant. Additionally, other information can be used for imputation

of some missing variables as for example a) information from earlier and later

waves, b) additional information available for all (non)respondents as for example

from a sampling frame or c) information for at least some (non)respondents as

for example by third persons. If the additional data are not rich enough to handle

unit nonresponse as item nonresponse, for example weighting, a correction based

on response prospensity, see Peress (2010), or other approaches can be used. A

very commendable reference about unit nonresponse adjustment techniques is

the discussion from Little on Brick (2013), see Little (2013).

The following is focused on item nonresponse, respectively handling unit non-

response (of survey data) as item nonresponse within a panel study. For the

imputation of the available panel data at first it has to be checked whether

logical imputations are possible. As mentioned above, most of the sociodemo-

graphic variables are time-invariant or at least stable for some time span. So the

additional variables can complement the earlier wave information.

Then the missing values are initialized by draws from the empirical distribution

without replacement. The initialized and during the iterations of the imputation

continuously ’updated’ data are used as training data to fit the tree models and

for prediction of the terminal nodes. The imputation range of a value is not
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limited to past data based on the recommendations in Little (1992).

All of the data are imputed together and not separated by time point. Sociode-

mographic variables that are stable over time, as for example sex, are reduced to

one variable for all waves.

It is not necessary to model the response propensity as it is included in the vari-

ables chosen by CART when available in the data. The recommended algorithm

has the following form.

Step 1: Initialize the missing values with draws from the unconditional empirical

distribution.

Step 2: Given the initialized values, the CART algorithm is used sequentially

to obtain a nonparametric approximation of the full conditional distribu-

tion. The original missing values are replaced by draws from the predictive

distribution conditional on all other variables.

Step 3: Repeat step 2 L + M times, where L should be high enough to mitigate

the effect of initialization.

6.2 Setup of the data

As in chapter 5, the setup of the data was based on the simulation study of

Koller-Meinfelder (2009, chapter5.3).

The simulated data set consisted of three variables, that is a variable with missing

values Y and two variables, X1 and X2, that were used for imputation. X1 and

X2 were completely observed. In contrast to the procedure in chapter 5, the data

generating functions differed for all three variables, Y , X1 and X2, dependent on

the given data situation as described below. In addition, two waves were gen-

erated. Y was affected by missing values whereas the missing data mechanism

was MAR and based on X1. The sample size was n = 2, 000.

The basis model for the analysis was a linear panel model, that is

[yit = xitβ + ai + uit ] with β as a Kx1 vector and K as the number of variables

within the model, compare e.g. Greene (2012, chapter 11.2.1). There is a broad
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range of different panel models that can result from this form, as presented e.g.

by Greene (2012, chapter 12.2.2) or Cameron & Trivedi (2005, chapter 21.2.1),

that is pooled regression, fixed effects model, random effects model and a ran-

dom parameters model.

A pooled regression is defined by ai as constant term. Then, that is the one

case the ordinary least squares method (incorporated as lm-function in R, the

default linear model method) leads to consistent and efficient estimates. In all

other cases, the ordinary least squared method leads to biased and inconsistent

results for β. The fixed effects model is defined by ai as unobserved individual

heterogenity (time-invariant), that is correlated with xit . The random effects

model is defined by ai as unobserved individual heterogenity (time-invariant),

that is uncorrelated with xit . The random parameters model is defined by an

additional random constant term.

The chosen models for the further analysis were the fixed effects model and the

random effects model. Four data situations (DS1, ... , DS4) were created:

DS1: A random intercept ai was defined as ai ∼ N(0, 0.25), X1 and X2 were

time-invariant with X1 ∼ U(0, 3); and x2 = −x1 + ε, with ε ∼ N(0, 4).

DS2: A random intercept ai was defined as ai ∼ N(0, 0.25), X1 was time-

invariant with X1 ∼ U(0, 3); X2 changed over time with x2 = −x1 + ε,

with ε ∼ N(0, 4) for t = 1 and ε ∼ N(0, 6) for t = 2.

DS3: A random intercept ai was defined as ai ∼ N(0, 0.25), X1 changes over

time with x1,t=1 ∼ U(0, 3) and x1,t=2 ∼ U(0, 4); X 2 was affected by X1

and became time-variant too, as it was defined as x2 = −x1 + ε, with

ε ∼ N(0, 4).

DS4: An intercept ai was defined that was dependent on X1, that is

ai ∼ N(0, 0.1x1,t=1) (fixed effect), X1 changed over time with

x1,t=1 ∼ U(0, 3) and x1,t=2 ∼ U(0, 4); X 2 was affected by X1 and became

time-variant too, as it was defined as x2 = −x1 + ε, with ε ∼ N(0, 4).
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For all four data situations Y was rounded to an integer value. The model

estimands, that is the intercept α, and the two slopes β1 and β2 were the same

for all four (three for α as it was not estimated for the fixed effects model) data

situations with

α = 1.75, β1 = 1.0 and β2 = −0.5.

The rate of missing values was fixed to 60% for Y based on X1 for the MAR

mechanism which was defined by:

yi =

missing , if Fz(zi) > 0.4

yi if Fz(zi) ≤ 0.4
∀i = 1, ... , n

where Fz(z) is the empirical distribution function of Z , and

z =
1

1 + exp(0.2x1φ + ε)
with φ ∼ N(0, 16) and ε ∼ N(0, 36).

The missingness mechanism was affected by the changes in data situation three

and four, as the creation of X1 was changed, but the missingness model itself

did not change between both waves.

6.3 Peculiarities of CART

In addition to the peculiarities described in chapter 5.2, it has to be mentioned

that CART needs the information arranged in wideformat when handling panel

data as already mentioned in chapter 4.3.1. Both ways of displaying data con-

tain the same information. As can be seen in figure 6.1 the arrangement in

longformat, as shown on the left side, includes the wave information within the

variables (columns), identifyable by an index (here: time index t with t = 1, 2).

An example to explain this way of illustration is the income, that is X1. In year

2010, that is wave one (t = 1), a person with identifying (ID) number i = 10 has

an income of 1, 000 Euro. In 2011, that is wave two (t = 2), the same person

(i = 10) has an income of 1, 105 Euro. Both income information are saved in
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the same column and are identifyable with information from two other columns

from the same row (identifier i , time index t).

Figure 6.1: Data in longformat and wideformat

The same information can be displayed in different columns arranged as widefor-

mat as shown on the right side of figure 6.1. For example, the income information

from 2010 is then available from a variable income, X1, with the time index as

additional information, that is X1,t=1. An additional variable X1,t=2 contains the

information from 2011. The time index is not needed anymore as an additional

variable as it is included within the index. The length of the person identifying

column is halfed, containing only unique IDs.

6.4 Analysis

To check the performance of CART-based MICE bias, mean squared error (MSE)

and coverage were used. The coverage is defined as the proportion of 95%-

confidence intervals for the estimated parameters that contain the true value.
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The chosen parameters were

mean: E (Y )

proportions: P(Y < 3), P(Y < 4), P(Y < 6)

correlations: ρ(X1, Y ), ρ(X2, Y )

linear model (panel data) estimates: α, β1, β2

with mean, proportions and correlations calculated for each of both waves and

the linear panel model estimates calculated for the whole data as random effects

or fixed effects.

All ’true values’ for those estimands were calculated as mean from 2, 000 gener-

ated data sets with 10, 000 values for each variable analogous to the procedure

in chapter 5.1. The results can be seen in table 6.1 for all four data sets (DS1 to

DS4). ai was not estimated as the mean of ai was set to zero with ai ∼ N(0, 0.25)

for all four data situations.

Compared to the estimates from DS1 of table 5.1 the correlations in table 6.1,

that is ρ(X1, Y ) and ρ(X2, Y ), were lower for DS1. This can be explained by the

disturbing effect of the random intercept due to the given variance.

The estimates of DS1 and DS2 were very close to each other, different only due

to the data generating variance of X2 which was time-invariant in one case (DS1)

and time-variant in the other case (DS2). The estimates of DS3 and DS4 were

likewise similar, different only due to the additional correlation of ai to X1 in

DS4 in comparison to DS3. The two groups, that is DS1 and DS2 compared

to DS3 and DS4, differed a lot due to the change in X1 from time-invariant to

time-variant with different maxima. As X1 steered the missingness mechanism it

had the highest influence on the performance of the imputation.

