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ABSTRACT 
 
In pressurized water reactor (PWR) nuclear power plants (NPPs) pressure control in the primary loops is 
fundamental for keeping the reactor in a safety condition and improve the generation process efficiency.  The main 
component responsible for this task is the pressurizer.  The pressurizer pressure control system (PPCS) utilizes 
heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and 
limits the pressure changes during transient conditions.  Relief and safety valves provide overpressure protection 
for the reactor coolant system (RCS) to ensure system integrity.  Various protective reactor trips are generated if 
the system parameters exceed safe bounds.  Historically, a proportional-integral-derivative (PID) controller is used 
in PWRs to keep the pressure in the set point, during those operation conditions.  The purpose of this study is to 
develop fuzzy controllers for the PWR pressurizer modeled by an artificial neural network (ANN) and compare 
their performance with conventional ones.  Data from a 2785 MWth Westinghouse 3-loop PWR simulator was 
used to test both the conventional and the fuzzy controllers.  The simulation results show that the fuzzy controllers 
have better performance compared with conventional ones. 

 
 

1. INTRODUCTION 
 
Nuclear power plants are nonlinear systems in nature, with many complex components. They 
are difficult to model due to their parameters dependence on the time-varying power level.  
Many diverse models have been developed to represent the dynamic response of such 
systems.  Computer simulation of the behavior of complex systems and components, which 
requires the solution of many equations and extensive use of closure relations, has become 
very important in modern design.  This way of proceeding is used particularly in the nuclear 
industry where safety rules are rather rigid and require the close examination of any possible 
system condition and operational mode.  In the phase of implementation of the physical-
mathematical model, the discretization of the differential equation systems usually raises 
complex issues of stability and convergence of the solution process. Artificial neural 
networks (ANNs) can be used in this context to overcome this problem thanks to their ability 
in performing functional mappings.  Akkurt and Çolak [1] have modeled several components 
of a PWR reactor using feedforward neural network.  Oliveira and Almeida [2] have applied 
feedforward feed back ANN to model the pressurizer of a PWR simulator reactor. 
 
Likewise, controlling the nuclear power plants systems is difficult due to their complex, time 
varying and insufficiently known parameters.  The application of intelligent systems 
including fuzzy logic in the control of large-scale complex nonlinear systems as nuclear 
plants are very promissing.  Fuzzy control scheme has been applied by Bhatt et al. [3] for 
generating regulating signals to feed and bleed control valves, which are used in Liquid Zone 
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Control System for maintaining constant pressure difference between gas outlet header and 
delay tank.  Liu et al. [4] have applied a fuzzy proportional-integral-derivative (fuzzy-PID) 
controller in the nuclear reactor power control system tuned by genetic algorithm (GA). 
 
The purpose of this work is to develop fuzzy controllers, tuned by GA, for a PWR pressurizer 
and compare their performance with conventional controllers. 
 
 

2. PRESSURIZER MODEL BASED ON ARTIFICIAL NEURAL NETWORKS 
 
In this work, the pressurizer modeled by ANN is described in Oliveira and Almeida (op. cit.), 
where the ANN is a feedforward backpropagation type using as training the scaled conjugate 
gradient (SCG), developed by Moller [5].  Fig. 1 shows the simplified pressurizer model used in 
the former work to model the pressurizer by ANN. 
 
In order to compare the performances between the conventional and the fuzzy PID 
controllers, it was necessary to acquire the variables data set from the plant simulator 
necessary to model the pressurizer with a ANN, for both transient and stead-state conditions, 
see Fig. 2.  Due to this, the implemented pressurizer model could be used to test both 
controllers types with the same input data set. 
 
Fig. 3a shows the ANN architecture used with 19-13-1 neurons (ni=19 inputs, nh=13 hidden 
and no=1 output).  As we can see the pressure is fed back as one input to the ANN in time t-∆t, 
making the ANN works as a recurrent network.  Notice that, in order to take into account the 
actual time evolution of the other input variables, the ANN is provided for they with the values 
in time t, t-∆t and t-2∆t, so that it can distinguish among situations in which the variables are 
increasing, decreasing or constant.  In the training phase no feedback was used for the pressure 
variable, i.e., we use the data set showed in Fig. 2 as inputs/output.  Learning was initiated by 
assigning random weights between -1 and 1.  The learning rate and the momentum coefficient 
used during the training phase were α=0.6 and η=0.8, respectively.  Fig. 3b shows the obtained 
results after the training phase for the same data set but with ANN feed back. 

