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Abstract The strong direct detection limits could be point-
ing to dark matter – nucleus scattering at loop level. We
study in detail the prototype example of an electroweak sin-
glet (Dirac or Majorana) dark matter fermion coupled to an
extended dark sector, which is composed of a new fermion
and a new scalar. Given the strong limits on colored particles
from direct and indirect searches we assume that the fields
of the new dark sector are color singlets. We outline the pos-
sible simplified models, including the well-motivated cases
in which the extra scalar or fermion is a Standard Model par-
ticle, as well as the possible connection to neutrino masses.
We compute the contributions to direct detection from the
photon, the Z and the Higgs penguins for arbitrary quantum
numbers of the dark sector. Furthermore, we derive compact
expressions in certain limits, i.e., when all new particles are
heavier than the dark matter mass and when the fermion run-
ning in the loop is light, like a Standard Model lepton. We
study in detail the predicted direct detection rate and how
current and future direct detection limits constrain the model
parameters. In case dark matter couples directly to Standard
Model leptons we find an interesting interplay between lep-
ton flavor violation, direct detection and the observed relic
abundance.
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1 Introduction

Direct detection (DD) experiments search for dark mat-
ter (DM) scatterings off nuclei in underground detectors.
The current limits impose very strong constraints on the
parameters of weakly interacting massive particles (WIMPs),
which are one of the prototype DM candidates. The current
most stringent DD limits for WIMPs in the mass range of
[10, 1000] GeV come from xenon experiments [1–3]. In this
work we hypothesize that the absence of DD signals may be
reconciled with the WIMP paradigm by generating the scat-
tering at one-loop order and thus with an extra 1/(16π2)2

suppression of the cross section. As we will see, current
and next-generation experiments are able to test significant
regions in parameter space of this class of scenarios.

There have been several works in the literature on DD at
one-loop order. In Refs. [4–7] the authors studied DD limits
from photon interactions in the context of flavored DM and
in Ref. [8] in the context of a radiative neutrino mass model
(the scotogenic model [9]) with inelastic Majorana DM. In
Ref. [10] the authors performed a detailed study of one-loop
scenarios with a charged mediator directly coupled to Stan-
dard Model (SM) fields, including the Z and Higgs boson
contributions. For couplings to the first and second genera-
tion of quarks the dominant contribution may be due to scat-
tering at tree level, while box diagrams may be significant
for third generation quarks. Similarly, Ref. [11] studied direct
detection of Majorana DM directly coupled to both left- and
right-handed SM leptons via two charged scalar mediators.
The Z and Higgs contributions were also computed for the
scotogenic model in Ref. [12] and also for DM connected to
the SM via a neutrino-portal in Ref. [13]. In Ref. [14] the
authors studied the one-loop contributions to DD in models
with pseudo-scalar mediators or inelastic scattering. In the
context of supersymmetry detailed computations have been
performed for the bino [15] and wino [16–18] DM cases. In
the latter scenario loop contributions to DM-nucleus scatter-
ing due to gauge bosons may give significant corrections.

In this work we study the DD scattering rate for the case
of DM being a SM singlet Dirac or Majorana fermion ψ ,
which is coupled to a more complex dark sector. A con-
served global U(1) or Z2 symmetry is assumed in order to

q q

ψψ
S

γ/Z/h

F

q q

ψψ
F

γ/Z/h

S

Fig. 1 One-loop penguin diagrams for fermionic singlet DM scattering
off nuclei. They are generated with up to two heavy particles from a dark
sector (a scalar S and a fermion F). The photon and Z boson are coupled
to the new fermion (left diagram) or the new scalar (right diagram). For
minimal models with one fermion the Higgs boson h only couples to
the scalar S, but SM fermions in the loop also lead to a Higgs penguin
diagram where the SM Higgs boson is attached to the fermion line. The
possible quantum numbers of the dark particles are given in Table 1

stabilize the DM particle. In our scenario there are no tree-
level contributions to the DD cross section. The lowest order
scattering off nuclei occurs at one-loop order via the penguin
diagrams in Fig. 1, with a dark fermion F and a dark scalar
S running in the loop. We assume that the new particles are
color singlets, so that there are no flavor changing neutral
currents in the quark sector, and there are only weak limits
from direct production at the large hadron collider (LHC). In
this way box-diagram contributions to the scattering ampli-
tude are absent. Our main goal is to study analytically the
different contributions to the DM-nucleus scattering, as well
as to outline possible simplified models, including those with
SM fields. In addition we analyze the current limits from DD,
as well as constraints coming from the relic abundance, lep-
ton flavor violation (LFV) and anomalous magnetic dipole
moments (AMMs).1

The paper is structured as follows: In Sect. 2 we study
the UV completions of the fermionic DM scenario includ-
ing models with SM particles in the loop. In order to fix the
notation we review in Sect. 3 the relevant effective operators
for DD at the quark level and also their non-relativistic (NR)
versions at the nucleon level. In Sect. 4 we derive analytical
expressions for the Wilson coefficients and provide compact
expressions in certain limits. In Sect. 5 we perform a numeri-
cal analysis of the phenomenology relevant for DD. First we
show some numerical examples for the Wilson coefficients
at the quark and nucleon level (the latter in their NR ver-
sion). Afterwards we derive the current limits on the model
parameters and discuss future expected sensitivity. We also
discuss limits from LFV processes for models in which DM
is directly coupled to SM leptons. Sections 4 and 5 contain
the main results of this paper. We discuss other phenomeno-
logical aspects of the proposed scenario, such as the DM

1 In our scenario leptonic electric dipole moments appear only at two-
loop order and are therefore suppressed.
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Table 1 Particle content and quantum numbers of the fermionic DM
scenario with a dark fermion and a dark scalar. The dark sector is charged
under a global U(1) symmetry which stabilizes the DM ψ

Dark sector Field SU(3)C SU(2)L U(1)Y U(1)dm

Dark matter ψ 1 1 0 1

Dark scalar S 1 dF YF qs

Dark fermion F 1 dF YF qs + 1

relic abundance, invisible decays and searches at colliders in
Sect. 6. Finally we present our conclusions in Sect. 7.

The manuscript also includes several appendices with
technical details. The generalization to larger symmetry
groups in the dark sector is presented in Appendix A. In
Appendix B we show a compact expression for the differ-
ential cross section in order to make contact with the lit-
erature and we briefly review the differential event rate for
DD. In Appendix C we give generic expressions for Higgs
and Z boson invisible decays into DM. Relevant formulae
for LFV observables and for AMMs of leptons are provided
in Appendix D. Details about the calculation of the relic
abundance are collected in Appendix E and the numerical
expressions for the matching to NR operators are given in
Appendix F.

2 Fermionic singlet dark matter

In the following sections we first present simplified models of
Dirac and Majorana fermion DM with vector-like fermions
in the loop and then discuss SM particles in the loop.

2.1 Dirac dark matter

The new particles can have different combinations of quan-
tum numbers as displayed in Table 1. We consider a global
U(1)dm symmetry in the dark sector to stabilize DM. It can
equally be replaced by a discrete Zn subgroup. Other sym-
metry groups are discussed in Appendix A.

The interaction Lagrangian for the fields ψ , F and S reads

Lψ = i ψ /∂ ψ − mψ ψ ψ + i F /D F − mF F F

+ (
DμS

)†
DμS − V(S, H)

−
(
y1 FR S ψL + y2 FL S ψR + H.c.

)
,

(1)

where H is the SM Higgs doublet2 and V(S, H) denotes
the scalar potential. The DM ψ is a SM fermion singlet,
but is charged under the dark sector symmetry. The fields
F and S are charged under the electroweak gauge group.
Electroweak gauge invariance requires them to be in the same

2 We define the SM Higgs doublet H with hypercharge 1/2.

SU(2)L irreducible representation of dimension dF and to
have equal hypercharge YF . Notice that in some cases there
can be interactions with the SM fields which are subject to
strong constraints. We discuss such cases in Sect. 2.3.

In the case of a global symmetry, even if DM is stable at the
renormalizable level, higher-order Planck-scale suppressed
operators may induce its decay [19]. In particular for a Dirac
fermion ψ the dimension-5 operator ψ H̃†( /DL) with the SM
lepton doublet L is one such example. One can construct UV
completions of such operators by softly-breaking the global
symmetry in the dark sector which induces decays, possibly
radiatively. The limits dramatically depend on the DM mass
and the Wilson coefficient of the operator. For the rest of the
paper we assume that DM is cosmologically stable and that
it satisfies all indirect detection constraints on decaying DM.

In our simplified scenario with the interactions given in
Eq. (1) it would seem that two of the three new states were
stable: ψ and one of S or F . For the following discussion let
us assume mS ≥ mF + mψ so that F is potentially stable,
while S can decay.3 Then, there are two possibilities: (i) If
the fermion F is a SM singlet (but charged under the dark
group), it also contributes to the DM relic density.4 Hence,
the DD rate of the ψ has to be rescaled by its smaller density
under the assumption that the global density scales as the
local one, and there is a similar DD rate for F via Higgs pen-
guins with ψ in the loop. (ii) If F is charged under the SM
group (SU(2)L charges and/or hypercharge) its electrically
charged components have to decay given the stringent limits
on charged stable particles [21–24]. If the components of F
mix with SM leptons, they decay like in the model discussed
in Refs. [25,26]. Otherwise, as for the DM via the interaction
ψ H̃†( /DL), the fermion F may also decay into SM particles
via non-renormalizable operators, which are allowed on gen-
eral grounds, unless F carries fractional electric charge, or
other symmetries forbid them. In this case the fermion F has
to decay much faster than the long-lived DM particle.5

If F is a SM lepton, a charged lepton or a neutrino, it may
be stable. Similarly, if F is a right-handed neutrino, it mixes
with SM neutrinos and decay. Also, in the case in which S
is the SM Higgs doublet and F a heavier fermion, the latter
may decay into the SM Higgs boson. We discuss all these
possibilities in more detail below.

In general the SM Higgs boson couples to the new scalar
multiplet S via a Higgs portal interaction in the scalar poten-
tial V(S, H). Depending on the quantum numbers of the
particles in the dark sector, it may also have an interac-
tion with the fermion F , for instance if the latter is a SM

3 Similar arguments apply to the other case where S might be stable.
4 In this case, ifmψ � mF , coannihilations play an important role [20].
5 Naively, the scalar S being lighter than the fermion F appears to be
more natural given that there are 13 dimension-5 operators which induce
decay for a scalar compared to one for a fermion [19].
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lepton. In the case of a charged lepton � in the loop, the
largest Higgs interactions are proportional to the square of
its mass (m�/v)2 � 1, with the electroweak vacuum expec-
tation value (VEV) v � 246 GeV. Therefore this contri-
bution is suppressed and can be safely neglected. While
these interactions are even further suppressed for Dirac
neutrinos, in principle it is possible to have O(1) Yukawa
couplings for Majorana neutrinos (we discuss this case in
Sect. 2.3.3).

The Higgs portal contribution depends on the coupling of
the SM Higgs boson h to a pair of scalars S after electroweak
symmetry breaking. In the case of a complex scalar S, we
parameterize it in terms of

V(S, h) ⊃ λHS v h(S†S) (2)

and similarly for a real scalar S with an additional factor 1/2
in order for the Feynman rule (and therefore the expression
of the Wilson coefficients) to be identical

V(S, h) ⊃ λHSv

2
hS2. (3)

In the case of a complex scalar S, the Higgs couplings of
Eq. (2) are induced by SM gauge invariant Higgs portal inter-
actions such as

(H†H)(S†S) = hvS†S + · · · (4)

(H†S)(S†H) = hv|Sd |2 + · · · ,

with Sd ≡ (Sd,r + i Sd,i )/
√

2. (5)

(H†S)2 + H.c. = hv
(
S2
d,r − S2

d,i

)
+ · · · (6)

H†[S†, S]H = hv(|S+|2 − |S−|2) + · · · (7)

The term in the first line is always present, while those in
the second and third lines require S to be an SU(2)L doublet,
S ≡ (Su, Sd)T . Moreover the term in Eq. (6) assumes that S
has the same hypercharge as the SM Higgs doublet, which
we write after spontaneous electroweak symmetry breaking
as H ≡ (0, (h + v)/

√
2)T . Finally the term in the last line

exists for electroweak triplets S ≡ S · σ , where S± denotes
the coefficients of σ±.6 In the following we parameterize all
the results in terms of λHS , which allows to easily generalize
the result of Higgs penguins for arbitrary combinations of
Higgs portals. If S± (Sd,r and Sd,i ) have the same mass,
their contribution from the interactions (5) and (6) to the
DD scattering amplitude exactly cancels due to the relative
minus sign in the interaction term.7 For equal masses the

6 σ ≡ (σ1, σ2, σ3) denote the Pauli matrices, with σ± = (σ1 ± iσ2)/2.
7 This is not expected on general grounds, as the same terms in
the potential generate splittings after electroweak symmetry break-
ing between the different components of the scalar multiplets. Also
a mass splitting, typically much smaller (O(100) MeV), is generated

Table 2 Particle content and quantum numbers of the Majorana DM
scenario with a dark fermion and a dark scalar. The dark sector is charged
under a Z2 symmetry which stabilizes the DM ψ

Dark sector Field SU(3)C SU(2)L U(1)Y Z2

Dark matter ψ 1 1 0 −1

Dark scalar S 1 dF YF ±1

Dark fermion F 1 dF YF ∓1

effective coupling λHS can be generalized from the singlet
case to an arbitrary SU(2)L representation of dimension dF
by replacing

λHS →
{

2 λHS,1 + λHS,2 if dF = 2

dF λHS,1 otherwise
(8)

where λHS,1 (λHS,2) is the coupling of the quartic scalar
coupling in Eq. (4) (Eq. 5).

