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ABSTRACT

Radionuclide identification is crucial to planning protective measures in emergency situations. This
paper presents the application of a method for a classification system of radioactive elements with a
fast and efficient response. To achieve this goal is proposedthe application of subtractive clustering
algorithm. The proposed application can be implemented in reconfigurable hardware, a flexible medium
to implement digital hardware circuits.

1. INTRODUCTION

Correct radionuclide identification can be crucial to planning protective measures, especially in emer-
gency situations, by defining the type of radiation source and its radiological hazard [1]. The gamma ray
energy of a radionuclide is a characteristic of the atomic structure of the material. When these emissions
are collected and analyzed with a gamma ray spectroscopy system, a gamma ray energy spectrum can
be produced. A detailed analysis of this spectrum is typically used to determine the identity of gamma
emitters present in the source. The gamma spectrum is characterized by the gamma-emitting radionu-
clides contained in the source [2].

A typical gamma-ray spectrometry system (fig. 1) consists ofa scintillator detector device and a measure
system . The interaction of radiation with the system occursin the scintillator detector and the measure-
ment system interprets this interaction. The scintillatordetector is capable of emitting light when gamma
radiation transfers, to this type of detector, all or part ofits energy. This light is detected by a photo-
multiplier optically coupled to the scintillator, which provides an electrical signal in the output, whose
amplitude is proportional to energy deposited.

The property of these detectors to provide an electrical signal, proportional to the deposited energy
spectrum, allows the creation of the gamma energy spectrum to the radioactive elements (histogram). To
obtain this spectrum is used a multichannel analyzer or MCA.
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Figure 1. Gama Spectrometry System - main components.

The MCA consists of an ADC (Analog to Digital Converter) which converts the amplitude of analog
input in a number or channel. Each channel is associated witha counter that accumulates the number
of pulses with a given amplitude, forming a histogram. Thesedata form the energy spectrum of gamma
radiation. Since different radionuclides emit radiation at different energy distributions, the spectrum
analysis can provide information about the composition of the radioactive source and allow the correct
identification.

This paper introduces the application of a method for a classification system of radioactive elements that
allows a rapid and efficient identification to be implementedin portable systems. Our intention is to run
a clustering algorithms in a portable equipment to perform identification of radionuclides. The cluster-
ing algorithms consume high processing time when implemented in software, mainly on processors of
portable use, such as micro-controllers. Thus, a custom implementation for reconfigurable hardware is a
good choice in embedded systems, which require real-time execution as well as low power consumption.
Reconfigurable hardware devices are hardware devices in which the functionality of the logic gates is
customizable at run-time. The most common type of reconfigurable hardware device is an FPGA (Field
Programmable Gate Array).

The paper is organized as follows: first, in Section 2, it is demonstrated the principles of radionuclide
identification. Later, in Section 3, we review briefly existing clustering algorithms and we concentrate
on the subtractive clustering algorithm. In Section 4, we describe the proposed architecture for cluster
centers calculator using the subtractive clustering algorithm and we review concepts about reconfigurable
hardware. In Section 5, we present some performance figures to assess the efficiency of the proposed
implementation. Last in Section 6, we present some conclusions and point out some directions for future
work.

2. RADIONUCLIDE IDENTIFICATION

There are three main types of ionizing radiation emitted by radioactive atoms: alpha, beta and gamma.
The alpha and beta are particles that have mass and are electrically charged, while the gamma rays, like
x-rays, are electromagnetic waves. The emission of alpha and beta radiation is, in general, accompanied
by the emission of gamma radiation. Gamma energy emitted by aradionuclide is a characteristic of the
atomic structure of the material.

Consider, for instance, Cesium-137 (137Cs) and Cobalt-60 (60Co), which are two common gamma ray
sources. These radionuclides emit radiation in one or two discreet wavelengths. Cesium-137 emits 0.662
MeV gamma rays and Cobalt-60 1.33 and 1.17 MeV gamma rays. These energy are known as decay
energy and define the decay scheme of the radionuclide. Each radionuclide, among many others, has a
unique decay scheme by which it is identified [3].
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Figure 2 shows a spectrum generated by simulation, to a radioactive source with of137Cs and60Co. The
x-axis represents the channels for a 12-bit ADC. In such a representation, 4096 channels of the MCA
correspond to 2.048 MeV in the energy spectrum. The first peakin channel 1324 is characteristic of
137Cs (0.662 MeV). The second and third peaks are energies of60Co.
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Figure 2. Energy spectrum simulated by a source with 137Cs and 60Co.

The components and characteristics of a gamma spectrometrysystem (the type of detector, the time of
detection , the noise of the high-voltage source, the numberof channels, the stability of the ADC, tem-
perature changes) can affect the formation of spectrum and quality of the result. For this reason it is
difficult to establish a system for automatic identificationof radionuclides, especially for a wide variety
of these. Equipment that are in the market, using different algorithms of identification and number of
radionuclides identifiable, do not have a good performance [1].

