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1 Introduction

Quantum field theory is one of the most successful tools of theoretical physics. It is ubiq-

uitous in our understanding of physical phenomena from the smallest to the largest scales.

Conformal quantum field theories can be viewed as simplified quantum field theories that

arise at very low or very high energy, or at critical points. Their symmetry algebra is

enlarged. Relativistic conformal field theories allow for a symmetry algebra which includes

the conformal algebra so(2, n) in space-time dimension (n− 1) + 1.

It is useful to gather the spectrum of a physical theory in terms of multiplets of the

symmetry algebra. Hence it is crucial to study the representation theory of the conformal

algebra so(2, n). In physical theories, often only highest weight representations will arise.

Moreover, in unitary theories, these representations are required to be unitarizable. Thus,

the study of the unitary highest weight representations of so(2, n) has been an integral part

of the physics literature of the last fifty years.

Importantly, before physicists classified conformal multiplets in all cases of their in-

terest, the mathematics literature yielded an overarching insight into the generic case,

providing a complete classification of conformal multiplets, with proof. In particular, the

representation theory will reduce to a theory of Weyl groups, and numbers associated to

pairs of Weyl group elements. That provides an efficient coding of otherwise lengthy ma-

nipulations of conformal algebra generators. In most cases, the mathematics literature

precedes the physics literature, which is indicative of the fact that physicists have found

the mathematics literature hard to read. We intend to bridge this unfortunate gap in the

treatment of this central problem in quantum field theory by providing a physicist’s guide

to the mathematics literature. Our treatment will be practical yet generic, referring to the

relevant mathematics books and papers for the complete proofs while still providing the

conformal field theorist with all the necessary tools to reconstruct a particular result using

general principles only.

Bridges between the mathematics literature and the physics literature have been con-

structed previously. We refer e.g. to [1] for the exploitation of the generic classification of

unitary multiplets, and to [2] for a review of the salient properties of parabolic Kazhdan-

Lusztig polynomials relevant to conformal multiplets finitely represented on the compact

subalgebra of the conformal algebra. We will provide a considerably more complete treat-

ment, and hopefully a more accessible bridge. From the effort we invested in identifying

and marrying the mathematics and physics literature, we concluded that an introduction

for physicists to the intricate mathematics of conformal multiplets remained overdue. It

is possible to extend the scope of this work to include representations of superalgebras,

but in that situation additional subtleties arise — in particular, the Weyl group geometry

alone does not determine completely the representation theory — we plan to discuss this

in future work.

The structure of the paper is as follows. In section 2, we treat a warm-up example,

namely the so(2, 3) conformal algebra in three space-time dimensions. We compute the

characters of all irreducible highest weight multiplets, and gently introduce some of the

mathematics necessary to understand the structure of the representation theory. We also

– 1 –



J
H
E
P
0
4
(
2
0
1
8
)
0
5
5

identify all multiplets that are unitarizable, and write out their characters in both a math-

ematical and physical language. After the warm-up section, we introduce the advanced

mathematics to treat the generic case. In section 3, we summarize how to compute char-

acters of all highest weight representations of the algebras so(2, n) with n arbitrary. This

discussion will include finite dimensional, infinite dimensional, unitary and non-unitary

representations. We review how the multiplicities of the irreducible modules in the Verma

modules are given by the evaluation of Kazhdan-Lusztig polynomials at argument equal

to one, and how the inversion of the decomposition fixes the irreducible characters. It will

be sufficient to do calculations in the Weyl group (and Hecke algebra) of the conformal

algebra to understand the full structure of the representation theory. In order to apply

the formulas, we gather data on the Weyl groups of the Bk and Dk algebras, and the

corresponding Kazhdan-Lusztig polynomials.

In section 4, we review how to identify the unitarizable representations among all those

studied in section 3. We will implicitly make use of necessary and sufficient inequalities

on the quantum numbers which are elegantly derived in the mathematics literature. In

section 5 we exploit the specific features of unitary representations to simplify the generic

Kazhdan-Lusztig theory, and factorize a compact subalgebra Weyl group, which leads to

the study of parabolic Kazhdan-Lusztig theory. That allows us to compute all unitary

highest weight characters in section 6.

Hasty readers can jump directly to section 7 where they will find an executive summary,

with references to an appendix containing low rank unitary character tables.

2 Warm-up: the so(2, 3) algebra

In this section, before facing the representation theory of the so(2, n) algebras in all its

complexity, we focus on the conformal algebra so(2, 3). We review the conformal multiplets

which have a highest weight. We determine the structure of the irreducible representations,

and also which irreducible highest weight representations are unitarizable. Our analysis

is phrased in the mathematical language of the category of highest weight modules, and

introduces a number of useful mathematical concepts. These serve as a warm-up for the

introduction of more advanced concepts in section 3. References for proofs of the statements

in this section are mostly postponed to section 3 as well.

2.1 The representations of the so(3) algebra

We draw inspiration from the highest weight representation theory of the simplest Lie al-

gebra so(3) = su(2), generated by three generators, so(3) = 〈J1, J2, J3〉. Its representation

theory is obtained by first choosing a Cartan subalgebra h = 〈J3〉, as well as raising and

lowering operators J± = J1±iJ2. Then, we pick a highest weight eigenvector of the Cartan

generator J3 with eigenvalue λ, called the highest weight. The highest weight vector is by

definition annihilated by the raising operator. We then act on it with the lowering oper-

ator, generating new vectors, which generate a representation of so(3). As is well-known,

if λ /∈ Z≥0 (in a given normalization), the process never stops and the representation is

infinite dimensional. On the other hand, when λ ∈ Z≥0, we can consistently define a λ+ 1
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dimensional (irreducible) representation, with a lowest weight vector which is annihilated

by the lowering operator. In this subsection, we formalize these well-known facts in the

language of modules, which is used in the rest of the paper.

We define a Verma module Mλ with weight λ as the representation of g where no

constraint is imposed beyond the relations of the Lie algebra. This means that the character

[Mλ] of the Verma module Mλ is given by

[Mλ] =
xλ

1− x−2
, (2.1)

where the lowering operator has eigenvalue −2. In particular, a Verma module is always

infinite-dimensional. It may happen that a Verma module contains other Verma modules.

Here, this happens only when λ ∈ Z≥0, where the Verma module M−λ−2 is included in the

Verma module Mλ. In that case, we can construct the quotient module Mλ/M−λ−2, which

is finite-dimensional and irreducible. We call this irreducible module Lλ, and its character is

[Lλ] = [Mλ]− [M−λ−2] =
xλ − x−λ−2

1− x−2
= xλ + xλ−2 + · · ·+ x−λ . (2.2)

The dimension of the module is λ+1.1 When λ is not a positive integer, the Verma module

Mλ is irreducible, and therefore we set Lλ = Mλ.

As we will see later, it is natural to introduce the Weyl vector ρ = 1 of the so(3) Lie

algebra, and the Weyl group W = {1,−1}. We further introduce the dot action of the

Weyl group on the weight space through the formula

w · λ = w(λ+ ρ)− ρ . (2.3)

In our present simple set-up, we find w · λ = λ for w = 1 and w · λ = −λ− 2 for w = −1,

so the character of the general irreducible module can be rewritten

[Lλ] =
[
M(1)·λ

]
−
[
M(−1)·λ

]
for λ ∈ N , (2.4)

[Lλ] =
[
M(1)·λ

]
for λ /∈ N . (2.5)

We make several observations. Firstly, the representation theory of highest weight modules

is a generalization of the representation theory of finite dimensional modules. Secondly,

integer weights behave differently from non-integer weights. More precisely, dominant

weights give rise to the familiar Weyl character formula for finite dimensional representa-

tions, which involves a sum over the Weyl group of the algebra. Thirdly, we observe that

the expression of the character of the irreducible module depends on the relative position

of the weight λ with respect to (minus) the Weyl vector −ρ = −1. All these observations

generalize to other semisimple Lie algebras.2

1For λ a positive integer, we can think of λ as twice the spin.
2For the exploration of other objects in the category of highest weight modules of so(3) in a physical

context, see [3].
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2.2 The representations of the so(2, 3) algebra

We perform a similar analysis for the highest weight representations of the so(2, 3) = B2

algebra. The choice of real form of the algebra does not matter at this stage, but we

must come back to this point when we consider the question of unitarity. We choose a

Cartan subalgebra in the compact subalgebra so(2) ⊕ so(3) of so(2, 3), corresponding to

the dilatation operator and a spin component. The Verma module Mλ with highest-weight

λ generically has character

[Mλ] =
zλ∏

α>0
(1− z−α)

, (2.6)

generalizing (2.1), where the product over negative roots makes sure that we take into

account the free action of the lowering operators on the highest weight state. Depending

on the weight λ, the module Mλ may be reducible, and the character of the irreducible

module Lλ will differ from the Verma character (2.6). This can happen only if another

Verma module Mµ is a strict submodule of Mλ for some weight µ.

Integral regular weights. Firstly, we consider for simplicity an integral weight λ: for

each root α the product 〈λ, α∨〉 satisfies 〈λ, α∨〉 ∈ Z. The weight space is two-dimensional,

and the position of λ with respect to the negative Weyl vector −ρ is characterized by the

sign of the integers 〈λ + ρ, α∨〉. This defines eight (shifted) Weyl chambers, as shown in

figure 1. One can label the chambers with elements of the Weyl group W , associating

the identity element to the chamber that contains the weight −2ρ, as in figure 1. On

the Weyl group, one can define a partial order, the Bruhat order [4]. This order can be

summarized in a Bruhat graph represented in figure 2, as well as on figure 1. In a minimal

representation of a Weyl group element in terms of simple reflections, the length of the

element is equal to the number of simple reflections. Any integral weight in the interior

of one of the (shifted) Weyl chambers can be written in a unique way as λ = w · λ̄, where

w ∈W and λ̄ is antidominant, meaning that 〈λ̄+ ρ, α∨〉 /∈ Z>0 for each positive root α.

The partial Bruhat order is instrumental in our understanding of the structure of Verma

modules [5]. Indeed, for an integral weight lying in the interior of the antidominant Weyl

chamber, and any Weyl group element w, we have that the irreducible module (and char-

acter) can be understood in terms of the Verma modules (and characters) associated to the

same antidominant weight, and Weyl group elements smaller than w in the Bruhat order:

[Lw·λ̄] =
∑
w′≤w

bw′,w[Mw′·λ̄] (2.7)

for some integer coefficients bw′,w. In the case of the algebra so(2, 3), these coefficients are

particularly simple — and it is mostly here that we exploit that we restrict to the example

of so(3, 2) in our warm-up section. The coefficients bw′,w for the so(2, 3) algebra are given by

bw′,w = (−1)`(w)−`(w′) , (2.8)

where `(w) is the length of the Weyl group element w, which can be read from the Bruhat

graph [4] (see figures 1 and 2). The dotted Weyl group action is still given by the formula
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Figure 1. The B2 (shifted) Weyl chambers, their associated Weyl group element in terms of simple

reflections si, their Bruhat order, the simple roots αi and the integral weight lattice. The red lines

correspond to singular weights, and delimitate the shifted Weyl chambers. The intersections of gray

lines correspond to integral weights.

w · λ = w(λ + ρ) − ρ. We have restricted to integral weights in the interior of a Weyl

chamber — those are called regular. We turn to an example.