The number of imputations was set to M = 15 and 500 runs were conducted

to get proper results especially for the coverage. The results were compared to

those of the complete data (before deletion) and the complete cases.
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DS1 DS2 DS3 DS4

E (Yt1) 3.9996 4.0001 4.0001 4.0005
P(Yt1 < 3) 0.2110 0.2110 0.2110 0.2088
P(Yt1 < 4) 0.3970 0.3968 0.3969 0.4005
P(Yt1 < 6) 0.7891 0.7890 0.7891 0.7927
ρ(X1,t1, Yt1) 0.7208 0.7205 0.7205 0.7319
ρ(X2,t1, Yt1) -0.7954 -0.7953 -0.7952 -0.8079

E (Yt2) 4.0000 3.9998 4.7506 4.7499
P(Yt2 < 3) 0.2109 0.2250 0.1581 0.1560
P(Yt2 < 4) 0.3968 0.4020 0.2983 0.2976
P(Yt2 < 6) 0.7891 0.7750 0.6225 0.6228
ρ(X1,t2, Yt2) 0.7207 0.6709 0.8108 0.8200
ρ(X2,t2, Yt2) -0.7953 -0.8198 -0.8109 -0.8199

α 1.7497 1.7500 1.7504 —
β1 1.0003 1.0001 0.9998 1.0001
β2 -0.4998 -0.5000 -0.5001 -0.5001

Table 6.1: Overview of the mean estimates of 2,000 data sets

The model that was used for the analysis was a linear model for panel data

regarding the unobserved individual heterogenity ai . As ai was not correlated

with the other variables for DS1 to DS3 the model used was a random effects

model. For DS4 ai was correlated with X1, consequently a fixed effects model

was applied. In R there are several packages and commands that can be used

for panel models. One command applicable for a linear model for panel data

is plm (from the R-package plm: Linear Models for Panel Data) which has the

option model which has to be set to model=”random” for a random intercept

or a random effects model. For a fixed effects model the option has to be set

to method=”within”. The default of the method used to calculate the variance

of the unobserved individual heterogenity random.method=”swar” is the method

suggested by Swamy & Arora (1972). The alternatives are the methods of Wal-

lace & Hussain (1969), Amemiya (1971) and Nerlove (1971).

One example of alternative commands that can be used is lme (from the R-



NONPARAMETRIC IMPUTATION OF PANEL DATA 89

package nlme: Linear and Nonlinear Mixed Effects Models). As the plm-package

with the default setting random.method=”swar” leads to appropriate results, it

was used to estimate the linear panel model estimands.

As already mentioned in chapter 5, Rubin’s combining rules, which are explained

in chapter 2.2.4, are based on the assumption that the estimates to combine are

(approximately) normally distributed. Regression parameters, proportions and

mean fulfill this requirement. Correlations are neither normally distributed nor

approximately normally distributed.

Correlation values can be transformed with the Fisher (’ρ to z ’) transformation

and then be combined. The confidence intervals were calculated with the z-

transformed values and were then transformed back to get the ρ-values. The

R-package psych assists perfectly for this task and was used for this simulation

study.

Likewise to the procedure described in chapter 5.3 the ’Agresti-Coull’-method

was used to calculate the confidence intervals for proportions.

Summary of the simulation study settings

The settings for the simulation study can be summarized as follows: The num-

ber of rows (individuals) in the (wideformat) data was n = 2,000. There were

two waves, t = 1, 2. One dependent variable, that is Y , was generated via a

linear function based on X1 and X2, which were partially time-invariant (DS1) or

time-variant (DS2 to DS4). The simulation study was repeated 500 times with

M = 15 imputed data sets which were combined by Rubin’s combining rules.

The 95%-confidence intervals for before deletion (BD), complete cases (CC) and

imputed data (CART-MICE) estimands were checked if they contain the true

value. The amount of the confidence intervals for each method that contain the

true value was used to compute a ratio of appropriate confidence intervals, that

is the coverage.

The settings for CART were the default settings as described in chapter 5 since

the examined setting manipulations did not improve the performance of the im-

putation procedure. CART is iterated 20 times for one imputation value.
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6.5 Results

Four data sets with different data generation models were created. First, the

results of DS1 are shown in table 6.2. DS1 included a random intercept ai ,

defined as ai ∼ N(0, 0.25), furthermore, X1 and X2, both time-invariant, with

X1 ∼ U(0, 3); and x2 = −x1 + ε, with ε ∼ N(0, 4).

True parameters Coverages in %
BD (CC) CART-MICE

E (Yt1) 3.9996 95.2 75.0 91.2
P(Yt1 < 3) 0.2110 95.6 3.4 94.8
P(Yt1 < 4) 0.3970 92.4 4.0 91.0
P(Yt1 < 6) 0.7891 95.8 3.4 91.0
ρ(X1,t1, Yt1) 0.7208 95.8 96.8 91.2
ρ(X2,t1, Yt1) -0.7954 92.6 95.2 84.2

E (Yt2) 4.0000 95.0 82.6 89.6
P(Yt2 < 3) 0.2109 94.0 35.0 89.8
P(Yt2 < 4) 0.3968 95.2 33.8 92.4
P(Yt2 < 6) 0.7891 96.0 32.2 91.6
ρ(X1,t2, Yt2) 0.7207 97.2 97.0 91.6
ρ(X2,t2, Yt2) -0.7953 95.2 95.4 87.4

α 1.7497 93.8 94.6 82.4
β1 1.0003 95.4 95.4 84.0
β2 -0.4998 94.8 92.8 83.2
Average - 94.9 62.4 89.0

Table 6.2: Coverages: DS1, Panel

Regarding CART-based MICE, the coverages for the mean and the first propor-

tion were higher for the first wave, whereas the coverages for the other estimands

were higher for the second. The lowest coverage, that is 82.4%, was reached for

the constant of the linear panel model, that is α. The highest coverage, that is

94.8%, was reached for P(Yt1 < 3). Actually, the coverages for all estimands of

the linear model, that is α (82.4%) as the constant and the two slope estimands
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β1 (84.0%) and β2 (83.2%), were the lowest compared to mean, proportion and

correlation estimands. This property is similar to the cross-sectional data, shown

in table 6.2. The relative bias, shown in table C.18, confirmed the relative ’poor’

performance with an amount of 0.7% to 1.1% (absolute values). All other esti-

mands had a relative bias located between 0.02% and 0.6% (absolute values).

The average coverage of all fifteen estimands was 89.0%. For comparison, the

average coverage was 94.9% for the before deletion data estimands and 62.4% for

the complete cases estimands. The complete cases analysis led to proper results

for the correlations and linear panel model estimands, but failed for the mean

and the proportions. Whereas the coverage for the estimand of the mean was

only 75.0% respectively 82.6% for the complete cases estimand, the coverage of

the CART-based MICE estimand was 91.2% respectively 89.6%, thus, close to

the before deletion coverage (95.2% respectively 95.0%). The average coverage

of the estimands of the cross-sectional data was 91.8%, see table 5.2.

The results of DS2 are shown in table 6.3. DS2 included a random intercept ai ,

defined as ai ∼ N(0, 0.25), X1 which was time-invariant with X1 ∼ U(0, 3) and

X2 which changed over time with x2 = −x1 + ε, with ε ∼ N(0, 4) for t = 1 and

ε ∼ N(0, 6) for t = 2.

Considering the imputation, the constant of the linear panel model, that is α,

and the slope estimand β2 showed the lowest coverage (83.0%). The highest

coverage, that is 93.2%, was gained for P(Yt2 < 6). Again, the coverages of all

estimands of the linear model were the lowest in contrast to mean, proportion and

correlation estimands. Correspondingly, the relative bias, shown in table C.19,

emphasized the relative ’poor’ performance with an amount of 0.8% to 1.0%

(absolute values). The remaining estimands had a relative bias located between

0.02% and 0.7% (absolute values).

The average coverages amounted to 89.5% for CART-based MICE, 95.0% for

the before deletion data estimands and 62.8% for the complete cases estimands.

In more detail, the complete cases analysis led to good results for the correlations

and linear panel model estimands, but failed for the mean and the proportions.

