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The optic fissure is a transient gap in the developing vertebrate eye, which

must be closed as development proceeds. A persisting optic fissure, coloboma,

is a major cause for blindness in children. Although many genes have been

linked to coloboma, the process of optic fissure fusion is still little appreciated,

especially on a molecular level. We identified a coloboma in mice with a tar-

geted inactivation of transforming growth factor b2 (TGFb2). Notably, here

the optic fissure margins must have touched, however failed to fuse.

Transcriptomic analyses indicated an effect on remodelling of the extracellular

matrix (ECM) as an underlying mechanism. TGFb signalling is well known for

its effect on ECM remodelling, but it is at the same time often inhibited by bone

morphogenetic protein (BMP) signalling. Notably, we also identified two BMP

antagonists among the downregulated genes. For further functional analyses

we made use of zebrafish, in which we found TGFb ligands expressed in

the developing eye, and the ligand binding receptor in the optic fissure mar-

gins where we also found active TGFb signalling and, notably, also gremlin

2b (grem2b) and follistatin a ( fsta), homologues of the regulated BMP antagon-

ists. We hypothesized that TGFb is locally inducing expression of BMP

antagonists within the margins to relieve the inhibition from its regulatory

capacity regarding ECM remodelling. We tested our hypothesis and found

that induced BMP expression is sufficient to inhibit optic fissure fusion, result-

ing in coloboma. Our findings can likely be applied also to other fusion

processes, especially when TGFb signalling or BMP antagonism is involved,

as in fusion processes during orofacial development.
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1. Introduction
The optic fissure is a transient gap in the developing vertebrate eye. It is an entry

route used by cells of the periocular mesenchyme and embryonic vasculature.

However, it is necessary that the fissure is closed as development proceeds.

A persisting fissure is termed coloboma. A coloboma can affect vision severely

and is a frequent cause for blindness in children [1]. Many genes and signalling

pathways have been linked to coloboma [2–11], resulting in a growing gene

coloboma network [12,13]. Coloboma is frequently part of a multi-organ syn-

drome, like CHARGE syndrome or renal coloboma syndrome, linked to Chd7

and Pax2, respectively [14–18]. Notably, the morphology of coloboma phenotypes

is highly variable. Alterations in some signalling pathways (e.g. Wnt, Hippo) result

in vast extended coloboma [4,7], likely originating from early morphogenetic
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defects. In this context, we recently linked a precocious arrest

of a bilateral neuroretinal flow during optic cup formation to

an extended coloboma [11]. There, we found that a locally

expressed antagonist to bone morphogenetic proteins (BMPs)

was necessary to maintain the tissue flow. Importantly, such

massive coloboma phenotypes are morphologically different

from coloboma resulting from a hampered fusion process of

the optic fissure margins. The pathomechanisms behind such

phenotypes, however, are largely elusive, and so is the under-

lying physiological process. This process is not understood on

a structural and especially on a molecular level.

Preceding the fusion, the prospective neuroretina and

retinal pigmented epithelium (RPE) share a basement mem-

brane within the optic fissure margin. In order to facilitate

the fusion of the margins, the structure of the epithelial

margins must be rearranged somehow. This was shown to

affect cell–cell connections [19] and likely affects the extracellu-

lar matrix (ECM) as well. Concerning cell–cell connections it

should be noted that mutants for N-cadherin and a-catenin

showed coloboma phenotypes [20,21]. However, it remains

unclear at which point during margin disassembly, fusion or

consecutive reassembly of the neuroretina and RPE these

factors play a role. Although it was shown per se that the dissol-

ution of the basement membrane occurs [19] and is a

prerequisite for fusion [22], the effector molecules for the struc-

tural remodelling and epithelial disassembly, which facilitate

the fusion process, are largely elusive.

Transforming growth factor b (TGFb) signalling is well

known to induce changes to the ECM and, furthermore, to

trigger epithelial to mesenchymal transition in various pro-

cesses during development and disease [23–28]. Notably,

TGFb-regulated changes to the ECM are frequently inhibited

by BMP signalling [29–32].

Here we addressed the role of TGFb and BMP in optic fis-

sure fusion, making use of mouse (Mus musculus) and zebrafish

(Danio rerio).

Our findings show that TGFb signalling is acting pro-fusion

upon the optic fissure margins. We identified a coloboma phe-

notype in the TGFb2 knockout (KO) mouse, with TGFb ligands

expressed in the zebrafish eye, and the ligand binding receptor

expressed within the fissure where we also found active TGFb

signalling. We identified two TGFb-dependent BMP signalling

antagonists in mouse, and homologues of these we found

expressed within the optic fissure margins in zebrafish.

Notably, in zebrafish, both TGFb signalling inhibition and

forced BMP expression during fissure fusion are sufficient to

prevent optic fissure fusion, resulting in coloboma.