 
 

3. PRESSURIZER PRESSURE CONTROL SYSTEM 
 
The block diagram of the PPCS is presented in Fig. 4a.  The PPCS is composed by the fuzzy 
or classical PID controller block, witch receive as main input the error signal ε and supply as 
output the signal f(ε).  The controller output signal f(ε) is added to the Setpoint value in order 
to shift the signal to the operation range of the actuators (heaters and spray) before to be 
applied to the input of the actuator block.  The output signals from the actuator block (the 
heaters and spray signals) are sent to the correspondent inputs of the plant (the ANN 
pressurizer model) to control the pressure in the desired Setpoint.  The pressure signal is fed 
back to the input sum block in order to obtain the error signal ε.  In stead-state condition the 
error ε between Setpoint and pressure should be near zero.  If some unbalance condition is 
achieved, for example a transient, causing an increase in the error, heaters or spray are 
actuated, depending on the direction of the error.  In this case, the controller output signal f(ε) 
starts the actuation system in order to compensate the pressurizer pressure. 
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Figure 1:  Pressurizer model. 
 
 

 
 

Figure 2:  ANN training and testing patterns. 
 
 

  
(a) (b) 

 
Figure 3:  (a) ANN architecture; (b) Pressure results measured and estimated by the ANN. 

 
 

The plant actuators, heaters and spray, are used to control the pressure in the pressurizer.  This 
process can be understood as follows.  First recall that at normal pressure, 157.1 kg/cm2, the 
system is stable with the variable heater on at half capacity, compensating for ambient heat losses.  
For this reason a sum block is used to add this value to the controller output value, f(ε), in order to 
shift this value to the plant actuators Setpoint, see Fig. 4a.  Fig. 4b shows the span action of the 
electric heaters (proportional and backup) and cold water spray.  If ε becomes positive the heaters 
should be actuated for increasing the pressure.  In the same way, if ε is negative then spray valves 
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should be opened for reducing the pressure.  Secondly, if ε is large then spray valves should be 
opened to large value and vice versa.  In the reference plant, 100% of backup and proportional 
heaters correspond to 1 MW and 400 KW of electric power, respectively. 

 
 

 
 

(a) (b) 
 

Figure 4:  (a) Plant control diagram; (b).Controls action interval according with pressure P. 
 
 

4. CONVENTIONAL PID CONTROLLERS 
 
A PID controller is a generic control loop feedback mechanism widely used in industrial control 
systems.  A PID controller calculates an error value ε as the difference between a desired Setpoint 
and a measured process variable (PV).  The controller attempts to minimize the error by adjusting 
the process control inputs.  The PID algorithm involves three separate parameters: the 
proportional, the integral and derivative values, denoted P, I, and D.  Heuristically, these values 
can be interpreted in terms of time: P depends on the present error, I on the accumulation of past 
errors, and D is a prediction of future errors, based on current rate of change.  The weighted sum 
of these three actions is used to adjust the process via a control element such as the position of a 
water spray control valve or the power supply of a heating element. 
 
Defining uPID(k) as the controller output in discrete form, the PID algorithm is given by 
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where the tuning parameters are Kp , Ti and Td, the proportional gain, the integral time and the derivative 
time, respectively; ε is the error (ε = Setpoint - PV), Ts the sampling period, and k is the time step. 
 
4.1.  Tuning The Conventional PID Controller 
 
Ziegler and Nichols [6] described simple mathematical procedures, the first and second 
methods respectively, for tuning classical PID controllers.  In this work, we use the second 
method to tune the classical PID controllers. 
 
 

5. FUZZY PID CONTROLLERS 
 
The fuzzy controllers can be divided in four major parts: fuzzification, rule base, inference 
engine and defuzzification. 
 
The initial membership functions for the input and output signals of the fuzzy logic 
controllers in the PPCS test setup are described in the following.  Genetics algorithms are 
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used to tune the position and shape of theses membership functions in order to minimize the 
controller output error.  This is described later on section 6.3. 
 
Based on observation and experts experience, trapezoidal and symmetric triangles are used to 
convert the inputs ε and ∆ε into five linguistic terms.  Trapezoidal are used for NL (negative large) 
and PL (positive large).  Initially, symmetric triangles with equal base and 50% overlap with 
neighboring membership functions are used for NS (negative small), ZE (Zero) and PS (positive 
small).  Fig. 5 shows the initial values used for each membership function.  The universe of 
discourse of ε was chosen in the range [-10,10] and for ∆ε in the range [-1,1]. 
 
Based on observation and experts experience, singletons [7] are used to express the output 
pressure (P) into five linguistic terms: NL (negative large), NS (negative small), ZE (Zero), PS 
(positive small) and PL (positive large).  Fig. 5 shows the initial position values used for each 
singleton.  The output universe of discourse was chosen in the range [-6,6]. 
 
