AN INEXPENSIVE & SAFE METHOD FOR PREPARATION OF CARYOPHYLLENE OXIDE

RODIANAH BINTI ALIAS

The thesis submitted in fulfillment of the requirement of the award of the degree of Master in Industrial Chemistry

Faculty of Industrial Sciences & Technology Universiti Malaysia Pahang

JANUARY 2013

ABSTRACT

Caryophyllene oxide which exists as white crystalline solids with melting points of 62 °C, is widely used as an important material in perfumery industry and recently had been patented as antitumor agent. This 99% pure oxide compound is very much more expensive than the original caryophyllene due to the difficulty in production. Experiments were carried out to produce caryophyllene oxide by using inexpensive and safe method. In this study, four objectives were studied; extraction, separation, purification of caryophyllene from clove buds which were later used in this synthesis of caryophyllene oxide in this study. In extraction, four methods were used, cleaner- ultrasonic, hydrodistillation, steam distillation and microwave to obtain clove oil and found that, hydro distillation method was found to give the highest yield of clove oil. For separation process the cayophyllene and the other non-polar molecules in clove oil were separated from eugenol, the highest yield for both clove bud and clove leaf were achieved at a ratio of clove oil: sodium hydroxide of 1: 2. Purification of caryophyllene by using vacuum distillation consist 94% component of a mixture of caryophyllene, and 5.8% alpha-cubebene by using GC/MS analyzer at 136 °C. Caryophyllene oxide was then synthesized by using four different acids, formic acid, acetic anhydride, 3-chloroperbenzoic acid, and acetic acid. The highest percentage of caryophyllene oxide formed in solution analysed by GC/MS was by formic acid (86.47%), followed by 3-chloroperbenzoic acid (81.47%), acetic anhydride (77.04%), and acetic acid (75.33%). Caryophyllene oxide was then crystallized at low temperature until subsequent analysis showed that it is 99% pure.

ABSTRAK

Kariofillin Oksida (C.O.) hadir sebagai pepejal kristal berwarna putih dengan takat lebur pada suhu 62 °C, digunakan secara meluas sebagai bahan penting dalam industri pewangi dan kebelakangan ini, C.O. dipatenkan sebagai agen antitumor. Oksida ini yang berkepekatan 99% ketulenannya adalah lebih mahal daripada kariofillin asalnya disebabkan kerumitan dalam proses pengeluaran. Beberapa eksperimen dijalankan untuk menghasilkan C.O. dengan menggunakan kaedah murah serta selamat dikendalikan. Projek penyelidikan ini merangkumi empat objektif pengajian; proses pengekstrakan, proses pengasingan, proses penulenan kariofilin daripada putik cengkih yang kemudiannya digunakan dalam sintesis kariofilin oksida dalam pengajian ini. Bagi proses pengekstrakan, empat kaedah telah digunakan iaitu ultrasonic, penyulingan dengan air, penyulingan dengan stim dan gelombang mikro untuk mendapatkan minyak cengkih, kaedah penyulingan dengan air didapati mempunyai nilai hasil minyak cengkih yang tertinggi. Dalam proses pengasingan, kariofilin dan molekul bukan polar yang lain dalam minyak cengkih telah di asingkan daripada eugenol, yield tertinggi diperolehi daripada kedua-dua putik cengkih dan daun cengkih yang dicapai oleh nisbah minyak cengkih: natrium hidroksida iaitu 1: 2. Penulenan kariofillin menggunakan penyulingan vakum mengandungi 94% komponen campuran kariofillin, dan 8% alfa-cubebene dengan menggunakan GC/MS pada 136 °C. kariofillin oksida kemudiannya disintesiskan dengan menggunakan empat jenis asid berlainan, asid formic, asetik anhidrat, asid 3-kloroperbenzoik dan asid asetik. Peratusan tertinggi kariofillin oksida yang terbentuk dalam larutan yang dianalisa oleh GC/MS adalah menggunakan asid formic (86.47%); diikuti dengan menggunakan asid 3kloroperbenzoik (81.47%), asetik anhidrida (77.04%), dan asid asetik (75.33%). Kariofillin oksida seterusnya dikristalkan pada suhu yang rendah dan menunjukkan 99 % tulen.

