
37

Homeomorphically irreducible spanning trees
in fullerene graphs

School of Network and Information, Shoichi Tsuchiya

Keywords : fullerene graph, homeomorphically irreducible spanning tree (HIST), cubic graph plane graph

1 Introduction

Fullerenes are cubic carbon molecules in which

the atoms are arranged on a sphere in pentagons

and hexagons. Fullerene graphs are 3-connected, 3-

regular plane graphs with pentagonal and hexago-

nal faces, where a k-regular graph is a graph with

all vertices have degree k and a plane graph is a

graph drawn on the plane without edge-crossings.

Such graphs are suitable models for fullerenes : car-

bon atoms are represented by vertices of the graph,

whereas the edges represent bonds between adja-

cent atoms. It is known that fullerene graphs satisfy

many properties. For example, every fullerene graph

is 2-extendable (cf. [5]), contains at least 2
n−380

61 per-

fect matchings [3] where n is order of the graph, and

so on.

In graph theory, it is a fundamental problem de-

ciding a given graph contains a spanning tree with

some properties. A homeomorphically irreducible

spanning tree (or a HIST) is a spanning tree with no

vertices of degree 2. Recently Hoffmann-Ostenhof,

Noguchi and Ozeki [2] found an infinite family of

fullerene graphs containing a HIST. In this paper,

we consider conditions of fullerene graphs to have

a HIST. In particular, we give a necessary and suf-

ficient condition for the existence of a HIST in a

fullerene graph (Section 3). Also, we show that there

exists an infinite family of fullerene graphs without

a HIST (Section 4).

2 Preliminaries

For a graph G, V (G) and E(G) denote the set

of vertices and edges of G, respectively. Similarly,

Vi(G) denote the subset of V (G) consisting of all

degree i vertices in G. Also, |G| and |E(G)| denote
the number of vertices and edges of G, respectively.

For a vertex v ∈ V (G), dG(v) denote the degree of

v in G.

2.1 Basic properties of fullerene

graphs

Proposition 1 Let G be a fullerene graph. Then G

has 3
2 |G| edges, exactly twelve pentagonal faces and

|G|
2 − 10 hexagonal faces.

Proof. Let G be a fullerene graph and let p, q and

r be the number of vertices, edges and faces of G,

respectively. Let f5 and f6 be the number of pen-

tagonal faces and hexagonal faces of G, respectively.

By Euler’s formula, we have

p− q + r = 2 (2.1)

Since G is 3-regular, we have

3p = 2q (2.2)

Thus we can see that G has 3
2 |G| edges. Since all

faces of G are pentagonal faces or hexagonal faces,

we have

2q = 5f5 + 6f6 = 5r + f6 (2.3)

By combining (2.2) and (2.3), we have

5r = 2q − f6 = 3p− f6 (2.4)

By combining (2.1), (2.2) and (2.4), we have

p = 2f6 + 20 (2.5)

and

q = 3f6 + 30 (2.6)

By (2.5), we have f6 = p
2 −10. By (2.3) and (2.6),

we have f5 = 12. □

A graph G is cyclically k-edge-connected if G can-

not be separated into two components, each con-

taining a cycle, by deletion of fewer than k edges.

Došlić [1] proved that every fullerene graph is cycli-

cally 5-edge-connected. A cyclic edge-cut is called
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trivial if one of the components is a cycle. By the

definition, every fullerene graph has a trivial cyclic

5-edge-cut. On the other hand, fullerene graphs con-

taining non-trivial cyclic 5-edge-cut are character-

ized by Kardoš and Škrekovski [4]. A pentagonal cap

is a plane graph depicted in Figure 1. In a fullerene

graph G, a hexagonal ring is a ring consisting of five

hexagonal faces such that in each hexagon in the

ring there exists a vertex having a neighbor inside

this ring, and a vertex having a neighbor outside

this ring. Let Gk denote a fullerene graph with the

structure that two pentagonal caps are joined by k

layers of hexagonal rings.

図 1: A pentagonal cap.

Theorem A (Kardoš and Škrekovski [4]) A

fullerene graph G has a non-trivial cyclic 5-edge-cuts

if and only if G is isomorphic to Gk for some integer

k ≥ 1.

2.2 Properties of HISTs in fullerene

graphs

First, we introduce a proposition for trees consist-

ing of degree 1 and 3 vertices.

Proposition 2 Let T be a tree each of whose vertex

is degree 1 or 3. Let t1 and t3 be the number of

vertices of T with degree 1 and 3, respectively. Then

t1 = t3 + 2, that is t1 = |T |
2 + 1 and t3 = |T |

2 − 1.

Proof. Let q be the number of edges of T . Since T

is a tree, we have

2q = t1 + 3t3, q = t1 + t3 − 1

Thus we have t1 = t3 + 2. □

If a 3-regular graph has a HIST H, then H con-

sists of vertices with degree 1 or 3. Thus, by Propo-

sition 2, we can see the following.