Example. Firstly, let us introduce the parameterization of roots and weights in terms

of an orthonormal basis ei (described in detail in appendix A). The simple roots are

α1 = e1 − e2 and α2 = e2, see figure 1. The so(3, 2) weights are denoted (λ1, λ2) for a

weight λ = λ1e1 + λ2e2. Let us then consider the weight λ = (−1, 2). It sits inside the

Weyl chamber labeled by the Weyl group element w = s2s1s2 of length three. For this

example, the formula (2.7) gives rise to the character

[L(−1,2)] = [M(−1,2)]− [M(−1,−3)]− [M(−2,2)] + [M(−2,−3)] + [M(−4,0)]− [M(−4,−1)] . (2.9)

Integral singular weights. The formula (2.7) provides the character of any irreducible

highest-weight module with highest weight in the interior of a Weyl chamber, i.e. away

from the red lines in figure 1. Now we focus on singular integral weights, which are the
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` = 4

` = 3

` = 2

` = 1

` = 0

s2

w◦

1

Figure 2. The Bruhat order for the Weyl group of B2, and the length function. The longest

element w◦ has length four. There are two elements of length three. The lines at 45◦ correspond

to the s2 reflection, and we use the same color for elements of W connected by this reflection: they

contribute to the same module M c, see equation (2.10).

integral weights λ such that 〈λ+ ρ, α∨〉 = 0 for at least one root α. They lie on a red line

in figure 1. The rule here is as follows: consider all the Weyl group elements that label the

Weyl chambers of which the closure contains λ, and pick the smallest such group element

w according to the Bruhat order. We can then write again λ = w · λ̄ for an antidominant

weight λ̄, and the character formula (2.7) remains true.

Example. Let us consider the weight λ = (−3
2 ,

1
2). This is an integral weight, but it is

singular. It belongs to the closure of the Weyl chambers labeled by the Weyl group elements

s2s1 and s2s1s2 of length two and three respectively. The smallest of these two elements

is w = s2s1, and therefore one writes λ = (−3
2 ,

1
2) = w · (−5

2 ,−
1
2). We then compute

[L(− 3
2
, 1
2

)] = [M(− 3
2
, 1
2

)]− [M(− 5
2
,− 1

2
)]− [M(− 3

2
,− 3

2
)] + [M(− 5

2
,− 1

2
)] = [M(− 3

2
, 1
2

)]− [M(− 3
2
,− 3

2
)] .

The cancellation between Verma module characters occurs because we are studying a rep-

resentation with singular highest weight.

Non-integral weights. Finally, we extend our computation to non-integral weights. For

an arbitrary weight λ, we construct the set Φ[λ] of roots α that satisfy 〈λ, α∨〉 ∈ Z. To

get a grasp on Φ[λ], we compute this scalar product for all positive roots, with as before

λ = λ1e1 + λ2e2. See table 1. A priori, since there are four positive roots we have 24 = 16

configurations to consider, but consistency restricts this number to 7 configurations, which

are listed in table 1. One observes that Φ[λ] is a root system, and its Weyl group W[λ] will

play the role that the Weyl group W of the whole algebra played in the integral case. The

root system Φ[λ] determines the integrality class of λ. In this low rank case, the integer co-

efficients bw,w′ again simplify to a sign depending on the length of the elements in the group

W[λ]. The character formula takes the form (2.7), but where the sum is restricted to the

Weyl group elements W[λ] and the length function is inside this group. In this manner, we

have found the characters of all irreducible highest weight representations of the B2 algebra.

– 6 –
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α 〈λ, α∨〉

α1 λ1 − λ2 Z Z
α2 2λ2 Z Z Z

α1 + α2 2λ1 Z Z Z
α1 + 2α2 λ1 + λ2 Z Z

Φ[λ] 1 A1 A1 A1 A1 D2 B2

Table 1. The positive roots α of the B2 algebra, the scalar product of the roots with the weights

λ = λ1e1 + λ2e2 as well as the root systems Φ[λ] they give rise to.

Example. Consider the weight λ = (−1
2 , 0). The integrality class is D2, and the associ-

ated Weyl group has four elements, W[λ] = {1, s2, s1s2s1, s1s2s1s2}, using the notations of

figure 1. The weight λ lies in the chamber of the longest element s1s2s1s2, so the irreducible

character with highest weight λ is

[L(− 1
2
,0)] = [M(− 1

2
,0)]− [M(− 1

2
,−1)]− [M(− 5

2
,0)] + [M(− 5

2
,−1)] .

2.3 The unitary representations

As we review in full generality in section 4, only a subset of the irreducible modules Lλ are

unitarizable. We say that a weight is unitary if the corresponding irreducible module Lλ is

unitarizable. In this context, it is important that we consider the real form so(2, 3) of the

complex B2 algebra. Manifestly, this is a non-compact real form, and therefore non-trivial

unitary representations will be infinite-dimensional. As we recall in section 4, in the case

of the algebra so(2, 3), the result of the identification of unitary weights is as represented

in figure 3, where the unitary weights are painted in blue.

A second observation is that for all unitary weights we have that 2λ2 ∈ N. Thus, from

the point of view of table 1, the unitary weights correspond to the third, sixth or seventh

cases, i.e. with root systems Φ[λ] = A1, D2 or B2. This corresponds to the fact that the com-

pact subalgebra su(2) = so(3) ⊂ so(2, 3) is finitely represented in a unitary highest weight

representation. In other words, for unitary irreducible modules the only source of infinite-

dimensionality is the non-compact part of the algebra. We exploit this fact to write more

compact formulas for the characters. Firstly, we introduce notations that reflect this desire.

For a unitary weight, let us define a module M c
λ which is the quotient of two Verma

modules:

M c
λ = Mλ/Ms2·λ . (2.10)

This is sensible because of the restriction on unitary weights. Accordingly, the character

of the module M c
λ is

[M c
λ] = [Mλ]− [Ms2·λ] . (2.11)

Thus, we have already divided out a Verma module that is guaranteed to be a submodule

because of the fact that the compact algebra is finitely represented. Using this notation, we

can write down the characters of all irreducible unitary representations of so(2, 3) as follows:

– 7 –
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Figure 3. Weights in blue correspond to unitary representations of the three-dimensional conformal

algebra so(2, 3). The green circles correspond to dominant weights.

0) The highest weight λ = 0 corresponds to the trivial representation, and we simply

have

[Lλ] = 1 . (2.12)

1) For highest weights λ which fall in one of the following categories:

• 2λ1 /∈ Z (the A1 case)

• 2λ1 ∈ Z and λ1 − λ2 /∈ Z (the D2 case) and λ1 ≤ −3
2 (the weight is in the

North-West chamber of D2)

• λ is integral (the B2 case) and λ1 ≤ −λ2 − 2 (the West-North chamber of B2)

• λ =
(
−3

2 ,
1
2

)
or λ = (−1, 0) ,

we find that the compact subtraction is the end of the story

[Lλ] = [M c
λ] . (2.13)

– 8 –
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2) For λ in one of the two following categories, we find a further subtraction:

2a) If 2λ1 ∈ Z and λ1 − λ2 /∈ Z (the D2 case) and λ1 > −3
2 (the weight is in

the North-East chamber of D2) — this category contains only two weights,

λ =
(
−1

2 , 0
)

and λ =
(
−1, 1

2

)
,

[Lλ] = [M c
λ]− [M c

(s1s2s1)·λ] . (2.14)

2b) If λ is integral (the B2 case) and λ1 > −λ2 − 2 and λ1 < −3
2 (the North-West

chamber of B2)

[Lλ] = [M c
λ]− [M c

(s2s1s2)·λ] . (2.15)

These results comprise all characters of unitary irreducible highest weight representations

of the conformal algebra so(3, 2). In the next subsection, we render more manifest the

physical content of these results.

2.4 In physics conventions

Early physics references classifying the unitary representations of the so(3, 2) algebra and

their characters are [6–8] and [9]. The algebra so(2, 3) admits a basis made of three so(3)

spins J1,2,3, three translations P1,2,3, three special conformal transformations K1,2,3 and the

dilatation operator D. In order to define the Verma modules, we declare two operators to be

in the Cartan subalgebra, which we choose to be the spin component J3 and the dilatation

operator D which are in a compact subalgebra. We pick four raising operators (J+ and

K1,2,3) and four lowering operators (J− and P1,2,3). We consider highest-weight modules,

so the weights λ will consist of eigenvalues (−E, j) of (−D, J3). In these conventions, closer

to traditions in physics, the above generic Verma module characters translate into

[Mλ] =
zλ∏

α>0
(1− z−α)

=
xEs2j

(1− s−2)(1− xs2)(1− x)(1− xs−2)
, (2.16)

where the fugacity x keeps track of the conformal dimension of the states, while the fugacity

s codes (twice) the 3-component of the spin. The characters with respect to the su(2)

compact subalgebra read

[M c
λ] =

xE [L
su(2)
2j ]

(1− xs2)(1− x)(1− xs−2)
. (2.17)

with the usual spin j character [L
su(2)
2j ] of the representation of the su(2) subalgebra

defined by

[L
su(2)
2j ] =

2j∑
k=0,1,...

s2(j−k) . (2.18)

On the lower blue line in figure 3, we find the trivial representation with ground state

energy and spin (−E = λ1, j = λ2) = (0, 0), the singleton (−E, j) = (−1/2, 0) as well as

the other scalars (−E < −1/2, 0). On the second line, we have the singleton (−1, 1/2),

– 9 –
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as well as the other spinors (−E < −1, 1/2). The other representations are the generic

(−E ≤ −j − 1, j) representations. See e.g. [9] for an early summary.

For the weights of type 1) in subsection 2.3, which include the generic scalar, spinor

and higher spin representations we find the characters

[Lλ] = [M c
λ] =

xE [L
su(2)
2j ]

(1− xs2)(1− x)(1− xs−2)
. (2.19)

For the weights of type 2), we have for the singletons (type 2a))

[Lλ] = [M c
λ]− [M c

(s1s2s1)·λ] =
xE [L

su(2)
2j ]− x3−E [L

su(2)
2j ]

(1− xs2)(1− x)(1− xs−2)
, (2.20)

and for the other extremal representations (type 2b) — note that for those, j ≥ 1),

[Lλ] = [M c
λ]− [M c

(s2s1s2)·λ] =
xE [L

su(2)
2j ]− xE+1[L

su(2)
2j−2]

(1− xs2)(1− x)(1− xs−2)
. (2.21)

These calculations exhaust the characters of unitary highest weight representations of

so(3, 2), and are in agreement with the physics literature.

