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SORTING OF BIOLOGICAL CELLS IN A MICROFLUIDIC CHANNEL 

USING HOLOGRAPHIC OPTICAL TWEEZERS COMBINED WITH 

RAMAN SPECTROSCOPY 

SUMMARY 

Investigation of single cells is crucial, since the measurement from population gives 

an average value that does not necessarily represent every individual in the population. 

Besides, sorting and sometimes counting the desired kind of cell is a measure of how 

the concentration of that cell. These types of micro-scale measurements are sometimes 

necessary, for example, to monitor the cell cycle, cell-signaling processes. 

Serving to these purposes, first a holographic optical tweezers (HOT) setup was 

constructed. This setup was built by improving the current optical tweezers setup in 

the Laser Spectroscopy Laboratory in Istanbul Technical University. A brand new 

Holoeye Spatial Light Modulator (SLM) was installed in the system after it was 

calibrated using an interferometric setup. The holograms were calculated using a 

Gratings and Lenses algorithm written in MATLAB and implemented by the 

homemade GUI that manages all the tasks needed for trapping and spectroscopy.  

The test particles to characterize the HOT setup were polystyrene (PS) particles. An 

array of four trapped PS particles was manipulated to the Raman spectrum 

measurement region by the software. The software communicates with the 

spectrometer and obtains multi-track spectra from the array that gives individual 

Raman spectra of each particle. These spectra identified by the software using the 

correlation coefficient of this measurement with the dataset that has already been 

prepared using PS particles and yeast cells. 

The test Raman measurements of biological cells using yeast cells and E.coli cells 

were made to investigate the signal level in low exposure times. The measurement 

showed that, our system would not respond enough signal to classify particles when 

the sample is E.coli and the exposure time is one second. However, the yeast cells 

responded better in short exposure time. Considering these, the sorting test 

experiments were made using yeast cells and PS particles. 

In a mixed solution of PS particles and yeast cells, an array of four particles whose 

members are randomly chosen was moved to the measurement region. According to 

the measurement and the following classification, the particles are targeted to the 

previously defined positions in the measurement cell. In these experiments, 

classifications were made with success. 

A study to determine the embryo quality by Raman spectroscopy was made in 

collaboration with Istanbul University Medical School. In this study, it was aimed to 

find an objective method to assess embryo viability. The preliminary results showed 

that the sensitivity and specificity of these measurements are %93 and %77, 

respectively. A Mann-Whitney U test was applied on the band areas and all band area 

ratios obtained by band component analysis. The most significant one was found to be 

the band area ratio of 903/942 cm-1. Comparing the measurements of amino acids 
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samples, it was determined that glutamine, glycine, proline, and valine has the most 

intense bands in the region that includes these significant bands. Among these, 

glutamine and glycine are the amino acids that contribute to embryo development 

most, according to the literature. 
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RAMAN SPEKTROSKOPİ VE HOLOGRAFİK OPTİK CIMBIZLAMANIN 

BİRLİKTE KULLANIMI İLE MİKROAKIŞKAN KANAL İÇERİSİNDEKİ 

BİYOLOJİK HÜCRELERİN AYRIŞTIRILMASI 

ÖZET 

Tek hücrelerin araştırılması hayati önem taşır çünkü nüfustan gelen ölçüm, nüfusta her 

bireyi temsil etmeyen ortalama bir değer verir. Ayrıca, arzu edilen hücre tipinin 

sıralanması ve bazen sayılması, o hücrenin derişiminin bir ölçüsüdür. Bu tür mikro 

ölçekli ölçümler bazen, örneğin hücre döngüsü, hücre sinyalleşme süreçlerini izlemek 

için gereklidir. 

Bu sebeple, önce bir holografik optik cımbızlama seti (HOT) kurulumu yapılmıştır. 

Bu kurulum, İstanbul Teknik Üniversitesi Lazer Spektroskopi Laboratuvarı'nda 

mevcut optik cımbızlama setinin genişletilmesi ile kurulmuş ve ilerleyen ölçümler için 

İstanbul Üniversitesi Lazer Spektroskopi Laboratuvarı’nda yeniden bir set kurularak 

ölçümler alınmıştır. 

Araştırma projesi kapsamında (İTÜ BAP – proje no 37851) satın alınan Holoeye Pluto 

BB marka SLM, bir çift yarık girişimi interferometrik düzeneği kullanılarak kalibre 

edildi. SLM ekranının bir tarafı siyah tutulup, diğer tarafında grilik seviyeleri 0-255 

arasındaki değerlerle değiştirilerek faz ölçümleri yapıldı. Üretilen faz farkı – grilik 

seviyesi eğrisi lineer olana kadar gerilim seviyeleri değiştirildi. Son olarak gama 

düzeltmesi yapılarak kalibrasyon tamamlandı. Kalibre edilmiş SLM, daha sonra HOT 

sistemine yerleştirilerek 4-f düzeneği kuruldu.  

HOT ve spektroskopi ile ilgili tüm görevleri gerçekleştirmek üzere bir Graphical User 

Interface (GUI) MATLAB'da tasarlanmış ve programlanmıştır. Hologramlar, 

Gratings and Lenses algoritması kullanılarak, HOT programı yardımı ile hesaplandı. 

HOT programı, girdi olarak örnek düzlemindeki parçacıkların olması istenen 

konumunu alır.  Deney düzeneğimizde kullanılan kamera doğrudan yazılım ile ilişki 

kuramadığından, yazılım üzerinde kamera ile aynı çözünürlükte oluşturulan ekran ile 

kameradaki hareketler eşlenerek uzamsal kalibrasyon yapıldı. Bu sayede yazılım 

üzerindeki çerçeve üzerinden örnek düzlemindeki konumlar elde edilebildi. HOT 

deneylerinde kullanılan algoritmalar polistiren (PS) test parçacıkları ile test edildi. 

HOT yazılımı tarafından oluşturulan dört adet spot örnek düzleminde test 

parçacıklarının tuzaklanması için kullanıldı. Dört tuzaktan oluşan bu PS parçacığı 

dizisi, yazılım tarafından Raman spektrum ölçüm bölgesine yönlendirildi. Yazılım, 

spektrometre ile iletişim kurduktan sonra bir saniye süre ile tek bir spektrum alır. Bu 

spektrum, CCD pikselleri y-ekseninde bölünerek her bir dilimden gelen sinyal ayrı 

ayrı ele alınacak şekilde işlendiği için (multi-track), her parçacığın bireysel Raman 

spektrumlarını elde bir seferde elde etmiş olur. Bu spektrumlar, PS parçacıkları ve 

maya hücreleri kullanılarak hazırlanmış olan veri kümesiyle karşılaştırılır. Bu 

karşılaştırmada kıstas ölçüm ile veri kümesi arasındaki korelasyon katsayısıdır. 

Önceden belirlenen eşik değerlere göre korelasyon katsayısının değeri sınıflandırma 

için gereken ölçütü belirler. Bu ölçüt kullanılarak parçacıklar her bir sınıf için atanan 
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bölgelere doğru yazılım tarafından ilerletilir. Başlangıç,  ölçüm ve sınıflandırma 

sonrası son konumlar daha önceden belirlenmiş değerler olup, program bu değerleri 

kullanarak parçacıkları konumlandırır. Gidilecek konumlar daha önceden belirli 

olduğundan anlık hologram hesaplama yerine, önceden hesaplanmış hologramların 

kullanılması da tuzaklama ve ayrıştırma verimini oldukça artırmıştır. 

Maya hücreleri ve E.coli hücreleri kullanılarak biyolojik hücrelerin test Raman 

ölçümleri düşük pozlama sürelerinde sinyal seviyelerini araştırmak için yapılmıştır. 

Örnek E.coli ve pozlama süresi bir saniye olduğunda parçacıkların sınıflandırılması 

için ölçüm sistemimizin yeterli sinyali vermediği görüldü. E.coli hücreleri ile sinyal 

elde edilebilmesi için eşik pozlama süresi değeri 30 saniye yeterli oldu. Bununla 

birlikte, maya hücreleri kısa pozlama sürelerinde daha iyi yanıt verdi. Maya hücreleri 

ile bir saniyelik ölçümlerde önemli bantları ortaya çıkmıştır. Korelasyon katsayının 

eşik değerinin ayarlanması ile mayalar için bir saniyelik ölçümler için ayrıştırma 

deneyinin mümkün olduğu görülmüştür. Bu göz önüne alındığında, sınıflandırma testi 

deneyleri maya hücreleri ve PS parçacıklar kullanılarak yapılmıştır. 

PS parçacıkları ile maya hücrelerinden oluşan karışık bir çözeltide, sekizli spot dizisi 

dördü Raman spektrumları ölçüm bölgesinde, dördü de yazılım ekranın sol kenarında 

daha sonra ölçülmek üzere bekleyen tuzaklardır. İşlemin başlamasıyla birlikte ölçüm 

bölgesindeki tuzaklardan sinyal alınır. Ölçüm ve sonrasında yapılan sınıflandırmaya 

göre, parçacıklar ölçüm hücresinde daha önce tanımlanan konumlara yönlendirilir. Bu 

yönlendirme sırasında iki türlü parçacık iki farklı köşeye gider. İlk grup hareketini 

tamamladıktan sonra, ikinci grubun hareketine başlamasıyla birlikte ekranın sol 

tarafında bekleyen dörtlü grup ölçüm bölgesine doğru hareket eder. Bu döngü kullanıcı 

durdurana kadar devam eder. Bu deneylerde, sınıflandırma başarı ile yapıldı. 

Raman spektroskopisi ile embriyo kalitesinin belirlenmesine yönelik bir çalışma 

İstanbul Üniversitesi Tıp Fakültesi’nden Dr. Ercan Baştu ile işbirliği içinde 

yapılmıştır. Bu çalışmada, embriyo canlılığını değerlendirmek için objektif bir yöntem 

bulunması amaçlanmıştır. Değerlendirme embriyoların yetiştiği atık kültür 

sıvılarından yapılmıştır. Hipotez, atık sıvısında en çok besin tüketen embriyonun en 

iyi gelişim göstereceği idi. Bu amaçla gönüllü kişilerden alınan örnekler ortalama 30 

µL’lik hacimlerle İTÜ Lazer Spektroskopi laboratuvarına sıvı azot tankı içerisinde 

getirildi. Örnek hacmi küçük olduğundan, Raman hacmini büyütmek ve ölçümlerden 

en iyi sinyali alabilmek için disk şeklinde bir ölçüm hücresi üretildi. 16’sı hamilelik 

aşamasına geçemeyen, 15’i hamilelik aşamasına geçebilen 31 embriyo atık sıvısı 

örneğinden, 30 saniye pozlama zamanı ile arka arkaya 20 ölçüm, bu ölçüm hücresi 

içinde alınmıştır. Her atık sıvı ölçümünden önce saf su ölçümü ve sonrasında tolüen 

ölçümü alınmıştır. Tolüen ölçümü kalibrasyon aşamasında kullanılırken, saf su 

ölçümü, arka plan düzeltilmesi için kullanılmıştır. Ölçümler normalize edilmiş ve 

taban çizgileri üçüncü derece bir polinom taban profiline uydurularak çıkarılmıştır.  

Önişlem yapılmış spektrumlara bant bileşen analizi uygulanmış ve bu yöntem ile elde 

edilen bant alanlarına ve tüm bant oranlarına bir Mann-Whitney U testi uygulanmıştır. 

En önemlisi 903/942 cm-1 bant alanı oranı olarak bulunmuştur. Bu oranlara K-ortalama 

kümeleme analizi uygulanarak sınıflandırması yapılmıştır. Bu sınıflandırma sonucu, 

bu ölçümlerin duyarlılığı ve özgünlüğünün sırasıyla,% 93 ve% 77 olduğunu 

göstermiştir.  

Bu çalışma içerisinde ayrıca fenilalanin, valin, glutamin, alanin, arjinin, tirozin, 

triptofan, glisin, prolin, serin, histidin, prolin, glutamat, ve sistein amino asitlerinin 

sulu çözeltilerinin Raman spektrumları ölçülmüştür. Bu ölçümler incelendiğinde, 
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glutamin, glisin ve prolin’in 903 cm-1 civarında ve valin'in 942 cm-1 civarında kendine 

ait en şiddetli bantlarının bulunduğu tespit edildi. Bunlar arasında, glutamin ve glisin 

literatüre göre embriyo gelişimine en çok katkı yapan amino asitlerdir. Bu sonuç en 

önemli bant oranının 903/942 cm-1 olduğu sonucumuzla uyum içerisindedir.  
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1.  INTRODUCTION  

Consider a solution of yeast cells and a PhD student desires to measure the hour-by-

hour growth and nutrition relation. He/she measures the average growth of the cells 

every hour and compares it with the amount of the nutrition the population consumes. 

If the student tries to apply his result on an individual, how possibly will it match the 

conditions of the particular cell? Since the biological media are heterogeneous (cells 

are not identical, not in equilibrium, the biological parameters of the individuals are 

not same) the results will not match for many of the individual cells.  

To overcome the difficulties discussed above, one can characterize each cell in a 

medium singly according to their physical properties and can separate the cells of 

interest from other kinds of particles. Among many separation techniques, it was 

hypothesized that sorting of single cells could non-invasively and effectively be 

achieved without using any labels using Holographic Optical Raman Tweezers 

(HORT). This method combines Raman spectroscopy and holographic optical 

tweezers. Holographic optical tweezers is a modified version of the optical tweezers 

method. In this method, micron sized particles can be immobilized and manipulated 

non-invasively by using the force components exerted by the light source.  

Before the construction the holographic optical tweezers setup, the spatial light 

modulator (SLM) that needed to be added to the previous setup was calibrated. The 

calibrated SLM is placed to the new optical setup, which provides 4-f configuration. 

After the construction of the setup, realization of multiple traps was achieved. The 

software needed for HOT and calibration of the SLM was written on Matlab platform. 

Since the software can communicate with the spectrometer, too, the automation of the 

process could be achieved fully. This automation process included creating spots, 

moving particles to specific measurement position, measurement of Raman spectra of 

a 4-particle array, and movement of the particle to the related channels after 

identification.  
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During the PhD thesis, other than single cell sorting, medical studies using Raman 

spectroscopy were performed. This study aimed to show that one could assess the 

embryo quality with high sensitivity and specificity using optical methods without a 

need of a subjective comment. In the study, an unsupervised classification method on 

the Raman spectra of spent embryo cultures were applied to select the most viable 

embryo with the best percentage possible. 

1.1 Purpose of Thesis  

The purpose of this thesis is to achieve biological sorting using holographic optical 

tweezers setup. The sorting criterion was the Raman signal obtained from the cells, 

which gives a cell specific chemical signature from the sample of interest. After 

developing a software that controls particle manipulation, hologram calculation, 

communication with spectrometer, data pre-processing and identification, the 

experiments were supposed to be performed automatically. 

1.2 Literature Review 

Biological media are, generally, heterogeneous due to its nature. Physiological 

measurements on these media, therefore, give average result from the population. 

These measurements work well for many applications in the macroscopic scale. 

However, the individuals in the medium are neither identical nor in equilibrium. Their 

biochemical and physiological properties, such as grow rate, nutrient consumption are 

variable. Therefore, measurements on single cells give better results. This is well 

discussed in a review [1].  

Microfluidics is a miniaturized flow control method that is highly practical for single 

cell studies. Microfluidic devices are fabricated using soft lithography. Soft 

lithography was first demonstrated by Xia and Whitesides [2]. These devices were 

combined with photonics and this is called optofluidics [3]. Microfluidics combined 

with spectroscopy and detection methods is a good recipe to reveal the biological 

mechanisms. Some of the physical methods combined with microfluidics are 

fluorescence spectroscopy [4], fluorescence resonance energy transfer (FRET) [5],  

Raman spectroscopy [6], surface enhanced Raman spectroscopy (SERS) [7], two 

photon spectroscopy [8], impedance spectroscopy [9].  
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There are several physical and chemical methods also found application in the field of 

separation and sorting of single cells most of which were well revised before [10-13]. 

