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Abstract

This thesis focuses on motion planning for Unmanned Aerial Vehicle
(UAV). The goal is to find a feasible trajectory in 3-D or 2-D space
through a subset of target locations with known rewards such that the
sum of collected rewards is maximized. The starting and ending locations
are known. A limiting factor for number of targets that can be visited is
maximal time of flight. This task is called Orienteering Problem (OP).
To fully utilize the motion range of the UAV, a Hermit splines are used
to generate smooth trajectories. The minimal time of flight estimate for a
given Hermite spline is calculated using known motion model of the UAV
limited by maximum velocity and acceleration. The proposed solution to
the Orienteering Problem using Hermite splines introduced as Hermite
Orienteering Problem (HOP) is based on Random Variable Neighbor-
hood Search algorithm (RVNS), combining random combinatorial state
space exploration and local continuous optimization. This approach was
compared with other currently known solutions to the OP motivated
by UAV applications and showed to be superior as the resulting trajec-
tories reached better final rewards in all testing cases. The trajectories
have been also successfully tested on a real UAV and their feasibility was
verified.

Abstrakt

Diplomová práce se zabývá plánováńım trajektoríı pro bezpilotńı drony
tzv. Unmanned Aerial Vehicle (UAV). Ćılem je nalezeńı trajektorie
ve 2-D či 3-D prostoru skrz určitý počet předem definovaných ćıl̊u se
známým ohodnoceńım, tak aby součet ohodnoceńı navšt́ıvených ćıl̊u
byl co největš́ı. Počátek a ćıl trajektorie je předem známý. Maximálńı
doba letu je omezuj́ıćı podmı́nkou určuj́ıćı počet navšt́ıvených ćıl̊u.
Takto definovaná úloha se nazývá Orienteering Problem (OP). Pro
nalezeńı hladkých a spojitých trajektoríı byly použity Hermitovy křivky,
umožnuj́ıćı využ́ıt plný pohybový potenciál moderńıch UAV. Čas letu pro
danou křivku je odhadován ze znalosti pohybového modelu UAV, který
je omezen maximálńı rychlost́ı a zrychleńım. Navrhované řešeńı OP s
využ́ıt́ım Hermitových křivek definován jako Hermite Orienteering Prob-
lem (HOP) je založeno na algoritmu Random Variable Neighborhood
Search (RVNS), který kombinuje náhodné kombinatorické prohledávańı
stavového prostoru s lokalńı kontinuálńı optimalizaćı. Toto řešeńı bylo
srovnáno s jinými současně známými př́ıstupy k řešeńı OP, přičemž
ve všech provedených testech byla kvalita řešeńı s použit́ım Hermi-
tových křivek nejlepš́ı. Použitelnost a vhodnost źıskaných trajektoríı byla
ověřena na reálném UAV.
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2.3 Bézier curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Velocity profile 14

3.1 2D velocity profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 3D velocity profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Time of flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Orienteering Problem 23

4.1 Euclidean Orienteering Problem . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Dubins Orienteering Problem . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Hermite Orienteering Problem . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Proposed Solution to HOP 28

5.1 RVNS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Combinatorial operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 shake operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.2 local search operators . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Continuous optimization operators . . . . . . . . . . . . . . . . . . . . . . 37

6 Results 39

6.1 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Experimental verification using real UAV . . . . . . . . . . . . . . . . . . . 49

i



CONTENTS

7 Conclusion 55

Appendix A CD Content 61

Appendix B List of abbreviations 63

ii



LIST OF FIGURES

List of Figures

1 Hexarotor UAV created by MRS research group and used for testing pro-
posed path planning method . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 An example of Hermit curve in 2D through target locations P1 and P4 with
heading vectors determined by points R1 and R4 . . . . . . . . . . . . . . . 9

3 Hermit basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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1 INTRODUCTION

1 Introduction

The number of real world applications of Unmanned Aerial Vehicles (UAV) or so
called drones, such as pictured in Figure 1, grows dramatically. Adoption of the UAV
technology across industries leaped from the fad stage to the mega-trend stage fairly quickly
as more businesses started to realize its potential, scope, and scale of global reach. The use
of UAVs is already well anchored in following industrial and socio-economic fields [27]:

• Agriculture - Crop surveys, wild life counting [38]

• Topography - Aerial mapping, environment monitoring, land measurement [16]

• Safety - Forest fire detection, plume tracking, search and rescue, medical supplies
delivery, flash flood detection [52][28][26][41]

• Military - Reconnaissance, demining, attack [34]

• Cinematography - Film-making, aerial photography [44]

• Industrial servicing - Inspection of power-lines, pipes, buildings, power plants [11][24][33]

• Other [44]

Whether UAVs are controlled by a remote controller or accessed via a smart-phone app,
they possess the capability of reaching the most remote areas with little to no manpower
needed and require much less effort, time, and energy compared to conventional means.
This is one of the biggest reasons why they are being adopted worldwide.

Imagine a transmission tower or a solar power-plant. Both consist of parts that need
to be periodically maintained. The insulation might degrade with time or the solar panels
need to be checked for faults or accumulated dust. UAVs are very suitable for this kind of
monitoring task since typical UAV is equipped with a camera. This kind of UAV application
is already being used in industry. For example transmission line servicing company [20] uses
manhandled drones to check the power lines and towers for possible cases of corrosion and
wear. Another company [40] uses drones for solar panel surveillance. By using a drone with
infra red camera, it is possible to detect individual hot spots on the cells, diode failures,
shattered or dirty modules, coating and fogging issues or junction box heating. The crucial
part of these applications is the need of a trained human operator for the UAV handling. An
autonomous UAV capable of such task would dramatically lower the cost of maintenance
and allow the automation of the whole process which is a current global trend in industry.
Hence the motivation behind this thesis is enabling the autonomous surveillance using
UAVs.

Unfortunately the challenge of fully autonomous movement in a generic environment
is a very complex and hard task even with the use of recent AI breakthroughs. The whole
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1 INTRODUCTION

Figure 1: Hexarotor UAV created by MRS research group and used for testing
proposed path planning method

problematic can be divided into several topics such as path planning, obstacle avoidance,
on-line path corrections, dynamic re-planning, mapping, localization etc. The main goal
of this thesis is enabling a surveillance over given target locations, which basically means
finding a path through given target locations in optimal manner. This challenge belongs to
the domain of path planning tasks and all the other subjects such as the collision avoidance
and mapping can be considered auxiliary, hence only the path planning part of the whole
problematic is addressed in this thesis.

The need for finding an optimal path through a set of target locations is very generic
problem with possible applications not only in UAV related topics and has been extensively
researched in recent years [4]. This led to a definition of Orienteering Problem (OP), which
is a formalization directly applicable to the problem of UAV surveillance. The goal of the
OP is to find a trajectory through a set of target locations with known rewards (importance)
and known start and end locations, so the sum of rewards of visited targets is maximized.
The number of visited targets is limited by maximal time of flight. This constraint arises
from limited capacity of batteries in current UAVs. This effectively means that the UAV will
not always be able to visit every target but rather those targets that are more important.

The transmission tower maintenance was mentioned as one of the motivating scenarios
and possible application of this thesis. The target locations in envisaged transmission tower
maintenance application would be the critical parts prone to wear and damage. The rewards
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1 INTRODUCTION

determining the importance of each target location could be defined by the life expectancy
of each inspected part. As the inspection is usually done visually using a camera each part
could be also inspected from several viewing angles with some being more informative than
other which further influences the reward for visit.

1.1 Problem Overview

The problem solved in this thesis can be logically divided into several sub-problems.
First of all, the Orienteering Problem (OP) is defined, which is the core problematic. The
precondition of this problem is having a set of points which might be either defined in
plane or in full three dimensional space. Each point has a reward assigned that indicates
the importance of the target and there is a start and end point given. The goal is to visit a
subset of these points such that the collected reward from all visited locations is maximized
while the time of flight is kept smaller or at most equal to a given time budget. A problem
defined in this way is called Orienteering Problem which is a generalization of well known
Traveling Salesman Problem (TSP). The rigorous definition of OP is given in Chapter 4.

The OP in its original form utilizes Euclidean paths between each target location
to construct the solution trajectory. Even though the real UAV is capable of flying along
Euclidean trajectories, since it is a holonomic vehicle (vehicle with zero turning radius), it
requires flying with very small velocities as the turns composed of Euclidean trajectories
are very sharp. This leads to an introduction of parametric polynomial curve called Hermite
spline. The Hermite spline enables to generate fairly complex trajectories that are smooth,
which enables to follow the trajectory with considerably higher velocities. In addition it
is very simple to use the Hermite splines in 2D as well as 3D space. The mathematical
properties and definition of Hermite splines are described in Chapter 2.

Since the OP is limited by a given maximal time of flight, it is desirable to fly as
fast as possible. This requires a generation of such trajectories that are in accordance
with physical limitations of the used UAV. Hence an the velocity with which the UAV is
capable of flying along the spline when evaluating the suitability of a given curve needs
to be estimated. This so called velocity profile have to be calculated separately for planar
and spatial case. The solution to velocity profile estimation is proposed and described in
Chapter 3.

The new variant of the Orienteering Problem motivated by high velocity Hermite
splines is defined as Hermite Orienteering Problem (HOP). The difference from the generic
Orienteering Problem is a bigger complexity because apart from the target locations that
should be visited and the order of visit, also the heading angles and actual velocities need
to be determined at each location. The definition of the HOP is given in Chapter 4 (Section
4.3).

The OP is NP-hard problem as it combines two NP-hard problems which is the
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1 INTRODUCTION

Traveling Salesman Problem and the Knapsack problem. This makes finding the optimal
solution very computationally demanding even for small data sets. This sort of problem
is typically solved using heuristic methods which find the optimal solution or a solution
very close to the optimum with less requirements on computational time. A heuristic
based on Random Variable Neighborhood Search (RVNS) algorithm was used to solve the
proposed HOP. This approach was already successfully used for solving OP and similar
class of problems on several occasions. The created HOP solution based on RVNS combines
random combinatorial exploration of the state space with continuous optimization which
enables the to find high quality solution in reasonable time. The created HOP solution
extends the RVNS algorithm, used to solve the combinatorial part of the problem, by
continuous optimization which determines the optimal heading angles and velocities at each
visited location. The combinatorial optimization works with a set of samples determined
by an initial heading angle and velocity sampling rates which is further extended by the
continuous optimization that introduces more promising samples. The proposed solution
based on RVNS algorithm is described in Chapter 5.

1.2 State of the art

All the sub-tasks mentioned in Section 1.1 are very generic with large number of
possible applications, so there is a lot of research groups actively working on solving them
or enhance existing solutions. A brief review of current research performed on this topic
and topics closely related is listed in following section.

The OP is very similar to one of the most classical routing problems with a long
history which is Traveling Salesman Problem and can be considered its generalization [25].
There exist a large number of heuristics solving the TSP [36]. Probably the most used
is Lin-Kernighan heuristic [22][19]. The OP is NP-hard optimization problem combining
two other NP-hard problems which are TSP and the Knapsack problem [39]. This makes
finding the optimal solution very computationally demanding. The Branch and Bound and
Branch and Cut algorithms are examples of efficient optimal solutions to OP, but these
algorithms still require significant computational resources even for small data sets. This
led to a creation of several heuristic methods for OP solution.

