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ABSTRACT 
 

The online apparel retail market size in the United States is worth about seventy-two 

billion US dollars. Recommendation systems on retail websites generate a lot of this revenue. 

Thus, improving recommendation systems can increase their revenue. Traditional 

recommendations for clothes consisted of lexical methods. However, visual-based 

recommendations have gained popularity over the past few years. This involves processing a 

multitude of images using different image processing techniques. In order to handle such a vast 

quantity of images, deep neural networks have been used extensively. With the help of fast 

Graphics Processing Units, these networks provide results which are extremely accurate, within 

a small amount of time. However, there are still ways in which recommendations for clothes 

can be improved. We propose an event-based clothing recommendation system which uses 

object detection. We train a model to identify nine events/scenarios that a user might attend: 

White Wedding, Indian Wedding, Conference, Funeral, Red Carpet, Pool Party, Birthday, 

Graduation and Workout. We train another model to detect clothes out of fifty-three categories 

of clothes worn at the event. Object detection gives a mAP of 84.01. Nearest neighbors of the 

clothes detected are recommended to the user. 
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1. Introduction 

 Deciding what clothes to wear for an event can often be a time-consuming task. At times, 

it is important to find clothes that are well-suited for an event. What we wear could have a good 

or a bad impression on people. Not wearing appropriate clothes on certain occasions can at 

times offend some people. For example, at a Christian funeral, wearing black conservative 

clothes is customary while at a Hindu funeral, wearing white conservative clothes is the norm. 

At Buddhist funerals, wearing the color red is frowned upon. Hence, the problem of event-based 

clothing needs to be addressed. These days, most of the people share photos of the events they 

attend on social media platforms. The information obtained from such images could be 

leveraged to learn the correlation between events and the categories of clothes worn at the 

events. By learning this correlation, appropriate clothing recommendations could be made. 

A recommender system is used to suggest products to customers by using information 

about the customer, about other customers or about the products and can predict what a 

customer will prefer [1]. The online apparel retail market size in the United States is worth 

about seventy-two billion US dollars. Recommender systems generate greater revenue for e-

commerce websites if the recommendations are good. Hence, while building such a system for 

garments, recommendations need to be good. 

Object detection is an important part of visual fashion recommendation. Traditional 

methods for object detection included obtaining feature descriptors like Histogram of Oriented 

Gradients (HOG), Speeded Up Robust Feature (SURF), Scale Invariant Feature Transform 

(SIFT), etc. More recently, deep neural networks have been used extensively for object 

detection. Artificial neural networks are computing systems which are derived from the 

functioning of the human brain, particularly the nervous system [2]. The main processing units 
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are neurons, which are connected by links known as synapses. These neurons are divided into 

various layers. Input data is fed to these neurons in different layers which perform computation 

on it. There is one input layer and one output layer and multiple hidden layers. If there exists 

more than one such hidden layer, then the artificial neural network is called a deep neural 

network. Deep neural networks are much harder to train than normal neural networks. Deep 

neural networks are used extensively in image processing and could be used to detect objects 

in images. Using these, we can learn which outfits are worn at which event or used in which 

scenario. This will help in making recommendations which are tailored to required occasions. 

In this paper, we present a novel approach to identify events given an image, and to 

recognize clothes worn by people in the image using object detection. We make use of Faster 

RCNN (Region based Convolutional Neural Network), which is an advancement of RCNN [3] 

and Fast RCNN [4]. Faster RCNN is an algorithm proposed by S. Ren, K. He, R. Girshick and 

J. Sun [5]. We use this method because this gives us better mean average precision and it also 

provides faster object detection than its previous versions, as the name suggests. We use transfer 

learning and create a model according to our needs and train the model on the required data. 

The model performs well in terms of mean average precision and detects small items very well 

(Fig 1 (b)). Fig. 1 (a) shows the labeling of an image. 

                                      

Fig 1 (a): Labeling an image            Fig 1 (b): Clothes detected 
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 The paper is organized as follows: Section 2 presents technologies used for this paper. 