Based on our data we propose that TGFb signalling is

locally inducing BMP antagonists to relieve a BMP-induced

inhibition on ECM remodelling, eventually allowing TGFb

signalling to act pro-fusion.
2. Results
2.1. Loss of TGFb2 results in coloboma
In the mouse genome, three TGFb isoforms are encoded (TGFb1,

2 and 3). Targeted inactivation of TGFb2 results in several pheno-

types, also affecting the eye [33], e.g. a remaining primary

vitreous, a Peters anomaly like phenotype and an altered neuror-

etinal layering. In addition to these phenotypes, we identified a

persistent optic fissure in TGFb2 mutant embryos (figure 1b,
electronic supplementary material, figure S1A, B, figure 1a as con-

trol). TGBb2-dependent coloboma was first observed in TGFb2/

GDNF double mutants ([34], Rahhal & Heermann 2009, unpub-

lished observations, electronic supplementary material, figure

S1C) and subsequently in TGFb2 single mutants, derived from

the same breeding background (this study, figure 1b, electronic

supplementary material figure S1A, B), but not in GDNF single

mutants. Furthermore, no phenotype affecting eye development

was described in the three distinct GDNF mutant mice [35–37],

although GDNF expression was documented in the developing

eye [38]. Notably, we found marked, severe coloboma pheno-

types in both TGFb2 KO (figure 1b, electronic supplementary

material, figure S1A, B) as well as in TGFb2/GDNF double KO

conditions (electronic supplementary material, figure S1C). Over-

all, the optic fissure margins in our colobomatous embryos must

have been in close proximity to each other, but ultimately failed to

fuse and instead grew inwards towards the lens (figure 1b, elec-

tronic supplementary material, figure S1A, B, showing different

sections of individual eyes). Since we found such coloboma phe-

notypes in both TGFb2 and TGFb2/GDNF mutants, but not in

GDNF mutants, we found it likely that the phenotype was result-

ing from a TGFb2 loss. A sensitizing role of GDNF in this

scenario, however, cannot be ruled out.

So far, we based the analyses on TGFb2 single mutants

from a mixed breeding background [34] (figure 1b, see a as con-

trol). We next asked whether this breeding background could

have an effect on the analyses. We additionally addressed

TGFb2 mutants derived from a sole background. Notably,

while the overall coloboma phenotype was variable in intensity

in the TGFb2 single mutants from a mixed breeding back-

ground (e.g. figure 1b, electronic supplementary material,

figure S1A, B), we could only detect very subtle forms of colo-

boma in TGFb2 single mutants from a sole background

(figure 1d, figure 1c as control). This suggests that the breeding

background has an effect on the coloboma phenotype.

2.2. TGFb signalling affects expression of bone
morphogenetic protein antagonists and
extracellular matrix remodelling

Many genes have been linked to coloboma [12,13]. However,

optic fissure fusion is still not well understood on the structural

and the molecular level. For optic fissure fusion to occur, the

ECM has to be remodelled intensively. TGFb signalling is well

known for its control of ECM remodelling in various processes

[23,28,39]. We thus addressed the potential transcriptional ECM

regulation during optic fissure fusion using our coloboma

model. We quantified the levels of mRNAs from E13.5 embryo-

nic eyes using Agilent microarrays. To this end we compared

RNA harvested from eyes of wild-type embryos and TGFb2/

GDNF double mutant embryos, in which the coloboma

phenotype was assigned to TGFb2 function.

Notably, we found the expression of two BMP antagonists,

follistatin (Fst) and gremlin (Grem)1, was downregulated in the

coloboma model (figure 1e). We validated the regulation

of these genes by quantitative PCR comparing RNA from

eyes of TGFbþ/þ GDNFþ/2 and TGFb22/2 GDNFþ/2

embryos (figure 1f ).

Furthermore, we processed the obtained microarray data,

focusing on significantly downregulated genes. Performing

bioinformatics analysis, we found as most prominent terms

ECM, ECM organization, mesenchyme development,
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epithelium development or proteoglycan binding (figure 1g).

We found lower expression of collagen genes Col1a1,

Col6a1, Col5a1, Col7a1, Col8a2 and Col27a1 in combination

with lower levels of elastin (Eln) and epiphycan (Epyc)

(figure 1h), pointing towards lower levels of fibrillogenesis in

the extracellular space.

