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Purpose: Pediatric cancers are often difficult to classify and can be complex to treat.

To ensure precise diagnostics and identify relevant treatment targets, we implemented

comprehensive molecular profiling of consecutive pediatric patients with cancer relapse.

We evaluated the clinical impact of extensive molecular profiling by assessing the

frequency of identified biological onco-drivers, altered diagnosis, and/or identification of

new relevant targeted therapies.

Patients and Methods: Forty-six tumor samples (44 fresh-frozen; two formalin-fixed

paraffin embedded), two bone marrow aspirates, three cerebrospinal fluid samples, and

one archived DNA were obtained from 48 children (0–17 years; median 9.5) with relapsed

or refractory cancer, where the disease was rapidly progressing in spite of their current

treatment or they had exhausted all treatment options. The samples were analyzed

by whole-exome sequencing (WES), RNA sequencing (RNAseq), transcriptome arrays,

and SNP arrays. Final reports were available within 3–4 weeks after patient inclusion

and included mutation status, a description of copy number alterations, differentially

expressed genes, and gene fusions, as well as suggestions for targeted treatment.

Results: Of the 48 patients, 33 had actionable findings. The most efficient method

for the identification of actionable findings was WES (39%), followed by SNP array

(37%). Of note, gene fusions were identified by RNAseq in 21% of the samples. Eleven

findings led to clinical intervention, i.e., oncogenetic counseling, targeted treatment,

and treatment based on changed diagnosis. Four patients received compassionate use

targeted therapy. Six patients experienced direct benefits in the form of stable disease

or response.
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Conclusion: The application of comprehensive genetic diagnostics in

children with recurrent cancers allowed for discovery and implementation of

effective targeted therapies and hereby improvement of outcome in some

patients.

Keywords: recurrent cancer, children, molecular profiling, precision medicine, clinical intervention

INTRODUCTION

Precision medicine and targeted treatment have been the main
focus of adult oncology for more than a decade. In striking
contrast, only a few recent studies have reported the efficacy
and importance of precision medicine in pediatric cancers (for
references see Figure 1A). Moreover, whereas research in adult
oncology mostly focuses on the discovery and testing of potential
drugs and targets (actionable targets), a considerably large part
of pediatric oncology research is still dedicated to understanding
the etiology of cancer. Therefore, molecular findings influencing
any kind of clinical intervention for pediatric patients (actionable
findings) are of a great importance for development in the field.

In pediatric oncology, several factors hinder the process of
discovering new efficient treatments. First, pediatric cancers are
rare [1] and their study requires efficient international consortia.

Secondly, pediatric cancers generally contain far fewer genomic

alterations [mutations, copy number alterations (CNAs)] than
adult cancers, thus significantly restricting the use of targeted

treatment. Ironically, in many instance, targeted therapies in
children rely on the presence of adult-type accessory targets

by chance present in the tumor and rarely being the driver
alteration specific to the children. Many driver mutations of

pediatric cancer do not have a targeted therapy available. Thirdly,
most childhood cancers lack frequently shared genetic alterations
[2, 3]; in addition, this makes the classification of tumors
more challenging [4]. Consequently, pediatric tumors have a
high degree of interpersonal heterogeneity, returning precision
medicine back into the era of risk-stratified treatment strategies.
This situationmay therefore explain why themajority of pediatric
solid cancers still await a major breakthrough in the exploration
of targeted treatment.

Hence, in order to select an efficient treatment, each patient
has to be considered as a unique case, with personalized
diagnostics being the main focus of precision medicine in
pediatrics. In line with this, several recent studies in pediatric
oncology were based on providing a complex view of the disease
[5–10]. Specifically, the tumors of included patients were profiled
in order to gather information about the molecular aberrations
causing the disease and, in parallel, to identify targets for
potential therapeutic agents (Figure 1A).

From a methodological point of view, the studies mostly
relied on whole-exome sequencing (WES) for the detection of
somatic and germline mutations. Occasionally, WES was also
applied for the derivation of CNAs. However, it became clear that
the application of several analytical platforms leads to a higher
success rate in the identification of actionable findings [10].
Hence, a comprehensive screening design, i.e., including WES,

RNA sequencing, and transcriptome, SNP, and DNAmethylation
arrays, was shown to be the most efficient tool for the description
of a patient’s disease and determination of possible treatment
targets.

