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Introduction

In this paper, we continue the work begun in [20] presenting some results on sequential
spaces and also Fréchet spapces. Let X be a space. Then a subset A of X is called sequentially
closed if and only if A contains all of its sequential limit points. Recall that a space X is a
sequential space due to S.P. Franklin [4], if and only if every sequentially closed subset of X is
closed. In [4], he proved that a sequential space is precisely a quotient image of a metric space.

Now unions of two sequential spaces need not be sequential even if under strong
conditions. So, in section 1, we consider the sequentiality for unions X =Y U Z with Y open
in X. And we apply these results to compactifications of locally compact spaces. In [16] and
[17], R. M. Stephenson, Jr. gave characterizations for spaces to be considered as closed subsets
of all first countable spaces; and all symmetric space respectively. In section 2, we obtain some
analogous results for sequential spaces and Fréchet spaces. Next, let X and Y be sequential
spaces. Then not much can be said about the sequentiality of X x Y (cf. [4] [21] and [27]).In
section 3, in terms of a certain set-theoretic axiom, we give a characterization for the product
of sequential spaces X, Y to be sequential, where X and Y are closed images of some “nice”
spaces. Finally, in view of products of sequential spaces, we consider the product of hereditarily
isocompact spaces due to P. Bacon [2].

Throughout this paper, spaces are assumed to be T,,and also to be regular except section 2.

1. Sequentiality for unions.

In general, a compact space which is a union of an open sequential subspace and a single
point need not be sequential. Indeed, a compact linearly orderable space [0, w; ] which is a
union of an open first countable subspace [0, w, ) and a single point w,; is not sequential.
However, we have

Theorem 1.1. Let X =Y U Z be a k-space with Y open or Z closed in X. Suppose that Y is
sequential and Z is a sequential space in which every point is a Gg-set. Then X is sequential if
and only if every countably compact subset of Y is closed in X.
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Proof. Since each countably compact subset of a sequential space is closed, the “only if”
part is clear. So we prove the “if” part. First, we simplify the hypotheses step by step. IfYis
open in X, then X — Y is closed in Z. Then X — Y is 2 sequential space in which every point is a
Gg-set. While, X=Y U (X —Y) and X — Y is closed in X. Thus we assume that Z is closed in X
and YNZ=¢. If Z is closed in X, since every open subset of a sequential space is sequential,
similarly we may assume that Y is open in X with Y N Z = ¢. Thus, in any case, we can assume
that Z is closed in X with Y N Z = ¢. Now, since X is a k-space, the proof will be completed, if
we prove that every compact subset of X is sequential. Therefore, we can assume that
X =YUZ is compact with Z closed and YN Z = ¢. We remark that Z is first countable, because
Z is a-compact space each of whose points is Gg. Let S be a quotient space obtained from X
identifying the compact subset Z of X. Let f:X S be a quotient map. Then fis a closed map
such that each fiber is first countable. Thus, by [20; Theorem (A)], X is sequential if S is
sequential. Hence we may assume that Z is a single point a. In the sequel, we can assume that
X =Y U{a} is a compact space and Y is a sequential space each of whose countably compact
subsets is closed in X. Second, to prove X is sequentially compact, let A ={xn;n € N} be an
infinite subset of X with xp # a. Let x be any accumulation point of A. If x €Y, then A — {x}
is not closed in Y. Thus some subsequence of A converges to a point in Y. If A has no
accumulation point in Y, then {a} = A — A. Since A is countable and A is compact, the point a
has a countable local base in A. This implies that some subsequence of A converges to the point
a. Therefore X is sequentially compact. Finally, to prove X is sequential, suppose F is a
sequentially closed subset of X, but not closed in X. Then there exists a point xo € X with

Xo €F —F. If xo €Y, then x4 eF_ﬂ_Y—Y—(F NY). But FNY is sequentially closed in Y
hence FNY is closed in Y. This is a contradiction. Thus a = xo ¢ F. However, since X is
sequentially compact, F is countably compact. Then F & Y by the hypothesis, hence a €F.
This is a contradiction. Thus X is a sequential space.

A space X is called isocompact [2], if every closed countably compact subset of X is
compact. All meta-compact spaces and all subparacompact spaces are isocompact.

Every countably compact subset of an isocompact sequential space is compact. Then, from
Theorem 1.1 we have

Corollary 1.2. Let X=Y UZ be a k-space with Y open or Z closed in X. Then X is
sequential if Y is isocompact sequential and Z is first countable.