In addition, we isolated RNA from eyes dissected from

TGFb2 single mutants from a sole background at E12.5. The

shift to E12.5 was necessary due to the fact that in the sole back-

ground condition the optic fissure fusion was occurring earlier

than in the mixed background condition. Focusing on the inter-

action between TGFb and BMP signalling, we quantified the

expression of the two BMP antagonists. We found a significant

downregulation of Fst, but no significant downregulation of

Grem1 (figure 1i).
2.3. TGFb ligands, the ligand binding receptor and
TGFb signalling in zebrafish optic cups

Next, we wanted to further address the functional role of TGFb

signalling for optic fissure fusion and the interplay with BMP
signalling. To this end we switched to zebrafish (D. rerio). To

ensure that a switch of model system to zebrafish is feasible,

we investigated the expression of TGFb ligands and the

TGFb ligand binding receptor during zebrafish eye develop-

ment. We found tgfb2 expressed in periocular tissue

(figure 2a) whereas tgfb3 was expressed in the developing

lens (figure 2b). The ligand binding receptor tgfbr2b we found

expressed at the site of the optic fissure (figure 2c). To assess

the dynamics of activated TGFb signalling in vivo during zeb-

rafish development, we established a transcriptional TGFb

sensor in a transgenic zebrafish line. The reporter system is

based on Smads, the canonical transcription factors transdu-

cing TGFb signalling [40]. We used repetitive Smad binding

elements (SBEs) from the human plasminogen activator inhibi-

tor (PAI) (electronic supplementary material, figure S2A). Such

a reporter has been intensively used for years as a luciferase

assay to assess the amount and activity of TGFb in cell culture

[41] and in mice [42]. We then established a transgenic zebra-

fish line. Activated TGFb signalling can be observed during

development, e.g. in the forebrain region as well as in the

distal tail (electronic supplementary material, figure S2B). We

validated the functionality of this reporter line employing the
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established TGFb signalling inhibitor SB431542 [43,44] (elec-

tronic supplementary material, figure S2C). Next, we wanted

to know whether TGFb signalling was active in the optic fis-

sure margins. We employed the TGFb signalling reporter line

in combination with a reporter for Shh signalling (analogous

to [45]) to relate the fissure to the optic stalk and performed

imaging. We found the TGFb signalling reporter active

within the optic fissure margins (figure 2d,d0, see Shh-reporter

activity for orientation (d00)). Taken together, our data indicate

that TGFb signalling is indeed active in the optic fissure mar-

gins of the zebrafish. Furthermore, we wanted to test if TGFb

signalling is functionally involved in optic fissure fusion in zeb-

rafish. In order to do this, we applied the compound inhibitor

specific inhibitor of Smad3 (SIS3) to wild-type embryos during

the onset of optic fissure fusion from 24 to 30 hpf. SIS3 prevents

phosphorylation of Smad3 [46], which, together with Smad2, is

the main transcription factor in the canonical TGFb signalling

pathway. Treatment with SIS3 yielded smaller embryos at

3 dpf (figure 2h,i; see e,f as control). The tail extension as well

as the brain development seemed affected, matching the

expression domains we observed in the TGFb reporter

embryos (compare electronic supplementary material, figure

S1B, C). Most importantly, the treated embryos had coloboma

with a persisting basal lamina at 3 dpf in conjunction with

reduced eye size (figure 2i,j).
2.4. TGFb mediated bone morphogenetic protein
antagonism during optic fissure closure

We found two antagonists for BMP signalling, follistatin and

gremlin1, transcriptionally downregulated in our murine colo-

boma model (figure 1e). BMP4 in combination with Vax2 is

important for the definition of cellular identities along

the dorsal ventral axis within the vertebrate eye [47–50].

In line with these data we found bmp4 expressed dorsally

and vax2 expressed ventrally within the zebrafish optic cup

(figure 3a,b). Furthermore, we found homologous genes to

the identified BMP antagonists (grem2b and fsta) expressed in

the optic fissure margins of zebrafish also opposing the bmp4
expression domain (figure 3c– f ). The expression of grem2b
also matched the expression pattern previously reported for

the gene [51]. We also tested whether these antagonists are

regulated by TGFb in fish by comparing their expression in

SIS3-treated embryos at 30 hpf with DMSO-treated controls

using quantitative PCR. Inhibition of Smad3 signalling

caused downregulation of grem2b, but not fsta (figure 3g).

However, because we extracted RNA from embryonic heads

and fsta is also expressed in the ciliary marginal zone and

some parts of the brain, it would be plausible that a possible

regulation by TGFb exclusively in the optic fissure would not

be detectable. Alternatively, it is also possible that fsta is not

regulated by Smad3 or TGFb at all in zebrafish.

