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1 Introduction

Fullerenes are cubic carbon molecules in which
the atoms are arranged on a sphere in pentagons
and hexagons. Fullerene graphs are 3-connected, 3-
regular plane graphs with pentagonal and hexago-
nal faces, where a k-regular graph is a graph with
all vertices have degree k and a plane graph is a
graph drawn on the plane without edge-crossings.
Such graphs are suitable models for fullerenes : car-
bon atoms are represented by vertices of the graph,
whereas the edges represent bonds between adja-
cent atoms. It is known that fullerene graphs satisfy
many properties. For example, every fullerene graph
is 2-extendable (cf. [5]), contains at least 2" per-
fect matchings [3] where n is order of the graph, and
SO on.

In graph theory, it is a fundamental problem de-
ciding a given graph contains a spanning tree with
A homeomorphically irreducible
spanning tree (or a HIST) is a spanning tree with no
vertices of degree 2. Recently Hoffmann-Ostenhof,
Noguchi and Ozeki [2] found an infinite family of
fullerene graphs containing a HIST. In this paper,
we consider conditions of fullerene graphs to have
a HIST. In particular, we give a necessary and suf-
ficient condition for the existence of a HIST in a
fullerene graph (Section 3). Also, we show that there
exists an infinite family of fullerene graphs without
a HIST (Section 4).

some properties.

2 Preliminaries

For a graph G, V(G) and E(G) denote the set
of vertices and edges of GG, respectively. Similarly,
Vi(G) denote the subset of V(G) consisting of all
degree i vertices in G. Also, |G| and |E(G)| denote
the number of vertices and edges of G, respectively.
For a vertex v € V(G), dg(v) denote the degree of
vin G.

2.1 Basic
graphs

properties of fullerene

Proposition 1 Let G be a fullerene graph. Then G
has %|G | edges, exactly twelve pentagonal faces and
% — 10 hexagonal faces.

Proof. Let G be a fullerene graph and let p, ¢ and
r be the number of vertices, edges and faces of G,
respectively. Let f5 and fg be the number of pen-
tagonal faces and hexagonal faces of G, respectively.

By Euler’s formula, we have

(2.1)

p—qtr=2

Since G is 3-regular, we have

3p=2q (2.2)

Thus we can see that G has 2|G| edges. Since all
faces of G are pentagonal faces or hexagonal faces,
we have

2¢=5f5+6fs =5r+ fs (23)
By combining (2.2) and (2.3), we have
5r=2q— fo=3p— fe (2:4)

By combining (2.1), (2.2) and (2.4), we have

p=2fs+20 (2.5)

and

q=3fs+30 (2.6)

By (2.5), we have fs = £ —10. By (2.3) and (2.6),
we have f5 =12. O

A graph G is cyclically k-edge-connected if G can-
not be separated into two components, each con-
taining a cycle, by deletion of fewer than k edges.
Doglié [1] proved that every fullerene graph is cycli-
cally 5-edge-connected. A cyclic edge-cut is called
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trivial if one of the components is a cycle. By the
definition, every fullerene graph has a trivial cyclic
5-edge-cut. On the other hand, fullerene graphs con-
taining non-trivial cyclic 5-edge-cut are character-
ized by Kardos and Skrekovski [4]. A pentagonal cap
is a plane graph depicted in Figure 1. In a fullerene
graph G, a hexagonal ring is a ring consisting of five
hexagonal faces such that in each hexagon in the
ring there exists a vertex having a neighbor inside
this ring, and a vertex having a neighbor outside
this ring. Let G} denote a fullerene graph with the
structure that two pentagonal caps are joined by k
layers of hexagonal rings.

1: A pentagonal cap.

Theorem A (Kardos and Skrekovski [4]) A
fullerene graph G has a non-trivial cyclic 5-edge-cuts
if and only if G is isomorphic to Gy, for some integer
k>1.

2.2 Properties of HISTs in fullerene
graphs
First, we introduce a proposition for trees consist-

ing of degree 1 and 3 vertices.

Proposition 2 Let T be a tree each of whose vertex
is degree 1 or 3. Let t; and t3 be the number of
vertices of T with degree 1 and 3, respectively. Then
ty = t3 + 2, that is t; = 2L+ 1 and t; = 21 — 1.

Proof. Let g be the number of edges of T. Since T'
is a tree, we have

2q=1t1+3t3, g=t1+t3—1
Thus we have t; =t3+2. O
If a 3-regular graph has a HIST H, then H con-

sists of vertices with degree 1 or 3. Thus, by Propo-
sition 2, we can see the following.

