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ABSTRACT 

 
This research has the objective of solving the spatial Kinetic equations for two energy groups using the finite 

element method. In the methodology, was applied the direct method, such that matrix equations coefficients 

from spatial discretization was generated by finite element method. The formulation of the time-dependent 

problem was obtained by analytical integration of precursor concentration equation and using the Euler implicit 

scheme in the dynamic diffusion problem. A 2D example of a reactor static diffusion problem was solved using 

a linear triangular finite element. This solution was compared with the numerical benchmark solution, found in 

the literature, and the numerical results calculated by the finite difference methods. This comparison shows the 

capacity of the finite element method to obtain a precise solution. 

 

 

1. INTRODUCTION 

 

The major part of codes that solves the time-dependent diffusion equation did not take into 

account the interest, now in evidence, for the accelerator driven system (ADS), with high 

energy spallation neutrons or the molten-salt reactor concepts both brought by the GEN-IV 

innovative system. The objective of this work is to present an approximate method to the 

solution of space-time dependent neutron kinetic equation. besides that explained before, As 

pointed out by, Grossman and Hennart[4] this equation have been interest in reactor physics 

and reactor design since the early 1960s due to the inadequacy of the point reactor model for 

the analysis of large thermal light water reactor (LWR) as demonstrated by Yasinsky and 

Henry[9]. The point reactor power prediction are inaccurate in many cases even can 

underestimate the reactivity insertion and hence non conservative in safety sense. Examples 

of multidimensional space-energy dependent safety problems in LWR are: 

 

 The analysis of consequences of the accidental ejection of a control rod on the radial and 

axial power distribution in pressurized water reactor (PWR); 

 Power oscillation in the radial and azimuthal directions in a boiling water reactor (BWR) 

in unstable power-flow regions. 

 

The model almost universally used in space-dependent dynamic is that of multi-group 
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diffusion theory coupling to the equation for delayed neutrons precursors. A lot of solution 

of this kind of problem have been developed and had been categorized as Spatial and Time 

integration method. The Spatial Methods are categorizing by Sutton and Aviles [8] as 

follow: 

 

 Direct method; 

 Space-time factorization methods; 

 Modal and synthesis methods. 

 

The direct methods could be classified into three groups: 

 

 Finite difference method; 

 Coarse mesh method; 

 Nodal methods. 

 

Others authors like Grossman and Hennart[4] also presents a review of more recent advances 

in nodal diffusion methods for space-time neutron kinetics. The space-time factorization 

methods have been developed as potentially less computationally intensive alternatives to 

the direct method. These methods involve a factorization of the time dependent flux into the 

product of two functions: one the amplitude function dependent only on the time variables, 

and the other the shape function dependent on space and energy as well as on time. 

Analytical and numerical work in this field are summarized in a review paper by Grossman 

and Hennart[4] that discuss only the direct space-time methods and Dahmani[3] that presents 

a mixed dual method based in the space-time factorization for reactor kinetics. 

 

The modal and synthesis method appear to have been largely abandoned for the purpose of 

kinetic calculation and the discussions about this subject is presented in Sutton and 

Aviles[8]. To numerically advancing the space time diffusion group diffusion equation, 

along with their time-dependent delayed neutron precursor counterparts, through time a lot 

of methods can be used to do that: 

 

 Theta method; 

 Alternating Direction Implicit Method (ADI); 

 Stiffness Confinement Method (SCM); 

 Symmetric Successive Over-Relaxation (SSOR); 

 Rosenbrock Generalized Runge-Kutta Method; 

 Analytical treatment of the Delayed Neutron Precursors. 