Comparing the coverage of the mean, the complete cases reached 76.8% for

wave 1 and 80.2% for wave 2 while the CART-based MICE estimation reached
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True parameters Coverages in %
BD (CC) CART-MICE

E (Yt1) 4.0001 94.2 76.8 90.4
P(Yt1 < 3) 0.2110 93.0 3.2 91.6
P(Yt1 < 4) 0.3968 95.0 3.2 92.2
P(Yt1 < 6) 0.7890 95.2 2.8 92.8
ρ(X1,t1, Yt1) 0.7205 96.0 95.4 89.8
ρ(X2,t1, Yt1) -0.7953 95.6 94.8 89.0

E (Yt2) 3.9998 95.2 80.2 89.6
P(Yt2 < 3) 0.2250 94.8 52.0 91.8
P(Yt2 < 4) 0.4020 94.0 42.0 91.2
P(Yt2 < 6) 0.7750 97.0 13.4 93.2
ρ(X1,t2, Yt2) 0.6709 97.8 96.4 91.6
ρ(X2,t2, Yt2) -0.8198 93.6 95.0 89.0

α 1.7500 93.8 94.8 83.0
β1 1.0001 94.4 96.4 84.0
β2 -0.5000 95.0 95.4 83.0
Average - 95.0 62.8 89.5

Table 6.3: Coverages: DS2, Panel

90.4% respectively 89.6%, thus, close to the before deletion coverage (94.2%

respectively 95.2%).

Adding variation over time for X2 did not decline the coverages compared to the

time-invariant variable X2 in DS1. Both, MSE and relative bias worsened only

minimal, see table C.18 and table C.19, respectively C.22 and C.23.

In table 6.4 the results of DS3 are shown. DS3 included a random intercept ai ,

defined as ai ∼ N(0, 0.25), X1 which changed over time with x1,t=1 ∼ U(0, 3)

and x1,t=2 ∼ U(0, 4) and X 2 which is affected by X1 and became time-variant

too, as it was defined as x2 = −x1 + ε, with ε ∼ N(0, 4).

DS3 was the first data set which had a different missingness mechanism for each

of both waves caused by the change within the data generation of X1.
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True parameters Coverages in %
BD (CC) CART-MICE

E (Yt1) 4.0001 95.4 74.4 89.6
P(Yt1 < 3) 0.2110 96.2 1.6 93.6
P(Yt1 < 4) 0.3969 95.4 3.4 92.8
P(Yt1 < 6) 0.7891 94.8 4.6 90.2
ρ(X1,t1, Yt1) 0.7205 96.2 97.2 93.0
ρ(X2,t1, Yt1) -0.7952 94.2 93.8 86.4

E (Yt2) 4.7506 95.4 80.2 90.4
P(Yt2 < 3) 0.1581 93.6 0.0 93.2
P(Yt2 < 4) 0.2983 94.2 0.0 91.8
P(Yt2 < 6) 0.6225 96.0 0.0 92.6
ρ(X1,t2, Yt2) 0.8108 97.4 97.4 92.2
ρ(X2,t2, Yt2) -0.8109 93.8 95.0 88.4

α 1.7504 94.2 93.6 82.0
β1 0.9998 96.2 95.2 85.0
β2 -0.5001 95.2 95.0 84.4
Average - 95.2 55.4 89.7

Table 6.4: Coverages: DS3, Panel

The lowest coverage based on the imputed data set was 82.0% for the constant

of the linear panel model α. P(Yt1 < 3) had the highest coverage (93.6%). Once

more, the coverages of the mean, the proportion and the correlation estimands

exceeded the estimands of the linear model. As shown in table C.20, the relative

bias, indicated the relative ’poor’ performance only for α with an amount of 0.7%

and β2 with an amount of 1.1% (absolute values). β1 was the exception with a

relative bias of 0.2% (absolute value). The relative bias of the other estimands

varied between 0.02% and 0.7% (absolute values).

Respective the results of CART-based MICE, the average coverage of the fifteen

estimands was 89.7%. Before deletion data estimands resulted in an average

coverage of 95.2%, complete cases estimands yielded an average coverage of

55.4%. Correlations and linear panel model parameters were estimated properly

based on complete cases analysis in contrast to the mean and the proportions.



94 NONPARAMETRIC IMPUTATION OF PANEL DATA

While the coverage of the mean was only 74.4% (wave 1) respectively 80.2%

(wave 2) for the complete cases analysis, the coverage of the CART-based MICE

estimand was 89.6% (wave 1) respectively 90.4% (wave 2) and approximated to

the before deletion coverage of 95.4% in both waves.

The results of DS4 are illustrated in table 6.5. DS4 included an intercept ai

which was defined as ai ∼ N(0, 0.1x1,t=1), i.e. ai was dependent on the first

wave values of X1 which led to a fixed effect. Furthermore, X1 which changed

over time with x1,t=1 ∼ U(0, 3) and x1,t=2 ∼ U(0, 4) and X 2 which was affected

by X1 and became time-variant too, as it was defined as x2 = −x1 + ε, with

ε ∼ N(0, 4).

The linear panel model was estimated as fixed effects model due to the depen-

dency of ai on X1.

With 85.0% the lowest coverage of CART-based MICE referred to the correla-

tion of Y and X2 in the second wave, that is ρ(X2,t2, Yt2). The highest coverage

amounted to 94.4%, for P(Yt2 < 4). Contrary to the results of the previous

data sets the coverages of the two slope estimands of the linear model were not

the lowest compared to the other estimands. The relative bias, shown in table

C.21, indicated a relative bad performance on the correlation of Y and X2 with

an amount of 0.7% (absolute value) for both waves. All other estimands, except

β2 had a relative bias ranging from 0.01% and 0.7% (absolute values). Despite

the good coverage, β2 had a relative bias of 1.0% (absolute value).

The average coverage of CART-based MICE was 91.4%, before deletion data

yielded an average coverage 95.5% and complete cases analysis 52.9%. The

complete cases analysis led to acceptable outcomes for the correlations and lin-

ear panel model estimands, but not for the mean and the proportions. The

coverage for the estimand of the mean was 76.6% respectively 79.2% for the

complete cases estimand, while the coverage of the CART-based MICE estimand

was 91.2% respectively 92.0% and just a little lower than the before deletion

coverage (96.8% respectively 94.6%).
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True parameters Coverages in %
BD (CC) CART-MICE

E (Yt1) 4.0005 96.8 76.6 91.2
P(Yt1 < 3) 0.2088 96.2 4.8 92.0
P(Yt1 < 4) 0.4005 94.8 3.6 93.8
P(Yt1 < 6) 0.7927 94.0 3.6 91.6
ρ(X1,t1, Yt1) 0.7319 96.8 97.4 93.6
ρ(X2,t1, Yt1) -0.8079 94.8 94.2 86.2

E (Yt2) 4.7499 94.6 79.2 92.0
P(Yt2 < 3) 0.1560 95.8 0.0 91.6
P(Yt2 < 4) 0.2976 95.4 0.0 94.4
P(Yt2 < 6) 0.6228 94.4 0.0 92.0
ρ(X1,t2, Yt2) 0.8200 96.8 97.2 91.4
ρ(X2,t2, Yt2) -0.8199 95.2 94.2 85.0

α — — — —
β1 1.0001 95.8 95.2 94.2
β2 -0.5001 96.2 94.2 90.2
Average - 95.5 52.9 91.4

Table 6.5: Coverages: DS4, Panel

The results show that CART-based MICE leads to sufficient results for panel

data. The lowest coverage was reached for the first data set with 89.0% and

the highest for the fourth (fixed effects model) with 91.4%. The coverages were

rising from the first to the fourth data set. As the data were simulated as panel

data the constructed trees that were the basis to impute the missing values are

of special interest. Especially whether the data were imputed using information

from the same wave or changing between waves. For demonstration the resulting

trees for Yt=1 and Yt=2 are displayed. The trees for DS1 are displayed exemplary

in the following, that is figure 6.2 for Yt=1 and figure 6.3 for Yt=2, whereas the

figures of the other data sets (DS2, DS3 and DS4) are located in the appendix,

see B.11 to B.16. Note that the created trees might (slightly) change for each

imputation cycle. The displayed trees are the ones from the last iteration of one

imputation cycle.



96 NONPARAMETRIC IMPUTATION OF PANEL DATA

The tree-based selection of explanatory variables for Yt=1, shown in figure 6.2,

were all part of wave one, that is t = 1. As the data generation of the variables

X1,t=1 and X2,t=1 was independent of the data generation of all variables from

wave two, t = 2, and Yt=1 and Yt=2 only had the random effect in their data

generation in common, this was appropriate. The tree had a depth of five levels

reaching a minimum end node size of 168, that is a proportion of 8.4% of the

whole data set with n = 2, 000. The highest end node size was 219, that is a

proportion of 10,95%. The explaining variables X1,t=1 and X2,t=1 alternate for

the mapping of Yt=1.