Summary remarks. The warm-up example of the three-dimensional conformal algebra

is illuminating in multiple respects. It identifies the crucial role of the Weyl vector and

the Weyl group for all irreducible characters, as well as the role of the compact subalgebra

in the simplification of the unitary characters. It also motivated that we need to come to

terms with at least two more advanced mathematical concepts: the first is the multiplicity

of the Verma modules in the characters of irreducible modules, and the second is the

generic classification of unitary highest weight representations. The generic treatment of

these points requires further levels of abstraction.

3 The characters of irreducible representations

In this section, we explain how to write the characters of irreducible modules in terms of

the characters of Verma modules for an arbitrary semisimple complex Lie algebra g. Since

the full mathematical solution to this problem is available, but may be hard to read, or

even identify, we provide a very brief guide to the history and literature.

Important early contributions to the understanding of the category of modules with

highest weight are [10] and [11]. The generic solution to the character calculation is based

on the Kazhdan-Luzstig conjecture [12] proven in [13, 14]. The book [5] makes the math-

ematics significantly more accessible. Furthermore, to understand the unitary characters

the parabolic Kazhdan-Lusztig polynomials [15] are instrumental, in particular as pertain-

ing to Hermitian symmetric spaces [16]. The parabolic polynomials were computed in [17]

and in more technical detail in [18]. The final step in summarizing the literature requires

the use of translation functors [5], and the resulting final formulation is most easily read

in [19] and [20]. We refer to the book [5] as well as to the summary [20] for further history.
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3.1 The Kazhdan-Lusztig theory

In this subsection, we briefly remind the reader of basic concepts in Lie algebra and repre-

sentation theory. See e.g. [21–23] for gentler introductions. Let g be a semisimple complex

Lie algebra, with Cartan subalgebra h. We denote the set of roots of g by Φ, the subset of

positive roots by Φ+ and by Φs is the subset of simple roots. The Weyl group is W , the

Weyl vector ρ, and we define the dot action

w · λ = w(λ+ ρ)− ρ . (3.1)

Given a weight λ ∈ h∗, we define the root system Φ[λ] = {α ∈ Φ|〈λ, α∨〉 ∈ Z}. Its Weyl

group is denoted W[λ]. The Bruhat order on W[λ] is consistent with the Bruhat order on

W, and the parity of the length functions agree [4].

We will use a handy parameterization for the weights [5]. A weight is called3

• antidominant if for all α ∈ Φ+, 〈λ+ ρ, α∨〉 /∈ Z>0;

• dominant if for all α ∈ Φ+, 〈λ+ ρ, α∨〉 ∈ Z>0.

Both of these subsets of weights are highly restrictive, and in particular, their union does

not include all weights. Note also that our definition of dominant makes all dominant

weights integral. For any weight λ ∈ h∗, there is a unique antidominant weight in the dot

orbit W[λ] · λ. Therefore, any weight λ can be written in a unique way as

λ = w · λ̄ (3.2)

with λ̄ antidominant and w ∈ W[λ] of minimal length. The minimal length requirement

ensures that the decomposition (3.2) is unique.

Given a weight λ ∈ h∗, we focus our attention on two modules, which are both highest-

weight modules with highest weight λ. The first one is the Verma module Mλ. It is defined

as the module generated from a highest weight state by the action of all lowering operators.4

Its character [Mλ] follows from the definition,

[Mλ] =
zλ∏

α∈Φ+

(1− z−α)
. (3.3)

We introduce the simple module Lλ (also called the irreducible module), which is the unique

simple quotient of Mλ. Writing down the character of the module Lλ is a central task in

this paper.

Given an antidominant weight λ̄ ∈ h∗, our goal is to understand how the character

[Lw·λ̄] of the irreducible module Lw·λ̄ decomposes into characters of Verma modules [Mµ].

3We warn the reader that some authors use different definitions for these concepts.
4More precisely, the relevant object here is the universal enveloping algebra U(g), which can be thought

as g with an associative product such that the Lie bracket is given by the commutator. We start with

the one-dimensional (h ⊕ n+)-module Cλ (where the raising operators n+ give zero and the Cartan h acts

according to the linear form λ), and form the tensor product with U(g), M(λ) = U(g)⊗U(h⊕n+) Cλ.
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Only weights µ of the form µ ∈W[λ̄] · λ̄ can contribute [5], so we can write

[Lw·λ̄] =
∑

w′∈W[λ̄]

(−1)`(w,w
′)P

W[λ̄]

w′,w (1)[Mw′·λ̄] , (3.4)

where P
W[λ̄]

w′,w (1) are coefficients, and we have factored out the sign contribution of the

length difference `(w,w′) = `(w) − `(w′). The coefficients P
W[λ̄]

w′,w (1) are the Kazhdan-

Lusztig polynomials P
W[λ̄]

w′,w (q) associated to the Weyl group W[λ̄] and two elements w′ and

w of the group W[λ̄], evaluated at q = 1. In the next subsection, we give an algorithm to

compute these polynomials. Note that we have presented a crucial property of the theory

of representations and characters, namely that the coefficients only depend on the relevant

Weyl group [5]. This property was surmised early and proven late in the development

of the theory. It implies that extensive manipulations of Lie algebra generators can be

summarized in the more efficient combinatorics of the Weyl group only.

3.2 The Kazhdan-Lusztig polynomials

We review one algorithm to compute the Kazhdan-Lusztig polynomials for Coxeter groups

(which includes all Weyl groups that we encounter) [4]. Firstly, one computes the Bruhat

partial order, that we denote by ≤. Secondly, we proceed as follows. Let x,w be two

elements of the Coxeter group W . We are ultimately interested in the Kazhdan-Lusztig

polynomial Px,w(q), but the algorithm requires to compute as well an auxiliary integer

denoted µ(x,w).

• If x = w, set Px,w(q) = 1 and µ(x,w) = 0.

• If x � w, set Px,w(q) = 0 and µ(x,w) = 0.

• If x ≤ w and x 6= w, then let s be a simple reflection such that `(sw) < `(w). Let

c = 0 if x ≤ sx, and c = 1 otherwise. Then set (see the core of the existence proof

provided in [4], section 7.11)

Px,w(q) = q1−cPsx,sw(q) + qcPx,sw(q)−
∑

µ(z, sw)q(`(w)−`(z))/2Px,z(q) (3.5)

where the sum runs over those z ∈W such that z ≤ sw and sz ≤ z. Finally, define5

µ(x,w) = Coefficient of q(`(w)−`(x)−1)/2 in Px,w(q) . (3.6)

Using the algorithm, we can compute all the Kazhdan-Lusztig polynomials for the Weyl

groups W appearing in the character formula (3.4). Thus, the proof [13, 14] of the Kazhdan-

Lusztig conjecture [12] solves the problem of determining all characters of highest weight

representations of semisimple Lie algebras.

5In particular, note that if the degree of the polynomial Px,w(q) is strictly less than (`(w)− `(x)− 1)/2,

then µ(x,w) = 0.
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3.3 The finite-dimensional representations

The reader may find comfort in recovering the Weyl character formula for finite-dimensional

irreducible representations as a particular case of the vast generalization (3.4). The irre-

ducible representation Lλ of the simple Lie algebra g is finite-dimensional if and only if its

highest weight λ is dominant (see subsection 3.1).

Let the weight λ be dominant. Then we can write the weight λ in the form λ = w◦ · λ̄
with the weight λ̄ antidominant and w◦ the longest element of the Weyl group. For all

elements x in the Weyl group W , the Kazhdan-Lusztig polynomial Px,w◦(q) trivializes to

Px,w◦(q) = 1 [5]. Therefore, for finite dimensional representations, the generic character

formula (3.4) simplifies to

[Lλ] =
∑
w′∈W

(−1)`(w◦,w
′)[Mw′·λ̄] , (3.7)

which includes a sum over the whole Weyl group. Intuitively, the further the highest weight

is from antidominance, the bigger the character sum. For finite representations, the sum

has the maximal number of terms.

A remark on some singular integral weights. According to our definition, a dom-

inant weight can not be singular. In fact, the integral weights located in the dominant

shifted Weyl chamber (those that satisfy 〈λ + ρ, α∨〉 ∈ Z≥0 for all positive roots α) are

split into two categories: the dominant weights and the singular weights. An interesting

consequence of the general formula (3.4) is that the character of an irreducible module L(λ)

where λ belongs to the second category vanishes. This property is useful in simplifying

character formulas.

3.4 Examples

The generic character formula captures (among others) the character of all highest weight

representations of the conformal algebras so(2, n). In the rest of the paper, we will mainly

be interested in the unitary highest weight representations, which are a small subclass of

all highest weight representations. These are the representations most evidently relevant

in physical theories. Nevertheless, non-unitary representations can play a role in unitary

theories with gauge symmetries, or in non-unitary theories of relevance to physics. There-

fore, we want to make the point that the mathematical formalism that we reviewed also

readily computes the characters of this much more general set of representations. To stress

that point, we compute an example character which involves a slightly more complicated

Kazhdan-Lusztig polynomial.

A B3 example. The Weyl group of B3 has 48 elements. They are arranged in ten levels,

depending on the number of simple Weyl reflections that occur in their reduced expression.

See figure 4. Since there are 48 Weyl chambers, and a proliferation of walls and weights of

various singular types, we do not provide a complete catalogue of characters. The results

are straightforward to obtain, but unwieldy to present. We only provide a flavour of what

such a catalogue looks like.
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Figure 4. The Bruhat order for B3. As in figure 2, we use the same color for elements of W that

contribute to the same module M c (see section 5). The compact subgroup WJ is isomorphic to the

Weyl group of B2, and one can check that the subset of elements in each given color is isomorphic

to figure 2.

To discern the features of the catalogue, it is sufficient to analyze the geometry of

the chambers, the walls, and the corners. The positive root system Φ+ = {e1 − e2, e2 −
e3, e3, e2, e1, e1 − e3, e1 + e2, e1 + e3, e2 + e3} of the algebra so(5, 2) can be divided into

subsystems in various ways. If the set of roots orthogonal to the weight λ+ ρ is empty, we

are in a chamber. If it is non-empty, we are on at least one wall. We have nine walls, given

by the equations λi = λj , λi = −λj and λi = 0. We have weights living on a single wall,

weights living in the corner of two walls, in the corner of three, in the corner of four or on

the intersection of the nine walls. This provides us with a first glimpse of the structure of

the catalogue.

Next, we want to clarify the difficulty of computing the Kazhdan-Lusztig polynomials.

While laborious, the difficulty remains well within reach of ancient computers. The most
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complicated Kazhdan-Lusztig polynomial turns out to be P1,s2s3s2s1s2s3s2(q) = q2 + q + 1

(and it arises for a single other combination of Weyl group elements as well). At q = 1,

this will give rise to a triple multiplicity for a Verma module character in the character

sum formula. An example weight for which we need this polynomial is produced by acting

with w = s2s3s2s1s2s3s2 on an anti-dominant weight. Thus, we give the following example

entry in the catalogue.