3. CLUSTERING ALGORITHMS

Clustering algorithms partition a collection of data into acertain number of clusters, groups or subsets.
The aim of the clustering task is to group these data into clusters in such a way that similarity between
members of the same cluster is higher than that between members of different clusters. Clustering of
numerical data forms the basis of many classification algorithms.

Various clustering algorithms have been developed. One of the first and most commonly used cluster-
ing algorithms is based on the Fuzzy C-means method (FCM). Fuzzy C-means is a method of clustering
which allows one piece of data to belong to two or more clusters. This method was developed by Dunn [4]
and improved by Hathaway [5]. It is commonly used in pattern recognition.

Yager and Filev [6] introduced the so-calledmountain functionas a measure of spatial density around
vertices of a grid, showed in the function (1)

M(vi) =

n
∑

j=1

e−α‖xj−xi‖2 , (1)

whereα > 0, M is the mountain function, calculated for theith vertexvi during the first step,N is the
total number of data, which may be simple points or samples, that is assumed to be available before the
algorithm is initiated. Norm‖× |‖ denotes the Euclidean distance between the points used as arguments
andxj is the current data point or sample. It is ensured that a vertex surrounded by many data points or
samples will have a high value for this function and, conversely, a vertex with no neighboring data point
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or sample will have a low value for the same function. It should be noted that this is the function used
only during the first step with all the set of available data. During the subsequent steps, the function is
defined by subtracting a value proportional to the peak valueof the mountain function. A very similar
approach is the subtractive clustering (SC) proposed in [7]. It uses the so-calledpotentialvalue defined
as in (2).

Pi =
n
∑

j=1

e−α‖xj−xi‖
2

, whereα =
4

ra
(2)

wherein,Pi is the potential-value i-data as a cluster center,xi the data point andra a positive constant,
calledcluster radius.

The potential value associated with each data depends on itsdistance to all its neighborhoods. Consider-
ing (2), a data point or sample that has many points or samplesin its neighborhood will have a high value
of potential, while a remote data point or sample will have a low value of potential. After calculating
potential for each point or sample, the one, sayx∗i , with the highest potential value, sayP ∗

i , will be
selected as the first cluster center. Then the potential of each point is reduced as defined in (3). This is
to avoid closely spaced clusters. Until the stopping criteria is satisfied, the algorithm continues selecting
centers and revising potentials iteratively.

Pi = Pi − P ∗
i e

−β‖xi−x∗

i ‖
2

, (3)

In (3), β = 4/r2b represents the radius of the neighborhood for which significant potential revision will
occur. The data points or samples, that are near the first cluster center, sayx∗i , will have a significantly
reduced density measures. Thereby, making the points or samples unlikely to be selected as the next
cluster center.

The subtractive clustering algorithm can be briefly described by the following 4 main steps:

• Step 1: Using (2), compute the potentialPi for each point or sample,1 ≤ i ≤ n;

• Step 2: Select the data point or sample,x∗i , considering the highest potential value,P ∗
i ;

• Step 3: Revise the potential value of each data point or sample, according to (3);

• Step 4: IfmaxPi ≤ ǫP ∗
i , whereinǫ is the reject ratio, terminate the algorithm computation;

otherwise, find the next data point or sample that has the highest potential value and return to Step
3.

The main advantage of this method is that the number of clusters or groups is not predefined, as it is in
the fuzzy C-means method, for instance. Therefore, this method becomes suitable for applications where
one does not know or does not want to assign an expected numberof clustersá priori. This is the main
reason for choosing this method for the identification of radionuclides.

4. RECONFIGURABLE HARDWARE AND THE PROPOSED ARCHITECTURE

This section provides an overview of the proposed macro-architecture and contains information about
reconfigurable hardware.

Reconfigurable hardware provides a flexible medium to implement hardware circuits. The reconfig-
urable hardware resources are configurable post-fabrication, allowing a single-base hardware design to
implement a variety of circuits. The hardware itself is composed of a set of logic and routing resources
controlled by configuration memory [8].
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Embedded systems often have stringent performance and power requirements, leading designers to in-
corporate special-purpose hardware into their designs. Hardware based implementations uses resources
spatially to increase parallelism. The implementation of subtractive clustering algorithm with high per-
formance, purpose of this study, it is an example of the kind of performance that justifies the imple-
mentation of reconfigurable hardware. To implement a reconfigurable hardware is necessary to use a
hardware description language like VHDL. VHDL stands forVHSIC (Very High Speed Integrated Cir-
cuits)HardwareDescriptionLanguage.