2.2 Majorana dark matter

If the DM particle is in a real representation of a stabi-
lizing dark sector group, it could be a Majorana particle
ψ ≡ ψL + (ψL)c (keeping the 4-component notation). We
consider the simplest case of a Z2 symmetry in the dark sec-
tor and comment on the general case in Appendix A. The
particle content for Majorana DM is listed in Table 2. The
Lagrangian is given by

Lψ = 1

2
ψ (i /∂ − mψ)ψ + i F /D F − mF F F

+ (
DμS

)†
DμS − V(S, H)

−
(
y1 FR S ψ + y2 FL S ψ + H.c.

)
.

(9)

If additionally YF = 0 and consequently S and F both trans-
form according to a real representation, they can be chosen
to be a real scalar and a Majorana fermion F = FR + (FR)c,
respectively, and the fermionic part of the Lagrangian sim-
plifies to

Lψ = 1

2
ψ (i /∂ − mψ)ψ + 1

2
F (i /∂ − mF ) F

−
(
y F S ψ + H.c.

)
(10)

with y = y1 = y2.

2.3 Standard Model particles in the loop

It is also interesting to study the case where one of the par-
ticles in the loop is a SM state. As either the scalar S or the
fermion F need to be charged under the dark symmetry, only

Footnote 7 continued
radiatively by loops of gauge bosons between the neutral and the charged
components of the SU(2)L multiplets [27].
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Table 3 Particle content and quantum numbers of the dark fermion
scenario with the SM lepton doublet L and a dark scalar

Sector Field SU(3)C SU(2)L U(1)Y U (1)dm

Dark matter ψ 1 1 0 1

Dark scalar S 1 2 − 1/2 −1

SM lepton doublet L 1 2 − 1/2 0

one of them can be substituted by a SM field. We discuss in
the following the cases of S being the Higgs doublet H , and
F being the lepton doublet L , the right-handed (RH) charged
lepton eR or a right-handed neutrino νR . Interestingly, these
types of leptophilic models have some very nice features:
(i) the absence of charged stable particles; (ii) the possibil-
ity to generate the correct relic abundance by annihilations
into leptons; (iii) an interplay with LFV and leptonic AMMs;
(iv) the possible relation to lepton number violation (LNV)
and neutrino masses; (v) other possible phenomenological
signals at future lepton colliders, like MET searches.

2.3.1 Left-handed lepton doublet

The quantum numbers of the remaining states are fixed by
demanding that the fermion F in the loop is the SM lepton
doublet L , as can be seen in Table 3. Moreover y1 = 0
in Eq. (1) for Dirac DM (or Eq. (9) for Majorana DM),
because we are now considering only chiral left-handed (LH)
fermions.

The coupling of the DM to the lepton doublets can lead
to new contributions to LFV processes as well as AMMs of
leptons, which are induced by loop diagrams with the dark
scalar and the DM in the loop. These pose strong constraints
on the flavor structure of the Yukawa couplings. However,
the flavor constraints can be easily circumvented if DM only
couples to the tau lepton.

In general, for direct couplings to leptons, it is possible
to assign lepton number either to the DM particle ψ or the
scalar S. An example with Majorana fermion DM ψ and a
discrete Z2 symmetry (S → −S, ψ → −ψ) is the well-
known scotogenic model, proposed in Ref. [9] and exten-
sively studied, e.g., in Refs. [8,28–37]. See also the recent
review on radiative neutrino mass models [38]. In this case
lepton number is broken by the combination of the Majo-
rana mass term of ψ and the operator in Eq. (6). These
interactions generate neutrino masses and lepton mixing at
one-loop order, which significantly constrain the parameter
space of the model. However, in general DD and neutrino
masses decouple, because the LNV coupling in the potential
could be made arbitrarily small without affecting DD. For
fermionic DM, typically, either coannihilations [20] or the
freeze-in mechanism [39,40] need to be invoked in order to
be compatible with low energy constraints, specially the limit
stemming from non-observation of μ → eγ .

Table 4 Particle content and quantum numbers of the dark fermion
scenario with the SM right-handed charged lepton eR and a dark scalar

Sector Field SU(3)C SU(2)L U(1)Y U(1)dm

Dark matter ψ 1 1 0 1

Dark scalar S 1 1 − 1 − 1

RH charged lepton eR 1 1 − 1 0

Table 5 Particle content and quantum numbers of the dark fermion
scenario with the SM right-handed neutrino νR and a dark scalar

Sector Field SU(3)C SU(2)L U(1)Y U(1)dm

Dark matter ψ 1 1 0 1

Dark scalar S 1 1 0 − 1

RH neutrino νR 1 1 0 0

2.3.2 Right-handed charged lepton

If F is the SM right-handed (RH) charged lepton eR, the
quantum numbers are fixed as shown in Table 4. In this case
y2 = 0 in Eq. (1) for Dirac DM (or Eq. (9) for Majorana DM),
because the fermions have RH chirality. As in the previous
case one should expect new contributions to lepton AMMs
and LFV processes. By demanding that the scalar singlet S
has lepton number + 1, the total lepton number is conserved
at the renormalizable level (the term in Eq. (6) is absent) and
consequently no Majorana neutrino masses are induced.

2.3.3 Right-handed neutrino

Dark matter may also couple to right-handed neutrinos νR

with y2 = 0 in Eq. (1) for Dirac DM (or Eq. (9) for Majorana
DM). In this case the quantum numbers are fixed as shown
in Table 5. As all particles in the loop are neutral, the only
possible interactions are with the Z and Higgs bosons via
the mixing of left- and right-handed neutrinos. This mixing
is induced after electroweak symmetry breaking by

LνR = −L Yν νR H̃ − 1

2
νRMRνcR + H.c.. (11)

In this scenario there are two possibilities regarding the nature
of neutrinos: they are Dirac fermions for MR = 0, or Majo-
rana fermions for MR 
= 0. In the latter case, Majorana
masses for the active light neutrinos are generated via the
seesaw mechanism. In the seesaw scenario the active-sterile
mixing angles are tiny, either due to small Yukawa couplings
or large right-handed Majorana neutrino masses, and thus
the Z penguin contributions and the additional Higgs pen-
guin contributions are extremely small, which agrees with
Eq. (19) of Ref. [13]. A possible way-out is to consider an
inverse-seesaw scenario, where the suppression needed to
have small neutrino masses originates from a small LNV

123
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Table 6 Particle content and quantum numbers of the DM fermion
scenario with the SM Higgs and a dark fermion

Sector Field SU(3)C SU(2)L U(1)Y U(1)dm

Dark matter ψ 1 1 0 1

SM Higgs doublet H 1 2 1/2 0

Dark fermion F 1 2 1/2 1

Majorana mass term, and not from small Yukawa couplings
and/or large right-handed Majorana masses.

As DM couples to the SM particles mainly via neutri-
nos, this is known as the neutrino portal. It has been studied
in detail for general heavy SM singlet Dirac and Majorana
fermions νR in Ref. [13] and also in Refs. [41,42].

2.3.4 Higgs doublet

Finally we consider the case of S being the SM Higgs. This
fixes the SM quantum numbers of the new particles, which
are shown in Table 6. This case is qualitatively different,
because the neutral component of the electroweak doublet
F and the fermion field ψ mix after electroweak symmetry
breaking. The lighter of the two neutral mass eigenstates is
the DM particle. The Yukawa interactions with the Higgs
necessarily induces tree-level contributions to DD via Higgs
and Z boson exchange. Although a tree-level contribution
exists, DD may still be dominated by the loop-level induced
electric or magnetic dipole moments, because they are long-
range interactions.

3 Effective operators for dark matter direct detection

In the following sections we briefly review the effective oper-
ators for DM DD. In Sect. 3.1 we show those involving DM
interactions with quarks, while in Sect. 3.2 we briefly discuss
their NR versions at the nucleon level.

3.1 Wilson coefficients at the quark level

Here we review the necessary notation for the effective inter-
actions of the DM with the quarks. The effective Lagrangian
at the quark level for a DM fermion ψ is8

Leff =
∑

k,q

cqk O
q
k +cg Og+c̃g Õg+μψOmag+dψOedm, (12)

8 We do not include twist-2 operators involving quarks and gluons in the
effective Lagrangian. These are only generated by box diagrams, which
are absent in our simplified models. They are relevant for example for
wino DM in supersymmetric theories, see e.g. Refs. [18,43].

where cqk are the dimensionful Wilson coefficients with the
quark q, cg and c̃g are the Wilson coefficients for gluon oper-
ators and μψ and dψ magnetic and electric dipole moments.
We implicitly assume that the operators are generated at a
scale above the nuclear scale, ∼ 2 GeV. See Appendix F for
further details.

We focus on the contributions to spin-independent (SI) and
spin-dependent (SD) operators of photon, Z boson and Higgs
penguins which are not momentum or velocity suppressed.
The latter would yield very small rates, as there is already the
one-loop squared factor at cross section level, 1/(16π2)2. We
start the discussion with the case of ψ being a Dirac fermion
and later on discuss the case of DM being a Majorana particle.

For SI scattering the relevant dimension-6 effective oper-
ators are

Oq
SS = mq(ψψ)(qq), Oq

VV = (ψγ μψ)(qγμq), (13)

where q denotes the quark field. Oq
SS is generated by the

gauge-invariant dimension-7 operators (ψψ)(QL H̃uR) and
(ψψ)(QLHdR), where QL , uR, dR represent the quark fla-
vor eigenstates. Oq

SS flips chirality and it is generated by
Higgs exchange and thus we factor out the quark mass mq .
Oq

VV preserves chirality and is generated by photon or Z
exchange. The contribution from the photon penguin can
be related to the anapole moment ψγ μψ ∂νFμν and the
(non-gauge invariant) milli-charge operator ψγ μψ Aμ via
the equations of motion for the photon.

There are also scatterings of the DM with gluons at two-
loop order which generate the dimension-7 operators:

Og = αs

12π
(ψψ)GaμνGa

μν, Õg = αs

8π
(ψψ)Gaμν G̃a

μν,

(14)

where a = 1, . . . , 8 are the adjoint color indices, αs is the
strong coupling constant, Gμν the gluon field strength ten-
sor and G̃μν ≡ 1

2εμνρσGρσ its dual. Og is induced from
Oq

SS after integrating out the heavy quarks. We explicitly
factorized out a loop factor, as these operators can never be
generated at tree level.

For SD interactions the relevant dimension-6 effective
operators are

Oq
AA = (ψγ μγ5ψ)(qγμγ5q), Oq

TT = (ψσμνψ)(qσμνq),

(15)

where σμν = i
2 [γμ, γν]. Only the Z boson contributes

to Oq
AA. In SM effective theory the tensor operator may

arise from one of the dimension-7 operators (ψσμνψ)(QL H̃
σμνuR) and (ψσμνψ)(QLHσμνdR) which are however not
induced at leading order.
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Photon penguins also generate long-range interactions
which are described by the magnetic (CP-even) and electric
(CP-odd) dipole moments of the DM ψ , namely

Omag = e

8π2 (ψσμνψ)Fμν, Oedm = e

8π2 (ψσμν iγ5ψ)Fμν,

(16)

with μψ and dψ the coefficients of the magnetic and electric
dipole moment operators introduced in Eq. (12), respectively.
The latter are generated radiatively and therefore it is conve-
nient to factorize a loop factor.