The Orienteering Problem has been introduced in 1984 by Tsiligirides [46] who defined
the Euclidean OP (EOP) and proposed two heuristics for solving the problem. First method
uses Monte Carlo based strategy for picking the best solution among large number of
randomly generated paths. The second approach utilizes vehicle-scheduling algorithm with
one depot. Tsiligirides also designed several benchmarks in a form of datasets used to
compare the quality of different solutions.

Another approach to EOP was introduced by Ramesh and Brown [35], who defined
a four-phase heuristic which uses insertion, improvement and deletion phases to iteratively
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1 INTRODUCTION

improve the path. A heuristic called Fast and Effective was proposed by Chao et al. [10].
In this solution only the targets locations are used, that lie inside an ellipse around the
start and end with axes defined by travel budget. The initial set of generated paths is
searched and the path with largest reward is modified by a set of simple operations such
as two-point exchange, one-point movement and other optimization operations. Chao et
al. also proposed several datasets for benchmarking.

The solution of the HOP used in this thesis is based on the Variable Neighborhood
Search heuristic by Hansen and Mladenovi [18] which was already successfully applied to
OP by Sevkli et al. in [43]. The basic Variable Neighborhood Search (VNS) introduced
by Hansen and Mladenovi is very generic algorithm which can be used for wide range of
optimization problems. The VNS algorithm works with neighborhood structures around
incumbent solution that define a sub-space in the whole state space, that can be searched
for better solutions. The scope of these neighborhoods is changed with each step, typically
extending the scope to find possible better solutions further away from current solution.
Each newly defined neighborhood is thoroughly searched for a local optima. This process
continues until a given stopping condition is met such as number of iterations. The VNS
algorithm was used for solving the OP by Sevkli et al. who defined the neighborhoods as
shake and local search operations which are used to modify the paths through the OP target
locations and find the best solution. The Path Insert and Path Exchange were used as shake
operators in order to randomly modify the current solution and escape from possible local
optimum. The local search operators which aim to systematically search the imminent
neighborhood of current solution were Insert and Exchange operators. Insert operator
changes a position of one target location in current solution and Exchange operator switches
positions of two target locations in the solution. Sevkli et al. also introduced a variant of
VNS algorithm which is Randomized Variable Neighborhood Search where the local search
operators are randomized instead of systematic approach.

The RVNS heuristic was also used to solve the proposed HOP solution, but it had to
be extended, as HOP also introduces the need for continuous optimization of heading angles
and velocities. The RVNS heuristic for HOP uses a predefined set of heading angle and
velocity samples in each target location in order to find initial feasible solution using greedy
algorithm. The method further iteratively tries to improve the current solution using a set
of random shaking and local search operators for selecting most rewarded set of targets
and their order of visit. This is considered to be the combinatorial part of the problem.
Furthermore, a continuous optimization operators are used to introduce new samples at
target locations in order to minimize the time of flight and further improve the collected
reward. This combination of random walk-like exploration of continuous state space and
exhaustive local optimization enables to find solutions of good quality while keeping the
sampling rate of continuous space and thus the computational time reasonably low.

Euclidean trajectories used in EOP are typically not suitable for real world UAVs
as it creates very sharp and even unfeasible trajectories which can’t be traversed in fluent
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1 INTRODUCTION

motion. This led to the usage of other methods in trajectory generation for autonomous
vehicle movement. An important breakthrough in this field was published in year 1957
by L. E. Dubins who introduced a new type of planar curve called Dubins curve [12].
This curve can be solved analytically and yields the shortest path between two points
with known tangents and maximal curvature. Dubins curves are used very extensively in
robotics and control theory. It is suitable for navigation of wheeled vehicles [8] (cars are a
typical example of curvature constrained vehicle), airplanes and underwater vehicles [9] as
well. Dubins curves were also used in previous work upon which this thesis is based which
combines the RVNS solution of Orienteering Problem with usage of Dubins curves as a
motion primitive [31]. This variant of the OP was named Dubins Orienteering Problem
(DOP). The DOP solution was further extended by the use of neighborhoods around the
targets, since usually in information gathering, it is enough to be close enough to the
target to gather required information [32]. The neighborhood is a disk with defined radius
in space around the target, inside which any point can be visited in order to successfully
perform the surveillance of target location in the center of the disk. A solution to DOP
using self-organizing maps was proposed in [14].

However this thesis aims to solve the OP for UAVs that are typically not constrained
by topology of the trajectory if the movement is slow enough. A competing approach to
trajectory generation is the usage of parametric polynomial splines. There exist a wide
range of parametric curve types with each having different features. In the motion control
domain, two types are used very frequently thanks to their natural suitability - Bézier
and Hermite curves. The Bézier and Hermite curves are almost equivalent apart from the
difference in the mathematical definition, hence both curves are used in similar problem
solutions. A lot of the research on this topic is done in planar space for autonomous ground
vehicles, for example here [51, 50]. Hermite curves have been used in similar tasks such
as [48, 7, 45]. The Hermite curve is parametrized by starting and ending location and
by heading vectors originating in these points. This parametrization is very suitable for
UAV motion model and was chosen as the motion primitive used in our solution to OP. In
addition Hermite curves can be easily connected to create a smooth and complex trajectory
through several locations. This is known as Hermite spline.

Even though Hermite curves offer neat way to generate trajectories in space, it is
not ensured that the trajectory will be feasibly traversed by the given vehicle since each
vehicle is limited by maximal speed, acceleration and other constraints. This means that
in order to check feasibility and estimate the time of travel, the maximal allowable velocity
along the whole curve and the motion dynamics need to be determined from known motion
model of the vehicle. This approach is usually called a calculation of velocity profile.

A very convenient way to generate the velocity profile is to bind the maximal velocity
with the actual curvature of the curve as was done in [21]. However, this was used only in
planar case for a ground vehicle. This idea can be used also in 3D if we assume decoupling of
vertical and horizontal movement as was proposed in [15]. This approach is also used in this
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thesis as it is fast and does not require a complicated motion model of the UAV. Another
solution to velocity profile calculation is method used in [23, 42]. The idea is again based on
curvature constrained maximal velocity in each sample but then the minima are found along
the curve using gradient descent search algorithm and the velocity profile is determined
using numerical integration applying a bang-bang control policy on the reference dynamic
model. If the feasible profile is not found the velocity minima are iteratively lowered until
one is found.

1.3 Contributions

The main advantage of solution described in this thesis is a fact that it can be
applied in 2D as well as 3D space topology which is enabled by the use of Hermite splines.
Majority of the current solutions is designed only in planar scenarios which greatly limits
the applicability in real world situations.

The OP solution using RVNS algorithm is based on work done in [31], where the
Dubins curves are used as a motion primitives and the UAVs is presumed to use constant
height and velocity when following the trajectory. In the solution proposed in this thesis, the
velocity profile respecting the dynamic movement constraints such as maximal acceleration
and velocity is generated over the whole trajectory based on Hermite spline. This ensures
smoothness and feasibility of generated trajectories as well as fast and dynamic movement
which is major advantage compared to the constant velocity movement of DOP. The fast
movement of the UAV enables to find solutions with high quality. This was verified in a
series of comparison tests where the new Hermite curve based solution to the OP yields
superior results over the Dubins and Euclidean based approaches as the average gathered
reward was better in all tested scenarios.

The use of continuous optimization in the RVNS based solution also enables to find
HOP solution in reasonably short time while using only sparse initial sampling of the
heading angle and velocity at the target locations.
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2 Hermit splines

Parametric curves in general are very powerful tool with wide range of applications
in computer graphics and robotics. They are effective whenever there is a need for data
interpolation using smooth continuous function. The main advantage is the small number
of defined parameters upon which the curve is generated. One of the most used curve
types are the cubic polynomial splines. A spline is a parametric curve defined piecewise by
polynomials. The term spline comes from the flexible spline devices used by shipbuilders
and draftsmen to draw smooth shapes.

The cubic polynomial splines are composed of one or more third degree polynomial
curve segments connecting the interpolated data points. Third degree curves usually offer
sufficient flexibility for creation of considerably complex shapes while being simple to calcu-
late and work with. There exists a wide variety of spline types such as Hermit spline, Bézier
spline, B-Spline or Catmull-Rom spline. Each type is a bit different in its parametrization
and implementation and is suitable for different application [49].

Since this thesis aims to generate paths for flying vehicle, where it is possible to
determine the heading, velocity and acceleration, there is one spline type which seems to
be naturally suitable for this kind of application - the Hermite curve.

2.1 Hermite curve

A generic third degree polynomial parametric curve in 3D space is defined as follows:

x(t) = a3t
3 + a2t

2 + a1t+ a0

y(t) = b3t
3 + b2t

2 + b1t+ b0

z(t) = c3t
3 + c2t

2 + c1t+ c0

(1)

Unknowns ai, bi, ci are constant coefficients of the polynomials describing the characteristic
of the curve in each dimension. The curve parameter t is used for samples generation along
the curve, with coordinates in each axis given by corresponding polynomial and the value of
parameter t (hence the name parametric curves). This parameter is usually set in interval
[0; 1] where t = 0 yields the starting point of the curve and t = 1 the end point. This means
that once the coefficients of all three polynomials are calculated it is possible to sample
the curve with arbitrary accuracy by defining the size of the step of t.

The Hermite curve is defined by two endpoints and corresponding derivatives in the
endpoints (tangent vectors of the curve) which determine the shape or rather the curvature
of the curve. The tangent vector can be defined by angle relative to x axis and vector norm.
In the case of the UAV, these parameters can be related to heading angle and actual speed.
In relation to orienteering problem the triplet of target location, heading angle and actual
speed defines a state. The example of such curve in 2D can be seen in Figure 2 [47].
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Figure 2: An example of Hermit curve in 2D through target locations P1 and
P4 with heading vectors determined by points R1 and R4

With the knowledge of Hermite curve constraints, the Equation (1) can be rewritten
into vector form where matrix A is the unknown constant matrix and T a vector of powers
of curve parameter. Following equations will be derived only for x coordinate as the solution
for other coordinates is identical which also means it is possible to easily create curves in
any number of dimensions:

x(t) =
[
t3 t2 t 1

] 
a3

a2

a1

a0

 ,
x(t) = T · A.

(2)

Since we know the coordinate of the start location, end location and also their respective
derivatives we can write a system of linear equations:

x(0) =
[
0 0 0 1

]
· A,

x(1) =
[
1 1 1 1

]
· A,

x′(0) =
[
3t2 2t 1 0

]
t=0
· A =

[
0 0 1 0

]
· A,

x′(1) =
[
3 2 1 0

]
· A.

(3)

Writing these equations in a matrix form yields:

G = B · A. (4)
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The solution of A is then:

A = B−1 ·G = M ·G,

A =


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

 ·

x(0)
x(1)
x′(0)
x′(1)

 , (5)

and the whole curve equation now can be expressed as:

x(t) = T ·M ·G, (6)

x(t) =
[
2t3 − 3t2 + 1 2t3 + 3t2 t3 − 2t2 + t t3 − t2

]
·


x(0)
x(1)
x′(0)
x′(1)

 . (7)

Matrix G are the given geometric constraints of the curve. Matrix M is called basis matrix
and its product with vector T is called a basis or a set of blending functions. Equation (8)
shows elements of basis - four blending functions. The solution for x can be rewritten as
(9) which clearly shows how the blending functions act as a weighting factor for each of
the geometrical constraint [5].

f1(t) = 2t3 − 3t2 + 1

f2(t) = −2t3 + 3t2

f3(t) = t3 − 2t2 + t

f4(t) = t3 − t2

(8)

x(t) = f1 · x(0) + f2 · x(1) + f3 · x′(0) + f4 · x′(1) (9)
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Figure 3: Hermit basis functions
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Figure 3 shows the basis functions. It is noticeable that blending function correspond-
ing with beginning/ending point tend to overwhelm the blending functions for derivatives
and diminish/empower with parameter t changing. This result is expected as the location
of beginning point clearly defines the curve at t = 0 and similarly the ending location is
most important at t = 1. The influence of each limit point is on par exactly at t = 0.5.