Recently, Raman spectroscopy was used as a separator parameter in microfluidic 

applications [14-18]. This is a spectroscopic method discovered by Sir Chandrasekhar 

Venkata Raman in 1928 where the inelastic scattered photons from the molecules of 

the sample are collected using appropriate optics [19]. In his article, CV Raman 

explained his setup consists of sunlight as light source, a telescope (18 cm aperture 

and  230 cm focal length), a second lens (f = 5 cm) and his eyes as detectors. As the 

instrumentation improved, better results with spectroscopic design mercury light 

sources were obtained [20-23]. Eventually, after the invention of lasers, suitable laser 

sources for Raman spectroscopy such as Ar+ (351.l-514.5 nm), Kr+ (337.4-676.4 nm) 

and Nd:YAG (1064 nm) lasers were developed and laser Raman spectroscopy took 

place in literature with awaiting wide field of application [24]. Among these 

applications, Raman spectroscopy attracted great attention from the field of biology 

and medicine since water, which is the main component in biological media, has very 

low and broad contributions to spectra. The method does not need sampling in most 

of the applications, and is non-invasive when the right laser source is used. Some 

biomedical applications of Raman spectroscopy were reviewed by Lawson et. al. [25] 

and Choo et. al. [26]. Carey, also, explained the biochemical applications of Raman 

spectroscopy in his book together with the theoretical basis of the methods [27]. Başar 

et. al. used Raman spectroscopy to investigate pre-eclampsia disease the first time 

[28]. Parlatan et. al. found preliminary results to select the most viable embryo to 

improve IVF outcomes [29]. 

Among the optical techniques used in cell separation, optical tweezers is one of the 

label free methods. Particle trapping and manipulation, which is named “optical 

tweezers” is a phenomenon that is based on the fact that light can carry momentum 

and it can exert force on matter. Such effect relies on the physical phenomenon called 

radiation pressure, which was first suggested by Keppler who was studying comet tails. 

Maxwell published the foundations of “radiation pressure” in 1873 [30].  The first 

successful experiments that used arc lamps to move vanes, proved radiation pressure 

exists. Two independent studies were made in the same year, 1901. One was made by 

P. N. Lebedev who used extremely low gas pressures and the other one was  made by 

E. F. Nichols and G. F. Hull who used high gas pressures with silvered vanes to ensure 
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the experiments are valid only under high pressure conditions [31, 32]. The latter group 

made the first quantitative study to prove Bartoli laws of radiation pressure [33].  

Optical tweezers that is being used in the current form was invented by Arthur Ashkin. 

He used to work in Bell labs between 1970 and 1990 and had an interest in radiation 

pressure and manipulation of micron-sized particles. The first study to build the 

foundations of the optical trapping we currently use today was published in 1970 [34]. 

He hypothesized that one could obtain radiation pressure by avoiding radiometric 

forces (these forces can result in movement of particles by thermophoresis, 

photophoresis or diffusiophoresis) that stem from thermal effects using high laser 

intensity. He used micron sized spherical glass particles to avoid thermal effects and 

chose the diameters as big as the wavelength of the light shed on the particle (𝑑 ≅ 𝜆). 

The first realization of single beam optical traps was achieved in 1986 by Ashkin, 

Dziedzic, Bjorkholm and Chu [35]. They have clearly explained the forces acting on 

the particles in both Rayleigh regime (𝑑 ≪ 𝜆) and Mie regime (𝑑 ≫ 𝜆). Ashkin and 

colleagues made many research in the area optical trapping including atom trapping 

and manipulating microorganisms such as tobacco virus. 

Trapping more than one particle has come out as an essential need for optical 

manipulation research in the micro scale, especially for the biological applications. In 

the first applications of the multiple trap, time sharing of a single beam was used to 

obtain multiple traps by rapidly changing the lateral position of the mirror in the 

Fourier plane (see figure 2.9) which results in a lateral position change in sample plane 

[36]. This method involved rapidly scanning of the intensity gradient along the desired 

position of the traps. This means, switching on and off the laser faster than the time 

needed for the particle to drift of the trap allows time-sharing of the intensity gradient 

of the laser. Alternative to mirrors, acousto-optic modulators (AOM) were used in 

multiple trapping setups to scan the beam faster [37, 38]. Use of diffractive optical 

elements (DOE) gave better results especially after the improvement of spatial light 

modulators (SLM) which are programmable pixelated devices. Duffresne et. al. 

proposed the first DOE adapted HOT setup that could trap a 4x4 dielectric sphere array 

[39]. After this early use of computer generated holograms for multiple trapping, this 

method was named as “Holographic Optical Tweezers (HOT)”. Liesner et. al. was the 

first to show an optical tweezers setup that replaces a SLM instead of mirror could 

achieve both lateral and axial positioning [40]. Curtis et. al. made a break-through for 
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this method by demonstrating combination of many traps and modification of 

individual trap types [41].  The developed methods for creating computer generated 

holograms include gratings and lenses algorithm, Gerchberg – Saxton algorithm and 

random mask algorithm. When, where and how to use these algorithms have already 

been discussed by Spalding et. al. [42]. In this paper, the uniformity and the efficiency 

of these algorithms are also discussed. The Weighted Gerchberg-Saxton (GSW) 

algorithm is proved to be the most superior among these algorithms by means of 

uniformity and efficiency. 

Combination of Raman spectroscopy and optical tweezers or HOT was demonstrated 

to be useful in microfluidic cell separation. Creely et. al. [43] studied floating living 

cells. They used the 1064 nm trapping beam to move the sample back and forth. Thus, 

the second 785 nm laser could scan the floating cell by illuminating different location 

of it.  Creely et. al. [44], used the same strategy of Raman imaging to image neoplastic 

cells. Ramser et. al. [45] also combined Raman and optical tweezers together with 

microfluidics to study single red blood cells. Butler et. al. [46], characterize individual 

aerosol droplets using HOT and Raman spectroscopy. In this study, each trapped 

aerosol particle was moved to the region, which they called “Raman active region” to 

measure them individually. Kong and Chan [47] constructed a combination of Raman 

and HOT setup to obtain multifocal Raman signal acquisition from an array of 

polystyrene (PS) particles. In this study, Raman measurement of the particles in the 

array was achieved simultaneously. The spectrometer was modified to have five slits, 

which allowed collecting signal from five lateral positions. Resolution of superposed 

signal from the particles in the axial positions was made by a data processing algorithm 

they suggest. There is a study combines Raman spectroscopy and optical tweezers 

investigates living algae in a microfluidic channel to sort them according to their 

unsaturated lipid ratios [48]. 

Multivariate methods (especially PCA - Principal Component Analysis) are essential 

statistical methods to be used in spectral analysis today. Although PCA and 

spectroscopy were used back in 1950 [49], what makes PCA an indispensable tool for 

Raman spectral analysis is its power to reduce dimensionality and give a qualitative 

vison of classification using the scores plot. This technique (generally together with 

another classification methods) were used in identification of several diseases [50-54] 

and biological materials (cells, tissues, organisms, fluids) [55-58] using Raman 
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spectroscopy. The mathematical derivation of PCA was given in the original paper of 

Pearson in 1901 [59]. Hotelling’s psychometrics study in 1933 [60] is accepted as the 

first original application of the PCA.  

1.3 Hypothesis 

This thesis aimed to separate trapped biological particles (isolated cells, living cells 

such as bacteria or yeast cells) using the Raman signal acquired from them real time. 

As seen in the literature section, a lot of sorting method for cell separation is present. 

In our study, it was planned to sort the biological cells in microfluidics channels using 

HOT and Raman spectroscopy. It is possible to create an array of multiple particles in 

the measurement region and to obtain Raman spectra of individual particles by binning 

the Charge Coupled Device (CCD) vertically. Although one can obtain weak spectral 

signal with Raman spectroscopy, it is possible to identify particles with low exposure 

times using multivariate statistical analysis methods such as principal component 

analysis (PCA) and linear discriminant analysis (LDA) of just calculating the 

correlation matrix of the individual measurement and the pre-calculated dataset. 
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2.  THEORETICAL BACKGROUND 

2.1 Optical Tweezers 

Optical tweezers is a method to trap and manipulate micron size (sometimes nano size) 

particles by using a tightly focused beam. A high numerical aperture (e.g. NA=1.2) 

microscope objective can help provide this condition. This tightly focused beam 

applies two kinds of forces on the illuminated particle: Gradient force and scattering 

force. Scattering force stems from the beams that the trapped particle deflects. Gradient 

force took its name after the derivation of the lateral force component that is 

proportional to the gradient of the field. As mentioned above, comparing the size of 

the particle to the wavelength of the light, there are two kinds of regimes: Rayleigh 

regime (d≪λ) and Mie regime (d≫λ), where d is the diameter of the particle, where 𝜆 

is the wavelength of the light. 

2.1.1 Optical Forces in Rayleigh Regime (d << λ) 

This is the regime where particle diameter is very small compared to the wavelength. 

Since the particle size, d, is smaller than the wavelength of the trapping beam, the 

particle essentially sees a stationary field. That means, the phase of the field is constant 

in time. Thus, the photons are treated as waves in this picture. The particle can be 

considered as an induced dipole. 

The magnitude of the scattering force is proportional to the optical intensity. The 

direction of this force is the same with the incident light. The scattering force is 

generally defined as 

𝐹𝑠𝑐𝑎𝑡 =
𝑛𝑏𝑃𝑠𝑐𝑎𝑡

𝑐
  

(2.1) 

where nb is defined as the refractive index of the medium and Pscat is the power of 

scattered photons. The scattering cross section for Rayleigh particles [61] is 
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𝜎𝑠𝑐𝑎𝑡 = 
2𝜆2

3𝜋
𝑘6 (

𝑚2 − 1

𝑚2 + 2
)

2

 
(2.2) 

where 𝑘 is the dimensionless size parameter. Using the radius of the particle r, this 

parameter is defined as 

𝑘 =  
2𝜋𝑟

𝜆
  

(2.3) 

The effective refractive index, m, is defined as 

𝑚 = 
𝑛𝑎

𝑛𝑏
  (2.4) 

where na is the refractive index of the particle. Large m values result in large surface 

reflections. For example it is easier to trap polystyrene in water (m = 1,24) comparing 

to trap them in air (m = 1.65). Using  

𝐸 =  𝐼0𝜎𝑠𝑐𝑎𝑡   (2.5) 

one can find the relationship for scattering force: 

 

𝐹𝑠𝑐𝑎𝑡 =
128𝜋5𝑟6

3𝜆4
(
𝑚2 − 1

𝑚2 + 2
)

2

𝑛𝑏  
(2.6) 

The gradient force is proportional to the gradient of optical intensity and propagates in 

the direction of the gradient of the optical intensity. The gradient force is generally 

defined as 

𝐹𝑔𝑟𝑎𝑑 = 4πnb𝜖0𝑎
3 (

𝑚2 − 1

𝑚2 + 2
)

1

2
∇𝐸2 

(2.7) 

where α is the polarizability for a spherical Rayleigh particle [62]. Polarizability of a 

dielectric spherical particle can be solved by assuming a particle with radius r, 

refractive index np in a medium of refractive index nb and an external field E. 

Following the solution steps [63], the polarizability is found to be 
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𝛼 = 𝑛𝑏𝑟
3  (

𝑚2 − 1

𝑚2 + 2
) 

(2.8) 

The gradient force can be found using this result as below [62]: 

𝐹𝑔𝑟𝑎𝑑 = 4πϵ0

𝑛𝑏
2𝑟3

2
(
𝑚2 − 1

𝑚2 + 2
)∇< 𝐸2 > 

(2.9) 

2.1.2 Forces in Mie Regime (d >>λ) 

Incident beam on the test particle can be considered as simple rays in Mie regime since 

the diameter of the particle is far bigger than the wavelength of the light. Due to Snell 

refraction law and Fresnel formulas, the ray optical description of the optical forces 

exerting on a dielectric sphere can be demonstrated as in figure 2.1. In this figure two 

beams are demonstrated, A and B. These beams stem from the different intensity 

gradient regions of the beam, which means the force they exert on the particle is 

different. The momentum of the rays are denoted as p in the figure. 

The ray optical derivation of the forces in Mie regime was made by Ashkin and his 

colleagues in 1992 [64]. In this study, the net force on the dielectric sphere was found 

by summing the contributions from each the ray entering the aperture of radius r with 

respect to beam axis and the angle α with respect to y- axis. A sphere close to an 

intensity gradient was given in figure 2.2. 

In this picture, the ray optic calculations are made using the Fresnel transmission and 

reflection coefficients T and R. As a result, the contributions of rays that followed 

sequential reflections and transmissions were calculated as below: 

𝐹𝑍 = 𝐹𝑠𝑐𝑎𝑡 =
𝑛1𝑃

𝑐
{1 + 𝑅𝑐𝑜𝑠2𝜃 −

𝑇2[cos(2𝜃 − 2𝑟) + 𝑅𝑐𝑜𝑠2𝜃]

1 + 𝑅2 + 2𝑅𝑐𝑜𝑠2𝑟
}  

(2.10) 

𝐹𝑌 = 𝐹𝑔𝑟𝑎𝑑 =
𝑛1𝑃

𝑐
{𝑅𝑠𝑖𝑛2𝜃 −

𝑇2[cos(2𝜃 − 2𝑟) + 𝑅𝑠𝑖𝑛2𝜃]

1 + 𝑅2 + 2𝑅𝑐𝑜𝑠2𝑟
} 

(2.11) 

In these equations, P is the power of the beam. 
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2.1.3 Design of an Optical Tweezers Setup  

There are several conditions to achieve a stabile single beam optical tweezers setup. 

The reflections from the surface of the sphere results in a momentum transfer and that 

leads the particle to move in the axial direction. That means the scattering forces tend 

to push the particle from the beam focus. The gradient force must overcome this force 

to keep the particle in the trap location. Meaning, the beam must be as tight as it can 

be. One important parameter that defines the beam tightness is numerical aperture. A 

high numerical aperture objective collects the portion of the beams proportional to this 

parameter. An efficient high numerical objective generally has the full illumination 

angle of 70o. Since the formula of the numerical aperture is 

𝑁𝐴 = 𝑛 𝑠𝑖𝑛(𝛼) (2.12) 

 

 Description of optical trapping in Mie regime. A net force, which stems 

from the photon momentum transferred, is applied on the dielectric sphere 
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 Scheme for the calculation of forces in Mie regime. Beams are 

described as simple rays and every reflection and refraction contributes R and T 

coefficients to incoming beam. Vector sum of the rays gives the ray optical 

calculation of the forces 

Typical numerical aperture for water immersion objectives are about 1.20. Fulfilling 

this aperture is crucial to achieve optical tweezers. Besides, the refractive index of the 

particle must be as close as possible to the refractive index of the material it is in. 

Otherwise, the refracted rays tend to push the particle out of the beam focus. To 

summarize the conditions:  

 Tight beam 

 High numerical aperture 

 Fgrad > Fscat 

 Small value of m 

A typical experimental setup for single beam optical tweezers is shown in figure 2.3.  
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 Typical experimental setup for optical tweezers. 

A Keplerian telescope system consisting of two plano-convex lenses magnifies the 

beam diameter as many as the ratios of the focal lengths of the lenses f2/f1. The 

magnified beam is collimated into the back aperture of the microscope objective. The 

high numerical objective allows the tight focus. The sample that includes test particles 

in suspension is illuminated with this beam and the trapped particles are monitored via 

a CCD camera. The choice of wavelength may depend on what one aims to trap. Since 

photo damage is a big concern for biological particles, near infrared wavelengths (e.g. 

785 nm, 1064 nm) are more appropriate for such applications since the energy 

transferred to the sample is more acceptable in this region. 

2.2 Spatial Light Modulators 

Spatial light modulators are devices that change the phase of the incident light on the 

active area of the LC display by changing voltage applied on the liquid crystal 

molecules. These devices have various applications in several research fields. In the 
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last two decades, they found use in optical tweezers setups for the purpose of 

programmatically generate traps and move them both laterally and axially.  

The structure of these devices is called LCoS (liquid crystal layer on silicon substrate). 