The promising results achieved in these studies led to
the implementation in 2015 of new diagnostics for refractory
and relapsed pediatric cancers comprising high-throughput
molecular profiling at the Center for Genomic Medicine,
Rigshospitalet, Copenhagen, Denmark. This review reports the
results and remarks acquired during the initial 18months of these
new diagnostics.

PATIENTS AND METHODS

Patients
From August 2015 until January 2017, pediatric cancer
patients with recurrent disease were offered complete genomic
profiling of their tumors if all general treatment schemes
had been exhausted and the disease continued to progress.
The aim of this analysis was to search for potential targets
for experimental treatment and/or clarify the diagnosis in
light of inconclusive results from standard diagnostic work-
outs. Patients were between 0 and 17 years of age and
were suffering from recurrent solid or hematological cancers
(Table 1; Table S1). Three rare and diagnostically challenging
cases were included at earlier stages of the disease with the
aim of providing a precise, molecular-based diagnosis. Legal
guardians provided written/oral and informed consent and all
studies were conducted in accordance with the Declaration of
Helsinki. Publication of results was approved by the local ethics
committee in the Capital Region of Denmark (H-4-2010-050).
A specific written consent was obtained from legal guardians
and/or patients presented in the specific cases examples. At the
time of inclusion, blood samples were collected in parallel with
ultrasound-guided, surgical or stereotactic tumor biopsies. In
total, 52 samples from 48 patients were included for molecular
profiling (Table 1; Table S1; Supplementary Material).

Molecular Profiling
DNA and RNA were extracted from the tumor samples stored
in RNAlater using Qiagen’s AllPrep DNA/RNA purification kit
and QIAcube workstation. DNA from whole blood samples
was isolated using Tecan’s liquid handling automated station.
Detailed method descriptions can be found in the Supplementary
Material. Briefly, WES was performed on genomic and tumor
DNA using Roche’s KAPA HTP Library Preparation Kit and
Agilent’s SureSelectXT Clinical Research Exome kit. Paired-
end sequencing was performed on Illumina instruments, with
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FIGURE 1 | Comparison of the genetic diagnostics presented here with those reported in other studies (A), analytical pipeline of comprehensive molecular profiling for

pediatric cancer patients (B), and efficacy of advanced diagnostics (C). (A) Table summarizing the findings of our review and those of other studies for a performance

comparison. (B) Scheme illustrating the analytical set-up for high-throughput profiling of recurrent pediatric cancers at the Center for Genomic Medicine, Copenhagen

University Hospital. (C) Graph illustrating the efficacy of advanced diagnostics in the initial period after their implementation. The y-axis indicates the number of

samples analyzed in total (pink column), analyzed by all the methods (green column to the right), and analyzed by the individual methods (blue columns), respectively.

The deep pink segment in the first column denotes the number of samples with an actionable finding. The deep blue segments for the individual methods delineate

the number of samples with a positive finding, i.e., mutations for WES, CNAs for SNP arrays, and gene fusions for RNAseq. The last column indicates the number of

included patients (n = 46) and the deep violet segment denotes the number of patients where clinical action was undertaken based on the findings.

an average coverage of 50–100×. Data were processed using
Qiagen’s Biomedical Genomics Workbench and Ingenuity
Variant Analysis. RNA sequencing was performed using
Illumina’s TruSeq Stranded Total RNA Library Prep Kit and
paired-end sequencing was performed to gain an average output
of 50–100M reads. FusionMap was used for the screening of
fusion transcripts [11], and if positive, validation was carried
out by Sanger sequencing. Sequencing data can be found in
ENA under accession number PRJEB23819. Somatic CNAs were
detected by SNP arrays (CytoScan or OncoScan; Affymetrix,
GSE108089). Data were analyzed using NEXUS (BioDiscovery).
Expression levels were analyzed using Affymetrix’s GeneChip R©

Human Genome U133 Plus 2.0 Array, with subsequent
processing by Qlucore (Figure 1B).

Clinical Translation
A comprehensive diagnostic report integrating data obtained by
the aforementioned methods and with suggestions for possible

targeted interventions was available within 3–4 weeks from
receiving the relevant biopsies and blood samples. The results
were discussed at weekly multidisciplinary conferences attended
by the responsible pediatric oncologist, an oncologist from the
pediatric Phase I-II unit, pediatric surgeons, and representatives
from relevant diagnostics units, i.e., Genomic Medicine,
Pathology, and Diagnostic Imaging. The final clinical decision
regarding a patient’s inclusion into and/or recommendation
for a particular targeted treatment protocol was made by
the responsible pediatric oncologist, with agreement from the
patient’s parents.