Section 3 presents the works that are related to this paper. Section 4 explains the datasets used 

for our work. Section 5 gives a detailed idea about the technical approach proposed. The 

experiments and results are presented in Section 6. Section 7 then presents the conclusion. 
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2. Technologies Used 

The following technologies were used for the project: 

• Tensorflow 

• OpenCV 

• NumPy 

• Protobuf 

2.1 Tensorflow 

  Tensorflow is an open-source machine learning library for high-performance numerical 

computations. It is now popularly used for computer vision, natural language processing, 

predictive analytics and many more such applications. Tensorflow, which started off as DistBelief, 

was developed by the Google Brain team for use at Google and had its first release in 2015. 

Tensorflow works using directed graphs, where the nodes represent computations and the edges 

represent tensors. A tensor is an n-dimensional matrix and is the basic unit of computation in 

Tensorflow. 

  A big advantage of using Tensorflow is that it can be deployed on not only Graphics 

Processing Units (GPU) but also Central Processing Units (CPU) and Tensor Processing Units 

(TPU). It also allows checkpointing of models. That is, we can train a model for a while, stop it, 

perform evaluation on the model and then start training it back from the checkpoint. Tensorboard 

also allows visualization of logs of training and evaluation as well as computational graph 

visualization. Scikit-learn is another Python-based machine learning library. But it is not very 

useful when it comes to deep learning. For our implementation, we have used Tensorflow Object 

Detection [31]. 
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2.2 OpenCV 

  Open Source Computer Vision Library is an open-source library that is used mainly for 

computer vision and machine learning. It has Python, C++, MATLAB and Java interfaces. It 

supports multiple operating systems like Windows, Linux, Android, Mac OS, iOS, FreeBSD, 

Maemo, Blackberry 10, NetBSD and OpenBSD. OpenCV has more than 2,500 algorithms of 

machine learning and computer vision. OpenCV has multiple applications like facial recognition, 

object detection, human-computer interaction, finding similar images, ego-motion estimation, etc 

[6]. 

  For our work, OpenCV was used for making recommendations. We found the images of 

clothes which were most similar to the clothes suggested by the initial model. OpenCV is well 

known for this application as it can find similarity between images by calculating the distances in 

their histograms. A histogram of an image gives us an idea about the intensity distribution of the 

pixel values. Using OpenCV, if we compare the histograms (calculate histogram distance) of two 

images, we can find how similar the images are. 

 

2.3 NumPy 

  NumPy is a Python library for scientific operations. It is used for numerical analysis. It 

consists of an n-dimensional array object along with other derived objects. It also consists of 

broadcasting functions, tools for integrating C/C++ and Fortran code, Fourier transform, along 

with multiple number operations [7]. NumPy arrays or ndarrays form the base of this library. The 

elements in these arrays are required to be of the same data type. Hence, they will be the same size 

in memory. Other than its various scientific and numeric applications, NumPy can be utilized as 

an efficient multi-dimensional package of generic data. NumPy is authorized under the BSD 
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license, allowing reuse with some restrictions. For purposes of this work, NumPy was used to 

convert image data into a format which can be used as input for Tensorflow operations. 

 

2.4 Protobuf 

  Protobuf is the Python Protocol Buffers library. It is a library for serializing structured data. 

Using this library, one can define how they want their data to be and then can use a generated code 

to read and write this format of data. It is similar to Extensible Markup Language (XML), but it is 

speedier and simpler. Google initially developed protocol buffers for internal use but then provided 

code generators under an open source license. In this work, protocol buffers are used to configure 

the Tensorflow model and training parameters. Before performing object detection, the protobuf 

libraries must be compiled. 
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3. Related Works 

  A lot of work that has been done in various aspects of clothing recommendations. Works 

[8]-[18] all deal with recommendations. Earlier works like [9], [17] and [18] made lexical 

recommendations. Lexical methods like Multimedia Web Ontology Language, Open Mind 

Common Sense and contextual knowledge have been used in these works in order to make 

recommendations. All these methods use some form of textual manipulation. In some of the later 

works [11] - [16], recommendations are visual-based. Images are analyzed instead of textual 

manipulation, in these works. Recommendations improved in these works because a lot more 

information is obtained from images. 