In the case of a Majorana DM particle there are only oper-
ators with the bilinears ψψ , ψ γ5ψ and ψ γ μγ5ψ , so that the
vector Oq

VV, the tensor Oq
TT and the dipole moment opera-

tors, Omag and Oedm, vanish identically. Thus, for SI scatter-
ing only the Higgs penguin which generates Oq

SS is present.
For SD scattering Oq

AA generated by the Z boson can also
be non-vanishing. In this case we also compute the photonic
contribution to the anapole operator

Oq
AV = (ψγ μγ5ψ)(qγμq), (17)

which gives rise to momentum-suppressed and velocity-
suppressed NR operators (both SI and SD). See also Ref. [44]
for a study of the phenomenology of Majorana DM in EFT.

In general the penguin contributions are isospin-violating,
i.e., with different couplings to protons and neutrons ( fn 
=
f p). This isospin violation is maximal for photon contribu-
tions which only couple to protons. The latter dominate the
DM-nucleus scattering via the dipole moments μψ and dψ .
Hence for SI DM-nucleus scattering the enhancement due to
coherent scattering is Z2 instead of A2 with Z(A) being the
number of protons (nucleons) of the nucleus.

3.2 Non-relativistic Wilson coefficients at the nucleon level

The previous Wilson coefficients at the quark level generate
non-trivial Wilson coefficients at the nucleon level [45–47].
The different contributions generally interfere. The matrix
elements of DM-nucleon scattering can be written as a linear
combination of the following relevant NR operators

ON
1 = Iψ IN ON

4 = �Sψ · �SN (18)

ON
5 = �Sψ ·

(
�v⊥ × i �q

mN

)
IN ON

6 =
(

�Sψ · �q
mN

) (
�SN · �q

mN

)

(19)

ON
8 =

(�Sψ · �v⊥
)
IN ON

9 = �Sψ ·
(

i �q
mN

× �SN
)

(20)

ON
11 = −

(
�Sψ · i �q

mN

)
IN (21)

in the convention of Ref. [48]. Iψ (IN ) denotes the identity
operators for DM (nucleons), �Sψ (�SN ) denotes DM (nucleon)
spin, and �q and �v⊥ describe the momentum and velocity

exchange. We use DirectDM [48] to match the simpli-
fied models onto the NR operators. The numerical expres-
sions for the matching to NR operators are collected in
Appendix F. The NR Wilson coefficients may depend on the
transferred momentum �q . Note the different normalizations
of the spinors and the effective operators between Refs. [45–
47,49] and Refs. [48,50–52]. In addition to the different def-
initions of the quark- and nucleon-level operators, in order
to translate between these conventions one needs to multiply
the NR Wilson coefficients of Refs. [48,50–52] by 4mψmN

(4mψ |�q|2) in the case of contact (long-range) interactions.
Further details can be found in the recent Refs. [48–52]. The
differential cross section for DM scattering off nuclei is given
in Appendix B.

4 Analytical results

The effective operators in Eq. (12) are generated at one-loop
order from penguin diagrams mediated by the photon and the
Z and Higgs bosons. We have computed the different contri-
butions using the Mathematica packages FeynRules [53],
FeynArts [54], FormCalc and LoopTools [55–57],
ANT [58] and Package X [59,60]. As we show below,
although the long-range interactions are expected to dom-
inate, the short-range effective operators become relevant in
some cases. One obvious example is DM-nucleus scattering
of Majorana DM, since the dipole moments vanish. There-
fore we show below all relevant contributions.

The interesting SI (SD) interactions in Eq. (12) are given
by the dipole moment operatorsOmag andOedm as well as the
operators Oq

SS, Og and Oq
VV (Oq

AA). All the other operators
in Eq. (12) are suppressed in the limit of small momentum
transfer by a factor |�q|2/m2

N or |�q|2/m2
ψ , where mN is the

nucleon mass. In the following we express the SI and SD
Wilson coefficients in Eq. (12) in terms of the ratios

xψ ≡ mψ

mS
and xF = mF

mS
, (22)

and the loop function

g
(
xψ, xF

) =
ln

(
1−x2

ψ+x2
F+

√
x4
ψ+(1−x2

F )2−2x2
ψ(1+x2

F )

2xF

)

√
x4
ψ + (1 − x2

F )2 − 2x2
ψ(1 + x2

F )
.

(23)

It is convenient to define the vector and axial Yukawa cou-
plings:

yV ≡ 1

2
(y1 + y2) , yA ≡ 1

2
(y2 − y1) . (24)
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Similarly, the interaction of the fermion F with the Z boson
in Eq. (1) may be written in terms of vector and axial-vector
couplings, namely

LZ
F = e

cw sw
Zμ F γμ (zV − zA γ5) F, (25)

where e > 0 is the proton electric charge, and sw (cw)denotes
the sine (cosine) of the weak mixing angle. If F is a vector-
like fermion, then we have

zV = c2
w Q − YF , zA = 0, (26)

where Q is the electric charge of the (component of the) field
F , in units of e, and YF is the corresponding hypercharge.
Conversely, for a SM lepton F we have

zV = 1

2

(
(1 − 2s2

w) Q − YF

)
, zA = 1

2
(Q − YF ) ,

(27)

and the Yukawa couplings are

yV = yA = y2

2
if S is a doublet of SU(2)L,

yV = − yA = y1

2
if S is a singlet of SU(2)L.

(28)

For simplicity of notation we report the full analytic results
for SU(2)L singlets F and S. In the case of no mass splittings
between the components of the SU(2)L multiplets of dimen-
sion dF it is straightforward to generalize the results: The
expressions for photon penguins and electric and magnetic
dipole moments are generalized by replacing Q → dF YF .
Higgs penguins are generalized for different scalar multiplets
as in Eq. (8).

Most Z penguin contributions (apart from some with chi-
ral SM fermions) vanish at leading order. This is also the case
for other SU(2)L multiplets.

We summarize below the relevant contributions to the
(Dirac or Majorana) DM–quark scattering amplitude. We
have checked that our expressions agree with those reported
in the literature in the appropriate limits: dipole and anapole
moments in Refs. [5,6,8,10], and also for the Z boson con-
tributions in Refs. [10,15].

4.1 Dirac dark matter

The leading contributions for Dirac fermion DM are from
dipole moments, the operators Oq

V V and Oq
AA, and the scalar

operatorOq
SS . Integrating out heavy quarks induces the gluon

operator Og .

4.1.1 Electromagnetic dipole moments

The magnetic and electric dipole moments are given by

μψ = − Q

4 x3
ψ mS

|yV |2
[
x2
ψ +

(
1 − xψ xF − x2

F

)
ln xF

−
(
x3
ψ xF − (1 − x2

F )2

+x2
ψ(1 + x2

F ) + xψ xF (1 − x2
F )

)
g
(
xψ, xF

)]

− (
yV → yA, xψ → −xψ, xF → xF

)
, (29)

and

dψ = − Q

2 x2
ψ mS

Im[yV y∗
A] xF

×
[

ln xF +
(

1 + x2
ψ − x2

F

)
g
(
xψ, xF

)
]
.

(30)

Both Omag and Oedm flip chirality and therefore the dom-
inant contributions to their coefficients are proportional to
the heaviest fermion mass, either mψ or mF . In the limit
mψ � mF < mS these expressions reduce to

μψ ≈ − Q

4mS

(
|yV |2 − |yA|2

)
xF

1 − x2
F + 2 ln xF

(1 − x2
F )2

+ Q

8mS

(
|yV |2 + |yA|2

)
xψ

1 − x2
F (x2

F − 4 ln xF )

(1 − x2
F )3

,

(31)

dψ ≈ − Q

2mS
Im[y∗

V yA] xF 1 − x2
F + 2 ln xF

(1 − x2
F )2

. (32)

4.1.2 Photon penguin

Photon penguins induce the operatorOq
V V . The relevant Wil-

son coefficient in the effective Lagrangian (12) is

cqVV = − αem

24 π x4
ψ

1

m2
S

Q Qq |yV |2

×
[(

− 3x6
ψ + 6x5

ψ xF + 12xψ xF (1 − x2
F )2

+ 8(1 − x2
F )3 + 2x4

ψ(5 + x2
F )

− 6x3
ψ xF (1 + 3x2

F ) − 3x2
ψ(5 − 2x2

F − 3x4
F )

)

× g
(
xψ, xF

)

1 − (xψ − xF )2

+ 2x2
ψ(4 − 3x2

ψ + 6xψ xF − 4x2
F )

1 − (xψ − xF )2

+ (8 + x2
ψ − 4xψ xF − 8x2

F ) ln xF

]

+ (
yV → yA, xψ → −xψ, xF → xF

)
, (33)
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where Qq is the electric charge of the quark q in units of
e > 0. In the limit mψ � mF < mS the expression above
reduces to

cqVV ≈ Q Qq αem

24 π m2
S

( |yV |2 + |yA|2 )

×3 − 3 x2
F + 2 (2 + x2

F ) ln xF
(1 − x2

F )2
. (34)

In the case the mass of the fermion in the loop is much smaller
than the momentum transfer, mF � √−q2, we have

cqVV ≈ Q Qq αem

72 π m2
S

( |yV |2 + |yA|2 )

×
[ 12x4

ψ ln xq − 8x2
ψ(3 − x2

ψ) − 3(8 − 7x2
ψ + 3x4

ψ) ln
(
1 − x2

ψ

)

x4
ψ(1 − x2

ψ)

]

(35)

with xq ≡
√

−q2/m2
S .

4.1.3 Z penguin

For a vector-like fermion the resulting SI and SD scatter-
ing amplitudes are suppressed by |�q|2/m2

F and |�q|2/m2
S due

to a cancellation between the diagrams where the Z boson
couples to the scalar and to the fermion. Therefore, no strong
constraints on the model parameters can be obtained. For SM
leptons in the loop we distinguish two cases:

(i) If S is a singlet under SU(2)L, the axial-vector cou-
pling in Eq. (27) is zA = 0 and both SI and SD scattering
amplitudes are suppressed as for a vector-like fermion.

(ii) If S ≡ (S0, S−)T is a doublet under SU(2)L, there
are contributions from both diagrams where the Z boson is
attached to the SM lepton or the scalar in the loop

cqVV =
∑

f={�,ν}

(1 + 2 Q f )αem

16 π cw sw m2
Z

qV
e

x2
f

x2
ψ

|y2|2

×
[ (

x2
f − 1 − x2

ψ

)
g

(
xψ, x f

) − ln x f

]
, (36)

cqAA = cqVV (qV → qA). (37)

The couplings qV,A are qV /e = 3 − 8s2
w/(12cwsw) and

qA/e = −1/(4cwsw) for up-type quarks and qV /e =
−3 + 4s2

w/(12cwsw) and qA/e = 1/(4cwsw) for down-type
quarks. Q f denotes the electric charge of the lepton. We
define xψ ≡ mψ/mS− , x� ≡ m�/mS− and xν ≡ mν/mS0

with the charged lepton mass m� and the neutrino mass mν .
This agrees with the expression in Ref. [10]. The contribution
with light active neutrinos in the loop is negligible because
it is proportional to x2

ν and thus the contribution is entirely
determined by the charged lepton in the loop. However, for
models with a neutrino portal as outlined in Sect. 2.3.3 there
may be a sizable contribution from right-handed neutrinos
(mixed with left-handed neutrinos) in the loop. In the limit

of small DM mass, xψ � 1, the contribution of right-handed
neutrinos is

cqVV,N = αem sin2 θ

16πcwswm2
Z

qV
e

|y2|2 x2
N

(1 − x2
N )2

(
1 − x2

N + 2 ln xN
)

(38)

cqAA,N = cqVV,N (qV → qA) (39)

with the active-sterile mixing angle θ . We define xN ≡
mN/mS with the heavy neutrino mass mN . These interac-
tions are also discussed in Ref. [13] (see also Ref. [61]). In
the case of mixing of vector-like charged fermions with SM
charged leptons, there is an overall minus sign in the expres-
sions of Eqs. (38) and (39).