Analogously, the tree-based selection of explanatory variables for Yt=2, shown

in figure 6.3, were all part of wave two, that is t = 2. Again, the tree had a

depth of five levels reaching an even lower minimum end node size of 88, that is

a proportion of 4.4% of the whole data set. The highest end node size was 218,

that is a proportion of 10,9%. In contrast to the first wave’s tree, the explaining

variables X1,t=2 and X2,t=2 were not alternating for the mapping of Yt=2. That

means that the partition of Yt=1 and Yt=2 was basically different and not only

changing by decimals.
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6.6 Conclusion

The conducted simulation study had the objective to give some insights about the

performance of CART in combination with multiple imputation on panel data.

The data generation was based on the first data set of the simulation study of

Koller-Meinfelder (2009,chapter 5.3) in extension to chapter 5.

A linear panel model was created and four different unobserved individual hetero-

genity terms were added. In three of those four cases that term was defined as

independent from the regressors, consequently the model was a random effects

model. The last was defined as correlated to X1,t=1 leading to a fixed effects

model. X1 in general steered the missingness mechanism of both waves. The

first three data sets included different combinations of X1 and X2 as time-variant

or time-invariant.

The analysis shows that CART-based MICE leads to sufficient results as the low-

est coverage was 89.0% for the first and the highest coverage was 91.4% for

the fourth data set. The coverages were rising from the first to the fourth data

set. The data generation for each of both waves was conducted either indepen-

dent of the other wave (besides of the unobserved individual heterogenity) or the

variables were time-variant for all four data situations. Thus, it is pleasing that

CART detected only information from the same wave for the partitioning of the

data regarding Yt=1, respectively Yt=2.

The results lead to the restricted conclusion that CART-based MICE is able to

handle panel data. However, the representation of panel data as a manifold

term was very limited. The simulation study included only information from two

waves, random effects models and a fixed effects model. The two waves were only

connected due to the unobserved individual heterogenity ai and partially time-

invariant regressors, not by, for example, changes of the variables over time based

on past values of the same variable. The missingness mechanism was generated

identically for both waves. There were only two explanatory variables and no

filtering was included. Consequently, there are many extension possible for this
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simulation study and it is recommendable to research more on this topic before

giving general recommendations. Anyway, the results from the given simulation

study are very promising.



Chapter 7

Concluding Remarks

The thesis focused on the application of CART-based MICE and CART in com-

bination with data augmentation on special data situations within a large-scale

panel study. As presented, there were multiple applications within a large-scale

panel study to use the approach of Burgette & Reiter (2010) in modified or ex-

tended ways.

As a first application, the usage of CART combined with a Bayesian Probit

model for the analysis of data from the National Educational Panel Study which

was affected by unit nonresponse was presented. The application was needed

to find possible selection effects within the data for nonrespondents compared

to respondents. The implementation of the CART step was very close to the

suggested approach of Burgette & Reiter (2010). Differences were conducted for

the initialization and the hierarchy of the data. The data were initialized not with

CART itself, but with unconditional draws from the empirical distribution. As

the application data contained information of students within schools, clusters

had to be taken into account. CART was divided into two steps. At first, data

from the individual level were augmented using the information of the aggregated

level without imputing it. Then the procedure was conducted for the second level

analogously. A novelty was the usage of CART within a data augmentation pro-

cedure resulting in a Markov chain Monte Carlo approach, more precisely a Gibbs

Sampler.

101
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The results of the analysis showed the necessity for nonresponse adjustment

weights. The data included a selectivity of nonrespondents compared to nonre-

spondents given by the variable sex. For both years, female students tended to

participate more often than the male ones. The results of the analysis differed

clearly when using CART considering the second level random effect compared

to the complete cases analysis ignoring as well as including the second level. The

basic complete cases analysis suggested an effect of the marks of fs1, fs3 and

the mean school mark in 2010 and an effect of sex and the marks of fs3 in 2011.

Including a second level random effect there were no significant effects in 2010

and only an effect of the random effect in 2011 for the complete cases analysis.

Second, CART was used in combination with multiple imputation by chained

equations considering a high amount of filters and a high-depth filter structure

of the data. Several types of filtering were presented as they might influence

the selection of valid values for imputation differently. The CART approach of

Burgette & Reiter (2010) was extended with a matrix containing several lists of

values for each person and filter combination within the data. These lists defined

the admissible value range dependent on the filter value or the combination of

filter values. All filters had to be regarded for the initialization and the imputa-

tion. With a maximum of five chained filter questions, the imputation was very

complex. In contrast, the resulting trees showed a very manageable breakdown

of relevant variables. Unsuprisingly, the most important variables to capture the

structure of the exact household net income and the individual net income vari-

able were the bracketed question variables. Additionally, occupational status and

age were relevant as explanatory variables, but only for the highest household

income group. Adding the employment history module, the same group was

best captured by the individual net income. For the individual net income the

bracketed questions and the exact individual gross income were most relevant

explanatory variables. Pleasing was the display of interaction effects by CART

as the different income groups were influenced dissimilar.

The two applications on real data show that CART can be flexibly combined

with other algortihms and used for many challenges that occur within a large-
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scale panel study. But diagnostics on real data are very constricted. Hence,

the suitability of CART-based MICE can not be assessed in the context of real

data applications. Thus, analysis on simulated data was needed to evaluate the

performance of CART-based MICE. A simulation study was conducted based on

the work of Koller-Meinfelder (2009, chapter 5.3). Three data sets were created.

Two variables were drawn from the same distribution for all three data sets, that is

X1 and X2, whereas the data generation of Y varied. For the first data set (DS1)

Y was generated via a linear regression based on X1 and X2, the other two data

sets included a chi-squared distributed error term (DS2) and a non-linear term

or more precisely a logarithmic term (DS3). The results showed that the perfor-

mance of CART in combination with MICE is sufficient. The lowest coverage,

with coverage defined as the proportion of 95%-confidence intervals for the esti-

mated parameters that contain the true value, was 88.8% for the second data set

(DS2). As the pearson correlation is, among others, based on the assumption of

the linearity of the correlation and the normality of both variables, the correlation

estimates were biased even for before deletion results (BD: 93.8% overall cov-

erage, 90.6% for ρ(X1, Y ) and 86.6% for ρ(X2, Y ); CART-based MICE: 88.8%

overall coverage, 87.0% for ρ(X1, Y ) and 83.8% for ρ(X2, Y )). Considering this

bias, the overall coverage of CART-based MICE could be evaluated as ’high’

and definitely sufficient as it was close to the before deletion value. The overall

coverages for the other two data sets were high as well with 91.8% (DS1) and

90.7% (DS3) for CART-based MICE.

In a rough comparison to the results of Koller-Meinfelder (2009) for ROV, PPMM,

BBPMM and RPMM, the average coverages of CART-based MICE were (a lit-

tle) lower than the coverages of PPMM and BBPMM and clearly higher than

the coverages of ROV and RPMM. Unfortunately, a general recommendation

which method is to prefer can not be derived from the current comparison. The

methods did not perform on the same values and the results depended on the

design of the simulation study.

Additional analysis was performed on the first data set (DS1) changing the set-

tings of CART. It was tested whether changing the initialization from drawing

unconditionally from the empirical distribution back to a tree-based (informative)

initialization leads to better results. Unfortunately, no results to be compared
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were available, as the tree-based initialization was not able to recreate the struc-

ture of the application data based on the test data. The test data, that is the

complete cases data, were achieved by listwise deletion. Furthermore, it was

tested if increasing the amount of iterations of the tree-based MI approach from

20 to 50 or doubling the number of imputed data sets that are combined for the

confidence intervals improves the performance. Considering the coverages, rela-

tive bias and mean squared error, both changes did not improve the performance

of CART-based MICE on the simulated data.

In a second simultation study, the first data set (DS1) from the previous simula-

tion study was extended to panel data. Four data situations were distinguished

defined by different data generation procedures of Y . In addition, different com-

binations of time-variant and time-invariant variables were created for the first

three data situations. Those three data situations included an unobserved indi-

vidual heterogenity which was independent of the regressors. Consequently, the

regression models of Y were defined as random effect models. The fourth data

situation included an unobserved individual heterogenity which was dependent

on X1,t=1 with X1 steering the MAR mechanism. Consequently, the regression

model of Y was defined as fixed effects model. The results were sufficient with

a minimum coverage of 89.0% reached for the first and a maximum coverage of

91.4% reached for the fourth data set. The coverages are rising from the first to

the fourth. The illustration as trees show that CART detected the wave-specific

creation of Y correctly for each of both waves of all four data situations.