 

While Grossman and Hennart [4] adopt direct method and therefore factorization method as 

well as nodal and synthesis methods are outside of the scope of their paper, we adopt here a 

space-time factorization method using the Finite Element Method (FEM) for the spatial 

discretization. Instead of a classical finite-difference approach to this boundary value 

problem, the Finite Element Method (FEM) is chosen because it is quite versatile and allows 

in particular the treatment of any irregular geometry. The implementation of this method 

requires: 

 

 Formulation of the boundary value problem in a week or variational form; 

 Discretization of a given domain Ω into approximate sub-domains Ω
e
; 

 Replacement of infinite dimensional spaces by finite dimensional subspaces of functions 
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in a piecewise way, over the element; 

 The formulation and solution of the linear algebraic problem for the coefficient in the 

expansion defined in the item before. 

 

Finally some authors as Sutton and Aviles [8] presents summarized results of benchmark 

problems obtained using various methods for spatial and time integration methods. 

 

 

2. SPACE-TIME NEUTRON KINETIC PROBLEM 

 

As mentioned before, the theory used here is that of a multi-group diffusion theory coupled to 

the equation for delayed neutrons precursors. In real dynamics problems, especially those 

involving safety considerations, the coefficient in this system depend upon parameters such 

as temperature, void, and composition which themselves depend on the neutron power level. 

To simplify the problem, the coefficients are treated as a piecewise constant in the space with 

possible iterative updating in time in the course of a transient. Using the space time 

factorization method, a factorization of the time-dependent flux is composed into the product 

of two functions: one where the amplitude function dependent only on the time variables, and 

the other where the shape function dependent on space and energy as well as on time. In 

many problems, the shape function is only weakly time-dependent then, it may be not 

necessary to recalculate it at every time step. The computation of the amplitude function is 

relatively inexpensive giving to this method often accurate results using far less computer 

resources than direct methods. 

 

2.1. Strong Formulation 

 

 

  

   

  
(   )            

 
   ∑   

    
   

 

    

    

 (      )  
 

∑    
  

   

 

    

 
 

 ∑  

 

   

  
 
                (2.1) 

 

and 

 
    (   )

  
   ∑    

 
  

 

   
                    (   )   (   )̅̅ ̅ (2.2) 

 

where: 

 

  (   )                      [ 
     ]                                  

  (   )                                                      [ 
  ]                                  

                                                           

  ( )                                                                          

 
 (   )                              [   ]                                     

  
    (   )                          [   ]                                      

  
 
                                                              



INAC 2013, Recife, PE, Brazil. 

 

   
 
                                                             

  
 
                                                                  

∑                                                                             
 . 

                                                                 

  
 
                                                         

  
 
                                                          

                                                      
  

  (   )                            [   ]                           

                                    [ 
  ]                       

                                                           
                                                            
 

and where the cross-section relations are defined as: 
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Following the work of Grossman and Hennart[4], the multi-group kinetics system can be 

written in reaction-diffusion form as a parabolic system: 

 
  

  
            (2.4) 

 

where u (x, t) is the column vector of the neutron flux and precursors density: 
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D is the diagonal matrix of the diffusion cross sections: 
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and Q is the block matrix: 
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where H is the matrix of absorption, scattering and fission cross sections, Γ and B are the 

matrices of neutron precursors and Λ is the diagonal matrix of decay constants defined by the 

following expressions: 
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The column vector of external group sources s is: 
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  [                    ]                                                         [(   )  ] (2.12) 

 

For boundary conditions, we consider Dirichlet or zero flux conditions on a portion    of the 

boundary   and Neumann or zero current conditions on the remainder   . Then, for boundary 

conditions, zero flux condition (Dirichlet conditions) is considered on portion    of the 

boundary and zero current condition (Newmann condition) on the remainder   : 
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where          and          and  ̅ is the normal to    . 
 

2.2. Weak Formulation 

 

The basic idea behind weak formulation, as opposed to strong ones related to the classical 

solution of equation, consists in multiplying it by some test function v:  
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and integrating the streaming terms by parts: 
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to get: 
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As the flux is zero on    and if it is imposed that v is zero on    like u the equation can be 

written by: 
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3. NEUTRON DIFFUSION PROBLEM 

 

3.1. Strong Formulation 
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The static diffusion equation can be obtained from the spatial kinetic equation (2.4) when the 

time flux variation and the delayed neutrons are not considered. 