Example. Consider the weight (s2s3s2s1s2s3s2) · (−2ρ) = (−1, 1,−1). We apply the

general procedure outlined in this section using a symbolic manipulation program, and

find the character:

[L(−1,1−1)] = −3[M(−5,−3,−1)] + 2[M(−5,−3,0)] + 3[M(−5,−2,−2)]

− 2[M(−5,−2,1)]− 2[M(−5,−1,−2)] + 2[M(−5,−1,1)]

+ 2[M(−5,0,−1)]− 2[M(−5,0,0)] + 2[M(−4,−4,−1)]

− 2[M(−4,−4,0)]− 2[M(−4,−2,−3)] + [M(−4,−2,2)]

+ 2[M(−4,−1,−3)]− [M(−4,−1,2)]− [M(−4,1,−1)]

+ [M(−4,1,0)]− 2[M(−3,−4,−2)] + 2[M(−3,−4,1)]

+ 2[M(−3,−3,−3)]− [M(−3,−3,2)]− 2[M(−3,0,−3)]

+ [M(−3,0,2)] + [M(−3,1,−2)]− [M(−3,1,1)]

+ [M(−2,−4,−2)]− [M(−2,−4,1)]− [M(−2,−3,−3)]

+ [M(−2,−3,2)] + [M(−2,0,−3)]− [M(−2,1,−2)]

− [M(−1,−4,−1)] + [M(−1,−4,0)] + [M(−1,−2,−3)]

− [M(−1,−2,2)]− [M(−1,−1,−3)] + [M(−1,1,−1)] . (3.8)

Note the multiplicities of the Verma modules, which go up to three, even in this low rank

example. Proceeding in this fashion, one can imagine filling out systematically the thick

catalogue of character formulas. The reader who is so inclined will surely find the tables

to be constructed shortly equally mesmerizing.

4 The unitary conformal multiplets

In section 3 we exhibited how to compute the structure and character of any highest weight

representation of the conformal algebra so(2, n). In this section, we determine which of the

highest weight conformal multiplets are unitary. Those multiplets are the representation

theoretic building blocks of unitary conformal field theories. The mathematical analysis of

the unitarizability of the representations of the conformal algebra fits into a more general

framework, which we recall briefly.

Firstly, let G be a simply connected and connected simple Lie group, and K a closed

maximal subgroup. Then, the group G admits a non-trivial unitary highest weight mod-

ule precisely when (G,K) is a Hermitian symmetric pair [24, 25]. Hermitian symmetric

pairs have been classified [16]. See appendix B for a summary of the relevant struc-

ture theory of real simple Lie groups, and [26] for a complete treatment. The con-

formal group G = SO(2, n) satisfies the condition, with the maximal compact subgroup
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K = SO(2) × Spin(n). The techniques used to classify the unitary highest weight rep-

resentations for such groups include the identification of weights of null vectors and the

degeneration of the contravariant form on the Verma module [27, 28].

The full classification of the unitary highest weight modules of the conformal algebras

was obtained in [27]. It is based on an exploitation of necessary and sufficient inequalities

satisfied by unitary representations. These were derived in full generality in [29]. The

analysis of physicists of level one and level two constraints on unitary representations can be

viewed as a partial analysis of the necessary conditions. In this section, we demonstrate that

it suffices to decipher the earlier and more complete mathematical classification results to

recuperate in a uniform manner the results in the physics literature. We provide a glimpse

of the concepts that underlie the classification result, illustrate the general analysis in the

example of B2 = so(2, 3), and then recall the full classification of the unitary highest weight

multiplets for the Bk = so(2, 2k − 1) and Dk = so(2, 2k − 2) algebras. A physics reference

in the same vein is [1].

4.1 Useful concepts

We again consider highest weight modules based on a highest weight state with respect

to a Borel subalgebra b of the complexified Lie algebra. The elements h in the Cartan

subalgebra h act as λ(h) where λ is the highest weight. The span of the compact root

system Φc has co-dimension one in the dual h∗ of the Cartan subalgebra [26]. We define

β to be the maximal non-compact root [26]. The classification theorem of [27] introduces

a class of weights, which we generically write Λ, which are Φ+
c dominant (because the

compact subalgebra k is finitely represented) and which satisfy

〈Λ + ρ, β〉 = 0 , (4.1)

where β is the maximal non-compact positive root of the conformal algebra.6 We also

introduce an element ζ of the weight space which satisfies that it is orthogonal to all

compact roots as well as the normalization

2〈ζ, β〉
〈β, β〉

= 1 . (4.2)

Then the highest weights corresponding to unitarizable representations all lie on the lines

λ = Λ + zζ where z is a real number. See figure 5.

There is a half-line of unitary representations ending at a point which is generically

at a positive value of z, depending on the algebra g and the weight Λ. Then, there are

further points where unitary representations can occur, taking values in an equally spaced

set, with a spacing which depends on the algebra only. There is an endpoint to this discrete

set. The calculation of the three constants (called A(Λ), B(Λ) and C(Λ) in figure 5) that

determine this set proceeds via the introduction of auxiliary root systems.

Indeed, we want to bring to the fore how singular the weight Λ is with respect to the

compact root system. To that end, we define the subset Φc(Λ) of compact roots orthogonal

6In [27], the weights Λ are called λ0.
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A(Λ) B(Λ)

C(Λ)

Figure 5. The positioning of unitary highest weight representations in highest weight space. The

highest weights lie on lines of the form λ = Λ + zζ, and the figure represents the values of z ∈ R
that give unitary weights. On a given line, there is a semi-infinite line of highest weights which

is allowed, and then an equally spaced set of discrete allowed values, starting at the end of the

half-line, and ending after a finite number of steps.

to Λ. We then define the new root system {±β}∪Φc(Λ) and decompose it into simple root

subsystems. The simple root system which contains the maximal non-compact root β is

baptized Q(Λ). Exceptionally, we will make use of a second root system R(Λ), defined as

follows. If the root system Φ has two root lengths and there is a short root not orthogonal

to the system Q(Λ) and such that 〈Λ, α〉/〈α, α〉 = 1, then we adjoin the short root to

Q(Λ). The simple component containing β of the resulting root system is named R(Λ).

These root systems can be algorithmically determined from the weight Λ, and they allow

for the calculations of the three constants, which in turn determine all the unitary highest

weight conformal multiplets. The calculations are performed explicitly in [27]. We review

the results of the calculations in subsections 4.2 and 4.3.

4.2 The algebras Bk = so(2, 2k − 1)

In this subsection, we generalize the example of the so(2, 3) algebra to include all conformal

algebras so(2, 2k−1) associated to a space-times of odd dimension 2k−1. We list all unitary

highest weight representations [27]. We again use the conventions of appendix A. Firstly, we

review the set Φ+
c of positive compact roots, as well as the set Φ+

n of positive non-compact

roots [26]:

Φ+
c = {ei ± ej |2 ≤ i < j ≤ n} ∪ {ej |2 ≤ j ≤ n}

Φ+
n = {e1 ± ej |2 ≤ j ≤ n} ∪ {e1} . (4.3)

The highest non-compact root

β = e1 + e2 (4.4)

coincides with the highest root of the algebra. When we include the highest root of the

algebra in the Dynkin diagram, we obtain the affine untwisted Dynkin diagram. The Weyl

vector ρ for the Bk algebra is

ρ = (k − 1/2, k − 3/2, . . . , 1/2) . (4.5)

We parameterize the weights Λ in terms of their components in the basis ei of orthonor-

mal vectors and demand that the components corresponding to the compact subalgebra
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so(2k − 1) are dominant integral weights:

Λ = (λ1, . . . , λk)

λ2 ≥ λ3 ≥ · · · ≥ λk ≥ 0

λi − λj ∈ Z for 2 ≤ i < j ≤ k
2λk ∈ Z . (4.6)

We moreover need the λ1 component of the weight Λ to be tuned such that the weight

Λ + ρ is orthogonal to the maximal non-compact root β, which implies

λ1 + λ2 = −2k + 2 . (4.7)

We moreover parameterize the line on which the unitaries with highest weight λ lie in

terms of the normalized orthogonal vector ζ

ζ = (1, 0, . . . , 0)

λ = Λ + zζ . (4.8)

The root systems Q(Λ) and R(Λ) that measure the degenerate nature of the anker

weight Λ will either be the full conformal algebra so(2, n) or su(1, p) with p smaller than

the rank of the conformal algebra. We distinguish three cases for the root systems Q

and R [27]. The first case is labelled by an extra integer p that satisfies 1 ≤ p < k.

Case (I,p) corresponds to root system Q = su(1, p) = R with anker weights Λ obeying

λ2 = λ3 = · · · = λp+1 for p ≤ k − 1. Case II corresponds to Q = so(2, 2k − 1) = R and

λ2 = · · · = 0. Case III is exceptional in that it has a root system Q = su(1, k − 1) that

differs from the root system R = so(2, 2k − 1). The weight satisfies λ2 = · · · = 1/2.

The theorem of [27] states that the highest weight irreducible module with highest

weight λ = Λ + zζ is unitarizable if the module is trivial, or if the highest weight obeys the

inequalities

z ≤ p for case (I,p) and

z ≤ k − 1/2 for cases II and III . (4.9)

Preparing for a physicist’s energetic lowest weight perspective, we denote the first compo-

nent of the weight λ by λ1 = −E. We summarize the unitarity conditions for so(2, 2k− 1)

in tables 2 and 3.

4.3 The algebras Dk = so(2, 2k − 2)

In this subsection, we list the unitary highest weight modules of the conformal algebra in

even dimensions. We again present highlights of the classification theorem proven in detail

in [27]. The final result in all even dimensions can also be summarized very succinctly.

The ground work is layed by noting that the set of compact positive roots Φ+
c and the

set of non-compact positive roots Φ+
n is given for the Dk algebra by

Φ+
c = {ei ± ej |2 ≤ i < j ≤ k}

Φ+
n = {e1 ± ej |2 ≤ j ≤ k} . (4.10)
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(I,1)

0

1

2 3

...
p p+ 1

...

k − 1 k

(I,p)

2 ≤ p ≤ k − 2

0

1

2 3

...
p p+ 1

...

k − 1 k

(I,k − 1)

0

1

2 3

...
p p+ 1

...

k − 1 k

II

0

1

2 3

...
p p+ 1

...

k − 1 k

III

0

1

2 3

...
p p+ 1

...

k − 1 k

Table 2. Root system types for so(2, 2k − 1) (for k ≥ 3). The circled node 0 is the maximal

non-compact root β, equal to the affine root. The non-circled black nodes are the roots that are

orthogonal to Λ. Because of the constraints on Λ, the root 1 can never be orthogonal to Λ. The

small black dot means that the root satisfies 〈Λ, α〉 = 1
2 . The root system Q(Λ) is the one generated

by the big black dots, and the root system R(Λ) is the one generated by all the black dots.

