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Abstract 

Emulsion templating using high internal phase emulsions is an effective route to prepare 

low density, high porosity macroporous polymers known as polyHIPEs (poly(high 

internal phase emulsion)). Conventional polyHIPEs, synthesised from surfactant 

stabilised w/o (water-in-oil) emulsions, have low permeabilities and poor mechanical 

properties. This thesis describes an investigation into developing and characterising one 

type of tough and permeable macroporous polymers via emulsion templating. 

Increasing the continuous phase volume from HIPEs (high internal phase emulsion) to 

MIPEs (medium internal phase emulsion) is an effective way to improve the mechanical 

properties of resulting macroporous polymers. The influence on morphology and 

physical properties of the resulting macroporous polymers caused by the usage of 

different initiators and surfactants in MIPEs was initially discussed to optimise the 

formulation of MIPEs based on styrene and divinylbenzene (DVB). The MIPEs based 

on styrene and DVB used azobis(isobutyronitrile) (AIBN) as initiator produced 

macroporous polymers possessing desired open porous interconnected pore structure no 

matter which surfactant (surfactant mixture) was used while potassium persulfate (KPS) 

and redox initiator system cannot produce open porous macroporous polymers from 

MIPEs consisting of styrene and DVB. Then tough and permeable low density polymers 

were developed, produced by polymerising the continuous phase of emulsion templates, 

which contained styrene, polyethyleneglycoldimethacrylate (PEGDMA) and silylated 

silica particles. PEGDMA and the silylated silica particles acted as crosslinker. The 

functionalised silica particles were incorporated into the polymer, which resulted in a 

significant improvement of the mechanical properties of the polyHIPEs without 
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affecting the interconnected and permeable pore structures. The physical and 

mechanical properties of the tough and permeable macroporous polymers were 

characterised. Especially the mechanical properties, including shear properties and 

fracture toughness (mode II) were investigated using the Arcan fixture. Both the shear 

properties and fracture toughness (mode II) increased significantly with increasing the 

organic phase volume in emulsion templates and the further improvements can be 

obtained by the incorporation of silica filler in the emulsion templates. Finally, 

approaches to directly synthesise hydrophilic macroporous polymers based on styrene 

and DVB were presented since most of macroporous polymers produced from HIPEs 

are hydrophobic and need modification after polymerisation to improve the surface 

wettability. The incorporation of silylated silica particles in the emulsion templates 

improved the wettability of the resulting macroporous polymer but not the water uptake. 

The water uptake of macroporous polymers can be increased by the introduction of 

methacrylic acid (MA) and dimethylaminoethyl methacrylate (DMAEMA) into the 

aqueous phase of emulsion templates as additional monomers in order to synthesise 

hydrophilic polymer/polymer macroporous composites. 
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1 Introduction 

1.1 Background 

Highly porous polymers are attractive materials in a diverse range of applications, 

from structural materials to energy technologies. Although there are many different 

types of porous polymer foams, they are usually prepared by the gas blowing 

technique [1] and tend to possess irregular morphologies and closed cell structure. In 

recent years, a type of macroporous polymer, produced from high internal phase 

emulsions (HIPEs), so-called polyHIPEs, with open and well defined pore structures 

has gained increasing interest. PolyHIPEs are obtained by polymerising the 

continuous phase of these emulsion templates containing monomers, crosslinker and 

surfactant, followed by the removal of the dispersed or templating phase [2-4]. 

HIPEs are defined as emulsions whose internal phase occupies at least 74 % of the 

total volume of the emulsions which corresponds to the maximum packing fraction 

for identical spheres [5] and it was long suspected to be a key requirement to 

produce open porous polymers. However, recent research revealed that even the 

polymerisation of less concentrated emulsions produced macroporous polymers with 

an interconnected microstructure and low density, which means the definition of the 

HIPEs ratios, may be extended [6-9]. PolyHIPEs are famous for their unique 

permeable structure which contains both pore and pore throats. Pores are large 

cavities of micrometre dimensions and they are interconnected by a series of smaller 

pores referred to as pore throats (Figure 1-1). The pore throats form at the contact 

points of neighbouring droplets in the emulsion template and allow neighbouring 
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pores to communicate with each other. Therefore, they result in the permeability of 

polyHIPEs. It has been proven that polyHIPEs duplicate the structure of the HIPEs 

at the gel point of the polymerisation [10]. As a consequence of this characteristic, 

well defined polymer foams (polyHIPEs) can be obtained by tailoring the 

composition of HIPEs; such tailor-made polyHIPEs have the potential to be adopted 

for a large variety of applications varying from filter membranes [11], ion exchange 

resins [12] even to the scaffolds used in tissue engineering [13-15]. However, 

numerous potential applications of polyHIPEs could not be realized in industry 

because of the poor mechanical performance.  

             

Figure 1-1 Definition of pore and pore throats of polyHIPEs 

1.2 Motivation for the research 

In order to explore the potential applications of polyHIPEs, many researchers [8, 9] 

aimed to improve the mechanical performance of conventional polyHIPEs without 

affecting the highly porous interconnected and permeable structure of the 

macroporous polymers. There are two different approaches reported in the literature. 

One is optimising the formulation of emulsion templates, such as changing 

monomers or introducing a reinforcement and the other is to polymerise less 
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concentrated emulsions resulting in macroporous polymers with increased foam 

density.  

Furthermore, the full characterisation encompasses the determination of physical and 

mechanical properties of the polymerised macroporous polymers. However, there 

seems to be no reliable approach to investigate the mechanical performance, 

especially the shear properties and fracture toughness, of these macroporous 

polymers. In fact, the shear properties of these macroporous polymers is the key 

parameter determining many applications, i.e if they are to be used as core materials 

in sandwich composites or filter media, which have to resist flow through them. 

Fracture toughness is an indication of the amount of stress required to propagate a 

preexisting flaw and it is another most important parameter of any material. 

In summary, the motivation of this project is to develop and fully evaluate open 

porous, permeable, interconnected macroporous polymers via emulsion templating 

technology. 

1.3 Research objectives  

The main objective in the work described in this thesis is to develop and characterise 

open porous polymer foams with improved mechanical properties via emulsion 

templating. Furthermore, the impact of the addition of fillers on the wetting 

properties of the macroporous polymers is to be explored. The overall research 

objectives are as follows: 

1 Investigate the relationship between the components of emulsion templates and 

the morphological and physical properties of the resulting macroporous polymers 
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in order to optimise the formulation of emulsion templates without affecting the 

desired interconnected pore structure. 

2 Synthesise low density, high porosity and permeable macroporous 

nanocomposites with significantly improved mechanical properties comparing to 

“standard” polyHIPEs via emulsion templating. 

3 Explore a new approach to evaluate the tensile and shear properties of 

macroporous polymers and determine various mechanical parameters including 

tensile modulus, tensile strength, shear modulus, shear strength and fracture 

toughness of these macroporous polymers.  

4 To investigate the effect of the emulsion formulation on the wetting behaviour of 

macroporous polymers. 

1.4 Structure of the thesis 

This thesis presents work on the development and characterisation of interconnected 

and tough macroporous polymer foams via emulsion templating. The whole thesis is 

divided in to eight chapters.  Chapter 2 comprehensively reviews the relevant 

background literature based on the formulation and the influence factors in emulsion 

templates. The applications of macroporous polymers via emulsion templating and 

the approaches to tailor the mechanical properties of these macroporous polymers 

are discussed. In Chapter 3, the materials used and experimental processes, including 

sample preparation and characterisation procedures are presented. Chapter 4 presents 

the influence of using different surfactants for stabilisation of emulsion templates as 

well as different initiation methods, on the morphological and physical properties of 

resulting macroporous polymers. Chapter 5 describes a new type of tough, 

interconnected and low density open porous polymers developed via emulsion 



Chapter 1 

24 

 

templating and in Chapter 6 describes the adaptation of the Arcan test to determine 

the shear and tensile properties and fracture toughness of macroporous polymers. 

Chapter 7 discusses the impact of changing the emulsion formulation on the surface 

of macroporous polymers. Finally, Chapter 8 draws overall conclusions from the 

study and makes suggestions for future work.  
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2 Background and literature review of the emulsion 

templating technique  

2.1 Fundamentals of high internal phase emulsions 

Porous polymers can be used in extensive applications in daily life. In recent years, 

macroporous polymer produced from high internal phase emulsions (HIPEs) so-

called polyHIPEs, with an organic continuous phase consisting of monomers, 

crosslinker and surfactant gained increasing interest due to their unique 

interconnected pore structure [16]. The following reviews some fundamentals of the 

emulsion templating technique. 

2.1.1 Definition of high internal phase emulsions 

Lissant [5] was the first to class HIPEs as emulsions containing an internal phase 

volume of 70 vol % or greater. Nowadays, HIPEs are generally defined as emulsions 

with internal phase occupying at least 74 % of the total volume of the emulsions [16, 

17].  The ratio is the maximum packing fraction of uniform and undeformed droplets 

[17]. When the internal phase volume exceeds 74% of emulsions, the droplets have 

to be nonuniform in size or deformed to polyhedra [18]. Lissant stated the dispersed 

phase droplets should assume a rhomboidal dodecahedral (RDH) packing between 

74% to 94% of internal phase volume while the packing changes to 

tetrakaidecahedral (TKDH) mode when the dispersed droplets volume exceeds 94%. 

(Figure 2-1). According to the definition of HIPEs, after polymerisation of the 

continuous phase of a HIPE and removal of the internal phase, the resulting 
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polyHIPEs exhibit an interconnected pore structure, low foam densities and very 

high porosities up to 95% [7]. 

Although the definition of HIPEs has existed for many years, the definition may 

extend to a wider range depending on recent research. Manley et al. reported that 

even the polymerised products of less concentrated low
 
[6] or medium [7-9] internal 

phase emulsions (LIPEs or MIPEs), which have by definition internal phase volumes 

of less than 30 vol.% and between 30 vol.% and 70 vol.%, respectively [18], exhibit 

low densities and interconnected permeable structures, which are considered to be 

the most important characteristics of polyHIPEs. 

 

Figure 2-1 Droplet packing and ordering systems in HIPEs: A: Rhomboidal 

dodecahedral packing  B: Tetrakaidecahedral packing [18] 

As discussed before, the most unique feature of polyHIPEs is the interconnected 

microstructure which contains both pore and pore throats. It has been proven that 

polyHIPEs duplicate the structure of the HIPEs at the gel point of the polymerisation 

[13, 19]. As a consequence of this characteristic, the pore diameter of polyHIPEs can 

be tailored by adjusting the composition of HIPEs. Generally speaking, increasing 

emulsion stability accompanied by a lower interfacial tension, leads to smaller 
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droplets in emulsion templates [16, 20]. In other words, the polyHIPEs with large 

pore size can be obtained by lowering the emulsion stability, such as changing the 

concentration or type of surfactant [10], or adding specific solvents into the emulsion 

templates to promote Ostwald ripening, which describes the phenomenon that many 

small crystals form in a system slowly disappear to grow larger ones, which at the 

expense of the small crystals [20]. Therefore, the average pore diameter of 

polyHIPEs can vary from around 1 μm to more than 100 μm [16]. 

Pore throats appear at the contact points of neighbouring pores and make the whole 

polyHIPEs interconnected and permeable. The mechanism of pore throats formation 

is complex and conflicting views are expressed. Cameron et al. [21] suggested that 

pore throats are formed during the polymerisation process at the gel point of the 

polymerisation because of an internal shrinkage of the polymer matrix during 

conversion of monomers to polymer. However, more recent evidence suggests that 

the pore throats may initially be covered by thin polymer films [22]. It was 

hypothesised that the surfactant, which is insoluble in the aqueous internal phase, 

becomes increasingly insoluble in the growing polymer during the polymerisation of 

the continuous phase of the emulsion template. This leads to the formation of a 

surfactant rich third phase located in areas of close contact between neighbouring 

droplets. This surfactant rich-monomer poor phase forms a thin film, which ruptures 

during post-polymerisation purification or drying process.  

2.1.2 Water-in-oil and oil-in-water emulsion template 

Generally, high internal phase emulsions consist of an organic phase (oil phase) and 

another aqueous phase (water phase). Both the organic phase as well as aqueous 

phase can act as dispersed phases of emulsion templates. Usually, w/o (water phase 
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is dispersed in oil continuous phase) emulsions are defined as HIPEs whereas o/w 

(oil phase is dispersed in water continuous phase) emulsions are called inverse (or 

reverse) - HIPEs (I-HIPEs). 

The first and most studied emulsion templates are those using styrene as monomer 

and divinylbenzene (DVB) as crosslinker [21, 23-28]. The HIPEs are commonly 

stabilised by surfactants with low hydrophilic-lipophilic balance (HLB value) 

between 2 and 6 [29], such as sorbitan monooleate (Span 80) [13, 21, 29-30]. 

However, most macroporous polymers form HIPEs which are hydrophobic and are 

impeded in some applications, such as tissue engineering since the hydrophobic 

polyHIPEs are considered not to be a very suitable environment for cell growth 

without surface modification.  

In order to solve the problem, I-HIPEs are prepared to produce hydrophilic 

macroporous polymers directly. I-HIPEs consist of an aqueous continuous phase 

containing a hydrophilic monomer and a hydrophilic crosslinker, and an organic 

dispersed phase, such as toluene [32] or cyclohexane [33]. Comparing to HIPEs, the 

I-HIPEs are usually stabilised by surfactants with higher HLB value between 8.5 and 

16.5, such as polyethylene glycol tert-octylphenyl ether (Triton X405) [33-38]. After 

polymerisation and complete removal of the dispersed phase, hydrophilic 

macroporous polymers are obtained. However, compared to conventional HIPEs, I-

HIPEs are more difficult to stabilise [39] and furthermore, it is hard to remove and to 

dispose of the internal organic phase completely as well.  
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2.1.3 An example of manufacture process of polyHIPEs 

There are two steps in the conventional batch processing of fabricating polyHIPEs. 

The first step is the formation of a stable HIPE template. The components of the 

continuous phase, which include monomer(s), crosslinker and surfactant(s), are 

mixed in a reaction vessel (Figure 2-2). The initiator, which is the trigger for the 

polymerisation, is dissolved in either the continuous organic phase or the aqueous 

phase depending on its solubility. After obtaining a homogeneous continuous 

organic phase, the aqueous phase, often containing salt(s), is gradually added to the 

reaction vessel. During the entire addition process, shear agitation is provided by the 

stirrer to increase homogeneity of emulsion templates. The final emulsion shows 

high viscosity and homogeneity. 

 

 

 

 

 

Afterwards, the viscous emulsion is transferred from the reaction vessel into a mould 

and polymerised at a specific temperature according to the initiator system used. 

After polymerisation, the polymer is removed from moulds and purified to remove 

residual surfactants or unreacted monomers. Finally, the purified polymer is dried to 

a constant weight. 

 

Internal Phase: 

Water  

Electrolyte 

Energy input Energy input 

Continuous Phase:  
Monomer (s) 
Initiator 
Surfactant 

Figure 2-2 Schematic diagram for the preparation of 

emulsion templates 
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2.2 Components of emulsion templates 

Although several types of emulsions, including w/o emulsions, o/w emulsions and 

Pickering emulsions are used as templates for the production of macroporous 

polymers, the components of all emulsions are similar. In HIPEs systems, the 

continuous phase normally consists of monomers, which are polymerised to form the 

final macroporous polymers and emulsifiers, either surfactant(s) or particles, which 

are required to stabilise the emulsions. The discontinuous phase needs to be removed 

after the polymerisation. The polymerisation of monomers can be triggered by 

addition of initiators. Initiators can be dissolved in either the organic phase such as 

α,α'-azoisobutyronitrile (AIBN) [6-9,26] or the aqueous phase such as potassium 

persulfate (KPS) [40-43] depending on their solubility. The following sections list 

details and the influence factors of each component. 

2.2.1 Monomers  

The first and most studied emulsion templates used styrene and divinylbenzene 

(DVB) as co-monomers
 
[23-28]. However, the resulting macroporous polymers are 

very brittle. In order to decrease the brittleness, various combinations of monomers 

such as 2-ethylhexyl acrylate (EHA) or 2-ethylhexyl methacrylate (EHMA) [40, 44-

47] were used to synthesise polyHIPEs. However, the compression modulus and 

glass transition temperatures decreased with increasing EHA content in emulsion 

templates [45].
 

Changing the monomer in emulsion templates not only changes the mechanical 

performance but also modifies the surface characteristics, hydrophilic monomers 

such as acrylamide (AM) and N,N′-methylene bisacrylamide (MBA) [48, 49] and 2-
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hydroxyethyl methacrylate [33] are introduced into the aqueous continuous phase 

and hydrophilic foams are manufactured by polymerising these I-HIPEs. 

Furthermore, even hydrophilic/hydrophobic superabsorbent polymer/polymer 

composite [50-55] can be developed. The continuous organic phase normally 

contains hydrophobic monomers, such as styrene and DVB, while the dispersed 

aqueous phase consists of hydrophilic monomers, such as MBA and AM. The 

emulsions are stabilised by an appropriate surfactant, such as Span 80 [51], sodium 

dodecylsulfate (SDS) [52]. Oil-soluble initiator, such as benzoyl peroxide [51] or 

AIBN [53-55] and water-soluble initiator, such as potassium persulfate (KPS) [53-

55] can be used to initiate the polymerisation in the continuous phase and dispersed 

phase, respectively. Hydrophobic and hydrophilic monomers are simultaneously 

polymerised within the continuous phase and dispersed phase and a 

polymer/polymer composite is subsequently produced. 

Various functional monomers are introduced to emulsion templates as components 

as well. The flame resistance of final macroporous polymers can be improved by the 

addition of chloroprene, dichloroprene, pentabromophenyl acrylate and 4-

chlorostyrene into the organic continuous phase to copolymerise with styrene and 

DVB [56]. Biodegradable and/or compostable macroporous polymers are obtained 

by polymerising emulsion templates containing 2,3-dimethyl-1,3-butadiene and or 

isoprene as monomers and  ethylene glycol dimethacrylate, trimethylolpropane 

dimethacrylate, 1,6-hexanediol diacrylate, 1,4-butanediol dimethacrylate, 2-butene-

1,4-dioldimethacrylate or diethylene glycol dimethacrylate as crosslinkers in the 

organic continuous phase [57].  
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The polymerisation time of polyHIPEs can be reduced by using specific monomers. 

The use of a combination of especially reactive monomers such as 2-ethylhexyl 

acrylate (EHA), 6-hexanediol diacrylate (HDDA), 1,6-hexanediol acrylate 

methacrylate (HDAM) and 2-ethylhexylmethacrylate (EHMA) instead of 

conventional styrene and DVB reduces the polymerisation time and so less than 5 

min are needed at polymersation temperatures [58]. 

All polymer foams produced from HIPEs discussed above are crosslinked. 

Uncrosslinked polyHIPEs can also be polymerised from HIPEs containing isobornyl 

acrylate and 2-ethylhexyl acrylate or only containing stearyl acrylate [59].  

2.2.2 Emulsifiers  

An emulsion is a mixture of two immiscible liquids. One liquid, the dispersed phase, 

is dispersed in the other, the continuous phase, in the form of droplets. The two 

immiscible phases of the emulsion templates can be stabilised either by surfactants 

or particles. There are three types of surfactants, non-ionic, anionic and cationic 

surfactants and the non-ionic surfactants are the most widely used surfactants. HIPEs 

are commonly stabilised by surfactants with low hydrophilic-lipophilic balance 

(HLB) value between 2 and 6 [29], whereas I-HIPEs are normally stabilised by 

surfactants with higher HLB value between 8.5 and 16.5, respectively [60, 61]. 

The most commonly used non-ionic surfactant to stabilise HIPEs is sorbitan 

monooleate (Span 80) with a HLB value of 4.3 [13, 16, 21, 43, 51, 62]. Similar to 

Span 80, some other sorbitan ester surfactants, such as sorbitan monolaureate (Span 

20) [63, 64], sorbitan monopalmitate (Span 40) [65] and sorbitan trioleate (Span 85) 

[30, 66] have been used to stabilise HIPEs as well. However, Span 80 is not a good 
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candidate to stabilise less concentrated emulsions, such as MIPEs. In order to 

stabilise low or medium internal phase emulsions (LIPEs or MIPEs), which have by 

definition internal phase volumes of less than 30 vol.% and between 30 vol.% and 70 

vol.%, respectively
 
[18], Hypermer 2296 [6, 67-69] containing ethoxylated ester with 

a HLB value of 4.9 and Hypermer B246sf [6, 70] consisting of hydrophobic 

polyhydroxy fatty acid and hydrophilic polyethylene glycol blocks with a HLB value 

of 6.0 were used to stabilise such emulsion templates in the PaCE research group.  

Besides the non-ionic surfactant discussed above, various other non-ionic surfactants 

were adopted to stabilise HIPEs, such as Hypermer 1070 [71, 72], polyoxyethylene 

sorbitan monooleate (Tween 80) [13, 16]. Furthermore, non-ionic surfactants were 

used to stabilise I-HIPEs as well, such as polyethylene glycol tert-octylphenyl ether 

(Triton X405) [33-38] and polyethylene glycol dodecyl ether (Brij 35) [73].  

Though non-ionic surfactants are the most widely used surfactants, anionic and 

cationic surfactants have also been found to be useful to stabilise both HIPEs and I-

HIPEs. The anionic surfactants, such as bis-tridecyl sulphosuccinic acid [64], sodium 

dodecyl sulphate [74] were used to stablise HIPEs while sodiumdodecyl sulphate 

[37] was adopted in I-HIPEs as a surfactant. The cationic surfactants, 

cetyltrimethylammonium bromide (CTAB) [75], distearyl dimethyl ammonium 

chloride and dioleyl dimethyl ammonium chloride [64] were also used to stabilise 

HIPEs. 