  Earlier works like [9] - [11] find clothes that complement one another. This involves 

recognition of clothes in the images. Various works like [12], [24] - [26] have worked on clothing 

recognition. While [24] and [27] deal with image parsing, that is, finding the different components 

within the image. The works [12] - [14] have worked on clothing recommendations. However, not 

a lot of research has been done in recommending clothes based on the events (a party, a wedding, 

a meetup, a red carpet) at which they will be worn. If suggestions consider such events then users 

will be able to look for clothes specific to their needs and will be inclined to buy the clothes 

recommended. 

  The works [10] and [17] make scenario-oriented recommendations. However, [17] uses a 

text-based methodology. On the other hand, [10] uses Support Vector Machines on images to make 

recommendations. Of the other works in recommendations, [20] analyzes personal style and [16] 

deals with clothing analysis based on the location of countries. Personalizing suggestions in this 

way has been known to increase the chances of a piece of clothing being purchased. 
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Recommendations can be improved if we analyze and find clothes which people pair together. 

This could be achieved by using deep neural networks. 

  Using image processing to make recommendations has gained popularity over the last few 

years. Neural networks have made a lot of progress in image processing. Neural networks can be 

trained to identify specific features in images. But when similar features appear at different 

positions in the image, artificial neural networks cannot identify them [19]. Adding training images 

for all such images is not feasible. Instead, convolutional neural networks could be used, which 

identify features without bothering about their position. Works like [11], [15], [19]-[21] use 

convolutional neural networks to make clothing recommendations. Convolutional neural networks 

were made particularly popular by Krizhevsky, et al. [21]. They created a network known as 

AlexNet, which is considered as a turning point for neural networks. 

  Convolutional Neural Networks (CNN) are a category of neural networks. A CNN usually 

has a convolutional layer along with a few other layers. The convolutional layer runs by applying 

the operation of convolution. An image could be represented as a matrix of its pixels. Consider 

Fig. 2 (a) to be our image matrix. And consider Fig. 2 (b) to be the filter. The convolution operation 

slides a window of the filter size over the image matrix and computes another matrix which is the 

convolved feature matrix (Fig. 2 (c)). 

 
 Fig. 2 (a): Image Matrix             Fig. 2 (b): Filter  Fig. 2 (c): Convolved Matrix 
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  Recently, Siamese networks and triplet embeddings have also gained popularity [20], [22]. 

The main benefit of using Siamese networks is that they directly train for the problem at hand. For 

example, if we are trying to find similarity between two pieces of clothing, then Siamese networks 

will directly address this issue, instead of training for object detection and then finding the 

similarity. The research in [20] uses a Siamese CNN to find similar clothes. Triplet embeddings 

are beneficial because they help improve classification accuracy by extracting better features. The 

work [22] proposes a bidirectional cross-triplet embedding algorithm. They combine triplet 

embedding with cross-domain image retrieval.  

  Scenario/event recognition is an important part of clothing recommendation in the 

proposed work. In the work [29], event recognition is performed using three steps: event concept 

discovery, training concept classifiers and prediction of concept scores. Tagged images are used 

to obtain concepts. Images of correlated concepts are clustered together. A feature vector is formed 

by taking a concatenation of all concept scores for an image. A classifier then classifies the image 

as a particular event. The work [30] performs event recognition in photo collections. They use a 

hidden Markov model for the same. However, this sort of event recognition does not make use of 

all the information available in the image. It uses tags associated with the image to find out objects 

within the image. Instead, we can detect objects within the image to identify the type of event. 

  Using transfer learning has also gained popularity. Transfer learning is the process of using 

weights of an already trained model in order to train a new model on a similar task. In this way, 

we can avoid training an entirely new model from scratch and can instead concentrate on 

improving the task at hand. Transfer learning improves the time required to train a model 

significantly. In this paper, we make use of transfer learning to train models for object detection. 