Proposition 3 Let G be a fullerene graph of order

n. Then G has a HIST if and only if G has 2-regular

graph S of order m = n
2 + 1 such that G − E(S)

is connected (i.e., S is the set of facial cycles of G

which are non-separating).

Proof. If G has a HIST H, then it is obvious that

G − E(H) is a 2-regular graph S if we delete all

degree 0 vertices. Also, G− E(S) is connected. So,

we show that |S| = n
2 + 1. Since |H| = n, |E(H)| =

n− 1. Also, |E(G)| = 3
2n, and hence

|S| = |E(S)| = |E(G)|−|E(H)| = 3

2
n−(n−1) =

n

2
+1

Next we show that if G has 2-regular graph S of

order m = n
2 + 1 such that G − E(S) is connected,

then G has a HIST. Let H ′ be a graph obtained from

G by deleting all edges of S. By the assumptions,

H ′ is connected graph consisting of degree 1 and 3

vertices. Thus it suffices to show that H ′ is a tree.

Since |S| = n
2 + 1, |E(S)| = n

2 + 1. So, we have

|E(H ′)| = |E(G)| − |E(S)| = 3

2
n− (

n

2
+ 1) = n− 1

Since |H ′| = n and H ′ is connected, H ′ is a tree.

□

For S in Proposition 3, we can show the following.

Proposition 4 Let G be a fullerene graph of order

n with a HIST and let S be 2-regular graph of order

m = n
2 + 1 such that G− E(S) is connected. Then,

for any face f in G, there exists at least one edge on

the boundary of f which is contained in E(S).

Proof. By the proof of Proposition 3, we can see

that G−E(S) is a HIST of G, and hence G−E(S)

has no cycle. □

3 Necessary and sufficient con-

dition of fullerene graphs to

have a HIST

Let G be a plane graph and let G∗ be a graph

obtained from G by the following operations:

1. Put a new vertex v∗ in each face f of G.

2. For every edge e of G, connect the vertices v∗

by a edge e∗ crossing e.
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The resulting graph G∗ is called a dual of G. Note

that G∗ may have a loop or multiple edges. By the

definition, we can see that if G is a fullerene graph,

then G∗ is a plane triangulation (i.e., a plane graph

with all faces are triangular faces) without a loop

and multiple edges.

Theorem 5 Let G be a fullerene graph of order n

and let G∗ be the dual of G. Then G has a HIST if

and only if G∗ contains a spanning tree T such that

(i) for each v ∈ V5(G
∗), dT (v) is either 1 or 5,

(ii) for each u ∈ V6(G
∗), dT (u) is either 1, 2 or 6,

(iii) for any x, y ∈ V (T ) with degree 2, xy /∈ E(T ),

(iv) for any x, y ∈ V (T ) with dT (x) = 2 and

dT (y) = 1, xy /∈ E(T ).

Proof. First, we show “only if part”. Let H be

a HIST of G. By Proposition 3, G has a 2-regular

graph S of order m = n
2 +1 such that G−E(S) = H.

By the proof of Proposition 3, we can see that every

vertex with degree 1 of H is contained in V (S). By

Proposition 4, for each face f in G, there exists at

least one edge on the boundary of f which is con-

tained in E(S).

Since G∗ is a dual of G, G∗ contains 12 vertices of

degree 5, n
2−10 vertices of degree 6 and 3

2n edges. By

the definition of the dual, every edge of G∗ crosses to

exactly one edge of G and vice versa. Let T be the

graph obtained from G∗ by deleting all edges which

are crossing to E(H). Since H is a spanning tree of

G, |E(H)| = n− 1, and hence

|E(T )| = 3

2
n− (n− 1) =

1

2
n+ 1 = |T | − 1

Also, T has no cycle (otherwise H is not connected,

a contradiction). Consequently, T is a spanning tree

of G∗. Thus it suffices to show that T satisfies the

conditions (i)-(iv).

(i) We show that dT (v) ̸= 2, 3, 4. Suppose not. Then

there are five cases depicted in Figure 2. When the

case dT (v) = 4, (a) and (c), H is not connected

because the strong lines are independent edges in H,

a contradiction. When the case (b) and (d), both vb
and vd are degree 1 vertices of H. However, they are

not contained in V (S), a contradiction.

(ii) We show that dT (u) ̸= 3, 4, 5. Suppose not.

Then there are seven cases depicted in Figure 3.

When the case dT (v) = 5, (a) and (d), H is not

connected because the strong lines are independent

edges in H, a contradiction. When the case (b), (c),

dT (v) = 4 dT (v) = 3 dT (v) = 2

(a)

(b)

(c)

(d)

vb vd

図 2: A part of G (the solid lines) and T (the dot

lines).