BMP4 is a secreted ligand and can potentially diffuse and

act over extended distances. The expression of the two BMP

antagonists in the optic fissure hints at a functional requirement

to locally suppress BMP activity in this domain. Our data indi-

cate that TGFb signalling is relevant for ECM remodelling

during optic fissure fusion. Notably, BMP signalling was

shown to potentially counteract such TGFb-induced changes

[29–32]. We propose that TGFb-induced local BMP antagon-

ism is protecting the expression of TGFb-regulated genes,

which are facilitating ECM remodelling during optic fissure
fusion (figure 3h, scheme). We next wanted to functionally

test our hypothesis. We generated a transgenic line allowing

heat shock inducible bmp4 expression (tg(hsp:bmp4 cmlc2:GFP))
(figure 3i). With this heat shock inducible transgenic line, we

aimed at an oversaturation of the BMP antagonists within the

optic fissure margins. Since the morphogenesis of the optic

cup is dependent on BMP antagonism [11], the timing of the

heat shock induced expression of bmp4 was critical. Thus, we

tested the outcome of the heat shock induced bmp4 expression

at different successive stages of development (figure 3i).
Induced expression at 21 hpf and 22 hpf resulted in an

extended coloboma (figure 4a–a00 and b–b00, see d–e00 as con-

trol), well in line with the coloboma observed in our previous

analyses [11]. This indicates that the transgenic line is func-

tional and sufficiently high BMP4 levels are expressed but it

also indicates that the onset of induction was too early and

was affecting optic cup morphogenesis. The induced

expression of bmp4 at 23 hpf resulted in a milder coloboma,

with less affected cup morphogenesis (figure 4c–c00). Notably,

the coloboma phenotypes resulting from bmp4 expression

induced at 24, 25 and 26 hpf were comparable. Importantly,

they were not showing defects in optic cup morphogenesis

(figure 4f–h00, see i– j00 as control, and figure 4k–n). In the prox-

imal part of the optic cup, the optic fissure margins were

closely aligned but not fused (figure 4k0). Thus, we identified

this phenotype as a defect in optic fissure fusion.

Next, we wanted to know whether the heat shock induced

overexpression of bmp4 affected the downstream signalling tar-

gets of TGFb in the optic fissure. Therefore, we extracted RNA

for quantitative analysis from the heads of 30 hpf tg(hsp:bmp4
cmlc2:GFP) embryos which had been subjected to a heat

shock at 24 hpf. Wild-type siblings from the same clutch of

eggs served as a control. We found that grem2b was down-

regulated in the bmp4 overexpression condition by trend,

although this result was not statistically significant ( p ¼
0.17), while fsta was strongly upregulated (figure 5a). This

upregulation was also seen in in situ hybridization of fsta and

affected the expression domains in the trunk, the brain and

the optic stalk and optic fissure, but not the ciliary marginal

zone (figure 5b,c).
3. Discussion
Many genes and signalling pathways have been linked to colo-

boma [2–11] and a resulting coloboma gene network [12,13] is

growing. The morphology of the coloboma phenotypes, how-

ever, is highly variable and many phenotypes likely result from

early morphogenetic defects (e.g. [11]). On the other hand, little

still is known about the process of optic fissure fusion.

Recently, it was shown that hyaloid vessels are important for

basement membrane degradation [22], a process important at

the initiation of optic fissure fusion. This process is likely invol-

ving the transcription factors Pitx2 [52], Pax2 [14] and Vax2 [53]

and potentially also retinoic acid signalling [52]. However,

with respect to the subsequent process, the actual fusion of

the optic fissure margins, less data is available.

It is unclear how the structure of the epithelial margins is

loosened and eventually disassembled locally and how new

connections are established, linking the neuroretinal domains

and the RPE domains of both margins. Especially for the epi-

thelial disassembly, the molecular mechanism is elusive.

Concerning the formation of new connections, n-cadherin and
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a-catenin [20,21] are good candidate genes. The morphology of

the coloboma resulting from a conditional a-catenin mutant

shows an alignment of the margins [21], indeed indicating a

functional involvement related to the fusion process. The colo-

boma resulting from n-cadherin mutation, however, shows a

certain remaining gap [20], suggesting that not the process of

fusion but a preceding event was affected by the mutation.
Our data indicate that TGFb signalling is necessary for the

fusion of the optic fissure margins. Hereby, we are integrating

TGFb as a new member into the coloboma gene network.

Besides, TGFb signalling is also known to be essential for pala-

tal fusion [33,54]. Notably, the ligands TGFb2 and TGFb3 have

slightly different functions there. While in TGFb2 mutant mice

the palatal shelves stay apart and a gap remains [33], in TGFb3
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Figure 4. Differentially timed induction of bmp4 causes different coloboma phenotypes. (a – e) Gross morphology of (a – d ) tg(hsp70:bmp4, cmlc2:GFP) embryos
after heat shock at 21, 22, 23 hpf, no heat shock, and (e) wild-type embryos heat shocked at 21 hpf. (a0 – h0) Close up, lateral view, (a00– h00) close up, ventral
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mutants the palatal shelves potentially touch, but do not fuse

[54,55]. The latter is reminiscent of what we observed in our

study: the fissure margins meet, but do not fuse (figure 1b).

During our analysis we observed a potential influence of

the genetic breeding background on optic fissure closure.

