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ABSTRACT

Radionuclide identification is crucial to planning proteetmeasures in emergency situations. This
paper presents the application of a method for a classditatystem of radioactive elements with a
fast and efficient response. To achieve this goal is proptisedpplication of subtractive clustering

algorithm. The proposed application can be implementeddomfigurable hardware, a flexible medium
to implement digital hardware circuits.

1. INTRODUCTION

Correct radionuclide identification can be crucial to plagnprotective measures, especially in emer-
gency situations, by defining the type of radiation souraieradiological hazard [1]. The gamma ray

energy of a radionuclide is a characteristic of the atontigcstire of the material. When these emissions
are collected and analyzed with a gamma ray spectroscopgnsys gamma ray energy spectrum can
be produced. A detailed analysis of this spectrum is typiased to determine the identity of gamma

emitters present in the source. The gamma spectrum is ¢earad by the gamma-emitting radionu-

clides contained in the source [2].

Atypical gamma-ray spectrometry system (fig. 1) consisesafintillator detector device and a measure
system . The interaction of radiation with the system oceutke scintillator detector and the measure-
ment system interprets this interaction. The scintillaetector is capable of emitting light when gamma
radiation transfers, to this type of detector, all or paritefenergy. This light is detected by a photo-
multiplier optically coupled to the scintillator, whichgrides an electrical signal in the output, whose
amplitude is proportional to energy deposited.

The property of these detectors to provide an electricaladjgproportional to the deposited energy
spectrum, allows the creation of the gamma energy spectrihetradioactive elements (histogram). To
obtain this spectrum is used a multichannel analyzer or MCA.
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Figurel. Gama Spectrometry System - main components.

The MCA consists of an ADC (Analog to Digital Converter) winiconverts the amplitude of analog

input in a number or channel. Each channel is associatedandtbunter that accumulates the number
of pulses with a given amplitude, forming a histogram. Thae@ form the energy spectrum of gamma
radiation. Since different radionuclides emit radiatianddferent energy distributions, the spectrum

analysis can provide information about the compositiorhefradioactive source and allow the correct
identification.

This paper introduces the application of a method for a ifleggon system of radioactive elements that
allows a rapid and efficient identification to be implemeritedortable systems. Our intention is to run
a clustering algorithms in a portable equipment to perfatentification of radionuclides. The cluster-

ing algorithms consume high processing time when impleateirt software, mainly on processors of
portable use, such as micro-controllers. Thus, a custorteimgntation for reconfigurable hardware is a
good choice in embedded systems, which require real-tirmeutdon as well as low power consumption.
Reconfigurable hardware devices are hardware devices ichvthé functionality of the logic gates is

customizable at run-time. The most common type of recordigierhardware device is an FPGA (Field
Programmable Gate Array).

The paper is organized as follows: first, in Section 2, it imdestrated the principles of radionuclide

identification. Later, in Section 3, we review briefly exigficlustering algorithms and we concentrate
on the subtractive clustering algorithm. In Section 4, wscdbe the proposed architecture for cluster
centers calculator using the subtractive clustering &lyorand we review concepts about reconfigurable
hardware. In Section 5, we present some performance figorassess the efficiency of the proposed
implementation. Last in Section 6, we present some cormigsand point out some directions for future

work.

2. RADIONUCLIDE IDENTIFICATION

There are three main types of ionizing radiation emitteddmliagactive atoms: alpha, beta and gamma.
The alpha and beta are particles that have mass and arecalécttharged, while the gamma rays, like
x-rays, are electromagnetic waves. The emission of alptidata radiation is, in general, accompanied
by the emission of gamma radiation. Gamma energy emittedragianuclide is a characteristic of the
atomic structure of the material.

Consider, for instance, Cesium-1377(Cs) and Cobalt-60°¢Co), which are two common gamma ray

sources. These radionuclides emit radiation in one or tatrdet wavelengths. Cesium-137 emits 0.662
MeV gamma rays and Cobalt-60 1.33 and 1.17 MeV gamma raysseTéeergy are known as decay

energy and define the decay scheme of the radionuclide. Bdamuclide, among many others, has a
unigue decay scheme by which it is identified [3].
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Figure 2 shows a spectrum generated by simulation, to aaeiife source with of>’Cs and®°Co. The
x-axis represents the channels for a 12-bit ADC. In such eesgmtation, 4096 channels of the MCA
correspond to 2.048 MeV in the energy spectrum. The first freakannel 1324 is characteristic of
137Cs (0.662 MeV). The second and third peaks are energiéCaf.
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Figure2. Energy spectrum simulated by a source with *"Csand %Co.