Type Definition Unitarity constraint

(I,p)
λ2 = · · · = λp+1 > λp+2 (1 ≤ p ≤ k − 2)

λ2 = · · · = λk /∈ {0, 1
2} (p = k − 1)

E ≥ 2k − 2 + λ2 − p

II λ2 = · · · = λk = 0 E ≥ k − 3
2 or E = 0

III λ2 = · · · = λk = 1/2 E ≥ k − 1

Table 3. Unitarity conditions for so(2, 2k − 1). Here the (λ2, . . . , λk) are either all integers or all

half-integers, and λ2 ≥ · · · ≥ λk ≥ 0. We use interchangeably the notation E = −λ1.
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The highest non-compact root β again coincides with the highest root for this algebra

β = e1 + e2 , (4.11)

and the Weyl vector is

ρ = (k − 1, k − 2, . . . , 0) . (4.12)

We use the following parameterization of the anchor weight Λ and the orthogonal pointer

weight ζ

Λ = (λ1, . . . , λn)

ζ = (1, 0, . . . , 0) . (4.13)

The anchor weight Λ is dominant in its compact components:

λ2 ≥ λ3 ≥ · · · ≥ λk−1 ≥ |λk|
λi − λj ∈ N (2 ≤ i < j ≤ k)

2λk ∈ Z
λ1 + λ2 = −2k + 3 . (4.14)

The root systems Q(Λ) and R(Λ) are always equal since all roots have equal length. There

are again three cases to distinguish, but two of them are related by the outer automorphism

of so(2, 2k − 2). The latter acts on the weight components by flipping the sign of the final

component λk. This symmetry of our classification problem reduces the number of cases

to two, namely the root systems su(1, p) with p ≤ k− 1, and the root system so(2, 2k− 2).

The final statement is that the representation is unitarizable if and only if

z ≤ p for case (I,p)

z ≤ k − 1 for case II , (4.15)

with the exception of z = 2k− 3 in case II, which corresponds to the trivial representation

of so(2k − 2). We now determine in which case we are, depending on the weight Λ.

The root system Q(Λ) is simple, and contains at least the maximal non-compact root

β = e1 + e2. Thus, we consider first whether the compact roots containing an e2 term

belong to the root system Q(Λ). Given the constraints on the weights λi of the finite

dimensional representation of so(2k − 2), this is the case if and only if λ2 = λ3. If these

entries are not equal, then the root system Q(Λ) corresponds to the rank one non-compact

algebra su(1, 1). When λ2 = λ3, we attach one further node. We continue in this manner,

and find that when we have consecutive components λ2 = λ3 = · · · = λp = λp+1 equal,

then the non-compact algebra is su(1, p). When we reach the end of the chain, we have the

case λ2 = |λk| 6= 0 with algebra su(1, k − 1). Finally, we have the exceptional case λ2 = 0

for which the root system Q(Λ) corresponds to the full algebra so(2, 2k−2). Thus, for each

weight Λ, we have found the root system Q(Λ). We can then summarize all unitary highest

weight representations. We again declare λ1 = −E, and we run through all possible cases.

We list the results for so(2, 2k − 2) in tables 4 and 5.
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(I,1)

0

1

2

...
p p+ 1

... k − 2

k − 1

k

(I,p)

2 ≤ p ≤ k − 2

0

1

2

...
p p+ 1

... k − 2

k − 1

k

(I,k − 1)

0

1

2

...
p p+ 1

... k − 2

k − 1

k

(I,k − 1)’

0

1

2

...
p p+ 1

... k − 2

k − 1

k

II

0

1

2

...
p p+ 1

... k − 2

k − 1

k

Table 4. Root system types for so(2, 2k− 2) (with k ≥ 2). The circled node 0 is the affine root β.

The non-circled black nodes are the roots that are orthogonal to Λ. Because of the conventions for

Λ, the root 1 can never be orthogonal to Λ.

Type Definition Unitarity constraint

(I,p)

λ2 = · · · = λp+1 > |λp+2| (1 ≤ p ≤ k − 2)

λ2 = · · · = λk 6= 0 for (I,k − 1)

λ2 = · · · = −λk 6= 0 for (I,k − 1)’

E ≥ 2k − 3 + λ2 − p

II λ2 = · · · = λk = 0 E ≥ k − 2 or E = 0

Table 5. Unitarity conditions for so(2, 2k − 2). Here λ2 ≥ · · · ≥ λk−1 ≥ |λk|, all the differences

λi − λi+1 ∈ Z for i = 2, . . . , k − 1 and 2λk ∈ Z. We use interchangeably the notation E = −λ1.
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5 The Weyl group cosets

In this section, we combine the results of sections 3 and 4 to compute the characters of the

unitary irreducible representations of the conformal algebras in various dimensions. We

already saw how the generic representation theory boils down to Weyl group theory and

the calculation of Kazhdan-Lusztig polynomials (evaluated at one). We will further show

that in the case of unitary representations, the Weyl group combinatorics can be simplified

by performing an efficient (parabolic) decomposition. The paper [2] summarizes some of

the features that we exhibit in detail. See also [30, 31] for a related approach, based on

the exact sequences of [32].

Consider the conformal algebra so(2, n) in n dimensions and its Weyl group W . The

Weyl group is generated by the simple reflections S = {s1, . . . , sn+1}. The Weyl group of

the compact subalgebra so(n) is generated by the reflections J = {s2, . . . , sn+1}. We call

this Weyl group WJ . Finally, we construct the set W J ⊂W by taking, in each equivalence

class of WJ\W , the element of minimal length. Then, each w ∈ W can be written in a

unique way as

w = wJw
J , wJ ∈WJ , w

J ∈W J . (5.1)

In particular, the longest element w◦ of W decomposes as w◦,Jw
J
◦ , where w◦,J is the longest

element of WJ .

The highest weights of unitary irreducible representations of the conformal algebras

are dominant in the compact direction. Let λ = w · λ̄ be such a weight, with w ∈ W and

λ̄ antidominant. Because λ is dominant in the compact direction, the parabolic decompo-

sition of w reads w = w◦,Jw
J . Let v = vJv

J ∈ W . We want to evaluate Pv,w. We have

that [15]7

Pv,w = PvJvJ ,w◦,JwJ = Pw◦,JvJ ,w◦,JwJ = P J,−1
vJ ,wJ

. (5.2)

We see that for an element w of the form w = w◦,Jw
J , the polynomial Pv,w depends only

on the representatives of v and w in W J . For that reason, it is necessary to study the

structure of W J . The Bruhat order in W J is given in figure 6 for the conformal algebras.

Using the notations of the figure, we have that [17, 18]

• For Bn,

P J,−1
wi,wj =

{
1 i ≤ j
0 otherwise.

(5.3)

• For Dn,

P J,−1
wi,wj =


0 wi � wj

1 + qj−n−1 n+ 2 ≤ j ≤ 2n− 1 , 1 ≤ i ≤ 2n− j
1 otherwise .

(5.4)

7In the last step, following Proposition 3.4 in [15], we have introduced the standard notation for parabolic

KL polynomials. In the context of our paper, we can take the last equation as their definition. Since the

notation matches the mathematics literature, comparison is easier.
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w1

...

wk−1

wkwk+1

wk+2

...

w2k

w1

...

wk

wk+1

...

w2k

Figure 6. Bruhat order for W J for Dk (left) and Bk (right).

We note the drastic simplification in the complexity of the Kazhdan-Lusztig polynomials.

They can be explicitly computed, and when evaluated at one, they equal no more than two.

These preliminaries allow us to simplify the character formula. Let λ be a unitary

weight. It can be written

λ = (λ1, λ2, . . . , λk︸ ︷︷ ︸
λc

) (5.5)

where λc is a dominant integral weight of the compact subalgebra. As such, it is the highest

weight of a finite dimensional representation of the compact algebra k, whose character is

denoted by [Lk
λ]. This generalizes equation (2.18). Then we can introduce the generalized

Verma modules M c
λ, defined from those finite-dimensional representations of the compact

subalgebra by induction to the full algebra. The characters are related by

[M c
λ] =

eλ1∏
α∈Φ+

n

(1− z−α)
[Lk
λ] (5.6)

and the Weyl character formula gives

[M c
λ] =

∑
w∈WJ

(−1)`(w)[Mw·λ] . (5.7)

Our goal is now to express the irreducible characters [Lλ] in terms of the induced characters
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[M c
µ]. We have, for λ integral and unitary,

[Lw·λ̄] =
∑
w′∈W

(−1)`(w,w
′)Pw′,w(1) [Mw′·λ̄] (5.8)

=
∑

w′J∈WJ

∑
w′J∈WJ

(−1)`(w◦,Jw
J ,w′Jw

′J )Pw′Jw′J ,w◦,JwJ (1)
[
Mw′Jw

′J ·λ̄

]
=

∑
w′J∈WJ

∑
w′J∈WJ

(−1)`(w◦,J )+`(wJ )−`(w′J )−`(w′J )Pw◦,Jw′J ,w◦,JwJ (1)
[
Mw′Jw

′J ·λ̄

]
=

∑
w′J∈WJ

(−1)`(w◦,J )+`(wJ )−`(w′J )Pw◦,Jw′J ,w◦,JwJ (1)
[
M c
w◦,Jw′J ·λ̄

]
.

We have reduced the sum over the Weyl group, which contains respectively 2k−1 k! and

2k k! elements for Dk and Bk, to a sum over the 2k elements of W J . Thus, unitary highest

weight conformal representation theory has been reduced to the analysis of Weyl group

parabolic cosets, and their associated Kazhdan-Lusztig polynomials. All the ingredients in

the character formula can be explicitly computed.

6 The unitary conformal characters

In this section, we apply the schemes of sections 3 and 4 to systematically calculate all

characters of unitary highest weight representations of the conformal algebras so(2, n).

To facilitate the calculations, we give in tables 7 and 6 the values of the parabolic coset

representatives wi in terms of simple reflections si. We number the simple roots as in the

Dynkin diagrams of tables 2 and 4, and denote by si the reflection through the simple root

αi. Finally, we turn to the longest element8 of WJ , which is constructed from the longest

element of the subgroups Bk−1 and Dk−1. We give them as k × k matrices acting on the

orthonormal basis ei of the dual h∗ of the Cartan subalgebra, introduced in appendix A:9

w◦,J =

{
Diag(+1,−1, . . . ,−1,−1) for Bk and Dk odd

Diag(+1,−1, . . . ,−1,+1) for Dk even .
(6.1)

We first treat odd space-time dimensions, and then even space-time dimensions.

6.1 In odd space-time dimension

Consider the so(2, 2k − 1) conformal algebra. We know that the unitary weights fall into

k + 1 categories (see table 2). For these unitary weights, we compute the possible Weyl

groups W[λ].