Liquid crystal (LC) is a mesophase of material, which means it may behave like liquid, 

solid, or both by means of molecule order parameters, flow characteristics, and 

physical state depending on the medium conditions. Liquid crystal can mainly be 

grouped in two: Thermotropic and lyotropic. Additionally, liquid crystalline phases 

can be classified as nematic, smectic, cholesteric, and columnar. In nematic LC, rod 

shaped molecules are almost parallel to each other. A unit vector is described in the 

direction of average orientation of the long axis and is called director. This vector 

points the direction where most LC molecules tend to point. The deviation from this 

vector describes the order parameter of the LC. There is a special kind of nematic 

phase called twisted nematic phase. In this effect, nematic crystal molecules are 

confined between two plates, glasses and polarizers. The molecules are naturally 

twisted when there is no electrical field applied. An incident light first passes through 

the first polarizer, and then the polarization of the light is rotated due to twisted LC 

molecules. The beam is let out through the second polarizer whose polarization angle 

is adjusted 90o with respect to the first one. When a small electric field is applied on, 

the LC molecules of twisted nematic phases realigned as seen in figure 2.4.   

 

 Twisted nematic (TN) LC phase when the external field is a) off and b) 

on. 

Smectic LCs are ordered in more than one dimension because of its layered structure. 

Chiral nematic crystals also known as cholesteric LCs apply intermolecular forces at 

a small angle to each other. These forces make the material visualized as stack of two-
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dimensional layers showing properties similar to nematic crystals. The phases of the 

liquid crystals are summarized in figure 2.5. 

 

 Liquid crystal phases [65]. 

LCs have the property of birefringence, double refractive index, that is useful for phase 

modulation. LCoS devices are generally made of ferroelectric or twisted nematic (TN) 

LCs. Both have their own advantages. Ferroelectric devices work in two states while 

TN-LCs have as many as 256 or 512 states between 0 - 2𝜋. Ferroelectric devices work 

much faster than TN-LCs. Researchers in HOT applications mostly choose TN-LC 

devices because of its flexibility [66]. 

2.2.1 Phase Modulation 

The phase modulation in SLMs is performed, basically, by changing the voltage of 

each cell. The operation of the device generally obeys the equation 2.13: 

𝐸𝑜𝑢𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑀𝑆𝐿𝑀𝐸𝑖𝑛

⃗⃗ ⃗⃗  ⃗  (2.13) 

Here, 𝑀𝑆𝐿𝑀 is the matrix element representing Jones matrices which was originally 

introduced by R. C. Jones in 1941 [67]. The eigenvectors of this element has to be 

found for each specific case e.g. illumination with linear polarized light. In the phase 

mostly devices, which is also used in this study, illuminating the SLM with linearly 

polarized light is sufficient for a good diffraction efficiency.  

The liquid crystal on silicon (LCoS) SLM is a birefringent device. Such devices have 

two refractive indices. One is 𝑛𝑒(e for extraordinary) and the other is 𝑛𝑜 (o for 

ordinary).  The angles of the LC molecules vary with the voltage applied on the device. 

This directly leads to a phase shift in the output with the relation as in equation 2.15 

[66]: 
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Δ𝜙 =  
2𝜋

𝜆
(𝑛𝑒 − 𝑛𝑜)𝑑  

(2.14) 

This equation reads the principle of phase modulation: Wave front transformation is 

achieved by changing of electric field performed on the LC layer. Final alignment of 

LC molecules provides the reflected, therefore, transformed wave front. 

2.2.2 SLM Types and Specifications 

SLM is a device that is able to change some properties of an optical wave front. There 

are two kinds of SLMs according to their addressing schemes: Electrical and optical. 

LCoS devices use electrical addressing that relies on converting electrical data, 

commonly obtained from DVI or VGA ports, to optical information. Fig. 2.7  shows 

the diagram of how two addressing schemes works, roughly [68]. 

 

 

 Optical and electrical addressing schemes. 

Spatial light modulators can modulate phase, amplitude or both. Phase only spatial 

light modulators are more efficient since amplitude modulation generally removes a 

portion of power from the beam and reduces efficiency. Moreover, reflective devices 

are faster and more effective than the transmissive ones since switching time depends 

on the thickness of the device and this decreases to its half in reflective SLMs. 

Commercial SLMs has several specifications that one needs to consider carefully when 

choosing an appropriate device. These specifications are shortly explained below: 

Pixel Pitch: The pixel pitch is defined as the spatial distance between two pixels of 

the liquid crystal display.  
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Speed: High frame rate is crucial for a fast hologram computation. The addition of the 

time for the LC to switch (𝜏𝐿𝐶) and the time for addressing between the first and last 

pixel array (𝜏𝑙𝑜𝑎𝑑) gives the frame rate as in equation 2.17. 

𝜏𝑓𝑟𝑎𝑚𝑒 = 𝜏𝐿𝐶 + 𝜏𝑙𝑜𝑎𝑑 (2.15) 

It is important not to have delays in the frame rate because of addressing or switching. 

Fill Factor: Fill factor is a magnitude that determines how much energy is transformed 

to the zeroth diffraction order. The envelope function that describes how much energy 

is distributed to the zeroth order is the squared of Fourier transform of the function of 

a single pixel. Thus, smaller the pixel leads to a better fill factor, therefore, optical 

efficiency. 

A TN, phase only, reflective SLM device was chosen and was purchased from 

HOLOEYE. The device is 8 bit with 256 gray levels whose resolution is 1920 x 1080, 

pixel pitch is 8 𝜇𝑚, frame rate is 60 Hz and fill factor is 87%. 

2.3 Holographic Optical Tweezers 

Efforts to trap more than one particle using single source and single microscope was 

summarized in the literature section. Usage of DOEs especially SLMs, changed the 

game dramatically. Programmable LC pixel arrays, SLMs, were used to create 

multiple traps and manipulate them individually.  

First efforts of multiple trapping used AOMs and achieved to trap and laterally 

manipulate many particles. However, manipulating particles axially needs the control 

of divergence in the back focal plane of the microscope objective. Doing this using 

plane using mirrors or AOMs is not possible. These tools were replaced with 

diffractive optical elements (DOE) about 2 decades ago. Illuminating a grating with a 

plane wave, diffraction orders will take place in the far field. In the conventional 

optical tweezers setup, the microscope objective is used as a transform lens. However 

if, the steering mirror in this setup is replaced with a grating, a linear array of traps are 

produced. Modifying the period of the grating changes the lateral position of individual 

traps. If a Fresnel lens is inserted together with the grating, diffraction orders will be 

shifted out of the far field leading the trap to move axially. After the studies that 

showed holographic approach that first used superposition algorithms, addressable 



17 

DOEs found a wide application around the world. These devices are called spatial light 

modulators. 

To drive these devices using, for example, superposition algorithms, one should create 

computer-generated holograms (CGH). Creating these phase patterns needs to derive 

the equations for lateral and axial displacement before superposing them. The 

theoretical basis of these equations is Fourier optics. These derivations are given in the 

following section. Updating these holograms real-time due the lateral and axial 

position of the trapped particles, one can manipulate individual traps just by changing 

the hologram images displayed on the SLM. 

2.3.1 Design of HOT Setup 

The standard experimental design for optical tweezers was given in the previous 

sections. Applying a few modifications on this setup, one can build a HOT 

experimental setup. The most crucial condition to fulfill here is 4-f configuration. This 

configuration is demonstrated in figure 2.9.  

 

 4-f configuration scheme. Diffractive element, SLM in our case is 

illuminated with an expanded beam. The image on the SLM is propagated to the 

image plane using the two lens first of which allows Fourier transform of the image 

in the Fourier plane and the second creates the inverse Fourier transform of it in the 

image plane. The image is reconstructed in image plane with no loss comparing to 

the SLM plane. 

It relies on the fact that a lens provides the Fourier transform of the incoming beam in 

its focal plane. When parallel illuminated, sequence of two lenses will steer the 

incoming beam towards the back focal plane of the microscope objective with very 

few losses. Rays with different incident angles on the first lens will be focused to a 

laterally shifted position in the Fourier plane. The laterally shifted spots in the Fourier 

plane are imaged in the BFP of the objective lens. 

BFP  
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Applying this condition for the optical tweezers setup, after the addition of two lenses 

and SLM, the common HOT experimental setup is obtained as displayed in figure 

2.10. In this setup, the Keplerian telescope system expands the laser beam to fully 

illuminate the SLM which displays a computer generated hologram on its surface. The 

SLM is positioned in the object plane of the Fourier lens of the second telescope. The 

reflected light from the SLM includes higher diffraction orders. The common practice 

is to block higher order and zeroth order beams and propagate the first diffraction order 

beams to the back focal plane of the microscope objective. The lens in front of the 

SLM creates the Fourier transform of diffracted beams and images them in the back 

plane of the second lens, which is also called Fourier plane. This complex beam is 

imaged onto the back aperture of the microscope objective via combination of lenses. 

Since the SLM plane and the back aperture of the objective lens is conjugate planes, 

possible walk-off of the higher diffraction order beams are prevented. Moreover, the 

second telescope creates a mathematical relationship between the beam at the output 

of the hologram and the beam in the focal plane since these planes are conjugate 

planes. These lenses limit the beam diameter and provide the desired beam diameter 

in the BFP needed for optical tweezers.  

 

 

 Typical HOT setup. 

Without a beam block element, all diffraction orders are propagated to the microscope 

back focal plane together with the zeroth order beam. The higher order beams are 

generally eliminated using an aperture in the Fourier plane, which is located between 
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Fourier lens and objective lens and is the place where the diffraction orders are 

optically well separated. In such cases, the second telescope system behaves as a 

spatial filter. The zeroth order beams can be eliminated using a beam block [69] or an 

adapted hologram algorithm [70]. 

2.3.2 Algorithms 

Computer generated holograms that are essential in holographic optical tweezers. They 

are phase patterns displayed on the DOEs in order to manipulate individual traps 

laterally and axially.  

Algorithms of phase pattern generation stem from the Fourier optics principals. It 

would be more elucidatory to start from these derivations which were adapted from J. 

Goodman’s book on Fourier optics [71] and Persson’s Phd thesis [72].   

According to scalar diffraction theory, an electromagnetic field illuminating the SLM 

plane is assumed as a scalar field. Propagating the field to the back aperture of 

microscope objective may be in two ways: As demonstrated in figure 2.11 where the 

field in plane A is propagated to plane B a) using a lens b) in free space.  

 

 Propagation from plane A to B with a) Fourier transform using a lens b) 

Fresnel diffraction  

Here, two planes are conjugate planes and the field displayed on plane B is Fourier 

transform of the field on plane A. The equation of Fourier hologram providing this 

propagation is given below: 

x,y u,v x,y u,v 
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𝑈(𝑢, 𝑣) =
1

𝜆𝑓
∬𝑈0(𝑥, 𝑦) exp(−𝑖

2𝜋

𝜆𝑓
(𝑢𝑥 + 𝑣𝑦))𝑑𝑥𝑑𝑦

∞

−∞

 (2.16) 

The other possibility is that the field in plane A is propagated to plane B which is 

separated from the former one with a distance z without using any lenses. This kind of 

propagation is calculated with Rayleigh-Sommerfeld diffraction integral. The 

expression that is used in these situations is given as: 

𝑈(𝑢, 𝑣, 𝑧) =
1

𝑖𝜆
∬𝑈0(𝑥, 𝑦, 0)𝑒𝑖𝑘𝑟

cos (𝜃)

𝑟
𝑑𝑥𝑑𝑦

∞

−∞

 (2.17) 

For long optical distances (z >> f), some simplifications regarding to paraxial 

approximation can be done using 

𝑟 =  √𝑧2 + (𝑥 − 𝑢)2 + (𝑦 − 𝑣)2 =  𝑧√1 +
(𝑥 − 𝑢)2 + (𝑦 − 𝑣)2

𝑧2
 (2.18) 

Binomial expansion of the above expression produces: 

𝑟 ≈ 𝑧 +
1

2

(𝑥 − 𝑢)2 + (𝑦 − 𝑣)2

𝑧
  (2.19) 

Placing this in the Rayleigh-Sommerfeld equation together with 
cos(𝜃)

𝑟
=

𝑧

𝑟2 ≈
1

𝑧
 , 

Fresnel diffraction integral given in equation 2.22 is obtained.  

𝑈(𝑢, 𝑣, 𝑧) =
𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
∬𝑈0(𝑥, 𝑦, 0)𝑒

𝑖𝑘
2𝑧{

(𝑥−𝑢)2+(𝑦−𝑣)2}𝑑𝑥𝑑𝑦

∞

−∞

 (2.20) 

The incident beam is propagated, first, from the SLM to the front plane of the Fourier 

lens. Then, it transmits through the lens and finally, the beam propagates from the back 

plane of the Fourier lens to the back focal plane of the microscope objective. The field 

in the front plane of the lens is 

𝑈(𝑢′, 𝑣′, 𝑓) =
𝑒𝑖𝑘𝑓

𝑖𝜆𝑧
∬𝑈𝑆𝐿𝑀(𝑥, 𝑦)𝑒

𝑖𝑘
2𝑓{(𝑥−𝑢′)2+(𝑦−𝑣′)2}

𝑑𝑥𝑑𝑦

∞

−∞

 (2.21) 
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Using the thin lens approximation, the field in the back plane of the lens is provided 

by multiplication of the field in the front plane by 𝑒
−

𝑖𝑘

2𝑓
(𝑢′2+𝑣′2)

: 

𝑈(𝑣′, 𝑢′, 𝑓) =
𝑒𝑖𝑘𝑓

𝑖𝜆𝑧
∬𝑈𝑆𝐿𝑀(𝑥, 𝑦)𝑒

𝑖𝑘
2𝑓

(𝑥2+𝑦2)
𝑑𝑥𝑑𝑦

∞

−∞

 (2.22) 

The field in the back focal plane of the microscope is calculated by multiplication of 

the Fresnel diffraction integral of the field in the back plane of the Fourier lens to target 

plane of the objective by the field in the back plane of the Fourier lens. Since the 

distance to target plane from backplane of the lens is f+w, the variable z is replaced 

with this value when calculating the Fresnel integral. Combining these, the field in the 

target plane is calculated as 

𝑈𝐵𝐹𝑃(𝑢, 𝑣, 𝑤)

=
𝑒

𝑖2𝜋(2𝑓+𝑤)
𝜆

𝑖𝜆𝑓
∬𝑈𝑆𝐿𝑀(𝑥, 𝑦, 0) 𝑒

−𝑖
𝜋𝑤
𝜆𝑓2(𝑥

2+𝑦2)
𝑒

−𝑖
2𝜋
𝜆𝑓

(𝑢𝑥+𝑣𝑦)
𝑑𝑥𝑑𝑦 

∞

−∞

 
(2.23) 

In HOT setup, it is aimed to propagate the electromagnetic field on the SLM to 

microscope back focal plane without changing the space, e.g. lateral distance changes 

in SLM plane should produce the same changes in sample plane as demonstrated in 

figure 2.12. 
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 Propagation of electromagnetic field from SLM plane to sample plane. 

CGH application needs numerical procedures, which consist discrete iterations of 

operations. Thus, equation 2.23 is discretized given in 2.24. 

 

𝑈𝐵𝐹𝑃(𝑢, 𝑣, 𝑤) =
𝑒

𝑖2𝜋(2𝑓+𝑤)
𝜆

𝑖𝜆𝑓
 ∑𝑈𝑆𝐿𝑀(𝑥, 𝑦) 𝑒

−𝑖(
𝜋𝑤
𝜆𝑓2(𝑥

2+𝑦2)+
2𝜋
𝜆𝑓

(𝑢𝑥+𝑣𝑦)) 

𝑥,𝑦

 (2.24) 

Generally, a complex field in the BFP can be written as 

𝑈𝐵𝐹𝑃(𝑢, 𝑣, 𝑤) =
𝑒

𝑖2𝜋(2𝑓+𝑤)
𝜆

𝑖𝜆𝑓
 ∑|𝑈𝑆𝐿𝑀(𝑥, 𝑦)| 𝑒−𝑖(𝜙𝑗−𝛥𝑗

𝑚) 

𝑥,𝑦

 (2.25) 

Where 𝜙𝑗 is the corresponding phase shift for the field in jth pixel and f is the focal of 

the Fourier lens. The phase shift for mth trap is on jth pixel is: 

Δ𝑗
𝑚 = 

𝜋𝑤

𝜆𝑓2
(𝑥𝑗

2 + 𝑦𝑗
2) +

2𝜋

𝜆𝑓
(𝑢𝑚𝑥𝑗 + 𝑣𝑚𝑦𝑗) (2.26) 

w = 0 
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A more compact notation can be made by writing the dimensionless variable u as in 

equation 2.27. 