The proposed hardware implements the subtractive clustering algorithm. The subtractive clustering al-
gorithm was briefly explained in the Section 3.The implementation of this algorithm in hardware is the
main point to develop a classification system of radioactiveelements. For referencing, this hardware it
will call HSC, hardware to subtractive clustering. This hardware processes all the arithmetic computation,
described in the Section 3, to calculate the potential of each point in the subtractive clustering algorithm.

The other component of this macro-architecture will be called SLC, component to storage, loading and
control, which provides to theHSC the set of samples for the selection of cluster centers and stores the
results of the calculated potential of each sample. This component also has the controller of theHSC.
Figure 3 shows the components of the described macro-architecture.

Figure 3. Macro-architecture components - SLC e HSC.

The SLC is a controller based on state machine. It includes a dual port memoryMD that provides the
data that has to be clustered and memoryMP that allows for the bookkeeping of the potential associated
with each clustered data. The data in this case are provided by an ADC that belongs to a typical gamma-
ray spectrometry system. The registersXmax, Xi andXIndex maintain the required data until component
EXP1 andEXP2 have completed the related computation. We assume theXmax value is available in mem-
ory MD at address 0. TheXmax is the biggest value found within the data stored inMD. This register is
used to the data normalization.

The twoEXP components, insideHSC, receive, at the same time, differentxj values from the dual port
memoryMD. So the two modules start at the same time and thus, run in parallel. After the computation
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of e−α‖xi−xj‖2 by EXP1 andEXP2, componentADDER sums and accumulates the values provided at its
input ports. This process is repeated until all dataxj, 1 ≤ j ≤ N , are handled. Thus, this calculation
determines the firstPi value to be stored in memoryMP. After that, the process is repeated to compute
the potential values of all data points in memoryMD. At this point the first cluster center, i.e. the sample
with maximum potential value, has been found.

The SLC component works as a main controller of the process. Thus, the trigger for initiating the pro-
cessing componentsEXP1 andEXP2 occurs from the signalStartExp sent bySLC. The componentSLC

has a dual-port memory MD which stores the samples / points tobe processed. Memory MD allows the
two components (EXP1 and EXP 2) receiving a sample to calculate the exponential value and thus can
operate in parallel. This sample for each componentEXP are two distinct valuesxj from two subsequent
memory addresses.

The proposed architecture allows the hardware to subtractive clusteringHSC can be scaled by adding
more of these components in parallel to the computation of the factorse−α||xj−xi||

2

. This provides
greater flexibility to implement the hardware. Figure 4 shows how new componentsHSC are assembled
in parallel.

Each componentHSC calculates in parallel the potential of a pointi, the valuePi of the function 3. For
this reason each module (HSC) must to receive and record a value ofxi to work during the calculation of
the potential of a point. Since these values are in differentaddresses of the memory, this registry valuexi
has to be done at different time because the memory can not have your number of ports increased as the
number of componentsHSC is increased. To be not necessary to increase the number of control signals
provided by the componentSLC when new componentsHSC are added, the componentHSC itself has to
send some control signals for the thereafter.

Figure 4. Macro architecture with HSC components in parallel.

These signals are to load the valuexi (LEXi) and start the reduction potential of each point (StartPot),
as showed in (3). Moreover, each componentHSC should receive the signalEndAdd which indicates
the end of the operation on the component ADDER of the thereafter componentHSC. This ensures that
the main control (SLC) only receives these signals after all components of theHSC in parallel complete
their transactions at each stage, allowing the hardware canbe reconfigured without changes in the main
control. Figure 5 shows the effect of this scaling, simulating different processing times in theHSC mod-
ules.
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Figure 5. Control signals with scaled architecture.

Then componentsHSC, implemented in parallel, compute the potential ofn points of the set of samples.
As explained before, the recording of the valuexi has to be done in different period to be used in the
calculation of the potential. It is shown in figure 5 that the first componentHSC receives the signalLEXi

from SLC control and after registering itxi, it sends the signalLEXi for HSC thereafter. Only after all
of the HSC have recorded its valuexi, the signal to start the componentsEXP (StartExp) is sent with
the first pair of valuesxj in the dual bus BD.

The internal architecture of the moduleEXP1 andEXP2 permits the calculation of the exponential value
e−α‖xi−xj‖2 . The exponential value was approximated by a second-order polynomial using the least-
squares method [9] . Moreover, this architecture computes these polynomials and all values were repre-
sented using fractions, as in (4).

e−α‖x‖ =
Na

Da

(

Nv

Dv

)2

+
Nb

Db

(

Nv

Dv

)

+
Nc

Dc
(4)

wherein, factorsNa

Da
, Nb

Db
andNc

Dc
are some pre-determined coefficients.Nv

Dv
is equivalent to variable(αx)

in the representation. For high precision, the coefficientswere calculated within the range [0, 1[, [1, 2[,
[2, 4[ and [4, 8]. These coefficients are shown respectively in the quadratic polynomials of (5).
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(5)

The accuracy of these calculated values, i.e. the introduced error not bigger than 0.005, is adequate to
properly obtain the potential values among the data provided during the process of subtractive clustering.
The absolute error introduced is shown in Fig. 6. Depending on the data, this requires that the number
of bits to represent the numerator and denominator have to beat least twice the maximum found in the
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data points provided.
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Figure 6. Absolute error introduced by the approximation.