The additional benefit of this thesis can be found in an example of how mani-

fold the applications with CART can be, the evaluation of the performance of

CART-based MICE on cross-sectional and panel data and some insights about

the settings of CART. Both content areas, the empirical applications and the

performance check based on simulation studies, can be enlarged. In sum, the re-

sults of the simulation studies imply that the usage of CART within a large-scale

panel study is recommendable with constraints. Reassuring is that the results of

the two simulation studies indicate that the default settings are adequate as they

were conducted on the empirical data.
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Limitations of this work and self-criticism

In all four cases, CART was a highly flexible approach to get imputation values

without defining a model for any variable. The modifications and extensions

that had been implemented for the applications were needed as there was no

syntax available to handle the properties of the data automatically. Meanwhile,

at least the basic syntax of Burgette & Reiter (2010) is implemented in the

MICE -package as mice.impute.cart. The modifications of the syntax offered by

Burgette & Reiter (2010) that were conducted for the application in chapter 3,

that was the change from a tree-based initialization to draws from the uncondi-

tional empirical distribution and some changes of the syntax for the adjustment

to newer R-versions, were minor. However, the combination with the Bayesian

Probit analysis as Markov chain was innovative and costly. The extension needed

for chapter 4, that was especially the matrix containing lists of the admissible

values dependent on filter values or filter value combinations was considerable.

It was adjusted for the application on NEPS data which has a high amount of

filtered variables and a high filter-depth of up to five filter levels. Hence, it is

very application-specific.

As mentioned above, data characteristics which indicate the usage of CART-

based MICE instead of other imputation procedures should be precised. Further

research is needed to evaluate which challenges can be handled by CART and

whether and under which circumstances it performs better compared to other

algorithms.

Two real data applications with data from the NEPS were presented in this thesis.

Those two applications can not be evaluated by their performance, especially not

in contrast to alternative procedures. Consequently, they can not be generalized.

It can only be shown that CART is one (of many) approaches that can handle

those tasks that come with the imputation and analysis of the presented data.

Additionally, the presented applications are only a selection of many possible ap-

plications within a large-scale panel study.

Furthermore, it can always be doubted if the approach used for an application was



106 CONCLUDING REMARKS

the best choice. This is especially relevant for the application on the Thuringia

study with CART conducted in combination with data augmentation. It can

be said that it was a first attempt to learn more about the functionality of the

syntax and a first test for changes and possible combinations with other meth-

ods. The fraction of missing values was really low, especially for the second data

(from 2011), with 5.0% as maximum percentage of missing. The complete cases

reached 93.6% of the whole data information. It can be doubted if the afford of

implementing CART combined with a two-step Gibbs sampler was appropriate.

Still, it was a very constructive examination.

The second NEPS data (from SC6) was very voluminous. The decision to impute

all variables that might be connected to income, that were 213 variables, resulted

in a very high effort to implement CART-based MICE. Especially the high filter-

depth was a big challenge. In the end, the acceptance of this imputed data was

very high by our data users and the application was published in an peer-reviewed

article, that is Aßmann et al. (2015). Hence, the scientific interest on this new

approach can also be interpreted as high. A special characteristic of CART can

be illustrated by this application respective the high amount of variables. The

time saving of using CART is very high when compared to approaches which

need a definition of a model or model family for each variable used.

Alternative approaches to CART were presented only very roughly. CART was

used as workhorse, but other nonparametric approaches as for example Random

Forest as conducted by Shah et al. (2014) could have been used as well. How-

ever, parametric models are always an alternative and are usually preferred when

available and suitable. The usage of CART combined with MI is relatively new,

as the article of Burgette and Reiter was published in 2010. The evaluation of

this approach is only at the beginning as carved out in chapter 5.

Basically, concerning the illustration of more applications the current literature

still lacks a lot. However, the present work contributes to this field of research.

Overall, there is considerable need for research. As mentioned above, data char-

acteristics which indicate the usage of CART-based MICE instead of other im-

putation procedures should be precised. Further research is needed to evaluate
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which challenges can be handled by CART and whether and under which circum-

stances it performs better compared to other algorithms.

Simulation studies, as presented in this thesis lead to results that are dependent

on the given settings. To give a general recommendation for the usage of an

approach the settings have to be diversified in many possible ways. More precisely,

the utilization for cross-sectional, longitudinal and panel data has to be evaluated

in more detail with varying settings. The aspect of the best splitting criterion,

especially respective the TSP, seems to be worth a second look as it steers the

performance of CART. Moreover, all the other settings such as stop criterions

should be evaluated as well, even with the risk that it is not possible to give

general guidelines for the usage of CART. Additionally, when a simulation study

is conducted as a test for real data the simulated data should be adjusted to the

properties of the real data as far as possible. The given data situations in both

simulation studies are very simplified compared to empirical data from a large-

scale panel study. Here, the necessity of further research is obvious. However,

the results are very promising as a first insight.
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124 LIST OF ABBREVIATIONS

ACF Autocorrelation function
ALWA Working and learning in a Changing World (Arbeiten und Lernen im Wandel)
BBPMM Bayesian Bootstrap Predictive Mean Matching
BD Before Deletion
CART Classification and Regression Tree
CASMIN Comparative Analysis of Social Mobility in Industrial Nations
CC Complete Cases
DPM Dirichlet Process Mixture model
EM Expectation-Maximization
FCS Fully Conditional Specification
fs Field of subjects
GLM Generalized Linear Model
IAB Institute for Employment Research (Institut für Arbeitsmarkt- und Berufsforschung)
ISEI International Socio-Economic Index of Occupational Status
MAR Missing At Random
MCAR Missing Completely At Random
MCMC Markov chain Monte Carlo
MH Metropolis-Hastings algorithm
MI Multiple Imputation
MICE Mulitple Imputation by Chained Equations,

sometimes also Multivariate Imputation by Chained Equations
MSE Mean Squared Error
NA Not Available
NEPS National Educational Panel Study
NMAR Not Missing At Random
NR Not Relevant
OAR Observed at random
PMM Predicitve Mean Matching
PPMM Posterior Predictive Mean Matching
ROV Rounding to the nearest Observed Value
RPMM Rounded Predictive Mean Matching
SUF Scientific Use File
SC Starting Cohort
TSP Traveling Salesman Problem



Appendix B

Figures

B.1 Analysis of unit nonresponse combining CART

and data augmentation

125



126 FIGURES

50
00

10
00

0
15

00
0

20
00

0

−4−20246

gi
bb

s 
dr

aw
s:

 in
te

rc
ep

t

Ite
ra

tio
ns

50
00

10
00

0
15

00
0

20
00

0

−0.4−0.3−0.2−0.10.00.1

gi
bb

s 
dr

aw
s:

 s
ex

Ite
ra

tio
ns

50
00

10
00

0
15

00
0

20
00

0

−0.20−0.15−0.10−0.050.000.05

gi
bb

s 
dr

aw
s:

 fs
1

Ite
ra

tio
ns

50
00

10
00

0
15

00
0

20
00

0

−0.10−0.050.000.050.10

gi
bb

s 
dr

aw
s:

 fs
2

Ite
ra

tio
ns

50
00

10
00

0
15

00
0

20
00

0

−0.050.000.050.10

gi
bb

s 
dr

aw
s:

 fs
3

Ite
ra

tio
ns

50
00

10
00

0
15

00
0

20
00

0

−2−1012

gi
bb

s 
dr

aw
s:

 s
ch

oo
l

Ite
ra

tio
ns

F
ig

ur
e

B
.1

:
D

ra
w

s
fr

om
th

e
G

ib
bs

sa
m

pl
er

N
ot

e:
E

st
im

at
io

ns
ar

e
ba

se
d

on
20

,0
00

G
ib

bs
it

er
at

io
ns

,
w

he
re

in
it

ia
l

5,
00

0
dr

aw
s

w
er

e
di

sc
ar

de
d

fo
r

bu
rn

-i
n.