The usage of a mixture of nonionic, anionic and cationic surfactants: sorbitan 

monolaureate (Span20), dodecylbenzenesulfonic acid sodium salt (DDBSS) and 

cetyltrimethylammonium bromide (CTAB) was also described in a previous patent 
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to stabilise HIPEs [76]. This mixture of surfactants is claimed to stabilise emulsions 

more effectively than Span 80 alone [76, 77].  

The concentration of the surfactant in the continuous phase is important for the 

formation of stable HIPEs and the subsequent formation of open porous polyHIPEs. 

Williams et al. [10, 78] described the relationship between the morphology of 

macroporous polymers using styrene/DVB as monomers and the concentration of 

surfactant Span 80. HIPEs stabilised by 3-5% surfactant yield upon polymerization 

closed-cell macroporous polymers. However, small pore throats begin to develop as 

the surfactant level exceeds 7%. Subsequently, the pore throat sizes continue to 

increase with increasing surfactant concentration. However, if the surfactant 

concentration in the emulsion templates is larger than 80%, the resulting 

macroporous polymers are fragile; they easily disintegrate into a powder. Therefore, 

the optimal levels of surfactant in emulsion templates are between 20 wt.% and 50 

wt.%.  

Besides surfactant, colloidal particles, such as inorganic oxide particles [79-82] 

carbon nanotubes (CNT) [83, 84], microgel particles [85, 86] or bacterial celluloses 

[87] have also been used to stabilise HIPEs instead of surfactants and these 

emulsions are referred to as Pickering emulsions. Pickering emulsions are extremely 

stable due to the irreversible adsorption of particles at the interface between the 

continuous and dispersed phases which acts as a barrier to avoid droplets 

coalescence [88].  

The wettability of particles is a key factor in the stabilisation mechanism. More 

hydrophobic particles preferentially stabilise HIPEs while more hydrophilic particles 

preferentially stabilise I-HIPEs. From previous research, several hydrophobic 
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particles, such as titania nanoparticles [79], surface modified silica particles [80], 

bacterial celluloses [87] have been reported to stabilise HIPEs while hydrophilic 

silica particles [82] and poly(N-isopropylamide)-co-(methacrylic acid) microgel 

particles [85] have been proved to effectively stabilise I-HIPEs. 

Compared to conventional surfactants, using particles to stabilise emulsion templates 

has a number of advantages. Firstly, the required amount of particles to stabilise an 

emulsion is much smaller than that of surfactants, at least 5% [10, 78] of surfactant 

relative to the continuous phase is needed to stabilise HIPEs effectively while even 1 

wt. % [79, 80, 89] of particles with respect to monomers can stabilise HIPEs or even 

MIPEs due to the extremely high capability to stabilise emulsions [90, 91]. 

Furthermore, the macroporous polymers produced from particle-stabilised HIPEs 

may lead to other benefits; for example, the pore walls of the final materials will be 

packed with a layer of particles which may contain functional groups and lead to a 

variety of further applications [84, 92]. For example, using titania nanoparticles 

(TNPs) to stabilise Pickering emulsion templates also introduce other benefits to the 

resulting nanocomposite foams including [93-96], for example, catalytic activity, 

UV-absorption or enhanced surface roughness which may lead to a variety of 

applications in the future. 

2.2.3 Initiators 

The polymerisation of monomers is triggered by initiators. There are three types of 

initiators including thermal initiators, redox initiators and photoinitiators. In addition, 

each type of initiator can be divided into water-soluble and oil soluble initiators 

depending on their solubility but most redox initiators are water-soluable.  
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Thermal initiators generally form free radicals by application of heat. The most 

commonly used water-soluble initiator in HIPEs is KPS [40-43]. Other water-soluble 

initiators used to initiate the polymerisation in emulsion templates include 

ammonium persulfate [97] and sodium persulphate [64]. The most commonly used 

oil-soluble initiator is AIBN [6-9, 26, 67, 68, 70, 80, 83].  Other oil soluble initiators 

used in emulsion templates are benzoyl peroxide, di-2-ethyl-hexyl-

peroxydicarbonate [64], 1,1’-azobis(cyclohexanecarbonitrile) [98], lauroyl peroxide 

[99], 2,2'-azobis(2-methylbutyronitrile), 4,4'-azobis(4-cyanopentanoic acid) and 2,2'-

azobis(N,N'-dimethyleneisobutyramidine) [59]. These initiators can only be used at 

elevated temperature to produce sufficient radical concentrations. For example, 

AIBN and KPS can usually be used in a temperature range between 50°C and 100°C.   

In order to initiate the polymerisation of monomers in emulsion templates at ambient 

temperatures, redox initiators can be adopted. Redox initiators usually consist of a 

pair: an oxidising agent and a reducing agent. Many redox initiator combinations are 

water-soluble. One typical example of redox initiator system used in emulsion 

templates is L-ascorbic acid and ferrous sulfate heptahydrate (reducing agent) and 

hydrogen peroxide (oxidising agent) [100,101]. Other redox initiator combinations 

used in emulsion templates include sodium hydrogen sulfite (reducing agent) and 

potassium persulfate (oxidising agent), sodium hydrogen sulfite (reducing agent) and 

sodium persulfate (oxidising agent) [100]. 

Photoinitiators rapidly and efficiently respond to light sources, such as UV light, and 

produce radicals or other species initiating the polymerisation. Normally, 

photoinitiators are oil soluble. Typical examples of photoinitiators used in emulsion 

templates include α-,α-dimethoxy-α-hydroxy acetophenone (DAROCUR 1173), 
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benzyl dimethyl ketal (IRGACURE 651), bis(2,4,6-trimethylbenzoyl)-

phenylphosphineoxide (IRGACURE 819) [40,59] and benzil dimethyl ketal 

(ESACURE KB-1) [ 99]. 

The usage of an oil soluble initiator together with a water soluble initiator usually 

decreases the polymerisation time [102]. The oil soluble initiator t-butylperoxy-2-

ethylhexanoate (Perbutyl 0) was used in combination with the water soluble KPS to 

trigger the polymerisation of HIPEs containing EHA and DVB and the 

polymerisation time of the emulsion can be reduced to less than 10 min. 

2.2.4 Additives to the aqueous phase of emulsion templates 

Salts are usually added into the aqueous phase of HIPEs as an additive in order to 

suppress Ostwald ripening by preventing monomers to dissolve in aqueous phase or 

vice versa. Generally, a water-soluble salt of alkali metals and alkaline earth metals 

such as calcium chloride, potassium sulphate, potassium chloride and magnesium 

sulphate are used as electrolytes in the aqueous phase of HIPEs [103, 104]. The 

addition of electrolytes enhances the stability of emulsions since the droplet size of 

emulsions was decreased and the resistance to droplets coalescence is increased 

[103]. 

The presence in the aqueous phase of small quantities of organic additives such as 

tetrahydrofuran (THF) and poly(ethylene glycol) (PEG) have been found to increase 

the average pore and pore throat diameters of macroporous polymers obtained. It is 

suggested that these additives enhance Ostwald ripening and decrease the emulsion 

stability [105]. 
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2.3 Processing of producing macroporous polymers from 

emulsion templates 

In addition to laboratory polyHIPEs batch production methods, there are several new 

processing protocols used to produce macroporous polymers from emulsion 

templates. The following describes the details.  

2.3.1 Continuous process of synthesising polyHIPEs  

Compared to laboratory batch process, the continuous polymerisation of HIPEs 

allows obtaining products in a relatively short time period and improves the 

economics by increasing production rate.  

 

Figure 2-3 Schematic description of continuous processing of synthesising polyHIPEs 

[106] 

Mork et al. [106] reported that polyHIPEs can be produced continuously by firstly 

mixing the continuous phase and internal phase in one vessel and forming a HIPE. 

The emulsion template is transferred by a delivery tube onto a lower moving support 
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substrate and then running the support through a heating zone for a time sufficient to 

polymerise at least 75% of the monomers in the HIPEs. Then, the polymerised 

macroporous foam is first passed through an aqueous and methanol bath to remove 

the remaining monomers and surfactants and then passed through an air oven to 

remove internal phase. The polyHIPEs were collected afterwards. Optionally, the 

polymerised macroporous foams can be squeezed to press out the internal water by 

passing through rollers. Furthermore, an upper moving substrate can be positioned at 

a fixed distance to produce macroporous polymer foams with desired a thickness 

(Figure 2-3). 

2.3.2 Process of emulsion-templated microbeads 

In order to use polyHIPEs in chromatography packings, polyHIPEs materials need to 

be reduced to particulate form by grinding. However, grinding results in particles 

with very irregular shape/sizes and causes wastage of original materials. Emulsion-

templated macroporous polymers in the form of monodisperse beads were invented 

to circumvent this problem.  

Emulsion-templated microbeads can be produced by sedimentation polymerisation, 

which was proposed by Ruckenstein et al. [107, 108]. In this process, individual 

HIPE droplets are partially polymerised during sedimentation through an immiscible 

sedimentation medium. Usually, w/o/w (water-in-oil-in-water) emulsions are used. 

This process includes two steps; the first step is combining an oil continuous phase, 

which consists of water-insoluble monomers, such as styrene and DVB, and 

surfactant, such as Span 80, with an aqueous internal phase to form a HIPE and then 

adding the HIPE template into another aqueous suspension medium to form a HIPE-

in-water suspension system. The oil phase contained an oil-soluble initiator, such as 
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AIBN and both the aqueous internal phase and aqueous suspension medium included 

a water-soluble initiator, such as KPS. Once a stable suspension of HIPE 

microdroplets formed, the polymerisation was initiated by increasing the temperature 

of the aqueous suspension medium. In order to increase the sedimentation time, 

shear agitation was provided during the addition of the HIPEs into the aqueous 

suspension medium and during the entire polymerisation process. A further increase 

of sedimentation time was achieved by adding a gelling agent, such as acacia gum 

into the aqueous suspension medium [109]. The microbeads were left in the aqueous 

suspension medium at 60 °C overnight and purified with water and acetone to 

remove residual components. 

Recently, oil-in-water-in-oil (o/w/o) emulsion based microbeads were developed by 

Zhang et. al [110]. Firstly, an oil-in-water I-HIPE was formed by slowly adding 

cyclohexane to an aqueous solution of monomers while stirring. Acrylamide (AM) 

and N,N′-methylenebisacrylamide (MBA) were chosen as monomers because of 

their rapid polymerisation ability under sedimentation polymerisation conditions 

[107, 108]. Water-soluble ammonium persulfate (APS) was used as the initiator and 

sodium dodecyl sulfate, (SDS) plus poly(vinyl alcohol) (PVA) were used as 

surfactant to form a stable I-HIPE. Then, the I-HIPE was injected into a glass 

column containing a heated mineral oil sedimentation medium. The droplets sank 

slowly through the sedimentation medium and were collected at the bottom of the 

glass column. After sedimentation, the beads were left in the heated sedimentation 

column for an additional 3 h to complete the polymerisation.  Finally, the beads were 

purified with hexane and acetone.  
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2.3.3 Supercritical fluid treated I-HIPEs 

I-HIPEs as templates to synthesise macroporous polymers are uneconomic since the 

procedure is extremely solvent intensive. Usually, large amounts of oil or organic 

solvent are required for the internal phase (>75 vol.%), which brings about the 

disadvantage of high levels of organic waste.  Furthermore, the solvent used as the 

internal phase may be very difficult to remove completely. A possible solution to 

this problem is templating supercritical CO2-in-water (C/W) emulsions [49,111-

113]. The general procedure for C/W emulsions templating is shown in Figure 2-4. 

CO2 with the pressure = 100-300 bar is introduced into emulsion templates to replace 

a part or the entire internal organic phase to form scCO2–in-water emulsions. The 

aqueous phase contained AM and MBA as monomers and perfluoropolyether 

(PFPE) ammonium carboxylate with low molecular weight (Mw = 567 g /mol) was 

used as surfactant [111, 113]. The C/W emulsion templates were polymerised at 

60°C, 250–290 bar, 12 h [113]. After polymerisation, the removal of carbon dioxide 

is easy since carbon dioxide reverts to the gaseous state upon depressurisation. 

Compared to conventional organic solvent used as the internal phase in I-HIPEs, 

supercritical carbon dioxide (scCO2) is a sustainable solvent because it is nontoxic, 

non-flammable and naturally abundant [114-116]. However, the supercritical fluid 

(SCF) technique involves either a foaming mechanism, gelation of the SCF medium 

or a combination of both. Therefore, only limited macroporous polymers can be 

accessed via this route since many materials cannot be foamed or derived from CO2-

soluble precursors [111] 
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Figure 2-4 Preparation of a macroporous polymer via supercritical emulsion 

templating. External phase is an aqueous solution containing monomers, internal phase 

is scCO2 [111] 

 

2.4 Applications of macroporous polymers made from 

emulsion templates 

Because of their unique interconnected pore structure, emulsion templated 

macroporous polymers have been explored for several applications including filter 

membranes [11], ion exchange resins [12], ultraporous polymer supports for organic 

synsthesis [117], chromatographic supports
 
[118] and even scaffolds for tissue 

engineering [13-15]. Besides monolithic polyHIPEs, other forms of macroporous 

polymers made from emulsion templates such as microbeads and films have been 

explored. However, there are no real industrial applications of polyHIPEs due to 

their poor mechanical properties. The following summarises the applications of 

emulsion templated macroporous polymers. 

2.4.1 Applications of polyHIPEs 

a) As separation media 

PolyHIPEs have the potential to be used as filter materials because of their unique 

interconnected pore structure. The open porous structure allows fluids to pass 
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through while particles, which are larger than the pore throats, are trapped. Therefore, 

polyHIPEs can be adopted as ion-exchange media for the separation of biological 

materials and the removal of salts, metals or acids from aqueous solutions. 

Compared to conventional separation membranes, the size and number of pores and 

pore throats of resulting polyHIPEs can be refined by optimising the formulation of 

the emulsion template and the manufacturing procedure. In addition, if the porous 

polymer contains a polyelectrolyte [119], the polyelectrolyte acts as a diffusion 

barrier to control the speed at which charged species are transported through the 

porous foams to an underlying adsorbent material because of charge interactions, 

hydrophobic interactions and steric hindrance. 

b) As absorbent materials 

Macroporous polymer foams produced from emulsion templates, especially 

hydrophilic/hydrophilic porous foams [50] are a type of superabsorbent material. 

Since the organic continuous phase contains water-insoluble monomers and the 

aqueous internal phase includes water-soluble monomers, the resulting macroporous 

polymer showed a capability to acquire and distribute rapidly both aqueous and 

organic fluids. Therefore, it can be used as a superabsorbent material for fluid 

acquisition/distribution applications. For example, these polymer foams can be 

employed as environmental waste oil sorbents; absorbent cores of disposable nappies 

and many other applications. Furthermore, the type of absorbent materials shows 

both relatively high capillary absorption pressures and capacity-per-weight 

properties, which allow them to acquire fluid with or without the aid of gravity. As a 

consequence, this type of absorbent material is particularly useful as the upper 

component in a “multi-layer" absorbent system.  
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c) As scaffold in tissue engineering 

PolyHIPEs is a potential candidate for tissue engineering scaffolds due to their high 

porosity. The high porosity and interconnected pore structure of these macroporous 

polymers allow reactants and metabolic waste to pass in and out and a higher 

through-put rate can be achieved comparing to conventional scaffolds [120]. 

Furthermore, polyHIPEs are considered as scaffold materials for growth of multiple 

cells [98]. They can provide multi zones where selected cell types are confined to the 

specific regions of the polyHIPE while other cell types grow throughout the other 

regions. Depending on various types of cells to be grown, the pore diameter has to be 

adjusted over a wide range from 0.5 to 100 µm.  

PolyHIPE scaffolds based polystyrene (PS) [121], poly(propylene fumarate) (PPF) 

[15] and polyurethane [122] have been studied as scaffolds for tissue engineering. 

However, these polymers are hydrophobic, which are considered not to be a very 

suitable environment for cell growth. With the aim to improve the biocompatibility 

of these macroporous polymers, I-HIPEs were prepared. Barbetta et al. [32, 123, 

124] have extended the application of inverse polyHIPEs as scaffolds in tissue 

engineering by using derivatised polysaccharide and gelatine as the polymer. 

2.4.2 Applications of emulsion-templated microbeads 

Compared to conventional polyHIPEs monolith, emulsion-templated microbead is a 

better candidate in a variety of chromatographic techniques due to its spherical 

particulate forms [109, 110]. The emulsion-templated microbeads can be used as a 

substrate in ion-exchange chromatography. They can be employed as either cation-
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exchange resin or anion-exchange resin by providing acidic groups or basic groups 

on the microbeads surface, respectively.  

Emulsion-templated microbeads have the potential to be adopted in cell culturing 

[109]. The microbeads protect the cell from external disturbance and can be used in 

conventional bioreactors. Furthermore, the w/o/w emulsion-templated microbeads 

can be modified by sulphonation to increase the hydrophility of the microbeads and 

the cell attachment to the polymers is improved. 

2.5 Approaches to improve and determine the mechanical       

properties of macroporous polymers 

2.5.1 Approaches to improve the mechanical properties of 

macroporous polymers 

Most conventional polyHIPEs are produced from emulsion templates using styrene 

and DVB as co-monomers and the resulting macroporous polymers are very brittle 

and chalky. In order to improve the mechanical performance of the resulting 

macroporous polymers, various combinations of monomers such as 2-ethylhexyl 

acrylate (EHA) or 2-ethylhexyl methacrylate
 
[40,44] or monomers based on silicon 

[125], such as tetrakis(methacryloxyethoxy) silane (TKMES) or 2-(acryloxyethoxy) 

trimethylsilane (AETMS) have been used to synthesise polyHIPEs. The chalkiness 

and brittleness of polyHIPEs based on styrene and DVB can be reduced by using 2-

ethylhexyl acrylate (EHA) as a co-monomer in the emulsion templates, however the 

glass transition temperature decreases with increasing EHA content in the continuous 

phase [40, 44-47]. Alternative routes such as the step-growth reaction of 

http://www.patentstorm.us/patents/6136874-fulltext.html
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diisocyanate with poly(-caprolactone) have also been explored [122]. Such 

polyHIPEs have however Young’s modului well below 10 MPa [46, 122]. 

Silane coupling agents have been used for several decades to improve the adhesion 

between polymer matrices and reinforcing glass fibres [126].
 
The interfacial shear 

strengths of resulting glass/resin composites were improved [13, 127]. For optimum 

composite performance 0.1 to 0.25% of a silane coupling agent is deposited onto 

glass fibres [128]. Polysiloxanes have attracted attention because of their outstanding 

heat and fire resistance but their brittleness has prevented any utilisation of their 

potential
 
[129]. Tai et al. [130] successfully synthesised polyHIPEs which combined 

an inorganic polysiloxane network with an organic polystyrene network to improve 

both mechanical properties at elevated temperatures and the thermal stability of the 

macroporous polymers [129]. The organic-inorganic hybrid macroporous polymers 

were prepared by copolymerising methoxysilyl propylmethacrylate (MPS) radically 

with styrene and DVB. In order to enhance the mechanical performance at room 

temperature, Menner et al. [8, 9] successfully developed low density but tough 

macroporous polymers via emulsion templating. Poly(ethylene glycol) 

dimethacrylate (PEGDMA) was used as a crosslinker
 
[8] to reduce brittleness instead 

of DVB and copolymerised with MPS and styrene. A further improvement of the 

mechanical performance was obtained by the incorporation of silica particles into the 

polymer network [8, 9]. However, the produced macroporous polymers did not 

possess an open porous network structure. Furthermore, approximately 20 μm thick 

walls with a porous microstructure surrounded the pores (Figure 2-5). The formation 

of methanol during the polycondensation of MPS and the reaction with the surface of 

silica particles caused the emulsion template to destabilise rapidly (Scheme 2-1).  
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Figure 2-5 SEM images of the macroporous polymer containing 30 wt.-% of silica 

particles in emulsion template [70] 

 

Scheme 2-1 Schematic illustration of the reaction involved in grafting particles 

Subsequently, various open celled and tough macroporous polymer nanocomposites 

have been produced using carbon nanotubes, titania nanorods
 
[68] and clay

 
[131] as 

reinforcement for the pore walls. Recently, functionalised silica particles [70] were 

incorporated into the polymer, which resulted in a significant improvement in the 

mechanical properties of polyHIPEs without affecting the interconnected and 

permeable pore structures. 

A further increase in the mechanical properties of macroporous polymer 

nanocomposites can be achieved by increasing the continuous phase volume of the 

emulsion templates to 75 vol.% in order to increase the foam density [6-8, 70, 132]. 

The polymerised products of less concentrated medium internal phase emulsions 

(MIPE, 60 vol.% of internal phase) was proven to exhibit low densities and highly 

interconnected structures, which are considered to be the most important 

characteristics of polyHIPEs but have much improved mechanical properties.  
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2.5.2 Approaches to determine the mechanical performance of 

macroporous polymers 

There are two methods to determine the mechanical properties of polyHIPEs 

reported in the literature. The first is using dynamic mechanical thermal analysis 

(DMTA) to investigate the dynamic mechanical properties of polyHIPEs as a 

function of temperature [133-136]. The second is determining the elastic moduli of 

macroporous polymers under compressive force at ambient temperatures [7, 8, 70, 

137] according to British Standard BS ISO 844 [138]. The specimen should be either 

of square or circular shape and loaded between compression plates until the test 

specimen thickness is reduced to at least 85 % of the original thickness. The elastic 

modulus obtained is termed compression modulus, which is defined as the initial 

linear slope of the stress–strain plot in the compression test. 