We use Faster RCNN as the meta-architecture for object detection. 
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  RCNN was the idea of Girshick et al. [3]. They came up with a good method to detect 

objects for the PASCAL VOC challenge, a popular object detection and classification challenge. 

This method drastically improved the accuracy of object detection as compared to its earlier works. 

Fig. 3 gives the system overview of RCNN. RCNN works by performing training on three separate 

models. The first model makes region proposals. These are regions with high possibility of 

containing an object. Each image has about 2,000 region proposals. RCNN creates region 

proposals using a method called Selective Search. RCNN will run CNN on each of the region 

proposals. So, when the region proposals are huge in number, it takes a long time for processing. 

That is why, RCNN requires about fifty seconds as average testing time per image. The second 

model trains Support Vector Machines (SVM) to classify which category the object belongs to. 

After this, the bounding boxes for the model generated are made more precise by training a linear 

regression model. 

 

 

Fig. 3: RCNN System overview [3] 

   

  One of the authors of RCNN, R. Girshick, continued working on the challenges faced by 

RCNN and came up with a new algorithm, Fast RCNN [4]. Fast RCNN solves the issue of the 
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slow RCNN architecture. In this new architecture, the region proposals are created in a similar 

manner to RCNN, by using Selective Search. However, CNN is run just once on the entire image 

instead of on all region proposals. Fast RCNN has a layer called the Region of Interest (RoI) 

pooling layer. In this layer, CNN features for every region proposed are obtained from the single 

CNN feature map. Then these features are pooled together. After this, instead of training an SVM 

model, a softmax layer is added to the model for classification. Also, a linear regression layer is 

added to the same model to get precise bounding boxes. Thus, just one CNN is run on the entire 

image. Because of this, Fast RCNN reduces the average testing time per image to around two 

seconds. Fig. 4 shows the architecture of Fast RCNN. 

 

 
Fig. 4: Fast RCNN architecture [4] 

   

  Sometime in 2015, Ren et al. [5] came up with an architecture which was better than Fast 

RCNN. Even though Fast RCNN was much faster than RCNN, there still was a bottleneck. This 

was the Selective Search method used for generating region proposals. This step was not necessary 

as features of the image are calculated when CNN is run. Hence, in Faster RCNN Selective Search 

is replaced by Region Proposal Network (RPN). RPN generates region proposals. After RPN, the 
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RoI pooling layer, the classifier and the regressor are similar to the Fast RCNN architecture. 

Because of this Faster RCNN generates bounding boxes with an average testing time per image of 

approximately 0.2 seconds. Fig. 5 gives an overview of Faster RCNN. 

 

Fig. 5: Overview of Faster RCNN [5] 
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4.  Datasets 

 

4.1 Event Identification 

  For event identification, we collect data from a variety of sources by crawling the web in 

addition to the SocEID dataset [29]. The SocEID was created by Ahsan, et al. by querying 

Instagram and Flickr for event images. We use part of this dataset, according to the events we are 

considering for this work. We collect 400 images for every event and end up with a dataset of 

3,600 images. Along with these images, we also crawl the web for images of objects required to 

identify the events. We collect 250 images for every object that needs to be detected in these 

images. We initially experimented with a different number of images starting from 100. The 

detection was much better with a greater number of images. Hence, we chose 250 images as an 

appropriate number of images for object detection. 

 

4.2 Clothing Recognition 

  For clothing recognition, we create a combination of several datasets. These include the 

Fashionista dataset [33] and the Clothing Co-Parsing (CCP) dataset [25] as well a few online 

sources. The Fashionista dataset is a collection of 685 images which are fully parsed. This dataset 

was collected from chictopia.com which is a social networking website for fashion bloggers. This 

dataset has fifty-three clothing categories like dress, jeans boots, etc. The same fifty-three 

categories are available in the CCP dataset. The CCP dataset consists of 2,098 images. We collect 

the remaining clothes belonging to the fifty-three categories of clothes from online sources. In this 

way, we create a dataset of close to 6,200 images. Fig. 6 shows an example of the images collected. 
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Fig. 6: Example of the dataset  
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5.  Technical Approach / Methodology 

 

 

Fig. 7: Pipeline of the Proposed Approach 

 

 

  In this paper, we propose a novel approach for event-based clothing recommendation. We 

first identify the type of event using object detection. Once we know the event in the image/s, we 

identify the clothes worn at that event. After this, we find the correlation between the event and 

clothes worn. We find out the most frequently used clothes and recommend similar clothes using 

a nearest neighbor approach (section 5.3). Fig. 7 summarizes the pipeline for the proposed 

approach which is explained in sections 5.1 – 5.4. 