FIGURES 127

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Lags: Intercept

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Lags: sex

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Lags: fs1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Lags: fs2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Lags: fs3

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Lags: mean school mark

Figure B.2: Plots of the autocorrelation functions (ACF)

Note: Estimations are based on 20,000 Gibbs iterations, where initial 5,000

draws were discarded for burn-in.
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B.2 Nonparametric imputation of high-dimensional

data containing filters
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Figure B.3: Income questions in the NEPS SUF SC6 – exact estimate and two-
stage income brackets.
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Figure B.7: Q-Q plots for the individual gross income and sum of special pay-
ments, variables with significant differences between observed and imputed data
according to Kolmogorov-Smirnov goodness of fit test (level of significance:
α = 0.05).
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Figure B.10: Classified income information for household income and individual
net income. Respondents for which these questions do not apply where excluded.
Imputed data are indicated with light gray and observed data white.



136 FIGURES

B.3 Nonparametric imputation of panel data
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Appendix C

Tables

C.1 Analysis of unit nonresponse combining CART

and data augmentation

Field of subject Subjects contained
(1) linguistic-literary-artistic German, English, arts, music
(2) social geography, history, religion

(3) mathematical-natural-scientific-technical
maths, physics, biology,
computer sciences

Table C.1: Fields of subjects

143
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2010 2011
(I.1) Gibbs Cart MH P = 0.01 (I.2) Gibbs Cart MH P = 0.01

Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR
Intercept 1.2011 1.3131 -1.3491 3.7941 -0.8278 2.5411 -5.9724 4.1328
sex -0.1528 0.0749 -0.2975 -0.0058 -0.1912 0.0962 -0.3791 -0.0017
fs1 -0.0582 0.0339 -0.1247 0.0079 0.0286 0.0410 -0.0504 0.1087
fs2 0.0193 0.0309 -0.0417 0.0801 -0.0098 0.0374 -0.0840 0.0622
fs3 0.0387 0.0218 -0.0046 0.0811 0.0105 0.0253 -0.0393 0.0598
msm -0.1603 0.5586 -1.2717 0.9051 0.5588 1.1597 -1.7002 2.9225
σ2
u 0.3867 0.1156 0.2195 0.6673 1.1512 0.3549 0.6373 2.0165

(II.1) Gibbs Cart MH P = 0.02 (II.2) Gibbs Cart MH P = 0.02
Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR

Intercept 1.1325 1.2841 -1.3911 3.7243 -0.6130 2.5406 -5.6655 4.1640
sex -0.1530 0.0754 -0.3025 -0.0070 -0.1925 0.0980 -0.3863 -0.0002
fs1 -0.0568 0.0336 -0.1226 0.0090 0.0287 0.0412 -0.0525 0.1098
fs2 0.0178 0.0303 -0.0411 0.0774 -0.0115 0.0376 -0.0845 0.0624
fs3 0.0394 0.0218 -0.0033 0.0820 0.0105 0.0252 -0.0395 0.0596
msm -0.1318 0.5503 -1.2348 0.9443 0.4624 1.1531 -1.7344 2.7384
σ2
u 0.3890 0.4201 0.2153 0.6604 1.1531 0.3555 0.6338 2.0121

(III.1) Gibbs Cart MH P = 0.05 (III.2) Gibbs Cart MH P = 0.05
Estimate Std. Error 95% HDR Estimate Std. Error 95% HDR

Intercept 1.2086 1.3278 -1.3657 3.8252 -0.5243 2.4254 -5.2583 4.3361
sex -0.1509 0.0755 -0.2990 -0.0035 -0.1901 0.0988 -0.3845 0.0028
fs1 -0.0570 0.0338 -0.1233 0.0098 0.0290 0.0409 -0.0514 0.1083
fs2 0.0183 0.0306 -0.0412 0.0785 -0.0107 0.0374 -0.0844 0.0631
fs3 0.0389 0.0216 -0.0034 0.0807 0.0098 0.0252 -0.0401 0.0587
msm -0.1665 0.5649 -1.2735 0.9383 0.4320 1.0963 -1.7518 2.5616
σ2
u 0.3867 0.1373 0.2167 0.6627 1.1523 0.3572 0.6388 2.0180

Table C.3: Bayesian Probit estimation with different prior precision
Note: Initial 5,000 draws were discarded for burn-in
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C.2 Nonparametric imputation of high-dimensional

data containing filters

n 1st
Quartil

Median 3rd
Quartil

Mean

Household
net income

11,643† 2,000 3,000 4,000 3,192

Individual
net income

8,581* 1,000 1,680 2,400 1,929

Individual
gross income

8,581* 1,540 2,500 3,800 3,036

† Number of respondents n=11,649, n=6 dropouts at household net income.

* Respondents without an actual employment episode (n=2,975), only a sideline

job or an activity with training character (n=93) were excluded from calculation,

11,516 reported in the employment history module.

Table C.4: Descriptives of the NEPS income data
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n Any income
information
missing

All income
information
missing

Household
net income

11,643† 13.4% (1,556) 3.8% (443)

Individual
net income

8,581* 8.0% (695) 2.1% (186)

Individual
gross income

8,581* 10.7% (934) 3.5% (309)

† Number of respondents n=11,649, n=6 dropouts at household net income.

* Respondents without an actual employment episode (n=2,975), only a sideline

job or an activity with training character (n=93) were excluded from calculation,

11,516 reported in the employment history module.

Table C.5: Frequencies of nonresponse in the NEPS income data
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C.3 Some insights into the performance of CART

True parameters Relative Bias in %
BD (CC) CART-MICE

E (Y ) 4.0001 -0.0074 0.7213 0.0149
P(Y < 3) 0.2033 0.2895 -1.5328 -0.0100
P(Y < 4) 0.3943 0.2047 -1.3054 0.1920
P(Y < 6) 0.7967 0.0175 -0.5632 0.1092
ρ(X1, Y ) 0.7500 0.0517 0.1188 -0.1538
ρ(X2, Y ) -0.8278 0.0473 0.0432 -0.3936
α 1.7501 0.0493 0.0087 0.7671
β1 1.0000 -0.0570 -0.0041 -0.3909
β2 -0.5000 0.0061 0.0423 -0.8817
Average - 0.0669 -0.2746 -0.0830

Table C.6: Relative bias: DS1

True parameters Mean squared error
BD (CC) CART-MICE

E (Y ) 4.0001 0.0013 0.0045 0.0016
P(Y < 3) 0.2033 0.0001 0.0002 0.0001
P(Y < 4) 0.3943 0.0001 0.0003 0.0002
P(Y < 6) 0.7967 0.0001 0.0002 0.0001
ρ(X1, Y ) 0.7500 0.0001 0.0002 0.0001
ρ(X2, Y ) -0.8278 0.0000 0.0001 0.0001
α 1.7501 0.0006 0.0015 0.0022
β1 1.0000 0.0003 0.0006 0.0008
β2 -0.5000 0.0000 0.0001 0.0001
Average - 0.0003 0.0009 0.0006

Table C.7: Mean squared error: DS1
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True parameters Relative Bias in %
BD (CC) CART-MICE

E (Y ) 4.0001 -0.0040 0.6708 0.0352
P(Y < 3) 0.2564 0.3293 -1.2043 0.3044
P(Y < 4) 0.4357 0.1416 -1.0147 0.1909
P(Y < 6) 0.7821 -0.0118 -0.3686 0.0083
ρ(X1, Y ) 0.5810 0.1798 0.3324 0.6321
ρ(X2, Y ) -0.6413 0.1206 -0.0564 -0.1216
α 1.7498 -0.2161 -0.6710 -0.5944
β1 1.0001 0.2086 0.7711 1.1116
β2 -0.5000 0.0290 -0.1822 -0.6984
Average - 0.0863 -0.1914 0.0965

Table C.8: Relative bias: DS2

True parameters Mean squared error
BD (CC) CART-MICE

E (Y ) 4.0001 0.0024 0.0072 0.0045
P(Y < 3) 0.2564 0.0001 0.0003 0.0002
P(Y < 4) 0.4357 0.0001 0.0003 0.0002
P(Y < 6) 0.7821 0.0001 0.0002 0.0002
ρ(X1, Y ) 0.5810 0.0003 0.0007 0.0007
ρ(X2, Y ) -0.6413 0.0003 0.0008 0.0007
α 1.7498 0.0046 0.0104 0.0131
β1 1.0001 0.0020 0.0046 0.0060
β2 -0.5000 0.0003 0.0007 0.0009
Average - 0.0011 0.0028 0.0029