𝑈𝑚 = ∑
1

𝑁
 𝑒−𝑖(𝜙𝑗−𝛥𝑗

𝑚) 

𝑗=1,𝑁

 
(2.27) 

Where  

𝐼𝑚 = |𝑈𝑚|2 (2.28) 

is satisfied for the energy flux through a diffraction limited spot whose surface is 

𝑓2𝜆2/𝑁𝑑 . While building the algorithms, the main task is to look for the optimum 𝜙𝑗 

that will maximize the modulus of 𝑢𝑚 for a given set of 𝛥𝑗
𝑚. The performance 

parameters are efficiency, uniformity, and standard deviation.  

𝑒 =  ∑𝐼𝑚
𝑚

 ;  𝑢 = 1 −
max(𝐼𝑚) − min(𝐼𝑚)

max(𝐼𝑚) + min(𝐼𝑚)
 ;   𝜎 =

100√< (𝐼−< 𝐼 >)2 >

< 𝐼 >
  (2.29) 

The efficiency defines how much intensity is distributed in the image plane comparing 

to the incoming beam intensity on the SLM. Uniformity defines how the trap 

intensities are distributed. It approaches to one as the the trap intensities get closer 

while the standard deviation in the intensities increase, it approaches to zero. 

2.3.2.1 Gratings and Lenses Algorithm 

This algorithm is a superposition algorithm where the amplitude part of the hologram 

is not taken into account. Traps are created and manipulated with a good accuracy 

using a phase only hologram. As discussed above, lateral movement of the traps are 

considered as light is diffracted from a grating to cause this movement and axial 

movement of the traps is considered as a Fresnel lens is replaced with this grating. 

When multiple traps are considered, total hologram is calculated as a sum of individual 

phase holograms. First, the dimensionless field um must be maximized as discussed in 

the previous section [73]. 
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𝜕

𝜕𝑗
∑𝑅𝑒

𝑚

{𝑈𝑚} = 𝑅𝑒 {
𝑖𝑒𝑖𝜙𝑗

𝑁
∑ 𝑒−𝑖Δ𝑗

𝑚

 

𝑚=1,𝑁

} = 0 (2.30) 

 

The solution for the phase is as below: 

𝜙𝑗 = 𝑎𝑟𝑔 [ ∑ 𝑒𝑖Δ𝑗
𝑚

 

𝑚=1,𝑁

] + 𝑛𝑗𝜋,           𝑛𝑗 = 0,1 (2.31) 

 

The Hessian matrix applied on this equation has to be negative definite for the 

stationary point to be local maximum.  

𝜕2

𝜕𝜙𝑗𝜕𝜙𝑘
= ∑  

𝑚=1,𝑁

𝑅𝑒{𝑈𝑚}|
𝜙𝑗=𝜙𝑗

= −𝛿𝑗𝑘(−1)𝑛𝑗 |
1

𝑁
∑𝑒𝑖Δ𝑗

𝑚

𝑚

| (2.32) 

One obtains the maximum condition for nj = 0. Then 

𝜙𝑗 = 𝑎𝑟𝑔 [ ∑ 𝑒𝑖Δ𝑗
𝑚

 

𝑚=1,𝑁

] (2.33) 

Mapping these phase arguments and displaying it on the SLM will quickly provide 

traps for Gratings and Lenses algorithm. 

2.3.2.2 Gerchberg-Saxton Algorithm   

Gerchberg-Saxton algorithm was founded by two crystallographers Ralph Gerchberg 

and Owen Saxton [74]. This algorithm includes amplitude component of the field, too. 

The field is propagated back and forth from the SLM plane to trapping plane sing fast 

Fourier transforms. In each step, the algorithm takes care of the amplitude distributions 

to be satisfied after transformations.  

Implementing a 3D manipulation with these algorithms is costly of CPU times. That 

means it is not possible to use it for real time applications. However, some 

simplifications can be done in HOT applications. Discretizing the algorithm to reform 
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the amplitude only in the trap locations, the similar optimization problem in the 

gratings and lenses algorithm is reached. 

𝜕

𝜕𝑗
∑|𝑢𝑚|

𝑚

= 𝑅𝑒 {
𝑖𝑒𝑖𝜙𝑗

𝑁
∑ 𝑒−𝑖Δ𝑗

𝑚 𝑢𝑚
∗

|𝑢𝑚|
 

𝑗=1,𝑁

} = 0 (2.34) 

𝜙𝑗 = 𝑎𝑟𝑔 [ ∑ 𝑒𝑖Δ𝑗
𝑚

𝑢𝑚/|𝑢𝑚| 

𝑗=1,𝑁

] + 𝑛𝑗𝜋,           𝑛𝑗 = 0,1 
(2.35) 

 

 

The Hessian matrix is not diagonal when calculated for the above equation. 

𝜕2

𝜕𝜙𝑗𝜕𝜙𝑘
= ∑  

𝑗=1,𝑁

𝑅𝑒{𝑢𝑚}|
𝜙𝑗=𝜙𝑗

= −𝛿𝑗𝑘(−1)𝑛𝑗 |
1

𝑁
∑𝑒𝑖Δ𝑗

𝑚

𝑚

𝑢𝑚
∗

|𝑢𝑚|
| + 𝑂 (

1

𝑁2
) 

(2.36) 

As discussed in [42], non-diagonal terms are 1/𝑁 times smaller than the diagonal 

terms. This kind of perturbation can only change the sign the sign of the eigenvalue. 

For large values of N, this can be neglected and the stationary phase equation will be:  

 𝜙𝑗 = 𝑎𝑟𝑔 [ ∑ 𝑒𝑖Δ𝑗
𝑚

𝑢𝑚/|𝑢𝑚| 

𝑗=1,𝑁

] (2.37) 

In this equation, 𝜙𝑗 is the phase of the linear superposition of single-trap holograms 

with coefficients of unit modulus 𝑢𝑚 is the field of the mth trap produced by 𝜙𝑗. The 

equation is, now, dependent on the field unlike superposition algorithms. A simple 

approach to make the numerical calculations of phase images, one might guess an inital 

phase obtained from gratings and lenses algortihm and use the above eqation in an 

iterative procedure.   

2.3.2.3 Random Mask Algorithm 

When the number of traps is more than one, an algorithm that is computationally more 

compact and that takes care of the amount of field distribution on the traps is needed. 

Random mask algorithm chooses random pixels on the SLM, which divides the screen 

in domains as many as number of traps as described in Montes-Usategui et. al [75].   
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The phase pattern of the algorithm is very simple as given below: 

𝜙𝑗 = Δ
𝑗

𝑚𝑗
 (2.38) 

This results in very fast for realization of video rate trap manipulation. However, the 

efficiency is reduced as the number of traps increase. As suggested in [42], this 

algorithm can be useful to create additional traps to quickly help other algorithms that 

work slower in comparison with this algorithm. This is Random Mask algorithm is 

sometimes defined as “helper tweezers”.  

2.3.2.4 Direct Search Algorithm 

Above discussed traps have the advantages of being quickly adapted to software, 

general and sometimes the speeds are close to the video rates. However, they are also 

claimed to distribute unexpected laser power into the sample plane and to transfer most 

of the input power to ghost traps (unwanted spots in the sample that have enough 

intensity to trap particles) [76]. To overcome this, direct search algorithm is suggested. 

In this algorithm, one starts from a good guess (phase image) calculated using a low-

computational-cost algorithm such as superposition algorithms. Then, every 256 

grayscale pixel is scanned one by one to check if the cost function is improved. Here, 

the cost function is, 

 𝐶 =
𝑒

𝑀
− 𝑓𝜎 (2.39) 

where f is the weighting fraction and sets the relative importance to diffraction 

efficiency compared to uniformity. Uniformity is maximum (1.00) when f = 0.5 is 

provided.  

2.4 Raman Spectroscopy 

As C.V. Raman suggested [19], when an incoming photon strikes a molecule in the 

sample, some part of the light is absorbed or transmitted. Remaining part of the beam 

scatters from the molecules in the sample. Scattered photons make transition between 

vibrational energy levels. Two kinds of scatterings are observed: Elastic and inelastic. 

Most of the photons are scattered elastically and this is called Rayleigh scattering 

where the ground vibrational energy level is excited to upper level and relaxes to the 

same level. About one in a million photons, an inelastic scattering is observed. In this 
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kind of scattering, the scattered photons are either redshifted or blue shifted. The 

amount of these shifts is equal and it corresponds to the vibrational frequency of the 

molecule that is excited. The scattering mechanism that produces redshifted photons 

is called Stokes scattering and blue shifted one is called Anti-Stokes.. Due to the 

Maxwell-Boltzman distribution, the population of the excited level in Stokes scattering 

is higher. Thus, Stokes Raman signal intensity is higher comparing to Anti-Stokes.  

In Raman experimental setups, the scattered photons are collected into a 

monochromator with the help of a dispersive optical element (such as prism or grating) 

and are converted to electronic signal thanks to charge-coupled detectors (CCD). Since 

the origin frequency is adjusted to Rayleigh frequency, the x-axes of the spectra are 

called Raman shift and this quantity is exactly equals to the molecular vibration 

frequency. This is why Raman spectroscopy is called a “fingerprint spectroscopy”. 

Using Raman spectroscopy, one can measure solids, liquids, and gases. 

 

2.4.1 Semi Classical Theory  

One of the above discussed terms, vibrational frequency, can be formulized if one 

considers a diatomic molecule as in Figure 2.13 to describe the vibrational frequency 

of a molecule. Since the fundamental of Raman, spectroscopy relies on molecular 

vibrations, a hypothetical spring is assumed between two atoms of a molecule. The 

restoring force should verify the motion equation in one direction. The derivations 

below are adapted from Ferraro et.al [77].  

 

 

 Diatomic molecule 

The equation of the diatomic system according to the center of mass can be written as 

in equation 2.40: 
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𝑚1𝑟1 = 𝑚2𝑟2 (2.40) 

The displacement variables 𝒙𝟏 and 𝒙𝟐 are obtaine using the equilibrium points in eq. 

2.40. 

 

𝑚1(𝑟1 + 𝑥1) = 𝑚2(𝑟2 + 𝑥2) (2.41) 

𝑥1 =
𝑚2

𝑚1
𝑥2 

(2.42) 

Using Hooke’s Law and equation of motion equations 2.43-46 are derived. 

𝐹 = −𝐾(𝑥1 + 𝑥2) (2.43) 

𝐹 = −𝐾 (
𝑚1 + 𝑚2

𝑚1
) 𝑥2 =  −𝐾 (

𝑚1 + 𝑚2

𝑚2
) 𝑥1 

(2.44) 

𝑚1𝑥1̈ = −𝐾 (
𝑚1 + 𝑚2

𝑚2
) 𝑥1   ;    𝑚2𝑥2̈ = −𝐾 (

𝑚1 + 𝑚2

𝑚1
) 𝑥2 

(2.45) 

(
𝑚1𝑚2

𝑚1 + 𝑚2
) 𝑥1̈ + 𝐾𝑥1 = 0   ;     (

𝑚1𝑚2

𝑚1 + 𝑚2
) 𝑥2̈ + 𝐾𝑥2 = 0                (2.46) 

 

Defining effective mass, angular frequency, and effective displacement in equation 

2.47, one can solve differential equation for the effective position vector of diatomic 

molecule given below in equations 2.48 - 2.51. 

 

𝜇 = (
𝑚1𝑚2

𝑚1 + 𝑚2
) ;      𝑤2 =

𝐾

𝜇
;         𝑞 = 𝑥1 + 𝑥2   

(2.47) 

(𝑥1 +̈ 𝑥2)̈ + 𝑤2(𝑥1 + 𝑥2) = 0    (2.48) 

𝑞̈ + 𝑤2𝑞 = 0 (2.49) 

𝑞 = 𝑞0sin (2𝜋𝜈0𝑡 + φ) (2.50) 

𝜈 =
1

2𝜋
√

𝐾

𝜇
  

(2.51) 
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Here, 𝑞0 is the maximum displacement,  𝜈0 is the classical vibrational frequency, and 

𝜑 is the phase constant. The total classical energy for vibrational levels can also be 

calculated using the mechanical energy formula: 

𝐸 = 𝑇 + 𝑉  (2.52) 

𝐸 =
1

2
𝜇𝑞2̇ +

1

2
𝐾𝑞2   

(2.53) 

𝐸 = 2𝜋2𝜈0
2𝜇𝑞2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (2.54) 

However, this energy profile is parabolic which is not consistent with the practical 

case. Quantum mechanical correction to this potential is introduced. Harmonic 

oscillator energy eigenvalue: 

𝐸𝜈 = ℎ𝜈(𝑣 +
1

2
) 

(2.55) 

This means the lowest energy value is 
ℎ𝜈

2
. In classical parabolic potential, this value is 

zero! Moreover, due to tunnel effect, a probability to find q outside the potential curve 

must exist. This is also not applicable in classical potential. Additionaly, the quantum 

mechanical rule for energy separation of ℎ𝜈 is not applicaple in classical potential. 

Instead of this, Morse potential is suggested whose formula is given below: 

𝑉 = 𝐷𝑒(1 − 𝑒−𝛽𝑞)
2
 (2.56) 

Where De is the dissociation energy and 𝛽 is a coefficient for the curvature of the 

potential well. The new eigenvalue of the Schrodinger equation for anharmonic 

oscillator is  

𝐸𝑣 = ℎ𝑐𝜔𝑒 (𝑣 +
1

2
) − ℎ𝑐𝜒𝑒𝜔𝑒 (𝑣 +

1

2
)
2

+ ⋯  
(2.57) 

To find the origin of Raman spectroscopy, one can model an oscillating 

electromagnetic field with a frequency of 𝜈0, interacting with a molecule whose 

vibration frequency is 𝜈𝑚. The equation related to this electromagnetic field is given 

in 2.58.  
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𝐸 = 𝐸0cos (2𝜋𝜈0𝑡)  (2.58) 

When this field interacts with the sample, therefore the molecules, an electric dipole P 

is induced: 

𝑃 = 𝛼𝐸 = 𝛼𝐸0 cos(2𝜋𝜈0𝑡)  (2.59) 

In the equation above, 𝛼 is polarizability. For small amplitude vibration, this quantitiy 

becomes function of displacement, q. The polarizability can be expanded with the 

Taylor series as in equation 2.60. 

𝛼 = 𝛼0 + (
𝜕𝛼

𝜕𝑞
)
0

𝑞 + ⋯ 
(2.60) 

Keeping in mind the nuclear displacement is 

𝑞 = 𝑞0 cos(2𝜋𝜈𝑚𝑡)  (2.61) 

Placing 2.60 and 2.61 in 2.59, the final equation for dipole moment becomes: 

𝑃 = 𝛼0𝐸0 cos(2𝜋𝜈0𝑡) + (
𝜕𝛼

𝜕𝑞
)
0

𝑞0 E0cos(2𝜋𝜈𝑚𝑡) cos(2𝜋𝜈0𝑡)    
 

= 𝛼𝐸0 cos(2𝜋𝜈0𝑡) +
1

2
(
𝜕𝛼

𝜕𝑞
)
0
𝑞0E0{cos [2𝜋(ν0 − νm)𝑡] + cos [2𝜋(𝜈0 + 𝜈𝑚)𝑡] }  (2.62) 

  

This equation defines the scattered beams theoretically, which were given as plain 

formulas in the introduction section. Explanation that is more concise is made using a 

Jablonski diagram in Figure 2.14.  

Rayleigh Stokes Anti-Stokes 
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 Jablonski diagram for electronic and vibrational transitions in 

molecules. The solid lines at the bottom represent vibrational states of the ground 

electronic state. Similarly, the lines at the top represent the vibrational states of the 

excited electronic state. As seen from the Stokes and Anti-Stokes transitions, the 

scattered light whether blue shifts or red shifts in Raman scattering. 

As it is seen in this diagram, a molecule excited to a virtual state by a photon can 

respond in three ways: First, the molecule can emit a photon of equal energy of the 

incident photon after it relaxes back to ground state. This one is called Rayleigh 

scattering. Second, the molecule can go back to a real phonon state. This time it emits 

a photon with less energy than the incident photon and this is called Stokes scattering. 