Firstly, optic fissure fusion seemed to occur one day earlier in

wild-type embryos from the sole breeding background
(around E13) compared to those from the mixed breeding back-

ground (around E14). Secondly, the marked, strong coloboma

phenotypes can be observed in both TGFb22/2 GDNF2/2

and TGFb22/2 GDNFþ/þ embryos from a mixed breeding

background, occasionally also presenting a dorsal coloboma,

while the phenotype of TGFb2 KO embryos from a sole breed-

ing background is noticeably milder (figure 1a–d, electronic
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supplementary material, S1B–C). Lastly, in gene expression

analysis, we found significant downregulation of Grem1 and

Fst in TGFb22/2 GDNFþ/2 eyes compared to TGFb2þ/þ

GDNFþ/2 eyes (figure 1f ), whereas in the TGFb2 KO derived

from a sole breeding background, Grem1 was not significantly

regulated and Fst downregulation was less pronounced

(figure 1i). We want to mention that these effects could also

be due to or maybe just influenced by a yet unreported sensitiz-

ing effect of GDNF signalling. Even if GDNF single KO

embryos do not show a coloboma and the transcriptional ana-

lyses performed during our analyses contradict, we cannot

totally rule out that an affected GDNF signalling sensitizes

the system to the loss of TGFb2. An interaction between

these two TGFb subfamilies (TGFb and GDNF) is well

known [56–58]. However, the signalling interaction in such

scenarios is occurring vice versa, and TGFb was found to facili-

tate GDNF signalling. Overall it seems more likely that the

documented ocular GDNF expression [38] is important for

later stages of development, because GDNF was previously

reported to promote the proliferation and differentiation of

photoreceptors during eye development [59]. It is expressed

in the lens and retina of E14.5 mouse embryos [38], which is

after the closure of the optic fissure, during differentiation of

the neuroretina. Taken together, we consider it more likely

that the differences we observe in phenotypes and transcrip-

tomes are due to the genetic background of the mouse strains

used, although we cannot rule out a contribution of GDNF

based on our data.

TGFb signalling is well-described to be an important regu-

lator of modifications to the ECM in development and disease

[23–28]. TGFb-induced changes to the ECM are, however,

potentially counteracted by BMP signalling [29–32]. BMP sig-

nalling and BMP antagonism are crucial during many

important steps of eye development, such as optic fissure gen-

eration [60], dorsal–ventral cell specification and optic cup

formation [11]. In the latter study, we showed that an inhibition

of BMP signalling is crucial for a bilateral neuroretinal flow to

be maintained over the distal rim of the developing optic cup.

This BMP signalling inhibition was achieved by the BMP

antagonist follistatin a ( fsta). Considering also the early

expression domains of grem2b [51] it seems likely that these

two BMP antagonists also cooperate during optic cup

formation during neuroretinal flow maintenance.
Here, we propose that TGFb-induced local BMP antagonism

in the optic fissure is protecting the expression of TGFb-regu-

lated genes which facilitate fissure fusion. A similar process,

involving the BMP antagonist gremlin, was observed in the con-

text of glaucoma [61]. Gremlin has, furthermore, been linked to

cleft lips in humans [62], indicating that the level of BMP signal-

ling must be tightly controlled during fusion processes there as

well. A locally induced BMP antagonism within the fissure mar-

gins seems especially important because also other BMP ligands

besides bmp4 are expressed within the optic cup, e.g. bmp2b,

bmp2a and bmp6 and bmp7b [63–66]. The combined expression

of two BMP antagonists within the optic fissure margins is

likely important to provide robustness to the system. BMP

antagonists are often expressed redundantly [67–69], pointing

at the importance of their function. Thus, it is not surprising

that the loss of a single BMP antagonist does not result in colo-

boma (Grem1 mutant mice). In TGFb2 KO embryos with a sole

breeding background, we found that Grem1 was noticeably less

downregulated compared to embryos with a mixed breeding

background, while Fst downregulation was changed only

slightly. This might explain the less severe phenotype that we

observed in the colobomatous embryos from a sole breeding

background (figure 1d).

While our data strongly indicate that BMP antagonism is

important for optic fissure fusion, we do not yet understand

how BMP signalling can interfere with this process, specifically

how it could counteract the changes induced by TGFb signal-

ling. BMP might repress the expression of TGFb receptors or

signal transduction components directly. In mouse pulmonary

fibroblasts, BMP was shown to reduce TGFb-dependent col-

lagen expression by inducing inhibitors of differentiation 2

and 3 (Id2/3) [29]. The same study reported that nuclear local-

ization of Smad3 in response to TGFb signalling was inhibited

by BMP, while another study found that Smad1 and Smad2/3

co-localized in nuclei of renal tubules in response to simul-

taneous TGFb and BMP signalling [30]. The inhibitory

Smad7 [70] could potentially also be involved in the signalling

interaction. In mouse, knockout of the Smad7 gene led to var-

ious eye defects including coloboma [71]. Thus, it appears that

there is a spectrum of TGFb–BMP interaction which depends

on the biological context and may include transcription-

dependent and -independent mechanisms. Further research

is needed to determine the mode of interaction between the
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two pathways in the context of tissue fusion and whether BMP

signalling is directly inhibiting the TGFb signalling pathway or

only downstream targets of TGFb. Our results suggest that

only a subset of TGFb target genes might be inversely regu-

lated by BMP signalling but that these genes would be

crucial for the optic fissure fusion process.