 

Figure 2-6 Specimen bonded between two steel plates and loaded in the test fixture [141] 

The brittleness and chalkiness of conventional polyHIPEs is an expression of the 

poor shear properties of these macroporous polymers. However, there is no reliable 
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method to investigate the shear properties of these open porous polymers until now. 

Rogers et.al. [139-141] investigated the shear behaviour of polyvinylchloride (PVC) 

foam (Divinycell® H200) following the ASTM standard C-273 [142]. The specimen 

was firstly bonded between the loading plates. Then, the loading plates and bonded 

specimen were attached to the test machine fixtures via a simple tongue and groove 

joint, and secured (Figure 2-6). During testing a linear variable displacement 

transducer (LVDT) was used to measure the vertical specimen deflection, by 

measuring the difference in displacement along the length of the loading plates. 

Shear modulus and fracture toughness can be calculated afterwards. However, PVC 

foams are very rigid closed cell compared to polyHIPEs. Therefore, the method 

cannot be used to investigate the shear properties of polyHIPEs since the polyHIPEs 

crushed during the procedures of bonding the specimen to the steel loading plates or 

attaching the bonded specimen and loading plates to the test machine.  

 

Figure 2-7 Arcan test jig and specimen geometry [145] 

Another approach to investigate the fracture mechanics of graphite/epoxy 

composites [143-146] is using a test jig developed by Arcan et.al. [147] with the 

objective of producing a uniform biaxial stress condition in the test area (Figure 2-7). 

Pure shear is produced in the test region when the jig is loaded in the direction θ= 0° 

while the specimen is loaded in tension when load is applied in the direction of θ = 
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90°. The specimen was bonded to the fixture and secured in place by screws to 

separate Arcan plates which were connected to the test instrument. The load angle 

was selected by fastening the two adjacent holes in each Arcan plate to the test 

machine. Besides the shear and tensile moduli (strength), the fracture toughness can 

be evaluated experimentally by the introduction of a suitably shaped specimen 

containing a crack or notch. The fracture toughness can be calculated from shear and 

tensile properties obtained from the tests as follows [145]: 

KIC = σsin θ     YI (a/c) 

KIIC = τcos θ     YII (a/c) 

where KIC  is fracture toughness under tensile mode, KIIC  fracture toughness under 

shear mode, σ tensile stress at fracture, θ loading angle, a crack or notch length, c 

specimen length, YI (a/c) a finite correction factor under tensile mode, τ the shear 

stress at fracture, YII (a/c) a finite correction factor under shear mode 

The Arcan test provides the potential to measure the mechanical properties of 

polyHIPEs since the very heavy steel loading plates are not needed during the 

specimen preparation process and both the shear and tensile properties of polyHIPEs 

can be evaluated using the method.  

2.6 Summary 

In recent years, macroporous polymers, so-called polyHIPEs, produced from high 

internal phase emulsions (HIPEs) with an organic continuous phase consisting of 

monomers, cross-linker and surfactant have gained increasing interest. The most 

attractive feature of polyHIPEs is their interconnected pore structure containing both 
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pore and pore throats. Furthermore, the pore structure of final macroporous polymer 

foams can be tailored by modifying the emulsion template formulation. Even 

microbeads plus polymer composites can be synthesised via emulsion templating. 

Although polyHIPEs show potential in various applications, real industrial 

applications are limited because most of conventional polyHIPEs are very brittle and 

chalky, which is an expression of the poor shear properties of these macroporous 

polymers. Unfortunately, there has been no literature discussed the investigation of 

the shear properties of these macroporous polymers until now. 

The current research is aimed at solving the problem. The formula of emulsion 

templates will be optimised and reinforcements will be introduced into the organic 

phase of the emulsion templates. In addition, a new approach for the mechanical 

characterisation of resulting macroporous polymers will be explored.  
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3 Experimental and Instrumentation 

3.1 Materials 

Styrene, divinylbenzene (DVB), α,α'-azoisobutyronitrile (AIBN), potassium 

persulfate (KPS), iron (II) sulfate heptahydrate, L-ascorbic acid, hydrogen peroxide 

(27.5 % w/w solution in water), Sorbitan monooleate (Span80), dimethylaminoethyl 

methacrylate (DMAEMA), methacrylic acid (MA) and calcium chloride dehydrate 

(CaCl2·2H2O) were purchased from Sigma-Aldrich (Gillingham, UK). 

Trimethoxysilyl propylmethacrylate (MPS) was purchased from Acros (Geel, 

Belgium) and poly(ethylene glycol) dimethacrylate (PEGDMA) with a molecular 

weight of 330 g/mol was kindly supplied by Cognis (Southampton, UK). The silica 

particles (200 nm average diameter) were kindly provided by Ortwin Rave Produkte 

and Dienstleistungen (Koblenz, Germany) and the surfactants Hypermer 2296 and 

Hypermer B246sf by Croda (East Yorkshire, UK). Oxygen free nitrogen was 

purchased from BOC Edwards Ltd. (Guildford, UK). Araldite
® 

Precision Adhesive 

and epoxy adhesive Araldite
® 

2020, Araldite
® 

420A/B were purchased from RS 

components Ltd. (Corby, UK). Styrene and DVB were purified by passing them 

through a Buchner funnel containing layered basic and neutral aluminium oxide 

(Sigma-Aldrich, Gillingham, UK) while all other chemicals were used as received.  
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3.2 Modification and characterisation of silica particles 

3.2.1   Silylation of SiO2 particles 

1 g “as received” silica particles were suspended in 5 ml MPS and 5 ml distilled 

water and stirred for 12 h. The silylated silica particles were isolated by 

centrifugation and decantation of excess MPS and water. Afterwards, the silylated 

silica particles were re-dispersed in methanol using an ultrasonic nozzle followed by 

centrifugation and decantation to remove any remaining unreacted MPS. The 

purification step was repeated at least three times in order to remove all unreacted 

MPS. Afterwards, the silylated particles were dried under vacuum at 70°C for 24h. 

3.2.2 Characterisation of the silylated particles 

Thermo Gravimetric Analysis (TGA): The MPS loading of the surface of the silica 

particles was determined by TGA (TA Q500, TA Instrument, New Castle, Delaware, 

USA) in air. The weight loss of approx. 10 mg of silylated silica particles was 

recorded over a temperature range from 40ºC to 600ºC at a heating rate of 10°C/min.  

3.3 Preparation of emulsion templates 

3.3.1 Preparation of emulsions in the investigation of effect of 

emulsion formulation on the pore structure of polyMIPEs 

All emulsion templates contained 44 vol.% of the continuous phase, which consisted 

of 85 vol.% monomers and 15 vol.% surfactant. The aqueous phase of all emulsion 

templates contained 0.035 mol/L CaCl2 ∙ 2H2O. When Hypermer B246sf was used to 

stabilise the emulsion, the surfactant was dissolved in styrene using a magnetic 

stirrer before adding DVB and surfactant mixture into the reaction vessel.  
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Both AIBN and KPS, which need to be operated higher than  50ºC, were used as 

initiator and the concentration of these two types of initiators was 1 mol % with 

respect to the monomers. The initiator KPS was added into the aqueous phase and 

dissolved with CaCl2 ∙ 2H2O while AIBN was added to the organic phase. All 

components of the organic phase were transferred to reaction vessel and stirred with 

an anchor stirrer, which was connected to an overhead stirrer (IKA RW20 DIGITAL, 

Fisher Scientific, Leicestershire, UK). After 5 min of stirring, the aqueous phase was 

added dropwise into the reaction vessel using a dripping funnel. During the entire 

addition phase of organic phase, the stirring speed of was kept constant at 400 rpm. 

After complete addition of the aqueous phase, the stirring speed was increased to 

2000 rpm for another 5 min to obtain homogeneous emulsions.  

In order to trigger the polymerisation of emulsion templates at ambient temperatures, 

a redox initiator system which consisted of ascorbic acid (0.33 g, 1.87 mmol) and 

iron (II) sulfate heptahydrate (0.065 g, 0.23 mmol) was used. The initiator system 

was dissolved in the aqueous phase together with CaCl2 ∙ 2H2O. The organic phase 

components were transferred to the reaction vessel and stirred using an anchor 

stirrer. After 5 min of stirring, the aqueous phase was dropwise added into the 

reaction vessel using a dripping funnel. During the entire addition phase, the stirring 

speed was kept constant at 400 rpm. After complete addition of the aqueous phase, 

the stirring was continued for 5 min to obtain homogeneous emulsions. Afterwards, 

hydrogen peroxide (1.64g, 13.28mmol) was added to these emulsion templates. 

Then, the stirring speed was increased to 1000 rpm for a further 5 min to guarantee a 

homogeneous distribution of the hydrogen peroxide within the emulsions. The 

formulation of all emulsion templates will be summarised in Chapter 4. 
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3.3.2 Preparation of emulsions used for the preparation of tough 

interconnected macroporous polymers 

The continuous phase of all emulsion templates consisted of styrene (40 vol.%)  and 

PEGDMA (40 vol.%) as monomers, 20 vol.% surfactant Hypermer B246sf and 1 

mol% initiator AIBN with respect to the monomers. Both the HIPEs containing 80 

vol.% of internal phase and MIPEs consisting of 60 vol.% of internal phase were 

prepared. Furthermore, various amount of silylated silica particles ranging from 0 to 

60 wt.% silylated with respect to the monomers were added to the continuous phase 

of these emulsions. The aqueous phase of all emulsion templates contained 0.56 

mol/L CaCl2 ∙ 2H2O.  

Since Hypermer B246sf can only be dissolved in styrene, the surfactant, styrene and 

the initiator were first mixed until all components were dissolved using a magnetic 

stirrer. PEGDMA and MPS silylated silica particles were mixed separately using a 

high speed homogenizer (Polytron PT 1600E, Kinematica Inc., Lucerne, 

Switzerland) operating at 15000 rpm for 15 min to obtain a homogeneous suspension 

of the filler. Then, these homogeneous mixtures were transferred to the reaction 

vessel and stirred using an anchor stirrer, which was connected to an overhead 

stirrer. After 5 min of stirring, the aqueous phase was added dropwise to the reaction 

vessel using a dripping funnel. During the entire addition phase, the stirring speed 

was kept constant at 400 rpm. After complete addition of the aqueous phase, the 

stirring speed was increased to 1000 rpm for 30 s to obtain homogeneous but very 

viscous emulsions. The composition of all emulsions will be summarised in Chapter 

5. 
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3.3.3 Preparation of emulsions used to prepare tough interconnected 

macroporous polymers to study their shear and tensile properties  

Both the MIPEs containing 60 vol.% internal phase and HIPEs containing of 80 

vol.% internal phase were prepared for the investigation of the shear and tensile 

properties of tough interconnected macroporous polymers. The preparation of 

emulsion templates was identical to 3.3.2. However, only up to 20 wt.% silylated 

silica particles with respect to the monomers were introduced into the continuous 

phase of these emulsions and these emulsion templates were transferred to specially 

made polytetrafluoroethylene  (PTFE) mould. The composition of all emulsion 

templates will be summarised in Chapter 6. 

3.3.4 Preparation of emulsions used to prepare macroporous 

polymers to investigate their wetting properties  

Both MIPEs containing 60 vol.% of internal phase and HIPEs containing 80 vol.% 

of internal phase were prepared. They were all mixed in a glass reaction vessel using 

an anchor stirring rod, which was connected to an overhead stirrer, at 400 rpm. The 

continuous phase of all emulsions consisted of 80 vol.% of monomers (styrene and 

DVB), 20 vol.% of the surfactant Hypermer 2296 and 2 mol% of the initiator AIBN 

with respect to monomers. Furthermore, one MIPE contained 40 wt.% silylated 

silica particles with respect to the monomers while the other MIPE did not contain 

any silylated silica particles. The aqueous phase of all emulsion templates which 

contained 0.035 mol / L CaCl2∙ 2H2O was gradually added to the organic phase using 

a dripping funnel. Besides the electrolyte, 6 vol.% of DMAEMA or 6 vol. % of MA 

were added to the aqueous phase of HIPEs as additional monomers. In order to avoid 

portioning of these monomers from the aqueous phase to the organic phase, a 
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suitable pH value of the aqueous phase was chosen to form the corresponding 

monomer salts either pH 1 or pH 11 respectively. The aqueous phase was added 

dropwise into the reaction vessel using a dripping funnel after mixing the organic 

phase. The stirring speed was kept constant at 400 rpm. Once all components were 

added, the stirring speed was increased to 2000 rpm for 10 min to obtain 

homogeneous but very viscous emulsions. The composition of all emulsion 

templates will be summarised in Chapter 7. 

3.4 Preparation of macroporous polymers 

3.4.1 Preparation of macroporous polymers using AIBN and KPS as 

initiator 

The ready-made emulsion templates were transferred into free standing 

polypropylene (PP) centrifuge Falcon
®
 tubes and sealed. The filled Falcon

®
 tubes 

were placed in an oven and polymerised at 70ºC for 24 h. The polymerised samples 

were removed from the tubes and purified with distilled water for 24 h, followed by 

methanol for 24 h using a Soxhlet apparatus. These purified macroporous polymer 

monoliths were dried to constant weight under vacuum at 70ºC. 

3.4.2 Preparation of macroporous polymers using redox initiator 

The ready-made emulsion templates were transferred into free standing centrifuge 

Falcon
®
 tubes and sealed. The filled Falcon

®
 tubes were polymerised at room 

temperature for one week. The polymerised samples were removed from the tubes 

and purified with distilled water for 24 h, followed by methanol for 24 h using a 

Soxhlet apparatus. These purified macroporous polymer monoliths were dried to 

constant weight under vacuum at 70ºC. 
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3.4.3 Preparation of macroporous polymers used for the 

characterisation of shear and tensile properties  

The ready-made emulsion templates were transferred into a PTFE rectangular mould 

with the following dimensions: length, 300 mm; width, 75 mm; thickness, 25 mm. 

The filled PTFE mould was sealed securely with screws and placed into an oven and 

polymerised at 70°C for 24h. The polymerised samples were removed from the 

PTFE mould and purified with distilled water for 24 h, followed by methanol for 24 

h. These purified macroporous polymer monoliths were dried to constant weight 

under vacuum at 70°C. 

3.5 Characterisation of physical properties of macroporous 

polymers 

3.5.1 Morphology 

Scanning electron microscopy (SEM): To investigate the internal structure of the 

macroporous polymers images of hand-fractured surfaces of each macroporous 

polymer were taken using a scanning electron microscope (Jeol JSM 5610 LV, Jeol 

Ltd., Welwyn Garden City, UK). Prior to the observation, approximately 1 cm³ of 

each macroporous polymer was placed on a sample holder using a carbon sticker and 

sputtered with gold for 2 min in an argon atmosphere using a Scan coat six (Edwards 

Ltd., Crawley, UK) to guarantee sufficient electrical conductivity. 

3.5.2 Determination of the density and porosity 

The matrix or skeleton density m  of the resulting macroporous polymers was 

determined using Helium Pycnometry (Accupyc 1330, Micrometrics Ltd, Dunstable, 
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UK). The foam or envelope density e  as well as the porosity of the macroporous 

polymers were obtained using an envelope density analyzer (Geopyc 1360, 

Micrometrics Ltd, Dunstable, UK). The porosity P was calculated using the 

following equation: 

P = (1 - 
m

e




) • 100% 

3.5.3 Surface area measurement 

The surface area of polyHIPEs and polyMIPEs was determined using a Surface Area 

and Porosity Analyzer (Tristar, Micrometrics Ltd, Dunstable, UK) applying the 

Brunauer-Emmet-Teller (BET) model [68]. The polymer foams were subjected to a 

“degassing” step prior to the measurement. Small cubic samples of about 1 cm³ in 

volume were placed inside a glass cell and heated under vacuum at 100ºC overnight. 

Afterwards, the nitrogen adsorption isotherms were measured at -196.15ºC. 

3.5.4 Thermal properties measurement 

Differential scanning calorimetry (DSC): The glass transition temperature (Tg) 

was investigated using DSC (DSC Q2000, TA Instrument, New Castle, Delaware, 

USA). Approximately 5 mg of each macroporous polymer was investigated in a 

temperature range from 25 to 250°C at a rate of 10 °C/min. The heat flow was 

measured and two heating and cooling curves were recorded.  
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3.5.5 Determination of permeability 

A homebuilt pressure rise apparatus (Figure 3-1) designed by Manley et.al. [6, 132] 

was used to measure the gas permeability of the macroporous polymers. Briefly, the 

gas flow through porous media can be described as follows:
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where K is the permeability coefficient, Q2 the volumetric flowrate at the outlet, 

p2 the pressure on the outlet side of the sample, L the sample length, A the cross-

sectional sample area and p  the pressure difference across the sample. V is the 

known volume of the vessel used to collect the gas that permeats through the 

sample 
dt

dp2  the rate of pressure-rise, p1 the pressure on the inlet high pressure 

side of the sample, k the viscous permeability, μ the gas viscosity and pm the 

mean pressure, being defined as the average of the pressure on the inlet high 

pressure side of the sample p1 and the pressure on the outlet low pressure side of 

the sample p2. Since the pressure on the outlet side of the sample was kept low 

using a vacuum pump, the mean pressure is pm = p1 /2. K0 is the Knudsen 

permeability coefficient, R the gas constant, T the temperature, M the molar mass 

of gas. The rate of pressure-rise 
dt

dp2

 
is measured experimentally at set p1, so the 

viscous permeability k can be determined from the gradient of a linear plot of K 

as a function of pm. 
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Figure 3-1 Schematic of the gas pressure rise apparatus [132] 

Oxygen free nitrogen was used for this measurement. The gas pressure at one side of 

the macroporous polymer was maintained at a constant higher pressure while the 

other side of the sample was kept at a low pressure using a vacuum pump. Gas 

permeated from the high pressure to the low pressure side and was then collected in 

a vessel with known volume. The rate of pressure rise at the low pressure side was 

recorded to determine the viscous permeability of the samples. In order to avoid any 

cross flow around the sample, samples were set into an epoxy resin prior to being 

placed into the sample cell. The porous cores were initially coated with non-

permeable Araldite
® 

Precision Adhesive and left to cure at room temperature. The 

coated cores were then inserted into the mould cylinder and the two–component 

epoxy adhesive Araldite
®
 2020 was poured into the mould cylinder around the 

coated cores and left at room temperature for 24 h to cure. Afterwards, two samples, 

which were 25 mm in height and 31 mm in diameter, were cut from the same coated 

macroporous polymer monolith (Figure 3-2). Two pieces of each sample were 

measured from both directions. The samples were rotated and re-measured; 
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therefore, four independent measurements were obtained for each sample at each 

inlet pressure. Five different inlet pressures were chosen for each sample.  

 

Figure 3-2 Dimensions of coated sample used in gas permeability test [132] 

3.6 Characterisation of the mechanical performance of 

macroporous polymers 

3.6.1. Determination of the compression modulus of macroporous 

polymers 

Compression tests were performed according to British Standard BS ISO 844:2001 

using a universal Lloyds machine (Lloyds EZ50, Lloyds Instruments Ltd, Fareham, 

UK) equipped with a 50 kN load cell to investigate the mechanical properties of 

macroporous polymers. Before testing any macroporous polymers, compliance, 

which means the two loading plates compress each other without sample, was 

performed. At least five samples, which were 10 mm in height and 26 mm in 

diameter, were cut from the same macroporous polymer monolith using a band saw 

(Titan SF8R, Screwfix, Somerset, UK) and polished using sand paper in order to 

ensure the top and bottom surfaces flat and parallel. The height of samples at three 

different points was measured by digital calliper. The difference in height of the 
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sample was less than 0.3mm and the average value of height was used to calculate 

the strain of the sample. Samples were loaded between compression plates at a speed 

of 1 mm/min until a displacement of half the original sample height was reached and 

the load vs displacement was recorded. The compression modulus is defined as the 

initial linear slope of the stress–strain plot and the crush strength is the maximum 

value of the stress–strain curve at the end of the initial linear region (Figure 3-3). 

 

Figure 3-3 Illustration of compression modulus and crush strength [148] 

3.6.2 Determination of shear and tensile properties of macroporous 

polymers using the Arcan test  

3.6.2.1 Compliance of the displacement of specimens  

During the test of the shear and tensile properties of macroporous polymers, the 

displacement the machine detected is the sum of both specimen displacement and 

test instrument displacement. In order to measure the true displacement of specimen, 

the compliance of the test system had to be determined before the shear and tensile 

tests of the actual specimens. An aluminium block which was manufactured using 
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same material as Arcan jig was treated as specimen to calculate the displacement 

caused by the test instrument (Figure 3-4 (a)). The whole block was secured into the 

Arcan jig and tested following the same procedure as actual tests.  

   

Figure 3-4 Aluminium specimen and setup of the Arcan jig for the Compliance test 

(a) Aluminium specimen 
(b) Arcan jig setup with compliance specimen under shear mode testing 

(c) Arcan jig setup with compliance specimen under tensile mode testing 

      

The load angle was selected by fastening the two holes in the test fixture, which 

correspond to the desired load angle, to the test machine. Both shear (Figure 3-4 (b)) 

and tensile (Figure 3-4 (c)) modes were selected. The compliance measurement was 

performed using a universal Instron machine (Instron 4502, Instron Instruments Ltd, 

Bucks, UK) equipped with a 1 kN load cell and loaded at a crosshead speed of 0.1 

mm/min until the load achieved 900N. When a successful test was completed, the 

test machine returned to its initial position and the compliance specimen was 

released. The test procedure was repeated at least five times. The load and 

displacement were recorded. Shear (tensile) modulus is defined as the initial linear 

slope of the stress–strain plot.  