(e) and (f), vb, vc, ve and vf are degree 1 vertices

of H. However, they are not contained in V (S), a

contradiction.

dT (u) = 5 dT (u) = 4 dT (u) = 3

(a)

(b)

(c)

(d)

(e)

(f)

vb

vc

ve

vf

図 3: A part of G (the solid lines) and T (the dot

lines).

(iii)-(iv) Let x be a vertex of degree 2 in T and let

e1 and e2 be edges of T incident to x. By the same

arguments in the proof of (i)-(ii), edges e1 and e2
are crossing antipodal edges of the hexagonal face

of G corresponding to x (otherwise, H contains an

independent edge or a degree 1 vertex not contained

in V (S), a contradiction). Thus, H contains a vertex

of degree 2, a contradiction.

Next we show “if part”. So, we prove that if G∗

contains spanning tree T satisfying all conditions (i)-

(iv), then G has a HIST. Let H be a graph obtained
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from G by deleting all edges crossing to E(T ). Since

|T | = n
2 + 2 and T is a tree, |E(T )| = n

2 + 1, and

hence

E(H) =
3

2
n− (

n

2
+ 1) = n− 1

Also, H has no cycle (otherwise T is not connected,

a contradiction). Therefore, H is a spanning tree of

G. So, we show that H has no vertices of degree

2. Suppose not. Then let x be a vertex of H with

dH(x) = 2, and let e1, e2, e3 be edges incident to x

where e1, e2 ∈ E(H) and e3 /∈ E(H). Let f1 (resp.,

f2) be the face of G incident to e1 and e3 (resp., e2
and e3). By the conditions (i) and (ii) of T , both f1
and f2 are corresponding to vertices of degree 1 or

2 in T . By the conditions (iii) and (iv), we have f1
and f2 are corresponding to vertices of degree 1 in

T , contrary to that T is a spanning tree of G∗. □

4 Fullerene graphs without a

HIST

Theorem 6 Let G be a fullerene graph. If G has a

non-trivial cyclic 5-edge-cuts, then G has no HIST.

Proof. By Theorem A, it suffices to show that Gk

has no HIST for each integer k ≥ 1. For a contra-

diction, suppose that Gk has a HIST H for some k.

By the construction of Gk,

|Gk| = 2 · 15 + 10(k − 1) = 10k + 20.

By Proposition 3, Gk contains 2-regular subgraph S

such that |S| = 10k+20
2 +1 = 5k+11 and Gk −E(S)

is connected. For a face f of Gk, we call that the

boundary cycle of f is contained in S if all edges

bounding f are contained in S. By Proposition 4,

for each face f in Gk, there exists at least one edge

on the boundary of f which is contained in E(S).

Therefore, for each pentagonal cap of Gk, at least

one pentagonal face is contained in S. Let fi and

fk,j be faces depicted in Figure 4 (f2,j are pentagonal

faces when k = 1).

Suppose that the facial cycle of f0 is contained

in S. Then, for each i ∈ {1, 2, 3, 4, 5}, facial cycles
of fi and f1,i are not contained in S because G −
E(S) is connected. By Proposition 4, for some j ∈
{1, 2, 3, 4, 5}, facial cycles of f2,j are contained in

S. By symmetry, we assume that the facial cycle of

f2,1 is contained in S. Then, for each j ∈ {2, 5},
facial cycles of f2,j are not contained in S because

G − E(S) is connected. By Proposition 4, at least

f0

f1,1

f1,2

f1,3
f1,4

f1,5 f1 f2

f3

f4

f5

f2,2f2,1

f2,3

f2,4

f2,5

· · ·· · ·

図 4: A pentagonal cap in Gk.

one edge of the boundary cycle of f1,2 is contained in

S. Also, at least one edge of the boundary cycle of

f1,4 is contained in S. Therefore, for each j ∈ {3, 4},
facial cycles of f2,j are contained in S, contrary to

that G− E(S) is connected.

Thus the facial cycle of f0 is not contained in S.

By Proposition 4, for some i ∈ {1, 2, 3, 4, 5}, facial
cycles of fi are contained in S. By symmetry, we

assume that the facial cycle of f1 is contained in S.

Then, for each i ∈ {0, 2, 3, 4, 5} and j ∈ {1, 2, 4, 5},
facial cycles of fi and f1,j are not contained in S

because G−E(S) is connected. Similarly, the facial

cycle f2,1 is not contained in S. This implies that the

facial cycle of f1,3 is contained in S by Proposition 4.

Therefore, for each j ∈ {2, 3, 4, 5}, facial cycles of

f2,j are not contained in S.

By the above arguments, the graph obtained from

the union of boundary cycles of f0, f2, f3, f4, f5, f1,1
and f1,5 by deleting edges of the union of boundary

cycles of f1 contains a cycle (and hence G − E(S)

contains a cycle), contrary to that G − E(S) is a

HIST of G. □
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