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION	iv
STUDENT'S DECLARATION	V
DEDICATIONS	vi
ACKNOWLEDGEMENT	vii
ABSTRACT	viii
ABSTRAK	ix
TABLE OF CONTENT	Х
LIST OF TABLES	XV
LIST OF FIGURES	xix
LIST OF SYMBOLS	xxiii
LIST OF ABBREVIATIONS	XXV

CHAPTER 1 INTRODUCTION

1.1	Background	1
	1.1.1 Caryophyllene and its special properties	6
1.2	Problem statement	7
1.3	Research Aim	8
1.4	Research Objective	8

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	9
2.2	Extraction of clove oil	9
	2.2.1 Clove	9
	2.2.2 Supercritical fluid extraction (SFE)	10
	2.2.3 Hydrodistillation and Steam Distillation Extraction	12

2.2.4	Microwave Extraction	13
2.2.5	Ultrasonic Extraction	15

Separation and purification of caryophyllene	16
2.3.1 Caryophyllene2.3.2 Caryophyllene separation	16 18
Caryophyllene oxide	20
 2.4.1 Caryophyllene oxide background 2.4.2 Caryophyllene oxide sources i) Synthesis ii) Isolation 2.4.3 Caryophyllene oxide as cytotoxic and antitumor agent 2.4.4 Caryophyllene oxide as a fragrance 2.4.5 Caryophyllene oxide structure 2.4.6 Carwarkyllane oxide structure 	20 20 20 21 21 23 23 24
	 2.3.2 Caryophyllene separation Caryophyllene oxide 2.4.1 Caryophyllene oxide background 2.4.2 Caryophyllene oxide sources i) Synthesis ii) Isolation 2.4.3 Caryophyllene oxide as cytotoxic and antitumor agent 2.4.4 Caryophyllene oxide as a fragrance

CHAPTER 3 METHODOLOGY

3.1	General	26
	3.1.1 Reagents	26
	3.1.2 Apparatus and instruments	26
	i) GC/MS	27
	3.1.3 Characterization	29
	i) FTIR	29
	ii) NMR	30
3.2	Methods	32
	3.2.1 Extraction of clove oil	32
	i) Cleaner Ultrasonic extraction	32
	ii) Steam distillation	33
	iii) Dean-Stark distillation	34
	iv) Microwave distillation	35
	3.2.2 Separation of caryophyllene from clove oil	36
	3.2.3 Purification of caryophyllene	38
	3.3 Caryophyllene Oxide Synthesis	39
	3.3.1 Formic Acid	39
	i) ph determination of reagent	39
	ii) Performic Acid Reaction	40
	iii) Variables	41

3.3.2	Types of acids	45
3.3.3	GC/MS Analysis	51
3.3.4	Crystallization	51

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	52
4.2	Sample Collection and Data Analysis	52
4.3	Extraction	53
	 i) Cleaner ultrasonic ii) Steam distillation iii) Hydrodistillation iv) Microwave 	53 54 54 55
4.4	Separation of Caryophyllene from Eugenol	55
4.5	Purification of Caryophyllene	57
4.6	Synthesis of Caryophyllene Oxide	59
	4.6.1 Performic Acid4.6.2 Acetic acid, Acetic Anhydride, 3-chloroperbenzoic Acid	59 67
4.7	Pure Caryophyllene Oxide	78
4.8	Characterization	81
	i) FTIR ii) NMR	81 84

