
2009 International Nuclear Atlantic Conference - INAC 2009
Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009
ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN
ISBN: 978-85-99141-03-8

GPU-Based High Performance Monte Carlo Simulation in
Neutron Transport

Adino Heimlich, Antônio C. A. Mol, Cláudio M. N. A. Pereira
Laboratório de Inteligência Artificial Aplicada

Comissão Nacional de Energia Nuclear - IEN/CNEN
R. Hélio de Almeida, 75, 21941-972 - P.O.Box 68550 - Ilha do Fundão - Rio de Janeiro, Brazil

cmnap@ien.gov.br

ABSTRACT

Graphics Processing Units (GPU) are high performance co-processors intended, originally,
to improve the use and quality of computer graphics applications. Since researchers and
practitioners realized the potential of using GPU for general purpose, their application
has been extended to other fields out of computer graphics scope. The main objective
of this work is to evaluate the impact of using GPU in neutron transport simulation
by Monte Carlo method. To accomplish that, GPU- and CPU-based (single and multi-
core) approaches were developed and applied to a simple, but time-consuming problem.
Comparisons demonstrated that the GPU-based approach is about 15 times faster than
a parallel 8-core CPU-based approach also developed in this work.

1 Introduction

In order to achieve high level of graphical quality with adequate performance, com-
puter graphics applications require very fast processing of large amount of data. To
accomplish that, dedicated high performance co-processors, called Graphics Processing
Units (GPUs) have been widely used. A GPU is a Single Instruction Multiple Data
(SIMD) parallel architecture, in with one instruction can be performed with multiple
data in a pipeline, at same time. Since researchers and practitioners realized the poten-
tial of using GPU for general purpose, their application has been extended to other fields
out of computer graphics scope [17] [14] [21]. Developing GPU-based applications have
been considered quite interesting, not only due to the great speedup provided, but also
due to the very low cost of GPU, when compared to multiprocessor (multi-core or clusters)
architectures. In the nuclear field, however, such technology is poorly explored. Such fact
has, motivated the development of this work, which is aimed to show the impact of using
GPU in nuclear applications. To accomplish that, a simplified, but computer-expensive
neutron transport simulation by Monte Carlo method has been considered. Recently,
GPU-based approaches for Monte Carlo calculations has been successfully explored in
other fields of application [20] [8], demonstrating great speedup in processing time. In
order to provide a comparative analysis, solutions have been implemented for both GPU
and CPU. Hence, sequential and parallel (multiprocessor) CPU-based approaches have

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carpe dIEN

https://core.ac.uk/display/159274503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


also been developed in this work. The reminder of this paper is organized as follows:
Section 2 gives an overview of the GPU architecture and programming concepts. Section
3 presents the proposed problem. In sections 4 and 5 the GPU and CPU-based algo-
rithm implementation are described. Comparative experiments and results are discussed
in section 6 and, finally, section 7 provide some concluding remarks.

2 GPU Architecture

The GPU used in this work was the GeForce GTX-280, the second generation of the
CUDA enabled NVIDIA GPUs. GTX-280 architecture is based on Scalable Processor
Array (SPA) framework. The SPA architecture, in GTX-280, consists of 10 Thread Pro-
cessing Clusters (TPCs). Each TPC comprises 3 Streaming Multiprocessors (SMs), and
each SM contains 8 Streaming Processors (SPs), or thread processors; each TPC which
comprises 8 Arithmetic Logic Unit (ALUs), one 64 bits Floating Point Unit (FPU) and a
24 Kbyte shared memory for communication inter SMs. In summary, 240 streaming pro-
cessors are available. In order to support a possible divergence in each thread, situations
caused by conditional, WHILE IF, etc; within the warp some threads may be inactive
during the execution of instructions. Thus different branches in a program are serialized
with respect to their threads are active or not, unless it is clear that all threads in warp
are in sync. Figure 1 shows a simplified GTX-280 GPU graphics processing architecture.

Figure 1: Simplified GTX-280 GPU graphics processing architecture.

The GTX-280 frame buffer memory interface is 512 bits wide, composed of eight 64
bit GDDR3 memory controllers, the GDDR3 memory controller coalesces a much greater
variety of memory access patterns, improving the efficiency as well as peak performance.
The memory controller is configured with 1GB of memory and the external interface from
the GTX-280, to the host system, is a PCI-Express2 x16 slot with a theoretical 8GB/s
of bandwidth in each direction conform published by [6] [16]. Each SM can handle up to
1024 threads and is structured in a way to reduce the decision of how many resources are
available in order to reduce the overhead in memory access and enable the synchronization
between the threads in a few clock machine. This is a structure of blocks of threads called
warps, warp each made off 32 threads. These warps are then executed in a handler called
Multiple Single Instruction Thread and each thread in warp has its own records, but they
are all running the same instruction. As seen in the taxonomy of Flynn, it classifies this
topology as a SIMD machine [12]. Figure 2 show a detailed SM structure in TPC.