 

 

(a) (b

) 

(c) 
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G (E) =   
 

 
   =  

 

 
     

 

 
 

where G is shear modulus, E tensile modulus,   stress,   strain, P the applied load, A 

the cross-sectional area of the specimen, L the length of sample, D the displacement.  

The shear modulus of aluminium is 26 GPa and the tensile modulus of aluminium is 

72 GPa. The load is recorded and the cross-sectional area and length of specimen are 

known. Therefore, the displacement of aluminium specimen can be calculated. The 

total displacement which was recorded by the machine minus the displacement 

caused by aluminium specimen is the displacement caused by Arcan jig.  

3.6.2.2. Determination of shear and tensile properties of macroporous polymers  

The shear and tensile properties of macroporous polymers were determined using the 

Arcan test jig. The fixture was connected to a universal Instron machine (Instron 

4502, Instron Instruments Ltd, Bucks, UK) equipped with a 1 kN load cell. A 

minimum of five specimens with the following dimensions: length = 25mm; width = 

8mm; thickness =12mm were cut from the same macroporous polymer monolith 

using a band saw (Titan SF8R, Screwfix, Somerset, UK). The specimens were 

polished using sand paper and checked by digital calliper in order to ensure the top 

and bottom surfaces flat and parallel. Once the specimens were manufactured, they 

were bonded to the insert aluminium fixtures using Araldite
®
 420A/B and cured at 

room temperature for at least 24 hours (Figure 3-5 (a)). To obtain an adequate bond 

between the foam and the insert aluminium fixtures, it was essential to increase the 

surface roughness of the insert aluminium fixtures by sand blasting the surface of 

each fixture with 150 grit (Fox 50 Blasting Machine, Vixen surface treatment Ltd., 

Stockton on Tees, UK). Afterwards, a thin layer of viscous adhesive was applied to 
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the specimen and the insert aluminium fixtures. The specimen was sandwiched 

between the insert aluminium fixtures and aligned to ensure the specimen was fully 

contacted with aluminium fixtures, then a 2 kg weight steel plate was placed on top 

to apply an even pressure along the bonding faces.  

     

Figure 3-5 Actual specimen and setup of the Arcan jig for shear and tensile properties 

measurements of poly(M)HIPEs 

(a) Actual specimen bonded to insert aluminium fixtures (b) Arcan jig system setup 

with actual specimen under shear mode testing (c) Arcan jig system setup with 

actual specimen under tensile mode testing 

Afterwards the two insert aluminium fixtures holding the macroporous polymer 

specimen were secured to the Arcan jig by attaching them with alignment screws, 

which were connected to the Instron machine (Figure 3-5 (b) and (c)). Specimens 

were loaded at a crosshead speed of 0.1 mm/min until complete failure. When a 

successful test was completed, the fractured specimen was removed together with the 

insert aluminium fixtures and the lower frame of the test machine returned to its 

initial position. The insert aluminium fixtures were refinished and reused after 

removal of the fractured macroporous polymer.  

(b) (c) (a) 
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Figure 3-6 Arcan test fixture and specimen geometry 

 

 

As seen in Figure 3-6, pure shear is produced in the test region when load is applied 

in the direction θ = 0°, which was already proven by photoelastic methods for 

isotropic materials [143, 147]. Similarly, the specimen is loaded in equal tension 

when load in the direction of θ = 90°. Arcan et. al. [147] showed that if the stresses 

acting on a specimen are uniform, then the tensile and shear stresses are: 

σ =  
 

 
  sin θ                              (1) 

τ=  
 

 
  cos θ                               (2) 

where P is the applied load, θ the loading angle and A the cross-sectional area of 

specimen 

The shear (tensile) modulus is defined as the initial linear slope of the stress–strain 

plot and the shear (tensile) strength is the maximum value of the stress–strain curve 

at the end of the initial linear region. The real displacement of polyM(H)IPEs 

specimen which used to calculate strain was corrected by using the total 

θ
=
9
0
˚ 

θ=45˚ 
θ=0˚ 

Poly(M)HIPEs 

specimen 
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displacement which was recorded by the machine minus the displacement caused by 

the Arcan jig. 

3.6.2.3. Determination of fracture toughness of macroporous polymers 

Furthermore, the Arcan test method was further adapted to the study of interlaminar 

fracture behaviour of composite materials [143, 144, 146, 149]. The fracture 

toughness is characterised by stress-intensity factors or the energy release rates at 

fracture of the specimen [146]. The fracture toughness measurements of 

macroporous polymers in this project were performed using the Arcan test using a 

universal Instron machine (Instron 4502, Instron Instruments Ltd, Bucks, UK) 

equipped with a 1 kN load cell.  

                       

Figure 3-7 Specimen and setup of the Arcan jig for fracture toughness measurement of 

poly(M)HIPEs  

(a) Specimen  (b) Arcan jig setup for shear mode  fracture toughness testing 

The specimens used in the determination of fracture toughness of macroporous were 

cut from the same macroporous polymer monolith using a band saw with the same 

dimension as the specimens used in the study of shear and tensile properties of these 

macroporous polymers. To evaluate the fracture toughness of materials 

experimentally, cracks or notches are normally introduced into the specimen 

(b) (a) 
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[143,146, 150, 151]. Therefore, a V-notch (Figure 3-7 (a)) with the notch length of 

half specimen length (a/c = 0.5) was cut using a Continuous Loop Diamond Wire 

Saw (Murg 394, Well Diamond Wire Saws Incorporated, Norcross GA, USA). The 

tip of V-notch was the crosspoint of two diagonals and is the centre of specimen. A 

minimum of five specimens were needed. Once the test specimens were 

manufactured, they were bonded to insert aluminium fixtures using Araldite 420A/B. 

After the adhesive was cured, the insert aluminium fixtures were secured to Arcan 

fixtures by screws (Figure 3-7 (b)). Specimens were loaded at a crosshead speed of 

0.1 mm/min until complete failure. The experimental procedure was same as shear 

and tensile properties measurements.  

A parameter called the stress-intensity factor (K) is used to determine the fracture 

toughness of most materials and a Roman numeral subscript indicates the mode of 

fracture. The fracture toughness in this project was assessed by determining the 

stress intensity factor (KII) at fracture under shear mode. The critical mode II stress 

intensity factor (KIIC), which is defined as KII at fracture under 0° loading angle 

using Arcan jig, can be expressed as [143, 145, 146, 152,153]: 

                                               KIIC = τcos θ     YII (a/c)                                                         

where τ is the shear stress at fracture, θ loading angle. YII (a/c) a finite correction 

factor under shear mode, c specimen length, a V-notch length 

The finite correction factor (YII) is calculated as follows [146]: 

YII (a /c) = -0.81550 + 12.39517(a / c) – 32.82199 (a / c) 
2 
+ 39.26487(a / c)

 3 
-16.24160 (a / c)

 4
      

This equation can be used for fracture specimens with a crack (notch) length 0.3 ≤ a / 

c ≤ 0.7 and the a / c ratio is 0.5 in this case. 
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3.7 Investigation of wetting behaviour of macroporous 

polymers 

3.7.1. Contact angle  

The water contact angle of macroporous polymer was measured using the Krüss 

DSA 10 Mk2 Drop Shape Analysis System (Krüss Optronic, Hamburg, Germany) 

using the sessile drop method. Water drops (about 2 mm diameter) were placed onto 

the surface of each specimen at room temperature. The static contact angle was 

measured, 10 s after placing the water droplet onto the surface. The average angle 

values were determined from five measurements taken at the middle of samples of 

macroporous polymers.  

3.7.2. Dynamic vapour sorption (DVS) 

The water vapour uptake was measured using a Dynamic Vapour Sorption apparatus 

(DVS Advantage, Surface Measurement Systems Ltd., London, UK). The apparatus 

consists of a microbalance housed inside a temperature-controlled cabinet. DVS 

provides extremely accurate gravimetric data in conjunction with a control of 

relative humidity (RH). All experiments were performed at 25 °C. Approximately, 

40 mg of vacuum oven dried macroporous polymer was weighed onto the flat 

sample pan. Each sample was firstly conditioned at 0% RH using dry nitrogen for 60 

min until dried completely. Then, dry nitrogen was bubbled through water to give 

95% RH for 24h. The weight of macroporous polymers was recorded as function of 

time. 
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4 Investigation of the effect of the emulsion 

formulation on the pore structure of polyMIPEs 

based on styrene and DVB 

4.1 Introduction  

The first and most studied emulsion templates contain styrene and divinylbenzene 

(DVB) as co-monomers
 
[23-28]. HIPEs are commonly stabilised by non-ionic 

surfactants with low hydrophilic-lipophilic balance (HLB value) between 2 and 6 

[29], such as Span 80 [13, 16, 21, 43, 51, 62], Hypermer B246sf [6, 70] and 

Hypermer 2296 [6, 67-69]. The concentration of the surfactant in the continuous 

phase is important for the formation of stable HIPEs and the subsequent formation of 

open porous polyHIPEs [22]. Williams et al. [10, 78] described the relationship 

between the morphology of macroporous polymers using styrene/DVB as monomers 

and the surfactant Span 80 concentration. HIPEs stabilised by 3-5% surfactant yield 

upon polymerisation closed-cell macroporous polymers. However, small pore throats 

begin to develop as the surfactant level exceeds 7%. Subsequently, the pore throat 

sizes continue to increase with increasing surfactant concentration. However, if the 

surfactant concentration in the emulsion templates is larger than 80%, the resulting 

macroporous polymers are fragile; they easily disintegrate into a powder. Therefore, 

the optimal levels of surfactant in emulsion templates are between 20 wt.% and 50 

wt.%. The polymerisation of monomers is triggered by initiators. Initiators can be 

dissolved in either the organic continuous phase or the aqueous internal phase 
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depending on their solubility. The most commonly used initiators include the oil-

soluble initiator α,α'-azoisobutyronitrile (AIBN) [6-9, 26, 67, 68, 70, 80, 83] and the 

water-soluble initiator potassium persulfate (KPS) [40-43]. However, these initiators 

are usually employed in a specific temperature range, in which the decomposition 

rate is high and, therefore, the half-life time is short enough to produce a sufficient 

amount of radicals. The initiator decomposition rate increases with increasing 

temperature; e.g. AIBN has a half-life time of  92 h at 50°C, 23 h at 60°C and 6 h at 

70°C while KPS has a half-life time of 202 h at 50°C, 60 h at 60°C and 8 h at 70°C 

[154]. Therefore, AIBN and KPS are usually used higher than 50°C. However, redox 

initiator systems such as iron (II) sulfate heptahydrate, L-ascorbic acid (reducing 

agent) and hydrogen peroxide (oxidising agent) can be adopted even at ambient 

temperature [100,101]. In order to enhance the stability of the emulsions by 

suppressing Ostwald ripening, electrolytes, such as CaCl2, are added to aqueous 

phase of HIPEs [16, 17]. 

HIPEs are generally defined as emulsions whose internal phases occupy at least 74 

% of the total volume of the emulsion [29] and the monolithic polymers, which are 

the result of the polymerisation of the continuous phase, are called polyHIPEs. 

However, even the polymerised products of less concentrated low
 
[6] or medium [7, 

8, 70] internal phase emulsions (LIPEs or MIPEs) also exhibit a low density and 

interconnected permeable structures, which are considered as the most important 

characteristics of polyHIPEs from recent research. LIPEs or MIPEs have by 

definition internal phase volumes of less than 30 vol.% and between 30 vol.% and 70 

vol.%, respectively [18]. PolyHIPEs possess many unique properties such as a low 

density and interconnected pore structure. Pores are large cavities of micrometre 

dimensions produced by the removal of the water template, which are interconnected 
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by a series of small interconnects called pore throats. Pore throats are formed in the 

areas of contact points between neighbouring droplets in the emulsion template and 

allow neighbouring pores to communicate with each other [21, 22].
 
Due to the

 

attractive interconnected microstructure, polyHIPEs have the potential to be adopted 

in variety of applications. However, real industrial applications are limited due to 

poor mechanical properties of polyHIPEs.  

In the present research, MIPEs rather than HIPEs were used in order to increase the 

organic phase volume of the emulsion templates and subsequently to raise the foam 

density (reduce the porosity) of the resulting polymer, which lead to improved 

mechanical performance. The influence caused by surfactant and initiator in the 

emulsion templates on the morphological and physical properties of resulting 

macroporous polymers were investigated.  

4.2 Summary of sample formulations 

Three types of initiators and various surfactants and surfactant mixtures were 

adopted in emulsion templates. After polymerisation of these emulsions, the 

macroporous polymers 1-12 were produced. The sample preparation procedure was 

presented in Chapter 3.3 and 3.4. The compositions of all emulsion templates are 

summarised in Table 4-1. 
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Table 4-1 Composition of the emulsion templates 

Sample 

ID 

Organic 

phase 

volume 
a 

Organic phase 

composition 

Styrene/DVB 

/Surf. (vol.%) 
b 

Surfactant Surfactant 

Amount 

(vol.%)
 c 

Initiator Initiator 

Amount 

(g / mmol) 

1 44 76 / 9 /15 Hypermer 2296 15 AIBN 0.20 / 1.22 

2 44 76 / 9 /15 Span 80 15 AIBN 0.20 / 1.22 

3 44 76 / 9 /15 Hypermer 2296 

Span 80 

7.5 

7.5 

AIBN 0.20 / 1.22 

4 44 76 / 9 /15 Hypermer 2296 

Hypermer B246sf 

7.5 

7.5 

AIBN 0.20 / 1.22 

5 44 76 / 9 /15 Hypermer 2296 15 Potassium persulfate 0.33 / 1.22 

6 44 76 / 9 /15 Span 80 15 Potassium persulfate 0.33 / 1.22 

7 44 76 / 9 /15 Hypermer 2296 

Span 80 

7.5 

7.5 

Potassium persulfate 

 

0.33 / 1.22 

8 44 76 / 9 /15 Hypermer 2296 

Hypermer B246sf 

7.5 

7.5 

Potassium persulfate 

 

0.33 / 1.22 

9 44 76 / 9 /15 Hypermer 2296 15 Ascorbic acid 

Iron (II) sulfate 

Hydrogen peroxide 

0.33 / 1.87 

0.065 / 0.23 

1.64 / 13.28 

10 44 76 / 9 /15 Span 80 15 Ascorbic acid 

Iron (II) sulfate 

Hydrogen peroxide 

0.33 / 1.87 

0.065 / 0.23 

1.64 / 13.28 

11 44 76 / 9 /15 Hypermer 2296 

Span 80 

7.5 

7.5 

Ascorbic acid 

Iron (II) sulfate 

Hydrogen peroxide 

0.33 / 1.87 

0.065 / 0.23 

1.64 / 13.28 

12 44 76 / 9 /15 Hypermer 2296 

Hypermer B246sf 

7.5 

7.5 

Ascorbic acid 

Iron (II) sulfate 

Hydrogen peroxide 

0.33 / 1.87 

0.065 / 0.23 

1.64 / 13.28 

   a 
    Volume of the organic phase relative to the total volume of the emulsion 

  
b 
    Content of styrene, DVB and  surfactant relative to the organic phase volume 

   c       
Content of various surfactants relative to the organic phase  volume 
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4.3 Results and Discussion 

As discussed above, the various potential applications of polyHIPEs are limited due 

to their poor mechanical performance. The continuous phase volume of the emulsion 

templates was increased by using MIPEs instead of HIPEs in order to produce 

macroporous polymers with a high foam density which results in improved 

mechanical properties of the resulting monoliths [70]. All emulsion templates had 44 

vol.% of continuous phase, which contained styrene as monomer, DVB as 

crosslinker and a surfactant. 20 wt.% of surfactant relative to the continuous phase 

was employed to produce highly interconnected macroporous polymers. 

The samples were divided into three groups based on different initiators used in the 

emulsion templates. Firstly, the oil soluble initiator AIBN was chosen since it is 

commonly used in the PaCE research group [6-9, 26, 67, 68, 70, 80, 83]. Secondly, 

the water soluble initiator KPS was used since it the preferred initiator of other 

researchers to produce polyHIPEs [40-43]. However, these two initiators can only 

decay at elevated temperatures to produce a sufficient radical concentration. In order 

to initiate the polymerisation at ambient temperatures (e.g. 20°C), a redox initiator 

system consisting of iron (II) sulfate heptahydrate, L-ascorbic acid and hydrogen 

peroxide was added into the aqueous emulsion phase to initiate the polymerisation 

[100,101, 155]. 

In addition, four types of surfactants including individual surfactant and surfactant 

mixtures were introduced in the three groups of emulsion templates. The first 

candidate was the non-ionic, polymeric surfactant Hypermer 2296 with a 

hydrophilic-lipophilic balance (HLB value) of 4.9. Hypermer 2296 is an ethoxylated 
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ester and is used in oilfield applications and by other industries. Moreover, it is 

commonly used to stabilise HIPEs and MIPEs in the PaCE research group [6, 67-

69]. Another noticeable surfactant which is widely used by many other researchers to 

stabilise HIPEs is a non-ionic, surfactant sorbitan monooleate (Span 80) with a HLB 

value of 4.3 [13, 16, 21, 43, 51, 62]. Due to the outstanding performance in the 

stabilisation of low concentrated emulsions (LIPEs or MIPEs) [6, 70], Hypermer 

B246sf was also considered. Hypermer B246sf is a polymeric, non-ionic surfactant 

consisting of hydrophobic polyhydroxy fatty acid and hydrophilic polyethylene 

glycol blocks with a HLB value of 6.0. However, since the resulting macroporous 

polymers are predominately closed cell if solely Hypermer B246sf is used to 

stabilise the emulsion template it is advisable to use it in a surfactant mixture [6]. 

Therefore, a mixture of Hypermer 2296 and Hypermer B246sf was employed to 

stabilise emulsion templates. The two widely used surfactants Hypermer 2296 and 

Span 80 were mixed to form a mixture to stabilise emulsions as well. Table 4-1 

summarises the composition of the MIPEs and Table 4-2 lists the properties of all 

resulting polyMIPEs.  

The absence of a glass transition in the temperature range of 25-250 °C may be due 

to the high degree of crosslinking of the final macroporous polymers. For MIPEs 1-4 

AIBN was used as initiator. Therefore, the emulsions were polymerised at 70°C. 

Various surfactants were used to stabilise the emulsion templates. MIPE 1 and MIPE 

2 were solely stabilised by Hypermer 2296 and Span 80, respectively. MIPEs 3 and 

4 were stabilised by a 1:1 mixture of Hypermer 2296 and Span 80 and Hypermer 

2296 and Hypermer B246sf, respectively (Table 1). After polymerisation, 

polyMIPEs 1-4 were white and non-chalky porous materials. The SEM images of 

polyMIPEs 1-4 revealed that they all possessed a homogeneous and open porous 
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interconnected pore structure, which is similar to the microstructure of typical 

polyHIPEs (Figure 4-1). The average values of pore and pore throat sizes were 

analysed by UTHSCSA Image tool software and at least 50 pores (pore throats) were 

measured and the data are summarised in Table 4-2. The pore diameter of polyMIPE 

1 ranged from approximately 3 µm to 5 µm and the pores were interconnected via 

pore throats of 0.8 µm in diameter. The average pore diameter of polyMIPEs 1-4 

slightly decreased from 3.5 µm (polyMIPE 1) to 2.8 µm (polyMIPE 4) due to the 

usage of different surfactant (surfactant mixtures) while the pore throat sizes of 

polyMIPEs 2-4 remained similar. The slight reduction of the pore size indicates that 

the droplet size in emulsion templates decreased, which depends on the surfactants 

used to stabilise the emulsion since the pore structure of polyMIPEs is the replica of 

the emulsion structure at the gel point of the polymerisation [13, 19]. The smallest 

pore diameters of polyMIPE 4 were resulted from the surfactant Hypermer B246sf; it 

improves the emulsion stability the most with the same emulsification process as 

other surfactants, which is evidenced by the smaller average droplet diameters and, 

therefore, the smallest average pore size
 
[16, 20]. 
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Figure 4-1 SEM images of polyMIPEs 1-4 resulting from the emulsion templates 

containing AIBN as initiator 

As expected, the skeleton density of the synthesised macroporous polymers 

remained constant at about 1.067 g/cm
3
 since the skeleton density is the density of 

final polymer and, therefore, only depends on the composition of the organic phase. 

Furthermore, the foam density and porosity of all polyMIPEs 1-4 were similar since 

all emulsion templates contained the same amount of internal phase volume. The 

foam density and porosity remained constant at approximately 0.360 g/cm
3 

and about 

67 %, respectively (Table 4-2). The porosity of polyMIPEs 1-4 is at 67% slightly 

larger than the internal phase volume of emulsion templates (56%). This is caused by 

the removal of non-converted monomers and surfactant. All polyMIPEs 1-4 had a 

surface area of about 2 m²/g. This is in the range expected for emulsion templated 

macroporous polymers [17, 20].  

AIBN seems to be a good initiator for the polymerisation of MIPEs consisting of 

styrene and DVB to produce macroporous polymers possessing desired the open 
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porous interconnected microstructure no matter which surfactant (surfactant mixture) 

was used.  