Proposition 3 Let G be a fullerene graph of order
n. Then G has a HIST if and only if G has 2-regular
graph S of order m = % + 1 such that G — E(S)
is connected (i.e., S is the set of facial cycles of G
which are non-separating).

Proof. If G has a HIST H, then it is obvious that
G — E(H) is a 2-regular graph S if we delete all
degree 0 vertices. Also, G — E(S) is connected. So,
we show that |S| = § + 1. Since |H| =n, |E(H)| =
n — 1. Also, |E(G)| = 3n, and hence

S =1B(S)| = |B(@)|-E()] = Sn—(n-1) = 241

Next we show that if G has 2-regular graph S of
order m = % + 1 such that G — E(S) is connected,
then G has a HIST. Let H' be a graph obtained from
G by deleting all edges of S. By the assumptions,
H' is connected graph consisting of degree 1 and 3
vertices. Thus it suffices to show that H' is a tree.
Since |S| = § + 1, |[E(S)| = § + 1. So, we have

[B(H)| = B(@)| - |BS) = on— (5 +1)=n—1

Since |H'| = n and H’ is connected, H' is a tree.
(]

For S in Proposition 3, we can show the following.

Proposition 4 Let G be a fullerene graph of order
n with a HIST and let S be 2-regular graph of order
m = 4 + 1 such that G — E(S) is connected. Then,
for any face f in G, there exists at least one edge on
the boundary of f which is contained in E(S).

Proof. By the proof of Proposition 3, we can see
that G — E(S) is a HIST of G, and hence G — E(5)
has no cycle. [

3 Necessary and sufficient con-

dition of fullerene graphs to
have a HIST

Let G be a plane graph and let G* be a graph
obtained from G by the following operations:

1. Put a new vertex v* in each face f of G.

2. For every edge e of G, connect the vertices v*
by a edge e* crossing e.
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The resulting graph G* is called a dual of G. Note
that G* may have a loop or multiple edges. By the
definition, we can see that if GG is a fullerene graph,
then G* is a plane triangulation (i.e., a plane graph
with all faces are triangular faces) without a loop
and multiple edges.

Theorem 5 Let G be a fullerene graph of order n
and let G* be the dual of G. Then G has a HIST if
and only if G* contains a spanning tree T such that

(i) for each v € V5(G*), dr(v) is either 1 or 5,
(ii) for each u € V5(G*), dr(u) is either 1, 2 or 6,
(iii) for any x,y € V(T') with degree 2, zy ¢ E(T),

(iv) for any z,y € V(T) with dr(z) = 2 and
dr(y) =1, zy ¢ E(T).

Proof. First, we show “only if part”. Let H be
a HIST of G. By Proposition 3, G has a 2-regular
graph S of order m = § +1 such that G- FE(S) = H.
By the proof of Proposition 3, we can see that every
vertex with degree 1 of H is contained in V(S). By
Proposition 4, for each face f in G, there exists at
least one edge on the boundary of f which is con-
tained in E(S).

Since G* is a dual of G, G* contains 12 vertices of
degree 5, 5 —10 vertices of degree 6 and %n edges. By
the definition of the dual, every edge of G* crosses to
exactly one edge of G and vice versa. Let T" be the
graph obtained from G* by deleting all edges which
are crossing to E(H). Since H is a spanning tree of
G, |E(H)| =n — 1, and hence
1

BT) = gn—(n—1) =3

5 n+1=|T]-1

Also, T has no cycle (otherwise H is not connected,
a contradiction). Consequently, T' is a spanning tree
of G*. Thus it suffices to show that T satisfies the
conditions (i)-(iv).

(i) We show that dr(v) # 2, 3,4. Suppose not. Then
there are five cases depicted in Figure 2. When the
case dr(v) = 4, (a) and (¢), H is not connected
because the strong lines are independent edges in H,
a contradiction. When the case (b) and (d), both vy
and vy are degree 1 vertices of H. However, they are
not contained in V(S), a contradiction.

(ii) We show that dr(u) # 3,4,5. Suppose not.
Then there are seven cases depicted in Figure 3.
When the case dr(v) = 5, (a) and (d), H is not
connected because the strong lines are independent
edges in H, a contradiction. When the case (b), (c),

2

dr(v)

4 dr(v) =3 dr(v)

2: A part of G (the solid lines) and T' (the dot

lines).