Our data obtained by timed overexpression of bmp4 in

zebrafish embryos clearly indicate that BMP induction has a

detrimental effect on optic fissure fusion, resulting in coloboma

(figure 4). We showed, in accordance with our previous

findings [11], that bmp4 overexpression during optic cup for-

mation (prior to 24 hpf) causes morphogenetic defects by

disrupting epithelial flow. Only overexpression after 24 hpf

was able to induce a defect of optic fissure fusion. Under this

condition, we also observed a repression of the TGFb target

gene grem2b by trend (figure 5a). However, this result was

not statistically significant, thus leaving the relevance unclear.

By contrast and unexpectedly, fsta was found upregulated after

forced bmp4 expression (figure 5). This could be a response of

the developing organism to the increased levels of BMP,

trying to reduce BMP signalling to a physiological level by upre-

gulating fsta. Notably, the fissure margins were responding

intensively in comparison to the ciliary marginal zone, where

hardly any change of expression was noticeable. Furthermore,

fsta was not found downregulated in response to SIS3 treatment

(figure 3g). This could imply that fsta is not regulated by Smad3,

at least in zebrafish. It is however still possible that it is instead

regulated through Smad2. Several genes are known that possess

binding sites for only one of these two Smads, including Goose-

coid (gsc) and mix2 for Smad2, as well as JunB/junba and PAI-1/

serpine for Smad3 [41,72–74]. Another interpretation would be

that fsta is not regulated by TGFb in zebrafish.

It should be mentioned that a completely different

interpretation is also supported by our data, in which the upre-

gulation of fsta is not a compensatory effect but the cause for the

optic fissure closure defect that we observe after BMP overex-

pression. In that case, the mechanism would be independent

of TGFb. While we cannot exclude this option, we consider it

unlikely because fsta is downregulated in the TGFb2 KO

mouse model. In summary, we conclude that fsta is either not

controlled by Smad3 or TGFb in zebrafish, or that due to differ-

ential regulation of the expression domains in the fissure

margins and the ciliary marginal zone, a subtle regulation

within only the margin domain was not detectable by qPCR.
4. Conclusion
The process of optic fissure fusion is not well understood,

especially not on a cellular and molecular basis. We found an

interplay of two growth factors, TGFb and BMP, during the

fusion of the optic fissure margins. While TGFb signalling is

acting pro-fusion and induces changes to the ECM, we found

that BMP signalling is capable of inhibiting fissure fusion. Nota-

bly, TGFb signalling is inducing BMP antagonists within the

fissure margins. This finding suggests that thereby TGFb,

itself acting pro-fusion, is also locally counteracting BMP signal-

ling, which is acting anti-fusion. Even if gene regulation might

differ depending on the breeding background and between fish

and mouse, the functional concept appears to be conserved.

Our findings can likely be applied also to other fusion pro-

cesses, especially when TGFb signalling or BMP antagonism

is involved, as in fusion processes during orofacial
development. Together with our previous data, our current

work indicates a dual role of BMP antagonism, first during

optic cup formation, maintaining a bilateral neuroretinal flow

entering the optic cup, and second during optic fissure fusion.
5. Material and methods
5.1. Mice
For this study TGFb2þ/2 [33] and GDNFþ/2 [35] mice were

used for breeding. Timed matings were performed overnight

and the day on which a vaginal plug was visible in the morning

was considered as day 0.5. Analyses were restricted to embryo-

nic stages because of perinatal lethality of the individual

mutants. For analysis of embryonic tissue, the mother was

sacrificed and the embryos were collected by caesarean section.

All of the experiments were performed in agreement with the

ethical committees. Genotyping was performed according to

Rahhal et al. [34]. The term ‘TGFb2 KO with mixed breeding

background’ refers to a TGFb22/2, GDNFþ/þ offspring of

TGFb2þ/2, GDNFþ/2 parents, because the original single

mutant lines were created in different wild-type strains

[33,35]. A ‘sole breeding background’ refers to the TGFb2

line [33]. This line was maintained and crossed with C57BL/6.

5.2. Histological analysis
Tissue was processed for paraffin sectioning. Frontal sections of

control and TGFb22/2 embryos were obtained and stained

with haematoxylin and eosin.

5.3. Microarray data
RNAwas extracted from whole eyes of E13.5 embryos (controls

and TGFb22/2 (GDNF2/2) respectively). RNA was reverse

transcribed, amplified and loaded on Agilent one-colour

microarray chips. Experiments were performed in triplicates.