4.1.4 Higgs penguin

At leading order in |�q|2 there is only the contribution to the
SI scattering amplitude. The relevant Wilson coefficient gen-
erated by the Higgs-portal interaction is

cqSS = − λHS

16 π2 x3
ψ m2

h

1

mS
|yV |2

×
[
x2
ψ +

(
1 − x2

ψ − xψ xF − x2
F

)
ln xF

+
(

1 − x2
ψ − 2xψ xF − x2

F

) (
1 − x2

ψ + xψ xF − x2
F

)

×g
(
xψ, xF

)
]

− (
yV → yA, xψ → −xψ, xF → xF

)
. (40)

As previously mentioned we neglect the contribution from
the Higgs penguin where the Higgs boson couples to a SM
lepton in the loop, because it is suppressed by (m�/v)2 � 1.9

As in the case of Omag and Oedm, the operator Oq
SS flips chi-

rality, and therefore the dominant contribution to its Wilson
coefficients is proportional to either mψ or mF . If both F
and ψ are charged under U(1)dm, then mψ < mF and thus
the largest contribution comes with the chirality flip on the
fermion line of F . On the contrary if F is a SM lepton the
largest Higgs contribution is proportional to mψ . In the limit
mψ � mF < mS , Eq. (40) simplifies to

9 For the case of SM leptons in the loop this other contribution of the
Higgs coupling to the leptons is given in Ref. [10]. For the neutrino
portal these interactions are given in Ref. [13].
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cqSS ≈ − λHS

16 π2 m2
h mS (x2

F − 1)2

×
{
xF (|yV |2 − |yA|2)

(
−x2

F + 2 x2
F ln (xF ) + 1

)

+ xψ

2 (x2
F − 1)

(|yV |2 + |yA|2)
(
−3 x4

F

+4 x4
F ln (xF ) + 4 x2

F − 1
) }

. (41)

4.2 Majorana dark matter

4.2.1 Photon penguin

For Majorana DM ψ the electromagnetic dipole moments
identically vanish and the only allowed electromagnetic form
factor is the anapole moment. This gives rise to the effective
operator Oq

AV in Eq. (17). We obtain

cqAV = − Q Qq αem

2 π x2
ψ m2

S

Re[y∗
V yA]

[
ln xF

+
(

1 + x2
ψ

3
− x2

F

)

g
(
xψ, xF

) ]
. (42)

In the limit mψ � mF < mS this simplifies to

cqAV ≈ Q Qq αem

6 π m2
S

Re[y∗
V yA]

×3 − 3 x2
F + 2 (2 + x2

F ) ln xF
(1 − x2

F )2
. (43)

In the case the mass of the fermion in the loop is much smaller
than the momentum transfer, mF � √−q2, we have

cqAV = −Q Qq αem

18 π m2
S

Re[y∗
V yA]

× 2x2
ψ(5 − 6 ln xq) + 3(3 + x2

ψ) ln
(
1 − x2

ψ

)

x2
ψ(1 − x2

ψ)
, (44)

where xq ≡
√

−q2/m2
S .

4.2.2 Z and Higgs penguin

For a vector-like fermion F in the loop the Z penguin dia-
gram does not contribute to the SI scattering amplitude,
because the DM vector current identically vanishes for Majo-
rana fermions. The SD scattering amplitude is suppressed by
|�q|2/m2

F and |�q|2/m2
S due to a cancellation similar to that

occurring in the case of Dirac fermion DM, see Sect. 4.1.3.
If F is a left-handed lepton doublet, and consequently S ≡
(S0, S−)T is an SU(2)L doublet, we find at leading order in
|�q|2: cqVV = 0 and cqAA is a factor of two larger than result for

the Dirac case provided in Eq. (37). If F is a right-handed
charged lepton or a right-handed neutrino, the scalar S is
necessarily an SU(2)L-singlet and thus the axial-vector cou-
pling zA in Eq. (27) is zero and both SI and SD scattering
Z -mediated amplitudes are suppressed as for a vector-like
fermion. In some models, like with right-handed neutrinos
or with vector-like fermions, there can be mixing with SM
leptons. These generate couplings to the Z and the Higgs
bosons, see discussion around Eqs. (38) and (39), and foot-
note 9.

For the Higgs penguin there is only a contribution to the SI
amplitude cqSS at leading order in |�q|2, which again is a factor
of two larger than in the Dirac DM case, given in Eq. (40).
The fact that the h and the Z penguin contributions to the non-
zero Wilson coefficients, cqSS and cqAA, are a factor of 2 larger
for Majorana than for Dirac DM, can be understood from the
presence of extra crossed diagrams for Majorana particles,
where the initial and final DM particles are interchanged.

5 Numerical analysis

We useLikeDM [62,63] to compute the differential rates and
the experimental upper bounds on our scenarios. We have
also performed cross checks with the program of Ref. [49].
First we show results for the event rates and upper limits for
Dirac and Majorana DM, having either vector-like fermions
or SM leptons in the loop. For the latter case we also show
upper limits from LFV signals. In the following we parame-
terize the vector and axial Yukawa couplings of Eq. (24) in
terms of their absolute value and phase as yV = |yV |eiφV

and yA = |yA|eiφA .

5.1 Wilson coefficients at the quark level

In order to illustrate the relative weight of the different con-
tributions, we plot in Fig. 2 the long and short-range contri-
butions with up-type quarks for vector-like fermions (upper
panel) and for a SM left-handed lepton doublet (lower panel)
in the loop. The plots on the left correspond to Dirac DM,
while the plots on the right are for Majorana DM. Unless oth-
erwise stated we always set the dark charge Qψ to one and fix
the Higgs portal coupling, λHS = 3. The Wilson coefficients
of the short-range interactions (dimension-6 operators) have
been rescaled by the nuclear magneton μN = e/(2mp) to
compare them to the (dimension-5) dipole moments.

For Dirac DM with vector-like fermions in the loop (top
left) we show the magnetic moment μψ (in solid green), the
dipole moment dψ (dashed orange), as well as the short-range
contributions mediated by the photon (dot-dashed blue) and
the Higgs (dotted purple). We have fixed mF = 600 GeV,
mS = 500 GeV, yV = 1 and yA = 1.3 e1.4 i . The DM
electric dipole moment dψ is around 10−4 fm and it dom-
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inates, followed closely by the magnetic moment. The Higgs
and the short-range photon interactions are always very sup-
pressed, below 10−9 fm. All Wilson coefficients increase for
mψ ∼ mF +mS (not shown as we demand ψ to be the light-
est particle charged under U(1)dm), when the particles in the
loop are almost on-shell. For this example the Wilson coeffi-
cients μψ and cuSS change sign at particular values of the DM
mass and thus there is a dip in their absolute magnitude. The
case of Majorana DM with vector-like fermions (top right)
only shows the short-range Higgs and photon contributions,
the latter being the anapole moment (dot-dashed dark blue).
These Wilson coefficients are of similar size as in the Dirac
case, although the photon anapole (Higgs) contribution is
smaller (a factor of two larger) than the photon short-range
(Higgs) Wilson coefficient of the Dirac case.

For Dirac DM with SM lepton doublets in the loop (bot-
tom left) we show the magnetic moment μψ (in solid green),
the short-range contributions mediated by the photon (dot-
dashed blue), the Z penguin SI (dashed brown) and SD
(dashed red) scattering and the Higgs penguin (dotted pur-
ple). The electric dipole moment dψ vanishes at one-loop
order. We have fixed mS = 1000 GeV and yV = yA =
y2/2 = 1/2. In the case of the (light) SM leptons in the loop,
the photon penguin contribution cuVV,γ depends on the trans-

ferred momentum
√

2mAER ,10 for which we use ER = 8.59
keV (which is a reasonable value for xenon nuclei, with mass
mXe � 132 GeV). The magnetic dipole moment dominates,
followed by the photon short-range contribution which is
roughly ∼ 10−8 fm. The increase of μψ and the Higgs con-
tribution with mψ is easily understood from chirality argu-
ments. This also implies that μψ and cuSS are suppressed
with respect to the case of vector-like leptons (cf. upper-left
panel of Fig. 2) by the DM mass, except in the region of mψ

close to mS . The Higgs and the Z penguin interactions are
always very suppressed (for the Z penguin the SD amplitude
is smaller than the SI contribution, due to the factors qV,A/e
in Eqs. (36) and (37)), below 10−11 fm, and therefore they
can be safely neglected. All Wilson coefficients increase for
mψ ∼ mF + mS .

For Majorana DM with SM lepton doublets in the loop
(bottom right) the Higgs and the Z SD amplitudes are a fac-
tor of two larger than in the Dirac case and with the same
dependence on mψ , while the anapole Wilson coefficient
(dot-dashed purple) is slightly larger than the photon short-
range contribution present in the Dirac case. Notice that this
is the opposite behavior of the case with vector-like fermions.

5.2 Wilson coefficients at the nucleon level

The previous Wilson coefficients at the quark level can
interfere and generate non-trivial effective operators at the

10 mA is the nucleus mass and ER the recoil energy.

nucleon level, see Sect. 3.2. We plot in Fig. 3 the NR Wilson
coefficients with protons (neutrons) in dotted (dashed) lines
(N = n, p for neutrons and protons). All Wilson coefficients
are displayed in dimensionless units, by rescaling them with
the square of the electroweak VEV, v = 246.2 GeV. As for
Fig. 2, the upper panel is for vector-like fermions and the
lower panel for SM left-handed lepton doublets. The plots
on the left correspond to Dirac DM, while the plots on the
right are for Majorana DM.

For a vector-like fermion F (upper panels of Fig. 3), we fix
mF = 600 GeV,mS = 500 GeV, yV = 1 and yA = 1.3 e1.4 i .
For Dirac DM (left plot), we show the coefficients short-
range SI cN1 (black) and the SD scattering cN4 (blue), and
the long-range contributions cN5 (red), cN6 (orange) and cN11
(green). Notice that both cN5 and cN11 are generated by the elec-
tric and magnetic DM dipole moments proportionally to the
nucleon charge and they are therefore absent for neutrons.
The long-range Wilson coefficients cN5 , cN6 and cN11 domi-
nate. The SD coefficients cN4 are more than two orders of
magnitude smaller and very similar for protons and neutrons,
although slightly larger for the former. The SI coefficients cN1
are the smallest ones, and cp1 decreases with the DM mass up
to mψ � 500 GeV. The difference in behavior of cp1 and cn1
stems mainly from the non-zero contribution of μψ to the for-
mer (cp1 ∝ μψ/mψ ). In this example the Wilson coefficients
cN1 change sign at about mψ = 500 GeV. For Majorana DM
with vector-like fermions (top right) the cN1 contributions
generated by the Higgs penguin diagram (black) are very
similar for protons and neutrons (they are superimposed in
the plot). The anapole moment generates cp8 (solid purple),
cp9 (solid magenta) and cn9 (dashed magenta) which are very
similar, specially cp8 , to the cN1 contributions (black). All the
Wilson coefficients are in the range 10−4 − 10−3, except in
the region of DM mass when a Wilson coefficient changes
sign.

For Dirac DM with SM leptons (bottom left) the phe-
nomenology is very rich. The long-range Wilson coefficients
cp5 (dotted red), cp6 (dotted orange) and cn6 (dashed orange)
dominate (cn5 = 0, as it is proportional to the electric charge
of the nucleon). They increase with the DM mass as they
are generated dominantly by μψ , i.e., chirality needs to be
violated. Similarly cN4 (blue) with p (dotted) and n (dashed)
have a dominant contribution from μψ and therefore increase
with mψ . Regarding cn1 (dashed black), the increase of its
slope reflects the fact that the short-range Higgs contribu-
tion (which grows with mψ ) increasingly becomes more and
more comparable to the photon short-range coefficient, but
in any case cn1 remains very suppressed. cp1 is dominated
by the photon penguin, and both the short-range contribu-
tion parameterized by cqV V,γ and the long-range contribu-
tion from the magnetic moment μψ/mψ are important. Due
the dependence of the quark-level Wilson coefficients on the
DM mass, the NR Wilson coefficient cp1 is basically con-
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Fig. 2 Wilson coefficients at the quark level (with up-type quarks)
versus the DM mass mψ . The Higgs portal coupling is λHS = 3.
The vector and scalar coefficients which originate from the photon,
Z and Higgs penguin diagrams, respectively, have been rescaled by the

nuclear magneton μN = e/(2mp). The photon penguin contribution
cuVV,γ depends on the transferred momentum q for light SM leptons:

We choose a recoil energy ER = 8.59 keV for 132
54 Xe which results in

|�q|2 = 2.11 × 10−3 GeV2

stant with respect to it. For Majorana DM with SM leptons
(bottom right) the Wilson coefficients cp8 (solid purple), cp9
(solid magenta) and cn9 (dashed magenta), which are gener-
ated by the anapole operator, dominate. cN6 (cp6 and cn6 are
superimposed in the plot) do not increase with the DM mass,
unlike in the Dirac case, because here they come from cNAA
and not from μψ ; cN1 , generated by the Higgs penguin dia-
gram, increases with mψ and is very similar for n and p (cn1
and cp1 are superimposed in the plot). Finally, cN4 , generated
by the Z penguin, are similar for both n and p (superimposed
in the plot) and very suppressed, as expected.