Third, molecule is already in an excited phonon state, is excited to a higher virtual 

state, and then relaxes back down to the ground state emitting a photon with more 

energy than the incident photon. This is called Anti-Stokes scattering. Most molecules 

are found in the ground state at room temperature according to Maxwell-Boltzmann 

distribution given in equation 2.63.  

𝑁𝑒𝑥𝑐𝑖𝑡𝑒𝑑

𝑁𝑙𝑜𝑤𝑒𝑟
=

𝑔𝑒𝑥𝑐𝑖𝑡𝑒𝑑

𝑔𝑙𝑜𝑤𝑒𝑟
𝑒

{−
(𝐸𝑒𝑥𝑐𝑖𝑡𝑒𝑑−𝐸𝑙𝑜𝑤𝑒𝑟)

𝑘𝑇 }
 

(2.63) 

In this equation 𝑔𝑒𝑥𝑐𝑖𝑡𝑒𝑑 and 𝑔𝑙𝑜𝑤𝑒𝑟 are the state degeneracies of the lower and excited 

vibrational energy levels. Thus, there is a lower probability for a photon to be Anti-
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Stokes scattered. That is why most Raman measurements, including our studies, 

consider only the Stokes shifted light.  The intensity of the Stokes scattering can be 

derived from the Hertzian dipole as  

𝐼𝑠𝑡𝑜𝑘𝑒𝑠 =  𝐾𝐼0(𝜈0 − 𝜈𝑚)4𝛼2    (2.64) 

Another concept that equation 2.62 tells us is, if the polarizability varies with respect 

to displacement of the molecule, then the molecule is Raman active. Actually, to define 

a molecule Raman active, a polarizability ellipse is generally used to define the Raman 

activity. If the polarizability ellipse changes during vibration, the molecule is defined 

as Raman active.   

2.4.2 Quantum Mechanical Description of Raman Spectroscopy  

Raman scattering is explained by the Kramers-Heisenberg-Dirac (KHD) equation in 

quantum mechanics. In this theory, the mechanism is described as an excitation to a 

virtual state lower in energy than a real electronic transition with nearly coincident de-

excitation. As a result, there will be a change in vibrational energy.  

In KHD theory, polarizability tensor 𝛼 is expanded and is described with the relation 

below: 

(𝛼𝜌𝜎)𝑓𝑙
= ∑{

< 𝑓|𝜇𝜌|𝑟 >< 𝑟|𝜇𝜎|𝑙 >

ℏ𝜔𝑟𝑙 − ℏ𝜔0 − 𝑖Γ𝑟
+

< 𝑓|𝜇𝜎|𝑟 >< 𝑟|𝜇𝜌|𝑙 >

ℏ𝜔𝑟𝑓 − ℏ𝜔0 − 𝑖Γ𝑟
}

𝑟

 
(2.65) 

where 𝑙 is the initial state, 𝑓 is the final state, 𝑟 represents the eigenstates of molecule, 

𝜎 is the polarization of incident light, 𝜌 is the polarization of Raman light, (𝛼𝜌𝜎)
𝑓𝑙

 is 

polarizability tensor component (𝜌, 𝜎) for transition 𝑓 ← 𝑙, 𝜔0 is the angular 

frequency of incident beam, 𝜔𝑟𝑙 is the angular frequency for transitions 𝑟 ← 𝑙,  Γ𝑟 is 

the damping factor related to lifetime of states 𝑟, 𝜇 is the dipole moment operator, and 

ℏ represents ℎ/2𝜋 where ℎ is Planck's constant. 

In order to make clear interpretations out of KHD equation, some simplifications can 

be made using Born-Oppenheimer approximation. This approximation states that, the 

wave functions of the eigenstates are separated into electronic and vibronic terms 

involving nuclear and electronic co-ordinates since the electronic transitions occur 
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much faster than the vibronic transitions of the nuclei. Thus, the wave function of an 

eigenstate can be written as: 

𝜓 = 𝜆(𝑎,𝐴)𝜃(𝐴)  (2.66) 

where a is the electronic coordinate, A is the nuclear coordinate, 𝜆 is the electronic 

wavefunction, and 𝜃 is the vibronic wave function. Including this expression into KHD 

equation will produce equation 2.67: 

< 𝑟|𝜇|𝑙 >=< 𝜃(𝐴)𝑟𝜆(𝑎,𝐴)𝑟
|𝜇|𝜆(𝑎,𝐴)𝑙𝜃(𝐴)𝑙 >  (2.67) 

This equation can be re-written as 

< 𝑟|𝜇|𝑙 >=< 𝜆(𝑎,𝐴)𝑟
|𝜇|𝜆(𝑎,𝐴)𝑙 > < 𝜃(𝐴)𝑟

|𝜇|𝜃(𝐴)𝑙 >  (2.68) 

The electronic state part of the equation can be integrated over electronic coordinates, 

a will produce A dependent 𝑀𝑟𝑙𝐴
 matrix element of the overlap integral also known as 

oscillator strength is given in equation 2.69. 

𝑀𝑟𝑙𝐴
= < 𝜆(𝑎,𝐴)𝑟

|𝜇|𝜆(𝑎,𝐴)𝑙 > (2.69) 

Since the matrix elements are functions of inter-nuclear coordinates of A, one can 

expand the equation 2.70 in Taylor series around equilibrium point𝐴0. 

𝑀𝑟𝑙 = 𝑀𝑟𝑙𝐴0
+ (

𝜕𝑀𝑟𝑙

𝜕𝐴𝜖
)
0

𝐴𝜖 + ⋯ 
(2.70) 

Where 𝐴𝜖 is the normal coordinate operator of vibration mode 𝜖. If this equation is 

applied into the KHD equation, one will obtain: 

 

(𝛼𝜌𝜎)𝑓𝑙
= 𝐴 + 𝐵 + ⋯ (2.71) 

Here, A is Franck Condon term (Albrecht’s A term) and represents the zero order term 

of expansion. This term includes the summation of matrix elements that couples all 

vibrational states. A is reduced to zero because of orthogonality which means there is 

no Raman scattering from this component, only Rayleigh scattering.  

Electronic State Vibronic State 
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The term B is called Herzberg Teller term (Albrecht’s B term) and describes Raman 

scattering. This term can be interpreted that no overtones are allowed in Raman 

spectroscopy. In addition, only symmetric vibrations are allowed in this technique.  

2.5 Microfluidics 

Microelectromechanical (MEMS) fabrication methods to produce microfluidics 

devices are well improved after the use of soft lithography in this area. This method 

suggests fabricate soft polymeric molds replicated from a hard master. The most 

popular material for the mold is polydimethylsiloxane (PDMS), however another 

material such as polymethylmethacrylate (PMMA) are used in the literature. Main 

components used in microfluidics experiments, other than the microfluidic channels, 

are syringe/pressure pumps, tubings, adaptors and a microscope system to observe the 

flow. The syringe pump is a motorized system whose displacement is calibrated for 

specific syringe volumes. They can provide flow rates as small as pL/s. Pressure 

pumps generate pressure gradients to move the syringe. They can work with multi 

syringes and they are highly programmable. Syringe pumps are cheap, not too precise, 

user friendly and can be adapted to too many applications. Pressure pumps are costly, 

precise, a little complex for simple applications, and they can be used with different 

solutions at the same time since they come up to four channels depending on the user 

demand. 

The importance of the microfluidics devices is their ability to make experiments in 

micron size with very small liquid volumes such as picoliters. The advantages of the 

size reduction are both physical and financial. The devices that have micron size 

channels will have laminar flow and low Reynolds number. Besides, modeling of 

biological flow can be done using this miniaturization. Cell culturing [78], 

concentration measurements [79], disease diagnostic [80] experiments can easily be 

done with these devices. That is why these devices are also called lab-on a-chip 

devices. Moreover, since the cost of their production is low, mass production of 

biological kits is made available.  

Integration of photonics with microfluidics, also known as optofluidics, opened a new 

path of investigating biological cells. Single cells are investigated in their environment 

with the help of detection techniques, which allow the researchers to see inside the 

cells.  
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2.6 Multivariate Analysis 

Sorting applications in microfluidic channel requires recognizing the every single 

particle in the channel that is observed. Since the mixture in such channel does not 

include only the desired types of particles, the software-controlled identification of the 

particles that are observed needs a machine-learning algorithm evaluated. These are 

algorithms of multivariate statistical analysis or the ones evolved from them. What is 

done is to prepare a training set to obtain a linear (or quadratic) model to classify pre-

measured samples, and then apply the model on the measurements. The vector length 

of spectroscopic data is generally huge, as many as CCD detector number or even more 

after preprocess steps. For example, in our case the matrix size of each measurement 

in this study is 1024 X 2. After preprocess, a 1640 X 2 vector is obtained. After M 

measurements, one comes across with a huge matrix to handle with. In this case, the 

first step must be data reduction and feature exploration, which is made by applying 

Principal Component Analysis (PCA). 

2.6.1 Principal Component Analysis 

Physics experiments generally give complex outputs, which include too many 

measurement variables together with measurement uncertainties, device noises, and 

other unwanted components. Principal component analysis is a useful non-parametric 

tool that maximizes signal to noise ratio (SNR) in a measurement to find a new 

orthonormal coordinate system, which is called principal components. This method 

reveals the hidden information from huge datasets by reducing their size and selecting 

the most important features. This property is used in many disciplines such as 

computer engineering, physics, medicine, psychology.  

Measurements in spectroscopy are multivariate since the CCD devices generate 

wavenumbers as many as the detectors in a row inside the device, e.g. 1024 

wavenumbers for 1024 X 256 detector array. Even though not every wavenumber is 

independent, e.g. peaks consist of several of these; common practice is to name every 

wavenumber as a variable. Briefly, the initial dataset is reduced to its most important 

factors as illustrated in figure 2.15. 
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 Sampling in PCA. 

Here F corresponds to the orthonormal vectors of features and a0, a1… an corresponds 

to the coefficients. This relation is can also be noted as in equation 2.72. 

𝑋 = 𝑎𝐹    (2.72) 

Since the main goal in PCA is to find an orthonormal set where the SNR is maximum, 

using the covariance matrix Σ of the dataset X is useful. Σ is a square matrice whose 

diagonal elements are variances of different measurements. Off-diagonal elements are 

the covariances between different measurements. Now, the problem is reduced to find 

an orthonormal F matrice where Σ matrice is diagonalized. 

This is an eigenvalue problem. There are several ways to solve this. One of the most 

useful methods is singular value decomposition (SVD). In this algorithm, the dataset 

X is reconstructed by vector multiplication of the decomposed matrices U, Σ and V 

where U and V are rectangular matrices and Σ is the square covariance matrix. For 

spectral data where the matrix is horizontal, the reconstructed matric is obtained  after 

applying SVD as in equation 2.73. 

𝑋 = 𝑉ΣU  (2.73) 

𝑉𝑇𝑋𝑇 = 𝑈𝑇Σ (2.74) 

𝑉𝑇𝑋𝑇 = Z  (2.75) 

Here 𝑉𝑇 is the change of basis from X to Z, which is called scores. 𝑈𝑇 is called loading 

vector in PCA notation. Sorting the scores matrix in descending fashion will give the 

most significant features of the data. Since the diagonal elements in the Σ matrix are 

the variance values of the data, the sorted Σ can give the total variance explained values 
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of each principal component by dividing each variance value by the total variance. 

This gives the significance of each principle component (PC). Using this information, 

one can understand how many PCs to use for plotting and classification. After plotting 

these PCs, the discrimination between the most significant features of the data can be 

qualitatively observed and the data can be prepared for further analysis such as 

discrimination or cluster analysis. 

Before jumping to SVD, one needs to prepare the data. Mean centering, subtracting 

the mean from every measurement, is generally the first step. Then, the data is 

standardized in case some measurements have different physical units. In the spectral 

analysis case, the data is smoothed, background corrected and/or normalized according 

to the practitioner’s application. A pseudocode for core PCA application is given 

below: 

 

%Prepare dataset as X axis is wavenumbers and Y axis is 

measurements 
    X = read(x); 
    if X axis Measurements 
        X = X^T; 
    end 
%Meancenter and/or standardize data 
    X = X - mean(X); 
    <X = X/std(X)> 
     
%Apply Spectral Preprocess on the data 
    <Background correction> 
    <Smoothing> 
    <Normalizing> 
     
%Calculate SVD 
    [U,S,V] = svd(X); 
     
%Calculate Scores and Loadings 
    Scores = V; 
    Loadings = U^T; 
     
%Reconstruct Data 
    XR = V^T*X;  

2.6.2 Prediction Ability of the Multivariate Analysis 

In a measurement that tests if the samples have a specific condition or not, 

measurement results give positive or negative outcomes for the condition. The 

prediction ability of an analysis after a measurement is an important report to 

understand how well the measurements were classified comparing to the actual 
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conditions. There are two most common parameter defining this criteria which are 

called sensitivity and specificity. Sensitivity, is the parameter that predicits the samples 

that have the condition. Specificity results in the correct prediction of the test for 

samples that does not have the condition. The summary of the definitons are given in 

table 2.1. 

Table 2.1 : Definitions for sensitivity and specificity. 

 Predicted Condition 

(+) 

Predicted Condition 

(-) 

Sensitivity Specificity 

Condition (+) True Positive (TP) False Negative (FN) 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Condition (-) False Positive (FP) True Negative (TN) 

 

2.7 HOT Software 

The tasks in holographic optical tweezers are realized via real-time modifying 

(dynamic) computer generated holograms. A software to fulfill those tasks was 

developed on Matlab using the hardware in Table 2.1.  

Table 2.2 : The computational hardware used in the experiments. 

CPU Intel core i7 4770 

Graphics Card NVidia GTX560  1 GB 

RAM 8 GB 

Monitor Resolution 1920 X 1080 

 

The software uses the superposition of prisms and lenses algorithm, which was 

explained in detail above. The software is a graphical user interface (GUI) and allows 

user to insert as many as the spot he/she wants. The features of the software are 

summarized below: 

 Inserting as many as spots as desired on the screen. Calculate and display the 

final hologram on SLM screen. 

 Controlling the lateral and axial position of the spots by both mouse click and 

by inserting specific directions. 

The main controls on the GUI screen are: 
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 Insert / Delete spot button. 

 Move selected spot to selected X – Y coordinates. 

 Move selected spot to desired XY plane (change Z values). 

 Update screen coordinates by moving a spot to the reference points of the 

current image on the screen.  

 Obtain Raman signal. Calibrate it. 

 Make a quadruple spot on the screen. Move them to Raman coordinates in a 

loop, obtain signal. The particles are manipulated by updating the computer generated 

hologram real time when the position of the spot is changed. Apply preprocess and 

identify the particles. Move them to corresponding channels according to the 

identification vector. Reposition the array to the initial position after it finishes the 

movement to the target positions. 

 

 An instant view of the self-written software for HOT. In the figure, it 

can be seen that a spot and related hologram were created by the software. 

When the spots are initially introduced in the screen, related hologram is calculated 

simultaneously. When the user moves individual particles in three dimensions, the 

hologram is updated by taking the screen position of the particle as input. Figure 2.16 

represents an instant view of the GUI when a spot is inserted in the project. 

To understand how prism and lens phases work in optical trapping, figure 2.17 can be 

looked through. Pictures a and c show holograms for lens and prism phases, 

respectively. In picture b, 3 traps are manipulated with z = 0.  In picture d, 5 traps are 

trapped and manipulated with 𝑧 ≠ 0. 
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 a)Prism phase b) Lens phase. (c) and (d) are holograms for 3 and 6 

traps, respectively where spot in (d) are axially shifted from initial position. 

2.7.1 Animation Creation 

Eight spots are created initially by the computer-generated holograms. The animation 

is supposed to work like a production band of a factory. First, the spots are created in 

the initial points as in figure 2.18. Then, these spots are moved towards eastside of the 

screen whether they carry a particle or not. When the first set of particles (group of 

four, vertical direction) reach the point of Raman measurement, software stops 

movement. The Raman spectrum of particles is obtained during one second. Then 

according to the identification vector, the particles are moved towards the 

corresponding channels.  