CHAPTER 5 CONCLUSION & RECOMMENDATIONS

5.1	Introduction	89
5.2	Conclusion	89
5.3	Recommendation	90

REFERENCES

91

APPENDIXES

A	Chromatogram of extraction by Ultrasonic Extractor	97
---	--	----

at reaction temperature of 80 $^{\circ}\mathrm{C}$

B1	Chromatogram of clove bud oil standard	98
B2	Chromatogram of clove leaf oil standard	99
C1	Chromatogram of caryophyllene obtained by separation of clove bud oil at ratio of 1:2	100
C2	Chromatogram of caryophyllene obtained by separation of clove leaf oil at ratio of 1:2	101
D	Chromatogram of standard crude caryophyllene	102
E1	Experiment conditions at different variables, percentage, in solution crystal yield and conversion of caryophyllene oxide by using formic acid	103
E2	Chromatogram of caryophyllene oxide solution formed at pH 2.2,ratio (0.8, 1, 1.2 mol), time (40 h), reaction temperature (24 °C),and C.O solution temperature (35 °C)	108
E3	Chromatogram of caryophyllene oxide formed at 40 h reaction time, ratio (0.8, 1, 1.2 mol), pH 2.2, reaction temperature (24 °C), and C.O. solution temperature (35 °C)	109
E4	Chromatogram of caryophyllene oxide formed at 0.8 mol formic acid used, time (40h), pH 2.2, reaction temperature (24 °C),and C.O solution temperature (35°C)	110
E5	Percentage of caryophyllene oxide formed at 1.3 mol hydrogen peroxide, time (40h), pH 2.2, reaction temperature (24 °C),and C.O. solution temperature (35 °C).	111
E6	Percentage of caryophyllene oxide formed at 30 $^{\circ}$ C reaction temperature, ratio (0.8, 1, 1.3 mol), pH 2.2, time (40h), and C.O.solution temperature (35 $^{\circ}$ C).	112
E7	Chromatogram of caryophyllene oxide formed at different caryophyllene oxide solution temperature same ratio (0.8, 1, 1.2 mol),pH 2.2,time(40 h),and reaction temperature(24 °C)	113
E8	Chromatogram of caryophyllene oxide formed at 8 h at 45 °C reaction temperature same ratio (0.8, 1, 1.3 mol), pH 2.2, and C.O. solution temperature (55 °C)	114
E9	Chromatogram of caryophyllene oxide formed at 16 h at 45 °C reaction temperature same ratio (0.8, 1, 1.3 mol), pH 2.2, and C.O.solution temperature (55 °C)	115

E10	Chromatogram of caryophyllene oxide formed at 20 h at 35 °C reaction temperature same ratio (0.8, 1, 1.3 mol), pH 2.2, and C.O.solution temperature (55 °C)	116
F1	Experiment conditions at different variables, percentage in solution, crystal yield and conversion of caryophyllene oxide by using acetic acid, acetic anhydride,and 3-chloroperbenzoicacid	118
F2	Chromatogram of caryophyllene oxide formed at 55 °C reaction temperature by using acetic acid, time (16h), and C. O solution same ratio (0.8, 1, 1.3 mol), temperature (55°C).	123
F3	Chromatogram of caryophyllene oxide formed at 45° reaction temperature by using acetic anhydride, same ratio (0.8, 1, 1.3 mol), time (16h), and C.O solution temperature (55° C).	124
F4	Chromatogram of caryophyllene oxide formed at 50 °C at 1.2 hydrogen peroxide molar ratio by using 3-chloroperbenzoic acid, time (16h), reaction temperature (55° C), and C.O. solution temperature (55° C).	125
G1	¹ H NMR spectrum of pure standard caryophyllene oxide	126
G2	¹ HNMR proton spectrum of pure synthesized caryophyllene oxide	127
Н	Patent files	128

LIST OF TABLES

1.1	Molecule structures and properties of eugenol, caryophyllene and its derivatives	3
1.2	Prices of clove oil, caryophyllene and its derivatives	5
2.1	Caryophyllene oxide and quercetin effect on the cell lines growth	22
2.2	The values of valence angle of caryophyllene oxide crystal	25
3.1	pH variable	42
3.2	Time variable	42
3.3	Ratio variable	43
3.4	Reaction temperature variable	43
3.5	C.O solution temperature variable	43
3.6	Reaction temperature variable at 8 hours	44
3.7	Reaction temperature variable at 16 hours	44
3.8	Reaction temperature variable at 20 hours	45
3.9	Differences Characteristic of Acids	46
3.10	Temperature variable	48
3.11	Time variable at best temperature	49
3.12	Hydrogen peroxide ratio variable	49
3.13	Time variable at room temperature	50
4.1	Yield and the eugenol content of oil at different times	53
4.2	Yield and the eugenol content of oil at different temperature	53