2.2 Hermite spline

The goal of the orienteering problem is to find a multi target trajectory, however
the Hermite curve was so far defined only between two points. As noted earlier, the spline
consists of several separate parametric curve segments. Hence the Hermite spline can be
constructed by connecting several curves at limit points. This means if we construct each
consecutive curve segment starting in the ending point of the previous one we get a spline.
The only problem is that different heading vectors might cause singularities violating the
smoothness of the whole spline. This can be avoided if the ending heading vector of previous
segment is always enforced to be equal to the starting heading vector of the following
segment. The HOP state is also defines only by actual orientation and speed at target
location which relates to both incoming and outgoing curve, so the heading vector equality
is not violated.

2.3 Bézier curves

It is worth mentioning that well know and widely used Bézier curves are equivalent
to Hermit curves. The difference is in the constraints defining the curve. Figure 4 shows
how the Bézier curve is defined. The coordinates of start and end point stays the same but
instead of derivatives in the limit points, two additional control points are used. All four
control points define a convex hull which won’t be crossed by the curve. This parametriza-
tion makes the behavior of the curve more predictable and that is the reason it is used
more often than the Hermit curve, although in our case the Hermit curve is more suitable.
This fact can be for example leveraged when generating trajectories through corridors with
turns. The resulting curves are equivalent nevertheless, since the geometric constraints for
Bézier curve can be easily rewritten into a form defining a Hermit curve [47]:

P1H = P1B

P4H = P4B

R1H = 3(P2B − P1B)

R4H = 3(P4B − P3B)

(10)
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Figure 4: An example of Bézier curve in 2D through target locations P1 and
P4 with control points P2 and P3

2.4 Implementation

In order to generate and manipulate the Hermite curves easily a hspline c++ library
was created. Since the theory is suitably described by matrix equations an external open-
source library Eigen3 [30] was used in order to work with matrices with ease, eliminating
the need for low level matrix operation implementation which is unnecessary.

The hspline library enables to create HSpline object by passing necessary information
for the curve creation which is:

• A list of states containing locations through which the curve should traverse and
heading angles along with initial velocity.

• Resolution defining the step of the curve parameter in order to generate samples.
This parameter needs to be set with care as large amount of samples dramatically in-
fluence the performance when working with multiple curves which is the case of HOP
solution algorithm. In the performed experiments, the 15-20 samples per curve offered
satisfactory details while keeping the performance demands relatively acceptable.

• Maximal vertical and horizontal acceleration and velocity. This is used to determine
the time of flight (TOF) by calculating the velocity profile.

• Heading multiplier which is used to determine the heading vector of the curve. This
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enables to separate the UAV speed from actual tangent vector of the curve to generate
curves with different curvature characteristic while keeping the UAV velocity intact.

• Flag indicating the spatial resolution of the curve - to generate either 2D or 3D curve.

The samples of required curve are then calculated by direct application of the theory in
Section 2.1. The constraint matrix G is constructed and multiplied by the basis matrix
which yields the coefficients of curve polynomial. This polynomial is then used to generate
the curve samples by stepping through the parameter t from 0 to 1. The 2D and 3D
curves are created in almost the same way. The only difference is in the dimensions of
used matrices and structures used to save the samples. The library is also indifferent to
the number of states the spline should traverse, although mostly only the basic Hermite
curves given by two limit points are used in the HOP RVNS algorithm. The example of
generated Hermite spline along with the heading vectors in each node is shown in Figure
5.
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32
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Figure 5: An example of generated Hermite spline in three dimensional space
traversing four target locations. The heading vectors at each target are plot-
ted in red color.
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3 Velocity profile

The introduction of Hermite splines in Chapter 2 yields smooth trajectories in space,
connecting arbitrary points with arbitrary resolution. Since the goal is to find smooth
curves to use in HOP solution, it is not possible to measure the curve quality by length as
the shortest path is always the Euclidean. The use of Euclidean paths in UAV trajectory
generation is not desirable as the trajectories are hard to follow by the UAV especially at
the target locations where the trajectory changes direction. A better measure to determine
the fitness of given curve is the required time the UAV needs to traverse it. This leads
to the definition of so called velocity and acceleration profile based on the known motion
dynamics model of the UAV, which yields the Time of Flight (TOF) estimation. Naturally
the most preferable solution would be the shortest time of flight along the curve. This is
determined by the UAV’s limited flight capabilities in terms of maximal acceleration and
velocity. The calculation of the velocity profile is different in a 2D curve scenario from a
3D scenario.

A very frequent approach to the velocity profile generation along parametric curves
uses the curvature of the curve to determine the maximal allowable velocity along the whole
curve. This defines profile with low velocities in sharp turns and high velocities in straight
segments which is desirable. This approach was successfully used in planar scenarios in
[21, 48, 7, 45]. An extension of this approach to be used in full three dimensional space
was introduced in [15].

3.1 2D velocity profile

In the case of the planar curve generation, the method based on curvature constrained
velocity used in [21] can be directly applied. The vertical velocity and acceleration is
considered zero and constant during whole flight. This method defines the possible velocity
and acceleration at each sampled point along the curve using a simplifying assumption that
the trajectory between two samples of the curve is Euclidean and that acceleration and
velocity vectors always keep the direction towards next sample. This enables to use simple
dynamical equations for constantly accelerated motion in straight line when modeling the
UAV’s movement along the curve. The drawback is a deformation of the curve shape and
shortening actual travel distance, although if sufficiently small step between curve samples
is chosen, this error can be neglected. The whole process of determination of velocity and
acceleration at each curve sample, in order to fulfill the motion constraints of the UAV, is
described in following text.

The horizontal acceleration of the UAV is composed of tangential ar and radial at
acceleration which are bounded together:

a =
√
a2
r + a2

t . (11)
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To make the acceleration directly dependent on the curvature of the flight path is very
convenient, since it is possible to generate the velocity profile where the velocity is lowered
during sharp turns (high curvature areas) and vice versa which is expectable behavior when
dealing with the feasible flight trajectories. The curvature κ along the whole Hermit spline
in the horizontal plane can be calculated as:

κ =
|x′y′′ − y′x′′|
(x′2 + y′2)

3
2

. (12)

The derivatives of the curve in x and y coordinates can be easily obtained by using deriva-
tive of vector T in (6). The radial acceleration ar along the curve can be calculated using
the actual velocity v as:

ar = κv2. (13)

The acceleration a of the UAV along the curve is composed of radial acceleration ar and
tangential acceleration at which are bounded together by ahmax , which is the maximal
possible acceleration the UAV can achieve. Maximal possible velocity along the curve vhlim
can be defined as:

vhlim =

√
ahmax
κ

. (14)

Equation (14) is a solution for v from (13), assuming the worst case scenario when ar =
ahmax . In this case, the only acceleration component of the a is the radial acceleration with
tangential acceleration being zero (very sharp turn). This ensures that the maximal velocity
is dependent on the curvature. However this velocity needs to be also limited by actual
maximal horizontal velocity of the UAV vhmax , hence the full equation for the maximal
velocity along the curve is

vhlim = max(vhmax ,

√
ahmax
κ

). (15)

Using (11), the maximal possible tangent horizontal acceleration can be calculated as:

atlim =
√
a2
hmax
− a2

r. (16)

The velocity profile calculation algorithm iterates over the points of sampled curve. The
iteration needs to be performed in forward and also backward manner in order for the
UAV to be able to accelerate and decelerate accordingly. In each iteration only two sam-
ples (current and next) are used to calculate the actual velocity in the next sample. The
performed algorithm is summed up in Algorithm 1.
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Algorithm 1 2D Velocity profile calculation algorithm (si - curve sample, l - sample
location, c - actual curvature, v - actual velocity, vhlim - maximal possible actual velocity
from (15))

si : {l, c, v, vhlim}
sc ← get first curve sample
sn ← get second curve sample
sl ← get last curve sample
d← getDistance(lc, ln)
while sn 6= sl do
ar ← v2

sc · csc
atlim ←

√
a2
hmax
− a2

r

vlim ←
√
v2
sc + 2 · atlim · d

vsn ← min(vsn , vlim, v
sn
hlim

)
sc ← sn
sn ← sn+1

end while

The equation used to find vlim, which is a candidate for velocity in the next sample,
was derived as described in the (17). The variable s is an Euclidean distance between
current sample sc and next sample sn, t is time of flight between these samples.

s =
1

2
atlimt

2 + vsct

t =
−vsc +

√
v2
sc + 2atlims

atlim
vn = atlimt+ vsc

vn =
√
v2
sc + 2atlims

(17)

With the velocity profile calculated this way the UAV is trying to accelerate to the maximal
possible velocity given by the actual curvature while respecting the maximal acceleration
limit. The process described in the Algorithm 1 is performed twice, with second run using
reverse order of samples. This ensures that both acceleration and deceleration phases do
not violate the UAV constraints.

3.2 3D velocity profile

The calculation of the velocity profile over 3D curve is also based on curvature con-
strained velocity but the whole process is extended in order to include also the vertical
components of the movement. The motion model of the UAV can be described by maxi-
mal velocity and acceleration in horizontal plane and vertical axis separately. In order to
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bound both vertical and horizontal limitations together, the simplification of using Eu-
clidean paths with velocity and acceleration vectors heading towards next sample is used
again, although in this case its in three dimensional space. The main advantage of this ap-
proach in three dimensional case is that the horizontal and vertical components of velocity
and acceleration can be described using triangle similarity based on geometry shown in
Figure 6.
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Figure 6: Velocity, acceleration and its components between two samples
of the curve. xy axis corresponds with projection of the samples into the
horizontal plane

Following equations then hold true:

ai =
|xyz|i
|z|i

avi , (18)

ai =
|xyz|i
|xy|i

ahi , (19)

vi =
|xyz|i
|z|i

vvi , (20)

vi =
|xyz|i
|xy|i

vhi . (21)

The velocity profile calculation is similar to the 2D case with the horizontal and vertical
limitations being applied separately. The horizontal components are again limited based
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on actual curvature along with maximal values for horizontal acceleration and velocity.
The vertical dynamics are only limited by maximal vertical acceleration and velocity. It
is assumed that the acceleration is always positive hence samples have to be again firstly
iterated in forward direction, which will limit the velocity profile for acceleration, and than
backwards which will limit the deceleration. On each step, the current radial acceleration in
horizontal plane ar is calculated, which yields the maximal horizontal tangent acceleration
ahlim using (16). The maximal vertical acceleration avlim is determined by UAV’s maximal
achievable vertical acceleration avmax . Components avlim and ahlim each define different ac-
celeration in the direction of Euclidean path towards next sample (tangential acceleration)
using the triangle similarity equations (Equation (18) for vertical component and Equation
(19) for horizontal component). The smaller acceleration of these two is chosen for further
calculations. The selected acceleration is then used to calculate the candidate velocity in
the next sample using again equations in (17). This candidate velocity vlim is then limited
by known horizontal and vertical maximal velocities, transformed into the direction toward
next sample by triangular similarity equations (21) and (20). The whole 3D velocity profile
calculation is laid out in Algorithm 2.