Further analysis was performed using R [75] and the

bioconductor packages Agi4�44PreProcess, limma and

mgug4122a.db as annotation database. For background correc-

tion we used the following parameters: BGmethod¼ ‘half’,

NORM-method¼ ‘quantile’, foreground¼ ‘MeanSignal’,

background ¼ ‘BGMedianSignal’ and offset¼ 50. The probes

were filtered using the recommended thresholds and after-

wards the replicated non-control probes were summarized.

Then the method lmFit was used to fit a linear model on

the arrays. Finally, the differential expression statistics were

computed using the methods eBayes.

Next only those genes with fold change higher than 1.5 were

considered, then a multiple comparison correction was per-

formed on the p-values using the BH (Benjamini and

Hochberg) method. The genes with corrected p-value lower

than 0.05 were defined as significantly differentially expressed

genes. The microarray data supporting this article have been

made available via the repository ‘BioStudies’ under the identi-

fier S-BSST80.

5.4. Functional analysis of gene sets
We used the tool gProfiler ([76], http://biit.cs.ut.ee/gprofiler/)

version 6.7 to find enriched terms on the set of significantly

downregulated genes from the mouse arrays. We provided

the official gene symbol of these genes as input and used the

default set of databases.

http://biit.cs.ut.ee/gprofiler/
http://biit.cs.ut.ee/gprofiler/
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5.5. RNA extraction from mouse and zebrafish tissue for
quantitative PCR

RNAwas extracted from whole eyes of E12.5 embryos (controls

and TGFb22/2, respectively). For zebrafish, three heads from

30 hpf embryos were pooled for each sample. RNA was

extracted using the guanidinium thiocyanate–phenol–chloro-

form method (modified after [77]). After DNaseI treatment, it

was purified again by phenol–chloroform extraction and

sodium acetate precipitation.

5.6. Quantitative PCR
RNA was reverse transcribed with the ProtoScript II First

Strand cDNA Kit (New England Biolabs). Quantitative real-

time PCR was performed with a CFX Connect Real-Time

PCR Detection system (Bio-Rad Laboratories) and the

Luna Universal qPCR Master Mix (New England Biolabs) in

technical triplicates with 20 ml reaction volume and 2 ml of a

1:10 dilution of the cDNA template. Gapdh was used as

reference gene for mouse qPCR and eef1a1l was used for zebra-

fish qPCR. For primers used, see electronic supplementary

material Information.

For data analysis, the dCq values were calculated by sub-

tracting Cq[target gene] from Cq[reference gene], and ddCq values

were calculated by subtracting the averaged dCq[control] from

the simple dCq[treatment/KO] [78]. These ddCq values are pre-

sented as log2(fold change). p-Values were determined by

two-tailed, unpaired t-test, except for the data presented in

figure 1f. There we used a one-tailed test because we knew

to expect downregulation from the microarray dataset.

In figure 5a, the expression data for grem2b derives from

two runs with the same samples (biological replicates) in

the same qPCR cycler. For this, an average dCq value was

calculated for each biological replicate.

5.7. Zebrafish husbandry
Zebrafish (D. rerio) were kept as closed stocks in accordance with

local animal welfare law and with the permit 35-9185.64/1.1

from the Regierungspräsidium Freiburg. The fish were main-

tained in a constant recirculating system at 288C on a 12 L : 12

D cycle. Fish lines used in this study were created in the AB

wild-type strain.

5.8. Transgenic zebrafish
Plasmid DNA containing SBEs in combination with a minimal

promoter were kindly provided by Peter tenDijke ((CAGA)12

MLP Luc). Here, repetitive SBEs derived from the promoter of

the human PAI gene [41] were used to drive a luciferase gene.

We cloned the SBEs with the minimal promoter into a

Gateway 50 entry vector (Invitrogen). A multisite Gateway reac-

tion [79] was subsequently performed resulting in an SBE

driven GFPcaax construct (SBE:GFPcaax). A zebrafish line

was generated with SB (sleeping beauty) transgenesis accord-

ing to Kirchmaier et al. [80]. Shh reporter zebrafish were

generated according to Schwend et al. [45]. The plasmid was

kindly provided by Sara Ahlgren.

We assembled the expression construct for Tg(hsp70:bmp4,
cmlc2:eGFP) in a Gateway reaction, using a Tol2 destination

vector including cmlc2:eGFP [79], a 50entry vector containing
the hsp70 promotor, a pENTR D-TOPO (ThermoFisher Scienti-

fic) vector containing the CDS of bmp4 [11] and a 30entry vector

with a polyadenylation site [79]. The construct (10 ng ml21) was

injected into wild-type zebrafish zygotes together with Tol2

transposase mRNA (7 ng ml21) [79]. Embryos with strong

GFP expression in the heart were selected as founders. Lines

were kept in closed stocks and validated in every generation.