  

   

Figure 4-2 SEM images of polyMIPEs 5-8 resulting from the emulsion templates 

containing KPS as initiator 

Similar to MIPEs 1-4, four types of surfactants were used to stabilise MIPEs 5-8 and 

the recipes are listed in Table 4-1. However, for the initiation of the polymerisation 

at 70 °C of MIPEs 5-8, the water soluble initiator KPS was used instead of the oil 

soluble initiator AIBN. After polymerisation, all resulting macroporous polymers 

were white, non-chalky materials. PolyMIPEs 5-8 possess similar pore sizes ranging 

from 1.8 µm to 2.5 µm. However, the resulting polyMIPEs 5-8 did not possess the 

desired interconnected pore structure; no pore throats can be found in SEM images 

of polyMIPEs 6 and 8 while very few pore throats can be seen in some of pores of 

polyMIPEs 5 and 7 about 0.17 µm in diameter (see high resolution sections in Figure 

4-2). Furthermore, all polyMIPEs 5-8 possess thick pore walls and some areas 
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consisting solely of bulk polymer. The bulk polymer regions are more pronounced in 

polyMIPEs 6 and 8. In addition, the polyMIPEs 6 and 8 shrunk by approximately 

20% during drying. Therefore, the pores were deformed especially the pores close to 

a bulk polymer area. As the formulations of MIPEs 1-4 are identical to the 

formulation of MIPEs 5-8 apart from the initiator, the significant change in 

microstructure of polyMIPEs 5-8 was most likely caused by the changed locus of the 

initiation of the polymerisation of the continuous phase of MIPEs 5-8. KPS is a 

water-soluble initiator; the initiator decay leads to the formation of radicals in the 

aqueous phase rather than the continuous monomer phase as in case of AIBN. 

Therefore, the polymerisation occurred first at the oil-water interface. It is worth 

noting that KPS is commonly used by other researchers to polymerise HIPEs, which 

results in highly interconnected macroporous polymers. Although they employ 

similar molar concentrations with respect to monomers as this case, they initiate the 

polymerisation at lower temperatures [20, 27, 156, 157]; commonly between 55°C 

[27] and 60°C [20, 153, 154]. However, the polymerisation was initiated at 70°C in 

the project in order to compare KPS and AIBN under same experiment conditions, 

which means the initiator decay rate is higher, the half-life time significantly shorter 

and, therefore, the overall radical concentration in the aqueous phase is much higher 

in comparison to the radical concentration achieved under the above mentioned 

experiment conditions. This high radical concentration might lead to the fast 

formation of a solid closed cell skin (shell) surrounding the water droplets, which 

suppressed the formation of pore throats.  
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Table 4-2 Physical properties of macroporous polymer foams 

Sample 

ID 

Skeleton 

density  

(g/cm
3
) 

Foam density 

(g/cm
3
) 

Porosity 

(%) 

Surface   area 

(m
2
/g) 

Pore size 

(µm) 

Pore throat 

size (µm) 

1 1.070±0.001 0.347±0.044 68±2 1.99±0.01 3.5±1.3 0.8±0.3 

2 1.073±0.003 0.360±0.036 67±2 1.86±0.01 3.2±0.9 0.8±0.3 

3 1.070±0.001 0.373±0.028 66±2 1.99±0.01 3.1±0.9 0.8±0.3 

4 1.055±0.001 0.359±0.022 66±2 2.45±0.01 2.8±1.0 0.7±0.2 

5 1.035±0.003 0.367±0.007 63±2 - 2.2±1.0 0.17±0.09 

6 1.030±0.002 0.556±0.091 46±4 - 1.8±0.8 - 

7 1.047±0.003 0.383±0.017 64±2 - 2.5±1.2 0.17±0.04 

8 1.040±0.003 0.608±0.013 43±2 - 1.9±1.0 - 

9 1.102±0.004 0.396±0.029 64±2 0.20±0.02 3.1±1.9 0.6±0.3 

10 1.101±0.005 0.402±0.055 64±2 2.23±0.01 3.0±1.2 0.6±0.3 

11 1.091±0.005 0.352±0.029 68±2 2.00±0.01 2.8±1.2 0.6±0.3 

12 1.094±0.005 0.390±0.016 65±1 0.39±0.03 2.9±1.7 0.4±0.2 

Theoretically, the skeleton density of polyMIPEs 1-8 should be identical because the 

skeleton density or bulk density of the polymer only depends on the monomer ratio 

of the organic phase in emulsion templates assuming all surfactant and the entire 

internal phase are removed during purification and drying. Therefore, polyMIPEs 5-

8 exhibited at 1.038 g/cm
3 

silimar skeleton densities as polyMIPEs 1-4. It is 
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suspected that polyMIPEs 5 and 7 are sufficiently interconnected to allow the 

removal of the surfactant and un-reacted monomers during purification. Therefore, 

the samples did not shrink during drying. As a consequence, the foam densities and 

porosities of polyMIPEs 5 and 7 are approximately 0.375 g/cm
3 

and 64%, 

respectively, similar to that of polyMIPEs 1-4. However, polyMIPEs 6 and 8 had a 

significantly higher foam density (0.582 g/cm
3
) and lower porosity (45%) in 

comparison to the previously discussed samples due to the volume shrinkage during 

drying. The shrinkage was most likely caused by the residual surfactant which could 

not be removed during purification due to the completely closed cell structure of 

polyMIPEs 6 and 8. In this case, the residual surfactant acted as plastizer during 

drying at temperatures between 70°C and 120°C.   

These results show that although the polymerisation of the continuous phase can be 

successfully initiated by radicals originating in the aqueous phase, under the above 

discussed conditions only almost closed cell polyMIPEs can be manufactured. 

Although pore throats can be found in the polyMIPEs 5 and 7, the number is very 

limited and the sizes are quite tiny. This is most likely caused by the high radical 

concentration due to the high decay rate of KPS at 70°C. Therefore, it was decided to 

employ redox initiator systems since they can both reduce the initiation temperature 

and initiator decay rate. 

The redox initiator system consisted of iron (II) sulfate heptahydrate, L-ascorbic acid 

(reducing agent) and hydrogen peroxide (oxidising agent) can initiate the 

polymerisation in HIPEs [155] and is a component of the aqueous phase of MIPEs 9-

12 here. The continuous phase of MIPEs 9-12 is identical to the continuous phase of 
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MIPEs 1-4 and 5-8, respectively; the compositions are summarised in Table 4-1. The 

polymerisation of MIPEs 9-12 produced white, non-chalky porous polymers.  

     

           

Figure 4-3 SEM images of polyMIPEs 9-12 resulting from the emulsion templates 

containing redox initiator system 

PolyMIPEs 9-12 exhibited interconnected pore structures although the degree of 

interconnectivity, which  means the degree of pore throats coverage in terms of pore 

throats number and size per pore, of polyMIPEs 9 and 12 is considerably lower than 

that of polyMIPEs 10 and 11 (Figure 4-3). Comparing polyMIPEs 9-12 to 

polyMIPEs 1-4, the sample with same surfactant showed significantly smaller degree 

of interconnectivity. Although it is easily to find pore throats in the SEM image of 

polyMIPE 10 and 11, thick walls, which affect the degree of interconnectivity, can 

be found as well. Furthermore, they all possess similarly thick pore walls as 

polyMIPEs 5-8. This indicates that similarly to the polymerisation of MIPEs 5-8, a 

skin was formed at the oil-water interface during the polymerisation as the initiator 
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radicals originated in the aqueous phase. However, in order to completely 

polymerise MIPEs 9-12 the polymerisation time had to be increased from 24h 

(MIPEs 1-8), which is more than twice longer than the half life time of the initiators, 

to one week (MIPEs 9-12). It took, therefore, longer to reach the gel point of the 

polymerisation, which indicates that the skin formed at the oil-water interface 

remained soft for a relatively long period of time. This promoted the phase 

separation of the continuous phase into a surfactant rich and polymer rich phase and 

subsequently the formation of pore throats [28]. Solely based on the degree of 

interconnectivity of the resulting polyMIPEs, it appears that Span80 is the most 

suited surfactant to stabilise a MIPE containing the used redox initiator system. 

However, based on pore structure of the resulting polyMIPEs, it seems Hypermer 

B246sf is the best surfactant to stabilise MIPEs containing the used redox initiator 

system. 

The skeleton density of the synthesised macroporous polyMIPEs 9-12 remained 

constant at about 1.097 g/cm
3
, which is similar to that of polyMIPEs 1-4. The foam 

density and porosity remained at about 0.385 g/cm
3 

and about 65 % (Table 4-2). The 

surface areas of polyMIPEs 10 and 11 are at approximately 2 m²/g similar to the 

values found for polyMIPEs 1-4. However, the surface area of polyMIPE 9 and 12 

was much lower than that of polyMIPEs 10 and 11 due to the low degree of 

interconnectivity.   

4.4 Summary 

Numerous potential applications of conventional polyHIPEs are impeded because of 

their poor mechanical properties such as brittleness and chalkiness. Increasing the 
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organic phase volume of the emulsion templates from HIPEs to MIPEs is an 

important strategy to improve the mechanical performance of macroporous 

polymers. The objective of this work was to study the influence of emulsion 

components on the morphological aspects and physical properties of the resulting 

macroporous polymers in order to find the optimal formulation of the MIPEs with 

the organic phase containing styrene and DVB. Three initiator types including 

AIBN, KPS and a redox initiator system were adopted. Furthermore, four different 

surfactants (surfactant mixtures) containing Hypermer 2296, Span 80 and even 

surfactant combination such as Hypermer 2296/Span 80 mixture and Hypermer 

2296/ Hypermer B246sf mixture were used to stabilise the emulsion templates. 

The high degree of crosslinking of the final macroporous polymers led to the 

absence of a glass transition in the temperature range of 25-250 °C. The 

macroporous polymers produced from the emulsion templates containing the oil 

soluble initiator AIBN showed desired interconnected open porous structures no 

matter which surfactant (surfactant mixture) was used. Another widely used water 

soluble initiator KPS was used to produce polyMIPEs 5-8 from emulsion templates 

with the same composition but the resulting polyMIPEs had an effectively closed 

cell microstructure because of the high radical concentration produced by KPS 

which might lead to the fast formation of a solid closed cell skin (shell) surrounding 

the water droplets suppressing pore throat formation. Furthermore, polyMIPEs 6 and 

8 shrunk after drying and the pores were deformed. This might be caused by residual 

surfactant which could not be removed during purification due to the completely 

closed cell structure of polyMIPEs 6 and 8. In this case, the residual surfactant acted 

as plastizer during drying at temperatures between 70°C and 120°C. A redox initiator 

system was introduced into emulsion templates in order to trigger the polymerisation 
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at ambient temperatures. PolyMIPEs 9-12 exhibited interconnected pore structures 

but thick walls were found in the resulting the polyMIPEs. The usage of different 

surfactants depends on the different purpose. If the objective is keeping the degree of 

interconnectivity of the resulting polyMIPEs, Span80 seems the most suitable 

surfactant to stabilise MIPEs containing the used redox initiator system. However, if 

the aim is obtaining best pore structure of the resulting polyMIPEs, it appears 

Hypermer B246sf is the best candidate to stabilise a MIPE containing the used redox 

initiator system. 
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5 Tough interconnected polymerised medium and 

high internal phase emulsions reinforced by silica 

particles 

5.1 Introduction 

In order to explore real industrial applications of conventional polyHIPEs, Menner et 

al.
 
[8, 9] successfully developed low density but tough macroporous polymers via 

emulsion templating. Poly(ethylene glycol) dimethacrylate (PEGDMA) was used as 

a crosslinker [8] to reduce brittleness and copolymerised with methoxysilyl propyl-

methacrylate (MPS) and styrene. MIPEs, which increase the resulting macroporous 

polymer foam density, were used as templates to improve the overall mechanical 

performance [8, 9]. A further improvement of mechanical performance was obtained 

by the incorporation of silica particles into the polymer network [8, 9]. However, the 

final macroporous polymers did not possess an open porous network structure. 

Furthermore, approximately 20 μm thick walls with a porous microstructure 

surrounded the pores (Figure 2-5). The formation of methanol during the 

polycondensation of MPS and the reaction with the surface of silica particles caused 

the emulsion template to destabilise rapidly (Scheme 5-1).  
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Scheme 5-1 Schematic illustration of the reaction involved in grafting particles 

Since then, various open celled and tough macroporous polymer nanocomposites 

have been produced using carbon nanotubes, titania nanorods [68] and clay [131]
 
as 

reinforcement for the pore walls. The aim of present research is to enhance the 

mechanical properties of high porosity macroporous polymers without affecting the 

open and interconnected pore structure. In order to achieve this objective, the more 

flexible crosslinker PEGDMA was used instead of conventional DVB. A silica 

particulate reinforcement was introduced and the continuous phase volume was 

increased to 40 vol.%. Before preparing emulsion templates and to avoid the 

formation of methanol during emulsification and subsequent polymerisation, the “as 

received” silica particles were silylated using MPS. The MPS modified silica 

particles possess polymerisable double bonds and can, therefore, be incorporated into 

the polymer acting as crosslinker during the radical polymerisation of the continuous 

phase of emulsion templates. Both polyHIPEs and polyMIPEs containing increasing 

loading fractions of silylated silica particles were made to study the relationship 

between the continuous phase volume of the emulsion templates and the physical 

and mechanical properties of the resulting macroporous polymers. 
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5.2 Summary of the composition of emulsion templates 

Both HIPEs and MIPEs were prepared to investigate the influence of the porosity of 

macroporous polymers on their mechanical performance. Various amounts from 0 to 

60 wt.% of MPS silylated silica particles were added to the continuous phase to 

determine the optimal concentration of the reinforcement which leads to a type of 

macroporous polymer with outstanding mechanical properties. The compositions of 

the emulsion templates are summarised in Table 5-1. After polymerisation of these 

emulsions, the macroporous polymers 1-14 were produced. The sample preparation 

procedure was presented in Chapter 3.3 and 3.4. 
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Table 5-1 Composition of the emulsion templates 

Sample ID Organic phase 

volume 
a 

Organic phase composition 

Styrene/PEGDMA/Surf. (vol.%)
b 

Silylated silica particles 

(wt.%) 
c 

 

1 20 40/40/20 0 

2 20 40/40/20 1 

3 20 40/40/20 5 

4 20 40/40/20 10 

5 20 40/40/20 20 

6 20 40/40/20 40 

7 20 40/40/20 60 

 

8 40 40/40/20 0 

9 40 40/40/20 1 

10 40 40/40/20 5 

11 40 40/40/20 10 

12 40 40/40/20 20 

13 40 40/40/20 40 

14 40 40/40/20 60 

                   a 
Volume of the organic phase relative to the total volume of the emulsion 

             
b 

Ratio of styrene, PEGDMA and Hypermer B246sf  in the organic phase   

             
c 
wt.% filler relative to the monomers 
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5.3 Results and discussion of macroporous polymers 

produced from high and medium internal phase emulsion 

(HIPE or MIPE) templates 

HIPEs 1-7 contained 20 vol.% continuous phase while the continuous phase of 

MIPEs 8-14 occupied 40 vol.% of the emulsion volume (Table 5-1). All emulsions 

were stabilised by the nonionic, polymeric surfactant Hypermer B246sf. Hypermer 

B246sf is a block copolymer of a polyhydroxy fatty acid and polyethylene glycol 

with a hydrophilic-lipophilic balance (HLB value) of 6 [8]. The continuous phase of 

the emulsions contained PEGDMA as crosslinker, to reduce the chalkiness and 

brittleness of the produced macroporous polymers in comparison to conventional 

polyHIPEs using DVB as a crosslinker [8]. In addition, varying amounts of MPS 

silylated silica particles were added into the continuous phase of HIPEs 2-7 and 

MIPEs 9-14 whereas HIPE 1 and MIPE 8 without modified silica particles were 

prepared as reference to study the effect of silylated silica filler on the mechanical 

properties of the resulting macroporous polymers. The degree of MPS 

functionalisation of the surface of the silica particles was 3 wt.% as determined by 

TGA.  

Compared to MIPEs 8-14 with an organic phase of 40 vol.%, the HIPEs 1-7 with an 

organic phase content of 20 vol.% were much more viscous because of the increased 

dispersed phase volume which leads to a higher and denser droplet packing [18]. The 

polymerisation of HIPEs 1-7 produces non-chalky porous polymers. The 

macroporous polymers possess an open porous interconnected pore structure as can 

be seen in the SEM images (Figure 5-1); the incorporation of nanometre sized 
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silylated silica particles did not affect the interconnected open porous structure of the 

polyHIPEs 2-7 when compared to polyHIPE 1 (Figure 5-1). The silylated particles 

were covalently incorporated into the growing polymer by copolymerisation of MPS 

grafted to SiO2 with the monomers. With increasing concentration of silylated silica 

particles, the average pore diameter of polyHIPEs 1-7 decreases from 11 µm 

(polyHIPE 1) to only 4 µm (polyHIPE 7). Furthermore, the average pore throat sizes 

decreased from 2.2 µm (polyHIPE 1) to 0.8 µm (polyHIPE 7) (Table 5-2). The 

analysis of pore and pore throats diameters was using the UTHSCSA Image tool 

software and at least 50 pores (pore throats) were measured. The SEM images of 

polyHIPEs 1-7 with different magnification is because the SEM image not only 

should show the structure of single pore but also need exhibit enough numbers of 

pores to ensure the interconnected microstructure of the fractured surface. As a 

result, the SEM images of polyHIPEs 5-7 with lower magnification because of the 

smaller pore size. The reduction of pore size with increasing silica particle content 

indicates that the droplet size of emulsion templates decreased with increasing 

amount of silica particles since the porous structure of polyHIPEs is a replica of the 

emulsion structure at the gel point of the polymerisation [13, 19]. The silylated 

hydrophobised silica might have acted as co-emulsifier of the emulsion template [79, 

80, 87] which lead to an increased emulsion stability and, therefore, smaller average 

droplet diameters
 
[16, 20]. 
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Figure 5-1 SEM images of polyHIPEs 1-7 
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The skeleton density m  of the synthesised macroporous polymers increased from 

1.128 g/cm
3
 (polyHIPE 1) to 1.418 g/cm

3
 (polyHIPE 7) (Table 5-2) due to the 

increasing concentration of silica particles within the polymer. Although the matrix 

density of resulting polymer increased with increasing silica filler concentration, the 

foam density and porosity of all polyHIPEs 1-7 were similar since all emulsion 

templates contained the same amount of internal phase volume. The foam density e  

and porosity P remained constant at about 0.194 g/cm
3 

and about 84 % (Table 5-2). 

PolyHIPEs 1-7 possess surface areas of approx. 5 m²/g, which are within the range 

of surface areas commonly reported for polyHIPEs [16, 17, 46]. 

Table 5-2 Physical properties of polyHIPEs 1-7 

 

Sample 

ID 

m  

(g/cm
3
) 

e  

(g/cm
3
) 

P 

(%) 

As 

(m
2
/g) 

Pore size 

(µm) 

Pore throat 

size (µm) 

k 

(mD) 

1 1.128±0.003 0.203±0.003 82±1 5.58±0.01 11±3 2.2±0.6 185±2 

2 1.139±0.002 0.183±0.005 84±2 3.74±0.01 10±4 1.8±0.6 190±10 

3 1.168±0.003 0.178±0.003 85±1 3.059±0.007 5±2 1.2±0.4 186±2 

4 1.194±0.002 0.178±0.004 85±2 4.84±0.02 6±3 1.3±0.5 200±10 

5 1.250±0.001 0.216±0.005 83±2 5.23±0.02 6±1 1.2±0.4 230±10 

6 1.396±0.001 0.217±0.004 85±2 4.89±0.02 5±1 1.1±0.3 230±10 

7 1.418±0.001 0.186±0.003 84±3 6.64±0.01 4±1 0.8±0.2 143±7 
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The gas permeability coefficient K, which accounts for the contributions of viscous 

and Knudsen flow, was calculated from the measured rate of pressure rise as 

function of applied mean pressure pm. The viscous permeability is derived from the 

gradient of the K vs pm curves (Figure 5-2) [6, 132]. The viscous permeability of 

polyHIPEs 1-7 are summarised in Table 5-2. PolyHIPEs 1-6 were found to have 

similar viscous permeabilities of around 200 mD (1mD = 10
-12 

m
2
). However, 

polyHIPE 7, which contained the highest concentration of silylated silica particles in 

the emulsion template, showed a dramatic decrease in viscous permeability to 

143 mD. This decrease of permeability was caused by the reduction in the average 

pore throat size (Table 5-2, Figure.5-1). Although the pore throat diameters of 

polyHIPEs 1 and 2 are larger than those of polyHIPEs 3-6 (see SEM images Figure. 

5-1(c-f)), the permeabilities of these macroporous polymers are similar. SEM 

analysis only provided the average pore throat diameter but not the flow limiting 

pore throat diameter, which controls the gas flow rate [6]. In addition, polyHIPE 7 

seems to have smaller flow limiting pore throats than the other polyHIPEs since a 

higher applied pressure is required to initiate the gas flow through polyHIPE 7 than 

for the other samples. 
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Figure 5-2 Permeability coefficient as a function of applied mean pressure for 

polyHIPEs 1-7 

The mechanical properties of all macroporous polymer monoliths were measured at 

room temperature determined from the stress-strain curves. The mechanical 

properties are summarised in Table 5-3; Figure 5-3 shows representative 

compressive stress-strain curves for polyHIPEs 1-7. Three typical regions commonly 

observed for polymer foams can be identified: the initial linear elastic region, plateau 

region and bulk compression region [25, 158]. 
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Figure 5-3 Typical stress-strain curves of polyHIPEs 1-7 materials under compressive 

loads 

The compression modulus (Table 5-3) of polyHIPE 1 is 3 MPa and the crush 

strength is 0.2 MPa, which are relatively low in comparison to other macroporous 

nanocomposites but typical for polyHIPEs [10, 140]. The compression modulus and 

crush strength of polyHIPE 2 were already slightly improved by the introduction of 

only 1 wt.% of silylated silica particles. A further increase in the loading fraction of 

modified silica particles from 1 wt.% to 20 wt.% led to a steady improvement of the 

compression modulus as well as crush strength (Table 5-3). The compression 

modulus increased to 16 MPa and the crush strength to 1.2 MPa for polyHIPE 5. 