4.3	Yield and the eugenol content of oil at different times and constant temperature	54
4.4	Yield and the eugenol content of oil at different times and constant temperature	54
4.5	Yield and the eugenol content of oil at different times	55
4.6	Caryophyllene composition of cloves	56
4.7	Yield of caryophyllene with different ratio of sodium hydroxide for bud	56
4.8	Yield of caryophyllene with different ratio of sodium hydroxide for leaf	57
4.9	Composition of standard caryophyllene analyzed by GC/MS	58
4.10	Composition of caryophyllene at different times analyzed by GC/MS	58
4.11	pKa values and best temperature production	78
4.12	Physical properties of standard and produced sample	79
4.13	¹ H NMR data for caryophyllene oxide compound	88

LIST OF FIGURES

1.1	Conversion from caryophyllene to caryophyllene oxide.	5
1.2	α -humulene and isocaryophyllene molecule structure	6
2.1	Clove oil	10
2.2	Direct column interface	11
2.3	Hydrodistillation extraction method	12
2.4	Steam distillation method	13
2.5	Solvent Free Microwave Extractor (SFME)	15
2.6	Ultrasonic Extractor equipment	16
2.7	Column chromatography process	18
2.8	High speed countercurrent chromatography (HSCCC) equipment	19
2.9	Structure of caryophyllene oxide isolated from Jeju guava leaf	23
2.10	Structure of the caryophyllene oxide molecule in the crystal	24
3.1	GC/MS Schematic Diagram	27
3.2	FTIR Process Analysis Diagram	30
3.3	Nuclear magnetic resonance spectroscopy (NMR) BRUKER Ultrashield 500 Plus	31
3.4	Cleaner Ultrasonic (Elmasonic S80H model)	33
3.5	Steam distillation method	34
3.6	Dean-Stark Distillation	35
3.7	Microwave Extractor	36

3.8	Eugenol and caryophyllene phases	37
3.9	Vacuum distillation unit	39
3.10	Formic Acid	40
3.11	Layers of organic and water	41
3.12	Acetic Acid	47
3.13	Acetic Anhydride	47
3.14	3-chloroperbenzoic acid	47
3.15	Vacuum Filtration of Crystal	51
4.1	Percentage of caryophyllene oxide formed at different pH, same ratio (0.8, 1, 1.2 mol), time (40h), reaction temperature (24 °C), and C.O. solution temperature (35 °C)	60
4.2	Percentage of caryophyllene oxide formed at different reaction time same ratio (0.8, 1, 1.2 mol), pH 2.2, reaction temperature (24 °C), and C.O. solution temperature (35 °C)	61
4.3	Percentage of caryophyllene oxide formed at different formic acid mol used same time (40h), pH 2.2, reaction temperature (24 °C), and C.O. solution temperature (35°C)	62
4.4	Percentage of caryophyllene oxide formed at different hydrogen peroxide mol, same time (40h), pH 2.2, reaction temperature (24 °C), and C.O. solution temperature (35 °C)	63
4.5	Percentage of caryophyllene oxide formed at different reaction temperature same ratio (0.8, 1, 1.3 mol), pH 2.2, time (40h), and C.O. solution temperature (35 °C)	64
4.6	Percentage of caryophyllene oxide formed at different caryophyllene oxide solution temperature same ratio (0.8, 1, 1.2 mol), pH 2.2, time (40h), and reaction temperature (24 °C)	65
4.7	Percentage of caryophyllene oxide formed at 8, 16 and 20h at different reaction temperature same ratio (0.8, 1, 1.3 mol), pH 2.2, and C.O. solution temperature (55 °C)	66
4.8	Percentage of caryophyllene oxide formed at different reaction temperature by using acetic acid, same ratio (0.8,	68