The components and characteristics of a gamma spectrogyettgm (the type of detector, the time of
detection , the noise of the high-voltage source, the numbehannels, the stability of the ADC, tem-
perature changes) can affect the formation of spectrum aatity) of the result. For this reason it is
difficult to establish a system for automatic identificatafrradionuclides, especially for a wide variety
of these. Equipment that are in the market, using differégdarahms of identification and number of
radionuclides identifiable, do not have a good performatte [

3. CLUSTERING ALGORITHMS

Clustering algorithms partition a collection of data intoeatain number of clusters, groups or subsets.
The aim of the clustering task is to group these data inta@isisn such a way that similarity between
members of the same cluster is higher than that between migrabdifferent clusters. Clustering of
numerical data forms the basis of many classification algms.

Various clustering algorithms have been developed. Onbeofitst and most commonly used cluster-
ing algorithms is based on the Fuzzy C-means method (FCMEyQ-means is a method of clustering
which allows one piece of data to belong to two or more clgst€his method was developed by Dunn [4]
and improved by Hathaway [5]. It is commonly used in pattecognition.

Yager and Filev [6] introduced the so-calletbuntain functioras a measure of spatial density around
vertices of a grid, showed in the function (1)

M(og) =3 eellemel, 1)
j=1

wherea > 0, M is the mountain function, calculated for thth vertexv; during the first step)V is the
total number of data, which may be simple points or sampleg,i$ assumed to be available before the
algorithm is initiated. Nornj| x ||| denotes the Euclidean distance between the points useguaments
andz; is the current data point or sample. It is ensured that axstegounded by many data points or
samples will have a high value for this function and, corslgrsa vertex with no neighboring data point
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or sample will have a low value for the same function. It skdag noted that this is the function used
only during the first step with all the set of available datairiBg the subsequent steps, the function is
defined by subtracting a value proportional to the peak vafithe mountain function. A very similar
approach is the subtractive clustering (SC) proposed inl{Tises the so-callegotentialvalue defined
asin (2).

n
4
P =" el wherea = — 2)
j=1 ¢

wherein, P; is the potential-value i-data as a cluster centethe data point and, a positive constant,
calledcluster radius

The potential value associated with each data depends distigmce to all its neighborhoods. Consider-
ing (2), a data point or sample that has many points or samplessneighborhood will have a high value
of potential, while a remote data point or sample will havew Value of potential. After calculating
potential for each point or sample, the one, sdy with the highest potential value, sdy*, will be
selected as the first cluster center. Then the potentialaf paint is reduced as defined in (3). This is
to avoid closely spaced clusters. Until the stopping detir satisfied, the algorithm continues selecting
centers and revising potentials iteratively.

*“27

Pi =P — PePlnme )

In(3),5 = 4/r§ represents the radius of the neighborhood for which sigmifipotential revision will
occur. The data points or samples, that are near the firdeclognter, say;, will have a significantly
reduced density measures. Thereby, making the points goleamnlikely to be selected as the next
cluster center.

The subtractive clustering algorithm can be briefly desttiby the following 4 main steps:
e Step 1: Using (2), compute the potentilfor each point or sampléd, < i < n;
e Step 2: Select the data point or samplg, considering the highest potential valug;;
e Step 3: Revise the potential value of each data point or sgraptording to (3);

e Step 4: IfmaxP; < eP}, whereine is the reject ratio, terminate the algorithm computation;
otherwise, find the next data point or sample that has thesktgiotential value and return to Step
3.

The main advantage of this method is that the number of chustegroups is not predefined, as itis in
the fuzzy C-means method, for instance. Therefore, thibotdbecomes suitable for applications where
one does not know or does not want to assign an expected nuhdtestersa priori. This is the main
reason for choosing this method for the identification ofaadclides.

4. RECONFIGURABLE HARDWARE AND THE PROPOSED ARCHITECTURE

This section provides an overview of the proposed macrbi@ature and contains information about
reconfigurable hardware.

Reconfigurable hardware provides a flexible medium to implenihardware circuits. The reconfig-
urable hardware resources are configurable post-falmigagilowing a single-base hardware design to
implement a variety of circuits. The hardware itself is casgd of a set of logic and routing resources
controlled by configuration memory [8].
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Embedded systems often have stringent performance and pegrements, leading designers to in-
corporate special-purpose hardware into their designsdwae based implementations uses resources
spatially to increase parallelism. The implementationuifteactive clustering algorithm with high per-
formance, purpose of this study, it is an example of the kihgesformance that justifies the imple-
mentation of reconfigurable hardware. To implement a regardble hardware is hecessary to use a
hardware description language like VHDL. VHDL stands ¥ SIC (Very High Speed Integrated Cir-
cuits) HardwareDescriptionL anguage.