Recall that a space is meta-Lindeldf if every open covering has a point-countable open
refinement.

Also recall that a space X has countable tightness, whenever if x € A then x € D for some
countable D C A. It is well-known that every sequential space has countable tightness.

Let (MA) denote Martin’s Axiom. Then we have

Theorem 1.3. (2% < 2“* or MA). Let X =Y U Z be a k-space with Y open in X. Then X is
sequential if Y is metal-Lindelof sequential and Z is sequential.

Proof. As in the proof of Theorem 1.1, we can assume that X is compact and Y N Z = ¢.
Let S be a quotient space obtained from X identifying Z. Thus, by Theorem 1.1, a compact
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space S is sequential. Hence S has countable tightness. Now, let f:X - S be a quotient map.
Then f is a closed map such that each fiber has countable tightness. Thus, by [1, Theorem 6], X
has countable tightness. This implies that F C X is closed whenever F N D is closed in X for
every countable subset D of X. Hence, to see X is sequential, it is sufficient to prove that the
closure of each countable subset D of X is sequential. Put D' =D N'Y. Since D’ is open in D and
closed in Y, D’ is separable and meta-Lindelof. Then D’ is Lindeldf. Thus, since D’ is locally
compact, D' is a o-compact subset of Y. While, D is a union of a sequential space D’ and a
closed sequential space DN Z. Then the compact space D is a union of countably 'many
compact sequential subspaces. Hence, under 2% <2“* or (MA), D is sequential by [15;
Theorem 2]. Hence closure of each countable subset of X is sequential. This completes the
proof.

Corollary 1.4. (2 <2**) Let X=YUZ be a k-space such that Y is open sequential
subspace and Y is sequential. Then X is sequential if Y is metacompact or normal
subparacompact.

Proof. If Y is metacompact, this follows from Theorem 1.3. So we assume Y is normal
subparacompact. By [10; Theorem 3], under 2% < 2 | every separable normal space has a
property that each uncountable subset has an accumulation point. While, every subparacompact
space with this property is Lindelof. Hence, if 2% < 2“1, every separable, normal subparacom-
pact space is Lindelof. Thus, by the proof of Theorem 1.3, X is sequential.

Recall that a space X is is Fréchet if, whenever x € A, then there exist xp € A such that
Xn = X. Also a space X is a k’-space if, whenever x € A, then there exists a compact subset C of
Xsuch that x e CNA.

In general, a k-space X which is a union of open metric subspace and a single point need
not be Fréchet (Cf. [5; Example 5.1]. However, if X is a k’-space, we have

Theorem 1.5, Let X=Y UZ be a k'-space such that Y is open Fréchet subspace and Z is
Fréchet. Then X is Fréchet if Y is meta-Lindelof and each point of Z is a Gg-set in Z.

Proof. Since X is k', it suffices to prove that every compact subset of X is Fréchet. So, as
in the proof of Theorem 1.1, we may assume that X is compact and Y N Z = ¢. Then, in view of
the proof of Theorem 1.3, X has countable tightness, and for any countable subset D of X,
D" =DNZis a Gg-set in D. Then, since each point of Z is a Gg-set in Z, each point of D" is a
Gg-set in D. Since D is compact, each point of D" has a countable local base in D. While, DNY
is Fréchet and open in D. Thus, that D =(D N'Y) U D" is Fréchet is straightforwards proved.
Therefore D is Fréchet. Since X has countable tightness, by [12;Proposition 8.7], X is Fréchet.

By the following example, it is not easy to improve Theorem 1.5.

Example 1.6. Let ¥ be the Isbell-Mréwka space [6; 5I]. Here we shall describe the
construction of W. Let £ be an infinite maximal pairwise almost disjoint collection of infinite
subsets of natural numbers N and let D = { wg;E € £} be a new set of distinct points. Define
¥ =D UN with each point of N isolated and neighborhoods of wg €D these subsets of ¥
containing wg and all but finitely many points of E. Then ¥ is obviously a first countable,
locally compact space. Moreover ¥ is isocompact. To prove this, let K be any countably
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compact subset of W¥. Then, since D is a closed discrete subset of ¥, A =D M K is finite. So we
may assume that K=Ey UA, where E, is an infinite subset of N. If E, €&, since K is
countably compact, “’E, must belong to A. Thus K is compact. If Eq & £, there exist E; € £,
such that E; NE,; is infinite. Then wg, € A. Thus it follows that K is compact if E, — E; is
finite. So we can assume that E, — E; is infinite and belongs to £ But since A is finite, the
progress must stop by finite step. This shows that ¥ is isocompact. Now, let ¥* be the one-
point compactification of ¥. Then ¥* is a compact sequential space, but it is not Fréchet
[5; Example 7.1]. However ¥* is a union of an open subset ¥, which is first countable iso-
compact, and a single point. We remark that W* is also a union of an open discrete subspace N
and a compact, hereditarily paracompact Fréchet space ¥* — N.