The P controller uses five if-then rules to control the pressure in the pressurizer given by 
1. If ε is NL then P is NL 
2. If ε  is NS then P is NS 
3. If ε  is ZE then P is Z 
4. If ε  is PS then P is PS 
5. If ε  is PL then P is PL 
 
For the PI controller the rule base can be imagined to be a two dimensional matrix as 
summarized in Table 1.  The rows represent the various linguistic values that change of error, 
∆ε(k), can take and columns indicate the values of error ε(k).  The entries in this matrix 
would be the control action that has to be taken described in the linguistic terms. 
 
 

Table 1:  Rule base for Fuzzy PI Controller. 
 

  Change of error (∆∆∆∆εεεε) 

  NL NS ZE PS PL 

 NL ZE NS NL NL NL 
 NS ZE ZE NS NS NS 

Error (εεεε) ZE PS PS ZE NS NS 
 PS PS PS PS ZE ZE 
 PL PL PL PL PS ZE 

 
 

The Fuzzy PI+Fuzzy PD (fuzzy PID) has the same rule base used in the Fuzzy PI.  Theoretically, 
the rule based should be different for Fuzzy PI controller and Fuzzy PD controller, but in order to 
reduce the complexity of design and to increase efficiency, a simple structure of 
Fuzzy PI+Fuzzy PD controller was used with a single rule base.  A PI rule base was considered 
because PI controller is generally more important for steady state performance [8]. 
 
Mamdani inference method Prod-Max is used to infer the output contribution from each rule.  
Hence, prod operation is performed to implication operator and max operation is performed to 
aggregate the control outputs obtained as a result of firing several rules. 
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We use the Center of Maximum (CoM) defuzzification method.  In CoM method the fuzzy 
logic controller first determines the typical numerical value for each scaled membership 
function.  The typical numerical value is the mean of the numerical values corresponding to 
the degree of membership at which the membership function was scaled. 
 
 
  

 
   

  

 
   

  

 
   

 

  
   

   
   

   

(a) (b) (c) 
 

Figure 5:  Initial inputs/outputs membership functions for: (a) P; (b) PI; (c) PI+PD. 
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5.1.  Fuzzy Controllers Strategies 
 
A conventional P controller is described in discrete form by Eq. (2).  In the fuzzy P controller, 
the kp parameter is dynamically adjusted depending on the process error value ε and can be 
expressed as the relationship between the output controller up(k) and the input error ε(k).  
Fig. 6a shows the implementation of Fuzzy P controller. 
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A conventional PI controller is described in discrete form can be written as 
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In the fuzzy PI controller, the kp and Ti parameters are dynamically adjusted depending on the 
process error ε and ∆ε values and can be expressed as the relationship between the output controller 
uPI(k) and the inputs error ε(k) and ∆ε.  Fig. 6b shows the implementation of Fuzzy PI controller. 
 

A conventional PID controller in discrete approximation follows the control law given by 
Eq. (1).  To implement the Fuzzy PID controller three inputs ε(k), Σε(k) and ∆ε(k) are 
required.  Increasing the number of input variables causes a rise in the dimension of the rule 
table and, therefore, in the complexity of the system; this makes its implementation more 
complicated.  For this reason, a combination of Fuzzy PI+Fuzzy PD [9] controller was 
employed instead of three input Fuzzy PID controller. 
 
A conventional PD controller is described in discrete form by equation 
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In the fuzzy PD controller, the kp and Td parameters are dynamically adjusted depending on 
the process error ε and ∆ε values and can be expressed as the relationship between the output 
controller uPD(k) and the inputs error ε(k) and ∆ε(k). 
 
Finally, the overall Fuzzy PI+Fuzzy PD controller can be obtained by algebraically summing 
the Eq. (3) and Eq. (4).  Fig. 6c shows the implementation of Fuzzy PI+Fuzzy PD controller. 
 

5.2.  Tuning The Fuzzy PID Controller 
 

Fuzzy controllers are rule-based systems with many parameters that can be altered to 
optimize the controller performance.  They are: the scaling factors for each linguistic 
variable, the fuzzy set representing the meaning of linguistic values, and the if-then rules.  In 
this work, we present an adaptive fuzzy controller that tunes the scaling factors as well as the 
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position and shape of the membership functions of each variable, using GA, where the 
chromosomes are represented by vectors real numbers. 
 