Algorithm 2 3D Velocity profile calculation algorithm (si - curve sample, l - sample loca-
tion, c - actual curvature, v - actual velocity, vhlim - maximal possible actual velocity from
Equation 15), vvlim - maximal vertical velocity of the UAV, dxyz - distance between sam-
ples, dxy - distance between samples projected into horizontal plane, dz - vertical distance
between samples

si : {l, c, v, vhlim , vvlim}
sc ← get first curve sample
sn ← get second curve sample
sl ← get last curve sample
dxyz ← getDistanceXY Z(sc, sn)
dxy ← getDistanceXY (sc, sn)
dz ← getDistanceZ(sc, sn)
while sn 6= sl do
vhsc ← vsc

dxy
dxyz

ar ← v2
hsc
· csc

ahlim ←
√
a2
hmax
− a2

r ·
dxyz
dxy

avlim ← avmax ·
dxyz
dz

alim ← min(ahlim , avlim)
vlim ←

√
v2
sc + 2 · alim · dxyz

vmax ← min(vsnhlim ·
dxyz
dxy

, vsnvlim ·
dxyz
dz

)

vsn ← min(vsn , vlim, vmax)
sc ← sn
sn ← sn+1

end while
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3.3 Time of flight

With the velocity profile generated either in 2D or 3D, the TOF estimate can be
calculated by iterating through samples with the calculated velocities, summing the time
intervals t between samples determined as

t =
2s

vc + vn
. (22)

In addition, the velocity profile can be used to generate equidistant samples of the curve
in time. This is very useful as the MPC trajectory following controller [6] used in UAV
this thesis was tested on, accepts samples of the trajectory in this format. This enables
to combine spatial and dynamical characteristics of the trajectory in one set of data. The
trajectory tracking controller in the UAV accepts series of points in the space and tries
to traverse them with a constant time gap. Providing the controller a set of trajectory
samples with constant distance differences would mean constant speed of the UAV along
the curve. The samples with varying distances need to be selected to modify the velocity
(samples with larger distance will be traversed in the same time as close samples which
effectively means larger velocity of the UAV). Equidistant in samples in time are simply
acquired by iterating over current curve samples, while summing the actual time of flight
until required time step is reached. Only the last sample in this procedure is used with the
rest being filtered out. Unfortunately this used sample usually does not fulfill the condition
of being equidistant in time to previous sample, hence the sample is moved proportionally
to the left over time difference. This is repeated until the whole spline is covered which
filters out a large number of samples. The density of sampling in areas of the curve where
the velocities should be low, such as sharp turns, is very high and the spatial gaps between
samples are larger on narrow high velocity sections. This is shown in Figure 7.
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Figure 7: Filtered curve samples based on the calculated velocity profile cre-
ated for trajectory following controller

3.4 Implementation

The velocity profile calculation is incorporated into hspline library. The whole algo-
rithm described in this chapter is performed right after the Hermite spline samples are
generated. Velocity profile calculation can be time consuming if the curve consists of large
number of samples since it is needed to iterate over all samples at least two times (for-
ward and backward). In the performed experiments where each curve was approximately
5 meters long on average, a number of 15 samples per curve has been shown to be suffi-
cient enough to show decent details of sampled curve, while keeping the calculation time
reasonable.

It is important to note that since the maximal velocity is curvature constrained, it
might be not possible to achieve required velocities at target locations defining the curve.
The OP solution algorithm marks these curves as unfeasible and does not further work with
combinations of states that caused it. This also enables to calculate the velocity profile over
spline traversing multiple target locations in piece-by-piece manner as it is ensured that it
will be always possible to achieve the velocity at the target location.

Furthermore, the curvature near the limit points is largely defined by the norm of the
heading vector which is dependent on the velocity of the UAV at corresponding locations.
This dependence was adopted in order to lower the complexity of the optimization per-
formed in OP solution. The heading vector norm was set to be proportional to the actual
velocity at the target location. The chosen multiplier hm determining the ratio between
velocity and heading vector norm can be chosen arbitrarily and has big influence on the
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resulting shape of the spline. Spline generated over the same set of states but using different
heading vector multiplier are pictured in Figure 23.
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Figure 8: Hermite spline generated using different values of heading multiplier
(hm)

It is clear that the larger the heading multiplier is the more the smoother the curve
is, however, with the multiplier being too large a significant overshooting starts to show,
which is also not ideal. In addition, if the curve is smooth, there are less instances of unfea-
sible velocity profiles because of small heading norms for curves spanning large distances
result in curves very similar to Euclidean paths which are considered not suitable for UAV
trajectories. This hints there should be an optimal value of heading multiplier for given
set of target locations, however the analytical formula for this dependence was not found
during work on this thesis. Hence the suitability of a given multiplier was determined ex-
perimentally for each scenario as the distances between points in given scenarios can be
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largely different which requires differently curved trajectories.

An example of generated velocity and acceleration profile using methods described in
this chapter are shown in Figure 9. The limitations used in this figure are determined by
the maximal horizontal vhmax and vertical vvmax velocities and accelerations ahmax , avmax of
the UAV used in subsequent testing of this thesis and are summarized in Table 1.
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(c) Generated Hermite spline with samples
equidistant in time for the trajectory following
controller

Figure 9: Example of calculated velocity profile over Hermite spline in three
dimensions

Table 1: UAV motion constraints

vhmax ahmax vvmax avmax
5m/s 2m/s2 1m/s 1m/s2
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4 Orienteering Problem

When dealing with the Orienteering problem (OP) it is important to mention well
known Traveling Salesman Problem (TSP). The origins of this problem can be traced as far
back as 18th century, although back than it served more as a mathematical puzzle without
further scientific background. First general mathematical formalization of the problem has
emerged in 1930s with the name Traveling Salesman Problem being introduced by Hassler
Whitney at Princeton University [13]. Since then it became one of the most intensively
studied problems in optimization because it became clear that there is enormous number
of possible applications for this problem such as vehicle path planning, logistics, networking
or even DNA sequencing.

The goal of the TSP is finding the shortest Hamiltonian cycle in a given graph with
known distance between vertices. This means finding a path that traverses each vertex
while being the shortest possible. Unfortunately it was shown that the TSP problem is
NP-complete, thus the worst-case running time for any systematic algorithm searching
for TSP solution increases super-polynomially with the number of vertices in the graph.
This means that finding the optimal solution for even relatively small number of vertices
might be out of reach of current processing power. Luckily, since the problem was studied
so extensively, a large number of heuristics to find solutions very close to the optimum
or even the optimal one, while using limited computational complexity was found and
successfully applied.

The usability of TSP in UAV path planning is very suitable since every navigation
problem can be transformed to a set of points that have to be visited during the UAV
travel with solution being basically the solution to TSP problem. However current UAV
technology suffers by one big limiting factor and that is battery life. The electronics on
board the UAV are typically high performance computing machines using wide array of
sensors and interconnected submodules with high energy demands, but the motion itself
using propellers driven by electro motors consumes the largest amount of energy. In the
case of electrically driven ground vehicles, such as cars with electro engines, this problem
is addressed by carrying very large battery with enough capacity for a longer operational
times. Unfortunately the larger battery used in UAV means more weight so the motion
requires more energy and the advantage of bigger capacity is largely negated. In addition,
enlarging the dimensions of UAV contradicts with the aim of UAV applications which is
having a very small and agile remote vehicle enabling to reach remote locations which might
be very hard or impossible to get to by conventional methods. The typical operational time
of current commercial solutions is in the range of tens minutes of flight. Hence it would
be suitable to include an constraint on the maximal length/time of flight for the path.
If the length of the path is limited there need to be some motivation for the selection
of points that are to be included in the solution. This can be achieved by assigning the
reward or priority to each target location. The variant of TSP modified in this way is called
Orienteering Problem and it is the main focus of this thesis.
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4.1 Euclidean Orienteering Problem

The goal of the Orienteering Problem is to find a subset of target locations with given
rewards to be visited in order to maximize the sum of collected rewards while keeping the
length of the path less or equal to a specific budget. To define the problem mathematically
we introduce a set of target locations S = {s1, ..., sn} with each location si = (ti, ri)
consisting of position in plane ti ∈ R2 and specific positive reward ri ∈ R. The location
can be also expanded to R3. Two targets are chosen to act as a start and an end of the
solution and are typically assigned a reward equal to 0 since it would only act as a bias
for the final reward as these two would be always included. In further text we will note σ1

as the starting location and σn as the ending location. The path length is constrained by
Tmax which is the travel budget. The goal is to find a subset of k target locations Sk ⊆ S
in order to maximize the sum of collected rewards R =

∑
ri while keeping the length of

the solution within the budget Tmax. The path is defined as a sequence of visited locations
in order given by permutation Σ of indexes of locations σi in the subset Sk:

Sk = {sσi} ∀i ∈ (1, ..., k),

Σ = (σ1, ..., σk),

0 ≤ σi ≤ n,

σi 6= σj for i 6= j,

σ1 = 1, σk = n.

(23)

The variables being optimized in the OP are k, Sk and Σ meaning number of visited
targets, actual locations of the targets and the order of visit. The basic form of the OP
uses Euclidean distances as a travel cost between locations [17]. An operator LE(tσi , tσj)
defines Euclidean distance between locations tσi and tσj . The optimization problem can be
formalized as [32]:

maximize R
k,SK ,Σ

=
k∑
i=1

rσi

subject to

k∑
i=2

LE(tσi−1
, tσi) ≤ Tmax,

σ1 = 1, σk = n.

(24)

The Orienteering Problem is a generalization of TSP, since if we ensure the budget Tmax is
large enough to visit all given locations and instead of maximizing the sum of rewards, the
path length is minimized, the problem becomes the TSP. This fact can be also used in the
heuristic for OP solution as often we might find different paths with the same reward and
it is natural to accept the one with shorter distance or TOF, since shorter solution could
lead to a possibility of addition of a new target.
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4.2 Dubins Orienteering Problem

Even though the Euclidean Orienteering Problem is very generic and can have a lot of
applications, in the case of UAV it is not as useful because the Euclidean trajectories are not
typically feasible for motion planning of vehicles. Even though the UAVs are holonomic
vehicles, the traversal of Euclidean path would enforce to use very small velocities at
turning points since these would be typically very sharp. This fact led to the introduction
of different motion primitives used in OP solution. The extension of OP was proposed in
[31], which utilizes Dubins curves as motion primitives instead of Euclidean paths. In [12]
L. E. Dubins introduced a new kind of planar curves suitable for curvature constrained
vehicles, i.e., vehicles with limited turning radius. The state of the so called Dubins vehicle
is defined as q = (t, θ) where t ∈ R2 is the position in plane and θ ∈ 〈0, 2π) is the heading
angle. Dubins proved that the shortest path between two states consists only of straight
segments (S-segment) and arcs with given curvature (either left turn or right turn - L-
segment and R-segment). The optimal path is one of six possible maneuvers (LSL, LSR,
RSL, RSR, LRL, RLR). These Dubins maneuvers can be determined analytically.