The proposed hardware implements the subtractive clagtafgorithm. The subtractive clustering al-
gorithm was briefly explained in the Section 3.The impleragah of this algorithm in hardware is the
main point to develop a classification system of radioaatieanents. For referencing, this hardware it
will call Hsc, hardware to subtractive clustering. This hardware pseE®all the arithmetic computation,
described in the Section 3, to calculate the potential of @aint in the subtractive clustering algorithm.

The other component of this macro-architecture will beethdiLc, component to storage, loading and
control, which provides to thasc the set of samples for the selection of cluster centers amdssthe
results of the calculated potential of each sample. Thisporrant also has the controller of thsc.
Figure 3 shows the components of the described macro-actinie.
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Figure3. Macro-architecture components- SLC e HSC.

The sLc is a controller based on state machine. It includes a dualmemoryMb that provides the
data that has to be clustered and memapythat allows for the bookkeeping of the potential associated
with each clustered data. The data in this case are proviglad BDC that belongs to a typical gamma-
ray spectrometry system. The registfs..., X; andXr,q4.; Maintain the required data until component
EXP; andexpPy have completed the related computation. We assume,the value is available in mem-
ory MD at address 0. The,,.. is the biggest value found within the data storediim. This register is
used to the data normalization.

The twoEXP components, insidesc, receive, at the same time, different values from the dual port
memoryMD. So the two modules start at the same time and thus, run itigdavsfter the computation
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of e~allzi==il* by Exp, andEXP,, componenkDDER sums and accumulates the values provided at its
input ports. This process is repeated until all dafal < j < IV, are handled. Thus, this calculation
determines the firsP; value to be stored in memomyp. After that, the process is repeated to compute
the potential values of all data points in memery. At this point the first cluster center, i.e. the sample
with maximum potential value, has been found.

The sLc component works as a main controller of the process. Thedrigiger for initiating the pro-
cessing componentsxp; andexpy occurs from the signadtart Exp sent bysLc. The componensLC
has a dual-port memory MD which stores the samples / poirtie forocessed. Memory MD allows the
two componentsgxP; andEXP 5) receiving a sample to calculate the exponential value huad tan
operate in parallel. This sample for each compome are two distinct values; from two subsequent
memory addresses.

The proposed architecture allows the hardware to subteactiisteringHsc can be scaled by adding
more of these components in parallel to the computation offdotorse—llzi—=l” This provides
greater flexibility to implement the hardware. Figure 4 sedwew new componentssc are assembled
in parallel.

Each componerisc calculates in parallel the potential of a pointhe valueP; of the function 3. For
this reason each modula¢C) must to receive and record a valueagfto work during the calculation of
the potential of a point. Since these values are in diffeaedresses of the memory, this registry valye
has to be done at different time because the memory can netyjloav number of ports increased as the
number of componentssc is increased. To be not necessary to increase the numbenibksignals
provided by the componest.c when new componentssc are added, the componensc itself has to
send some control signals for the thereafter.
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Figure4. Macro architecture with Hsc componentsin paralléel.

These signals are to load the valug L F X;) and start the reduction potential of each poitdrt Pot),

as showed in (3). Moreover, each componeat should receive the signdind Add which indicates
the end of the operation on the componempkR of the thereafter componenRisc. This ensures that
the main control §LC) only receives these signals after all components ofithein parallel complete
their transactions at each stage, allowing the hardwardeaaconfigured without changes in the main
control. Figure 5 shows the effect of this scaling, simualgtilifferent processing times in thssc mod-
ules.
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Then componentsisc, implemented in parallel, compute the potentiahqgdoints of the set of samples.
As explained before, the recording of the valyehas to be done in different period to be used in the
calculation of the potential. Itis shown in figure 5 that thetfcomponentiscreceives the signdl £ X;
from sLc control and after registering i;, it sends the signal £.X; for HsC thereafter. Only after all

of the Hsc have recorded its value;, the signal to start the componemsp (Start Exp) is sent with
the first pair of values;; in the dual bus BD.

The internal architecture of the modwe P, andexp, permits the calculation of the exponential value
e~allzi-z;l” " The exponential value was approximated by a second-omlgngmial using the least-
squares method [9] . Moreover, this architecture compiieset polynomials and all values were repre-
sented using fractions, as in (4).

efa”IH:& & 2_|_% % _|_% (4)
Da Dv Db Dv Dc

wherein, factorsie, 3= and 3z are some pre-determined coefficiens. is equivalent to variabléaz)
in the representatlon For hlgh precision, the coefficiarase calculated within the range [0, 1], [1, 2[,
[2, 4] and [4, 8]. These coefficients are shown respectivelipé quadratic polynomials of (5).