For assessment of the efficacy of implemented advanced
diagnostics, actionable molecular findings were reported.
Findings were considered actionable if they (i) were relevant
for diagnostics and prognostics (e.g., a known cancer driver
mutation or amplification important for a patient’s stratification,
etc.), (ii) defined treatment targets for known anti-cancer
drugs (not necessarily restricted to pediatric patients), or (iii)
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TABLE 1 | Overview of patients’ histopathological diagnoses and potential driver genomic alterations/actionable findings.

Sample # Age (y) Histopathological diagnosis at inclusion WHO grade Genomic alteration (Known prior profiling)

CNS tumors 1 6–10 Atypical meningioma II TFG-ROS1 fusion

2 11–15 Choroid plexus carcinoma/Malignant peripheral nerve

sheath tumor

III HRD; amplification MET, CDK6, NOTCH; loss RB1

3 0–5 Pilocytic/pilomyxoid astrocytoma I-II NFIA-RAF1 fusion

4 0–5 Glioblastoma IV

5 11–15 Pleomorphic xanthoastrocytoma II-III BRAF V600E; loss CDKN2A/B

8 0–5 Ganglioglioma / Diffuse astrocytoma I-II

12 11–15 Diffuse midline glioma H3K27M-mutated IV H3F3 K28M; TP53 c.469_471delGTC

13 0–5 Anaplastic ependymoma III

14 6–10 Juvenile xanthogranuloma

15 (13) 0–5 Anaplastic ependymoma III

16 11–15 Anaplastic pleomorphic

xanthoastrocytoma/Glioblastoma

IV BRAF V600E; ATRX R1739*; loss CDKN2A/B

17 (8) 0–5 Ganglioglioma/Diffuse astrocytoma I-II FGFR3-TACC3 fusion

18 6–10 Diffuse midline glioma H3K27M-mutated H3F3 K28M; TP53 F134S & c.376-1G>A; PIK3R1