	1, 1.3 mol), time (16h), and C. O solution temperature (55°)	
4.9	Percentage of caryophyllene oxide formed at 55°C at different reaction time by using acetic acid, same ratio (0.8, 1, 1.3), mol reaction temperature (55° C), and C.O solution temperature (55° C).	69
4.10	Percentage of caryophyllene oxide formed at 55 °C at different hydrogen peroxide molar ratio by using acetic acid, time (16h), reaction temperature (55° C), and C.O solution temperature (55° C)	70
4.11	Percentage of caryophyllene oxide formed at different reaction temperature by using acetic anhydride, same ratio (0.8, 1, 1.3 mol), time (16h), and C.O solution temperature (55° C)	71
4.12	Percentage of caryophyllene oxide formed at 45°C at different reaction time by using acetic anhydride, same ratio (0.8, 1, 1.3 mol), reaction temperature (45 ° C), and C.O solution temperature (55° C)	72
4.13	Percentage of caryophyllene oxide formed at 45 °C at different hydrogen peroxide molar ratio, time (16h), reaction temperature (55° C), and C.O solution temperature (55° C)	73
4.14	Percentage of caryophyllene oxide formed at different reaction temperature by 3-chloroperbenzoic acid, same ratio (0.8, 1, 1.3 mol), time (16h), and C.O solution temperature (55° C).	74
4.15	Percentage of caryophyllene oxide formed at 50° C at different reaction time by using 3-chloroperbenzoic acid , same ratio (0.8, 1, 1.3 mol), reaction temperature (50° C), and C.O solution temperature (55° C)	75
4.16	Caryophyllene oxide formed at 50 °C at different hydrogen peroxide molar ratio, time (16h), reaction temperature (55° C), and C.O. solution temperature (55° C).	76
4.17	Percentage of caryophyllene oxide formed at room	77

temperature at different time reaction, same ratio			
(0.8, 1, 1.3 mol), and C.O	solution temperature (55° C).		

4.18	Pure caryophyllene oxide	79
4.19	Comparison between pure caryophyllene oxide sample and standard	80
4.20	FTIR of caryophyllene spectrum	81
4.21	IR overlaid spectra of crude caryophyllene and caryophyllene oxide	82
4.22	Overlay of CO sample and CO standard spectrum	83
4.23	FTIR of sodium formate spectrum	84
4.24	Carbon position of caryophyllene oxide	85
4.25	IR overlaid spectra of crude caryophyllene and caryophyllene oxide	86
4.26	¹³ C NMR overlaid spectra of crude caryophyllene and pure synthesised caryophyllene oxide	87
4.27	¹ H NMR overlaid spectra of crude caryophyllene and pure synthesized caryophyllene.	88

LIST OF SYMBOLS

%	Percent	
° C	Degrees Celsius	
g	Gram	
kg	Kilogram	
h	Hour	
MHz	Mega hertz	
KHz	Kilo hertz	
W	Watt	
mL	Mililitre	
L	Litre	
min	Minute	
mL/g	Mililitre per gram	
β	Beta	
mg	Miligram	
H_2O	Water	
μm	Micrometer	
±	Plus minus	
R	Factor (crystallography)	
a	Crystallography axis	
b	Crystallography axis	
С	Crystallography axis	

Z	Crystallography axis	
0	Degree	
w/v	Weight per volume	
mm	Milimeter	
m	Meter	
° C/min	Degree celcius per min	
ml/min	Mililitre per minute	
eV	Electron volt	
S	Second	
g/mol	Gram per mol	
C.0	Caryophyllene oxide	
V/V	Volume per volume	
:	Ratio	
cm ⁻¹	Per centimeter	
ppm	Part per million	

LIST OF ABBREVIATIONS

GC/MS	Gas Chromatography Mass Spectrometer	
RM	Ringgit Malaysia	
et al.	And others	
SFE	Supercritical Fluid Extraction	
GC	Gas Chromatography	
SFME	Supercritical Fluid Microvawe Extractor	
MAHD	Microvawe assist Hydrodistillation	
HSCCC	High speed counter current chromatography	
ELSD	Evaporative light scatter detector	
HeLa	Human cervical adenocarcinoma cells	
HepG2	Human leukemia cancer cells	
AGS	Human lung cancer cells	
SNU-1	Human gastric cancer cell	
SNU-16	Human stomach cancer	
TLC	Thin layer chromatography	
NEOS	Network-Enabled Optimization System	
USA	United States of America	
S80H	Elma model (plug-in mains supply)	
Не	Helium gas	
N2	Nitrogen gas	
H2	Hydrogen gas	