Table C.9: Mean squared error: DS2
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True parameters Relative Bias in %
BD (CC) CART-MICE

E (Y ) 4.4907 -0.0310 0.9190 -0.0233
P(Y < 3) 0.1335 0.7323 -1.6383 0.7767
P(Y < 4) 0.2187 0.4879 -2.0868 0.5288
P(Y < 6) 0.7837 0.0403 -0.8790 0.0092
ρ(X1, Y ) 0.8784 0.0156 0.0395 0.0440
ρ(X2, Y ) -0.3136 -0.6276 0.0249 0.6719
α 3.9976 -0.0227 0.0800 1.8028
β1 1.5004 0.0189 -0.0005 -0.2316
β2 0.2512 0.1037 -0.7078 -14.6252
Average - 0.0797 -0.4721 -1.2274

Table C.10: Relative bias: DS3

True parameters Mean squared error
BD (CC) CART-MICE

E (Y ) 4.4907 0.0019 0.0067 0.0022
P(Y < 3) 0.1335 0.0001 0.0002 0.0001
P(Y < 4) 0.2187 0.0001 0.0002 0.0001
P(Y < 6) 0.7837 0.0001 0.0003 0.0001
ρ(X1, Y ) 0.8784 0.0000 0.0000 0.0000
ρ(X2, Y ) -0.3136 0.0004 0.0010 0.0005
α 3.9976 0.0059 0.0137 0.0204
β1 1.5004 0.0001 0.0002 0.0003
β2 0.2512 0.0015 0.0035 0.0052
Average - 0.0011 0.0029 0.0032

Table C.11: Mean squared error: DS3
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True parameters Coverages in %
BD (CC) CART-MICE

E (Y ) 4.0001 95.8 71.0 93.6
P(Y < 3) 0.2033 95.0 3.0 93.4
P(Y < 4) 0.3943 94.6 3.4 93.6
P(Y < 6) 0.7967 95.2 1.6 92.0
ρ(X1, Y ) 0.7500 96.6 96.6 91.8
ρ(X2, Y ) -0.8278 96.0 96.4 93.2
α 1.7501 94.2 96.4 90.0
β1 1.0000 95.0 95.6 88.8
β2 -0.5000 94.2 93.6 86.0
Average - 95.2 62.0 91.4

Table C.12: Coverages: DS1, 50 iterations

True parameters Relative Bias in %
BD (CC) CART-MICE

E (Y ) 4.0001 0.0680 0.9195 0.0655
P(Y < 3) 0.2033 0.2261 -1.9194 0.0209
P(Y < 4) 0.3943 0.0496 -1.9205 -0.0955
P(Y < 6) 0.7967 -0.0545 -0.7361 0.0504
ρ(X1, Y ) 0.7500 -0.0360 -0.1135 -0.3554
ρ(X2, Y ) -0.8278 0.0238 0.0685 -0.3857
α 1.7501 0.0033 0.0118 0.8732
β1 1.0000 -0.0148 -0.0201 -0.6231
β2 -0.5000 0.0163 -0.0169 -0.8069
Average - 0.0313 -0.4293 -0.1396

Table C.13: Relative bias: DS1, 50 iterations
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True parameters Mean squared error
BD (CC) CART-MICE

E (Y ) 4.0001 0.0015 0.0049 0.0019
P(Y < 3) 0.2033 0.0001 0.0002 0.0001
P(Y < 4) 0.3943 0.0001 0.0003 0.0002
P(Y < 6) 0.7967 0.0001 0.0002 0.0001
ρ(X1, Y ) 0.7500 0.0001 0.0002 0.0002
ρ(X2, Y ) -0.8278 0.0000 0.0001 0.0001
α 1.7501 0.0006 0.0014 0.0020
β1 1.0000 0.0002 0.0006 0.0008
β2 -0.5000 0.0000 0.0001 0.0002
Average - 0.0003 0.0009 0.0006

Table C.14: Mean squared error: DS1, 50 iterations
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True parameters Coverages in %
BD (CC) CART-MICE

E (Y ) 4.0001 96.2 71.4 92.2
P(Y < 3) 0.2033 94.8 4.0 92.0
P(Y < 4) 0.3943 97.4 3.2 92.6
P(Y < 6) 0.7967 95.4 4.4 93.2
ρ(X1, Y ) 0.7500 98.0 97.2 93.6
ρ(X2, Y ) -0.8278 97.0 96.6 90.4
α 1.7501 96.6 93.8 87.8
β1 1.0000 96.0 95.0 90.4
β2 -0.5000 96.2 95.8 88.8
Average - 96.4 62.4 91.2

Table C.15: Coverages: DS1, 30 imputations

True parameters Relative Bias in %
BD (CC) CART-MICE

E (Y ) 4.0001 0.0607 0.7741 0.0550
P(Y < 3) 0.2033 0.2885 -1.4389 -0.0244
P(Y < 4) 0.3943 0.0861 -1.3778 0.0951
P(Y < 6) 0.7967 -0.0795 -0.6682 0.0067
ρ(X1, Y ) 0.7500 -0.0143 -0.0873 -0.3129
ρ(X2, Y ) -0.8278 -0.0451 -0.0344 -0.4355
α 1.7501 -0.0703 -0.1083 0.6536
β1 1.0000 0.0915 0.0719 -0.4085
β2 -0.5000 0.0037 0.0650 -0.7145
Average - 0.0357 -0.3115 -0.1206

Table C.16: Relative bias: DS1, 30 imputations
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True parameters Mean squared error
BD (CC) CART-MICE

E (Y ) 4.0001 0.0014 0.0049 0.0018
P(Y < 3) 0.2033 0.0001 0.0002 0.0001
P(Y < 4) 0.3943 0.0001 0.0003 0.0002
P(Y < 6) 0.7967 0.0001 0.0002 0.0001
ρ(X1, Y ) 0.7500 0.0001 0.0002 0.0001
ρ(X2, Y ) -0.8278 0.0000 0.0001 0.0001
α 1.7501 0.0006 0.0017 0.0023
β1 1.0000 0.0002 0.0006 0.0008
β2 -0.5000 0.0000 0.0001 0.0001
Average - 0.0003 0.0009 0.0006

Table C.17: Mean squared error: DS1, 30 imputations
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C.4 Nonparametric imputation of panel data

True parameters Relative Bias in %
BD (CC) CART-MICE

E (Yt1) 3.9996 -0.0732 0.6875 -0.0493
P(Yt1 < 3) 0.2110 0.4154 -1.1997 0.2833
P(Yt1 < 4) 0.3970 0.2663 -1.3102 0.1741
P(Yt1 < 6) 0.7891 0.0978 -0.5497 0.1310
ρ(X1,t1, Yt1) 0.7208 0.0230 -0.0114 -0.4178
ρ(X2,t1, Yt1) -0.7954 0.0327 0.0134 -0.6290

E (Yt2) 4.0000 -0.0316 -0.0583 -0.0222
P(Yt2 < 3) 0.2109 0.3158 1.0073 0.2465
P(Yt2 < 4) 0.3968 0.2026 0.4733 0.0984
P(Yt2 < 6) 0.7891 0.0782 0.1110 0.1018
ρ(X1,t2, Yt2) 0.7207 -0.0225 0.0018 -0.4893
ρ(X2,t2, Yt2) -0.7953 0.0562 -0.0144 -0.5618

α 1.7497 0.1167 0.0778 1.0696
β1 1.0003 -0.0996 -0.0140 -0.6690
β2 -0.4998 0.0034 -0.0190 -0.9958
Average - 0.0921 -0.0536 -0.1153

Table C.18: Relative bias: DS1, Panel
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True parameters Relative Bias in %
BD (CC) CART-MICE

E (Yt1) 4.0001 -0.0364 0.6528 -0.0754
P(Yt1 < 3) 0.2110 0.4333 -1.1235 0.2892
P(Yt1 < 4) 0.3968 0.1323 -1.2301 0.2529
P(Yt1 < 6) 0.7890 0.0916 -0.4777 0.2009
ρ(X1,t1, Yt1) 0.7205 0.0440 0.1575 -0.3135
ρ(X2,t1, Yt1) -0.7953 0.0071 -0.0212 -0.6227