 

           (3.1) 

 

In this case, the static diffusion equation (3.1) using a discretization of 2 groups of neutron 

energies, presents the following form [2]: 
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3.2. Weak Formulation 

 

Using the same function for the test function and neutron flux, the weak formulation of the 

static diffusion equation can be presented in the following form: 
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that can be rewritten by: 
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4. NUMERICAL SOLUTION 

 

4.1. Neutron Diffusion Solution 

 

4.1.1. Geometry and field approximation 

 

In the Finite Element Approximation it is supposed that the geometry and the neutron flux are 

approximated by functions defined in sub-domains Ωe that by juxtaposition defines the entire 

domain: 
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where Ni is the interpolation function defined for the node i and element e. Supposing to use 

the 2D-cartesian coordinate system and a linear triangle finite element, the following 

expressions can be obtained for the geometry: 
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and for the neutron flux: 
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The flux gradient, using equation (4.5), is given as: 
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Using the above equation in the diffusion equations (3.6) and (3.7), the following equation 

system is obtained: 
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This equation system is solved, in the MEF program, by the Power Method via Gauss 

elimination (DIFM module) or conjugated gradient (DICG module). The adaptive remeshing 

in the MEF program that makes use of the TRIANGLE (TRIA module) and TETGEN (TETG 

module) free programs respectively in 2D and 3D, is presented by Jospin, Aghina and 

Sampaio [8]. 

 

4.2. Space-Time Neutron Kinetic Solution 

 

4.2.1. Geometry and field approximation 

 

The geometry is approximated by the following relation: 
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For the field approximation, the Finite Element method is used. Applying the Galerkin 

method, the test function and the field (neutron flux) are approximated by the same 

interpolation functions: 
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where   
  is the component   of the vector  ,    is the interpolation function associate to the 

node   and element   defined in the sub-domain Ωe . Supposing this sub-domain is 

represented by a triangle with 3 nodes (m = 3) and the cartesian coordinates system is 

selected, the above relations take the following form in the matrix form: 
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where i, j, k are the nodes of the triangle. 
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Grouping all the nodal variables together in the vector un, the variable field u can be 

represented by: 
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where the interpolation matrix can be written by: 
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and the nodal variables by: 
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or: 

 

         (   ) (4.22) 

 

Substituting this approximation into the integral formulation 2.19 results: 
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That can be put in a matrix form: 
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Using a local reference coordinate system (ξ, η, ζ) defined in the sub-domain Ωe and the 

Gauss numerical integration, the above integrals can be written in the following form: 
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where    is the Jacobian transformation from the reference coordinates (ξ, η, ζ ) to the global 

coordinates x = (x, y, z),    is the weight of the numerical integration at point   and element 

  and      the number of integration points. 

 

4.2.2. Time discretization 

  

4.2.2.1.Direct method-semi-implicit Euler method 

 

Using the implicit Euler method, the space time kinetic equation can be put in the following 

form: 
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or in the matrix form: 
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The space-time kinetics result: 
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Taking into consideration the  ,   and   matrices definition, the above system can be 

separated in two equations: 
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A solution of this system can be obtained in an approximated way using the stationary 

solution of the prompt neutron      (diffusion equation) defined in the equations 4.7 and 

4.8: 
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that can be put in the following generalized eigenvalue problem and solved by the power 

method: 
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where the components of matrix H are defined by equation 2.8: 
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A neutron flux discretization in two groups (G=2) produce the following equation system: 
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From the equation system 4.47 and 4.48 above, it is possible to obtain an estimate of the 

neutron flux        In this case an approximated value of the coefficients delayed neutrons 

fraction       can be estimated by the equation 4.41. Then, it is possible to calculate the 

evolution of the variables:       and      . This system can be formulated in a simplified 

form by: 
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Putting in evidence the density of delayed neutron       in the equation 4.42 and substituting 

it into the equation 4.41 results: 
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where    and    can be given from the stationary neutron diffusion solution. 