In the Euclidean OP, the heading angle of the path at each target location is uniquely
determined by the relative positions of the subsequent target points. This heading, however,
might not be the most suitable when dealing with the Dubins curves. This means, apart
from the positions that will be traversed by the generated trajectory in the OP, that also
the heading angles have to be determined since different heading angles might produce
shorter trajectories. This variant of the OP was introduced as Dubins Orienteering Problem
(DOP). The mathematical definition of the OP (24) is extended by a set of heading angles
corresponding with each visited location Θ = (θσ1 , ..., θσk). The Dubins vehicle state in the
visited target locations is denoted qσi = (tσi , θσi). The length of Dubins curve between qi
and qj is defined by an operator LD(qi, qj). The DOP is defined as:

maximize R
k,SK ,Σ,Θ

=
k∑
i=1

rσi

subject to

k∑
i=2

LD(qσi−1
, qσi) ≤ Tmax,

qσi = (tσi , θσi), tσi ∈ Sk, θσi ∈ Θ,

σ1 = 1, σk = n.

(25)

The DOP adds another dimension to the state space of the OP with optimization over
heading angles which makes finding the solution even harder. Even though the introduction
of the Dubins motion primitives into the OP enables finding usable trajectories for UAVs,
the motion capabilities are not fully utilized as in [31] only a motion with constant velocity
along the curve is allowed. Even though it might be enough for most touring problems it
raises the time the UAV needs to traverse the trajectory. If the UAV is able to fly as fast
as possible, it can be capable of visiting more targets in a given time. Another drawback is
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that the DOP can be used only for planar trajectories which is presumably even stronger
limitation as one of the biggest advantages of UAV is the full motion in six degrees of
freedom.

4.3 Hermite Orienteering Problem

One of the aims of this thesis is to remove the limitations of the current DOP solution,
which are only planar trajectories, and insufficient utilization of reachable velocities by the
UAV. As was noted in previous sections, the limitations are caused by the used motion
primitive used in the DOP solution. Hence a new type of motion primitive was chosen
which is the Hermite spline. The properties of this curve type are very suitable for use
with motion model of UAV, namely the smoothness of the curve since the fluent flight
trajectory is the main motivation for not using the Euclidean paths. The ease with which
the curve can be parametrized in 2D as well as 3D space is the biggest advantage. The
complete set of properties of the Hermite curves were described in detail in Chapter 2.

When introducing the Dubins curves to the OP the complexity of the searched state
space had to be expanded by heading angle variable which made the already demanding
problem even more complex. Even though the Hermite curves offer a lot of advantages, the
drawback is that in order to generate a Hermite curve the target locations and heading
vectors, which can be described as norm and heading angle, are needed. This means the OP
have to be extended by another two dimensions which is the norm of the heading vector
and the heading angle. This can be also considered as a limiting factor for the order of the
parametric polynomial curve used which is three, since curves of the higher orders require
even more parameters which would make the OP too complex. Luckily the third-order
polynomial curves offer sufficient flexibility for creation of complex shapes.

As was noted earlier, one of the goals is to use wider repertoire of motion capabilities
of the UAV. To achieve this goal a velocity profile is introduced in order to fly as fast
as possible along the curve. This velocity profile is determined by maximal vertical and
horizontal velocities and accelerations as was described in Chapter 3. Even though the
norm of the heading vector of the used Hermite curve and actual speed of the UAV can
be separated, it would mean another degree of freedom in the already wide state space.
Hence these two variables are dependent through a constant multiplier. The consequences
of this dependence are shown in Section 3.4. This also changes the evaluation factor of the
trajectories to be the time of flight rather than the length.

This new variant of the OP was called Hermite Orienteering Problem (HOP) since
the Hermite splines are used as the motion primitive. The HOP extends the DOP by
another variable vector V = (vσ1 , ..., vσk) which is the vector of actual velocities at given
target locations. The needed information about the heading angle, velocity and location is
defined as a state qσi = (tσi , vσi , θσi). The HOP utilizes an operator TH(qσi , qσj) which is
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the time of flight between two states qi and qj using Hermite curve as a motion primitive.
The visiting order of the states is given by Σ, Θ is a set of used heading angles and V
is a set of actual velocities at target locations. The Hermite Orienteering Problem can be
described as following optimization problem:

maximize R
k,SK ,Σ,Θ,V

=
k∑
i=1

rσi

subject to

k∑
i=2

TH(qσi−1
, qσi) ≤ Tmax,

qσi = (tσi , vσi , θσ1), tσi ∈ SK , vσi ∈ V , θσi ∈ Θ,

v1 = 0, vk = 0,

σ1 = 1, σk = n.

(26)
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5 Proposed Solution to HOP

The proposed solution to HOP is based on the Variable Neighborhood Search algo-
rithm introduced by Mladenovi et al. in [18]. This algorithm can be used in wide range of
combinatorial optimization problems and was successfully used to solve OP in [43]. The
VNS algorithm operates on a given neighborhood structures Nl, where l = {l1, ..., lmax}
is the maximal distance between solutions inside the neighborhood, which is a number of
different targets visited in the OP solution. Nl(x) is a neighborhood of a solution x with
range l. The range of the neighborhood structure is determined by an operation that is
used to modify the current solution x to a different solution x′ inside the neighborhood.
The VNS algorithm uses two types of procedures to search for new solutions, it is shake
and local search procedure.

The shake procedure serves as a tool for random-walk like exploration of a given
neighborhood. The current solution x is randomly moved to another x′ inside the neighbor-
hood. This operation is essential to escape from local maximum as the admissible distance
towards other solutions is much greater than in the case of local search. The local search
on the other hand serves as a mean to explore immediate neighboring solutions.

The VNS algorithm starts with a given initial solution and periodically applies
the shake procedure to escape from possible local maximum and subsequently uses the
local search operator to find the optima in vicinity. This is repeated until given terminat-
ing condition is met, such as runtime or number of iterations without improvement. The
limiting factor is that algorithm implements only the combinatorial optimization, which
means selecting the targets that will be visited and in what order. Hence if it is needed to
optimize continuous variables such as the heading angle at the targets, the VNS algorithm
needs to be extended.

The problem of continuous optimization while using the VNS algorithm was addressed
in [31], where the VNS algorithm was successfully applied to DOP problem described in
Section 4.2. The continuous optimization part of the DOP, lies in determination of the
optimal heading angles at each of the targets in order to construct Dubins curves of the
shortest length. This was solved simply by using only discrete samples of possible angles at
each target location. Drawback of this approach is that in order to find a solution of good
quality, it is better to use high sampling rates which dramatically enlarges the complexity
of the state space. This problem was addressed by introduction of several simplifying
heuristics such as using only targets located in ellipse around start and end location with
axis defined by the maximal budget for the length of the solution. This filters out targets
which violate the budget constraint and would not be used in any possible solution. Another
simplification that was used is the randomization of the local search. This means that
during the local exploration of the neighborhood is not explored systematically, which is
very demanding with large amount of samples, but rather randomly using given number
of iterations. This variant of VNS is called Randomized Variable Neighborhood Search
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(RVNS) and it was shown that it is able to find solutions of the same rewards while being
significantly faster than normal VNS.[43].

The RVNS algorithm introduces several operators which can be used in the context
of the OP. The operators are:

• shake operators:

– Path Move

– Path Exchange

• local search operators:

– Point Move

– Point Exchange.

All of these operators modify the subset Sk of visited targets as well as order of visit Σ.
The difference is the scope of the change.

Even though the sampling based RVNS is usable in the case of DOP, the HOP is
more complex as there are two continuous variables that need to be optimized - the heading
angle and the actual velocity. This means that the total amount of samples is given by
Kartezian product of both types of samples. Such total number of samples can grow quite
fast for even small sampling resolutions which greatly limits the capability of finding a
good quality solution in reasonable time as the combinatorial complexity is too large.

This leads to the introduction of new operators Angle Speed Shake and Improve
Angle Speed. These operators solve the continuous optimization part of the problem
and enable to explore neighboring solutions even outside of the scope defined by initially
sampled velocity and heading angle. The Angle Speed Shake introduces new samples
of heading angle and velocity by random shaking, while the Improve Angle Speed
systematically improves the solution by implementing a simple hill climbing algorithm when
introducing new samples to the state space. This enables to accept even shake solutions that
slightly violate the budget as these can be further improved by continuous optimization
to the point where the budget constraint is no longer violated. The biggest advantage of
continuous optimization is a fact that the initial sampling rates can be fairly low as new
promising samples are added during the optimization process. The whole RVNS algorithm
used to solve HOP is described in detail in following sections.

5.1 RVNS algorithm

The Random Neighborhood Variable Search algorithm works with Neighborhood
structures Nl with defined maximal l distance between solutions inside the neighborhood.
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The distance l is defined by the operations used to search through the neighborhood struc-
tures by modifying the current solution. The solution of HOP is internally represented in
RVNS by a solution vector v = (sσ1 , ..., sσk , sσk+1

, ...sσn), which holds all the possible targets
si. The order of the targets in the vector corresponds with the order of visit during flight
with first k being included in the solution with order given by Σ. The other n−k states are
not used (above budget), but since they are still in the solution vector the neighborhood
operators can include these unused targets in possible new solutions. Simply said, all the
operators just modify the locations of the elements inside the vector.

The Chapter 3 describes how the velocity profile is calculated in order to estimate
the time of flight needed to traverse given Hermite curve. This process, especially for larger
amount of samples per curve, can be quite time demanding if working with hundreds of
thousand possible curves, which is not uncommon even with fairly low initial sampling rates
in angle and velocity. This leads to a definition of a structure which holds the pre-calculated
time of flight estimates between all possible states in order to significantly improve the per-
formance of neighborhood operators. Let’s call this structure allDistances. The drawback
is that this structure can be quite large, so it preferable to generated this structure before
the actual algorithm starts. The allDistances structure also needs to be appropriately
maintained as new samples are added during continuous optimization operations. Lastly,
as was noted in the Chapter 3, it is possible that the curve given by two states is not feasi-
ble as it would violate the motion limitations of the UAV. Such combinations are marked
unfeasible and are not used in further optimization. It is important to mention that the
number of unfeasible combinations can be significant.

As the neighborhood operators modify the order and number of visited target lo-
cation and their order in the solution vector, the combination of velocity and heading
angle samples which generates the shortest trajectory needs to be found. This requires a
search through the allDistances structure, which can be thought of as searching through
a subgraph with vertices being the heading angle and velocity samples. In addition these
vertices are grouped together by the location to which they belong to. The edges of the
graph can run only between vertices of neighboring groups (target locations) in the solu-
tion. An example of such search graph is shown in Figure 10. The shortest path needs to be
found using brute force methods in order to check all possible combinations which is very
time demanding. The resulting path consists of best combinations of samples at each tar-
get location which yield the shortest trajectory. In order to make the process of searching
through the possible combinations of samples faster, the structures shortestToStart and
shortestToEnd are introduced. These two structures hold a list of currently used targets
in the solution and their respective samples with information about the current distance
toward starting or ending location along with the id of neighboring target sample which
is the best option for getting closer to the start or end. This effectively means that the
exhaustive search through allDistances structure can be performed only once at the be-
ginning of the algorithm when the initial solution if provided and the best combination of
samples is saved into these structures. When the solution is changed by the neighborhood
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operators, the allDistances structure does not have to be searched again as it is enough
to correspondingly update the shortestToStart and shortestToEnd structures which is
much faster.
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Figure 10: Search graph used to find the best combination of samples in the
current solution vector v = (sσ1 , sσ2 , sσ3 , ..., sσn). The sample qji is defined by
given value of heading angle and velocity

To start the whole RVNS algorithm an initial solution is needed. Before this solution
is generated the unreachable targets are filtered out. The target is qualified as unreachable
if it’s so far away from the starting target that even if the UAV would fly with maximal
possible velocity the whole time, it would not be able to reach this target without violating
the maximal budget condition. This simple operation can have large impact on performance
especially for scenarios with very short budget limit as most of the samples will be filtered
out. This lowers the combinatorial complexity significantly. The initial solution is then
created using simple greedy heuristic. The algorithm searches through the elements of the
solution vector v = (sσ1 , ..., sσk , sσk+1

, ...sσn) which are not currently used in the solution
(indexes k+1...n). Each element is experimentally added to each position in current solution
and the situation with the minimal added time of flight per reward is accepted and solution
is extended by this target. This is repeated until the budget is hit or all targets are included.
The additional time of flight per reward measure (TPR) is calculated using the reward of
added target Radd and TOFs of old and new solution Tnew, Told as:

TPR =
Tnew − Told

Radd

This solution can be optionally improved further by the continuous optimization operators
described in Section 5.3. With the initial solution found, the RVNS algorithm can start.
The whole process is described in Algorithm 3. The operator that is used for given value
of l can be found in Table 2..