DB-5	Colum phase composition	
NMR	Nuclear magnetic resonance	
$^{1}\mathrm{H}$	Proton 1	
¹³ C	Carbon 13	
AM 400	Atomic mass 400	
CDCl ₃	Dichloromethane	
AMU	Atomic mass unit	
FTIR	Fourier transform infrared	
IR	Infrared	
рКа	Primary knock-on atom	
C=C	Carbon double bonded to carbon	
=CH	Double bonded to 1 carbon, 1 hydrogen	
=CH2	Double bonded to 1 carbon, 2 hydrogen	
С-Н	Carbon bonded to hydrogen	
C-0	Carbon bonded to oxygen	

CHAPTER 1

INTRODUCTION

1.1 Background

Clove yields three types of crude essential oil which can be extracted from the leaves, the stems and the buds (Alma et al., 2007) namely clove leaf, clove stem and clove bud oils. The clove oil that is produced from these raw materials differs considerably in yield and quality. The yield and compositions of the oil obtained are influenced by its origin, season, variety and quality of raw material, maturity at harvest, pre- and post-distillation treatments and finally the method of distillation. Clove oil contains eugenol (Myint et al., 1996), caryophyllene as the major compositions and other minor compounds such as eugenol acetate (Huston and Li, 1991).

The best quality essential oil from the clove oil contains (80- 90%) eugenol, (15%) eugenol acetate and (5-12%) β -caryophyllene (Alma et al., 2007). Alma et al. (2007) identified 18 chemical compositions of the essential oil from Turkish Clove Buds which is produced or extracted by steam distillation method.

The analysis of clove bud oil extracted with liquid and supercritical carbon dioxide showed significant qualitative and quantitative compositional differences compared to oil obtained by the conventional hydrodistillation process. Wengqiang et al. (2007) reported clove bud oil obtained by supercritical fluid extraction (SFE) and hydrodistillation contained (53.8-55.9%) and (48.82%) percentage of eugenol respectively. The extraction of the bud flavor from the spice indicated different result by the parameters of pressure, temperature, contact time (Gopalakrishnan et al., 1990). The essential oils can be extracted by three methods hydrodistillation, microwave and ultrasonification. GC-MS analysis of the clove oils obtained by different methods showed that the composition of the clove oil was almost similar, but the relative concentration of the identified compounds was apparently different. The oil yield was influenced largely by particle size while the caryophyllene content by temperature (Wengqiang et al., 2007). Table 1.1 contains molecule structures of eugenol, eugenol acetate, caryophyllene and caryophyllene oxide and description of its properties respectively.

compounds	Molecule structure	Properties
Eugenol	HO I	Molecular formula = $C_{10}H_{12}O_2$ Molar mass = 164.20 g/mol Physical state = clear to pale yellow oily liquid Boiling point = 254 °C Soucre: Chemicalland, 2011.
Eugenol acetate		Molecular formula = $C_{12}H_{14}O_3$ Molar mass = 206.24 g/mol Physical state = clear to pale yellow oily liquid Boiling point = 281- 286 °C Source: Chemicalland, 2011.

Table 1.1: Molecule structures and properties of eugenol, caryophyllene and its derivatives.