c.936-2A>T

21 6–10 Glioblastoma IV Mismatch repair deficiency

22 (8) ND Ganglioglioma/Diffuse astrocytoma I-II FGFR3-TACC3 fusion

23 >16 Malignant peripheral nerve sheath tumor Amplification FGFR1

24 6–10 Pilocytic astrocytoma I

25 >16 Pilocytic/pilomyxoid astrocytoma I-II FGFR1 N546K; PTPN11 E69K

28 (2) 11–15 Choroid plexus carcinoma/Malignant peripheral nerve

sheath tumor

III HRD; loss RB1; amplification MET, CDK6, NOTCH2

31 0–5 Anaplastic ependymoma III

34 >16 Atypical neurocytoma II

35 11–15 Chondroblastic osteosarcoma HRD

36 0–5 Astrocytoma KRAS E63K

37 0–5 Neuroblastoma LOH; amplification MET, JAG1

38 0–5 Anaplastic ependymoma III

39 11–15 Pineoblastoma IV

41 (39) 11–15 Pineoblastoma IV

44 11–15 Diffuse astrocytoma II MMRD

46 11–15 Malignant peripheral nerve sheath tumor

49 (39) 11–15 Pineoblastoma IV

50 6–10 Anaplastic ependymoma III MN1-BEND2 fusion; loss X

51 >16 Rhabdomyosarcoma PAX3-FOXO1 fusion

Extracranial solid

tumors

6 0–5 Mesoblastic nephroma amplification ERVV1/2

7 11–15 Signet ring cell carcinoma

9 >16 Chondrosarcoma IDH1 R132L

10 11–15 Chordoma, dedifferentiated/anaplastic type (INI1-loss) PIK3CG G1058R

11 11–15 Hepatoblastoma CDKN2A L78fs*41

19 11–15 Alveolar rhabdomyosarcoma PAX3-FOXO1 fusion

26 (7) ND Signet ring cell carcinoma; immune therapy screening

27 >16 Nephroblastoma amplification NGFR; TP53 c.75-1G>C; GNA11 R183C

29 0–5 Neuroblastoma ALK F1174L; amplification MYCN

30 0–5 Ganglioneuroblastoma NF1 G722M

32 6–10 Gastrointestinal neuroectodermal tumor EWSR1-ATF1 fusion

33 >16 Alveolar rhabdomyosarcoma PAX3-FOXO1 fusion; amplification MYCN

40 11–15 Enchondroma

43 11–15 Osteochondroma

47 11–15 Ewing sarcoma

48 0–5 Adrenocortical carcinoma CTNNB1 S37C; amplification MYC, FAP

52 0–5 Ependymoma III

Hema 20 6–10 Precursor T-lymphoblastic lymphoma Mismatch repair deficiency

42 11–15 Acute lymphoblastic leukemia JAK2 R683S

45 0–5 Acute myeloid leukemia WHSC1 E1099K

Findings known prior to the comprehensive profiling are marked green.
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determined high-potential targets. Any finding belonging to
one or more of these categories was assigned as actionable. The
findings are summarized in detail in Table S2.

Clinical Trials Available for Pediatric
Cancers
Ongoing clinical studies for targeted therapy were retrieved
from ClinicalTrials.gov. The search was performed using the
search term “cancer” and eligibility criterion “Child (birth−17).”
A total of 8972 studies were found, of which 2037 were open
on December 16, 2016. These studies were further filtered
by “Intervention,” and 863 in which “drug” was a part of
the study, were considered. Manual filtering of these 863
studies excluded ones (i) including adult cancers, (ii) related
to transplantations, (iii) focusing on adjustments of standard
treatment regimens, including radiation, (iv) aimed at renewed
stratification of patients for standard treatments, and (v) on
unspecified hematological malignancies; 152 studies remained
for further assessment. A curated database of ongoing clinical
trials in which targeted treatment options for pediatric cancer
patients are available was subsequently generated (Table S3). Due
to the source and filtration criteria there is a possibility that
relevant clinical trials are missing.

RESULTS

Patients and Tumor Parameters
The mean age at inclusion was 9.5 years (0–17). The male:female
ratio was 1.4:1. Analyses were performed on 46 tumor samples
(44 fresh-frozen and two formalin-fixed paraffin embedded),
two bone marrow aspirates, three cerebrospinal fluid samples,
and one archived DNA. Twenty patients had extracranial solid
tumors and 25 had CNS tumors (Table 1). Three patients
were diagnosed with a hematological malignancy, i.e., acute
lymphoblastic leukemia, acute myeloid leukemia, or precursor
T-lymphoblastic lymphoma. Eleven of the 25 CNS tumors
underwent DNA methylation profiling (DKFZ Heidelberg) to
obtain a second opinion on the diagnosis (for cohort details see
Table 1 and Table S1). At the time of this review, six patients had
passed away. None of the deceased patients had been included in
neither clinical trials nor offered treatment based on actionable
findings although they may have been included in other clinical
studies.

Overall Achievements
The implementation of an optimized laboratory workflow
comprising several analytical platforms resulted in final
integrated diagnostic reports being available within 16.5 days (9–
45 days). This ensured sufficient time for the multidisciplinary
team and the pediatric Phase I–II unit to reach a decision
regarding a patient’s inclusion into a clinical trial. Moreover,
when the DNA/RNA yield was limited, we took advantage of
specialized analytic protocols, i.e., OncoScan, NEBNext, which
led to a 100% (52/52) success rate for our patients’ diagnostics
(Figure 1B; Table S2).

A full molecular profiling on all the platforms, i.e., WES,
RNA sequencing, expression arrays, and SNP arrays, was sought

for each patient sample. However, full profiling was ultimately
achieved for 40 of the 52 samples (77%). Profiling of the
remaining patients was limited by the quality or quantity of
the input material, or by the origin of the sample (formalin-
fixed paraffin embedded, cerebrospinal fluid). All but one of
the samples were analyzed by WES (n = 51; 98%). Forty-six
samples were analyzed for CNAs by SNP array (88%), 42 by RNA
sequencing (81%), and 43 by expression array (83%) (Figure 1C;
Table 1).

Actionable findings were definitively detected in 33 patients
(63%) (Figure 2A; Table S2). Eighteen of the actionable findings
proved relevant for an accurate diagnosis and 22 led to the
identification of potential treatment targets. Eleven samples
had a “double hit,” i.e., the finding had a diagnostic as well as
a treatment impact. In nine out of the 33 patients, all (n = 3)
or some of (n = 6) the findings were previously identified by
histopathology. In four of these patients, gene re-arrangements
were previously detected without knowing the fusion
partner.