The current best solution is modified by applying the shake procedure which enables
to escape from possible local maximum and then the localSearch procedure to finely
explore the imminent neighborhood of the solution. If the reward of the new solution is
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Algorithm 3 RVNS algorithm for HOP solution

S: set of target locations
Tmax: maximal time budget
l: neighborhood scope defining the type of neighborhood operator, l ∈ 〈1, 3〉
lmax: maximal value of l = 3
P : the best solution path found
R(P): collected reward of path P
TH(P ): time of flight of path P
Output: The best found path P

Sr ← getReachableLocations(S, Tmax)
P ← createInitialSolution(Sr, Tmax)
while Stopping condition not met do
l← 1
while l ≤ lmax do
P ′ ← shake(P, l)
P ′′ ← localSearch(P ′, l)
if [TH(P ′′) ≤ Tmax andR(P ′′) > R(P )] or [R(P ′′) == R(P ) and TH(P ′′) < TH(P )]
then
P ← P ′′

l← 1
else
l← l + 1

end if
end while

end while
return P

Table 2: All operators used in the RVNS algorithm for HOP

l shake local search
1 Angle Speed Shake Improve Angle Speed
2 Path Move Point Move
3 Path Exchange Point Exhange

higher than reward of the currently best solution, it is accepted as the new best solution and
used in further optimization. If the reward of the new solution is the same as the current
best reward, the time of flight becomes the deciding measure. In the case of the time budget
being large enough to visit all targets, this condition enables to perform the optimization
in the sense of Traveling Salesman Problem. If the newly found solution is worse than
currently best solution the process is repeated using shake and localSearch operations
with larger scope of neighborhood structures that can be explored (defined by l variable in
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the algorithm). The continuous optimization part of the problem is embodied within this
algorithm as both shake and localSearch operations each containing one operator used
for continuous optimization. These are described in Section 5.2.2.

Whole process continues until one of the stopping conditions is met. This can be
defined arbitrarily. In experiments performed in this thesis a maximal run time along with
maximal number of iterations and a number of iterations without improvement were used
as a stopping conditions. The operators used to find new solutions are described in following
sections.

5.2 Combinatorial operators

The combinatorial operators are used to improve the current solution by adding and
removing targets in the solution and changing the order of visit. After each manipula-
tion, the shortest trajectory through all targets is found using currently known samples
of heading angle and velocity using shortestToStart and shortestToEnd updated struc-
tures. The combinatorial operators work with solution vector defined in Section 5.1. Only
first k members are considered as a part of the current solution. This enables to introduce
new targets into the current solution as the operator do not distinguish between used and
omitted targets. Both shake and local search operators are based on random exploration.

5.2.1 shake operators

shake operators are used to explore the neighborhood structures with large possible
distance between solutions. This enables to escape from local maxima and can change the
current solution dramatically. These operators are:

• Path Move (l = 2): This operator selects a random path inside the solution vector
v and changes its position inside the vector. Even though the distance l was defined
as a number of different targets between two solutions and change introduced by this
operator typically changes more than two targets, it was still assigned this value for
the sake of simplicity as the meaning of l can be viewed as symbolical measure (the
reason is apparent when looking at the Algorithm 3 since if the values of l are unified
for shake and local search operators, it is easy to apply both operations of a given
type and similar scope using smaller number of different values of l). The operator
itself performs the changes in the current solution by selecting three random indexes
inside the vector v = (sσ1 , ..., sσn) such as:

i1 ∈ 〈2, n− 1〉,
i2 ∈ 〈i1 + 1, n− 1〉,

i3 ∈ 〈2, i1)
⋃

(i2, n− 1〉.
(27)
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The initial start and end locations are not affected. Index i1 and i2 define the path
that is going to be moved and index i3 defines its new position inside the vector v.
The example of modified solution vector for the case i3 > i2 then equals to:

v = (sσ1 , ..., sσi1−1
, sσi2+1

, ..., sσi3 , sσi1 , ..., sσi2 , sσi3+1
, ..., sσn) (28)

An example of this operation is pictured in Figure 11.
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(a) Path before operation:
v = (s1, s3, s6, s4, s10, s7, s9, s5, s2, s8)

Move path {s6, s4, s10} to index 7
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(b) Pathe after operation:
v = (s1, s3, s7, s6, s4, s10, s9, s5, s2, s8)

Figure 11: An example of Path Move operation

As was noted in the Section 5.1, there are two structures shortestToStart and
shortestToEnd that make finding the shortest path from all possible samples of
currently used target locations much faster. These structures need to be maintained
when the current solution is changed. In the case of Path Move operator the mod-
ification is similar to the changes performed on the solution vector. This means in
practice that only samples between states that changed their neighbors inside the
solution vector need to be updated by search through all possible angle and velocity
combinations with the new neighboring locations.

• Path Exchange (l = 3): This operator tries to find solution even further away than
Path Move in terms of solution distance. As the name suggest, in this case there
are two paths selected in the solution vector and their positions is switched. This can
be performed by randomly selecting four indexes, but these need to be selected in
feasible manner, which means the selected paths can’t be overlapping:

i1 ∈ 〈2, n− 1〉,
i2 ∈ 〈i1 + 1, n− 1〉,
i3 ∈ 〈i2 + 1, n− 1〉,
i4 ∈ 〈i3 + 1, n− 1〉.

(29)
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The modified solution vector v than equals to:

v = (sσ1 , ..., sσi1−1
, sσi3 , ..., sσi4 , sσi2+1

, ..., sσi3−1
, sσi1 , ..., sσi2 , sσi4+1

, ..., sσn). (30)

An example of this operation is shown in Figure 12.
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(a) Path before operation:
v = (s1, s3, s6, s4, s10, s7, s9, s5, s2, s8)

Exchange path {s3, s6, s4} with {s9, s5, s2}
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(b) Path after operation:
v = (s1, s9, s5, s2, s4, s10, s3, s6, s4, s8)

Figure 12: An example of Path Exchange operation

5.2.2 local search operators

Local search operators aim to explore the imminent neighborhood of the current
solution searching for local optima. This is done by modifications that change the solution in
smaller scope than the shake operators (the difference l between solutions will be smaller).
In addition, since the used algorithm is not pure VNS but rather RVNS, the local search
is also randomized. The operators apply only very simple changes to the solution vector so
it is possible to run multiple iterations in one optimization step. This process practically
emulates VNS where this local search would be some systematic procedure determining the
local optimum, although typically more resource demanding than randomized hill climbing.
The number of iterations during which the same local search operator is repeatedly applied
is equal to the square root of reachable targets. Each time the operation creates a better
solution, the change is accepted and further improvements continue with this new solution
- this is typically called a stochastic hill climbing algorithm [37]. The local search operators
are:

• Point Move (l = 2): This operator simply randomly selects one of the elements in
the solution vector and moves it to another position. This is performed by selecting
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only two random indexes such as:

i1 ∈ 〈2, n− 1〉,

i2 ∈ 〈2, i1)
⋃

(i1, n− 1〉.
(31)

The newly acquired solution vector for the case where i1 < i2 is then:

v = (qσi1 , ..., qσi1−1
, qσi1+1

, ..., qσi2−1
, qσi1 , qσi2+1

, ..., qσn)

. An example of this operation is shown in Figure 13.
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(a) Path before operation:
v = (t1, t3, t6, t4, t10, t7, t9, t5, t2, t8)

Move point t4 to index 7
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(b) Path after operation:
v = (t1, t3, t6, t10, t7, t4, t9, t5, t2, t8)

Figure 13: An example of Point Move operation

• Point Exchange (l = 3): This operator exchanges positions of two randomly selected
elements in the solution vector. This is again implemented as random selection of two
indexes but the solution vector is modified in different manner:

v = (qσi1 , ..., qσi1−1
, qσi2 , qσi1+1

, ..., qσi2−1
, qσi1 , qσi2+1

, ..., qσn)

. An example of this operation is shown in Figure 14.
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(a) Path before operation:
v = (t1, t3, t6, t4, t10, t7, t9, t5, t2, t8)
Exchange point t3 with point t6
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(b) Path after operation:
v = (t1, t6, t3, t4, t10, t7, t9, t5, t2, t8)

Figure 14: An example of Point Exchange operation

In addition, when performing the local search and a new target is introduced in the solution,
it is possible to apply the continuous optimization methods to improve heading angles and
velocities. This can further raise the quality of found solution during local search and
also introduce new samples for angle and velocity, opening more options in subsequent
iterations. However the process of continuous optimization is quite time demanding when
working with Hermite curves as motion primitives. The number of iterations inside the local
search can be large so the whole algorithm performance is negatively impacted. Because
of this reason the continuous optimization was not used in solution proposed in this thesis
during the local search operations Path Move and Path Exchange.

5.3 Continuous optimization operators

The continuous optimization part of the HOP problem, which is related to the se-
lection of suitable heading angle and velocity, is tackled by introduction of two special
operators Angle Speed Shake and Improve Angle Speed. Both operators can intro-
duce new samples for angle and velocity into the full set of all samples which is used in
combinatorial optimization and effectively decrease the needed time of flight for given com-
bination of target locations. This enables to start the algorithm with relatively low density
sampling which makes the initialization of the algorithm, construction of initial solution
and all combinatorial operations much faster. Used operators again follow the shake and
local search design.

• Angle Speed Shake (l = 1): This operator performs the shake operation upon
velocities and heading angles. That means randomly changing values for these two

37/64



5 PROPOSED SOLUTION TO HOP

variables which might be different from already used samples. To further lower the
complexity of the problem, the sampling of heading angle is performed only on planar
disk around each target even in 3D variant of the problem, even though in 3D all
possible heading angles are given by samples on sphere.This defines the heading angle
interval as 〈0, 2π)). This reduces the complexity while still offering reasonably good
extent of possible states. A disadvantage of this technique is a fact that the heading
vector of appropriate Hermite curve determined by heading angle will always have
the z component (vertical axis) equal to zero, which effectively means the vertical
velocity in each target location should be zero. This seemed to raise the number
of unfeasible Hermite trajectories and is a candidate for further improvement. The
velocity samples are limited by interval 〈0, vhmax〉, as the only contributing component
is the horizontal velocity at each target location. The solution modified by this shake
operation is then improved by following local search operator and if the new solution
has better reward all the newly introduced samples are added to the set of all available
samples and can be used in the combinatorial optimization part of the problem.