5.2.1.  Chromosome representation 
 

Fig. 7a shows the chromosome alleles position for the fuzzy P controller.  The chromosomes 
have a size of 10 alleles, C1, C2,…, C10, to map the membership function of the fuzzy 
controller.  The alleles correspond to the top vertices of each membership function.  Fig. 8 
shows the initial alleles position of each membership function for the P controller, where the 
domain of the input and output variable is defined in the range [-R, R] and [-S, S], respectively. 
 

During the optimization phase, the position Ci of the allele i (the position of the top vertices of 
the membership i) is changed and, consequently, its shape.  The triangular memberships are 
composed by 3-tuple (Ci-1, Ci, Ci+1), with 2≤i≤4 and, normally, during the optimization process 
starts with symmetric triangular memberships to achieve an asymmetric configuration at the 
end.  The trapezoidal ones by 4-tuple (-R, -R, C1, C2) and (R, R, C4, C5) for the left and right 
side, respectively.  In the same way, the output memberships are simply singletons, using 
triangular membership functions with an infinitely small width. The vertices C6 to C10 represent 
the position of each one, that will be tuned by the GA optimization.  In our application, for both 
input and output variable, we fixed the vertices of the central membership functions in zero, 
i.e., the correspondents alleles are set to zero (C3 = C8 = 0) in the chromosome. 
 

Fig. 7b shows the chromosome alleles position for the fuzzy PI controller.  The chromosomes 
have a size of 15 alleles, C1, C2,…, C15, to map the membership function of the fuzzy controller.  
The shape of the inputs are similar to described before, but the domain of the second variable is 
different.  In the same way, the output memberships are simply singletons, as described above.  
Again, the vertices of the central membership functions are fixed in zero (C3 = C8 = C13 = 0). 
 

Fig. 7c shows the chromosome alleles position for the fuzzy PI + fuzzy PD (PID) controller. 
The chromosomes have a size of 30 alleles, C1, C2,…, C30, to map the membership function 
of the two fuzzy controllers.  Similarly, the vertices of the central membership functions are 
fixed in zero (C3 = C8 = C13 = C18 = C23 = C28 = 0). 
 

5.2.2.  Fitness function 
 

The fitness function used consists of two parts.  The first is the sum of the controller error.  In 
this work, to assess the fitness of each chromosome, we use the Integral of Time multiplied 
by Absolute Error (ITAE) given, in discrete form, by 
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where ε is defined by the error between the obtained output Pressure and the plant Setpoint, 
and n is the total number of data sample.  The ITAE weights the error with time and hence 
emphasizes the error values later on in the response rather than the initial large errors. 
 
The second part consists of a penalty value that is applied to invalid individuals.  The penalty 
function (P) is applied when an invalid chromosome (or individual) is produced by the GA 
process.  When an individual has an inversion of an allele position with respect to other allele in 
any input or output of the chromosome, a penalty is generated.  This means that the membership 
order is violated, i.e., the alleles allowed position, C1 < C2 < … < Cn, is not satisfied, where n is 
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the size of each input or output membership functions.  For the left side of the input/output 
membership functions of each variable the penalty function of the allele i is defined by 
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where δ ( 50R=δ ) is defined as the minimal distance allowed between two adjacent alleles 

Ci and Ci+1, and i is the allele number.  For the right side of the input/output membership 
functions of each variable the penalty function of the allele i is defined by 
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Figure 6:  Pressure control for the fuzzy controller: (a) P; (b) PI; (c) PI+PD. 
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Figure 7:  Chromosomes alleles for the fuzzy: (a) P; (b) PI; (c) PI+PD. 
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Figure 8:  Alleles position of the membership functions for P controller for: (a) Input; (b) Output. 
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Another penalty function is used to control the maximum gain of the fuzzy P controller. This 
limitation avoids oscillation in the controller output and is given by 
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where g is defined as the maximal allowed gain to the controller, σ is a small value added to avoid 
division by zero and i is defined in the interval 1≤ i ≤ N, where N is the number of data sample. 
 
Then, the assumed fitness function (Fc) for the c-th chromosome is given by 
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where ∝ is weighting factor between the controller error and the penalties and n is the number 
of alleles in the chromosome. 
 
 

6. RESULTS AND DISCUSSION 
 
To compare the conventional controllers types with the correspondent fuzzy controllers types, 
the spans of the input variables, error (ε) and change of error (∆ε), and the output variable 
pressure (P) are limited to [-10, 10], [-1, 1], and [-6, 6], respectively.  Out of these spans the 
controller system is considered saturated. 
 