E (Yt2) 3.9998 0.0208 -0.0052 0.0158
P(Yt2 < 3) 0.2250 0.3158 1.0072 0.2502
P(Yt2 < 4) 0.4020 0.0988 0.2594 0.0441
P(Yt2 < 6) 0.7750 -0.0037 0.0075 -0.0247
ρ(X1,t2, Yt2) 0.6709 0.0681 0.0854 -0.6806
ρ(X2,t2, Yt2) -0.8198 0.0034 0.0241 -0.5120

α 1.7500 0.0350 -0.1287 0.9708
β1 1.0001 -0.0196 0.0831 -0.7752
β2 -0.5000 0.0114 0.0506 -0.7788
Average - 0.0801 -0.0439 -0.1173

Table C.19: Relative bias: DS2, Panel
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True parameters Relative Bias in %
BD (CC) CART-MICE

E (Yt1) 4.0001 -0.0116 0.7360 -0.0209
P(Yt1 < 3) 0.2110 0.3088 -1.5025 0.1507
P(Yt1 < 4) 0.3969 0.1317 -1.4935 0.0275
P(Yt1 < 6) 0.7891 0.0426 -0.5032 0.1014
ρ(X1,t1, Yt1) 0.7205 -0.0474 -0.0226 -0.4718
ρ(X2,t1, Yt1) -0.7952 -0.0501 -0.0818 -0.6389

E (Yt2) 4.7506 -0.0220 -0.0353 -0.0283
P(Yt2 < 3) 0.1581 0.6017 1.5524 0.5614
P(Yt2 < 4) 0.2983 0.4662 0.7945 0.2350
P(Yt2 < 6) 0.6225 0.1123 0.3006 0.2191
ρ(X1,t2, Yt2) 0.8108 0.0215 0.0780 -0.2731
ρ(X2,t2, Yt2) -0.8109 0.0176 0.0313 -0.6760

α 1.7504 -0.0219 -0.1095 0.7065
β1 0.9998 0.0260 0.1103 -0.1882
β2 -0.5001 0.0090 0.0509 -1.0604
Average - 0.1056 -0.0063 -0.0904

Table C.20: Relative bias: DS3, Panel
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True parameters Relative Bias in %
BD (CC) CART-MICE

E (Yt1) 4.0005 0.0096 0.7502 -0.0066
P(Yt1 < 3) 0.2088 0.4211 -1.0521 0.4045
P(Yt1 < 4) 0.4005 0.1445 -1.3605 0.1268
P(Yt1 < 6) 0.7927 0.0049 -0.6098 0.0636
ρ(X1,t1, Yt1) 0.7319 0.0034 0.0180 -0.4707
ρ(X2,t1, Yt1) -0.8079 -0.0859 -0.0033 -0.6735

E (Yt2) 4.7499 0.0118 -0.0556 -0.0185
P(Yt2 < 3) 0.1560 0.3313 1.3349 0.3098
P(Yt2 < 4) 0.2976 0.2348 0.7109 0.2862
P(Yt2 < 6) 0.6228 0.0443 0.1887 0.1204
ρ(X1,t2, Yt2) 0.8200 -0.0437 -0.1097 -0.3210
ρ(X2,t2, Yt2) -0.8199 0.0310 -0.0628 -0.7056

α — — — —
β1 1.0001 -0.0422 0.0142 -0.3765
β2 -0.5001 0.1261 0.0635 -1.0416
Average - 0.0009 -0.0001 -0.0016

Table C.21: Relative bias: DS4, Panel
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True parameters Mean squared error
BD (CC) CART-MICE

E (Yt1) 3.9996 0.0016 0.0050 0.0022
P(Yt1 < 3) 0.2110 0.0001 0.0002 0.0001
P(Yt1 < 4) 0.3970 0.0001 0.0003 0.0002
P(Yt1 < 6) 0.7891 0.0001 0.0002 0.0001
ρ(X1,t1, Yt1) 0.7208 0.0001 0.0002 0.0002
ρ(X2,t1, Yt1) -0.7954 0.0001 0.0002 0.0002

E (Yt2) 4.0000 0.0016 0.0037 0.0022
P(Yt2 < 3) 0.2109 0.0001 0.0002 0.0002
P(Yt2 < 4) 0.3968 0.0001 0.0003 0.0002
P(Yt2 < 6) 0.7891 0.0001 0.0002 0.0002
ρ(X1,t2, Yt2) 0.7207 0.0001 0.0002 0.0002
ρ(X2,t2, Yt2) -0.7953 0.0001 0.0002 0.0002

α 1.7497 0.0006 0.0015 0.0023
β1 1.0003 0.0002 0.0006 0.0008
β2 -0.4998 0.0000 0.0001 0.0002
Average - 0.0003 0.0009 0.0006

Table C.22: Mean squared error: DS1, Panel
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True parameters Mean squared error
BD (CC) CART-MICE

E (Yt1) 4.0001 0.0017 0.0046 0.0022
P(Yt1 < 3) 0.2110 0.0001 0.0002 0.0002
P(Yt1 < 4) 0.3968 0.0001 0.0003 0.0002
P(Yt1 < 6) 0.7890 0.0001 0.0002 0.0001
ρ(X1,t1, Yt1) 0.7205 0.0001 0.0003 0.0002
ρ(X2,t1, Yt1) -0.7953 0.0001 0.0002 0.0002

E (Yt2) 3.9998 0.0018 0.0044 0.0027
P(Yt2 < 3) 0.2250 0.0001 0.0002 0.0002
P(Yt2 < 4) 0.4020 0.0001 0.0003 0.0002
P(Yt2 < 6) 0.7750 0.0001 0.0002 0.0001
ρ(X1,t2, Yt2) 0.6709 0.0001 0.0003 0.0002
ρ(X2,t2, Yt2) -0.8198 0.0001 0.0001 0.0001

α 1.7500 0.0006 0.0015 0.0025
β1 1.0001 0.0002 0.0005 0.0008
β2 -0.5000 0.0000 0.0001 0.0001
Average - 0.0004 0.0009 0.0007

Table C.23: Mean squared error: DS2, Panel
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True parameters Mean squared error
BD (CC) CART-MICE

E (Yt1) 4.0001 0.0015 0.0048 0.0022
P(Yt1 < 3) 0.2110 0.0001 0.0002 0.0001
P(Yt1 < 4) 0.3969 0.0001 0.0003 0.0002
P(Yt1 < 6) 0.7891 0.0001 0.0002 0.0002
ρ(X1,t1, Yt1) 0.7205 0.0001 0.0002 0.0002
ρ(X2,t1, Yt1) -0.7952 0.0001 0.0002 0.0002

E (Yt2) 4.7506 0.0023 0.0058 0.0031
P(Yt2 < 3) 0.1581 0.0001 0.0002 0.0001
P(Yt2 < 4) 0.2983 0.0001 0.0003 0.0002
P(Yt2 < 6) 0.6225 0.0001 0.0003 0.0002
ρ(X1,t2, Yt2) 0.8108 0.0000 0.0001 0.0001
ρ(X2,t2, Yt2) -0.8109 0.0001 0.0001 0.0001

α 1.7504 0.0006 0.0016 0.0023
β1 0.9998 0.0002 0.0004 0.0006
β2 -0.5001 0.0000 0.0001 0.0002
Average - 0.0004 0.0010 0.0007

Table C.24: Mean squared error: DS3, Panel
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True parameters Mean squared error
BD (CC) CART-MICE

E (Yt1) 4.0005 0.0015 0.0044 0.0020
P(Yt1 < 3) 0.2088 0.0001 0.0002 0.0001
P(Yt1 < 4) 0.4005 0.0001 0.0003 0.0002
P(Yt1 < 6) 0.7927 0.0001 0.0002 0.0001
ρ(X1,t1, Yt1) 0.7319 0.0001 0.0002 0.0002
ρ(X2,t1, Yt1) -0.8079 0.0001 0.0002 0.0002

E (Yt2) 4.7499 0.0023 0.0053 0.0028
P(Yt2 < 3) 0.1560 0.0001 0.0002 0.0001
P(Yt2 < 4) 0.2976 0.0001 0.0002 0.0001
P(Yt2 < 6) 0.6228 0.0001 0.0003 0.0002
ρ(X1,t2, Yt2) 0.8200 0.0000 0.0001 0.0001
ρ(X2,t2, Yt2) -0.8199 0.0001 0.0001 0.0001

α — — — —
β1 1.0001 0.0003 0.0007 0.0006
β2 -0.5001 0.0001 0.0002 0.0001
Average - 0.0003 0.0009 0.0005

Table C.25: Mean squared error: DS4, Panel
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