5.3 Direct detection event rates

The different Wilson coefficients are expected to generate dif-
ferent features in the DD differential spectrum. In the upper-
left panel of Fig. 4 we plot the DD differential event rates
in xenon versus the recoil energy ER for Dirac DM with a
vector-like fermion F (solid blue) and with a right-handed
tau (dotted green), and for Majorana DM with a vector-like
fermion (dashed red) and with a right-handed tau lepton (dot-
dashed purple). For details on the astrophysical assumptions
used in the numerical analysis see Ref. [63]. The rate for
Dirac DM with a vector-like fermion is roughly 9 orders of
magnitude larger than that with a SM lepton (a tau lepton
in this case), because in the latter case the magnetic dipole
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Fig. 3 Non-relativistic nucleon level Wilson coefficients evaluated for
132
54 Xe at ER = 8.59 keV (and thus |�q|2 = 2.11 × 10−3 GeV) versus
the DM mass mψ . The Higgs portal coupling is λHS = 3. All Wilson

coefficients are displayed in dimensionless units by rescaling with the
square of the electroweak VEV v = 246.2 GeV

moment μψ is suppressed by the DM mass mψ . The small-
est rate occurs for Majorana DM with a right-handed tau in
the loop. The relative size of the spectra is obvious from the
relative size of the NR Wilson coefficients discussed in the
previous section.

In the upper-right panel we show the spectrum normalized
to the maximum value (5.7 × 105 [9.7 × 10−4] t−1 day−1

keV−1 for Dirac [Majorana] DM) for the case with vector-
like fermions in the loop, for Dirac DM (solid blue) and
Majorana DM (dashed red). The spectral shapes are quite
different, which is mainly due to the fact that there is no
magnetic moment for Majorana DM.

In the bottom panel of Fig. 4 we plot the DD differential
rates for Dirac DM with coupling to a right-handed electron
(solid blue), muon (dashed red) and tau (dotted green). The

spectra are the largest for the electron (the lightest lepton),
with maxima at roughly the same recoil energy. The maxima
go approximately in the ratios ∼ (4 : 2 : 1) for e, μ, τ . This
is due to the dependence on the short-range contribution of
the photon penguin, cqV V,γ , via the NR Wilson coefficient

cp1 . The spectra are dominated by the photon short-range
contribution cqV V,γ for this choice of parameters.

5.4 Direct detection limits

Next we study the upper limits that current DD experiments
can impose on the scenarios discussed so far. In order to
illustrate current direct detection limits, we consider different
scenarios of TeV-scale dark sectors. We also discuss how the
limits vary with the masses of the particles in the loop. We

123



 471 Page 14 of 27 Eur. Phys. J. C   (2018) 78:471 

Fig. 4 Differential event rates for different combinations of DM candi-
dates and fermions in the loop. The DM mass is mψ = 90 GeV and the
Higgs portal coupling is λHS = 3. In the case of a vector-like fermion

F and a scalar S in the loop we fix mF = 600 GeV, mS = 500 GeV,
yV = 1 and yA = 1.3 ei 1.4. In the case of a right-handed τ lepton we
fix mS = 1000 GeV and y1 = 1

show the 90% C.L. upper limits from current DD experiments
that have xenon as a target, which provide the most stringent
limits for SI interactions for our range of DM masses. We
showmψ � 5 GeV, as very light DM does not produce recoils
at energies above the threshold of the DD experiments. The
limits are subject to large uncertainties from nuclear physics
and astrophysics as well as from experimental uncertainties.
In the following we do not show limits from Higgs and Z
boson invisible decay widths into DM, as those are weaker
than the ones coming from DD in our scenarios. In Sect. 6.2
we discuss some examples where these limits can be relevant,
and complementary to DD, specially for light DM masses,
and in Appendix C we provide the relevant expressions for
the Higgs and Z boson invisible decay rates.

In the left panel of Fig. 5 we plot the upper limits for
Dirac DM in the plane |yV | versus mψ for XENON1T (solid
brown), PandaX (dashed green) and LUX (dotted purple),
together with their combined limit (thicker solid red line). We
have fixed mS = 500 GeV, mF = 600 GeV, λHS = 0.1, the
ratio of Yukawa couplings |yA|/|yV | = 1.3 and the phases
of the Yukawa couplings φV = 0 and φA = 1.4. As expected
the bounds are weakened at very large and very small DM
masses. At large DM masses the limits appear to approach
a constant value, instead of decreasing as 1/mψ as expected
from the DM number density. This is due to the non-trivial
dependence of the Wilson coefficients on mψ . In particular
the Wilson coefficients generally increase for mψ → mF +
mS . The |yV | limits are of the order of ∼ 10−2 for a large
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Fig. 5 DM direct detection 90% C.L. limits with a vector-like fermion
in the loop. We fixmS = 500 GeV,mF = 600 GeV, the ratio of Yukawa
couplings |yA|/|yV | = 1.3 and the phases of the Yukawa couplings are

φV = 0 and φA = 1.4. Unless specified the Higgs portal coupling is
λHS = 0.1. We highlight in gray the region where the Yukawa coupling
is non-perturbative, |yV | >

√
4π

range of DM masses between 10 GeV and 500 GeV. This
is a clear example of the superb sensitivity achieved by DD
experiments, which are able to probe such small Yukawa
couplings for loop-induced scenarios of Dirac DM.

In the right panel of Fig. 5 we show the limits for Majorana
DM with λHS = 0.1 (dashed red) and λHS = 3 (dotted
green), together with those for Dirac DM (solid blue). The
current limits for Majorana DM are very weak, close to the
naive perturbativity limit. Notice that the Higgs interactions
are non-negligible: changing λHS = 0.1 to λHS = 3 the
upper bound on the Yukawa couplings improves by a factor
of ∼ 6 (at the level of the rate, the scalar quartic coupling
enters quadratically, while the Yukawa couplings enter to
the fourth power). The difference with respect to the strong
limits for Dirac DM stems, of course, from the absence of
dipole moments for Majorana DM. In the gray shaded region,
the Yukawa coupling is non-perturbative, |yV | >

√
4π , and

therefore the one-loop computation cannot be trusted.

5.5 Interplay with lepton flavor violation and relic
abundance

When there are SM charged leptons running in the loop,
there may also be limits from LFV processes. We provide the
relevant expressions for �α → �βγ , μ − e conversion and
�α → �β�γ �δ in Appendix D.11 It is therefore interesting to
study the interplay between both types of signals. Although
one may naively expect that LFV limits are stronger (because
an accidental symmetry of the SM is violated), we see in the
following that this is not the case in all scenarios.

11 In the following, we do not show results for LFV Higgs and Z boson
decays, as the experimental limits on these are weaker than limits from
leptonic LFV decays.

In Fig. 6, top-left panel, we plot the DD upper limits12 in
the plane |y1| versusmψ , assuming equal couplings to all lep-
tons, i.e., ye1 = yμ

1 = yτ
1 = y1 (we denote this the “symmet-

ric” case). In Fig. 6 top-right, middle-left and middle-right
panels we show the cases of no couplings to taus, electrons
and muons, respectively. Left-handed and right-handed lep-
tons in the loop lead to the same result. We show the cases
of Dirac DM (solid red), and Majorana DM with λHS = 0.1
(dashed light blue) and λHS = 3 (dashed green). We have
fixed mS = 1000 GeV for the four upper plots. The most
relevant 90% C.L. LFV limits are shown using dotted lines:
μ → eγ (green), μ−e conversion (orange), μ → 3e (black)
and �aμ (brown).13 Notice that LFV limits do not depend
on whether the DM is a Dirac or Majorana fermion. Also,
we emphasize once more that DD limits are subject to large
astrophysical and nuclear uncertainties, which are absent in
the case of LFV experiments.

In addition we plot the contour of the DM relic abundance,
set by t-channel DM annihilations ψψ → �α�β mediated by
the scalar S, with a dot-dashed navy blue (purple) line for
Dirac (Majorana) DM, whose leading contribution is from
s-wave (p-wave) scattering. We use the instantaneous freeze-
out approximation which is sufficient for our purposes (see
Sect. 6.3.1 and Appendix E for more details and the rele-
vant expressions). Above the �h2 contour the DM would be
under abundant and requires an additional component of DM
to account for the observed relic abundance. Below the �h2

12 In the following we only show the combined limit from all xenon
experiments, like the thicker solid red line shown in the left panel in
Fig. 5, but for the case of SM leptons in the loop.
13 This corresponds to the 4σ limit coming from the AMM of the muon
�aμ. This discrepancy with respect to the SM cannot be explained in
our model, because the additional contribution is negative and thus leads
to a larger departure from the experimental value.
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Fig. 6 Combined direct detection 90% C.L. limits for Dirac dark mat-
ter (solid red), and Majorana dark matter with λHS = 0.1 (dashed light
blue) and λHS = 3 (dashed green), with right-handed charged leptons
in the loop. Contours of the correct relic abundance set by ψψ → �α�β

annihilations mediated by the scalar S are shown as dot-dashed navy
blue (purple) line for Dirac (Majorana) dark matter. The dotted lines
indicate constraints from the relevant LFV processes. In the gray shaded
region the Yukawa coupling is non-perturbative, |y1| >

√
4π

123



Eur. Phys. J. C   (2018) 78:471 Page 17 of 27  471 

contour DM is over abundant if its abundance is solely set by
freeze-out, and thus there has to be a mechanism to further
deplete its density. It could be reduced via co-annihilation
and resonant effects [20], multi-body scatterings [64–68], or
a non-trivial thermal evolution in the early universe [69]. In
case ψ does not account for all of the DM abundance the DD
limits have to be rescaled appropriately. Assuming thermal
freeze-out reproducing the correct relic abundance imposes a
lower bound on the DM mass. In the case of equal couplings
to all leptons with mS = 1000 GeV, mψ � 10 (25) GeV
for Dirac (Majorana) DM. When one final channel is closed,
the lower limits increase by roughly 5 (15) GeV for Dirac
(Majorana) DM. For light scalar mass (see bottom-left panel
of Fig. 6), all Yukawa couplings are perturbative. However,
for heavy mS , bottom-right panel, the Yukawa couplings are
perturbative only for very heavy masses, above 0.4 (1) TeV,
as in this case the t-channel interaction is significantly sup-
pressed by the mass of the mediator.

The main changes in the case of no couplings to taus,
electrons and muons (top-right, middle-left and middle-right
panels in Fig. 6) are in the LFV limits, as depending on the fla-
vor structure, different processes are possible. In these panels
the relic abundance contours are almost identical, as the SM
leptons are always much lighter than the DM (and therefore
phase space plays no significant role). Of course, the contours
are at somewhat larger Yukawa couplings than for the “sym-
metric” scenario, as in the latter there were more available
annihilation channels. The DD limits are also slightly modi-
fied due to the different masses of SM leptons in the loop (see
also the lower panel of Fig. 4). When there are no couplings
to taus (top-right panel), the LFV limits are almost identical
to the “symmetric” scenario, because they are driven by the
first family. However, for no couplings to electrons or muons
(middle panels), DD limits are more stringent than LFV lim-
its for Dirac DM with a mass above a certain value. This is
quite remarkable: DD experiments are able to better constrain
scenarios where an accidental symmetry of the SM is vio-
lated than experiments directly searching for it. Interestingly,
limits on |y1| from trilepton τ decays (τ → 3�) dominate
over radiative τ decays (τ → �γ ) in contrast to the limits
from muon decays. As the limits from τ decays are generally
weaker and thus the corresponding Yukawa couplings larger,
box-diagram contributions to trilepton decays may give a siz-
able contribution and thus break the dipole dominance.