8The longest element of the Weyl group of a simple Lie algebra can be obtained in terms of simple

reflections as follows [4, 21, 33]. Color the nodes of the Dynkin diagrams in white and black in such a

way that no two dots of the same color are connected. Let wblack (respectively wwhite) be the product

of the simple reflections associated to the simple roots painted in black (respectively white). The longest

element of the Weyl group is w◦ = (wblackwwhite)h/2 where h is the Coxeter number. Since −w◦ induces

an automorphism of the Dynkin diagram, we have w◦ = −1 for algebras other than Ak, Dk and E6. In the

case of Dk, one finds that w◦ = −1 if k is even, and for k odd −w◦ exchanges the last two simple roots.
9The dots represent minus ones.
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Element of W J Expression in terms of simple reflections

Inequality

wi (1 ≤ i ≤ k)
wi = s1 . . . si−1

−λρ2 ≤ −λ
ρ
3 ≤ · · · ≤ −λ

ρ
i ≤ λ

ρ
1 ≤ −λ

ρ
i+1 ≤ · · · ≤ −λ

ρ
k ≤ 0

w2k+1−i (1 ≤ i ≤ k)
w2k+1−i = s1 . . . sk−1sksk−1 . . . si

−λρ2 ≤ −λ
ρ
3 ≤ · · · ≤ −λ

ρ
i ≤ −λ

ρ
1 ≤ −λ

ρ
i+1 ≤ · · · ≤ −λ

ρ
k ≤ 0

Table 6. We write the inequality satisfied by a weight of the form λ = w◦,Jwi · λ̄ with λ̄ antidom-

inant. We recall that λ in Bk is antidominant if and only if λρ1 ≤ · · · ≤ λ
ρ
k ≤ 0.

There are k2 positive roots: k short roots of the form α = ei, for which 〈λ, α∨〉 = 2λi,

and k2 − k long roots ei ± ej for 1 ≤ i < j ≤ k for which 〈λ, α∨〉 = λi ± λj . For a unitary

weight, we saw that (λ2, . . . , λk) ∈ Zk−1 ∪ (Z+ 1
2)k−1. Therefore the (k − 1)2 roots ei ± ej

for 2 ≤ i < j ≤ k and ei for 2 ≤ i ≤ k satisfy 〈λ, α∨〉 ∈ Z. We have to examine the

remaining roots e1 and e1± ei. This leads to the three following possibilities, which define

what we call the integrality class of the weight λ:

Condition W[λ] (Integrality class)

λ1 − λ2 /∈ 1
2Z Bk−1 (non-integral)

λ1 − λ2 ∈ 1
2 + Z Bk−1 ⊕A1 (half-integral)

λ1 − λ2 ∈ Z Bk (integral)

(6.2)

We see that in addition to the integral case (where W[λ] = Bk), there are two other

integrality classes to consider, which have W[λ] = Bk−1 ⊕ A1 and W[λ] = Bk−1. We

examine them in turn in the following paragraphs.

In the non-integral case, W[λ] reduces to the parabolic Weyl group WJ , so we just have

[Lλ] = [M c
λ].

In the half-integral case, we have to take into account a possible reflection with respect

to the A1 root, which in our notation is e1. The two A1 Weyl chambers are delimited by

the wall λ1 = 1
2 − k. From this, we deduce that

• If λ1 ≤ 1
2 − k, then [Lλ] = [M c

λ].

• If λ1 >
1
2 − k, we have to remove a correction, corresponding to the dot image of λ

under the e1 reflection. Using the notation (5.5), this gives the character formula

[Lλ] = [M c
(λ1,λc)

]− [M c
(1−2k−λ1,λc)

] . (6.3)

Finally, the integral case is the most complicated one. We apply the Kazhdan-Lusztig

formula (3.4), where the antidominant weight λ̄ is needed. If the weight λ is singular,

several different pairs (w, λ̄) can a priori be used in the parameterization (3.2), but for

equation (3.4) to be valid, we need to choose the Weyl group element w of minimal length.

Moreover we know that w ∈ w◦,JW J . In table 6, we have gathered for each such element
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Element of W J Expression in terms of simple reflections

Inequality

wi (1 ≤ i ≤ k − 1)
wi = s1 . . . si−1

−λρ2 ≤ · · · ≤ −λ
ρ
i ≤ +λρ1 ≤ −λ

ρ
i+1 ≤ · · · ≤ −λ

ρ
k−1 ≤ −|λ

ρ
k|

wk
wk = s1 . . . sk−2sk

−λρ2 ≤ · · · ≤ −λ
ρ
k−1 ≤ −λ

ρ
k ≤ −|λ

ρ
1|

wk+1

wk+1 = s1 . . . sk−2sk−1

−λρ2 ≤ · · · ≤ −λ
ρ
k−1 ≤ +λρk ≤ −|λ

ρ
1|

w2k+1−i (1 ≤ i ≤ k − 1)
w2k+1−i = s1 . . . sk−1sksk−2sk−3 . . . si

−λρ2 ≤ · · · ≤ −λ
ρ
i ≤ −λ

ρ
1 ≤ −λ

ρ
i+1 ≤ · · · ≤ −λ

ρ
k−1 ≤ −|λ

ρ
k|

Table 7. We write the inequality satisfied by a weight of the form λ = w◦,Jwj · λ̄ with λ̄ antidom-

inant. We recall that a weight λ in Dk is antidominant if and only if λρ1 ≤ · · · ≤ λ
ρ
k−1 ≤ −|λ

ρ
k|.

w the inequalities that w · λ̄ satisfies, with λ̄ antidominant. This means that we select the

lowest value of i such that λ satisfies the inequality associated to the coset representative

wi in table 6. In the table, in order to write the inequalities in a more compact way, we

use the shifted notation

λρ := λ+ ρ . (6.4)

Then, combining equations (5.8) and (5.3) gives the result.

6.2 In even space-time dimension

Secondly, we perform the same analysis for even space-time dimension. The algebra

so(2, 2k − 2) possesses k(k − 1) positive roots ei ± ej for 1 ≤ i < j ≤ k. For a root

α = ei± ej , we have 〈λ, α∨〉 = λi±λj . A unitary weight has λi±λj ∈ Z for 2 ≤ i < j ≤ k,

so only two configurations are possible:

Condition W[λ] (Integrality class)

λ1 − λ2 /∈ Z Dk−1 (non integral)

λ1 − λ2 ∈ Z Dk (integral)

(6.5)

In the non-integral case, we have [Lλ] = [M c
λ]. In the integral case, one has to examine the

inequalities satisfied by λρ. Again, we pick the smallest wi such that the corresponding

inequality in table 7 is satisfied,10 and use formula (5.8). The compact notation λρ := λ+ρ

is also used. Let us study a few explicit examples.

Example. Consider the weight λ = (−1, 0, 0) in so(2, 4). It is unitary of type II. More-

over, we have λρ = (1, 1, 0), which satisfies the inequalities for w5 and w6 but not the other

10Since the order is only partial, this could be ill defined if the inequalities of wk and wk+1 could both be

satisfied, and not those for wi, i ≤ k − 1. However, one checks that the inequalities of wk and wk+1 imply

λρ1 = λρk = 0, and therefore the inequality of wk−1 would be satisfied. Thus, there really is no ambiguity.
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wi. So we must write λ = w◦,Jw5 · λ̄ with λ̄ = (−3,−2, 0). Using the polynomials (5.4),

we obtain

[Lλ] = [M c
w◦,Jw5·λ̄]− [M c

w◦,Jw4·λ̄]− [M c
w◦,Jw3·λ̄] + [M c

w◦,Jw2·λ̄]− 2[M c
w◦,Jw1·λ̄] . (6.6)

One computes w◦,Jw4 ·λ̄ = (−2, 0, 1), w◦,Jw3 ·λ̄ = (−2, 0,−1), and w◦,Jw2 ·λ̄ = w◦,Jw2 ·λ̄ =

(−3, 0, 0). The compact part of the weights (−2, 0,±1) is singular, so the corresponding

module is trivial and disappears in the character formula, as per the remark at the end of

section 3.3. We conclude

[L(−1,0,0)] = [M c
(−1,0,0)]− [M c

(−3,0,0)] . (6.7)

Note that this result arises from cancelling terms that contain multiplicities larger than one.

Example. Similarly, the weight λ = (−2, 0, 0, 0) in so(2, 6) is associated to the coset

representative w6, and we have

[Lλ] = [M c
w◦,Jw6·λ̄]− [M c

w◦,Jw5·λ̄]− [M c
w◦,Jw4·λ̄] + [M c

w◦,Jw3·λ̄]− 2[M c
w◦,Jw2·λ̄] + 2[M c

w◦,Jw1·λ̄] .

This reduces to

[L(−2,0,0,0)] = [M c
(−2,0,0,0)]− [M c

(−4,0,0,0)] . (6.8)

Again, multiplicities larger than one (and therefore non-trivial Kazhdan-Lusztig polyno-

mials) play an intermediate role.

Conclusion. We conclude that the calculation of the characters of all highest weight

unitary representations of the conformal algebra in any dimension is straightforward using

the mathematical technology. Deciphering suffices.

7 Summary and comparison with the physics literature

A large physics literature exploring the representation theory of the conformal algebras

so(2, n) is available. The literature concentrates on unitary representations. These were

classified in three dimensions [6, 9] and in four dimensions [34]. See also the more general

treatment in [35]. The paper [1] identifies the unitary representations in arbitrary dimen-

sions, based on the earlier mathematical treatment in [27] which we reviewed in section 4

and which we summarized in tables 3 and 5. Character formulas were computed in many

instances. The most general treatment across dimensions is [36].11

In this section, we translate the uniform mathematical results of section 6 into a

notation more frequently used by physicists in order to make both the mathematics and the

physics literature more accessible. We again identify the energy E, equal to the conformal

dimension ∆ of the ground state, with minus the first component of the highest weight,

E = −λ1. Moreover, the compact subalgebra so(n) describes space rotations, and we switch

to spin labels (j1, . . . , j[n/2]) to describe the highest weights of the rotation algebra,12

λ = (λ1, λ2, . . . , λ1+[n/2])︸ ︷︷ ︸
Math

= (−E, j1, . . . , j[n/2])︸ ︷︷ ︸
Physics

. (7.1)

11However, the physics literature has not always been entirely accurate, even in the better of resources.

See the remark in footnote 15.
12The spin labels are closer but not yet identical to the most common spin labels in the physics literature.

Our convention is uniform across dimensions.
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7.1 The executive summary

Firstly though, we summarize the results of sections 4, 5 and 6 in an effective algorithm that

can be used to compute the conformal character — and indeed the module decomposition

— for any unitary weight. The irreducible conformal character with highest weight λ is

denoted [Lλ], and we will obtain an expression in terms of the Verma modules characters

[Mλ] defined in equation (3.3).

The procedure runs as follows. Let λ = (λ1, . . . , λk) be a weight in Bk or Dk.

1. Determine whether it is unitary or not using tables 3 and 5. If the weight is not

unitary, then the character is given by the general Kazhdan-Lusztig formula (3.4). To

obtain the character, one needs to compute generic Kazhdan-Lusztig polynomials. If

the weight is unitary, then a simplification of the generic formula occurs, as explained

in step two.

2. If the weight λ is unitary, determine its integrality class using (6.2) for a conformal

algebra of type B, and (6.5) for an algebra of type D.

• If the integrality class is Bk−1 or Dk−1, then [Lλ] = [M c
λ]. (See equation (5.6)

for the character [M c
λ] of the Verma module induced from an irreducible repre-

sentation of the compact subalgebra.)