5.1 Object Detection for Event Identification 

  We first collect raw data from a variety of online sources for nine events/scenarios. These 

events are White Wedding (a semi-formal wedding which is known by that name because the bride 

wears a white dress), Indian Wedding, Conference, Funeral, Red Carpet, Pool Party, Birthday, 
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Workout and Graduation. We collected 400 images for every category. To identify the event, we 

look for objects commonly found at these events. We first need to find which objects are most 

common at an event. To perform this task, we follow a similar method as that described by Ahsan, 

et al. [29] to find segments. We get tags related to each event and for the set of events E = {e1, e2, 

…, e9}, we have a set of tags T = {t1, t2, …, tN} where N is the number of tags collected. The goal 

is to find commonly occurring objects. We obtain the commonly occurring objects O = {o1, o2, …, 

on} in each tag. We do this for all event images. We then obtain the final list of commonly occurring 

objects as follows: 

     𝑎𝑟𝑔𝑚𝑎𝑥𝑜1, 𝑜2,…, 𝑜𝑛
 𝑆𝑐(𝑡𝑖) =  ∑ 𝑆𝑐(𝑜𝑗)𝑛

𝑗=1         (1) 

where, Sc is the score of an object. This score is measured by the probability that part of the text 

is a named entity (in our case, an object). Table I shows an example of the frequently found objects 

found for a white wedding and at a graduation. 

Table I 

Example of commonly occurring objects found 

White Wedding Bride, Groom, Flowers, Cake 

Graduation Graduation Cap, Graduation Gown, Degree 

   

  Now for event identification, we look for these objects in the images. For this, we train a 

model to detect these objects. We obtain 250 images for every object and train Tensorflow Object 

Detection, starting with image labeling. In order to label images, we write a Python script. Using 

this script, we can drag bounding boxes around objects and label them with their appropriate 

names. This will generate an XML file with the bounding box information and more information 

about the image like the file name and file location. This XML file can later be used to feed data 

into Tensorflow in the required format. We label all the images for the frequently occurring 

objects. After labeling the data, we partition it into train, test and validation sets. We split the data 
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into 70% for training, 10% for validation and 20% for testing. We pick this split after a variety of 

experiments as the best split. For Tensorflow object detection, all labeled training data needs to be 

in the TFRecord file format. Hence, the labeled training data in XML format needs to be converted 

to TFRecord format. This was done by converting XML files to Comma Separated Values (CSV) 

file format and then converting the CSV file into TFRecords. 

  After obtaining the TFRecords, we can start training the model to detect the objects. For 

this, Tensorflow Object Detection allows us to train different models using the same codebase. We 

use transfer learning to train multiple models for object detection. While choosing which model to 

use, one can experiment with multiple combinations for choosing the meta-architecture, feature 

extractor and other hyperparameters. For event identification, after experimenting with multiple 

models, we choose Faster RCNN (section 2) with Inception Resnet v2. After this, we test the model 

to find out how well it is detecting objects required. 

  We now use this model to identify the type of event, based on the objects found. For 

example, if in an image a Graduation Cap and Graduation Gown were detected, then the image is 

classified as a Graduation event. Fig. 8 shows an example. 