A few interesting remarks can be drawn from these plots.
First, note that the DD limits with SM leptons in the loop,
even for Dirac DM, are much weaker than in the scenario with
vector-like fermions in the loop, as also demonstrated in the
top-left panel of Fig. 4. Second, clearly the LFV limits are
the strongest ones, with μ → eγ the most stringent among
them. Its limit on the Yukawa coupling |y1| is a factor of a
few stronger than the one of DD for Dirac DM. Again, the
DD limits become very strong close tomψ → mS+mF as in

the case with vector-like fermions. Third, for scalar masses at
the TeV scale, the DD limit already excludes the production
via thermal freeze-out for Majorana DM, and also for Dirac
DM in the mass range 5 GeV � mψ � 200 GeV. Finally, the
muon AMM constraint is always very weak, being the limit
above the perturbativity bound.

In Fig. 6, bottom panels, we show two examples of a scalar
S in the loop with a different mass:mS = 300 GeV (left plot)
and mS = 5000 GeV (right plot). All limits are generically
stronger for mS = 300 GeV and weaker for mS = 5000
GeV compared to mS = 1000 GeV. In particular, the relative
contribution of the box diagrams and the dipole moment for
the trilepton τ decay changes: for mS = 300 GeV τ → eγ
sets a stronger limit than τ → 3e. Similarly the Yukawa
coupling required to explain the observed relic abundance
also has to be larger for heavier scalar masses, as already
discussed. Indeed, for mS = 5000 GeV almost all the limits
on the Yukawa couplings are in the non-perturbative region.

In summary, strong limits can be set for Dirac DM with
vector-like fermions in the loop. For Dirac DM with SM
leptons in the loop LFV limits or DD limits may set the
strongest bounds depending on the flavor structure and the
DM mass. Therefore, the two limits are complementary: LFV
limits are more important for DM coupling to both muons
and electrons, whereas DD limits dominate if there are no
LFV processes of type μ → eX , X being anything, and
the DM mass is not too small (mψ � 5 GeV). For Majorana
DM, LFV limits, if present, are generally more stringent than
constraints from DD. Future DD experiments and LFV lim-
its on τ decays are expected to improve by 1–2 orders of
magnitude and hence the situation is not expected to change
dramatically. If μ − e conversion in nuclei and/or μ → 3e
expected sensitivities (by several orders of magnitude) are
achieved, LFV limits will continue to dominate and even
increase their difference with respect to DD.

6 Other phenomenological aspects

6.1 LHC searches

Generally colliders may only set competitive limits via miss-
ing energy searches for light DM and SD interactions. In the
scenarios discussed here, naively the production of DM par-
ticles at the LHC occurs at one-loop level via the penguin
diagrams in Fig. 1 and is therefore suppressed. For example,
Ref. [25] showed that there are only very weak collider limits
on a model with a magnetic moment interaction. Thus it is
more promising to search for the mediators S and F at collid-
ers via qq̄ → F F̄, SS∗ mediated by the photon, the Z boson
and/or the Higgs. If the new fermion and scalar have electric
charge, the production is dominated by the Drell-Yan pro-
cess. Higgs-mediated production of exotic particles has been
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Fig. 7 Branching ratios of the Z and the Higgs bosons decaying invis-
ibly into DM (Dirac in solid, Majorana in dashed). We show in black the
case of vector-like fermions in the loop, in red the case of a tau-lepton

doublet and in blue the case of tau-lepton singlet. The experimental
upper limits on non-SM invisible decays are displayed as horizontal
gray lines. See the text for details

discussed in e.g. Ref. [70]. As we are assuming that the new
particles are not colored, only modest lower limits (below 1
TeV) are expected, unless very large SM quantum numbers
(for instance electric charges) are invoked. The dark sector
particles may decay invisibly into DM and a lighter dark sec-
tor state. The phenomenology of these decays are however
model-dependent, see discussion in Sect. 2. Another inter-
esting option would be to search for DM in models with
electrons/muons running in the loop at future lepton collid-
ers. The main production process is via t-channel exchange
of the scalar, �+�− → ψψ̄ with � = e, μ.

6.2 Z and Higgs boson invisible decays

If the DM ψ is sufficiently light [mψ < mH/2 (mZ/2)]
there is an additional contribution to the invisible width of
the Higgs (Z ) boson. In Appendix C we present the rel-
evant expressions for these processes. We find that there
are no limits from Z or Higgs boson decays into DM for
the parameter values used in Figs. 5 and 6. However, there
may be limits for small scalar/fermion/DM masses and large
Yukawa couplings. To illustrate this point we plot in Fig. 7 the
branching ratios Br(Z → ψψ) (left plot) and Br(h → ψψ)

(right plot), for Dirac (Majorana) DM with solid (dashed)
lines. For the SM widths we use �h,SM = 4.1 MeV and
�Z ,SM = 2.495 GeV, such that the Higgs branching ratio
reads Br(h → ψψ) = �h→ψψ/(�h,SM + �h→ψψ) and
similarly for the Z boson. We show the cases of different
particles running in the loop with solid lines: in black the
case of vector-like fermions with QF = YF = −1 and
in red (blue) the case of a tau-lepton doublet (singlet). For
Higgs decays the tau-lepton doublet and the singlet gener-
ate the same branching ratio, shown in blue. The experi-
mental upper limits on invisible non-SM decays are shown
as horizontal gray lines: solid for the Z boson from LEP

(the total invisible width of the Z including neutrinos is
�Z→inv = 499.1 ± 1.5 MeV [71]), and dot-dashed (dashed)
for the Higgs from CMS [72] (ATLAS [73]), which reads
Br(h → inv) < 0.24 (0.28) at 95% CL. We used mS = 120
GeV and mF = 150 GeV and a Higgs portal coupling
λHS = 0.2. For vector-like fermions in the loop we used
yV = 4 eiπ/3 and yA = 3 eiπ/4, while for SM tau-lepton
doublets [singlets] we fixed yV = [−] yA = 4 eiπ/3.

In Fig. 7 one can observe that the limits for Dirac DM are
stronger than those for Majorana DM in the case of Z boson
decays, independently of the particles in the loop, while the
situation is the opposite in the case of Higgs decays. Also,
invisible Z boson decays constrain light DM which couples
to SM leptons (the tau in this case). For Dirac DM the limits
exclude DM masses below 14 (36) GeV in the case of cou-
plings to tau singlets (doublets). The width is dominated by
cV and cA, while dA � 0 and dV is suppressed by mψ . For
vector-like fermions the width is dominated by dV and dA
with dV > dA, and there are no relevant limits. For Majorana
DM the limits are weaker than for Dirac DM, demanding
mψ � 6 (21) GeV in the case of couplings to tau singlets
(doublets), with no limits in the case of couplings to vector-
like leptons.

As in the case of the Z boson, the decays of the Higgs
boson do not pose limits on the scenario with vector-like
fermions in the loop. For the tau-lepton bA = 0 and the dom-
inant contribution to bV is proportional tomψ , asmF � mψ .
The branching ratio increases with the DM mass for low DM
masses, while at some DM mass value (� 40 GeV in the
plot) the phase space suppression dominates and the branch-
ing ratio decreases again. Therefore there is a constraint on
an intermediate DM mass range of [25, 53] GeV ([22, 55]
GeV) by ATLAS (CMS) for Dirac DM and [16, 57] GeV
([14, 58] GeV) by ATLAS (CMS) for Majorana DM.

123



Eur. Phys. J. C   (2018) 78:471 Page 19 of 27  471 

To summarize, while for vector-like fermions there are no
limits, for SM particles in the loop there may be interesting
constraints in the absence of LFV. Indeed, there is a well-
known complementarity between invisible decays and DD.
The experimental energy threshold of DD experiments limits
their ability to impose limits for arbitrarily low DM masses
and thus invisible decays may set competitive limits for low
DM masses.

6.3 Relic abundance

The production of the correct relic DM density in the early
universe is generally model-dependent. Although it is not the
main focus of this work, we briefly outline different avenues
to obtain the correct relic density. See e.g. Ref. [74] for a
connection of DD with thermal freeze-out.

6.3.1 Thermal freeze-out

If mψ > mS,mF (but of course mψ < mS + mF ), the
relic abundance can be set via the t-channel interactions
ψψ̄ → SS∗ or ψψ̄ → F F̄ . Subsequently, S and F can
decay to SM particles, in some cases at loop level or via non-
renormalizable operators. In particular if F is a SM lepton
�α , DM annihilations to SM leptons ψψ̄ → �α�̄β may set
the relic abundance. For Dirac DM the cross section is not
velocity suppressed and thus the leading (s-wave) part of the
thermally averaged annihilation cross section14 is given by

〈σv〉|D = m2
ψ

32π(m2
ψ + m2

S)
2

∑

α,β

|yi,β y∗
i,α|2, (45)

where we have summed over all possible final state leptons
(neutrinos and charged leptons) in the limit of vanishing lep-
ton masses. Here i = 1 (2) for couplings to LH (RH) leptons,
see Eq. (1). For Majorana DM the annihilation cross section
is velocity suppressed and the leading contribution is due to
p-wave scattering15

〈σv〉|M =
m2

ψ

(
m4

S + m4
ψ

)

8πx
(
m2

S + m2
ψ

)4

∑

α,β

|yi,β y∗
i,α|2, (46)

14 The thermally averaged cross section 〈σv〉 = a + 6b/x with x =
mψ/T is obtained by integrating over the annihilation cross section
σv = a + bv2, after it has been expanded up to second order in the
relative of velocity of the two DM particles in the center of mass frame
v = |�v|. Note that, although the DM is non-relativistic at freeze-out,
the relative velocity is not small, v f = √

12/x f � 0.7 c in terms of the
speed of light c.
15 Annihilation channels with 3-body final states which lift the veloc-
ity suppression are generally not important during freeze-out due to the
additional phase space suppression, but they are very important for indi-
rect detection. Their importance for indirect detection has been pointed
out in several papers [75,76], see also Refs. [6,77].

where x = mψ/T .
As discussed in Appendix E, for DM masses in the range

10 GeV � mψ � 104 GeV we obtain the correct relic abun-
dance for cross sections 〈σv〉|D � [2, 3] · 10−26 cm3 s−1 for
Dirac DM and 〈σv〉|M � [0.5, 1] · 10−23 cm3 s−1 for Majo-
rana DM. Equating these values to Eq. (45) and Eq. (46),
respectively, we plot in Fig. 6 the relic abundance contours
in the |y1| − mψ plane.

If ψ is the lightest particle in the dark sector (i.e., mψ <

mS,mF ), DM may annihilate at one-loop order into quarks
via the penguin diagrams in Fig. 1. However this is very sup-
pressed and results in an over abundance of DM and requires
another mechanism: (i) In a larger dark sector DM may anni-
hilate into other lighter dark particles, ψψ → XX which
subsequently decay to SM particles. These new light parti-
cles may lead to large DM self-interactions, see for instance
Ref. [78]. (ii) Co-annihilation and resonant effects [20]
may increase the effective thermal annihilation cross sec-
tion. For example processes like ψ F̄ → S∗ → HH with
(mF − mψ)/mψ � 1/20 could be induced by a coupling
of S to the SM Higgs.16 Similarly there may be coanni-
hilations with S. If S has gauge interactions the dominant
channel may be SS → SM SM (see for instance Ref. [79])
if (mF − mψ)/mψ � 1/20 and ψ and S are in thermal
equilibrium. (iii) Multi-body scatterings may also increase
the effective thermal annihilation cross section [64–68]. (iv)
A non-trivial thermal evolution in the early universe may
depopulate an initially over abundant DM relic density [69].

6.3.2 Non-thermal production

The DM abundance may also be produced non-thermally. If
DM is only very weakly coupled to the SM thermal bath and
it has not been produced during reheating, DM may be slowly
produced via the freeze-in mechanism [39,40]. Ref. [30] dis-
cussed the phenomenology of the freeze-in mechanism in the
scotogenic model [9] with fermionic DM, one of the exam-
ples where DM-nucleus scattering occurs at one-loop level.