• If the integrality class is Bk−1 ⊕ A1, then [Lλ] = [M c
(λ1,λc)

] − [M c
(1−2k−λ1,λc)

]

when λ1 >
1
2 − k, and [Lλ] = [M c

λ] otherwise.

• If the integrality class is Bk or Dk, then look for the lowest wi in figure 6 such

that λρ = λ + ρ satisfies the corresponding inequality in tables 7 and 6,13 and

define λ̄ = (w◦,Jwi)
−1 · λ. The irreducible character is then given by

[Lλ] =

2k∑
j=1

(−1)`(wi)−`(wj)bji[M
c
w◦,Jwj ·λ̄] , (7.2)

where the length function ` is the height in figure 6, and the multiplicities bji
are obtained by evaluating expressions (5.3) and (5.4) at q = 1, i.e. for Bk,

bji =

{
1 j ≤ i
0 otherwise,

(7.3)

and for Dk,

bji =


0 wj � wi

2 k + 2 ≤ i ≤ 2k − 1 , 1 ≤ j ≤ 2k − i
1 otherwise .

(7.4)

13We recall that ρ = (k − 1
2
, k − 3

2
, . . . , 1

2
) for Bk and ρ = (k − 1, k − 2, . . . , 0) for Dk. Moreover, the dot

action is defined by w · λ = w(λ+ ρ)− ρ. Finally, the longest element of the parabolic Weyl group w◦,J is

given in equation (6.1).
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Example. Before we delve into the exhaustive treatment of the low dimensions, we illus-

trate how the algorithm allows to effectively compute the character of any highest-weight

irreducible representation in any dimension.

Consider the weight λ = (−8, 2, 2, 2, 2, 1) in so(2, 10). This algebra is of type Dk with

k = 6. First, we check that this weight is unitary. We have E = −λ1 = 8, and we observe in

table 5 that the unitary constraint is of type (I,4) and reads E ≥ 12−3+2−4 = 7, which is

satisfied. To determine the integrality class, we look at table (6.5), and since λ1−λ2 = −10

is integer, we are in the integral case, called Dk. Hence we are instructed to look in table 7

for the smallest wi, in the order given by figure 6, such that the corresponding inequality

holds. For that, we first compute λρ = (−3, 6, 5, 4, 3, 1). The inequalities for w4 and w5 are

both satisfied, but because w4 is smaller than w5, we pick w4. Now we compute λ̄. First,

note that w◦,J = Diag(1,−1,−1,−1,−1, 1), and w4 = s1s2s3 is a cyclic permutation of

the four first entries of a weight. So λ̄ = (−11,−9,−7,−5,−4, 1). Finally, the coefficients

bji are non-vanishing only for j = 1, 2, 3, 4, so we compute the action of w◦,Jwj for these

values of j on λ̄: w◦,Jw1 · λ̄ = (−11, 1, 1, 1, 2, 1), w◦,Jw2 · λ̄ = (−10, 2, 1, 1, 2, 1), w◦,Jw1 · λ̄ =

(−9, 2, 2, 1, 2, 1), w◦,Jw4 · λ̄ = (−8, 2, 2, 2, 2, 1). Then, reading the lengths on figure 6, we

conclude that

[L(−8,2,2,2,2,1)]=[M c
(−8,2,2,2,2,1)]−[M c

(−9,2,2,1,2,1)]+[M c
(−10,2,1,1,2,1)]−[M c

(−11,1,1,1,2,1)] . (7.5)

In appendix C, we execute the procedure, and explicitly write down the results of for-

mula (7.2) for dimensions up to and including seven, for all integral unitary weights.

7.2 A brief comparison to the physics literature

While the formalism we presented is efficient, it may be beneficial to make an explicit

comparison to results in the literature. We kick off the brief comparison in three dimensions.

Three dimensions: so(2, 3). We write the highest weights λ = (−E, j) in terms of the

energy E and spin j of the representation. The unitarity condition of table 3 becomes,

with j ∈ 1
2Z≥0:

• Type (I,1) is E ≥ j + 1 for j 6= 0, 1
2 ;

• Type II is E ≥ 1
2 or E = 0 for j = 0;

• Type III is E ≥ 1 for j = 1
2 .

For a unitary weight, we then look at the integrality classes:

• If 2E /∈ Z, [Lλ] = [M c
λ].

• If E + j ∈ 1
2 + Z, then [L(−E,j)] = [M c

(−E,j)] − [M c
(−(3−E),j)] if E < 3

2 , and

[L(−E,j)] = [M c
(−E,j)] otherwise.
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• Finally, if E + j ∈ Z, we look at table 6, which takes the form

w1 j ≤ E − 2

w2 j ≥ E − 2 ≥ −1
2

w3 j ≥ −E + 1 ≥ −1
2

w4 j ≤ −E + 1

(7.6)

We look for the smallest i such that the wi condition is satisfied by λ, and read the

character in figure 6. For reference, the results are listed in table (C.1), for each

possible value of i. In this way we recover the results of section 2.

Four dimensions: so(2, 4). In four dimensions, there are three types of unitary weights

λ = (−E, j1, j2). Table 5 gives, for j1 ≥ |j2| and j1 − j2 ∈ Z:14

• Type (I,1) is j1 > |j2| and E ≥ j1 + 2;

• Type (I,2) is j1 = ±j2 6= 0 and E ≥ j1 + 1;

• Type II is j1 = j2 = 0 and E ≥ 1 or E = 0.

There are two integrality classes of unitary weights, namely D3 and D2, depending on

whether E − j1 ∈ Z, or not. In the non integral case, we have [Lλ] = [M c
λ]. In the integral

case, we look in table 7 for the smallest i such that the appriopriate inequality is satisfied,

with λρ1 = −E + 2, λρ2 = j1 + 1 and λ2 = j2. For each value of i, the character [Lλ] can

then be read in table (C.3). Thus, we recover the results of [36, 37].

Five dimensions: so(2, 5). We distinguish the generic representations with E ≥ 3+λ2

and λ2 > λ3 (case I,1), the representations E ≥ 2 + λ2 where λ2 = λ3 (case I,2) and

the representations with E ≥ 3/2, which are scalar (case II), or E = 0, and E ≥ 2

for the spinor (case III). The analysis runs along the lines of the analysis of the conformal

algebra so(3, 2) in three dimensions. We provide the explicit results for the integral unitary

weights in table (C.4). When the results can easily be compared, they coincide with [36].

The remark on singular weights in subsection 3.3 plays a role in interpreting the results

of [36] correctly.

Six dimensions: so(2, 6). The analysis is as for the four dimensional conformal algebra.

We provide the explicit results for the integral unitary weights in table (C.5). When the

results of [38] can be unambiguously compared, they agree with ours.

Remark on the generic case. Our treatment is generic, as is [36], but we carefully

keep track of possible multiple subtractions of Verma modules.15 As in [1], our analysis

has the advantage of being proven necessary and sufficient in arbitrary dimension in regards

to unitarity.

14For comparison with most of the physics literature, one redefines j̃1 = (j1 + j2)/2 and j̃2 = (j1 − j2)/2.
15Historically, in the mathematical literature, this was not analyzed correctly [5]. In particular, the

otherwise important contribution by Verma [39] was mistaken on the possibly larger than one multiplicity

of Verma modules to be added or subtracted in the character formula. This has led to wrong claims in

the mathematics literature, which unfortunately have propagated to the physics literature (see appendix A

of [36]). It will be interesting to attempt to prove the character formulas of [36], using the techniques we

explained.
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8 Apologia

Our main aim was to provide physicists with an overview of the representation theory

of conformal multiplets. Highest weight representations make up a large category of rep-

resentations that is well understood. The minimal data to compute character formulas

for irreducible representations is coded in the Weyl group and the Kazhdan-Lusztig poly-

nomials. Mathematicians have also provided a complete analysis of the necessary and

sufficient conditions for unitarity, using a more powerful version of the inequalities derived

in the physics literature. Moreover, unitarity restricts the highest weights such that the

combinatorial Kazhdan-Lusztig calculations drastically simplify.

Secondly, by translating mathematics, we have added to the physics literature. We

explained how to systematically compute the characters of irreducible highest weight rep-

resentations even when they are not unitary. We have stressed that the conditions for

unitarity are necessary and sufficient, and that they can be formulated at arbitrary rank.

In our analysis, we have dealt systematically with both non-integral as well as singular

weights. Moreover, we have provided a clear classification of all cases of unitary characters

in terms of coset representatives of a Weyl subgroup of the Weyl group of the conformal al-

gebra. Using our systematic insight, we provided look-up tables for unitary highest weight

representation characters for conformal algebras up to and including rank four. They are

guaranteed to be complete. Mostly, we hope these tables have gained in transparency.

Thirdly, these techniques can be refined to apply to superconformal characters. We

plan to discuss the necessary extensions elsewhere.

Finally, we wrote this paper because we would have liked to read it.
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A The Lie algebra conventions

We use the parameterization of [26] for the roots and weights of the Bk and Dk simple Lie

algebras. We describe these conventions in detail. In both cases, the dual of the Cartan

subalgebra h∗ is spanned by an orthonormal basis (e1, . . . , ek). When we write a weight in

components, it is always understood that the coordinates are with respect to this basis.

A.1 The Lie algebra Bk

We have the set of roots Φ = {±ei±ej ,±ei} and a choice of set of simple roots Φs = {αi<k =

ei−ei+1, αk = ek}. The fundamental weights can then be written as $i<k = e1+· · ·+ei and
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$k = (e1 + · · ·+ ek)/2. The Weyl vector ρ equals ρ = ((2k−1)e1 + (2k−3)e2 + · · ·+ ek)/2.

The Weyl group is WBn = Zk2 o Sk and acts by permutations and sign changes of the

orthonormal vectors ei. The conformal algebra so(2, n) with n odd corresponds to a Bk
algebra of rank k = (n+ 1)/2.

A.2 The Lie algebra Dk

The set of roots is Φ = {±ei± ej} while simple roots are collected in the set Φs = {αi<k =

ei − ei+1, αk = ek−1 + ek}. The fundamental weights are $i<k−1 = e1 + · · · + ei, $k−1 =

(e1 + · · · + ek−1 − ek)/2, $k = (e1 + · · · + ek)/2. The Weyl vector ρ comes out to be

ρ = (k − 1)e1 + (k − 2)e2 + · · · + ek−1. The Weyl group is WDn = Zk−1
2 o Sk and acts by

permuting the vectors ei and an even number of sign changes. For the conformal algebra

so(2, n) with n even, we have a Dk algebra of rank k = (n+ 2)/2.

B The structure of real simple Lie algebras

We summarize results of the structure theory of semisimple real Lie algebras. We follow

the notation of [26] to which we must refer the reader for a complete exposition.16

B.1 The structure theory

Every complex semisimple algebra g has a compact real form. We denote the compact real

forms by su(n), so(n), sp(n) and e6,7,8, f4 and g2. The Killing form on a compact semisimple

Lie algebra is negative semi-definite and non-degenerate.