This significant improvement was the result of the covalent incorporation of silylated 

silica particles into the pore walls of these macroporous polymers. It is worth noting 

that the particle size plays a crucial role. Only particles, which are smaller than the 

width of the pore walls, such as the nano-sized particles used in this study are suited 

to reinforce the polymer skeleton of macroporous polymers made by emulsion 
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templating. The particles would be “polyHIPE grafted” rather than incorporated into 

the pore walls if the particle size would exceed the dimensions of the pore walls, 

which leads to stress points and, therefore, a reduction in mechanical strength. 

However, polyHIPEs 6 and 7, which contained higher silylated silica particle 

loadings, did not exhibit any significant improvement of mechanical performance 

compared to polyHIPE 5. The compression modulus increased slightly from 16 MPa 

(polyHIPE 5) to 22 MPa (polyHIPE 7), but the crush strength of polyHIPEs 6 and 7 

remained constant within the errors. However, its average values decreased slightly, 

which might be caused by the uneven distribution of the silica filler within the 

polymer walls of the macroporous polymers. With increasing content of silylated 

silica particles, it became more and more difficult to evenly distribute the silica filler 

within the continuous phase of the HIPEs since the particles tend to aggregate. Areas 

within the polyHIPEs, which contain rather large aggregates, may lead to higher 

compression moduli within the sample while areas lacking particles have lower 

compression moduli, which may cause premature failure of the sample. Specific 

compression moduli (Table 5-3) constantly increased with increasing silica content 

but the error became large for the samples with high concentration of particles 

because of the uneven distribution of silica fillers within the walls of macroporous 

polymers. The specific crush strength at first steadily increased until a silica content 

of 20 wt.% was reached and then remained constant within errors. 
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Table 5-3 Mechanical properties of the polyHIPEs 1-7 

Sample 

ID
 

Compression 

modulus 

(MPa) 

Specific 

compression 

modulus 

(kPa kgˉ¹m³) 

Crush 

strength 

(MPa) 

 

Specific crush 

strength 

(kPa kgˉ¹m³) 

1 3±1
 

18±5
 

0.2±0.1 0.9±0.2
 

2 5±1
 

26±2
 

0.3±0.1
 

1.8±0.1
 

3 8±1
 

47±8
 

0.5±0.1
 

2.6±0.7
 

4 10±2
 

60±10
 

0.8±0.2
 

4±1
 

5 16±1
 

75±6
 

1.2±0.1
 

5.6±0.3
 

6 19±1
 

89±5
 

1.1±0.1 5.0±0.2
 

7 22±5
 

120±30
 

1.0±0.1 5.5±0.5
 

In summary, the significant improvement of the (specific) compression modulus and 

(specific) crush strength of silica reinforced polyHIPEs demonstrates that the 

particles were successfully integrated into the polymer network without damaging 

the open porous interconnected structure of the macroporous polymers. The optimal 

content of reinforcement is about 20 wt.% since the produced polyHIPEs still had a 

typical polyHIPE structure and outstanding mechanical properties equivalent to 

polyHIPEs containing a higher silica filler content. 

In order to increase further the mechanical properties of macroporous polymer 

nanocomposites, the continuous phase volume of the emulsion templates was 

increased to 40 vol.% in order to increase the foam density. It has already been 

shown [7, 8, 132] that the polymerised products of less concentrated medium internal 

phase emulsions (MIPE, 60 vol.% of internal phase) also exhibit low densities and 
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highly interconnected structures, which are considered as the most important 

characteristics of polyHIPEs but have much improved mechanical properties. MIPEs 

8-14 have the same composition as HIPEs 1-7 but contain 40 vol.% of organic phase 

(Table 5-1).  

Compared to HIPEs 1-7, MIPEs 8-14 were less viscous and easier to transfer into the 

Falcon
®
 tubes. MIPEs 8-14 were also polymerised resulting in polyMIPEs. Similar 

to polyHIPEs 1-7, all macroporous polymers were non-chalky and porous materials. 

The SEM images of polyMIPEs 8-14 reveal that they all possess an open porous 

interconnected pore structure (Figure 5-4). The pore diameters of polyMIPE 8, 

which does not contain any silica filler, ranged from 6 µm to 12 µm and the pores 

are interconnected via pore throats of 1.6 µm in diameter (Table 5-4). The average 

pore and pore throat diameters of the polyMIPEs decreased with the addition of 

increasing amounts of silylated silica particles. The pore diameters of polyMIPE 14 

containing 60 wt.% silylated silica particles decreased to only 4 µm and the pore 

throat size decreased to only 0.7 µm for the reason discussed above (Figure 5-4(g)). 
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Figure 5-4 SEM images of polyMIPEs 8-14 
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The skeleton density m  of polyMIPEs 8-14 increased steadily from 1.131 g/cm
3
 

(polyMIPE 8) to 1.387 g/cm
3
 (polyMIPE 14) upon the incorporation of more and 

more silica particles. The skeleton density of both polyHIPEs and polyMIPEs 

composites should be identical because the skeleton density is the density of final 

composite and, therefore, only depends on the composition of the organic phase in 

emulsion templates. In the fact, the skeleton densities of both polyHIPEs and 

polyMIPEs with the same composition of the organic phase in emulsion templates 

are almost identical within the errors. 

Table 5-4 Physical properties of polyMIPEs 8-14 

As expected, the foam densities e  of polyMIPEs 8-14 are much higher than those 

of polyHIPEs 1-7 due to the increase of the organic phase level in the emulsion 

templates. The foam densities of polyMIPEs 8-14 increased slightly from 

Sample 

ID 

m  

(g/cm
3
) 

e  

(g/cm
3
) 

P 

(%) 

As 

(m
2
/g) 

Pore size 

(µm) 

Pore throat 

size (µm) 

k 

(mD) 

8 1.131±0.002 0.369±0.007 67±2 2.574±0.005 9±3 1.6±0.6 47±4 

9 1.139±0.001 0.368±0.008 68±1 3.08±0.01 6±1 1.2±0.4 59±5 

10 1.171±0.002 0.378±0.006 68±2 3.81±0.02 7±1 1.0±0.4 20±1 

11 1.195±0.003 0.395±0.005 67±2 4.30±0.01 5±1 0.7±0.2 22±8 

12 1.223±0.003 0.42±0.01 66±1 4.258±0.004 6±1 0.7±0.2 24±2 

13 1.336±0.004 0.4±0.1 68±3 3.122±0.006 6±1 0.6±0.2 8 ±1 

14 1.387±0.003 0.5±0.1 68±3 3.027±0.009 4±2 0.7±0.2 13±3 



Chapter 5 

103 

 

0.369 g/cm
3 

(polyMIPE 8) to 0.5 g/cm
3 

(polyMIPE 14). The porosities P of all 

samples were similar since all MIPE templates contained the same internal phase 

volume (Table 5-4). The slight increase in porosities (67%) of polyMIPEs compared 

to the internal phase volume of emulsion templates (60%) is caused by the removal 

of non-converted monomers and the surfactant. As expected, all polyMIPEs 8-14 

had a surface area of about 4 m²/g, which is slightly lower than those of polyHIPEs 

1-7.  

 

Figure 5-5 The permeability coefficient as a function of mean pressure for polyMIPEs 

8-14 

As discussed above, the viscous permeability k is derived from the gradient of the K 

vs pm curves (Figure 5-5). Compared to polyHIPEs 1-7, the viscous permeability of 

polyMIPEs 8-14 was much lower because of their reduced porosity (Table 5-4). 

Furthermore, the viscous permeabilities of polyMIPEs 8-14 decreased with 

increasing content of silylated silica particles from 47 to 13 mD (Table 5-4). The 
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reduced permeabilities can be explained by the reduction of the pore and more 

importantly the pore throat diameters caused by the addition of increasing amounts 

of silylated silica particles. The average pore diameter decreases from 9 µm 

(polyMIPE 8) to only 4 µm (polyMIPE 14) and the pore throat diameter decreased 

from 1.6 µm (polyMIPE 8) to only 0.7 µm (polyMIPE 14). The smallest pore throat 

diameter of a series of interconnected pores determines the resistance to gas flow 

through a porous media. PolyMIPEs 13 and 14 seem to have smaller flow limiting 

pore throats than the other samples since higher applied pressures were required to 

initiate the gas flow through polyMIPEs 13 and 14 than polyMIPEs 8-12. According 

to the analysis of all the SEM images (Figure 5-4), polyMIPEs 11-14 have similar 

pore throat diameters; again the analysis of SEM images only provides the average 

pore throat diameters and not necessarily the smallest diameters of the biggest 

interconnecting pores throughout the sample which limit the gas flow [6]. 

The compression moduli and crush strengths of polyMIPEs 8-14 (Table 5-5) were 

significantly higher than those of polyHIPEs 1-7 because of the increase of the foam 

density. Even polyMIPE 8 without reinforcement had a similar compression 

modulus (14 MPa) to polyHIPE 5 (16 MPa) containing 20 wt.% of sylilated silica. 

Furthermore, the crush strength of polyMIPE 8 (1.7 MPa) was higher than that of 

polyHIPE 5 (1.2 MPa), which was the maximum value of polyHIPEs 1-7. The 

addition of silylated silica particles and their incorporation into the polymer walls of 

the macroporous polymers led to a persistent improvement of the compression 

modului of polyMIPEs 9-14 to up to 110 MPa. However, the maximum crush 

strength is 4.3 MPa; it does not increase any further when the silica loading exceeds 

10 wt.%. PolyMIPE 14 has the highest average compression modulus but the 

standard error became larger because of the heterogeneous distribution of silica 
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particles within the polymer walls of polyMIPE 14. In addition, the inhomogeneous 

distribution of the filler resulted in a decrease of the crush strength from 4.3 MPa 

(polyMIPEs 11 and 12) to 3.7 MPa (polyMIPE 13) and 3.9 MPa (polyMIPE 14), 

respectively.  

Specific compression moduli (Table 5-5) steadily increased with increasing silica 

filler content. However, the specific crush strength at first continuously increased 

until the silica filler content reached 10 wt.% but remained constant for a silica 

content of 20 wt.% and then decreased. Although polyMIPEs 11 and 12 possessed 

the same crush strength values, the slightly lower foam density of polyMIPE 11 led 

to a higher specific crush strength. 
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Table 5-5 Mechanical properties of polyMIPEs 8-14 

Sample 

ID
 

Young’s 

modulus 

(MPa) 

Specific compression 

modulus 

(kPa kgˉ¹m³) 

Crush strength 

(MPa) 

Specific crush 

strength 

(kPa kgˉ¹m³)
 

8 14±3 38±7 1.7±0.2 4.6±0.4
 

9 20±3
 

54±9
 

2.2±0.5
 

5.9±0.3
 

10 50±7
 

130±20
 

2.9±0.2
 

7.8±0.6
 

11 70±7
 

180±20
 

4.3±0.1
 

10.8±0.1
 

12 80±5
 

190±10
 

4.3±0.2
 

10.3±0.4
 

13 100±20
 

220±30
 

3.7±0.2
 

8.4±0.4
 

14 110±20
 

220±30
 

3.9±0.1
 

8.0±0.3
 

In summary, significant improvements in the (specific) compression moduli and 

(specific) crush strengths of macroporous polymers were achieved by raising the 

organic phase volume of the emulsion templates used to produce them. Further 

improvement was obtained by the incorporation of silylated silica particles into the 

walls of the macroporous polymers. The silylated silica was successfully integrated 

into the polymer network without affecting the open porous interconnected nature of 

the structure. However, the pore and pore throat sizes of the macroporous polymer 

composites decreased significantly in comparison to their non-reinforced 

counterpart. The viscous permeability decreased with increasing the organic phase 

volume and the content of silylated silica particles in emulsion templates. The 

optimal content of reinforcement seems to be between 10 and 20 wt.% as the 
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resulting macroporous polymers had homogeneous and impressive mechanical 

properties compared to polyMIPEs with lower silica content. 

5.4 Summary 

Emulsion templating using high internal phase emulsions is an effective route to 

prepare low density, high porosity macroporous polymers known as polyHIPEs. 

Conventional polyHIPEs, synthesised from surfactant stabilised w/o emulsions, have 

low permeabilities and poor mechanical properties. Here interconnected open 

macroporous low density nanocomposites have been produced by polymerising the 

continuous phase of emulsion templates, which contained styrene, PEGDMA and 

silylated silica particles. PEGDMA and the silylated silica particles acted as 

crosslinker. The functionalised silica particles were incorporated into the polymer, 

which resulted in a significant improvement of the mechanical properties of the 

polyHIPEs without affecting the interconnected and permeable pore structures. The 

polyHIPEs contained up to 60 wt.% silylated silica particles. Compression modulus 

of the reinforced macroporous polymers increased up to 600% compared to non-

reinforced macroporous polymers. The mechanical performance was further 

increased by increasing the foam density of the macroporous nanocomposites from 

around 200 g/cm
3
 to 370 g/cm

3
 by raising the organic phase volume of the emulsion 

templates from 20 vol.% to 40 vol.%. The macroporous polymers synthesised from 

less concentrated emulsions also possessed interconnected open porous although less 

permeable structures. The polyHIPE nanocomposites have a permeability of about 

200 mD while the polyMIPE nanocomposites still have permeabilities of around 

50 mD for polyMIPEs  8 and 9. 
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6 Shear/tensile and fracture mechanics of tough 

permeable macroporous polymers determined 

using the Arcan test 

6.1 Introduction  

It is well known that most conventional polyHIPEs are very brittle and chalky, 

which translate into the poor shear properties of these macroporous polymers. 

However, until now no investigation has done to research the shear properties of 

these macroporous polymers. Therefore, it is necessary to carry out the evaluation of 

the shear properties of such macroporous polymers. The present research aimed to 

investigate both the shear and tensile properties and fracture toughness of silylated 

silica particle reinforced macroporous polymers. Both polyHIPE and polyMIPEs 

were prepared to study the relationship between the continuous phase volume of the 

emulsion templates and the mechanical properties of the resulting macroporous 

polymers. Furthermore, polyMIPEs with varying amounts of MPS silylated silica 

particles were prepared to investigate the influence of silica reinforcement on 

mechanical properties of the resulting macroporous polymers. 

6.2 Summary of sample recipes 

Both polyHIPE and polyMIPEs were prepared to investigate the influence of the 

continuous phase volume of the emulsion templates on the mechanical performance 

of the resulting macroporous polymers. Following on the previous work (Chapter 5), 
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the optimal concentration of MPS silylated silica particles, which were used as 

reinforcement in emulsion templates, is 20 wt.% with respect to the monomers. 

Therefore, various amount up to 20 wt.% of MPS silylated silica particles were 

added into the continuous phase of emulsion templates. Although the recipes were 

same as part of samples in Chapter 5, larger volume of emulsion templates were 

prepared and these emulsion were placed into a PTFE rectangular shaped mould with 

the following dimensions: length, 300 mm; width, 75 mm; thickness, 25 mm mould 

instead of free standing centrifuge Falcon
®

 tubes. After polymerisation of these 

emulsions, the macroporous polymers 1-5 were produced. The sample preparation 

procedure was described in Chapter 3.3 and 3.4. The composition of the emulsion 

templates is summarised in Table 6-1. 

Table 6-1 Composition of the emulsion templates 

Sample ID Organic phase 

volume 
a 

Organic phase composition 

Styrene/PEGDMA/Surf. (vol.%)
b 

Silylated silica particles 

(wt.%) 
c 

1 20 40/40/20 0 

2 40 40/40/20 0 

3 40 40/40/20 5 

4 40 40/40/20 10 

5 40 40/40/20 20 

        a 
Volume of the organic phase relative to the total volume of the emulsion 

      
b 

Ratio of styrene, PEGDMA and Hypermer B246sf  in the organic phase   

      
c 
wt.% filler relative to the monomers 

The continuous phase of HIPE 1 made up 20 vol.% of the emulsion volume whereas 

the continuous phase of the MIPEs 2-5 occupied 40 vol.% of the emulsion volume 
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(Table 6-1). All emulsions were stabilised by the nonionic, polymeric surfactant 

Hypermer B246sf with a hydrophilic-lipophilic balance (HLB value) of 6. The 

continuous phase of the emulsions contained PEGDMA as crosslinker in order to 

reduce the chalkiness and brittleness of the produced macroporous polymers in 

comparison to conventional polyHIPEs using DVB as a crosslinker [8, 70]. In 

addition, 5,10 and 20 wt.% of MPS silylated silica particles, were added into the 

continuous phase of MIPEs 3-5 while MIPE 2 without modified silica particles was 

prepared as reference to study the effect of silylated silica filler on the mechanical 

properties of the resulting macroporous polymers. At the same time, HIPE 1 with 

only 20 vol.% of the continuous phase was prepared to investigate the effect of 

increasing foam density on the mechanical performance of resulting polyMIPEs. 

6.3 Morphology and physical properties of macroporous 

polymers  

The polymerisation of emulsion templates 1-5 produced non-chalky open porous 

interconnected polymers and the pore structure as can be seen in the SEM images 

(Figure 6-1). The incorporation of nanometre sized silylated silica particles into 

MIPEs 3-5 did not affect the interconnected open porous structure of the resulting 

macroporous polymers because the silylated particles were covalently incorporated 

into the polymer by copolymerisation of the grafted acrylate groups with the 

monomers [70]. The average values of pore and pore throat are summarised in Table 

6-2. Increasing the organic phase volume from 20% to 40%, the average pore and 

pore throat size of polyMIPE 2 were slightly decreased. In analogy to the samples 

used in Chapter 5, the addition of higher concentration of silylated silica particles led 
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to the decrease of average pore diameter of polyMIPEs 2-5 from 8 μm (polyMIPE 2) 

to 5 μm (polyMIPE 5). In addition, the average pore throat size decreased from 1.6 

μm (polyMIPE 2) to 0.6 μm (polyMIPE 5) (Table 6-2). Compared to the samples 

with identical recipes and prepared in Chapter 5, the pore and pore throat size of 

macroporous polymers 1-5 were same with considering error. 

   

   

 

Figure 6-1 SEM pictures of poly(H)MIPEs 
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The density and porosity of these macroporous polymers are summerised in Table 6-

2. The skeleton density of both polyHIPE 1 and polyMIPE 2 are almost identical 

within the errors since the skeleton density is the density of final polymer and, 

therefore, only depends on the composition of the organic phase in emulsion 

templates. However, the foam density of polyMIPE 2 was much higher than that of 

polyHIPE 1 due to the increase of organic phase level in the emulsion templates. 

Table 6-2 Density and porosity results of macroporous polymers 

Sample 

ID 

Skeleton density 

(g/cm
3
)
 

Foam density 

(g/cm
3
) 

Porosity 

(%) 

Pore size 

(μm) 

Pore throat size 

(μm) 

1 1.086±0.003 0.183±0.003 83±1 10±4 2.0±0.7 

2 1.101±0.002 0.346±0.005 69±1 8±3 1.6±0.6 

3 1.147±0.001 0.353±0.007 69±2 6±2 1.0±0.4 

4 1.167±0.001 0.385±0.006 67±2 5±2 0.8±0.3 

5 1.216±0.001 0.402±0.009 67±1 5±2 0.6±0.2 

The skeleton density of the synthesised macroporous polymers increased steadily 

from 1.101 g/cm
3
 (polyMIPE 2) to 1.216 g/cm

3
 (polyMIPE 5) (Table 6-2) due to the 

increasing concentration of silica particles within the polymer. The foam densities of 

polyMIPEs 2-5 increased slightly from 0.346 g/cm
3 

(polyMIPE 2) to 0.402 g/cm
3 

(polyMIPE 5). The porosities of polyMIPEs 2-5 were similar since all MIPE 

templates contained the same internal phase volume (Table 6-1, 6-2). The slight 

increase in porosities (68%) of polyMIPEs compared to the internal phase volume of 

emulsion templates (60%) is caused by the removal of non-converted monomers and 

the surfactant.  Compared to the samples with identical recipes and prepared in 

Chapter 5, the porosities of macroporous polymers 1-5 were same with considering 
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error while the skeleton density and foam density of these synthesised macroporous 

polymers were similar but slightly lower.  

6.4 Fractography of macroporous polymers 

During failure, a crack propagates through the material, creating fracture features 

known as the mirror, mist, and hackle (Figure 6-2). The crack initially produces the 

smooth mirror region. However, as the crack accelerates it becomes more unstable, 

creating a surface known as mist. This instability eventually causes the crack to 

branch out, producing the rough hackle region [159].  