7 Conclusions

Direct detection of DM may not have been observed yet
because it is absent at tree level, occurring only at the loop
level. In this work we have studied the case of a fermionic sin-
glet DM ψ , which is a simple scenario where DD is naturally
induced at one-loop order. The type of scenario considered
appears in supersymmetric extensions where the neutralino
is pure bino [15] (notice that in this case its mass is typi-
cally very heavy, larger than 2 TeV), and also in connection
to neutrino masses, in particular in the seesaw model [13]

16 If S carries a dark charge it may be a soft-breaking term.
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and in some radiative neutrino mass models [8,9,12,80]. We
have considered a simplified scenario with a dark sector made
of a vector-like (or a SM) fermion and a (complex) scalar.
We presented general analytical expressions for the differ-
ent contributions as well as current limits on the dark sector
parameters. We have outlined the possible UV completions
of the corresponding penguin diagrams, also those involving
SM fields, and we summarize the different possibilities in the
following:

(i) If the fermion is a SM lepton and thus leptophilic, the
DM interactions are generically flavored [5] and there is an
interesting phenomenology. There may be new contributions
to the anomalous magnetic moment, but the limit is very
weak. If there are couplings to at least two different flavors,
there are strong limits from LFV, especially for couplings
to both electrons and muons. In this case the limits from
LFV processes such as μ → eγ and μ → 3e are much
stronger than DD. In the absence of one of these couplings
DD limits are stronger above a certain DM mass given by
the experimental energy thresholds of the DD experiments.
In some cases the same particles entering in the DD loop
may naturally violate lepton number (specially if the DM
couples to the left-handed lepton doublets) and give rise to
radiative neutrino mass models such as the scotogenic model
with Majorana DM [9] or the generalized scotogenic model
with Dirac DM [80].

(ii) If the dark fermion is a right-handed neutrino, it may be
a Majorana fermion and an active Majorana neutrino mass
term is generated via the seesaw mechanism [81]. As the
particles in the loop are neutral, DD is generated via Z and
Higgs penguin diagrams [13], which are very suppressed.
Although the DM may be assigned lepton flavor and lepton
number, there are no strong limits from LFV or lepton number
violation beyond those already present in seesaw scenarios.
This scenario is normally referred to as the neutrino-portal
to DM [13,41,42].

(iii) If the scalar is the SM Higgs, there is mixing between
the DM and the neutral component of the fermion in the
loop, which generates tree-level contributions mediated by
the Z boson and the Higgs. The Z -mediated tree-level DD
is expected to dominate with respect to the dipole moment
contributions arising at loop level. In fact, elastic Z -mediated
contributions are already ruled-out by DD experiments.

While the correct relic abundance is easily achieved in
models with DM couplings to SM leptons (or not too heavy
right-handed neutrinos), it requires further model-building in
the case of DM couplings to vector-like fermions. We have
also found that the invisible loop-induced Z and Higgs boson
decays may sometimes impose restrictions in the case of light
DM.

In this work we studied the prototypical case of fermion
singlet DM with the simplest dark sector, where the loop
suppression still allows reasonably large DM interactions.

Hopefully a positive DD signal in the next years will serve as a
motivation and guidance to continue exploring the WIMP DD
theory space and its interplay with other beyond the Standard
Model probes.
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Appendix A: Larger dark matter groups

In the main part of the text we restricted ourselves to a global
U(1) symmetry for a Dirac DM and to a discrete Z2 symme-
try for a Majorana DM. Our results can be easily generalized
if the DM forms a larger non-trivial representation of the dark
symmetry group and there are multiple degenerate compo-
nents of the DM multiplet. As the dark symmetry commutes
with the SM gauge group it simply leads to an overall factor
of

∑

γ

(Cγ †Cγ )α′α ≡
∑

β,γ

Cγ ∗
βα′C

γ
βα (47)

to the Wilson coefficients of a DM particle-nucleus scatter-
ing, ψαN → ψα′N , where the Clebsch-Gordan coefficients
Cγ

βα are defined such that the scalar and the two fermions are
invariant under the dark sector symmetry:

Cγ
βα F̄β Sγ (y1PL + y2PR) ψα . (48)

Thus for a general DM candidate with N components ψα

the DD cross section is obtained by summing over the final
states and averaging over the initial state and thus

σ → σ

N

∑

γ,δ

Tr
(
Cγ †CγCδ†Cδ

)
. (49)

Note that a larger dark sector symmetry may lead to multiple
DM candidates, which requires to go beyond the discussed
scenario, see for instance Ref. [83].
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Appendix B: Direct detection differential cross section
and event rate

The differential cross section for fermionic DM may be writ-
ten in terms of NR operators at the nucleon level [52]

dσ

dER
= mA

2πv2

4π

2JA + 1

∑

τ,τ ′={0,1}

×
[
Rττ ′
M W ττ ′

M (|�q|)+Rττ ′
�′′ W ττ ′

�′′ (|�q|)+Rττ ′
�′ W ττ ′

�′ (|�q|)

+ |�q|2
m2

N

(
Rττ ′

� W ττ ′
� (|�q|) + Rττ ′

��′W ττ ′
��′(|�q|)

) ]
(50)

with the nucleus mass mA and spin JA. The coefficients RX

are given in terms of the NR Wilson coefficients c0,1
i = (cpi ±

cni )/2 and WX denote the nuclear response functions. The
explicit forms of RX and WX are given in Ref. [50]. For
|�q| → 0, the long wavelength limit, WM (0) ∝ A2 counts the
number of nucleons in the nucleus, W�′′ and W�′ measure
the nucleon spin content of the nucleus, W� measures the
nucleon angular momentum and W��′ the interference.

In the literature it is also common to show the differential
cross section as the sum of different dipole and charge con-
tributions. Neglecting the Z contributions to SD interactions,
which are suppressed with respect to the long-range interac-
tions, and taking dψ = 0, the differential cross section can
be written as [84]:

dσ

dER
= α2

em

4π
μ2

ψ Z2

(
1

ER
− mA

2μ2
ψAv2

)

F2
SI (ER)

+ α2
em

μ2
Aμ2

ψmA

4π2v2

JA + 1

3JA
F2

SD (ER)

+ mA

2πv2 A
2
eff F

2
SI (ER) , (51)

where μψ A = mψmA/(mψ + mA) is the DM-nucleus
reduced mass and Aeff encodes the DM-nucleus couplings
(see e.g. Ref. [10]):

Aeff = Z

(
cp,Z

SI + cp,γ

SI + cp,H
SI − αemμψ

2πmψ

)

+(A − Z)
(
cn,Z

SI + cn,H
SI

)
. (52)

The first line in Eq. (51) corresponds to the dipole–charge
(D–C), the second line to the dipole–dipole (D–D) and the
third line to the charge-charge (C–C) interaction. FSI (ER)

and FSD (ER) are the nuclear form factors. cN
SI with N = n, p

are the relativistic Wilson coefficients at the nucleon level for
the operators

ON,V
SI = ψ̄γμψ N̄γ μN , ON,H

SI = ψ̄ψ N̄ N . (53)

The vector operator ON,V
SI is induced by both interactions

with a photon and a Z boson.
Once the differential cross section is computed via

Eq. (50), the differential event rate per unit detector mass
(for a detector with just one type of nucleus A) is given by:

dR

dER
= ρψ

mψmA

∫

vmin(ER)

dσ

dER
v fdet(�v) d3v, (54)

where ρψ is the local WIMP density, fdet(�v) is the WIMP
velocity distribution in the detector rest frame and vmin is the
minimum WIMP velocity required to produce a recoil with
energy ER

vmin(ER) =
√

ERmA

2μψA
. (55)

The velocity distribution in the detector rest frame is related
to the velocity distribution in the galaxy frame fgal(�v, t) by
a simple Galilean transformation, fdet(�v) = fgal(�v+ �vE (t)),
where �vE (t) is the velocity of the Earth in the galactic frame.
In our analysis we use LikeDM and refer to [62,63] for the
technical details of the different detectors and astrophysical
assumptions.

Appendix C: Expressions for Z and Higgs boson decays
into dark matter

The relevant interactions of the DM ψ with the Higgs and
the Z boson can be parameterized as17

LHψ = ψ (bV + bA γ5) ψ h + H.c., (56)

and

LZψ = ψ (cV γ μ + cA γ μγ5 + dV pμ
2

+dA pμ
2 γ5)ψ Zμ + H.c., (57)

where pμ
2 is the 4-momentum of the outgoing DM ψ . We

define xh ≡ mψ/mh and xZ ≡ mψ/mZ . The partial Higgs
decay width into the DM ψ is non-zero for mψ < mh/2 and
reads:

�h→ψψ = S Nψmh

2π

{
[Re(bV )]2

(
1 − 4 x2

h

)

+[Im(bA)]2
} (

1 − 4 x2
h

)1/2
. (58)

17 In the case of radiative neutrino mass models such as the scotogenic
model [9] and its variants [38,80], there are extra (lepton number con-
serving) invisible Higgs boson decays into neutrinos at one loop, which
are not suppressed by phase space and could therefore be larger than
those into DM.
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Similarly the partial width of the Z is given by

�Z→ψψ = S NψmZ

3π

(
1 − 4 x2

Z

)1/2

×
{
[Re(cV )]2

(
1 + 2 x2

Z

)
+ [Re(cA)]2

(
1 − 4 x2

Z

)

+m2
Z

8

(
1 − 4 x2

Z

) [
[Re(dV )]2

(
1 − 4 x2

Z

)

+[Im(dA)]2 − 8xZ
mZ

Re(dV )Re(cV )

]}
(59)

for mψ < mZ/2. S is the symmetry factor, equal to 1/2
for identical final states (Majorana DM), and equal to 1 for
Dirac DM. The coefficients relevant for the decays of the
Higgs boson to Dirac DM can be expressed in terms of the
Passarino-Veltman functions

bV = λHSv

32π2

[
mF

(
|yA|2 − |yV |2

)
C0

(
m2

ψ,m2
h ,m2

ψ,mF ,mS,mS
)

+2mψ

(
|yA|2 + |yV |2

)
C1

(
m2

ψ,m2
h ,m2

ψ,mF ,mS ,mS

)]
, (60)

bA = i λHSv

16π2 mF Im
[
yV y∗

A
]
C0(m2

ψ,m2
h ,m2

ψ,mF ,mS ,mS) . (61)

The mass insertions, mψ and/or mF are needed in order to
flip chirality. We do not report the expressions for the decays
of the Z boson, as they are very long and not illustrative.

For Majorana DM cV = dV = dA = 0 and the remain-
ing non-zero Wilson coefficients are a factor of two larger,
cA|Majorana = 2 cA|Dirac, bV |Majorana = 2 bV |Dirac, and
bA|Majorana = 2 bA|Dirac due to the presence of crossed dia-
grams. This is analogous to direct detection: cqSS and cqAA for
Majorana DM are a factor 2 larger than for Dirac DM (see
Sect. 4.2.2).

Appendix D: Lepton flavor violation and anomalous
dipole moments

If the DM couples to SM leptons there may be LFV processes
and anomalous electric and magnetic dipole moments. We
provide the relevant expressions for DM coupling to either
the left-handed SM doublets or the right-handed SM singlets.
The results are identical for Dirac or Majorana DM.

Appendix D.1: Left-handed lepton doublet

The relevant interaction term for LFV processes is with the
charged scalars:

LLL = − y2 LL S ψR + H.c. = y2eL S− ψR + H.c. + · · · .

