
2009 International Nuclear Atlantic Conference - INAC 2009
Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009
ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN
ISBN: 978-85-99141-03-8

A PSO APPROACH FOR PREVENTIVE MAINTENANCE

SCHEDULING OPTIMIZATION

C. M. N. A. Pereira, C. M. F. Lapa, A. C. A. Mol and A. F. da Luz

Instituto de Engenharia Nuclear (IEN/CNEN)

R. Hélio de Almeida, 75, 21941-972 - P.O.Box 68550 – Ilha do Fundão - Rio de Janeiro, Brazil

E-mail: cmnap@ien.gov.br

ABSTRACT

This work presents a Particle Swarm Optimization (PSO) approach for preventive maintenance policy

optimization, focused in reliability and cost. The probabilistic model for reliability and cost evaluation is

developed in such a way that flexible intervals between maintenance are allowed. As PSO is skilled for real-

coded continuous spaces, a non-conventional codification has been developed in order to allow PSO to solve

scheduling problems (which is discrete) with variable number of maintenance interventions. In order to evaluate

the proposed methodology, the High Pressure Injection System (HPIS) of a typical 4-loop PWR has been

considered. Results demonstrate ability in finding optimal solutions, for which expert knowledge had to be

automatically discovered by PSO.

1. INTRODUCTION

Particle Swarm Optimization (PSO) [1] is a population-based metaheuristic (PBM), in which

solution candidates are enhanced through the simulation of a simplified social adaptation

model. Several successful applications of PSO to nuclear problems are reported in literature

[2, 3, 4 and 5], in which PSO demonstrated to have advantages over other well-established

PBM.

In this work, a PSO for preventive maintenance scheduling optimization focused in reliability

and cost is developed. The probabilistic model for reliability and cost evaluation allows the

use of flexible intervals between maintenance interventions, instead of considering fixed

periods. The approach propitiates a better fitting of the schedules to components’

characteristics. On the other hand, due to such flexibility, preventive maintenance planning

becomes a harder task. In order to deal with such complexity, genetic algorithms (GAs) [6]

have been successfully applied [7 and 8]. Motivated by the fact that PSO has been

demonstrating to be very competitive with other PBM (including GA), this work investigates

the use of PSO as an alternative tool for preventive maintenance policy optimization with

flexible interval between interventions.

Considering that PSO works in continuous space, with fixed length real-coded vectors (to

encode solution candidates) and the proposed problem is discrete and may allow variable

number of maintenance interventions for each system component, non-trivial encoding of

solution candidates has been developed in this work.



INAC 2009, Rio de Janeiro, RJ, Brazil.

Proposed PSO is intended to search for the optimum maintenance policy considering several

relevant features such as: i) the probability of needing a repair (corrective maintenance), ii)

the cost of such repair, iii) typical outage times, iv) preventive maintenance costs, v) the

impact of the maintenance in the systems reliability as a whole and vi) probability of

imperfect maintenance.

In order to evaluate the proposed methodology, the High Pressure Injection System (HPIS) of

a typical 4-loop PWR has been considered. Preliminary results demonstrate that PSO is quite

efficient in finding optimum preventive maintenance policies for the HPIS.

2. PROPOSED METHODOLOGY

2.1. Particle Swarm Optimization

PSO is Population Based Metaheuristic (PBM) inspired by the behavior of biological swarms

and social adaptation. In PSO, a swarm of structures encoding solution candidates

(“particles”) “fly” in the n-dimensional search space of the optimization problem looking for

optima or near-optima regions. The position of a particle represents a solution candidate

itself, while the velocity attribute, provides information about direction and changing rate.