While the first four spots are on their way, other four follows until the first four reaches 

the final destination. Every group reaching the final destination places themselves in 

their initial position again. This action happens in infinite cycle until the user presses 

STOP button.  

a)                                   b) 
 

 

 

 

 

 

 

 

 

 

     c)                                                 d) 
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 One of the 16 possible pre-calculated paths for the spots generated by 

HOT software. 

2.7.2 Raman Measurement 

Raman spectra are taken using the Andor Software Development Kit (SDK) for 

MATLAB. This kit includes all the MATLAB functions needed to operate our Andor 

spectrometer and it allows USB connection from monochromator to PC. 

When the spots arrive at the measurement point, a multi – track (MT) measurement is 

obtained. This measurement is set up using MATLAB codes of the SDK. A 

pseudocode for MT measurement function is given below:

Initialize Andor Camera 
  

Configure Acquisition: 
*Open CCD Cooler  
*Set Acquisition Mode for Single Scan 
*Set Exposure Time for 1 second 
*Set Read Mode for MT 
*Set up MT Tracks 
*Set Internal Trigger 

  
Open Shutter, Get Image, Plot 

  
Clean Up and Shutting Down 
*Abort Acquisition 
*Close Shutter 
*Disconnect Andor 

 

This code provides monochromator to measure the sample for one second with the 

user defined MT track settings.  
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2.7.3 Calibration and Preprocess 

Since the measurements the HOT software obtains are uncalibrated, the software 

performs a wavelength calibration before all the measurements and applies this 

calibration on them.  

The algorithm of the calibration is to fit reference Raman shift values of polystyrene 

peaks [81] with the pixel values of the current measurement. Here, the fit is the third 

order and the selected points are not the exact peak points but center of masses of the 

corresponding peaks. The maximum values of the peaks are requested from user. User 

picks these points by mouse clicks on the screen. Since these points are not exact points 

on the spectrum, the closest maximum value to the selected points are found from 

array. Then the center of mass of this peak is found by Lorentzian peak fitting 

parameters.  

Calculated X values are generally not with equal range and not integer. To get rid of 

it, Y correspondences of integer X values are found by interpolation. The pseudocode 

for this process is as below: 

Request peak positions 

  
Calculate Maximums 

  
Find nearest maximum to selected peaks 

  
Find center of mass of the found peak 

  
Apply 3rd order polynomial fit on center of 
masses and reference Raman Shift values 

  
Find the Y correspondence of the integer X values   

The calibrated spectra are background corrected, smoothed, and normalized, 

sequentially. Background correction is made automatically according to the article of 

Lieber et.al.  [82]. Savitzky – Golay smoothing is applied as a smoothing method. This 

was applied from MATLAB’s routine functions. Vector normalization function was 

written using the related equation below: 

𝑋𝑁 =
𝑥𝑖

√∑ 𝑥𝑖
2

𝑖

  2.76 

Where    𝑋𝑁 is normalized data vector, 𝑥𝑖 is each number in the raw data vector. 
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3.  EXPERIMENTS AND RESULTS 

3.1 Raman Spectroscopy in Medicine 

Raman spectroscopy is called a fingerprint spectroscopy, as stated above. Thus, 

measurements from different samples are unique and each Raman shift gives intrinsic 

information from the molecular structure of the sample of interest such as protein 

secondary structure. Using this information together with water giving a low 

contribution to Raman spectra, Raman spectroscopy appears to be a suitable method 

for biological/biomedical applications.  

During this PhD study, spent culture media where the human embryos are grown were 

collected from volunteered patients to be investigated in our laboratory. The aim was 

to find a quantitative way to assess the embryo quality. This study was a collaborative 

project funded by Istanbul University Scientific Research Fund (project no: 22501) 

and managed by MD Ercan Baştu from Istanbul University Medical School. A relation 

between the amount of specific amino acids in the spent culture of embryos and 

embryo success rate were found to select the best one. The biggest difficulty was the 

similarities in intensity between the samples of the embryos that could develop to the 

pregnancy state and the ones that could not. This difficulty had been overcome by 

applying unsupervised classification methods such as k-means nearest neighbors 

(KNN).   

3.1.1 Embryo Viability Indexing Using Raman Spectroscopy of Spent Culture 

Media 

This study [29] hypothesized that the subjectivity of embryo selection in in-vitro 

fertilization (IVF) can be decreased and the success rate of this process can be 

increased using Raman spectroscopy and statistical methods. Raman spectra of 

embryo spent cultures, which are the wastes of the growth medium (G1 medium, 

Vitrolife) of the embryos, were measured. The samples needed to develop the embryos 

were drawn from 31 volunteers (16 non-pregnant, 15 pregnant), one from each. The 

volume of embryo spent culture to be measured were 30 𝜇𝐿 in average which needed 

careful sampling in order to increase the Raman volume as much as possible. Besides, 
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it is important to prepare bubble-free samples. Considering these necessities, a disk 

shaped aluminum container, which has a cylindrical hole in the center with a diameter 

of 1.6 mm was constructed. The length of the hole is 6 mm. This volume of the 

cylindrical hole in the center is about 16 𝜇𝐿. Both sides of the disk are covered with 1 

mm-thick quartz windows. A slit of about 0.5 mm wide was created by getting a piece 

of disk cut up to let the inside air out. 

The measurement setup was built as demonstrated in figure 3.1. The setup uses a 785 

nm diode laser source. The source has a power of 100 mW in the output. The beam 

emitted from the diode laser passes through the Faraday isolator (FI, EOT) which 

rejects back reflected and backscattered beams and line filter (Semrock) which cleans 

up the beam profile. The beam transmitted from the line filter is steered to the Raman 

edge filter (REF, Semrock) by two mirrors.  

 

Figure 3.1 : Measurement setup for Raman spectroscopy of spent embryo cultures. 

Raman edge filter reflects the photons whose wavelength are smaller than 790 nm and 

transmits the remaining portion. The normal of the REF was oriented at an angle of 6 

degrees relative to the incident beam. This angle is the optimum value the operate in 

the lower Raman shift region by letting minimum laser photons transmit through the 

REF. This arrangement provides the minimum wavenumber of 160 cm-1. Reflected 

light from the REF are sent to the objective lens (L2) via a mirror M3 to be focused on 

L1-L2 : Lenses 

M1-M3 : Mirrors 

REF : Raman Edge Filter 

D : Measurement Disk 

FI : Faraday Isolator 

LF : Line Filter 
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the sample center. The collimated beam is reflected from REF providing the height of 

the beam matches the center of spectrometer slit, the beam is parallel to the ground, 

and vertical to spectrometer slit axis. The backscattered photons from the sample travel 

back following the same path of incident beam and they are filtered by the REF. The 

residual Rayleigh beams are dramatically decreased after the beam passes through the 

second REF. The transmitted light from this REF is imaged on the spectrograph 

(Andor Shamrock 303i) slit and then on the CCD camera (Andor DU-420). The 

spectrograph (a Czerny-Turner type) consists of two toroidal mirrors and a set of 

gratings on a motorized stage. The focal length of this system is 303 mm, and the 

aperture is f/4. The device has a wavelength resolution of 0.1 nm. The CCD camera is 

cooled to -90o to get rid of the dark noise.  

Each sample was measured for 30 seconds with 20 repetitions. Since our diode laser’s 

wavelength may change slightly during the operation because of ambient parameters 

like temperature and humidity. A toluene spectrum was measured before every 

measurement to have a reference to check laser stability and calibrate the Raman shift.  

In the preprocess step, the spectra were first Raman shift calibrated using the 

calibration of toluene Raman spectra. The Raman shift calibration algorithm is 

summarized in the pseudocode in section 2.7.1.3. 

After the application of this algorithm using our MATLAB code, the Raman shift 

calibrated spectra or the samples were calculated as given in figure 3.2. 

After every measurement, a water spectrum was measured for background correction 

in the preprocess step. Although the water Raman measurements are quite similar, the 

measurement of these spectra were repeated after every measurement taking into 

account of the intensity instabilities in our laser. The water spectra corresponding to 

each measurement were subtracted and the background corrected spectra as displayed 

in figure 3.3 were obtained. 
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Figure 3.2 : Calibrated Raman spectra of raw embryo spent culture and water 

spectra. Non-pregnant group and water spectrum were shifted for better 

visual discrimination. 

The background corrected spectra were baseline corrected and normalized. Baseline 

points were selected carefully in order not to affect the Raman peak intensities. The 

baseline point selection was realized in Grams AI software, which allows checking the 

peak position, by second derivative calculation. Besides, it applies real time baseline 

correction, which helps to see the effects of the baseline points on the spectrum. The 

baseline points were applied on every spectra (without updating their position) using 

the cubic spline algorithm in our preprocess code written in MATLAB. A vector 

normalization was applied on the spectra where all the data points are divided by the 

absolute norm of the data vector as given in the equation 2.76. 

The baseline corrected and normalized spectra are displayed in figure 3.4. Groups are 

shifted in y-axis for better visual discrimination. 
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Figure 3.3 : Background corrected Raman spectra of embryo spent culture taken 

from the samples that a) could develop to pregnancy stage b) could not 

develop to pregnancy stage  
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Figure 3.4 : Raman spectra of spent embryo culture samples (16 non-pregnant, 15 

pregnant) and fresh embryo culture medium. Raman spectra of non-

pregnant spent embryo culture samples and fresh embryo culture medium 

was shifted in y-axis for better visualization 

Applying band component analysis on all these spectra, the band areas of all the peaks, 

whose positions were determined by second derivative analysis, were obtained using 

Grams AI 8 software. A Voigt profile was used during the analysis. A sample spectrum 

with fit components from each group is given in figure 3.5. In this figure, mean 

pregnant and non-pregnant spectra are obtained by averaging the spectra over all 

pregnant and non-pregnant measurements, respectively. 

  

Figure 3.5 : Band component analysis of Raman spectra of mean a) pregnant b) non-

pregnant samples. The regions of the analysis are 815-1065 cm-1 and 

1140-1500 cm-1. 
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A statistical test with Mann-Whitney U method was applied on the all band areas 

calculated and on the all the possible band area ratios. Using the most discriminatory 

band area ratio, which is 902 to 943 cm-1, a K-means cluster analysis were performed 

to classify the spectra with an unsupervised method. Figure 3.6 demonstrates the 

scatter plot of the ratios.  

 

Figure 3.6 : The scatter plot of the band area ratios of 902 /943 cm-1 is shown. The 

upward triangular symbols represent actual non-pregnant samples, while 

the downward symbols represent the actual pregnant samples. 

The points in the figure were colored due to their K-means indices. After the outlier 

analysis using the 2-sigma rule, three samples were found as outlier which were shown 

as stars in the figure. The sensitivity and specificity of this method was calculated to 

be 93% and 77%. The colleagues from medical school has assessed and graded the 

embryo using international embryo grading system (morphological assessment) [83]. 

They found sensitivity and specificity of 73% and 75%. These results were 

summarized in table 3.1 and table 3.2.  

Table 3.1 : Classification performance of Raman spectra for spent embryo culture 

samples by means of band area ratios of 902 / 943 cm-1. 

 RAMAN Pregnant Predicted Non-Pregnant Predicted 

Pregnant 14 1 

Non-Pregnant* 3 10 

Sensitivity 0.93 

Specificity 0.77 
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Table 3.2 : Prediction rates for morphological assessment. 

 MORPHOLOGY Grade I Grade II or III 

Pregnant 11 4 

Non-Pregnant 4 12 

Sensitivity 0.73 

Specificity 0.75 

 

Raman spectra of 14 amino acids in aqueous solution were also measured. These 

measured amino acids were phenylalanine, valine, glutamine, alanine, arginine, 

tyrosine, tryptophan, glycine, leucine, serine, histidine, proline, glutamate, and 

cysteine. Among these, the ones that contribute most to the significant bands were 

found to be glutamine, glycine, proline for 902 cm-1 and aspartic acid, and valine for 

943 cm-1. A comparison of the above-mentioned amino acids with mean spent culture 

spectrum is given in figure 3.7. It may be considered that glutamine, proline and 

glycine can affect the Raman intensity of 902 cm-1 band.  In spite of the conflict in the 

literature that is about the effect of the individual amino acids on the embryo 

development, there is an agreement on the positive effect of glutamine and glycine on 

the embryo development [84-88]. Our study is consistent with these literatures. 

 

Figure 3.7 : The normalized Raman spectra of valine, glycine, proline, and 

glutamine and Raman spectrum of mean spent culture samples (pregnant) 

were overlaid in 860 – 970 cm-1 region. The normalized Raman intensity 

of mean spent culture samples was exaggerated and shifted in y-axis to 

increase visibility. 
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3.2 Sorting of Biological Particles with HORT Setup 

Holographic Optical Raman Tweezers (HORT) is, as the name suggests, the 

combination of HOT and Raman spectroscopy. A HORT setup provides simultaneous 

evaluation of Raman spectrum acquisition from multiply trapped objects. These 

objects are automatically manipulated in the image plane individually to the 

predetermined Raman measurement positions. Signal is acquired from the individual 

trapped samples separately and is to be used for particle identification. Identified 

samples are also automatically moved to the desired positions where the streamline of 

the individual class is belongs. 

3.2.1 Microfluidics Design and Production 

The design of microfluidic channels is one of the most important step before getting 

to the production procedure. One first needs to understand the needs regarding to 

his/her application to decide the shape, diameter, length and other parameters of the 

channel.  

Our channel is the most basic Y shaped channel which allows an inlet channel and two 

outlet channels with a circular chamber in the middle. This shape is decided as an 

initial design to experiment and see the drawbacks. However, it was not changed until 

the end of the study.  

The dimensions of the channel are given in figure 3.8: 

 

Figure 3.8 : Dimensions of the Y-shaped microfluidic channel structure. 

As seen in the figure, the channel width is 20 𝜇𝑚. This is suitable to flow single cells 

whose diameter generally between 5-10 𝜇𝑚. The diameter of the entrances of the 
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channels is 0.5 mm. This is designed according to the standard tubing adapter 

diameters. The chamber in the middle has a diameter of 50 𝜇𝑚. The depth of the 

channel is 40 𝜇𝑚. This was determined taking care of the Raman contributions from 

each interfaces of the chamber where one side is made of PDMS and the other side is 

glass. It was considered to find the minimum depth where the background signal from 

these interfaces does not bother the Raman signal from the trapped particle too much. 

This design was drawn using Tanner L-Edit, which was licensed to ITU 

Nanotechnology Research Center. The redrawing was made by the group member 

Hatice Turhan (MSc student).  

3.2.2 Procedure of Production 

The procedure of PDMS channel production is a well-documented routine as given in 

literature section. This can be divided in three main parts: First, the production of the 

mask. Second, mold master fabrication using negative photoresist material such as SU-

8. Third, production of PDMS channels by replica molding from photoresist masters.  

The production steps are summarized in the figure 3.9 below: 

 

Figure 3.9 : Fabrication steps of a microfluidic channel are shown graphically. 

The chromium mask (photomask) was fabricated using a direct laser writing device 

which provides high resolution patterns.  

After the fabrication of the mask, master molds made of SU-8 was made following the 

steps below: 

 Clean the silicon wafer in three steps: Aceton – Isopropyl alcohol (IPA) – 

Deionized water (DI water). 
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 Coat the wafer with 4 mL SU-8 (100 mm diameter wafer) using a spin coater. 

The spin cycle times and the total spin times of coating is chosen from the 

producer’s (Microchem Corp.) datasheet regarding the desired channel depth. 

In this study, it was 40 𝜇𝑚. Thus, the spin coating settings for this depth were 

500-rpm spin for 5-10 sec with acceleration of 100 rpm/second and then 3000 

rpm spin for 30 secs with acceleration of 300 rpm/second. 

 Soft bake the coated wafer on a hot plate at 95oC. In our case, baking time is 

15 minutes. 

 Place the photomask on the soft baked photoresist and exposure it with 

Ultraviolet (UV) beam using a 250 mJ/cm2 radiation during 10 seconds for 40 

𝜇𝑚 thickness. This will write the pattern of the mask on the wafer. A negative 

channel shape is formed. 

 Apply post exposure bake (PEB) on the negative channel shape by heating at 

65oC during one minute and immediately after that, it is baked at 95oC for 

5min. 