Following the work of Sutton [8], the analytical solution of the equation 2.2 is given by: 
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Using the matrix form defined in equation 4.56 the solution system can be put in the 

following form: 

 

(
  

  
            )       ̅     (

  

  
    )      (4.58) 

 

where       is the required solution of the dynamic diffusion equation and    is the solution 

of the same equation at the preceding time. At the initial time this solution is identified as the 

stationary solution of the diffusion equation. 

 

 

5. NUMERICAL EXAMPLES 

 

The objective of this article is only to present a finite element formulation for the spatial 

kinetic problem. The example presented below has only the objective to show the precision 

this method have to represent a good solution at least in the case of static diffusion. 

 

5.1. Seed Blanket Reactor Problem 

 

In this example, we are interested to compare the precision of MEF program solutions with 

the solutions of the TWIGL problem presented by various authors and using different method 

like nodal methods, fine differences,…etc (Song and Kim[13] and Langenbuch[10]). The 

example uses a quarter of the core due to the symmetry of the reactor kinetics problem with 
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two neutron energy groups and one delayed neutron precursor. The spatial units are measured 

in cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: One quadrant of TWIGL reactor 

 

 

The table 1 gives the two- group constants for TWIGL reactor. 

 

Table 1-Group constants for the Seed-Blanket problem 

 

Region Group Dg(cm) ∑ (    
  )   ∑    ∑    

1 
1 

2 

1.4 

0.4 

0.01 

0.15 

0.007 

0.2 
0.01 

2 
1 

2 

1.4 

0.4 

0.01 

0.15 

0.007 

0.2 
0.01 

3 
1 

2 

1.3 

0.5 

0.008 

0.05 

0.003 

0.06 
0.01 

 

      
 

  
  

 

  
  

0.0064 0.08 10
-5

 10
-7

 

 

The discretization was performed using a two- dimensional triangle finite element with the 

same length for all the elements. The fast and thermal fluxes variations had been calculated 

by MEF-DIFU program using 25600 two-dimensional linear triangle finite elements. The 

contour fill of these fluxes are presented in figure 2 and the line diagram     in the figure 

3. 
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Figure 2: TWIGL fast and thermal flux 

 

 

 
 

Figure 3: TWIGL fast and thermal flux 

 

The table 2 presents a comparison among the results of the reactor criticality factor obtained 

by various authors and by MEF-DIFU program. The reference solution multiplication factor 

at the steady state presented by Hageman and Yasinsky [11] is 0.914193. It can be observed 

that the results of MEF-DIFU program present a good precision even with a low number of 

linear triangle finite elements. 

 

 

Table 2: Multiplication factor value for the TWIGL 

 

Zelmo[12] 

Finite Differences 

MEF-DIFU 

Linear Triangle Finite 

Elements 

Hageman & Yasinsky [11] 

Benchmark 

Multiplication Factor 

0.91347226 (100 nodos) 0.913244 (100 F.E.) 

0.914193 

0.91299311 (400 nodos) 0.913397 (400 F.E.) 

0.91300493 (1600 nodos) 0.913294 (1600 F.E.) 

0.91269630 (6400 nodos) 0.913238 (6400 F.E.) 

0.91103587 (25600 nodos) 0.913215 (25600 F.E.) 
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6.  CONCLUSIONS 

 

The neutron diffusion equation was formulated with Euler implicit scheme and the matrix 

equations coefficients from spatial discretization were generated by the finite element 

method. The solution of the time-dependent dynamic diffusion can be obtained by the 

solution of two equations. Using the analytical integration of precursor concentration is 

possible to reduce this system to only one equation. This method will be implemented in the 

MEF fortran program. 

The static diffusion solution presented in the numerical results shows that accurate and 

efficient solutions are obtained by MEF-DIFU program using finite element. This can be 

observed from the comparison between this solution and the one presented by Lima [12] 

using finite difference. Then, a good solution as well as can be expected for the dynamic 

diffusion problem. 
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