Now, we apply some results to any compactification of a locally compact space. For the
following theorem, we have (1) and (2) from Corollaries 1.2 and 1.4 respectively, and (3) from
Theorem 1.5.

Theorem 1.7. Let C(X) be any compactification of a locally compact space X, and let
C*(X)=CX) - X.

(1). Suppose C*(X) is first countable. Then C(X) is sequential if and only if X is
isocompact sequential.

(2). (2¥ <2*'). Suppose that X is metacompact or normal subparacompact. Then C(X) is
sequential if and only if so are X and C*(X).

(3). Suppose that X is meta-Lindelof and C*(X) is first countable. Then C(X) is Fréchet if
and only if so is X.

In view of the proof of [18; Theorem 15], we have the following.

Lemma 1.8. Let X =Y U {a}be a countably compact space with Y normal Fréchet. Then
X is Fréchet if and only if every countably compact subset of Y is closed in X.
From Theorem 1.7 and Lemma 1.8, we have

Corollary 1.9. Let X be a locally compact space, and let X* be the one-point
compactification of X.

(1). Then X* is sequential if and only if X is isocompact sequential.

(2). If X is normal, then X* is Fréchet if and only if X is isocompact Fréchet.

2. Sequential-closed spaces

Let P be a topological property. Following RM. Stephenson, Jr. [17],a (Hausdorff)
P-space is called P-closed if it is a closed subset of every (Hausdorff) P-space in which it can be
embedded. In [16] and [17], he characterized Hausdorff first countable-closed spaces, and
symmetrizable-closed spaces, etc. respectively.

In this section, we give analogous results for sequential-closed spaces and Fréchet-closed
spaces.

Let X be a space. Then a subset G of X is called sequentially open, if xn > x and x €G,
then G contains all but finitely many xp's. Recall that a space X is sequential if and only if
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every sequentially open subset of X is open in X.

Proposition 2.1. Let X be a regular sequential space. Then X is a Hausdorff sequential-
closed space if and only if X is countably compact.

Proof. The “if”” part is easy, so we prove the “only if”” part. Suppose X is not countably
compact. Then there is a decreasing equence ‘{‘Fn;n eN} of non-empty closed subsets of X
such that NFp=¢. Let pg§ X and let Y=XU{p}. To topologize Y, we refer [16; Lemma
2.10]. Put Ty ={ V; VN X is open in X, and if V Dp then V contains some Fp}. Then it is
easy to see that (Y,Ty) is a Hausdorff space. To prove Y is sequential, let G be not openin Y.
If G P p, then G is not sequentially open in Y. So we assume G D p. If G N X is not open, then
G is not sequentially open in Y. If G N X is open in X, then G P Fy, for all n. Thus there exist
Xn € Fn— G. Then xp = p, but xp € G. Hence G is not sequentially open. This shows that Y is
sequential. Since X is sequential-closed, X is closed in Y. But X is a proper dense subset of Y.
This is a contradiction. This completes the proof.

A space X is called feebly compact if every countable open filter base has an accumulation
point in X. I do not know if every feebly compact subset of a Hausdorff Fréchet space is
closed. However, in normal spaces, “feebly compact™ is equivalent to “countably compact”.
So, using the concept of a feebly compact space, by the same way as in the proof of
Proposition 2.1, we can prove the following.

Theorem 2.2. Let X be a normal Fréchet space. Then X is a normal Fréchet-closed space if
and only if X is countably compact.

Since every regular space Y U {p} is paracompact if Y is paracompact, then by Theorems
2.1 and 2.2 we have

Corollary 2.3. Let X be a Hausdorff paracompact sequential space (resp. Hausdorff
paracompact Fréchet space). Then X is a Hausdorff paracompact sequential-closed space (resp.
Hausdorff paracompact Fréchet-closed space) if and only if X is compact.