 The developer purchased from the producer (Microchem Corp.) is prepared in 

a petri dish and the baked photoresist is placed in the dish to be developed 

during 8 minutes for our applications. Wash the developed patterns with IPA 

and then dry them. 

 Hard bake the photoresist at 180oC for 1.5 hours.  

Following the master mold production process, PDMS elastomer is casted onto the 

produced mold. The procedure of PDMS replication is listed below: 

 First, mix PDMS and the curing agent with 10:1 ratio to obtain the elastomer.  

 Pour the mixture onto the wafer that includes the master mold. Remove the 

bubbles in a vacuum medium. Usually, 45 minutes is enough to get rid of all 

the bubbles. 

 Hard bake the elastomer at 75oC for 2 hours in oven. 

 Strip the PDMS layer and cut the individual chips. Punch holes. 

 Plasma-bond the cover glass on PDMS using a plasma cleaner. 
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After the PDMS channel is produced in the clean room facility following the steps 

above, three holes were drilled on the microscope slides to fit the tubing inlets in the 

PDMS channels. Then the channels were adhered on the slide using EntellanTM. These 

steps of the procedure are specific for our application. 

3.2.3 Construction of HOT Setup & Multiple Trapping 

The experimental setup in figure 3.10 was built in order to realize multiple trapping 

and Raman spectra acquisition.    

 

Figure 3.10 : HORT setup built in Istanbul Technical University. 

This setup was built in the Laser Spectroscopy Laboratory in Istanbul Technical 

University Physics Engineering Department. The laser source is a diode laser with a 

wavelength of 785 nm and a power of 100 mW. The beam in the output of the laser 

passes through Faraday isolator and laser line filter and is expanded to fulfill the active 

area of the SLM by a Keplerian telescope system which has two lenses (L1 and L2) 

with focal lengths of f1 = 45 mm and f2 = 200 mm.  

The polarization of the laser is horizontal after the transmission from Faraday Isolator, 

which is desired for SLM illumination. The reflected light from the SLM steers the 

incident beam to the REF. The REF reflects the beam with a wavelength less than 785 

nm via M2, M3, and M4 mirror. L3 and L4 lenses were located in the 4-f configuration. 



56 

These lenses image the computer generated hologram displayed on the SLM on the 

BFP of the microscope objective. The microscope objective is water immersion type 

(Olympus UPLSAPO 60XW) with numerical aperture of 1.2 and magnification of 

60X.  

All high order beams and zeroth order beams are targeted in the sample plane. Among 

these, the first order beams are the most prominent ones because of the hologram 

algorithm that is used as can be seen in figure 3.11. In this image, five spots are created 

in the image plane and the hot spots in the picture are the reflections of the created 

spots from the cover glass. The relatively weak spot in the middle is the zeroth 

diffraction order from the SLM. The background corrected image is given in 3.11-b in 

order to compare the light intensities of the first order beam and the zeroth order beam 

easier.  

The higher order beams are also present in the image plane since they were not 

blocked, however, their power is very small comparing to the first order spots, and 

they do not have the ability to trap. 

 

Figure 3.11 : a) Five spots are placed around zeroth order spot. b) Background 

corrected image of (a) to compare spot intensities better. 

The backscattered and back-reflected beams follow the same path with the light 

coupling into the microscope objective. A portion of the beam is reflected and the 

remaining is transmitted. The REF transmits the inelastically scattered Stokes beams 

and the Rayleigh beam whose wavelength is larger than 785 nm. In summary, the 

Raman spectra are collected with a 180o geometry setup.  

The scattered light is collected with a lens L6 and focused onto the entrance slit of the 

spectrograph using a lens L7 with focal length of 45 mm. In a Full Vertical Binning 
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(FVB) scheme, the signal in each column of CCD is summed to obtain a single 

spectrum from the whole detector area. However, in a Multi-Track (MT) scheme, the 

CCD can be binned to several tracks to obtain individual spectra from each tracks as 

in figure 3.12. In this figure, since the PS particle in the second track is not well located 

in the column of monochromator slit, the signal is weaker. 

 

Figure 3.12 : Multi-track Raman acquisition. 

This means moving a spot laterally using HOT will dramatically decrease the Raman 

intensity. In other words, the intensity will drop fast in horizontal movement. That 

generally allows one to obtain Raman spectrum of only one particle at a time. In the 

direction of y-axis, the beams originating from the spots in the sample plane are 

incident on the slit normal with an angle. They are not parallel to the optical axis. 

Considering this, it is expected the spots away from the slit center to provide lesser 

Raman signal. Therefore, it is a challenging task to obtain spectra of multiple particles 

in different positions or of a 2-D array.  

In the study, PS particles whose diameter is 4,5 µm were trapped. The solutions 

including the PS particles were prepared with a low concentration to obtain isolated 

trapped particles. This solution is sampled in a glass measurement cell, which was 

prepared by drilling a glass microscope slide a hole whose diameter is 10 mm. 

Although the depth of the measurement cell is 1 mm, the working distance of the 

microscope objective is 280 µm. Therefore, the traps can be created at a maximal 

distance of 280 µm in the measurement cell.  In this measurement cell, a four-spot 

array was created and manipulated to the Raman measurement region. Binning the 

CCD pixels in four tracks, Raman signal from the trapped particles could be collected, 

individually. The simultaneously obtained trap image and multi-track Raman image 

are given together in figure 3.13. 

x 

y 

z 
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Figure 3.13 : Two Raman images obtained from the multiply trapped PS particles 

seen in the right side of the images. The particle number four was moved 

downside and number three was moved upside before the measurement 

of the image in (b). 

The experiments were proceeded in Istanbul University Laser Spectroscopy 

Laboratory in the Atomic and Molecular Physics Department administrated by Prof. 

Dr. Gönül Başar. The reason of changing the location is that the new laboratory has a 

high power laser source that could enable high number of traps. 

 

Figure 3.14 : HORT setup built in Istanbul University. 

Figure 3.14 shows the experimental setup built in this laboratory. In this setup, a 

tunable Ti – Sapphire laser (Coherent MBR ring series, 700 – 1030 nm) which is 

pumped with a DPSS laser (Coherent Verdi) were used. Output power of the laser was 
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decreased from 4 W to 2 W using a 50/50 beam splitter. The laser power used in the 

experiments is about 900 mW. The wavelength was adjusted around 782 nm. The 

beam is expanded using a Keplerian telescope system as always used in our optical 

tweezers setups. This expanded beam is used to illuminate SLM display fully. The 

polarization of the laser is horizontal which is desired for SLM illumination. The 

reflected light from the SLM is directed to the Raman Edge Filter (REF), which 

reflects wavelength less than 790 nm. The reflected beam passes through the L3 lens, 

which is one element of the 4-f configuration together with L4 lens. The beam is 

directed into the microscope objective’s back aperture via dielectric mirrors M2-M6. 

As in the scheme in the previous setup, the backscattered light follows the same path 

and is collected after it transmits from the two REFs using an objective lens. An 

optional lens (L5) was used to optimize image magnification.  

Figure 3.15 shows the optimization steps of the Raman images that were improved by 

adding a collective lens (L5) behind the second REF and changing its focal length to 

500 mm from 750 mm. The test particles, PS particles, have a 4,5 µm diameter. They 

are assembled vertically in the Raman measurement region in a glass measurement 

cell. The measurements in figure 3.15 were obtained with 10 seconds exposure time. 

In the first image, 3.15-a, the measurement was obtained without the L5 lens. The 

figure shows that the Raman image is not resolved well spatially for four traps. This 

image is improved by optimizing the optical path by adjusting the steering mirror M9. 

This let us obtain a better image as displayed in figure 3.15-b. To correct the divergence 

in the image, a collecting lens with a focal length of 750 mm was adapted behind the 

second REF which let us obtain the image in figure 3.15-c. As seen in this image, 

divergence was improved but it did not totally disappear. This lens was replaced with 

one whose focal length is 500 mm. The image was improved and show better spatial 

resolution compared to the other images as seen in figure 3.15-d. The Raman 

measurements were taken from trapped particles at a depth of 10 µm in (a) and (b), 

and 30 µm in (c) and (d). The Raman spectral images are not parallel in all four images 

as seen in figure 3.15. This stems partly from the imaging errors of the spectrograph. 

Additionally, the light coupling into the spectrograph may not be perfect. 

The multi-track Raman spectra of the trapped particles whose Raman images are 

shown in figure 3.15 were also measured. These spectra are shown in figure 3.16. The 

images of the trapped PS particles in the MO object plane are given in the inset of each 
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image. The exposure times of the measurements are one second except the one in 3.16-

a. In that measurement, the exposure time was set to ten seconds. 

 

 

Figure 3.15 : Raman images from four PS particles with three different 

configurations a) No collecting lens is used after REF 2. b) The optical 

elements were adjusted to obtain a better image. c) A 750 mm lens is 

used. d) A 500 mm lens is used. All measurements are done with 10 

seconds exposure time with imaging scheme of Andor software. 

As can be seen, the image acquired from the camera that displays the MO image plane 

is improved with the help of a colored bandpass filter (BG 38, Newport). This filter 

blocks the beam with wavelength between 730 and 1150 nm with a reflectivity 

coefficient larger than 90% and transmits the beam between 350 and 600 nm with at 

least 90% transmission coefficient. This filter rejects the unwanted back reflected or 

backscattered light from the sample and the interference patterns created by the SLM. 

It must be noted that the wide peaks around 1300-1400 cm-1 stem from the fluorescence 

signal from the cover glass since the measurement was taken with the particles very 

close to the surface of the cover glass. 
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Since, the measurement was taken 30 𝜇m above the cover glass, the contributions from 

the cover glass was very weak for figure 3.16-c and d while it is larger for the spectra 

shown in figure 3.16-a and b.  

 

Figure 3.16 : Multi-track Raman measurement obtained from the PS particles in 

shown in the insets. Four PS particles are in Raman region in all four 

images. Measurement was done with the exposure time of a) 10 seconds, 

b-d) 1 second. The fifth particle in lower side of the (d) image is trapped 

by a ghost spot. 

The lower trap in figure 3.16-d inset is a ghost trap and it did not display any signal 

neither in the Raman image, nor in the multi-track spectra. The reason why there is no 

signal from the ghost trap is that the beams scattered from the image of that particle is 

constructed outside the spectrometer slit. In figure 3.16-d, the particles assembled with 

equal distances provided by the HOT software. The edge-to-edge distance of the PS 

particles are calculated to be 2.5 μm, which was obtained by image processing of the 

image in the inset of figure 3.16-d. However, it is shown in the inset of figure 3.16-b 

that the closest edge-to-edge distance the Raman spectra are spatially resolved is ~1.2 

a) 
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μm. Besides, in figure 3.16-d, five particles are in the trap in contrary to other images 

where there are four trapped particles.  

To demonstrate the power distribution on the spots, the power on each spot in the 

Fourier plane was measured. The powers of these spots were measured on the focal 

plane of lens L3. In the measurement, there were six spots, two of which were ghost 

spots. The results are shown in table 3.3. The laser power was adjusted to 700 mW 

before this measurement. Considering that the SLM has an average loss of 50%, the 

power in the Fourier plane distributed to these six spots is 310 mW. This power was 

not evenly distributed on the spots as can be seen in the table. Reason for this is that 

the computed intensity distribution may not match with the real distribution in grating 

and lenses algorithm since it only takes the phase part of the field into account. 

Considering that the Raman spectral intensity is directly proportional to the power, 

this distribution is obtained for the Raman intensity measurement of the particles, too.  

Table 3.3 :  Power distribution on spots in figure 3.15-d. 

Spot # Power (mW) 

Ghost 27 

1 67 

2 44 

3 50 

4 103 

Ghost 20 

Incident Power= 700 mW 

 

The Raman image of 1003 cm-1 band of PS from figure 3.16-d was fitted with Lorentz 

line profile. The average full width at half maximum of the peaks was calculated along 

the vertical direction and was found to be 2,64 pixels as shown in Fig 3.17. Having 

known the pixel pitch of the CCD camera is 26 μm, each spot has the average image 

size of about 68,6 μm. The spot diameter at the object plane of the MO can be 

calculated with the equation 3.1.  

𝐷 = 1.22 𝑥 
𝜆

𝑁𝐴
 (3.1) 

Where 𝜆 is the wavelength of the beam to be focused from objective lens, D is the 

diameter of the spot in the focus of the lens,  NA is the numerical aperture of the lens.  
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This value is 1.20 for the microscope objective in the setup. Thus, the spot diameter in 

microscope sample is 798 nm. The magnification is, therefore, calculated to be 86.  

After a lens with a smaller focal length was used to obtain figure 3.15-d, the image 

size was inreased as seen in the figure. To calculate the image size on CCD image 

plane and the magnification, a Lorentz fit was applied on this image as in figure 3.18.  

 

Figure 3.17 : Lorentz fit for the intensity distribution around 1003 cm-1 band of PS 

Raman image in figure 3.15-c. FWHM = 2,64 pixels. 
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Figure 3.18 : Lorentz fit for the intensity distribution around 1003 cm-1 band of PS 

Raman image in figure 3.15-d. Average FWHM is 4,66 pixels  

According to the calculation the average image size is 26 x 4,66 = 121 µm. The new 

magnification value is 121/0,798 = 152. When figure 3.17 and 3.18 are compared, the 

distances between the band centers are expanded as the magnification is increased 

which is expected and consistent with the images in figure 3.15-c and 3.15-d. The 

distance between peak centers are 25.7 pixels in figure 3.18. 

Measurements in the PDMS microfluidic channel were performed using both ITU and 

IU setups. PDMS is a Raman active material that has very sharp and intense peaks in 

the low Raman shift region. A Raman measurement of PDMS and a PS are displayed 

overlaid in figure 3.19. These measurements were taken with one-second exposure 

time. Raman spectra of PS particles were measured at an equal distance of 20 µm from 

both surfaces where the surface materials are PDMS in the upper side and cover glass 

in the lower side. Although the Raman spectrum of PS was obtained in the microfluidic 

channel, there is no contribution from PDMS Raman bands. As seen in the figure many 

of these peaks are not overlapped.  

 

Figure 3.19 : Raman spectra of PS and PDMS are overlaid for comparison. 

During the study, several alternative methods for pumping were tried such as a use of 

peristaltic pump or driving the syringe with a micrometer. These attempts did not result 
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in a uniform flow and desired flow velocity. Despite an unstable flow in the channel, 

three PS particles could be trapped as seen in figure 3.20. There are four spots in the 

figure, three of which have PS particles trapped. The Raman image of this array is 

displayed in the same figure, too. The signal from particle 1 could not be visible clearly 

in the Raman image. The signal intensity could be higher if the trap location was a 

little above its position in the same plane. The distance between two close traps in the 

figure is 1.65 μm. 

 

 

Figure 3.20 : Three PS particles trapped in a four-spot array in a Y-shaped PDMS 

microfluidic channel at a depth of 10 µm. 

 

The microfluidics experiments could not be continued. It was observed in the 

experiments that the flow was not stable when the outlet tubings are left open without 

connecting to a syringe. 

3.2.4 HORT for Biological Cells 

After the tests with PS particles, biological cells were measured with the HORT setup. 

Yeast and E. coli cells were chosen for measurement. ITU Molecular Biology and 

Genetics department produced these samples for us before the measurement day. 

Zeynep Petek Çakar’s group has prepared the yeast cells and Deniz Şahin has prepared 

the E. coli samples.  

Both E. coli and yeast cells are cultured in the phosphate buffer saline (PBS) solution. 

These samples were measured in their own medium after diluting 100 times. 

Measurements were performed with four spots in the Raman region. Raman spectra of 

trapped E. coli and its medium PBS are shown in figure 3.21 together with PBS 

corrected spectrum, overlaid. These measurements were performed for 30 seconds 

exposure time with full vertical binning (FVB) scheme. The PBS subtracted spectrum 

is multiplied by two for a better vision. 

1 
2 

3 
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The Raman measurement of a yeast cell is given in figure 3.22 overlaid with PBS and 

PBS corrected spectra. The spectra have some sharp peaks, which arises from the 

ambient light. Considering that the PBS spectra also have these contributions, when 

subtracted PBS background spectrum, the measurements will be free of these spikes. 