 

Figure 6-1 Typical mirror, mist and hackle regions on a fractured glass surface [159] 

The hackle region is characterised by elongated markings that proceed in the 

direction of crack propagation and can often indicate the direction of loading and 

consequent movement of the matching fracture surface since the hackle markings 

point back to the fracture origin [160]. In addition, the hackle tilt angle also indicates 

the proportion of mode I (tensile mode) loading in a system. As the percentage of 

mode I decreases with respect to mode II (shear mode) the hackle tilt angle 

increases, from zero, in pure mode I to more than 45° in pure mode II [161, 162]. 
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Figure 6-3 shows the photos of the fracture surface of a macroporous polymer 

specimen under shear loading (Figure 6-3 (a)) tested using the Arcan jig (loading 

angle is 0°). The nearly 45° hackle tilt angle reflects the shear loading is the 

dominate loading and the fracture originates from the middle of specimen. However, 

some cracks with the tilt angle about 45° (Figure 6-3 (b)) can been seen from the 

fracture surface of a macroporous polymer specimen under tensile loading generated 

using the Arcan jig as well (loading angle is 90°), which indicates that not only pure 

tensile loading but also the shear loading was acting on the specimen using this 

loading condition in the Arcan jig. 

     

Figure 6-3 A typical fracture surface of macroporous polymers tested using the  

Arcan jig 

(a) A typical fracture surface of a macroporous polymer under shear loading 

(b) A typical fracture surface of a macroporous polymer under tensile loading 

 

6.5 Shear and tensile properties of macroporous polymers  

The investigation of shear properties of macroporous polymers was performed 

following the ASTM standard C-273 [142]. The specimen was firstly bonded 

between the steel loading plates. Then, the loading plates and bonded specimen were 

attached to the test machine and secured. During testing a linear variable 

b 

 

a 
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displacement transducer (LVDT) was used to measure the vertical specimen 

deflection, by measuring the difference in displacement along the length of the 

loading plates. Shear modulus can be calculated afterwards. However, the specimens 

were failed prematurely and no data can be obtained. 

Therefore, the shear and tensile properties of all macroporous polymer monoliths 

were measured at room temperature under shear or tensile loads using the Arcan jig 

since the very heavy loading plates are not needed in this method. Pure shear was 

produced in the test region of the test specimen when load in the direction θ = 0° is 

applied while the specimen should have been loaded in tensile loading when load 

was applied in the direction of θ = 90° of the Arcan fixture. Both shear (tensile) 

moduli and strength were determined from the stress-strain curves (Figure 6-4, 6-5). 

The shear and tensile properties of polyH(M)HIPEs 1-5 are summarised in Table 6-3 

and 6-4. All results were after compliance, which means displacement used to 

calculate the strain here was the displacement recorded minus the displacement 

caused by the test system.  
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Figure 6-4 Typical stress-strain plot of polyH(M)IPEs 1-5 under shear load 

Figure 6-4 shows representative shear stress-strain plot for polyH(M)IPEs 1-5. 

Generally, there are three regions; the first is a fluctuant region which indicated the 

test instrument was undergoing some sort of adjustment. The second region is the 

linear region. The shear modulus is defined as the linear slope of the stress–strain 

plot and the shear strength is the maximum value of the shear stress–strain plot at the 

end of the linear region. After the peak of shear stress, the specimen completely 

broke and the shear stress suddenly dropped to zero. 
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Table 6-3 Shear properties of polyH(M)IPEs 1-5 

Sample ID Shear modulus 

(MPa) 

Shear strength 

(MPa) 

Specific shear 

modulus 

(kPa kgˉ¹m³) 

Specific shear 

strength 

(kPa kgˉ¹m³) 

  

1 3.14±0.37 0.10±0.02 19±2 0.55±0.06   

2 18.47±1.3 0.25±0.05 54±6 0.72±0.1   

3 45.36±3.4 0.51±0.10 128±10 1.44±0.3   

4 49.75±3.4 0.59±0.10 129±12 1.53±0.3   

5 52.37±4.6 0.65±0.12 129±24 1.62±0.5   

 

The shear modulus of polyHIPE 1 was 3 MPa and its shear strength was only 0.10 

MPa, which are much lower in comparison to polyMIPEs 2-5 due to the lower foam 

density. Increasing the foam density from 0.183 g/cm
3
to 0.346 g/cm

3 
or reducing the 

porosity from 83% to 69% resulted in a much increased shear modulus and shear 

strength of polyMIPE 2 compared to polyHIPE 1 (Table 6-2, 6-3). The shear 

modulus of polyMIPE 2 without any reinforcement increased by 600% to 18 MPa 

and the shear strength almost tripled to 0.25 MPa. Further improvement of shear 

properties was obtained by incorporating silylated silica particles into the polymer 

matrix of these polymers. It was shown [70] that the optimal concentration of the 

reinforcement was 20 wt.% relative to organic phase which can result in an 

improvement of the mechanical performance. Above this filler loading, it was more 

and more difficult to evenly distribute the silica filler within the resulting polymer 

foams. Both shear modulus and shear strength of polyMIPE 3 containing 5 wt.% of 

modified silica particles increased to 45 MPa and 0.51 MPa, respectively, due to the 

covalent incorporation of silylated silica particles into the pore walls. A further 
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increase in the loading fraction of modified silica particles from 5 wt.% to 20 wt.% 

led to a steady improvement of the shear moduli as well as shear strengths. However, 

the rate of increase in both shear modulus and shear strength significantly decreased 

with further increase of the silica content. PolyMIPE 4 which contains 10 wt.% of 

silylated particles exhibited slightly increased shear modulus (50 MPa) and similar 

shear strength (0.59 MPa) in comparison to polyMIPE 3. PolyMIPE 5 with the 

highest silylated silica particle loading possessed a shear strength of 0.65 MPa. 

However, the shear modulus of polyMIPE 5 remained constant within the error 

compared to polyMIPE 4. Specific shear moduli and specific shear strength (Table 

6-3) were significantly increased firstly by increasing the organic phase volume from 

20% to 40% and further improved by adding silylated silica reinforcement. 

However, the specific shear moduli and specific shear strength of polyMIPEs 3-5 

remained similar within errors because the addition of more silylated silica 

reinforcement not only improved the shear properties but also increased the foam 

density of resulting macroporous polymers. 

The significant enhancement of shear performance of these macroporous polymers 

followed the same trend to polyMIPEs made from the same formulation 

characterised under compressive load [70]. The observed improvement of the 

mechanical properties was a result of the covalent incorporation of silylated silica 

particles into the polymer matrix by copolymerisation of grafted MPS with the 

monomers.  

Comparing to another foam material, which is widely used as core material in 

sandwich composites, PVC foams (Divinycell
® 

H), polyMIPE 5 (52 MPa, 0.65MPa) 

exhibited similar shear modulus to Divinycell
® 

H130 (50 MPa, 2.2MPa) but much 

http://dict.cn/enhancement
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lower shear strength [163]. Furthermore, the foam density of Divinycell
® 

H130 (0.13 

g/cm
3) 

is than that of polyMIPE 5 (0.40 g/cm
3
) because the Divinycell

® 
H130 is one 

type of close cell PVC foam while polyMIPE 5 is a type of open porous material.
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Figure 6-5 Typical stress-strain plot of polyH (M)IPEs 1-5 under tensile load 

The mechanical performance of macroporous polymers under tensile loading was 

also studied and the results are summarised in Table 6-4. Figure 6-5 shows 

representative tensile stress-strain plots for polyH(M)IPEs 1-5. In analogy to the 

shear stress-strain curves, there are three regions; the self-adjustment region of the 

test jig, the linear region and the specimen failure region. The tensile modulus is 

defined as the linear slope of the stress–strain plot and the tensile strength is the 

maximum value of the stress–strain plot at the end of the linear region. 
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Table 6-4 Tensile properties of polyH(M)IPEs 1-5 

Sample ID Tensile modulus 

(MPa) 

Tensile strength 

(MPa) 

Specific tensile 

modulus 

(kPa kgˉ¹m³) 

Specific tensile 

strength  

(kPa kgˉ¹m³) 

1 5.46±0.25 0.11±0.01 30±2   0.60±0.05 

2 36.88±2.62 0.44±0.10   107±10 1.27±0.2 

3 35.19±2.19 0.51±0.03 100±8 1.44±0.1 

4 34.20±3.83 0.72±0.10 89±14 1.87±0.3 

5 32.62±4.06 0.33±0.05 82±18 0.82±0.2 

PolyHIPE 1 had a very low tensile modulus of only 5.46 MPa and tensile strength of 

only 0.11 MPa. Increasing the foam density, i.e. reducing the porosity of a polyHIPE 

to polyMIPEs resulted in a significant improvement of the tensile modulus and 

tension strength. The tensile modulus of polyMIPE 2 without reinforcement 

increased to 37 MPa and tensile strength to 0.44 MPa. However, the addition of 

silylated silica reinforcement seems did not lead to a further improvement of the 

tensile moduli or the strengths. Although the silica filler concentration increased 

from 0 to 20 wt. %, the tensile moduli of polyMIPEs 2-5 were similar within error. 

Furthermore, the tensile strengths of polyMIPE 2-5 fluctuated between 0.3 MPa and 

0.7 MPa and did not follow a clear trend.  Specific tensile moduli and specific tensile 

strength of macroporous polymers 1-5 (Table 6-4) increased by increasing the foam 

density. However, the introduction of silylated silica particles did not further 

improve the specific tensile moduli or specific tensile strength of polyMIPEs 2-5.  In 

principle, the Arcan jig should produce pure tension loading in the direction θ = 90°. 

However, in practice, as indicated by the fractography, some shear component was 

also observed in the test. The real loading is mixed-mode loading and may cause 
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premature failure of the specimen. As a result, the tensile properties of polyMIPEs 2-

5 did not exhibit a clear trend. 

6.6 Fracture toughness of macroporous polymers  

Another objective of this study was to investigate the fracture toughness of 

macroporous polymers. Fracture toughness is a property which describes the ability 

of a material containing a crack to resist fracture and is one of the most important 

properties of any material for virtually all design applications. In this study, the 

fracture toughness was assessed by determining the stress intensity factor (KII) at 

fracture under shear mode.  

 

Figure 6-6 Typical stress-strain plot of polyH (M)IPEs 1-5 in fracture toughness tests 

Figure 6-6 shows representation shear stress-strain polts for polyH(M)IPEs under the 

shear fracture toughness measurements. Similar to the stress-strain plots for 

polyH(M)IPEs in shear and tensile loads (Figure 6-4, 6-5). There are three regions; 

http://en.wikipedia.org/wiki/Fracture
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the self-adjustment region of the test jig, the linear region and the specimen failure 

region.  
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Figure 6-2 The fracture toughness of polyH(M)IPEs 1-5 

Due to the increase of the foam density, the fracture toughness of polyMIPEs 2-5 

was higher than that of polyHIPE 1 (Figure 6-7). Even the fracture toughness of 

polyMIPE 2 without reinforcement was increased in comparison to polyHIPE 1 from 

0.015 MPa*m
1/2

 to 0.038 MPa*m
1/2

. The incorporation of silylated silica particles 

and their incorporation into the polymer walls of the macroporous polymers led to a 

further improvement of the fracture toughness of these macroporous composites. 

Even the introduction of 5 wt.% of silylated silica particles resulted in the fracture 

toughness of polyMIPE 3 to increase to 0.051 MPa*m
1/2

. PolyMIPE 4 (0.061 

MPa*m
1/2

) which containing 10 wt.% of reinforcement showed a slight increase in 

fracture toughness in comparison to polyMIPE 3. However, continuous increasing of 

silica filler up to 20 wt. % did not lead the further a increase in fracture toughness 
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and it slightly decreased to 0.040 MPa*m
1/2

. According to these results, the optimal 

content of the reinforcement seems to be between 10 and 20 wt.%, which followed 

the same trend obtained from compression tests of the same formulation 

macroporous polymers [70], as the resulting macroporous polymers showed 

impressive fracture properties in comparison to other concentrations of the 

reinforcement. 

Comparing to the closed cell PVC foams, poly(H)MIPEs 1-5 possessed much lower 

mode II fracture toughness due to the open porous microstructure. Noury et. al. [164] 

found that the mode II fracture toughness for C70.200 foam was 0.236 MPa*m
1/2

 

average and Grenestedt et. al. [165] found that the mode II fracture toughness of 

H100 PVC foam was 0.206 MPa*m
1/2

.  

6.7 Summary 

In summary, significant improvements of both shear and tensile properties of 

macroporous polymers are achieved by raising the organic phase volume of the 

emulsion templates and therefore the foam densities. Further improvement of shear 

properties was obtained by the incorporation of silylated silica particles into the 

walls of the macroporous polymers without affecting the interconnected 

microstructure. However, the tensile properties of polyMIPEs 2-5 determined using 

the Arcan test showed that the addition of modified silica particles did not result in 

further improvements of both tensile modulus and tensile strength, which is different 

from the trend obtained in both compressive and shear properties of these 

macroporous polymers with the same formulation. These results demonstrate the 

Arcan test is suitable to investigate the shear properties of macroporous polymers but 
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is not reliable to determine the tensile properties of these macroporous polymers as 

no pure tensile load can be introduced into the specimen. The fracture toughness in 

shear mode was also investigated. Increasing the foam density resulted in a 

significant increase of the fracture toughness and the introduction of silylated silica 

particles in the polymer matrix led to further improvements of the fracture 

toughness.  
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7 Investigation of the wetting properties of styrene 

and DVB based macroporous polymers  

7.1 Introduction 

The macroporous polymers produced from HIPEs, especially using the water-in-

styrene/DVB HIPEs are usually hydrophobic and are impeded in some applications 

such as bioengineering. In order to solve the problem, three routes are commonly 

used to synthesise hydrophilic polyHIPEs. The first route is post modifying 

hydrophobic polyHIPEs based on styrene/DVB after polymerisation using a second 

synthesis stage. For example, the poly(St-DVB)HIPEs have been modified by 

electrophilic aromatic substitution to yield nitro-, bromo- and sulfonic acid 

substituted materials [16] or plasma treatment [166]. Comparing to the two-step 

process, synthesising hydrophilic monomers within o/w I-HIPEs produces 

hydrophilic polyHIPEs directly. However, I-HIPEs are often more difficult to 

stabilise than w/o HIPEs [39] and uneconomic since the procedure is extremely 

solvent intensive. The oil template phase is difficult to remove after polymerisation. 

Furthermore, limited amount of monomers can be dissolved in the aqueous phase 

and the method to avoid portioning of the monomer into the oil phase needs to be 

explored. The third route is synthesising hydrophilic polymer/polymer composites 

within w/o HIPEs using a single synthesis stage [50-55]. In this route, the continuous 

organic phase normally contains hydrophobic monomers while the dispersed 

aqueous phase consists of hydrophilic monomers, N,N-methylenebisacrylamide 

(MBA) and acrylamid (AM). Hydrophobic and hydrophilic monomers within the 
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external phase and the internal phase are simultaneously polymerised to produce 

hydrophilic polyHIPEs. The aim of present research is to develop hydrophilic 

macroporous polymers based on styrene and DVB using a single synthesis stage. In 

order to achieve the objective, methacrylic acid (MA) and dimethylaminoethyl 

methacrylate (DMAEMA) were introduced into the aqueous phase of emulsion 

templates to manufacture polymer/polymer composites. Furthermore, MPS modified 

silica particles, which were proven can improve the mechanical performance of 

resulting macroporous polymers (Chapter 5 and 6), were also added in the 

continuous phase to investigate their influence on the surface properties of resulting 

macroporous polymers.  

7.2 Summary of sample formulations 

Both MIPEs and HIPEs were prepared and they all contained styrene and DVB as 

monomers. The continuous phase of all emulsion templates consisted of 80 vol. % of 

monomers, 20 vol. % of Hypermer 2296 as surfactant and 2 mol.% of AIBN as 

initiator. Furthermore, MIPE 2 contained 40 wt. % silylated silica particles in the 

continuous phase with respect to the monomers while MIPE 1 did not contain any 

silylated silica particles. MA or DMAEMA as additional monomers were added to 

the aqueous phase of HIPE 4 and 5, respectively while HIPE 3 contained nothing in 

the aqueous phase as reference. In order to transfer these monomers from the 

aqueous phase to the organic phase, a suitable pH value of the aqueous phase was 

chosen to form the corresponding monomer salts (pH 11 and pH 1 respectively). 

After polymerisation of these emulsions, the macroporous polymers 1-5 were 

produced. The sample preparation procedure was presented in Chapter 3.3 and 3.4. 

The compositions of the emulsion templates are summarised in Table 7-1. 
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Table 7-1 Composition of the emulsion templates 

Sample 

ID 

Organic 

phase 

volume 
a 

Organic phase composition
 

Styrene/DVB/Surf. 

(vol.%)
b
 

Aqueous phase composition 

MA/DEAEMA 

(vol.%)
c 

Silylated 

silica 

particles 

(wt.%) 
d 

1 40 60/20/20 0/0 0 

2 40 60/20/20 0/0 40 

3 20 40/40/20 0/0 0 

4 20 40/40/20 6/0 0 

5 20 40/40/20 0/6 0 

a     
Volume of the organic phase relative to the total volume of the emulsion 

b     
Composition of the organic phase, DVB, styrene and surfactant ratio

 

c     
Content of MA, DMAEMA in the aqueous phase 

 

d     
wt. % filter relative to the monomers 

7.3 Result and Discussion 

MIPEs 1 and 2 contained 40 vol.% of the continuous phase while the continuous 

phase of HIPEs 3-5 occupied 20 vol.% of the emulsion volume. The HIPEs 3-5 were 

much more viscous compared to MIPEs 1 and 2 because of the increased dispersed 

phase volume which leads to a denser droplet packing [18]. All emulsions were 

stabilised by the nonionic, polymeric surfactant Hypermer 2296 containing 

ethoxylated ester with a HLB value of 4.9. 

After polymerisation, all resulting polymer foams were white porous monoliths. The 

macroporous polymers possessed an open porous interconnected pore structure as 

can be seen in the SEM images (Figure 7-1). The different magnification of each 

image is because the image should provide the information about the single pore and 
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enough numbers of pores in order to prove the interconnected microstructure of these 

macroporous polymers. The average values of pore and pore throat sizes were 

analysed by UTHSCSA Image tool software and at least 50 pores (pore throats) were 

measured and summarised in Table 7-2. The pore diameters of polyMIPE 1 ranged 

from 2 to 4 µm and the pore throat diameter was approximately 1 μm. The 

incorporation of silylated silica particles did not affect the interconnected open 

porous structure of the polyMIPEs 2, the silylated particles were covalently 

incorporated into the growing polymer by copolymerisation of silylated silica 

particles with the monomers. Comparing to polyMIPE 1, the average pore size of 

polyMIPE 2 significantly increased from 3 µm to 6 µm. Furthermore, the average 

pore throat size increased from 0.9 µm to 1.3 µm. The pore size distribution of 

polyMIPE 2 was much wider than that of polyMIPE 1 (Table 7-2). Due to the 

addition of 40 wt.% silylated silica particles in the continuous phase of MIPE 2, 

MIPE 2 was observed to be more viscous than MIPE 1. The high viscosity of MIPE 

2 may be a result from particle flocculation in the organic phase of MIPE 2. When 

stirring emulsions during the preparation process; the same shear stress of mixing 

was insufficient to separate all large droplets in MIPE 2 because of the high 

viscosity. As a result, it is difficult to generate a uniform, fine dispersion of the 

droplets in highly viscous emulsion templates. Since the porous structure of 

polyHIPEs is a replica of the emulsion structure at the gel point of the 

polymerisation [13, 131], polyMIPE 2 showed larger pore size and wider pore size 

distribution. 
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Figure 7-1 SEM images of macroporous polymer foams 1-5 

HIPE 3 did not contain silica particles or other additional monomers except styrene 

and DVB to polymerise while HIPE 4 contained MA in the aqueous phase as 

additional monomer to copolymerise with styrene and DVB and HIPE 5 contained 

DEAEMA in the aqueous phase as an additional monomer. The resulting polyHIPE 

3 and polyHIPE 4 possessed an interconnected pore network structure. PolyHIPE 3 

had pores with diameters ranged from 6 to 9 μm and the pores interconnected via 

pore throats of approximately 3.0 μm in diameter. The pore size of polyHIPE 4 
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ranged from 7 to 11 μm and the pores interconnected via pore throats of 

approximately 3.7 μm in diameter (Table 7-2). The resulting polyHIPE 5 again had 

an open porous structure. The pore diameter of polyHIPE 5 varied between 4 μm and 

12 μm and the pore throat size ranged from 1.3 μm to 3.7 μm. The high viscosity of 

HIPEs 3-5 led to the lager pore sizes of resulting macroporous polymers compared to 

polyMIPE 1 and 2.   

In contrast to the highly interconnected structure of polyHIPE 3 and 4, some pore 

throats of polyHIPE 5 seemed to be covered by a polymer film since the 

polymerisation of HIPE 5 led to a formation of polymer/polymer composite. The 

polymerisation first started in the organic phase and produced free radicals. 

Afterwards, some free radicals near the interface between the organic phase and the 

aqueous phase triggered the polymerisation of DMAEMA. The polyDMAEMA 

hydrogel was grafted to the poly(St-DVB)HIPE “scaffold” and produced the 

polymer/polymer composite. HIPE 4 also contained MA as additional monomer but 

exhibited highly interconnected structure. The difference in morphology revealed the 

different polymerisation principles. In copolymersation systems, containing at least 

two different monomers (M1 and M2) and each monomer has the possibility to 

homopolymerise with itself and the possibility to copolymerise with other monomers 

(Scheme 7-1). These possibilities are described by copolymerisation reactivity ratios 

r1 (defined as the ratio of k11 / k12) and r2 (defined as the ratio of k22 / k21), which are 

important quantitative parameters in the prediction of copolymer composition.  