• Improve Angle Speed (l = 1): This operator performs the local search in terms
of continuous optimization. This again involves stochastic hill climbing technique.
The admissible interval for velocity and heading angle stays the same as in the case
of Angle Speed Shake. The procedure that is used for both variables at each target
location starts with given step which is a fraction of maximal used sampling rate
over the whole interval. This step is added to the current value of a given variable
and this newly created solution is checked for improvement in time of flight and
feasibility. If the new solution is shorter, the step size is doubled and the process is
repeated. If the solution is worse, the step size is halved and negated which changes
the direction of exploration and makes the resolution finer. This is repeated until
maximal or minimal values of possible resolution are reached by the step size. If
the step operation violates the limits given by feasible intervals the new value is
normalized to lie in the admissible interval (by overflowing and underflowing). In
addition this whole process is repeated for each target location in current solution
until given number of iterations without improvement is reached. This process has a
lot of nested cycles incorporated hence it is quite time demanding for large number
of targets but the elementary changes performed affect only the target itself and its
imminent neighbors in the solution. This means only two Hermite curves need to be
constructed at most in order to evaluate the new time of flight, which is not that
challenging.

Even though the Improve Angle Speed procedure is defined as a neighborhood op-
erator it can be used anywhere in the algorithm to optimize crude solutions. In the
implementation of this thesis this operator is used after the creation of initial solution
and then after each combinatorial operation which finds a better solution. It can be
even used in the combinatorial operations in order to admit solution that slightly
violates the maximal budget which might be optimized by Improve Angle Speed so
that this solution becomes feasible.
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6 Results

The HOP is considered to be NP-hard problem, hence it is very time and performance
demanding to find a quality solution even with the use of heuristic methods. This limits
the usability of the implementation in real time planning scenarios. The HOP solution
implementation can be run directly on board of the UAV, but since the output is the
trajectory generated in a suitable format for the MPC tracker to follow, the solution can be
as well generated off board with more processing power with only the resulting trajectories
being sent to the UAV. This leads to definition of two types of experimental setups.

First set of experiments aims to show the computational capabilities and performance
of the HOP solution algorithm. Since the solution is generated in a stochastic way, a large
number of tests is needed in order to get somewhat meaningful statistic sample. To achieve
this goal, the computational grid services provided by the organization Metacentrum were
utilized [1]. This service enables to run the implementation on fast Intel Xenon processors.
First test shows the average and maximal collected rewards for three different scenarios
depending on the travel budget along with the calculation time needed. This might serve
as a comparison benchmark for other approaches to the OP. The second test aims to show
how the initial velocity and heading angle sampling rates influence the quality of found
solutions along with computational complexity. Another parameter explored in this set of
tests is the heading multiplier hm defined in the Section 3.4. The value of this parameter
significantly modifies the shape of generated Hermite spline, so also its impact on the
collected reward was tested. During these tests an optimal value of heading multiplier was
found for each used scenario. In the last set of tests the HOP solution is compared to EOP
and DOP. Both these solution use the maximal length as the budget constraint, hence
both approaches have been slightly modified so it is possible to compare them with the
time based HOP solution somewhat fairly. All computational results are described in the
Section 6.1.

The second experimental setup verifies the suitability and feasibility of the resulting
trajectories for the UAV. These are created with characteristics defined by the motion
model of a real UAV, which is used to fly through the generated trajectory and verify the
correctness of the design. This prototype was built by Multi Robotics Systems research
group [2] as an experimental platform for wide range of UAV themed research projects.
It is based on DJI hexacopter F550 commercially sold UAV frame with E310 DJI motors
along with PixHawk Autpilot low level controller. A lot of other support systems were
added to this platform, with Intel NUC-i7 mini PC being at the hearth of the system serv-
ing as a fully operational on board computer. This processor offers enough computational
resources even for performance demanding procedures and along with mobile graphical
chips such as NVIDIA Jetson TX2 can be used for tasks such as real time computer vision
and SLAM [29]. In addition a lot of different sensory equipment is used such as Ter-
aRanger One laser rangefinder for the distance measurements, Intel RealSense IR camera,
high-resolution FOV Mobius ActionCam or Scanse Sweep LIDAR. A precise differential
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GPS PRECIS-BX305 is used to enable localization accuracy in magnitude of centime-
ters. The functionality of all the subsystems are fused together using Robotic Operating
System [3]. This collection of software frameworks for robot related software development
offers tools for hardware abstraction, low-level device control, implementation of commonly
used functionality, message-passing between processes and package management. Several
HOP scenarios were created showing the capabilities of the solution tested on the UAV in
real conditions. Results are described in the Section 6.2.

6.1 Computational results

Most of the results were performed on a scenario created for several UAV applications
by the MRS research group. The map showing the locations and rewards of the target
locations in this scenario is shown in Figure 15. This scenario will be called MBZIRC as it
was used in the international UAV competition with the same name. The main advantage
of the MBZIRC scenario is that it can be easily built on the premises of testing range
used for the real UAV testing. Furthermore all of the tests are performed in plane so it is
possible to compare the results with existing solutions which are all in 2D.
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Figure 15: MBZIRC scenario map showing the topology of target locations
with color coded reward for visiting each target with maximal collectible
reward of R=88
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The first computational test performed, can serve as a benchmark for further projects
on similar topics. The HOP solution implementation was run for several different budgets
with collected reward being the examined result. Since the results are stochastic, each
test with given maximal budget was run ten times and the average and maximal collected
reward was determined. This test was performed using three different scenario maps. First
tested scenario is the given by the MBZIRC data set shown in Figure 15. The second used
scenario was introduced by Tsiligirides in [46]. He defined three scenarios containing up
to 32 target locations each, naming them Set 1, Set 2 and Set 3. The scenario named
Set 1 is used in further testing and will be referred to as Tsiligirides scenario. The third
used scenario was defined by Chao in [10] and contains 66 target locations. This scenario
will be called Set66. The topologies of target locations along with respective rewards for
Tsiligirides and Set66 scenarios are shown in Figure 16.
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(a) Tsiligirides with maximal collectible reward
R=285
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(b) Set66 with maximal collectible reward
R=1680

Figure 16: Tsligirides and Set66 scenario maps showing the topology of target
locations with color coded reward for visiting each target

The resulting collected average and maximal rewards with respect to the maximal
travel budget for each scenario are shown in Table 3. Examples of solutions for each scenario
are shown in Figure 17 and 18.
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Table 3: The collected average and maximal collected reward based on the
maximal budget for different HOP scenarios, Tmax - maximal traveling time
budget, RAvg - average collected reward in ten runs, RMax - maximal collected
reward in ten runs, tAvg - average time of reaching the maximal achieved
reward in ten runs. All tests were performed using UAV limitations vhmax =
5m/s and ahmax = 2m/s2.

Tmax[s]
MBZIRC Tsiligirides Set66

RAvg RMax tAvg[s] RAvg RMax tAvg[s] RAvg RMax tAvg[s]
25 42.0 42 17.3 166.5 185 628.9 668.5 745 3210.2
30 52.0 52 156.2 211.5 215 1297.7 748.5 855 1635.0
35 58.0 58 17.9 234.0 240 3011.6 868.5 935 2936.0
40 65.0 65 2262.8 254.4 265 3205.6 1059.5 1145 2449.0
45 72.6 73 170.3 273.0 280 1734.6 1191.5 1255 3845.8
50 77.0 77 41.0 284.0 285 958.9 1350.0 1415 5916.5
55 81.0 81 21.3 285.0 285 104.0 1430.0 1485 4423.8
60 85.8 87 280.4 285.0 285 66.2 1465.5 1565 4143.8
65 87.7 88 1413.2 285.0 285 56.3 1576.0 1650 3182.2
70 88.0 88 18.3 285.0 285 68.1 1613.0 1650 2979.3
75 88.0 88 521.4 285.0 285 324.3 1669.0 1680 3032.2
80 88.0 88 147.7 285.0 285 124.7 1679.0 1680 2599.6
85 88.0 88 57.2 285.0 285 789.1 1680.0 1680 3750.9
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(a) MBZIRC scenario HOP solution
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(b) Velocity and acceleration profile

Figure 17: An example solution of MBZIRC scenario with time budget
Tmax = 50s, maximal horizontal acceleration ahmax = 2m/s2, maximal hori-
zontal velocity vhmax = 5m/s along with calculated velocity and acceleration
profile
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Figure 18: Example HOP solutions of Tsiligirides and Set66 scenarios with
time budget Tmax = 50s, maximal horizontal acceleration ahmax = 2m/s2,
maximal horizontal velocity vhmax = 5m/s

Apart from the maximal budget, the parameters influencing the algorithm are the
initial sampling rates of the heading angle and actual velocity at target locations. The
denser the sampling is, the better initial solution can be found, but the calculation time
is larger. Two tests were designed to explore the influence of initial sampling rates on the
performance. First test aims to find the average gathered reward based on used sampling
rates. All rewards were again averaged over ten runs with the same settings and all test were
performed using MBZIRC scenario. The results are pictured in Figure 19. The graph shows
that the quality of the solution is almost indifferent to the initial sampling rate that was
used. Only the very low sampling rate cases (1-2 samples per location) show slightly worse
performance. This is very positive results, as it shows that it is really sufficient to use lower
density initial sampling rates such as three to four samples per target location per variable,
since the quality of the final solution will be unchanged compared to the solution obtained
using higher sampling rates. This is the main motivation for introduction of continuous
optimization operators in Section 5.3 and this result shows that the approach is successful.
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Figure 19: Average collected reward in MBZIRC scenario based on used
initial sampling rates, R - average gathered reward, Sv - number of velocity
samples per target, SΘ - number of heading angle samples per target

Since it was shown it doesn’t really matter which initial sampling is chosen in order
to find good quality solution, the other factor that should offer sufficient insight on the
suitable strategy for sampling rate determination is the time performance. The average time
of reaching the value of the maximal collected reward during the run for given sampling
rates is shown in Figure 20. Even though there are some outliers throughout the graph,
there is overall tendency for the calculation times to be higher in sections of either very
low sampling rates or very high sampling rate. In the case of low sampling rates, the higher
calculation time is clearly caused by low number of possible combinations that can be used
by the algorithm. It takes significant number of iterations until new samples are introduced.
This also causes the lower average collected reward. In the case of high sampling rates, the
longer calculation times are caused by too many samples to iterate through. As was noted
in the Section 5.1 one of the biggest performance hits is the calculation of the allDistance
structure before the actual algorithm starts. For high sampling rates this initialization takes
much more time compared to low sampling rates. The Figure 21 shows this initialization
time for given sampling rates. To find just the pure optimization time performance, the
average initialization time is subtracted from the average time of reaching the maximal
achieved reward. This situation is shown in the Figure 22. It can be noticed, that the
maximas, especially in high sampling areas, are bit lowered but the overall tendency stays
the same. This is another evidence that it is beneficial to use fairly small initial sampling
rates in order to find solution of good quality as fast as possible, thanks to the introduction
of the continuous optimization.
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Figure 20: Average time of finding the first solution of maximal reached
reward based on chosen initial sampling rate
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Figure 21: Average initialization time in seconds based on used sampling rate
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Figure 22: Average time of finding the first solution of maximal reached
reward based on chosen initial sampling rate reduced by time needed to
initialize the whole algorithm
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The last parameter that will be explored is the Hermite curve heading vector mul-
tiplier hm described in the Section 3.4. This parameter has a big impact on the resulting
shape of the trajectory, but the optimal value differs for each scenario as it is dependent on
the topology of the target locations. Unfortunately no analytical formula for choosing the
optimal heading multiplier was found, hence an iterative process for finding the best head-
ing multiplier for given scenario was used. The optimal heading multiplier is determined
by series of tests using different values of the heading multiplier, with average collected
reward being recorded. The best performing heading multiplier is then used in other tests.
This was performed for MBZIRC, Tsiligirides and Set66 scenarios. The results are summed
up in the Figure 23. The values of the best heading multiplier hm found for each scenario
are given in Table 4.
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Figure 23: Average gathered budget Ra based on used heading vector multi-
plier hm for given scenarios
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Table 4: The best heading multiplier hm found for given scenarios