 

Figure 3.21 : Raman spectra of E. coli, PBS medium, and PBS subtracted E. coli. 

The PBS corrected spectrum was multiplied by two for better 

visualization.  
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Figure 3.22 : Raman spectra of yeast cell, PBS medium and PBS subtracted E. coli. 

The PBS corrected spectrum was multiplied by two for better 

visualization.  

There are some ripples in the low Raman shift region of the spectra. One reason 

causing this maybe the interference patterns generated by the computer generated 

hologram displayed on the SLM. Another possible reason is the use of a thick plane 

parallel mirror This unwanted pattern is broad and covers the Raman signal in that 

spectral region. Thus, the identification of the spectra will be made by neglecting this 

spectral region until 1000 cm-1 and taking into account of the upper Raman shift region. 

A comparison of the Raman spectra of yeast cell measured using conventional optical 

tweezers setup and holographic optical tweezers setup is displayed in figure 3.23. The 

ripples in low Raman shift region are absent in the measurement taken with 

conventional setup.  

 

Figure 3.23 : Comparison of yeast cell Raman spectra with and without the HOT 

setup. The cells are trapped with conventional optical tweezers setup that 

does not use an SLM in the measurements without HOT. Band 

assignments are labeled on the peaks [89]. 

The band assignments related to yeast spectra are given in this figure, too. The bands 

at 1003, 1257, 1602 and 1650 cm-1 protein related bands. The bands at 1257 and 1650 

cm-1 are assigned to amide I and III, respectively. These bands are used to extract 
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secondary structure of the proteins in the sample. The bands around 1100 cm-1 are 

related to C-C streching vibrations. The band at 1440 cm-1 is assigned to CH2 

deformation the band is present in lipids and proteins. 1602 cm-1 band was shown to 

give sign of yeast cell’s viability [81]. The band at 1003 cm-1 is assigned to ring 

breathing of benzene for Phenylalanine. 

3.2.5 Classification of Trapped Objects Due to Their Raman Spectra 

To make Raman based classification with the trapped particles; few classification 

algorithms were developed and tested. Since our model study was to discriminate PS 

from a certain biological cell, the methods below were used: 

 PCA based identification 

 1003 band comparison 

 Correlation coefficient comparison 

3.2.5.1 PCA based identification: 

A MATLAB code to classify spectra using PCA algorithm was written to use real time 

particle identification. This code needs a training dataset and a test measurement as 

inputs and gives a classification vector as output, whose elements are integer numbers 

between 0 and 2 when classifying two kinds of objects. The training dataset was first 

prepared which consists of normalized and calibrated Raman spectra of yeast cells and 

PS particles. The test measurements are obtained real time and the software appends 

them to the dataset to form the expanded dataset. A sample measurement is shown in 

figure 3.24. PCA is applied on this expanded dataset to find the scores and loadings. 

The distances between the scores give a measure of clustering of the measurements.  

To determine the confidence limits of the clusters, an error ellipse is calculated by 

taking into account of the calculated distances excluding the test measurements. This 

ellipse is drawn onto the scores plot as in figure 3.25. The confidence limit while 

calculating the ellipse function in this study was chosen to be 99%, which is provided 

by three-sigma standard deviation. The classification of the measurements is made by 

determining which ellipsoidal limits the scores representing the measurements are 

within.  
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Figure 3.24 : A multi-track PS measurement. There is no signal in track 2.  

 

Figure 3.25 : PCA scores graph that includes the error ellipse calculated from 

distances of the groups. PCA scores of test particles are overlaid with 

error prediction graph measured for the dataset. For a multi-track Raman 

measurement of PS test particles, software gives the [1 0 1 1] output 

which is consistent with the measured particle. 
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When the test measurements are plotted overlaid with this graph as in figure 3.25, it 

becomes clear which class the measurements take place with human vision. To 

automate this process, rather than human vision, a few code lines are added to 

understand which ellipse the individual measurements are in. For example, if the task 

is to separate PS from yeast cell, program outputs “1” for PS and “2” for yeast cells. 

If the measurements are in none of the ellipses, they are unclassified. The output from 

the identification function is the state vector whose elements are integers between zero 

and two. Identified particles are manipulated regarding to this input. 

3.2.5.2 Comparison of peak at 1003 cm-1 

Identification using 1003 cm-1 band is quite straightforward. This is the marker band 

of PS and it is most intense peak. This peak is present in some of the biological 

molecules, too. However, Raman spectra of microorganisms do not include a sharp 

and intense 1003 band. This enables one to define certain threshold limits to identify 

certain spectra. Our problem is, in the simplest case, identify PS and yeast particles to 

label them ‘1’ and ‘2’. If the measurement can not be classified, label is ‘0’. The cut-

off value to classify PS and yeast measurements were found by analyzing the previous 

measurements. In summary, 

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛: {
1     𝑖𝑓 𝑇ℎ ≥ 0.85

2     𝑖𝑓 0,2 < 𝑇ℎ < 0,8
 𝑒𝑙𝑠𝑒      0

 

BSc student Neşe Didem Temeltaş has implemented the code during her Advanced 

Physics Project. She applied it for PS, yeast cell and mixed solutions. The algorithm 

worked with a 100% success. However, this approach was not followed because the 

algorithm should be more general and be useful for every measurement. This method 

is useful when investigating the spectra that can be sorted by the peak at 1003 cm-1. 

This applies for PS particles and yeast cells; however, this is not a general case. One 

may want to classify spectra other than PS or yeast cells. In this situation, he/she should 

define the discriminative band, the threshold and then write the code lines for these.  

 

 

 

3.2.5.3 Correlation coefficient comparison: 
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Correlation coefficient is a measure that defines how similar two measurements are. 

This coefficient is defined with the equation 3.3 below [90]: 

   

(3.3) 

In this equation r is the correlation coefficient, n is number samples, x and y are the 

measurements. The use of correlation coefficient comparison is founded on very 

similar principles as the PCA based algorithm. This algorithm compares the correlation 

coefficient of the database matrix with the test measurement. The correlation 

coefficient vector of a sample measurement with respect to the dataset is plotted in 

figure 3.26. In this figure, the correlation coefficient of a PS measurement with each 

dataset measurements is shown.  

 

Figure 3.26 : Correlation coefficient vector of a sample measurement with respect to 

the dataset is plotted.  

The main parameters of this figure are summarized in table 3.4. It can be seen that the 

correlation coefficient of the sample PS measurement with the PS measurements in the 

dataset matrix are not smaller than 0,85. The coefficient is not greater than 0,16 for the 

yeast cells.  



72 

Table 3.4 : Summary of the correlation coefficient calculation.  

Average Correlation Coefficient 

With PS Tolerance With Yeast Tolerance 

0,92 ± 0,019 0,10 ± 0,014 

Extreme Points 

Min Max Min Max 

0,85 0,94 0,080 0,16 

 

With this pre-calculation, one could empirically define safe limits for the 

identification:  

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘𝑖𝑛𝑑 𝑜𝑓 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚: {
𝑑𝑒𝑓𝑖𝑛𝑒 1 𝑖𝑓 𝑐𝑖 ≥ 0.85

𝑒𝑙𝑠𝑒,
 𝑑𝑒𝑓𝑖𝑛𝑒 0

  

Since correlation coefficient algorithm is 1.3 seconds faster than the PCA algorithm 

(calculated by measuring the CPU times while running the codes) and does not need 

modification according to the application, this algorithm was chosen in the 

experiments. 

3.2.6 Sorting Experiments 

A model classification study was designed in this study to test the classification 

algorithms and the HORT setup. Raman based sorting experiments were performed 

with the optically trapped yeast and colloidal PS particles (Polyscience, 4.6 ± 0.27 µm) 

in liquid medium. A computer program has defined trajectories for the particles to be 

manipulated using pre-calculated holograms.  

The PS sample was prepared from the liquid solution diluting a drop of sample with 1 

mL of distilled water. This solution was dilution 100 times to obtain stable and isolated 

traps that are not disturbed from neighboring particles. Yeast cells are received in PBS 

solutions. This solution is very dense of yeast cells. 1 mL from this solution was taken 

and it was diluted 100 times with PBS. These two diluted PS and yeast cell solutions 

are mixed equally. 120 𝜇𝐿 of mixture were poured into the glass measurement cell 

covered with microscope slide.  

A sequence of pictures from the sorting experiment with this solution is shown in 

figure 3.27. There are eight traps located at predetermined positions on plane as 

emphasized with red circles in Fig. 3.27a. The depth of these traps is about 20 μm. 

Some particles were trapped at different positions other than the predetermined trap 
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positions. The traps appear at these positions are called ghost traps (see explanation in 

section 2.3.2.4). These ghost traps were indicated with stars in Fig.3.27a. Four of eight 

particles on the right column of traps were located in the Raman measurement position. 

There is no particle in one of these four traps. Our software measures the Raman 

spectra of these four-spot array and applies the identification algorithm to label them 

as “1”, “2” or “0”. The algorithm labels PS as “1”, yeast cells as “2” and unknown 

spectra as “0” according to the spectra displayed in figure 3.28. The spectra in 3.28 

were obtained with one-second exposure time using multi-track binning scheme. The 

spectra were measured by our software and saved after subtracting the background 

measurement, which was obtained without particle in the traps. The input for the 

classification software is the uncalibrated raw spectrum, as shown in figure 3.28.  

The classification software first calibrates the spectra using the calibration data of the 

PS spectrum measured initially. Then, a baseline correction is applied on the spectra 

to reduce residual background, which stems from fluorescence and unwanted 

scatterings from optics. Finally, the spectra are normalized relative to their maximum 

intensity. Since the spectra are measured with one-second exposure time and they 

usually have a noise profile, the normalized spectra are smoothed with Savitzsky-

Golay smoothing procedure. n figure 3.28, there are spectra measured from PS, yeast 

and background. Since the spectra are background corrected, there is no signal from 

the trap 2 point with no trapped particles in it. The yeast spectra in Track 3 and Track 

4 are broad, however after a baseline correction; the software calculates a correlation 

coefficient that is enough to determine them as yeast cells as seen in figure 3.29. The 

peaks at 1300, 1440, 1602 and 1650 cm-1 are apparent after this operation. These bands 

are absent or present with low intensity in PS spectra.  

The classified particles have certain positions to be targeted. The regions including 

these positions are shown with two boxes in figure 3.27-e assigned with Gr1 and Gr2. 

The image shows us that the particle in the upper side of the array is classified  as “1” 

since it is manipulated towards the upper corner of the frame (figure 3.27a-d). Notice 

that the particle at the top of the trap line moves together with the ghost trap. While 

this particle is manipulated, other particles labelled with “2” or “0” holds their position 

to maintain the traffic stability. After the PS particles labelled as “1” have finished 

their travel to upper corner, yeast cells are targeted to the lower corner (figure 3.27e-

h). After the particles with label ‘2’ starts their motion, the second four-trap array 

moves to the measurement position, simultaneously (figure 3.27e-h). 
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Figure 3.27 : Sorting with PS and yeast cells. The program moves the array to the 

measurement position. After the investigation of the data, particles are 

classified and then they are manipulated to the final positions. In the 

picture a-d) PS is labeled as “1” and manipulated to upper corner of the 

chamber. e-h) the yeast cells located in the lower side of the array are 

labeled as “2” and manipulated towards the lower corner of the chamber. 

The dashed lines are inserted to follow the particle movement. 

Gr 1 

Gr 2 

* 

* * 

* 
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Figure 3.28 : Raman spectra from the trapped PS particle and yeast cells. 

 

 

 

Figure 3.29 : Baseline correction and smoothing applied on figure 3.28. 
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The power of the ghost traps may dramatically change when the spatial position of the 

spots change. As discussed in [41], the superposition algorithm distributes some 

portion of the power to ghosts.  

 

Figure 3.30 : Automatic manipulation of the same type of particles.  

Above in figure 3.30, the classification and manipulation of the same type of particles 

is demonstrated. Five yeast cells were trapped in the mixed solution described above. 

There are four other particles in the other group holding in the line to be measured 

after the first four. Figure 3.31 shows the measurement obtained from four particles on 

the right array in figure 3.30 a simultaneously. The spectra in the figure indicate that 

all four particles are same. The software detects this after an automatic baseline 

correction and normalization as shown in figure 3.32. The identification of all four 

particles are made using these preprocessed spectra. In this sample measurement, the 

software finds the class of all four measurements the same and labels them as yeast 

cells with label “2”.  
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Figure 3.31 : Input Raman measurement for the classification of the particles in 

figure 3.30. 

 

Figure 3.32 : Baseline corrected Raman spectrum for figure 3.31. 
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4.  CONCLUSION 

This study aims to sort biological cells, which are immobilized in a microfluidic 

channel by holographic optical tweezers, according to their chemical signals obtained 

by Raman spectroscopy. To do this, a HOT setup have been constructed first in 

Istanbul Technical University and then in Istanbul University. The study continued in 

the latter one because a higher laser power was needed to trap and manipulate more 

particles, stably. The multiple trapping with test particles was achieved in both setups 

seen in figure 3.13 and figures 3.15-16.  

Although the initial plan was to do the sorting in a microfluidic channel, the test 

experiments in the microfluidic channel has failed since a proper syringe pump was 

absent. Instead, the sorting experiments went on in a home-made glass measurement 

cell.  

Sorting experiments were done with PS particles and yeast cells. A signal taken from 

E. coli cells with 30 seconds exposure time is given in figure 3.21. E. coli cells were 

not used in the sorting experiments because long exposure time acquisition was needed 

to collect significant signal. On the other hand, figure 3.28 show that an exposure time 

of one second gives enough signal for the classification of the yeast cells.  

The CPU time spent for the classification of four particles using the PCA based 

algorithm is 1.3 seconds more than the one spent in correlation coefficient approach 

(0.8 s and 2.1 s). This is why the PCA based approach was not chosen in this study. 

Moreover, the algorithm that compares the band intensities at 1003 cm-1 was not used, 

either. This algorithm needed a generalization since the classification criterion is 

specific to the current problem, which is classifying PS particles and yeast cells. 

Correlation coefficient approach was used in the study since it proved to be faster and 

more general. 

The adjustment of the thresholds in correlation coefficient approach was made by 

calculating the correlation coefficients of a test measurement with the measurements 

in the dataset. The result of this calculation, as given in figure 3.26 and table 3.5 gave 
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the threshold values that the software needed as inputs. This algorithm gave accurate 

results for the classification of the spectra PS particles and yeast cells. Using this 

classification output as an input, the task to manipulate particles to the target real-time 

was achieved by the HOT software. 

Sorting due to Raman signal has its own limitations, too. The main challenge in the 

sorting experiments is the speed, which is the sorted cell number in unit time. 

However, biological cells generally give weak Raman signal. Unless one uses 

resonance methods, one second or less exposure times may not be enough for acquiring 

a Raman spectrum that can be identified. Moreover, long exposure times make the 

sorting inefficient. There will be further efforts to overcome this challenge in the future 

experiments. The first thing to try at this stage is to make traffic optimization of the 

trapped particles move faster and thereby allow more particles to be separated at the 

unit time. 

The hologram algorithm used in this study is gratings and lenses algorithm. As 

mentioned in the experiments part, this algorithm causes non-uniform power 

distribution and undesirable ghost spots, which reduces the power of generated spots 

irregularly. In the literature section, it was mentioned that the GSW algorithm proved 

to be extremely uniform and efficient. Our next goal after this thesis is to implement 

this algorithm into our software to obtain a better power distribution, free of ghosts. 

Besides, this algorithm supposedly allows us to obtain a lesser intensity for zeroth 

diffraction order.  

During the PhD study, the assessment of embryo quality using the Raman spectra of 

the spent embryo culture media has been studied. The hypothesis was that the embryo 

that nurtures well consumes the certain amino acids more than the other ones. Our 

study showed that there is a significant difference in the band area ratios of 903 / 942 

cm-1 as seen in the figure 3.6 and table 3.1 and 3.2. According to our Raman 

measurements with amino acids, four amino acids have strong bands that could 

contribute to this weak signal. These are glutamine, glycine and proline for 903 cm-1 

band, valine for 942 cm-1 band. These results have a positive correlation with the 

literature especially for glutamine and glycine where there is consensus on their 

positive effect for the embryo development. 
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