                   

Scheme 7-1 Definition of copolymerisation reactivity ratios 
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In this case, the continuous phase consists of styrene and DVB as monomers and the 

the aquous phase contains MA or DMAEMA as additional monomer. For the 

styrene/DVB system, r1 =0.26 and r2 =1.18 [151], which means both styrene and 

DVB are prone to polymerise with DVB. At the same time, for the styrene/MA 

system, r1 = 0.21 and r2 = 0.55 [151]. This indicates both styrene and MA are prone 

to polymerise with others and led to a formation of styrene/MA network. Therefore, 

the residual styrene copolymerises with MA. Consequently, polyHIPE 4 possesses a 

highly interconnected structure. Turn to the styrene/DMAEMA system, r1 = 1.74 and 

r2 = 0.43 [167]. This means both styrene and DMAEMA are prone to polymerise 

with styrene. Styrene is consumed first and the residual DMAEMA can only 

polymerise with itself forming the DMAEMA hydrogel to cover part of the pores of 

polyHIPE 5. Consequently, part of pore throats of polyHIPE 5 were covered by a 

polyDMAEMA film. 

Table 7-2 Physical properties of macroporous polymer foams 1-5 

Sample 

ID 

Pore size 

(µm) 

Pore throat 

size (µm) 

Skeleton density 

(g/cm
3
) 

Foam density 

(g/cm
3
) 

Porosity 

(%) 

Surface area 

(m
2
/g) 

1 3±1 0.9±0.2 1.010±0.002 0.307±0.002 70 4.103±0.011 

2 6±3 1.3±0.3 1.326±0.007 0.379±0.002 71 3.055±0.006 

3 9±3 3.0±1.0 1.160± 0.006 0.144 ± 0.003 87 4.700±0.100 

4 9±2 3.7±1.4 1.250±0.002 0.165±0.005 86 2.410±0.013 

5 8±4 2.5±1.2 1.216±0.002 0.225±0.002 82 3.190±0.016 

The addition of silylated silica particles into the continuous phase of MIPE 2 led to 

the skeleton density increase from 1.010 g/cm³ (polyMIPE 1) to 1.326 g/cm³ 

(polyMIPE 2) (Table 7-2). Furthermore, the foam density was increased from 0.307 

g/cm³ (polyMIPE 1) to 0.379 g/cm³ (polyMIPE 2). However, the porosities of these 
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two macroporous polymers were similar since both emulsion templates contained the 

same volume of internal phase, which was the same in both formulations (70%). The 

slight increase in porosities (70%) of polyMIPEs 1 and 2 compared to the internal 

phase volume of the emulsion templates (60%) is caused by the removal of non-

converted monomers and the surfactant. PolyHIPE 3 possessed a lower skeleton 

density of 1.160 g/cm
3
 compared to polyHIPEs 4 (1.250 g/cm

3
) and polyHIPEs 5 

(1.216 g/cm
3
). The increase of the internal phase level from 60 vol.% to 80 vol.% led 

to a decrease of foam density of polyHIPEs 3 (0.144 g/cm
3
), 4 (0.165 g/cm

3
) 

and 5 (0.225 g/cm
3
) and an increase of the porosity of polyHIPEs 3 (87%), 4 (86%) 

and 5 (82%) in comparison to polyMIPEs 1 and 2. The surface area of macroporous 

polymers 1-5 ranged from approximately 2 to 5 m
2
/g, which are within the range of 

surface areas commonly reported for polyHIPEs [16, 167]. 

The wetting behaviour of macroporous polymers was investigated using both water 

contact angle and Dynamic Vapour Sorption (DVS) measurements. The static 

contact angle was measured in the static mode, 10s after placing a water droplet into 

the surface of macroporous polymers at room temperature. The results were 

summerised in Table 7-3. The nearly spherical water droplet on polyMIPE 1 in 

Figure 7-2 (a) (a contact angle of around 140°) reflected the hydrophobicity of 

polyMIPE 1. The water droplet did not wet the walls of the hydrophobic 

styrene/DVB polyMIPE 1 and, therefore, water was not being absorbed into it 

through capillarity. In this case, the Cassie–Baxter equation describes the 

effective contact angle θc for a liquid on a composite surface and the effective 

contact angle (θc) is related to the contact angles (θ1, θ2) and fractions (f1, f2) of 

exposed components on the solid surface of the composite.  

http://en.wikipedia.org/wiki/Contact_angle
http://en.wikipedia.org/wiki/Theta
http://en.wikipedia.org/wiki/Composite_material
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In this case, the surface of polyMIPE 1 consisted of air, which the contact angle of 

water in air (θ1) is 180°, and poly(St-DVB), whose contact angle of water is 103° 

[168]. The fractions of the both component were determined by the porosity test. The 

expected contact angle is 140°, which is similar as the experimental values of 

polyMIPE 1. However, the water droplet on the polyMIPE 2 in Figure 7-2 (b) spread 

extensively on the polyMIPE 2 surface and most of its volume had penetrated into 

the macroporous polymers (a contact angle of around 26°). The wettability of pore 

walls of the macroporous polymer was enhanced by the addition of silylated silica 

particles in the continuous phase of MIPE 2 and the water droplet was drawn into 

polyMIPE 2 by capillarity. 

Table 7-3 Wetting behaviour of macroporous polymer foams 1-5 

Sample ID Water Contact angle (°) Equilibrium moisture content (%) 

1 142±2 2.2 

2 26±4 1.5 

3 144±2 1.7 

4 137±2 57 

5 19±5 37 

As discussed previously, MA and DMAEMA were introduced into the aqueous 

phase of HIPEs 4 and 5 to produce polymer/polymer composites while HIPE 3 did 

not contain the additional monomers. Similar to polyMIPE 1, the water droplet did 

not wet the walls of the hydrophobic styrene/DVB polyHIPE 3 and average contact 

angle is 144° (Figure 7-2(c)). The resulting macroporous polymers from HIPEs 4 

and 5 should be hydrophilic since the pore walls contain hydrophilic monomers. The 

water droplet spread extensively on the surface of polyHIPE 5 and the average 

contact angle is around 20° (Figure 7-2(e)) due to the introduction of DMAEMA.  
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Figure 7-2 Pictures of water droplet on the surface of polyfoams 1-5 

However, the introduction of MA did not appear to promote the spreading of the 

water droplet into the surface of polyHIPE 4 and the contact angle is still around 

140° (Figure 7-2 (d)). As discussed previously, styrene, DVB and MA are prone to 

copolymerise and the surface of polyHIPE 4 consists of air and poly(St-DVB-MA). 

However, polyHIPE 5 it seems did not form poly(St-DVB- DMAEMA)HIPE since 

part of the pores were covered by poly(DMAEMA) film. Wetting is determined by 

the surface composition. MA formed intra/intermolecular hydrogen bonds between 

the methacrylic acid moieties and so exposed a hydrophobic polymer backbone in 

air, which means a higher initial contact angle of polyHIPE 4. In contrast, no 

b)polyMIPE 2 a)polyMIPE 1 

1 

d)polyHIPE 4 c)polyHIPE 3 

e)polyHIPE 5 
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hydrogen bonds formed for polyHIPE 5 and the hydrophilic hydrogel was exposed 

and resulted in the low values of the average contact angle of polyHIPE 5. 

Besides the contact angle measurements, DVS studies were carried out to investigate 

the water absorption of macroporous polymers 1-5 at 95% RH. The completely dried 

sample was put into 95% RH for 24h. The mass change was monitored until 

constant. The mass change was recorded and is summarised in Table 7-3. The water 

uptake of the silylated silica particle was also determined and the equilibrium 

moisture content after conditioning is only about 1.3 wt.%. The 2 wt.% of 

equilibrium moisture content reflected the hydrophobility of polyMIPE 1, which is 

in accordance with the result obtained from water contact angle measurements. 

However, polyMIPE 2, which had a water contact angle of only 26°, did not absorb 

much water and only around 1.5 wt.% of equilibrium moisture content was detected. 

Comparing to polyMIPE 1, the decrease of water contact angle value of polyMIPE 2 

was caused by the addition of silylated silica particles, which promoted the spreading 

of water droplet on the surface of polyMIPE 2. Consequently, the water droplets 

penetrated into polymer walls by capillarity. In other words, the addition of silylated 

silica particles into the emulsion templates improved the wettability but the resulting 

macroporous polymers still cannot absorb much water since the silylated silica 

particles are not adsorbing water.  

PolyHIPE 3 only possessed 1.7 wt.% of equilibrium moisture content but polyHIPEs 

4 and 5 exhibited significant water absorption due to the addition of hydrophilic 

monomers into the aqueous phase of HIPEs 4 and 5. The equilibrium moisture 

content reached 57 wt.% (polyHIPE 4) and 37 wt.% (polyHIPE 5), respectively. 

Comparing to the water contact angle measurements of polyHIPEs 4 and 5, 
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polyHIPE 5 possessed a contact angle around 20° and reflected the hydrophilicity of 

the macroporous polymer, which was confirmed in the DVS study. On the other 

hand, the equilibrium moisture content of polyHIPE 4, which showed a contact angle 

of around 140°, reached 57 wt.%. The high initial values of contact angle of 

polyHIPE 4 is because MA formed hydrogen bonds and exposed a hydrophobic 

backbone to the composite surface, which determines the wetting. The formation of 

composite surface, which includes mostly air does not allow for fast swelling but the 

water vapour does interact with MA and lead to the high water uptake.  

7.4 Summary 

Generally, the macroporous polymers based on styrene and DVB resulted from w/o 

emulsions are hydrophobic and need modification after polymerisation to improve 

the surface hydrophilicity. The objective of the present research was to synthesise 

hydrophilic macroporous polymers based on styrene and DVB directly via emulsion 

templating. Silylated silica particles and hydrophilic monomers were introduced in 

the emulsion templates. The incorporation of silylated silica particles did not affect 

the interconnected microstructure but enhanced the wettability and mechanical 

performance of resulting macroporous polymers (polyMIPE 2). Water droplets are 

drawn into the polymer walls by capillarity. However, the water absorption of the 

resulting macroporous polymer did not increase by the introduction of silylated silica 

particles because the silylated silica particles do not absorb water. MA and 

DMADMA were introduced into the aqueous phase of emulsion templates as 

additional monomers in order to produce hydrophilic polymer/polymer macroporous 

composites. MA was successfully incorporated into the polymer by the 

copolymerisation with styrene and DVB and the resulting macroporous polymer 
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(polyHIPE 4) showed highly interconnected microstructure. The nearly 60 wt.% of 

equilibrium moisture content of polyHIPE 4 reflected the improved hydrophilicity. 

However, the spherical shape of water droplets on the polyHIPE 4 surface according 

to contact angle measurement indicated the poor wettability due to the formation of 

MA hydrogen bonds, which caused the surface in air to appear hydrophobic. The 

formation of a composite surface (including air) on the polyHIPE 4 prevents 

sufficient contact with water, which does hinder water uptake if the macroporous 

polymer is in contact with liquid water. The introduction of DMAEMA resulted in 

hydrophilic macroporous polymer (polyHIPE 5) with low contact angle value 

(around 20º) and high water adsorption (about 37 wt.% equilibrium moisture 

content) due to no formation of hydrogen bonds. PolyHIPE 5 showed an open 

porous structure but part of the pore throats were covered by polyDMAEMA film. 
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8 Conclusion and recommendation for future work 

8.1 Conclusions 

This thesis describes the development and characterisation of tough and permeable 

macroporous nanocomposites via emulsion templating. The influence of different 

initiators and surfactants used in MIPE formulations on the morphology and physical 

properties of the resulting macroporous polyMIPEs was initially investigated to 

optimise the formulation of MIPEs based on styrene and DVB. Three types of 

initiator including AIBN, KPS and redox initiator system and four different 

surfactants (surfactant mixture) containing Hypermer 2296, Span 80 and even 

surfactant combination such as Hypermer 2296/Span 80 mixture and Hypermer 

2296/ Hypermer B246sf mixture were used to stabilise the emulsion templates. 

AIBN is a good initiator for the polymerisation of MIPEs consisting of styrene and 

DVB to produce macroporous polymers possessing the desired open porous 

interconnected microstructure no matter which surfactant (surfactant mixture) was 

used. The widely used water-soluble KPS was also used and produced macroporous 

polymers with almost closed cell microstructure no matter which surfactant 

(surfactant mixture) was used. This closed cell pore structure of the polyMIPEs was 

believed to be caused by the high radical concentration produced by the decay of 

KPS at 70 °C, which results in  the fast formation of a solid closed cell skin (shell) 

surrounding the water droplets, which suppressed the formation of pore throats. The 

polymerisation of MIPEs based on styrene and DVB can be initiated by a redox 

initiator system, which consisted of iron (II) sulfate heptahydrate, L-ascorbic acid 
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(reducing agent) and hydrogen peroxide (oxidising agent). Although the resulting 

macroporous polymers possessed an interconnected pore structure thick walls were 

found. Different surfactants perform differently in the stabilisation of a MIPE 

containing the redox initiator system. It appears that Span 80 is the most suitable 

surfactant solely based on the degree of interconnectivity of the resulting 

polyMIPEs. However, it seems Hypermer B246sf is the better surfactant based on 

pore structure of the resulting polyMIPEs. 

Subsequently, AIBN was chosen as initiator and the Hypermer B246sf was used as 

surfactant for the emulsion templates in order to develop interconnected high 

porosity macroporous polymers with significantly improved mechanical properties 

compared to conventional polyHIPEs. PEGDMA was used instead of DVB as 

crosslinker to copolymerise with styrene in order to reduce the brittleness of the 

resulting macroporous polymers. Two strategies were used to improve the 

mechanical performance of macroporous polymers produced by the polymerisation 

of the continuous phase of the emulsion templates. Firstly, silica particles silylated 

with MPS were added into the organic phase of the emulsion templates to act as 

reinforcement for and additional crosslinker of the polymer matrix. Secondly, the 

organic phase volume of the emulsion templates was increased from 20 vol.% 

(HIPEs) to 40 vol.% (MIPEs) in order to increase the foam density of resulting 

macroporous polymer monoliths. The addition of reinforcement into the organic 

phase increased, rather than negatively affected, the stability of the HIPE templates. 

The silylated silica particles were successfully incorporated into the growing 

polymer and the produced macroporous polymer composites were open porous and 

permeable. Furthermore, the silylated silica particles acted as reinforcement and 

significantly improved both the compression modulus and crush strength in 
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comparison to the polyH/MIPEs without reinforcement. Both the compression 

modulus and the crush strength increased by 600% compared to non-reinforced 

polyHIPEs.  

Increasing the foam density is another effective method to improve the mechanical 

properties of these macroporous polymers and so polyMIPEs were also prepared. 

The macroporous polymers synthesised from these less concentrated emulsion 

templates are also open porous and permeable. Compared to polyHIPEs, the overall 

mechanical performance of resulting macroporous polymers significantly increased. 

Further improved mechanical performance of these macroporous polymers can be 

achieved by the incorporation of MPS functionalised silica in the continuous phase 

of emulsion templates. Compared to the polyHIPE without any reinforcement, the 

compression modulus of polyMIPE containing 60 wt.% of silica reinforcement was 

increased from 3 MPa to 110 MPa and the crush strength was increased from 

0.2 MPa to 4.3 MPa.  

The brittleness and chalkiness of conventional polyHIPEs leads to the poor shear 

properties of these macroporous polymers. However, until now, no literatures 

discuss the investigation of the shear properties of these macroporous polymers 

exists. The shear properties of macroporous polymers via emulsion templating were 

determined using the Arcan test. Furthermore, the tensile properties and the fracture 

toughness in mode II (shear) loading were also investigated. Increasing the organic 

phase volume of the emulsion templates substantially improved both shear and 

tensile performance of emulsion templated macroporous polymers. The shear 

modulus of polyMIPE with a porosity of 69% increased by 6 times to 18 MPa and 

the shear strength also increased approximately 3 times to 0.25 MPa in comparison 
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to polyHIPEs with a porosity of 83%. The tensile modulus was also significantly 

improved from 5.46 MPa to 36.88 MPa as a result of increasing the foam density 

from 0.183g/cm
3
 to 0.346g/cm

3
 of resulting macroporous polymer monoliths 

produced from emulsion templates. The addition of silylated silica particles into the 

emulsion templates led to further improvements in the shear properties of the 

resulting macroporous polyMIPEs due to the incorporation of particles into the pore 

walls. The shear modulus was improved from 18 MPa to 52 MPa with increasing the 

silica filler up to 20 wt.%. However, the tensile properties obtained using the Arcan 

test showed no further improvement with the addition of modified silica 

reinforcement because pure tensile loading could not be introduced into the 

specimens. Determination of the mode II (shear) fracture toughness was another 

objective of this study. The values of fracture toughness determined increased 

significantly with increased organic volume of the emulsion templates, and, therefore 

reduced porosity but increased foam density of the resulting macroporous polymers 

and again when silica particles were added. The addition of increasing amounts of 

silica particles resulted in further increases in the fracture toughness. Compared to 

other PVC foams, the emulsion templated macroporous polymers possessed much 

lower mode II (shear) fracture toughness because PVC foams are closed cell foam 

while emulsion templated macroporous polymers are open porous. 

Finally, approaches to directly synthesise hydrophilic macroporous polymers based 

on styrene and DVB were presented since most of macroporous polymers produced 

from HIPEs are hydrophobic and need modification after polymerisation to improve 

the surface wettability. Silylated silica particles and hydrophilic monomers, MA and 

DMAEMA, were introduced into the emulsion templates in order to directly 

synthesise hydrophilic macroporous polymers based on styrene and DVB via 
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emulsion templating. The incorporation of silylated silica particles did not affect the 

interconnected microstructure of resulting macroporous polymer. In addition, the 

wettability of the pore surface was enhanced so water droplets penetrated into the 

pore space of the macroporous polymers. MA and DMADMA were introduced into 

the aqueous phase of emulsion templates as additional monomers in order to 

synthesise hydrophilic polymer/polymer macroporous composites. MA was 

successfully incorporated into the polymer by copolymerisation with styrene and 

DVB and the resulting macroporous polymer possessed a highly interconnected 

microstructure. The polyHIPEs containing polyMA took up nearly 60 wt.% of 

moisture in equilibrium with 95% RH, which reflected the improved hydrophilicity. 

However, the high value of water contact angles indicated the poor wettability of the 

porous polyHIPE surfaces due to the formation of intra/intermolecular hydrogen 

bonds between the methacrylic acid moieties, which exposed the hydrophobic 

polymer backbone in air. Similar to incorporation of MA, the introduction of 

DMAEMA resulted in hydrophilic macroporous polymers with low average water 

contact angle (around 20º) and high equilibrium moisture content (about 37 wt.%). 

However, part of the pores in the polyHIPEs containing polyDMAEMA were 

covered by polyDMAEMA films. 

8.2 Recommendation for future work 

Since a number of limitations need to be considered in view of extending the scope 

of the potential applications of emulsion templated macrorporous polymers, the 

following should be considered for future research. 
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 The using of KPS and of a redox initiator system to initiate the 

polymerisation of the continuous organic (monomer) phase of emulsion 

templates did not result in open porous macroporous polymers from MIPEs 

consisting of styrene and DVB. Although the emulsion templates in which 

the polymerisation of initiated using AIBN produced macroporous 

poly(styrene-co-DVB) possessing the desired open porous interconnected 

pore structure no matter which surfactant (surfactant mixture) was used, 

suitable initiator systems that enable the low temperature initiation of the 

polymerisation of emulsion templates to synthesise open porous macroporous 

polymers are still needed.  

 Since it was impossible to introduce pure tensile loading using the Arcan 

tests during the determination of the tensile properties of emulsion templated 

macroporous polymers, therefore it was impossible to determine the 

resistance to crack growth GIIc. It was suggested to carry out flexure tests and 

flexure tests with notches in order to determine the tensile properties of 

emulsion templated macroporous polymers and the fracture toughness under 

tensile loading (mode I) can be calculated afterwards. 

 The reinforced, tough and permeable emulsion templated macroporous 

polymers exhibit the potential to be used as core material to develop 

composite sandwich structures. Generally, composite sandwich structures 

consist of a laminated composite skin and a core material. They are combined 

by an adhesive. The requirements of skin material are a high stiffness and 

strength since majority of stress is carried by the skin in the composites. 

Different from skin material, the core material does not carry much stress and 

only bends when a force is exerted. The primary mechanical requirement for 
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the core material is to avoid the movement of the skin. In other words, the 

shear properties are the key requirements of the core material. Since the shear 

properties of the reinforced tough and permeable emulsion templated 

macroporous polymers were proven to be significantly improved compared 

to conventional polyHIPEs, they possess the potential to be used as core 

material in sandwich structure composites. Although the shear properties of 

these macroporous polymers are low in comparison to other type of foams, 

the unique open porous and interconnected pore structure are attractive for a 

number of applications, in which the core for instance needs to be vacuumed 

or should be used to store either fuels or water. Therefore, the suitable 

composite skins need to be identified and a suitable method to bond both core 

and skin materials, without filling much of the interconnected pore space 

should be explored. 

 The surfaces of polyHIPEs containing polyMA appear to be hydrophobic due 

the formation of MA hydrogen bonds, which does not allow for fast swelling 

in water. In order to determine the real contact angle of polyHIPEs 

containing polyMA and polyDMAEMA, contact angle measurements under 

both in the sessile drop and captive bubble modes should be performed. 

Before the captive bubble test, the samples should be immerged into and 

equilibrated with water and absorb water to break to the hydrogen bonds. 

Therefore, it would be expected that the water contact angle measured in 

captive bubble mode of a sample containing polyMA should be much smaller 

than the value measured by the sessile drop method while the sample 

containing polyDMAEMA should possess similar values under two different 

test conditions. 
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