INAC 2009, Rio de Janeiro, RJ, Brazil.



Figure 2: SM zoomed in the GTX-280.

3 CUDA - GPU Programming

CUDA (Compute Unified Device Architecture) is a C-language compiler that is based
on the PathScale C compiler, whose origin refers to OPEN64 project [2] [9]. The GPU
global block scheduler manages coarse grained parallelism at the thread block level across
the whole chip. When a CUDA kernel is started, information for a grid is sent from the
host CPU to the GPU. The work distribution unit reads this information and issues
the constituent thread blocks to SMs with available capacity. The work distribution
unit issues thread blocks in a round-robin fashion to SMs which have sufficient resources
to execute it. Some of the factors that are accounted for are the kernel’s demand for
threads per block, shared memory per block, registers per thread, thread and block state
requirements, and the current availability of those resources in each SM. The end goal of
the work distributor is to uniformly distribute threads across the SMs to maximize the
parallel execution opportunities. Figure 3 show simplified flowchart in CUDA program
[19].

3.1 Programming Model

In order to simplify the handling of large numbers of threads in Cuda, this language
offers the concept of grids and blocks of threads in which our computational domain, the
thousands of threads, which are divided into sets of blocks called grids, in dimensional or
two-dimensional way. Each of these blocks may contain up to 512 threads arranged in a
three-dimensional grid as shown in figure 4.

The blocks are mapped in the SMs and the Cuda driver offers way to identify both
the position of the block in the grid as the position of the thread in the block, this is
done through the system variables blockIdx and threadIdx, which are three-dimensional
vectors that point for the index of your thread; through these variables can identify and
manipulate the individual threads and this is very useful when dealing with conditions of

INAC 2009, Rio de Janeiro, RJ, Brazil.



Figure 3: Flowchart on CUDA Programming.

Figure 4: Grids and Threads Blocks on CUDA.

a control problem. The synchronization between the threads of a block is performed by
calling the primitive syncthreads(), but the synchronization between threads of different
blocks is not possible. It is important to note that the programmer has no influence on
the result in which an individual thread or threads of a block is processed, the hardware
is responsible for this through internal queue managers.

INAC 2009, Rio de Janeiro, RJ, Brazil.



3.2 Memory Model

Each multiprocessor, illustrated as Block (0, 0) and Block (1, 0) if figure 5, contains
the following five memory types: one set of local registers per thread, a parallel shared
memory that is shared by all the threads in a block and implements the shared memory
space. He also a read-only constant memory, it’s like a memory cache, that is shared by
all the threads . A read-only texture memory cache that is shared by all the processors
and speeds up reads from the texture memory space, which is implemented as a read-
only region of device memory. The constant memory speeds up reads from the constant
memory space, which is implemented as a read-only region of device memory. The global
space 1Gb of memory is accessed by more slowly threads, but implements read-write
capabilities.

Figure 5: CUDA Memory Model.

4 CPU Models

A several parallel programming models adopted to multi-core processors cold be used
as a benchmark problem, like Bulk Syncronous Parallel [1], OPENMP [5], Posix Threads
[18], MPI [13].

4.1 OPENMP

The OpenMP Application Program Interface (API) supports multi-platform shared-
memory parallel programming in C/C++ in several platforms including Unix like in all
itś flavors. OpenMP is really a handy and scalable model that gives shared-memory
parallel programmers a simple interface for developing parallel all of type of applications.
Allied with MPI library [? ], standart model for distribuited programming, constitute
that a powerfull ambience for clusters and other topologies like MIMD [12]. However our
approach will be based on posix threads, because this model has most proximity with
CUDA programming model.

INAC 2009, Rio de Janeiro, RJ, Brazil.



4.2 CPU Multi-Threading

The POSIX Threads Library is a standard for programming competing processes [3],
we call threads, is based on an interface for implementing C/C++ and is executable on
Linux or Solaris operating systems. This library provides efficient ways to expand the
process running on new competing processes, which can run more efficiently on computer
systems with multiple processors and/or processors with multiple cores.

5 The proposed problem

Shielding neutron source represents a essential problem in projects of nuclear reactors
and Monte Carlo method [11] is a very useful tool for solving this problem. In contrast
to a deterministic method, geometric complexity is a much less significant problem. The
accuracy of a Monte Carlo calculation is, of course, limited by the statistical deviation
of the quantities to be estimated. Let’s considerate the problem represented by neutron
transmission over a plate with thickness h; the flux is uniform and orthogonal to a infinite
plate surface, like figure 5.

Figure 6: Neutron Shielding in SLAB.