(e) and (f), vy, v, ve and vy are degree 1 vertices
of H. However, they are not contained in V(S5), a
contradiction.

dr(u) =5 dr(u) =4 dr(u) =3

(a)

3: A part of G (the solid lines) and T (the dot

lines).

(iii)-(iv) Let x be a vertex of degree 2 in T' and let
e1 and ey be edges of T' incident to x. By the same
arguments in the proof of (i)-(ii), edges e; and ey
are crossing antipodal edges of the hexagonal face
of G corresponding to x (otherwise, H contains an
independent edge or a degree 1 vertex not contained
in V(5), a contradiction). Thus, H contains a vertex
of degree 2, a contradiction.

Next we show “if part”. So, we prove that if G*
contains spanning tree 7' satisfying all conditions (i)-
(iv), then G has a HIST. Let H be a graph obtained
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from G by deleting all edges crossing to E(T'). Since
|T| = § 4+ 2 and T is a tree, |[E(T)| = § + 1, and
hence 3 .
E(H)f5n7(5+1)—n71

Also, H has no cycle (otherwise T is not connected,
a contradiction). Therefore, H is a spanning tree of
G. So, we show that H has no vertices of degree
2. Suppose not. Then let x be a vertex of H with
dg(xz) = 2, and let ey, es,e3 be edges incident to x
where e1,ea € E(H) and e5 ¢ F(H). Let f1 (resp.,
f2) be the face of G incident to e; and e3 (resp., ey
and e3). By the conditions (i) and (ii) of T', both f;
and fy are corresponding to vertices of degree 1 or
2 in T. By the conditions (iii) and (iv), we have f;
and fy are corresponding to vertices of degree 1 in
T, contrary to that T is a spanning tree of G*. [

4 Fullerene graphs without a
HIST

Theorem 6 Let G be a fullerene graph. If G has a
non-trivial cyclic b-edge-cuts, then G has no HIST.

Proof. By Theorem A, it suffices to show that Gy
has no HIST for each integer £ > 1. For a contra-
diction, suppose that Gy has a HIST H for some k.
By the construction of G,

|G| =215+ 10(k — 1) = 10k + 20.

By Proposition 3, G contains 2-regular subgraph S
such that |S| = 1920 4 1 = 5k + 11 and Gy, — E(S)
is connected. For a face f of Gy, we call that the
boundary cycle of f is contained in S if all edges
bounding f are contained in S. By Proposition 4,
for each face f in Gy, there exists at least one edge
on the boundary of f which is contained in E(S5).
Therefore, for each pentagonal cap of Gy, at least
one pentagonal face is contained in S. Let f; and
f,; be faces depicted in Figure 4 (f2 ; are pentagonal
faces when k = 1).

Suppose that the facial cycle of fy is contained
in S. Then, for each i € {1,2,3,4,5}, facial cycles
of f; and f;; are not contained in S because G —
E(S) is connected. By Proposition 4, for some j €
{1,2,3,4,5}, facial cycles of f,; are contained in
S. By symmetry, we assume that the facial cycle of
f2,1 is contained in S. Then, for each j € {2,5},
facial cycles of f,; are not contained in S because
G — E(S) is connected. By Proposition 4, at least

oy,
oR

4: A pentagonal cap in Gy.

one edge of the boundary cycle of f; o is contained in
S. Also, at least one edge of the boundary cycle of
f1,4 is contained in S. Therefore, for each j € {3,4},
facial cycles of fy ; are contained in .S, contrary to
that G — E(S) is connected.

Thus the facial cycle of fj is not contained in S.
By Proposition 4, for some i € {1,2,3,4,5}, facial
cycles of f; are contained in S. By symmetry, we
assume that the facial cycle of f; is contained in S.
Then, for each i € {0,2,3,4,5} and j € {1,2,4,5},
facial cycles of f; and f;; are not contained in §
because G — E(S) is connected. Similarly, the facial
cycle f2 1 is not contained in S. This implies that the
facial cycle of f; 3 is contained in .S by Proposition 4.
Therefore, for each j € {2,3,4,5}, facial cycles of
f2,; are not contained in S.

By the above arguments, the graph obtained from
the union of boundary cycles of fo, fa, f3, f4, f5, f11
and fq 5 by deleting edges of the union of boundary
cycles of fi contains a cycle (and hence G — E(5)
contains a cycle), contrary to that G — E(S) is a
HIST of G. O
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