 
Fig. 8: Event Identification using object detection 
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5.2 Object Detection for Clothing Recognition 

  After an event is identified, we need to find out what clothes are worn at the event. For 

this, we need to train another model to identify clothes. We use a combination of the Fashionista 

dataset [33], the CCP dataset [25] and online sources for training. Once we have the data, we 

follow a similar procedure for detecting objects as described in section 5.1. We first begin by 

labeling all the data we found from the online sources. There are fifty-three categories of clothes 

in the dataset which we label and obtain the XML files for. We then split the data into training, 

testing and validation sets. Again, we found that 70% training, 10% validation and 20% testing 

split is the best split. Then we convert the XML files into CSV and CSV files into TFRecord files. 

We now start training different models using this data. Fig. 9 shows clothes detected in an image. 

 

Fig. 9: Object detection for clothes 

  Tensorflow Object Detection is built on top of Tensorflow. Creating and training new 

models every time is a time-consuming task. Hence, we have used transfer learning in this paper. 
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Transfer learning helps in reducing the time required to train models and hence, helps in 

experimenting with multiple models faster. With transfer learning, we just use the weights from a 

pre-trained model and apply them according to our need. We can also modify various 

hyperparameters to find the best model for our data. We can try out from a variety of combinations 

of architectures to train our model. These are given in Table II [32]. 

Table II 

Object detection models with different meta architectures, feature extractors and other 

hyperparameters 
 

Meta Architecture Feature Extractor Other hyperparameters 

SSD Inception Resnet V2 Bounding box encoding 

Faster-RCNN Inception V2 Loss functions 

R-FCN Inception V3 Stride 

 Resnet 101 Matching 

 MobileNet  

 VGG 16  

 

5.3 Finding Correlation between clothes and events 

  After we identify the event and detect clothes worn at the events, we find out the correlation 

between clothes worn and the event. We do this by finding out the clothes worn at all events and 

store this data in the form of a matrix. If any of the fifty-three items of clothing are detected at an 

event, then we put in an entry in the matrix. We then find the most frequently worn outfits at these 

events using Pandas. We retrieve these frequently worn outfits to help us recommend items to 

users. Table III gives an example of the frequently worn outfits. 

Table III 

Frequently found outfits 

Event 1st 2nd 3rd 

Conference suit blazer shirt 

Red Carpet dress blazer tie 
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5.4 Recommend similar clothes 

  Once we find the top categories of clothes, we obtain items of clothing from the event 

images. These items of clothing have been worn at the events. The assumption is that if similar 

clothes are recommended to the users, they will be appropriate. Hence, we find out similar clothes 

using the nearest neighbor parse approach [24]. We learn a local appearance model for every item 

of clothing that is to be suggested. Then we find out the nearest neighbors for this item of clothing. 

Fig. 10 shows results of the similar clothes found for a funeral. 

 

Fig. 10: Similar clothing results for funeral 
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6. Experiments & Results 

6.1 Object Detection 

For our experiments we train a variety of object detection models. We pick the following 

combinations for our experimentation on clothing item detection. 

1. SSD (Single Shot Multibox Detector) Mobilenet 

2. SSD Inception v2 

3. Faster RCNN Resnet 101 

4. Faster RCNN Inception Resnet v2 

 
Fig. 11: Average mAPs of different models 

 

Fig. 11 shows the experimented mean average precisions (mAPs) for the four models mentioned 

above. The legend below shows the batch sizes used for experimentation. The mAP values are 

compared to the baseline and not to one another. Mean average precision is a popular method to 

measure the accuracy for object detection. Average precision is calculated as the average of 

maximum precisions at different recall levels. This is calculated for all classes of objects to be 
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detected in your model. A mean of these values is called the mean average precision. We get the 

highest mAP of 84.01 using the Faster RCNN Inception Resnet v2 model. 

  We started training with SSD along with MobileNet as the feature extractor.  This model 

trains fast as compared to the other models. This is because it performs all tasks in a single forward 

pass of the network. Also, in SSD models, the images are resized to a fixed shape. Hence, they can 

work faster on smaller sized images. We keep the stride size 16. We try batch sizes of 18, 24 and 

36 and find that the mAP increases with batch size. 