Suppose that mono-energetic neutron beam and a one-dimensional, cartesian, isotopic
and steady state in a homogeneous material. The interaction of neutron with materia is
characterized in the case under consideration by tree properties: Σa , Σs and Σ f denoting
the absorption , scattering and fission cross-section respectively [4] [10]. In this case,
shielding project, will considerate only that each particle will be suffering two possible
actions : be absorbed or be scattering , and not reflected. Therefore the total cross-section
is given by,

Σ = Σa + Σs. (1)

The physical interpretation of the cross-sections is a follows : In a collision of a neutron
with an atom, the probability of absorption is denoted by,

Pa =
Σa

Σ
(2)

INAC 2009, Rio de Janeiro, RJ, Brazil.



and the probability of scattering,

Ps =
Σs

Σ
(3)

We call mean free path, the distance average distance traveled by an neutron without
collision, denoted by γ, and each collision is an independent event can see this process
describe a Poisson flux [7]. The Poisson flux is a stochastic process that can be defined
in terms of occurrences of events. It expresses the probability of a number of events
occurring in a given time period, if they occur with a known average rate and where
each event is independent of time elapsed since the last event. The random independent
variable γ can assume any positive number and is given by ,

γ =
1
Σ

(4)

with probability density given by,

P(x) = Σe−xΣ ,0≤ x≤ ∞ (5)

Let’s calculate the expected value of a random variable with a probability density
given by 5,

F(x) =
Z

∞

0
P(x)dx =

Z
∞

0
Σe−xΣdx = ε ,0≤ x≤ ∞ (6)

This density is also called the exponential distribution and the mathematical expec-
tation of a random variable γ.

Z
σ

0
Σe−xΣdx = ε (7)

Computing the integral on the left we get the relation

1− e−Σσ = ε (8)

in turn, we get

γ =−1
Σ

ln(1− ε) (9)

But the variable (1 - ε) has exactly the same distribution as ε, and so, we can use the
equation

INAC 2009, Rio de Janeiro, RJ, Brazil.



γ =−1
Σ

lnε (10)

the random variable is estimated through a finite number of random numbers or
stories, and the previous equation is computed with the sum of each story [15],

x =
n

∑
i=1

γi (11)

where, n is the number of histories.

6 Algorithm

The implementation of a sequential algorithm in CPU,

NH {Number of histories}
WIDTH {Thickness o Material}
N {Number of Neutron out}
γ {Random variable}
for i = 1 to NH do

dx = 0 {Incremental neutron random walks}
while new is false do

U = Random()
dx =−MeanFreePath(ln(U)) {Calculate neutron random walks}
x← x + dx {Look to equation 11}
if x > WIDT H then

N← N + 1 {Increase neutron out number}
new← true

end if
U = PA(Random()) {Calculate the absortion probability}
if PA≥ 1 then

new← true {If neutron be absorbed}
end if

end while
end for

The implementation of a parallel algorithm,

NH {Number of histories}
NT {Number of threads}
WIDTH {Thickness of Material}
T [NT ] {Allocate a vector of threads}
for j = 1 to NT do

Tj ← start {Start thread Tj}
N j {Vector of Number of Neutron Out}
γ j {Vector of Random Variable}
NHj=NH/NT {Number of histories}
for i = 1 to NHj do

INAC 2009, Rio de Janeiro, RJ, Brazil.



dx j = 0 {Incremental Neutron Random Walks}
while new is false do

U = Random()
dx j =−MeanFreePath(ln(U)) {Calculate Neutron Random Walks}
x j← x j + dx j {Look to Equation 11}
if x j > WIDT H then

N j← N j + 1 {Increase Neutron Out Number}
new← true

end if
U = PA(Random()) {Calculate the Absortion Probability}
if PA≥ 1 then

new← true {If Neutron be Absorbed}
end if

end while
end for

end for
for j = 1→ NT do

Tj ← stop {Stop thread Tj}
N← N j + N {Increase Neutron Out Number}

end for

7 Experiments and Results

We use a plate of 10cm aluminum thickness in simulation, with 0.015 cross-section of
absorption and 0.84 cross-section of scattering and was measured attenuation of neutron
source. The test cover the whole range 220 to 229 neutron, we show that in table 1.

Table 1: GPU and CPU Performance (Seconds)

Neutron
Number

GPU % Neutron 1 Thread 2 Threads 4 Threads 8 Threads

1048576 0,007053 0,859375 0,87600 0,2135 0,4210 0,1090

2097152 0,014318 0,871094 1,74400 0,4350 0,8580 0,2100

4194304 0,029786 0,863281 3,51200 0,8630 1,6690 0,4120

8388608 0,058782 0,869141 7,00400 1,7420 3,3780 0,8210

16777216 0,118388 0,869141 14,28800 3,4315 6,6920 1,6383

33554432 0,237209 0,864502 28,71800 6,8885 13,3970 3,2773

67108864 0,471959 0,865234 57,53800 13,6695 26,8520 6,5495

134217728 0,939593 0,864929 114,77400 27,7620 53,8860 13,0983

268435456 1,879119 0,866486 228,46200 54,5930 107,5670 26,1963

536870912 3,750770 0,867325 467,60800 110,1480 216,02 52,3810

The machine under test is a workstation HP vx8600 with dual 5440 xeons processors
with 4 cores per processor and 8 gigabytes of ECC RAM. The GPU under test is

INAC 2009, Rio de Janeiro, RJ, Brazil.