Particles are guided by two components: i) cognitive information based on particles’ own

experience and ii) social information based on observation of neighbors. Let

)}(),...,({)( ,1, txtxtX niii =  and  )}(),...,({)( ,1, tvtvtV niii =  be, respectively, the position and the

velocity of particle i in time t, in an n-dimensional search space. Considering that

)}(),...,({)( ,1, tpBesttpBesttpBest niii =  is the best position already found by particle i until time t

and )}(),...,({)( ,1, tgBesttgBesttgBest niii =  is the best position already found by a neighbor until t,
the PSO updating rules for velocity and position are given by:

          

))()(.(.))()(.(.)(.)1( ,,22,,11,, txtgBestrctxtpBestrctvwtv nininininini −+−+=+ (1)

)1()()1( ,,, ++=+ tvtxtx ninini (2)

Where r1 and r2 are random numbers between 0 and 1. Coefficients c1 and c2 are given

acceleration constants towards pBest and gBest respectively and w is the inertia weight.

The inertia weight, w, is the responsible for the scope of the exploration of the search space.

High values of w promote global exploration and exploitation, while low values, lead to local

search. A common approach to provide balance between global and local search is to linearly

decrease w during the search process.

The swarm is randomly initialized. Then, while stopping criterion is not reached, particles

move according velocity and positions equations (eqs. 1 and 2). The PSO algorithm pseudo

code can be seen in Figure 1.
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Figure 1. Standard PSO pseudo code.

2.2. Optimization Problem Modeling

A typical PWR High Pressure Injection System (HPIS) once used by Lapa [7] has been

considered. The HPIS can be represented by seven main components: three pumps and four

valves as shown in Figure 2. In normal operation its function is to complete the inventory of

the primary loop through the reactor coolant system, as well as to guarantee the seal of the

pumps of this system. Under accident situations, in which the steam generators are

unavailable or there is a rupture in the primary system, the HPIS is used for removing the

decay heat. Considering that the reactor in operating with power above 60% and at least 2 of

the 3 pumps must be available during the mission time, the top event is the unavailability to

supply the inventory by both feeders.

Line 1

Line 2

B1

B2

B3

V1

V2

V3

V4

Figure 2. High Pressure Injection System

In this optimization problem, optimum maintenance scheduling for components B1, B2, B3,

V1, V2, V3 must be found. Therefore, solution candidates must encode all possible

scheduling combinations for all components.

Algorithm PSO

begin

   for i=1 to n_particles do begin

      randomize(Xi); randomize(Vi);

   end;

   for iter=1 to itermax do begin

      for i=1 to n_particles do evaluate (Xi);

      for i=1 to n_particles do update(pBesti,gBest);

      for i=1 to n_particles do begin

         Vi = w*Vi+c1*r1*(pBesti-Xi)+c2*r2*(gBest-Xi);

         Xi = Xi+Vi;

      end;

   end;

end.
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Considering that PSO works with real-coded fixed length vectors, it’s application to a

discrete problem, in which solutions may have variable length (components variable number

of maintenance interventions) is not straightforward. Firstly, a maximum of 23 interventions

for each component has been established. So, a solution candidate may comprise at most 161

(23 maintenance x 7 components). Hence, it should be used a vector of 161 elements. Then,

PSO position vector is given by )}(),...,({)( 161,1, txtxtX iii = . Figure 3 illustrate

)(tX i which present 23 elements for each component.

V1 V2 ... B3

X0 ... X22 X23 ... X45           ... X138  ... X160

Figure 3. Vector )(tX i

Note that, to allow variable scheduling length (components may have less than 23

interventions), decoding )(tX i is not straightforward.

Considering a total operation period of 540 days and a time step of 1 day, the following steps

are required to decode )(tX i into valid scheduling.

i) )(tX i elements are real numbers ranging from –540 to 540;

ii) each element is rounded to the closes integer;

iii) values from 1 to 540 represents valid days for maintenance interventions;

iv) non-positive values mean no intervention;

v) duplicate values are removed;

Figure 4 exemplifies such decoding procedure.

Vector X:
V1 ... B3

x0 x1 X2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 ... ...

32.1 -18 95.7 200 -30 -9.1 -123 301 260 -11 -521 123 498 -23 -91 -510 15.9 350 200 -10 -89 380 10 ... ...