  Next, we trained SSD with Inception v2 as the feature extractor. This model was also fast 

because SSD works faster. We keep the stride size 16. Again, we try batch sizes of 18, 24 and 36 

and again the mAP increases as the batch size is increased. Thus, we find that the maximum mAP 

that the SSD models reach with both the feature extractors is roughly around 70. This is because 

SSD models do not detect small objects accurately. In our fifty-three categories of clothing, we 

have small objects like shoes, gloves, belt, etc. Hence, we try Faster RCNN models. 

  Faster RCNN models take longer to train than SSD models. But they generally provide 

higher accuracy than SSD models. We first trained Faster RCNN with Resnet 101 as the feature 

extractor. We use a stride size of 16. Because Faster RCNN models train a lot slower, we have to 

use smaller batch sizes. We try batch sizes of 6, 12 and 18. The mAP is not very different from the 

SSD models. One of the reasons could be the reduced batch size. 

  We finally try Faster RCNN with Inception Resnet v2 as the feature extractor. We use a 

stride size of 16 again. This combination also does not allow larger batch sizes. Hence, we try 

batch sizes of 6, 12 and 18 again. The mAP for batch size 6 itself crosses 70. Hence, we increase 

the batch size to 18 and get a final mAP of 84.01. This crosses the baseline clothing item detection 

[15] by about 13. 
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6.2 Clothing Recommendation 

  For clothing recommendation, we first find the frequently worn clothing items at various 

events. We then try to find similar clothing using the nearest neighbor parse approach. We find the 

Normalized Discounted Cumulative Gain (NDCG) for the recommendation in a similar manner to 

the baseline [10]. The Discounted Cumulative Gain (DCG) is found as given in Equation (2). 

𝐷𝐶𝐺 = ∑
2𝑟𝑒𝑙(𝑗)−1

log(1+𝑗)

𝑘

𝑗=1
                                                (2) 

Where, rel is the relevance score of the sample. Using the DCG, we can find the NDCG as given 

in Equation (3). IDCG is the Ideal Discounted Cumulative Gain. The value of NDCG lies between 

0 and 1. 

𝑁𝐷𝐶𝐺 =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
                                                       (3) 

 After initial calculations of NDCG values, we find that the NDCG values for a small 

number of returned samples are high. But the NDCG became smaller as the number of returned 

samples increased. Hence, we try to improve the accuracy of the samples returned by nearest 

neighbors. We find that there is a lot of background information that is unnecessary, which might 

reduce the accuracy of the nearest neighbors found. Hence, we crop the images to reduce the 

background information. Fig. 12 shows the cropping process. 

 
Fig. 12: Image cropping 
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This increases the accuracy of the returned samples by quite a bit. We also try to increase 

the number of data points using some data augmentation techniques. This includes adding 

background noise and random flipping (Fig. 13). 

 
Fig. 13: Background noise and Random flipping 

In our work, we use the nearest neighbors approach as compared to SVM used by the 

baseline. By cropping, we increase the accuracy of the returned samples and by increasing the data 

points we make sure nearest neighbors performs well for a greater number of samples. Thus, we 

find that the NDCG improves. Fig. 14 shows the final results of the NDCG.  

 
Fig. 14: NDCG vs Number of returned samples  



33 

 

7. Conclusion 

 
  Recommending clothes using images has made tremendous progress over the years. E-

commerce websites are hugely benefitted by this. As research in this field continues, more and 

more interesting methods have come to light. Work once started using text-based methods, turned 

to visual methods with image processing and use of neural networks, convolutional neural 

networks and now transfer learning with deep neural networks. 

  Thus, we know that there is a common theme in the recent research carried out in the field 

of clothing recommendation. This theme is analyzing images, finding out features in the images 

and classifying pieces of clothing in the image. One can understand that this methodology works 

for most systems. Also, the existing scenario-based recommendations for clothes do not fully 

utilize the capability of deep neural networks. This paper has introduced a novel approach to 

recommending clothes based on events and can be used to give better suggestions to its users. 

  A future work for this paper could be to use the nearest neighbor approach on an online 

store database instead of the current clothing database to suggest clothes. A user could then directly 

buy the recommended clothes if he/she wants to. 
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