GTX-280 by NVIDIA with 1Gbyte of memory. The test consists of a sequence of 10
neutron stories where each story is double the previous and 10 measures were made in

each story and got the mean.

8 Conclusions

The GPU-based implementation is damn faster than that of CPU-based one. For a
1-thread system, we get a speedup factor above 100 times. To attain these speeds we
just implements the parallel multi-thread algorithm in CUDA. Several improvements
can be performed to accelerate this algorithm, such as a mersenne twister random

generator and MPI/OPENMP implementation in a multi-device-multi-host topology.

References

[1] R.H. Bisseling and W.F. McColl. Scientific computing on bulk synchronous parallel
architectures. Technology and Foundations: Information Processing, 94:509–514.

[2] I. Buck. Gpu computing with nvidia cuda. In International Conference on Computer
Graphics and Interactive Techniques. ACM New York, NY, USA, 2007.

[3] D.R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman Pub-
lishing Co., Inc. Boston, MA, USA, 1997.

[4] L. L. Carter and E. D. Cashwell. Particle Transport Simulation with the Monte Carlo
Method; Prepared for the Division of Military Application, U.S. Energy Research and
Development Administration. U. S. Department of Energy, 1975.

[5] R. Chandra. Parallel programming in OpenMP. Morgan Kaufmann, 2000.

[6] J.M. Danskin, J.S. Montrym, J.E. Lindholm, S.E. Molnar, and M. French. Parallel
Array Architecture for a Graphics Processor, December 15 2006. US Patent App.
11/611,745.

[7] C.A.B. Dantas. Probabilidade: um curso introdutório. Edusp, 1997.

[8] P. Després, J. Rinkel, B.H. Hasegawa, and S. Prevrhal. Stream processors: a new
platform for Monte Carlo calculations. In Journal of Physics: Conference Series,
volume 102, page 012007. Institute of Physics Publishing, 2008.

[9] O. Developers. The Open64 web site.

[10] James J. Duderstadt and William R. Martin. Transport Theory. 1979.

[11] S.A. Dupree and SK Fraley. A Monte Carlo primer: A Practical approach to radia-
tion transport. Kluwer Academic/Plenum Publishers, 2004.

[12] M.J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions
on Computers, 21(9):948–960.

INAC 2009, Rio de Janeiro, RJ, Brazil.



[13] W. Gropp, E. Lusk, A. Skjellum, and U. Mpi. Portable Parallel Programming with
the Message-Passing Interface. MIT Press, Cambridge, Mass., 1999.

[14] Z. He and K. Harada. Solving point-feature labeling placement problem by par-
allel Hopfield neural network on GPU graphics card. Machine Graphics & Vision
International Journal, 15(1):99–120, 2006.

[15] M.H. Kalos and P.A. Whitlock. Monte carlo methods. Wiley-VCH, 2008.

[16] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro, 28(2):39–55, 2008.

[17] Z. Luo, H. Liu, and X. Wu. Artificial neural network computation on graphic pro-
cess unit. In 2005 IEEE International Joint Conference on Neural Networks, 2005.
IJCNN’05. Proceedings, volume 1.

[18] Frank Mueller. Implementing posix threads under unix: Description of work in
progress. In In Proceedings of the Second Software Engineering Research Forum,
pages 253–261, 1992.

[19] C. NVIDIA. Programming Guide 2.0, 2008.

[20] C.R. Salama. GPU-Based Monte-Carlo Volume Raycasting. In Proceedings of the
15th Pacific Conference on Computer Graphics and Applications, pages 411–414.
IEEE Computer Society Washington, DC, USA, 2007.

[21] J. Tölke. Implementation of a Lattice Boltzmann kernel using the Compute Unified
Device Architecture developed by nVIDIA. Computing and Visualization in Science,
pages 1–11.

INAC 2009, Rio de Janeiro, RJ, Brazil.


	1 Introduction
	2 GPU Architecture
	3 CUDA - GPU Programming
	3.1 Programming Model
	3.2 Memory Model

	4 CPU Models
	4.1 OPENMP
	4.2 CPU Multi-Threading

	5 The proposed problem
	6 Algorithm
	7 Experiments and Results
	8 Conclusions