Valid days for maintenance
V1 ... B3

32 - 96 200 - - - 301 260 - - 123 498 - - - 16 350 200. - - 380 10 ... ...

Maintenance scheduling without repetitions
V1 ... B3

10 16 32 96 123 200 260 301 350 380 498 - - - - - - - - - - - - ... ...

Figure 4. Decoding )(tX i into a valid scheduling.
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The same objective function used by Lapa [7] has been used. Equation 3 shows such

function, which should be minimized.

F  =  Wd .U + Wc .C                                       (3)

Where U is the average unavailability and C the total cost for a given scheduling, calculated

according to [7]. Wd  vary between 0 and 1 and Wc ranges between 0 and 1/(N_COMP *

MAX_INT), where N_COMP is the number of components and MAX_INT is the maximum

number of maintenance interventions.

3. COMPUTATIONAL EXPERIMENTS AND RESULTS

Two case studies have been carried out. The first one is a hypothetical situation used as

benchmark, in which global optimum is well known. The second one is a harder situation

closer to a real problem.

3.1. First case study

To test efficiency and consistency of proposed methodology, an investigation considering the

following characteristics have been done:

i) component is not under aging (consider K3=1 in Lapa’s probabilistic model [7]) and

so, maintenance does not improve reliability;

ii) all maintenance is perfect (consider p=0 in Lapa’s probabilistic model [7])

Expected optimum scheduling is “no maintenance interventions to the whole system”.

Tem experiments have been made with different random seeds and typical values for C1 and

C2 (both set to 2.0). Inertia weight, w, decreased from 0.8 to 0.2 in 2000 generations.

In all cases “no maintenance” have been proposed, demonstrating efficiency and consistency

of the proposed approach.

3.2. Second case study

In this scenario, more realistic values for failure rates, costs for maintenance and repair, etc,

has been used according to Harunuzzaman [9].

Tem experiments have been made with different random seeds and typical values for C1 and

C2 (both set to 2.0). Inertia weight, w, decreased from 0.8 to 0.2 in 1000 generations.

Table 1 and 2 show obtained results.
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Exp. Particles Seed Cost Unavailability Fitness

1 20 123456789 0.0056313 0.00448557 0.0101169

2 20 7622 0.00576458 0.00423274 0.00999732

3 20 777 0.00571318 0.00429454 0.0100077

4 20 13 0.00570311 0.00437837 0.0100815

5 20 13987 0.00583616 0.00408374 0.0099199

6 50 123456789 0.00576754 0.00423455 0.0100021

7 50 7622 0.00570256 0.00430842 0.010011

8 50 777 0.00584039 0.00400797 0.00984836

9 50 13 0.00570006 0.00432445 0.0100245

10 50 13987 0.00562846 0.00455739 0.0101859

Table 1. Results for the second case study

Fitness = 0.00984836

Valve 1 4 interventions 72-146-228-326

Valve 2 4 interventions 73-148-226-331

Valve 3 3 interventions 108-218-343

Valve 4 3 interventions 107-216-342

Pump 1 1 interventions 228

Pump 2 2 interventions 132-281

Pump 3 1 interventions 226

Table 2. Best solution found for second case study

In Table 1 it can be observed the consistency of the method in finding solutions very close to

each other.

Table shows a very important feature: the knowledge discovery developed by the proposed

approach. Note that Valve 1 and Pump 1 which are inline to each other stop at coincident

time (t=228). Such fact improves availability. The same occurs with Valve 2 and Pump 3.

Also, pumps undergo fewer interventions due to the higher cost and outage time for

maintenance.

4. CONCLUSIONS

This work demonstrates the feasibility of using PSO for preventive maintenance

optimization. Proposed PSO non-conventional solution candidate, encoded into fixed length

real-coded vector demonstrates to be efficient to deal with a 1-day step scheduling

optimization with variable number of interventions.

The efficiency and consistency of the proposed PSO approach is observed, not only on fitness

values, but principally in the knowledge discovery, which allows a gain in the availability

when components stop at coincident time.

Future research should be the investigation of multi-objective PSO models.
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