5.9. Drug treatments
Zebrafish embryos were treated with SIS3 (9 mM, 3 mM stock

in DMSO [81]) and with SB431542 (80 mM, 10 mM stock in

DMSO [82]). Controls were treated with DMSO without the

inhibitor.

5.10. Microscopy
Signalling reporter fish were imaged with a Leica SP5 setup,

samples were mounted in glass bottom dishes (MaTek).

For time-lapse imaging embryos were embedded in 1% low

melting agarose covered with zebrafish medium and anaesthe-

tized with tricaine. Left and right eyes were used and oriented

to fit the standard views. A stereomicroscope (Olympus/

Nikon) was used for recording bright field and fluorescent

images of TGFb signalling reporter fish. Whole-mount in situ
hybridizations were recorded with a stereomicroscope

(Nikon SMZ18) as well as an upright microscope (Zeiss) and

a confocal Leica SP8 setup.

5.11. Heat shocks and controls
tg(hsp70:bmp4, cmlc2:eGFP) eggs were kept in a Petri dish

at 288C after fertilization. To induce bmp4 expression,

21–26 hpf embryos were transferred to a 1.5 ml reaction tube

and incubated for 1 h at 378C in a heating block. Afterwards,

they were returned to a dish at 288C. Embryos were fixed

with 4% PFA at 30 hpf for in situ hybridization and at 3 dpf

for morphological analysis.

We used tg(hsp70:bmp4, cmlc2:eGFP) embryos which

were not heat shocked as controls, as well as heat shocked

wild-type siblings from the same clutch of eggs.

5.12. Whole-mount in situ hybridization
Whole-mount in situ hybridizations (WMISHs) were per-

formed according to Quiring et al. [83]. WMISHs for

confocal imaging were stained with FastRed Naphthol

(Sigma-Aldrich).

5.13. Immunohistochemistry and confocal imaging of
zebrafish embryos

Fixed embryos were bleached using 3% hydrogen peroxide and

0.5% potassium hydroxide. For whole-mount imaging, they

were stained with 4 mg ml21 40,6-diamidino-2-phenylindole

(DAPI) for 2 h. Imaging was performed in glass bottom

dishes (Matek) using a Leica SP8 TCS setup.

For anti-Laminin staining, embryos were cryosectioned

(20 mm) and stained on Superfrost plus slides. Antibodies

used: rabbit Laminin Ab-1 (ThermoFisher Scientific, RB-

082-A1, 1 : 100), goat anti-rabbit-Alexa 555 (ThermoFisher

Scientific, A-21428, 1 : 250).
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assistance and Burkhard Höckendorf for constructive input and
help generating the TGFb reporter line, and Hannes Voßfeld for
assistance with the mouse mutants. We also thank Shokoufeh Khak-
ipoor for helping to acquire mutant mouse embryos and Melanie
Feuerstein for excellent technical assistance regarding qPCR.
iol.8:1701
References
34
1. Onwochei BC, Simon JW, Bateman JB, Couture KC, Mir
E. 2000 Ocular colobomata. Surv. Ophthalmol. 45,
175 – 194. (doi:10.1016/S0039-6257(00)00151-X)

2. Graw J. 2003 The genetic and molecular basis
of congenital eye defects. Nat. Rev. Genet. 4,
876 – 888. (doi:10.1038/nrg1202)

3. Westenskow P, Piccolo S, Fuhrmann S. 2009
Beta-catenin controls differentiation of the retinal
pigment epithelium in the mouse optic cup by
regulating Mitf and Otx2 expression. Development
136, 2505 – 2510. (doi:10.1242/dev.032136)

4. Bankhead EJ, Colasanto MP, Dyorich KM, Jamrich M,
Murtaugh LC, Fuhrmann S. 2015 Multiple
requirements of the focal dermal hypoplasia gene
porcupine during ocular morphogenesis. Am. J. Pathol.
185, 197 – 213. (doi:10.1016/j.ajpath.2014.09.002)

5. Chen S et al. 2012 Defective FGF signaling
causes coloboma formation and disrupts retinal
neurogenesis. Cell Res. 23, 254 – 273. (doi:10.1038/
cr.2012.150)

6. Cai Z, Tao C, Li H, Ladher R, Gotoh N, Feng G-S,
Wang F, Zhang X. 2013 Deficient FGF signaling
causes optic nerve dysgenesis and ocular coloboma.
Development 140, 2711 – 2723. (doi:10.1242/
dev.089987)

7. Miesfeld JB, Gestri G, Clark BS, Flinn MA, Poole RJ,
Bader JR, Besharse JC, Wilson SW, Link BA. 2015
Yap and Taz regulate retinal pigment epithelial cell
fate. Development 142, 3021 – 3032. (doi:10.1242/
dev.119008)

8. Matt N, Ghyselinck NB, Pellerin I, Dupé V. 2008
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