The most efficient method for identifying actionable findings
was WES, detecting relevant mutations, including one germline
mutation, in 39% of samples (20/51). Treatment- or diagnostic-
relevant CNAs were detected in 37% of samples (17/46). In
10 samples (22%), detection of CNAs was not possible due to
the low tumor burden in the sample. Strikingly, we identified
a large number of fusions (9/42; 21%), including novel fusions
relevant for treatment (e.g., NFIA-RAF1 [12] and TFG-ROS1
[13] in CNS tumors) and fusions specifying disease origin (e.g.,
MN1-BEND2 for anaplastic ependymoma and PAX3-FOXO1 for
rhabdomyosarcoma).

Clinical Action Based on Molecular
Profiling
The final report presented to the pediatric oncologist always
included all actionable findings, independent of their direct
consequence for patient treatment. Hereby, all potential targets
and drivers were disclosed and became theoretically reusable at
later time points. Clinical intervention was implemented in 11
out of 44 patients (25%), i.e., two patients were diagnosed with
a cancer-predisposing alteration, two patients were assigned the
correct diagnosis, and eight patients received therapy based on
the molecular findings (one of these patients was also included
in the correct diagnosis group; Figure 2A). The most common
therapy was immunotherapy, given to four patients. Two patients
received MEK inhibitors, one patient received an ALK-ROS
inhibitor, and one patient received combinatory treatment of
BRAF- and MEK-inhibitors. Of note, all four patients treated
with immune therapy experienced progressive disease.

If patients could be included in any of the 152 open clinical
trials (Table S3), more than a half of the offered drugs would be
the kinase inhibitors (n= 52) and antibodies (n= 33; Figure S1)
in Phase I (n = 96) and Phase II (n = 64). Noticeably, 49 of
the 152 open clinical trials involve target status for inclusion
(Table S3). On this basis, we could include three patients with
mutations inALK and BRAF, respectively, and several patients in
kinase inhibitor trials due to the alterations in relevant pathways.
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FIGURE 2 | Overview of analyzed samples (A), example of germline finding (B), functional validation of novel fusion (C), and extraordinary response to targeted

treatment (D). (A) Plot showing the distribution of findings per sample by individual methods, with the marking of samples with their treatment based on the findings.

The response to treatment is also indicated. PR, partial response; CR, complete response; PD, progressive disease; SD, stable disease. (B) Germline hemizygous

deletion in chromosome 9p21.3 involving CDKN2A. This finding was detected by SNP array in a 15-year-old girl with a history of several previous cancers of different

origin. (C) Functional validation of novel gene fusion NFIA-RAF1 detected in a 5-year-old boy with pilocytic/pilomyxoid astrocytoma showing activation of the MAPK

pathway. Permission to reproduce the figure kindly granted by Cancer Genetics [12]. (D) MRIs of a 14-year-old girl with a BRAF-mutated tumor. The upper image

shows the tumor at diagnosis and the lower image shows the tumor 8 months later after responding to targeted treatment (combination of dabrafenib and trametinib).

Patient Cases
A 15-year-old girl with pleomorphic xanthoastrocytoma and
a history of several previous cancers of different origin was
examined for a potential cancer-predisposing alteration. SNP
array disclosed a large hemizygous deletion in 9p21.3 involving
CDKN2A (Figure 2B).

Two patients were included at primary diagnostics
due to inconclusive results of standard diagnostics and
thereby difficulties in assigning the correct treatment
regimen. One of the patients, a 14-year-old girl (sample
16), was submitted for profiling based on suspicion of a
rapidly progressing intracerebral angiosarcoma inferred
from MRI data. Histologically, the sample resembled
anaplastic pleomorphic xanthoastrocytoma/glioblastoma. DNA
methylation analysis grouped the sample with pleomorphic
xanthoastrocytoma/advanced stage ganglioglioma. Extended
molecular profiling revealed somatic mutations in BRAF
(p.V600E) and ATRX (p.R1739∗), respectively. Based on these
findings, the patient was treated with dabrafenib and trametinib

and showed a partial response for more than 13 months
(Figure 2D).