6.1.  Tuning The Conventional Controllers 
 

For tuning the conventional controllers it was used the Ziegler-Nichols second method.  The same 
data set used to train the ANN model, see Fig. 2, was used to perform the tuning of the controller 
types.  After applying the Ziegler-Nichols second method we obtained kcr= 7.0 and Pcr= 5.  
Table 2 shows the correspondents gain values obtained for the three conventional controllers. 
 
 

Table 2:  Obtained values for Ziegler-Nichols second method. 
 

Controller Type Kp Ti Td 
P 3.5 ∞ 0 
PI 3.15 4.17 0 

PID 4.2 2.5 0.625 
 
 
6.2.  Tuning The Fuzzy PID Controllers 
 
The parameters used in the GA optimization for tuning the fuzzy membership function of the 
PID controllers were set as follows: population size of 30; maximum number of generation of 
25; uniform crossover with probability of 0.6; mutation probability of 0.02; and elitism (the 
best individual in the present generation is saved in the next generation). 
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The fuzzy P, PI and PID (PI+PD) controllers were tuned using the control structure showed in 
Fig. 4.  As was said previously, we use as fitness function the Eq. (9) to evaluate each chromosome 
in the population.  The weighting factor ∝ was set experimentally to 10, the maximum gain g was 
set equal to kcr (g = 7.0) and the sigma factor was set to σ = 0.01.  Fig. 9 shows the obtained shape 
of the membership functions for the fuzzy controllers after optimization. 
 
 

  

 
   

  

 
   

  

 
   

 

  
   

   
   

   

(a) (b) (c) 
 

Figure 9:  Final inputs/output membership functions for: P; (b) PI; (c) PI+PD. 
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6.3.  Results and Discussion 
 
After tuning, the two controller were put to control the PPCS, as showed in Fig. 10.  The 
output controlled variable pressure is fed back as one input to the ANN in time t-∆t.  The 
control variables are changed by the controller block in order to stabilize the output pressure 
in its Setpoint.  The plant operation variables are used to provide transients in the system.  In 
our case, the reactor power is used to do transients in the range [60%, 100%]. 
 
 

 
 

Figure 10:  Control system inputs/output variables. 
 
 
Fig. 11 to 16 show the systems response during these transients.  In the figures, for the 
pressurizer pressure response, the continuous line represents the pressure Setpoint value and 
the upper and bellow dashed lines the values for spray and heaters actuations, respectively.  
As we can see in Fig. 11 and 12, the conventional P controller not settle the pressure at its 
target value, but retain a steady-state error.  The fuzzy P controller presented lower steady-
state error compared to the conventional one due to its adaptive gain.  On the other hand, it is 
more sensitive (it stresses more the backup heaters actuator) due to its maximum gain of 5.6, 
obtained after GA optimization, that is bigger than the conventional proportional gain of 3.5.   
In general, the fuzzy PI presented better results compared to the conventional one, and both 
have similar actuation of spray and heaters, see Fig. 13 and 14.  Fig. 15 and 16 shows the PID 
response for the two system.  Although the derivative term slows the transient response of the 
controller, this term in the controller is highly sensitive to noise in the error term, and causes 
instability in the control process.  The fuzzy PID controller seems to be more sensitive to 
noise in the error term compared to the conventional one.  This can be seen mainly at the end 
of the samples (after 7000 sec) where the fuzzy PID response becomes a little unstable. 
 
Table 3 summarizes the response of the two controllers types in terms of the ITAE.  For all the 
systems, the ITAE obtained using fuzzy controllers showed relative reduction compared to the 
correspondent conventional ones. 
 
 

Table 3:  ITAE obtained for the controllers. 
 

Controller Conventional Fuzzy Error (%) 
P 1856.7 1262.8 32.0 
PI 460.7 405.1 12.0 

PID 385.2 348.4 9.5 
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Figure 11.  Conventional P controller response. 
 
 

 
 

Figure 12:  Fuzzy P controller response. 
 

 

7. CONCLUSION 
 
The control of nuclear power plants systems is difficult due to their complex, time varying 
and insufficiently known parameters.  The application of intelligent systems including fuzzy 
logic in the control of large-scale complex nonlinear systems as nuclear plants have been 
applied recently.  In this context, the goal of this work was to develop fuzzy controllers for 
the PWR pressurizer modeled by the ANN and to compare their performance with 
conventional ones.  Both controller types were tested for transients in the nuclear power.  
Table 4 shows a relative reduction in the ITAE for the fuzzy controllers compared to the 
conventional ones.  Probably, this is due to the intrinsic characteristic of the fuzzy controllers 
to adapt their gain with respect to the error changes. 
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Figure 13:  Conventional PI controller response. 
 
 

 
 

Figure 14:  Fuzzy PI controller response. 
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