(62)

The most general amplitude for the electromagnetic charged
lepton flavor transition �α(p) → �β(k) γ ∗(q) can then be
parameterized as [85]

Aγ = e ε∗
ρ(q) u(k)

[
q2 γ ρ

(
AL

1 PL + AR
1 PR

)

+mβ i σρσ
(
AL

2 PL + AR
2 PR

)
qσ

]
u(p) , (63)

where e > 0 is the proton electric charge, p (k) is the momen-
tum of the initial (final) charged lepton �α (�β ), and q = p−k
is the momentum of the photon. As is well known, the charged
lepton radiative decays are mediated by the electromagnetic
dipole transitions in Eq. (63) and the corresponding branch-
ing ratio (Br) for �α → �β γ is given by

Br(�α → �β γ ) = 48 π3 αem

G2
F

[ ∣∣∣AL
2

∣∣∣
2 +

∣∣∣AR
2

∣∣∣
2 ]

×Br
(
�α → �β να νβ

)
. (64)

where

AL
2 = 0, AR

2 = − 1

32 π2

yβ
2 yα∗

2

m2
S±

f

(
m2

ψ

m2
S±

)

,

(65)

with

f (x) = 1 − 6x + 3x2 + 2x3 − 6x2 log(x)

6(1 − x)4 . (66)

For trilepton decays we consider only the contributions from
the photon penguin and from box-type diagrams, as the Z
penguin is suppressed by charged lepton masses. Box dia-
grams may be the dominant contribution in absence of the
contributions from photon and Z penguins. The amplitude
from the box diagrams is given by

ABOX = e2B u(k1) γ α PL u(p) u(k3) γα PL v(k2). (67)

For same-flavor leptons in the final state the branching ratio
of �α → �β �β �β reads:

Br(�α → �β �β �β)

= 6π2α2
em

G2
F

[ ∣
∣∣AL

1

∣
∣∣
2 +

∣
∣∣AR

2

∣
∣∣
2
(

16

3
ln

mα

mβ
− 22

3

)

+1

6
|B|2 − 4 Re

(
AL∗

1 AR
2 − 1

6

(
AL

1 − 2AR
2

)
B∗

)]

×Br
(
�α → �β να νβ

)
. (68)

For �−
α → �−

β �−
γ �+

γ with β 
= γ the branching ratio reads:

Br(�α → �β �γ �γ )

= 6π2α2
em

G2
F

[
2

3

∣∣
∣AL

1

∣∣
∣
2 +

∣∣
∣AR

2

∣∣
∣
2
(

16

3
ln

mα

mγ
− 8

)

+ 1

12
|B|2 − 8

3
Re

(
AL

1 AR∗
2 − 1

8

(
AL

1 − 2AR
2

)
B∗

)]

×Br
(
�α → �β να νβ

)
. (69)
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For �−
α → �+

β �−
γ �−

γ we get

Br(�α → �β �γ �γ ) = π2α2
em

G2
F

|B|2 × Br
(
�α → �β να νβ

)
,

(70)

because there are only contributions from box diagrams. The
coefficients AL , R

2 are given in Eq. (65) and

AL
1 = − 1

48 π2

yβ
2 yα∗

2

m2
S±

g

(
m2

ψ

m2
S±

)

, AR
1 = 0 , (71)

with

g(x) = 2 − 9x + 18x2 − 11x3 + 6x3 log(x)

12(1 − x)4 . (72)

The contribution from box diagrams B for �−
α → �−

β �−
γ �+

γ

reads

e2B = 1

16 π2

[
yα∗

2 yβ
2 y

γ
2 yγ ∗

2

m2
S±

h

(
m2

ψ

m2
S±

)]
, (73)

and for �−
α → �−

γ �−
γ �+

β it is given by

e2B = 1

16 π2

[
yα∗

2 yβ∗
2 (yγ

2 )2

m2
S±

h

(
m2

ψ

m2
S±

)]
(74)

with

h(x) = 1 − x2 + 2x ln x

2(x − 1)3 . (75)

All the external momenta and masses have been neglected.
Of course for �α → �β �β �β both Eqs. (73) and (74) agree
with γ = β.

For μ − e conversion in nuclei we only consider coherent
scattering via photon contributions, but include both short-
and long-range contributions [86]:18

Lint = − e

2

(
mμA

L
2 �e σμν PL �μFμν

+mμA
R
2 �e σμν PR �μFμν + h.c.

)

−
∑

q=u,d,s

[ (
gγ

LV (q) �eγ
αPL�μ

+gRV (q) �eγ
αPR�μ

)
qγαq + h.c.

]
. (76)

The μ − e conversion rate is

ωconv = 4
∣∣∣
e

8
AR

2 D + g̃(p)
LV V

(p) + g̃(n)
LV V

(n)
∣∣∣
2

, (77)

18 We neglect the Z boson contribution which is proportional to the
square of the charged lepton masses and thus negligible compared to
the photon penguin diagram.

Table 7 The overlap integrals in the units of m5/2
μ and the total capture

rates for different nuclei [86]. The total capture rates are taken from
Table 8 in [86]. The overlap integrals of 197

79 Au as well as 27
13Al are taken

from Table 2 and 48
22Ti are taken from Table 4 of Ref. [86]

V (p) V (n) D ωcapt(106s−1)

197
79 Au 0.0859 0.108 0.167 13.07
48
22Ti 0.0399 0.0495 0.0870 2.59
27
13Al 0.0159 0.0169 0.0357 0.7054

where the effective vector couplings g̃(p,n)
L/RV for the proton

and the neutron are

g̃(p)
LV ≈ 2 gγ

LV (u) + gγ

LV (d) = e2AL
1 , g̃(n)

LV

≈ gγ

LV (u) + 2 gγ

LV (d) = 0, (78)

with

gγ

LV (q) = e2 Qq AL
1 . (79)

The coefficients AL , R
1 are given in Eq. (71), and Qq is the

quark electric charge of the quark q in units of e > 0. The
numerical values of the overlap integrals D and V (p,n) and
the total capture rate for each nucleus are reported in Table 7
for three different nuclei. As we only consider the photon
contribution and thus only couplings to the electric charge of
the quarks, there is no effective coupling to neutrons.

Even if lepton flavor is conserved there are processes that
can bound the DM interactions with the leptons. Electric
dipole moments for the leptons occur in these simplified mod-
els only at the two-loop level. However leptonic magnetic
dipole moments occur at one-loop order via photon penguin
diagrams, similarly to μ → eγ transitions. They receive two
independent contributions from the charged scalars running
in the loop, which are given by [87]:

�a� ≡ g� − 2

2
= m2

� Re[AR
2 ]�. (80)

AR
2 is the diagonal part (α = β ≡ �) of the coefficient given

in Eq. (65) and the loop function is defined in Eq. (66). Our
expression agrees with Ref. [4]. In the case of the muon mag-
netic dipole moment, the discrepancy with the SM has the
opposite sign and hence the model cannot explain it. However
this can be used to (very weakly) bound the model. Electron
and tau AMMs do not lead to any relevant constraints.

Appendix D.2: Right-handed charged lepton

The relevant interaction term for LFV processes is with the
charged scalars:

LLL = − y1 eR S− ψL + H.c.. (81)
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All the expressions are the same as for the left-handed lepton
doublets after substituting the right-handed superscript by
the left-handed one, i.e., AR

1, 2 ↔ AL
1, 2, gγ

LV ↔ gγ

RV and the
Yukawa couplings y1 ↔ y2.

Appendix E: Computation of the relic abundance

In this appendix we review the computation of the relic abun-
dance, see for instance Refs. [20,88]. We use the instanta-
neous freeze-out approximation which is sufficient for our
purposes. The final DM abundance is determined by

�ψ = n + 1

λ
xn+1
f

mψ s0

ρcr
, (82)

with λ = [xs 〈σv〉 /H ]x=1 and n = 0 (1) for s-wave (p-
wave) DM annihilation. The entropy density is denoted by
s, with today’s value given in terms of the CMB temperature
Tγ,0 = 2.73 K as s0 = 2π2/45 (43/11) T 3

γ,0, where we have
used Neff = 3.

Equating the interaction rate �ann for the process ψψ̄ ↔
�α�̄β with the Hubble rate, H(T f ) = �ann(T f ) we obtain a
condition for the freeze-out temperature
√

π2

90m2
P

g∗ = gψmψ 〈σv〉
(2π)3/2 x1/2

f e−x f , (83)

where mP is the Planck mass, g∗ is the number of relativistic
degrees of freedom at freeze-out (g∗ = 106.75 in the SM),
and gψ is the DM number of degrees of freedom, which is
equal to 2 (4) for Majorana (Dirac) DM.

The annihilation cross section may implicitly depend on
the freeze-out temperature, and it is useful to factorize out
this dependence. Then Eq. (83) can be written in terms of λ

as

4

3

π2

30

gs∗
gψ

(2π)3/2

λ
= x

1
2 −n
f e−x f . (84)

Solving forλ in Eq. (84), plugging it in Eq. (82), and imposing
that relic abundance matches the observed value �ψh2 =
0.12 [89], one can numerically obtain the value of x f . We
get values of 23 � x f � 30 for 10 GeV � mψ � 104 GeV,
which turn out to be identical for Dirac and for Majorana
DM. We also note that x f increases roughly logarithmically
with the DM mass mψ .

For a given (mψ, x f ) pair Eq. (84) allows one to compute
the annihilation cross section averaged over velocity, 〈σv〉,
which depends exponentially on x f . For the range of DM
masses given above the dependence on the DM mass is very
mild. We obtain that the required thermally averaged anni-
hilation cross sections to reproduce the observed DM abun-
dance are in the range 1.8 � 1026 〈σv〉|D (cm3 s−1) � 2.4
and 4 � 1024 〈σv〉|M (cm3 s−1) � 9 for Dirac and Majorana
DM, respectively.

Appendix F: Matching onto non-relativistic operators

We use DirectDM [48] which follows the normalization
of the NR operators in Ref. [50] to match our one-loop cal-
culation of DM scattering off quarks onto the NR opera-
tors using 3 flavor QCD without running, i.e. the matching
occurs at μ = 2 GeV. This is justified as the relevant rela-
tivistic operators are renormalization group invariant under
one-loop QCD corrections. There are no additional signifi-
cant contributions, because the particles in the loop are color
singlets. There can be sizable renormalization group correc-
tions, if there are colored particles in the loop, see e.g. the
discussion of bino DM in the minimal supersymmetric SM
in Ref. [15].

Note that the coefficients cqi depend on the 3-momentum
transfer |�q| = √

2mAER with the target nucleus mass mA

and the recoil energy ER . In the numerical examples in the
figures we use ER = 8.59 keV for 132

54 Xe which results in
|�q|2 = 2.11 × 10−3 GeV2. The exact numerical expressions
used in the code are given below. All quantities are defined
in units of GeV. All NR Wilson coefficients have dimen-
sion GeV−2. Higgs penguins with heavy SM quarks Q are
described by the Wilson coefficient of the gluon operator

cg = −
∑

Q=t,b,c

cQSS . (85)

Appendix F.1: Dirac dark matter

NR Wilson coefficients for protons

cp1 = 0.032cdSS + cdVV − 0.0628148cg + 0.0413csSS

+ 0.017cuSS + 2cuVV − 0.00119243μψ

mψ

(86)

cp4 = 1.504cdAA + 0.124csAA − 3.588cuAA − 0.0141733μψ

(87)

cp5 = 0.00447838μψ

|�q|2 (88)

cp6 = − 2.24324cdAA

|�q|2 + 0.0182187
+ 0.342636cdAA

|�q|2 + 0.300153

− 0.685272csAA

|�q|2 + 0.300153

+ 2.24324cuAA

|�q|2 + 0.0182187
+ 0.342636cuAA

|�q|2 + 0.300153

+ 0.0124947μψ

|�q|2 (89)

cp11 = 0.00447838dψ

|�q|2 (90)

and neutrons

cn1 = 0.036cdSS + 2cdVV − 0.0628148cg + 0.0413csSS
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+ 0.015cuSS + cuVV (91)

cn4 = −3.588cdAA+0.124csAA + 1.504cuAA+0.00970284μψ

(92)

cn6 = 2.24324cdAA

|�q|2 + 0.0182187
+ 0.342636cdAA

|�q|2 + 0.300153

− 0.685272csAA

|�q|2 + 0.300153

− 2.24324cuAA

|�q|2 + 0.0182187
+ 0.342636cuAA

|�q|2 + 0.300153

− 0.00855371μψ

|�q|2 (93)

Appendix F.2: Majorana dark matter

NR Wilson coefficients for protons

cp1 = 0.064cdSS − 0.12563cg + 0.0826csSS + 0.034cuSS (94)

cp4 = 3.008cdAA + 0.248csAA − 7.176cuAA (95)

cp6 = − 4.48648cdAA

|�q|2 + 0.0182187
+ 0.685272cdAA

|�q|2 + 0.300153

− 1.37054csAA

|�q|2 + 0.300153
+ 4.48648cuAA

|�q|2 + 0.0182187

+ 0.685272cuAA

|�q|2 + 0.300153
(96)

cp8 = 4
(
cdAV + 2cuAV

)
(97)

cp9 = −4.12cdAV + 0.876csAV + 14.72cuAV (98)

and neutrons

cn1 = 0.072cdSS − 0.12563cg + 0.0826csSS + 0.03cuSS (99)

cn4 = −7.176cdAA + 0.248csAA + 3.008cuAA (100)

cn6 = 4.48648cdAA

|�q|2 + 0.0182187
+ 0.685272cdAA

|�q|2 + 0.300153

− 1.37054csAA

|�q|2 + 0.300153
− 4.48648cuAA

|�q|2 + 0.0182187

+ 0.685272cuAA

|�q|2 + 0.300153
(101)

cn8 = 4
(

2cdAV + cuAV

)
(102)

cn9 = 14.72cdAV + 0.876csAV − 4.12cuAV (103)
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