MBZIRC Tsiligirides Set66
3 1 2

The last set of experiments in this section compares the EOP and DOP solutions
with the HOP solution. In order to simulate the natural disadvantage of Euclidean paths
for UAV trajectories, a slightly modified version of HOP implementation was used. The
continuous optimization was disabled and the only samples available are samples with zero
velocity. This generates Euclidean paths and the UAV is forced to stop at each target
location since the turning angles are very sharp. The velocity profile generation and the
combinatorial optimization stays the same. An example of such Euclidean solution along
with the velocity profile is shown in Figure 24.
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(a) MBZIRC scenario EOP solution
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Figure 24: An example solution of MBZIRC scenario using EOP approach
with time budget Tmax = 50s, maximal horizontal acceleration ahmax =
2m/s2, maximal horizontal velocity vhmax = 5m/s along with calculated ve-
locity and acceleration profile

The implementation of the DOP solver provided by the authors of [31] was used
for comparison with the HOP approach. However, the DOP solver uses the length of the
trajectory instead of time of flight as the budget constraint. The DOP approach assumes
that the UAV moves with constant velocity which also determines the turning radius of the
Dubins curves. In order to fairly compare the DOP solution with HOP, the average velocity
with which the UAV moves along the trajectory generated in HOP solution is determined
from the velocity profile. This average velocity of flight is then used in the DOP as the
constant velocity. From the known constant velocity vDOP and known maximal time budget
Tmax in HOP solution, it is possible to determined the length budget Lmax for DOP which
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is equivalent to the time budget in HOP. The Equation (32) is used to determine the DOP
length budget.

Lmax = vDOP · Tmax (32)

An example of the DOP solution is shown in Figure 25. The velocity profile is not included
as it is considered constant.

The test for comparison of all three solutions of the EOP, DOP and HOP determines
the average collected reward based on value of time budget or equivalent length budget.
The average reward is again calculated using results from ten runs for each budget value.
The MBZIRC scenario was used for all three solutions. The results are shown in Figure
26. It is clear that the HOP solution is superior. This shows that by taking advantage of
Hermite curves and the introduction of the velocity profile it is really possible to fly the
generated trajectories faster even if the actual distance might be longer.
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Figure 25: An example solution of MBZIRC scenario using DOP approach
with length budget Lmax = 247.31 m and constant horizontal velocity
vh = 3.81 m/s which corresponds to minimal turning radius of 7.23m. This
corresponds to a time budget of 65 seconds
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Figure 26: Comparison of average rewards Ra for given maximal budget Tmax
for HOP, DOP and EOP solutions

6.2 Experimental verification using real UAV

The experiments with the UAV prototype aim to show the feasibility of the generated
trajectories and the correctness of the time of flight estimate. Three HOP solutions using
different sets of parameters were selected in order to test the full range of capabilities of this
solution. The MBZIRC scenario was used in all cases. The target locations were manually
marked in open field by objects with numbers corresponding to rewards. The locations of
these targets were determined using differential GPS. The duration of the experiments was
recorded by on-board Mobius camera with wide field of view used mainly to record the
target markers on the ground. Additionally the flight of the UAV was recorded externally
by commercially sold UAV with 4k camera from the height of roughly hundred meters.

Table 5: Experiments setup

Code name 2D HOP 3D EOP 3D HOP
Scenario MBZIRC MBZIRC (modified) MBZIRC (modified)

Dimension 2D 3D 3D
Heading mult. 5 0 (Euclid) 5

Budget 45 55 55
Reward 70 51 62
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Table 6: UAV motion constraints

vhmax ahmax vvmax avmax
5m/s 2m/s2 1m/s 1m/s2

The set of used parameters for each of three experiments is summarized in Table 5. In
the 3D cases 3D EOP and 3D EOP, the topology of the target locations remained the same
in the plane with each target being randomly assigned the theoretical height ranging from
4-20 meters. An example of vertical profile in time for 3D HOP experiment is shown in
Figure 27. Also for 3D scenarios the starting location was moved. The maximal horizontal
and vertical velocities of used UAV are shown in the Table 6.
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Figure 27: Vertical profile of the 3D HOP experiment in time

Recorder flight trajectories plotted over the image of the testing range are shown in
Figure 28 along with the comparison of recorded trajectories with the theoretical splines
which were supplied to the UAV model predictive controller. The actual locations of the
targets in the image are distorted by the camera of the UAV so the plotted trajectories
are not exactly on spot. It is clear that the UAV follows the trajectory with reasonable
accuracy. Minor deviations can be noticed, but these do not hold much importance for
the actual goal of surveillance, since all of the target locations are visited. This is also
supported by a video 1 from the on-board camera which shows all of the target locations in
the filed of view. The UAV might not be exactly at the target location but the deviations
do not prevent successful surveillance since the field of view of used sensor, which is usually
some form of image acquisition device, is rarely very restricted.

1A link to a video footage from all three experiments: https://www.youtube.com/watch?v=gagYFLpGVC4
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(a) 2D HOP aerial view of measured trajec-
tory
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(b) 2D HOP measured and theoretical tra-
jectory comparison

(c) 3D EOP aerial view of measured trajec-
tory
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(d) 3D EOP measured and theoretical tra-
jectory comparison

(e) 3D HOP aerial view of measured trajec-
tory
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(f) 3D HOP measured and theoretical tra-
jectory comparison

Figure 28: Recorder flight trajectories by the UAV video platform along with
comparison of measured and theoretical generated trajectories
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An interesting phenomenon is shown in the detail of the EOP scenario in Figure 29.
It shows that the MPC is not able to follow the Euclidean path accurately and smooths
the flight path in very sharp turns. This supports the motivation behind not using the
Euclidean paths as motion primitives in UAV motivated OP solutions.
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Figure 29: A detail of generated Euclidean trajectory and the actual recorded
UAV trajectory

It was shown that the trajectory following is reasonably accurate from geometrical
point of view, but the resulting trajectories are defined with respect to the maximal theoret-
ical velocity profile, so it is important to test the accuracy of this estimate. The horizontal
and vertical theoretical velocity and acceleration profile along with the real measured pro-
files from the 3D HOP experiment are shown in Figure 30. It is noticeable that the profiles
differ quite significantly. The measured horizontal acceleration is much smoother and does
not change as dramatically. This difference was determined to be caused by the UAV mo-
tion regulator, since it is not only limited in velocity and acceleration but also in jerk.
Both profiles along with the jerk profile are shown in Figure 31. It is clear that the jerk in
the MPC controller is limited, which results in different velocity and acceleration profiles.
It means that the velocity profile is theoretically correct but in order to comply with the
chosen UAV it would have to be modified to take the jerk limitation in account or the UAV
controller itself needs to be changed to be more benevolent towards the jerk limitations.
This contradiction also resulted in differences in predicted and measured time of flight for
each scenario, which was, however, a difference of approximately 1.8%, so the estimation is
still reasonably accurate. Either way, this problem is a definite candidate for improvement
in further development, but since the change affects only the velocity profile calculation it
is fairly isolated problem, which can be enhanced without dramatically affecting the over
all approach and performance of the HOP solver.
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tion profile
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tion profile
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Figure 30: Theoretical and measured velocity and acceleration profiles com-
parison for the 3D HOP scenario solution. vh - horizontal velocity, ah - hori-
zontal acceleration, vv - vertical velocity, av - vertical acceleration
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Figure 31: Theoretical and measured velocity, acceleration and jerk profiles
comparison for the 3D HOP scenario solution.vh - horizontal velocity, ah -
horizontal acceleration, jh - horizontal jerk, jhr - measured horizontal jerk,jht
- theoretical horizontal jerk
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7 Conclusion

A novel approach to UAV trajectory planning based on Orienteering Problem was
introduced and implemented in this thesis. The proposed solver uses Hermite cubic splines
as a motion primitives to find fast and feasible solutions of the OP. This variant of the OP
was called Hermite Orienteering Problem.

First part of the solution consists of creation of method to easily parametrize and
generate Hermite splines. Along the generated curve a velocity and acceleration profile is
calculated respecting the motion limitations of the UAV, which determines the estimated
time of flight needed to traverse the curve by the UAV. Trajectories can be generated
in plane or in full 3D space. This is a big advantage over currently existing solutions as
majority is solved only in plane.

Hermite curves are then used to find solutions to the OP. The solution of HOP is
based on the Random Variable Neighborhood Search algorithm which is a suitable heuris-
tic for this kind of problem and was already successfully used in similar tasks such as the
DOP. Unfortunately, the RVNS algorithm performs only the combinatorial part of the op-
timization task, which consists of combinatorial and continuous optimization problem. The
continuous optimization part of the problem is introduced by the use of Hermite curves,
that are defined by target locations and heading vectors, so in order to find solutions of
good quality, the continuous heading angle and heading vector norm need to be optimized
as well. This is done by introduction of continuous optimization operators into the RVNS
algorithm, which enable to use small initial sampling resolution of heading angle and ve-
locity determining the heading vector norm and still find solutions of good quality, as new
samples are added continually by combination of random shake and systematic exploration
operations.

Two types of tests were performed to verify the performance and correctness of im-
plemented solution. The computational tests and also the experiments using real UAV.
The computational tests were performed by solving large number of testing scenarios on
a distributed grid of high performance processors which enabled to get sufficient statis-
tical sample. These tests showed that the continuous optimization works successfully as
the quality of found solutions did not change with higher sampling rates, which is much
more performance demanding. The current solution was compared to other approaches to
OP which were the Euclidean OP and the Dubins OP. The HOP solution proposed in this
thesis showed to be superior to both, as the average collected reward was higher in all test
cases which means the UAV is able to visit more targets compared to the EOP and DOP
solutions using the same travel budget.

Another set of tests were performed using the real UAV. It was shown that the UAV is
able to successfully track the generated Hermite trajectories and can use its full kinematic
potential, since it can reach high velocities and move in full three dimensional space. A
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maximal jerk limitation in the real UAV motion controller was found to be a source of
error in velocity profile and time of flight estimation, as the velocity profile introduced in
this thesis does not address the jerk limitation in the solution. This can be improved in
future work.

Overall, the solution to the UAV motivated Orienteering Problem proposed in this
thesis has been shown to be applicable in real UAV applications while demonstrating
significant advantages over existing solutions.
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Appendix A CD Content

In Table 7 are listed names of all root directories on CD.

Directory name Description
thesis the thesis in pdf format
thesis sources latex source codes
vns hop HOP solver c++ source code

Table 7: CD Content
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Appendix B List of abbreviations

In Table 8 are listed abbreviations used in this thesis.

Abbreviation Meaning
OP Orienteering Problem
HOP Hermite Orienteering Problem
DOP Dubins Orienteering Problem
EOP Euclidean Orienteering Problem
UAV Unmanned Aerial Vehicle
RVNS Random Variable Neighborhood Search
VNS Variable Neighborhood Search
TSP Traveling Salesman Problem
2D Two-dimensional
3D Three-dimensional

Table 8: Lists of abbreviations
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