Figure 7. Architecture of EXP Modules to compute the exponential.

The architecture of the Fig. 7 presents the micro-architecture of componentsEXP1 andEXP1. It uses four
multipliers, one adder/subtracter and some registers. These registers are all right-shifters. The controller
makes the adjustment of the binary numbers with shifts to theright in these registers in order to maintain
the frame of binary numbers after each operation. This is necessary to keep the results of multiplication
with the frame of bits used without much loss of precision. The closest fraction is used instead of a
simple truncation of the higher bits of the product.

In this architecture, multipliersMULT1, MULT2, MULT3 and MULT4 operate in parallel to accelerate
the computation. The state machine in the controller triggers these operations and controls the various
multiplexers of the architecture. The computation defined in (4) is performed as described hereafter.
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• Step 1: ComputeNV ×NV , NB ×NV , DV ×DV andDB ×DV ;

• Step 2: Right-shift registers to render the frame of bits to the original size and in parallel with
that, computeA = NA × NV × NV , C = NB × NV × DC, D = DB × DV × NC and
E = DB ×DV ×DC;

• Step 3: Add ofC +D and, in parallel with that, computeB = DA×DV ×DV ;

• Step 4: AddA
B
+ C+D

E
.

5. RESULTS

The data shown in figure 2 were obtained using a simulation program calledReal Gamma-Spectrum
Emulator. These data are in spreadsheet format of two columns, where the first column corresponds to
the channel and the second is the number of counts accumulated in each channel.

To validate the method chosen (subtractive clustering), the algorithm was implemented with Matlab, us-
ing the simulated data. As seen in the introduction, these data simulate a radioactive source consists of
137Cs and60Co. To apply the subtractive clustering algorithm in Matlab, data provided by the simulation
program has to be converted into one-dimensional data in onecolumn. For example, if channel 1324 to
accumulate 100 counts, means that the value 1324 should appear 100 times as input. only in this way the
clustering algorithm is able to split the data into subgroups by frequency of appearance. In a real appli-
cation this data would be equivalent to the output of AD converter of a gamma spectrometry system, as
shown in the introduction.

In the spectrum of Fig. 2, one can see three peaks. The first onein the channel 1324 is characteristic
of 137Cs (0.662 MeV). The second and third peaks correspond the energy of 60Co. The circular black
marks near the first and second peaks show the result of applying the subtractive clustering algorithm on
the available data with Matlab software. These circular marks are center of the found clusters. These
found clusters are very near (one channel to the left) of the signal peaks, the expected result. With the
configuration to the algorithm in Matlab, the third peak was not found. This result can change with an
adjust of the radiusra in 2. This is enough to conclude that the data provided belongs to a radioactive
source with137Cs and60Co and the subtractive cluster method can be used to identifythese radionuclides.

As the proposed architecture is based on the same algorithm,is expected to find the same result. The
initial results show that the expected cluster center can beidentified as in Matlab specification. The
hardware takes about 12660 clock cycles to yield one sum of exponential values (

∑n
j=1 e

−α‖xi−xj‖
2

).
Consideringn points in the avaiable data set, the identification of the first cluster center would taken
times that amount. Finding the center of the second cluster is faster. It should take about 13000 clock
cycles. This result can change with the data and depends of the amount of adjustment required to the
right in the shift registers during the process.

6. CONCLUSIONS

This paper describes the implementation of subtractive clustering algorithm to radionuclide identifica-
tion. The results shows the expected cluster center can be identified with a good efficiency. In data
from the simulation of signals of radioactive sources, after conformation of the signal and its conversion
into digital, the cluster center represents the points thatcharacterize the energy provided by a simulated
radionuclides. The identification of these points can sort the radioactive elements present in a sample.
With this method it was possible to identify more than one cluster center, which would recognize more
than one radionuclide in radioactive sources.

These results reveal that the proposed hardware to subtractive cluster can be used to develop a portable
system for radionuclides identification. This system can bedeveloped and enhanced integrating the
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proposed hardware with a software to be executed by a processor inside the FPGA, bringing reliability
and faster identification, an important characteristics for these systems. Following this work, we intend to
develop a software-only implementation using an embedded processor or a micro-controller to compare
it with the hardware-only solution.
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