Every real semisimple Lie algebra g0 has a Cartan involution θ, unique up to conjuga-

tion. It is such that Bθ(X,Y ) = −B(X, θ(Y )) is positive definite, where B is the Killing

form. This involution θ gives rise to an eigenspace decomposition

g0 = k0 ⊕ p0 (B.1)

into eigenspaces of eigenvalues +1 and −1 respectively. In matrix realizations of Lie al-

gebras, the Cartan involution θ can be defined by θ(X) = −X†, where the dagger stands

for the conjugate transpose. The Killing form on g0 is negative semi-definite on k0 and

positive semi-definite on p0.

Every Cartan subalgebra h0 of g0 is conjugate to a θ-stable subalgebra, and we will

assume that we have picked a Cartan subalgebra h0 that is θ-stable. We can then decompose

the Cartan subalgebra into subalgebras

h0 = t0 ⊕ a0 (B.2)

with t0 ⊂ k0 and a0 ⊂ p0. The dimension of t0 is called the compact dimension of h0, and

the dimension of a0 is called the non-compact dimension. We say that a Cartan subalgebra

is maximally (non-)compact if its (non-)compact dimension is maximal.

16Our summary is mainly based on chapters VI on the Structure Theory of Semisimple Groups, and

chapter VII on the Advanced Structure Theory.
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Given a θ-stable Cartan subalgebra h0 = t0 ⊕ a0, the roots of (g, h) are imaginary on

t0 and real on a0. As a consequence, we say that a root α ∈ h∗0 is real if it vanishes on t0,

and that it is imaginary if it vanishes on a0. Otherwise, the root is said to be complex.

We say that an imaginary root is compact if the associated root space is included in k, and

that it is non-compact if it is included in p.

To a real semi-simple Lie algebra g0, we associate a Vogan diagram which is the Dynkin

diagram of its complexification g, adorned with additional data. For a maximally compact

choice of h0, there are no real roots. Since there are no real roots, we can pick a set of

positive roots such that θ(Φ+) = Φ+. The Vogan diagram of the triple (g0, h0,Φ
+) is the

Dynkin diagram of Φ+ with 2-element orbits of θ made manifest, and with the 1-element

orbits painted when corresponding to a non-compact simple root, and unpainted when

compact [26].

B.2 The classification of real simple Lie algebras

Firstly, there are the complex simple Lie algebras, considered as an algebra over the real

numbers. Secondly, there are the Lie algebras whose complexification is simple over the

complex numbers. These algebras always have a Vogan diagram with at most one simple

root painted. Amongst these diagrams, one can remove further equivalences. The resulting

classification of simple real Lie algebras is summarized e.g. in Theorem 6.105 in [26]. It

includes the non-compact forms so(p, q) of the special orthogonal algebras. The Vogan

diagram for so(2, 2k − 1) is

1 2

...

k − 1 k (B.3)

and for so(2, 2k − 2),

1 2

... k − 2

k − 1

k (B.4)

They summarize all of the Lie algebra data of the real simple algebra.

B.3 The classification of Hermitian symmetric pairs

Unitary discrete highest weight representations only exist for algebras g0 that are part of a

Hermitian symmetric pair. This is because the Cartan subalgebra should be entirely within

the compact subalgebra k0 (as follows from analyzing unitarity within a Cartan subgroup

and the matrix realization of the Cartan involution θ), which is equivalent to the Hermitian

symmetric pair condition. Hermitian symmetric spaces are coset spaces G/K (with G

a real group and K its maximal compact subgroup) which are Riemannian manifolds

with a compatible complex structure and on which the group G acts by holomorphic

transformations. A manifold X = G/K is Hermitian if and only if the center of K is a

one-dimensional central torus. They were classified by Cartan [16], and fall into the list

recorded in table 8.17 Crucial to us is the entry so(2, n).

17Reference [26] table (7.147).
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g0 k0

su(p, q) su(p)⊕ su(q)⊕ R
so(2, n) so(n)⊕ R
sp(n,R) su(n)⊕ R
so∗(2n) su(n)⊕ R
E III so(10)⊕ R
E VII e6 ⊕ R

Table 8. The Hermitian symmetric pairs (g0, k0).

C The character tables for integral unitary weights

We collect the tables of characters of integral unitary highest weight representations, clas-

sified by their parabolic coset representative wi. See section 6. Some wi are not associ-

ated with any unitary weight. In the following tables, they are signalled by an asterisk.

Moreover, the brackets around M c
λ are omitted. As always, we use the notation (7.1) for

the weights.

B2 = so(2, 3)

w1 M c
(−E,j)

w2 M c
(−E,j) −M

c
(−j−2,E−2)

w3 −M c
(E−3,j) +M c

(−E,j) +M c
(−j−2,1−E)

w4 −M c
(E−3,j) +M c

(−E,j) +M c
(−j−2,1−E) −M

c
(j−1,1−E)

(C.1)

To illustrate how these tables can be used, let us recover the character of the trivial

representation L(0,0) of so(2, 3). This corresponds to the coset representative w4, and

we read in the table

[L(0,0)] = −[M c
(−3,0)] + [M c

(0,0)] + [M c
(−2,1)]− [M c

(−1,1)] . (C.2)

Using the explicit expression (2.17), we obtain [L(0,0)] = 1, as expected.

D3 = so(2, 4)

w1 M c
(−E,j1,j2)

w2 M c
(−E,j1,j2) −M

c
(−j1−3,E−3,j2)

w3 M c
(−E,j1,j2) +M c

(−j1−3,−j2−1,2−E) −M
c
(j2−2,j1,2−E)

w4 M c
(−E,j1,j2) +M c

(−j1−3,j2−1,E−2) −M
c
(−j2−2,j1,E−2)

w5

M c
(E−4,j1,−j2) +M c

(−E,j1,j2) − 2M c
(−j1−3,1−E,−j2)

−M c
(−j2−2,j1,E−2) −M

c
(j2−2,j1,2−E)

w6

M c
(E−4,j1,−j2) +M c

(−E,j1,j2) −M
c
(−j1−3,1−E,−j2)

−M c
(j1−1,1−E,j2) +M c

(−j2−2,1−E,−j1−1) +M c
(j2−2,1−E,j1+1)

(C.3)
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B3 = so(2, 5)

w1 M c
(−E,j1,j2)

w2 M c
(−E,j1,j2) −M

c
(−j1−4,E−4,j2)

w3 M c
(−E,j1,j2) +M c

(−j1−4,j2−1,E−3) −M
c
(−j2−3,j1,E−3)

w4

−M c
(E−5,j1,j2) +M c

(−E,j1,j2) −M
c
(−j1−4,j2−1,2−E)

+M c
(−j2−3,j1,2−E)

w?5

−M c
(E−5,j1,j2) +M c

(−E,j1,j2) +M c
(−j1−4,1−E,j2)

+M c
(−j2−3,j1,2−E) −M

c
(j2−2,j1,2−E)

w6

−M c
(E−5,j1,j2) +M c

(−E,j1,j2) +M c
(−j1−4,1−E,j2)

−M c
(j1−1,1−E,j2) −M

c
(−j2−3,1−E,j1+1) +M c

(j2−2,1−E,j1+1)

(C.4)

D4 = so(2, 6)

w1 M c
(−E,j1,j2,j3)

w2 M c
(−E,j1,j2,j3) −M

c
(−j1−5,E−5,j2,j3)

w3 M c
(−E,j1,j2,j3) +M c

(−j1−5,j2−1,E−4,j3) −M
c
(−j2−4,j1,E−4,j3)

w4

M c
(−E,j1,j2,j3) −M

c
(−j1−5,j2−1,j3−1,E−3) +M c

(−j2−4,j1,j3−1,E−3)

−M c
(−j3−3,j1,j2,E−3)

w5

M c
(−E,j1,j2,j3) −M

c
(−j1−5,j2−1,−j3−1,3−E) +M c

(−j2−4,j1,−j3−1,3−E)

−M c
(j3−3,j1,j2,3−E)

w6

M c
(E−6,j1,j2,−j3) +M c

(−E,j1,j2,j3) + 2M c
(−j1−5,j2−1,2−E,−j3)

−2M c
(−j2−4,j1,2−E,−j3) −M

c
(−j3−3,j1,j2,E−3) −M

c
(j3−3,j1,j2,3−E)

w?7

M c
(E−6,j1,j2,−j3) +M c

(−E,j1,j2,j3) − 2M c
(−j1−5,1−E,j2,−j3)

−M c
(−j2−4,j1,2−E,−j3) −M

c
(j2−2,j1,2−E,j3) +M c

(−j3−3,j1,2−E,−j2−1)

+M c
(j3−3,j1,2−E,j2+1)

w8

M c
(E−6,j1,j2,−j3) +M c

(−E,j1,j2,j3) −M
c
(−j1−5,1−E,j2,−j3)

−M c
(j1−1,1−E,j2,j3) +M c

(−j2−4,1−E,j1+1,−j3) +M c
(j2−2,1−E,j1+1,j3)

−M c
(−j3−3,1−E,j1+1,−j2−1) −M

c
(j3−3,1−E,j1+1,j2+1)

(C.5)
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B4 = so(2, 7)

w1 M c
(−E,j1,j2,j3)

w2 M c
(−E,j1,j2,j3) −M

c
(−j1−6,E−6,j2,j3)

w3 M c
(−E,j1,j2,j3) +M c

(−j1−6,j2−1,E−5,j3) −M
c
(−j2−5,j1,E−5,j3)

w4

M c
(−E,j1,j2,j3) −M

c
(−j1−6,j2−1,j3−1,E−4) +M c

(−j2−5,j1,j3−1,E−4)

−M c
(−j3−4,j1,j2,E−4)

w5

−M c
(E−7,j1,j2,j3) +M c

(−E,j1,j2,j3) +M c
(−j1−6,j2−1,j3−1,3−E)

−M c
(−j2−5,j1,j3−1,3−E) +M c

(−j3−4,j1,j2,3−E)

w?6

−M c
(E−7,j1,j2,j3) +M c

(−E,j1,j2,j3) −M
c
(−j1−6,j2−1,2−E,j3)

+M c
(−j2−5,j1,2−E,j3) +M c

(−j3−4,j1,j2,3−E) −M
c
(j3−3,j1,j2,3−E)

w?7

−M c
(E−7,j1,j2,j3) +M c

(−E,j1,j2,j3) +M c
(−j1−6,1−E,j2,j3)

+M c
(−j2−5,j1,2−E,j3) −M

c
(j2−2,j1,2−E,j3) −M

c
(−j3−4,j1,2−E,j2+1)

+M c
(j3−3,j1,2−E,j2+1)

w8

−M c
(E−7,j1,j2,j3) +M c

(−E,j1,j2,j3) +M c
(−j1−6,1−E,j2,j3)

−M c
(j1−1,1−E,j2,j3) −M

c
(−j2−5,1−E,j1+1,j3) +M c

(j2−2,1−E,j1+1,j3)

+M c
(−j3−4,1−E,j1+1,j2+1) −M

c
(j3−3,1−E,j1+1,j2+1)

(C.6)
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