2
Noy_ 773 (Ny 372 9953
Poal(p2) = 2500 < ) 400 ( ) T 10000
Nyy _ 569 (Ny 2853 823
Ph2((52) = 5000 (Dv) 5000 ( > T 1000
g (o) o Noy _ 67 (N, 2161 NU 4565 (5)
P[274[(D_U) ~ 2500 \ D,/ — 10000 T 10000

2
Noy_ 16 (N,\~ _ 234 835
Pasi(D3) = 10000 (DZ) 10000 (Dv> T 10000

The accuracy of these calculated values, i.e. the intratlecer not bigger than 0.005, is adequate to
properly obtain the potential values among the data proMitiging the process of subtractive clustering.
The absolute error introduced is shown in Fig. 6. Dependimthe data, this requires that the number
of bits to represent the numerator and denominator have &b least twice the maximum found in the
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data points provided.
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Figure 7. Architecture of EXP Modulesto compute the exponential.

The architecture of the Fig. 7 presents the micro-architeadf componentsxp; andexp; . It uses four
multipliers, one adder/subtracter and some registersseltegisters are all right-shifters. The controller
makes the adjustment of the binary numbers with shifts taitfe in these registers in order to maintain
the frame of binary numbers after each operation. This isssary to keep the results of multiplication
with the frame of bits used without much loss of precision.e Tosest fraction is used instead of a
simple truncation of the higher bits of the product.

In this architecture, multipliersauLT,, MULT5, MULT3 and MULT4 operate in parallel to accelerate

the computation. The state machine in the controller trigdgeese operations and controls the various
multiplexers of the architecture. The computation defime@) is performed as described hereafter.
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Step 1: ComputdNV x NV, NB x NV, DV x DV andDB x DV;

Step 2: Right-shift registers to render the frame of bitshi ariginal size and in parallel with
that, computed = NA x NV x NV,C = NBx NV x DC,D = DB x DV x NC and
E=DBx DV x DC,

Step 3: Add ofC + D and, in parallel with that, computB = DA x DV x DV

Step 4: Add4 + <EL.
5.RESULTS

The data shown in figure 2 were obtained using a simulatiogrpro calledReal Gamma-Spectrum
Emulator These data are in spreadsheet format of two columns, wherr$t column corresponds to
the channel and the second is the number of counts accumhitegach channel.

To validate the method chosen (subtractive clustering)atgorithm was implemented with Matlab, us-
ing the simulated data. As seen in the introduction, thete slenulate a radioactive source consists of
137Cs andCo. To apply the subtractive clustering algorithm in Matldata provided by the simulation
program has to be converted into one-dimensional data ircoloenn. For example, if channel 1324 to
accumulate 100 counts, means that the value 1324 shouldapp@ times as input. only in this way the
clustering algorithm is able to split the data into subgsobp frequency of appearance. In a real appli-
cation this data would be equivalent to the output of AD cotereof a gamma spectrometry system, as
shown in the introduction.

In the spectrum of Fig. 2, one can see three peaks. The firshahe channel 1324 is characteristic
of 137Cs (0.662 MeV). The second and third peaks correspond thgyen&%Co. The circular black
marks near the first and second peaks show the result of agplye subtractive clustering algorithm on
the available data with Matlab software. These circularkaare center of the found clusters. These
found clusters are very near (one channel to the left) of idy@as peaks, the expected result. With the
configuration to the algorithm in Matlab, the third peak was found. This result can change with an
adjust of the radiug, in 2. This is enough to conclude that the data provided baldo@ radioactive
source with!3”Cs and*Co and the subtractive cluster method can be used to idén¢ise radionuclides.

As the proposed architecture is based on the same algorighexpected to find the same result. The
initial results show that the expected cluster center caidbuetified as in Matlab specification. The
hardware takes about 12660 clock cycles to yield one summdrential values)}_, e—allzi—z;l1?y,
Consideringn points in the avaiable data set, the identification of the figster center would take
times that amount. Finding the center of the second clustster. It should take about 13000 clock
cycles. This result can change with the data and depends afrttount of adjustment required to the
right in the shift registers during the process.

6. CONCLUSIONS

This paper describes the implementation of subtractiveteting algorithm to radionuclide identifica-
tion. The results shows the expected cluster center candmified with a good efficiency. In data
from the simulation of signals of radioactive sources,raftsaformation of the signal and its conversion
into digital, the cluster center represents the points¢hatacterize the energy provided by a simulated
radionuclides. The identification of these points can dwtradioactive elements present in a sample.
With this method it was possible to identify more than onestdu center, which would recognize more
than one radionuclide in radioactive sources.

These results reveal that the proposed hardware to sub#ratister can be used to develop a portable
system for radionuclides identification. This system cardeeeloped and enhanced integrating the
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proposed hardware with a software to be executed by a parcessde the FPGA, bringing reliability
and faster identification, an important characteristicsHese systems. Following this work, we intend to
develop a software-only implementation using an embeddackgsor or a micro-controller to compare
it with the hardware-only solution.
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