As mentioned above, a high proportion of patients with
available RNA sequencing data were diagnosed with fusions
(9/42). Notably, we identified two novel fusions, NFIA-RAF1 and
TFG-ROS1, both of which were used for the selection of targeted
therapy. A 5-year-old boy was profiled due to a progressing brain
tumor. Histologically, the tumor resembled pilocytic/pilomyxoid
astrocytoma, WHO grade I-II. RNA sequencing identified an
NFIA-RAF1 fusion [12]. Subsequent functional analyses revealed
a constitutive activation of the MAPK pathway (Figure 2C). The
patient was therefore eligible for compassionate use treatment
with the MEK inhibitor trametinib since he was not eligible
for any open European MEK inhibitor trials. Radiologically, the
tumor remained stable for almost 1 year; however, the disease
was recently found to have clinically progressed. Treatment was
discontinued due to the side-effects and severe neurological
affection, and palliative care was initiated. The other novel
fusion, TFG-ROS1, was found in a 6-year-old boy with a
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difficult-to-diagnose brain tumor which, for the most part,
resembled atypical meningioma. The patient was eligible for
crizotinib treatment and showed a partial response for more than
14 months [13].

DISCUSSION

In recent years, several studies have sought to map potential
actionable aberrations and thereby optimize patient treatment
[5–7, 9, 10, 14, 15]. Similar to these studies, high-throughput
screening of pediatric tumors in our setting has proven to be
very efficient, with 25% of patients experiencing direct benefits
of the comprehensive genetic diagnostics. This took the form of
targeted treatment or correct diagnosis, leading to an optimized
treatment regimen for the patient. On the other hand, even
though more than 60% of our samples were classified with an
actionable finding, robust constraints encountered on the site
of available and approved treatments greatly limit the utility of
advanced diagnostics. However, a potential solution for rapidly
deteriorating cases is the use of drugs for compassionate use,
which has also proven to be efficient in our cohort.

At the time of this review, there were four Phase I/II
studies conducting advanced molecular profiling in order to
disclose molecular aberrations treatable with available drugs.
For example, MOSCATO-01 study [16] and MATCH trial [17]
(closed 2017) or ongoing CancerSCAN (NCT02638428). Most of
the drugs target survival pathways in oncogenesis, for example
via kinase inhibition (Figure S1), as despite having different
aberrations, lesions often converge on common pathways.
Therefore, pathway targeting might become a treatment option
at earlier stages. However, in order to ensure the reliable
identification of aberrations in targetable pathways, complex
screening by several high-throughput methods would be
required. However, not all centers currently possess the required
infrastructure to pursue the comprehensive profiling. On the
other hand, costs for analyses are continually decreasing,
number of educated personal is increasing, and weighing
those against the distress of side-effects and life-lasting
sequelae caused by inefficient treatments, there is a lot
of reasons to implement precision diagnostics in pediatric
oncology.

A possible compromise on the costs and required complexity
of several high-throughput analyses could be achieved by further
development of the individual methods. For example, in the
case of DNA sequencing, WES is becoming the first-choice
method due to the fact that approximately 85% of disease-
causing mutations reside in coding regions [18]. Furthermore,
WES reads can be used to derive copy number changes, e.g.
amplifications and deletions [19], and could consequently replace
SNP array technologies. SNP arrays are however more robust for
the screening of copy number changes under diagnostic settings,
and can be designed to encompass specific mutations, e.g.,
OncoScan [20]. Nevertheless, DNA screening methods cannot
currently detect gene fusions, which are of great significance
in pediatric cancers [7, 9, 10, 15]. For that reason, RNA
sequencing is essential for gene fusion identification, including

novel fusions as shown in our cohort. Moreover, fusions have
been shown to be very relevant indicators in the assignment of
therapies. RNA sequencing can also be used to identify changes
in the levels of transcripts and potentially for the detection
of mutations, thus giving it the potential to become the first-
choice method for pediatric cancer diagnostics. Apart from DNA
and RNA analyses, there is also the whole field of epigenetics.
DNA methylation changes have been shown to be crucial for
CNS tumor classification [21], and there are undoubtedly many
more epigenetic aberrations still to be discovered. In particular,
epigenetic changes guiding the differentiation processes (e.g.,
polycomb complexes, histone deacetylases) are of great interest
to pediatric oncologists [22–24].

In summary, the data collated during the initial period of
the comprehensive molecular diagnostics clearly demonstrate
the importance of high-throughput screening in pediatric
oncology. Precision diagnostics have the potential to improve
outcome and decrease side-effects of formerly curable pediatric
cancers, either in conjunction with chemotherapy or by
replacing some conventional agents. Moreover, as shown in
this report, advanced diagnostics lead to better outcomes for
children with high-risk tumors where progress has either been
slow or has stalled. The potentialities suggested by this and
other reports create new challenges for the field of pediatric
oncology.
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