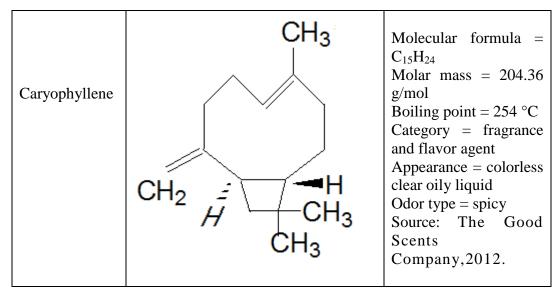
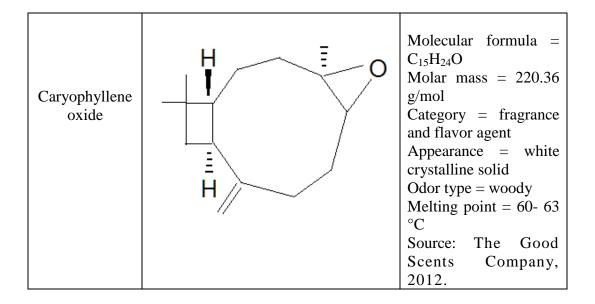



Table 1.1: Continued.

Caryophyllene and their derivatives such as caryophyllene oxide, caryophyllene alcohol (Bhatia et al., 2008 and Mussinan et al., 1980) and caryophyllene acetate are widely used in flavour and fragrance compositions (Kaiser et al., 1976). In industries all caryophyllene derivatives are produced synthetically using caryophyllene as the raw material and therefore they are more expensive than caryophyllene. Some are very much more expensive because of the cost of the other materials used as well as other reasons (Kaiser et al., 1976).

Caryophyllene oxide is very much more expensive than caryophyllene itself or any other eugenol derivatives because of the difficulty in producing it. Just for comparison the price of 1 gram caryophyllene oxide of 99 % purity is RM 279.50 compared to the price of caryophyllene which is RM 10 per kilogram at the time of this work. The price of the most expensive eugenol derivative, dihydroeugenol synthesized using eugenol extracted from clove oil is only over RM 800 per kilogram. Figure 1.1 shows the molecule structure of caryophyllene and caryophyllene oxide. Table 1.2 shows the list of price of clove oil, caryophyllene and its derivatives.

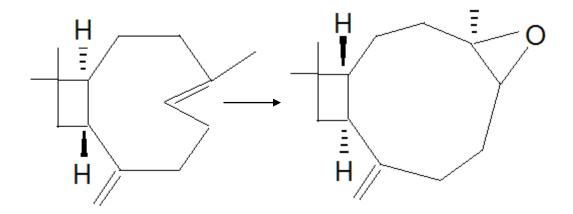
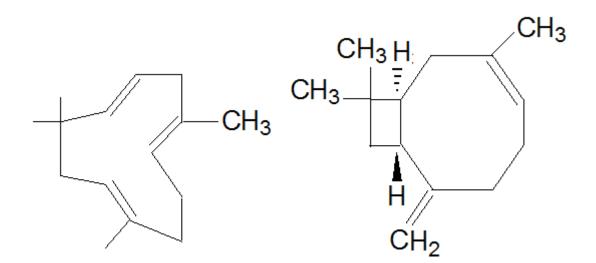



Figure 1.1: Conversion from caryophyllene to caryophyllene oxide.

No	Compound	Price
1	Clove oil	RM 10 / kg
2	Crude caryophyllene	RM 10 / kg
3	Caryophyllene oxide 99% pure	RM 279.50 / gram

Source: SIGMA ALDRICH MALAYSIA June 2009.

Caryophyllene oxide besides commercially applied in perfume industry (Sapra et al., 2010) and as synthetic flavoring substances (Kaiser et. al, 1976 and Yang et. al, 1999) this oxygenated terpenoid has recently been patented as antitumor agent (Choudary et. al, 2006 and Pichette et al., 2002). In previous studies, caryophyllene oxide was used as antifungal against dermatophytes (Yang et al., 1999). Other derivatives such as α -humulene and isocaryophyllene (γ -caryophyllene) are also known to have antitumor properties as shown in figure 1.2.

Figure 1.2: α-humulene and isocaryophyllene molecule structure.

Moreover, gluthatione-S-transferase enzyme and anticarcinogenic agent of β -caryophyllene, β -caryophyllene oxide and α -humulene have been shown to increase the activity of the detoxification which could prevent the formation of cancers (Pichette et al., 2002). Other study by Kubo et al. (1996) decribed β -caryophyllene and β -caryophyllene oxide being isolated from *Asteraceae* exhibits an antitumoral activity against solid tumor cell lines.