3. Products of sequential spaces

We shall begin with some definitions. Let X be a space. Then a decreasing sequence (Ap) in
a space X is called a k-sequence [12], if K =N Ay, is compact and for every open subset V of X
containing K, there exists Ay, with K ¢ Ap ¢ V. According to E. Michael [12; Lemma 3.E.2], a
space X is a bi-k-space if and only if for any filterbase T accumulating at x in X, there exists a
k-sequence (Ap) in X such that x e FN Ay for all n e N and all F € T. It is known that every
paracompact M-space, more generally every space of pointwise countable type is a bi-k-space.

Following [24] , by K(w) we mean the following property: For any k-sequence (Ap), some
Apq is countably compact.

Lemma 3.1. Let fj:X; = Yj (i=1,2) be closed maps such that X, is paracompact bi-k and
Y, has countable tightness. If Y, x Y, is a k-space, then Y, is bi-k or Y, has property K(w).
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Proof. From [24; Theorem 4.2], Y, has property K(w), or Y, has the following
condition: If (Ap) is a decreasing sequence with Ap — {y1} D y1, then there exist ap € A such
that U{ap; n e N} is not closed in Y. Thus, if Y, does not have property K(w), Y, is bi-k by
[12; Theorem 9.9 and Proposition 3.E 4] .

A space Y is a k¢yspace [11], if it is the union of countably many compact subsets Yy
such that a subset A of Y is closed in Y whenever A N Yy, is closed in Y for all n. We shall say
that Y is a locally kyspace, if each point has a neighborhood whose closure is a k,,-space.

The following is a generalization of [22; Theorem 4.3].

Lemma 3.2. Let fj:Xj— Y;j (i=1.2) be closed maps such that each afi"* (yj) is Lindelof.
Let X; be paracompact bi-k spaces, and let Yj have countable tightness. Then Y, x Y, isa
k-space if and only if one of the following properties holds.

(1). Y, or Y, is locally compact.

(2). Y; and Y, is locally k¢,;-spaces.

(3). Y, and Y, are bi-k-spaces.

Proof. We have the “if” part from [3; 3,2], [11; (7.5) and 12; Proposition 3.E.4],
respectively. So, we prove the “only if”’ part. From Lemma 3.1 one of the following properties
holds.

(1). Y, orY, is a bi-k-space with property K(w).

(2). Y, and Y, have property K(w).

(3). Y, and Y, are bi-k-spaces.

In case (1), by [24; Corollary 2.3] Y, or Y, is locally compact. In case (2), by [8; Lemma
2.8] Y, and Y, are locally k¢,,. This completes the proof.

Let us assume « is an infinite cardinal. Then a space X is called a-compact if every subset of
X of cardinality o has an accumulation point in X.

Next, by Sqa, we denote the quotient space obtained from the disjoint union of a
convergent sequences by identifying all the limit points.

Lemma 3.3. [26; Lemma 1.5]. Let £:X - Y be a closed map with X collectionwise normal
and Y sequential. If Y contains no closed copy of Sq, then each 8f ! (Y) is a-compact.

A space X is called countably bi-sequential [12; Lemma 4.D.2] if, whenever (Ap) is a
decreasing sequence accumulating at x € X, then there exist x, € Ap such that xp = x. Such a
space is also called strongly Fréchet.

As an application of Lemma 3.3, we have a generalization of [23; Theorem 2.2(2)].

Theorem 3.4. Let f:X Y be a closed map with X collectionwise normal and Y sequential.
Suppose that Z is Fréchet or a sequential space in which every point is Gg. Then each 3f ' (y) is
2“.compact or Z is countably bi-sequential if Y x Z is sequential, more generally it has
countable tightness.

Proof. Suppose that some af ! (y) is not c-compact, ¢ =2%. Then, by Lemma 3.3, Y
contains a closed copy of Sc. Then S¢ x Z has countable tightness. If Z is Fréchet, by [26;
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Corollary 1.3] Z is countably bi-sequential. So we assume that Z is a sequential space in which
every point is Gg. The proof will be completed if we prove Z is Fréchet. To see Z is Fréchet,
suppose not. Following the proof of [5; Proposition 7.3], for A CZ, let A’ be the set of all
limit points of sequences in A. Since Z is not Fréchet, for some BC Z, B’ #B. ThenB' # B,
for B’ =B. Since Z is sequential, there is a sequence { zp;n €N } in B’ converging to some
zo € B’. We can assume that the zy are distinct and zp € B. Now, since zo is Gg, there exist a
decreasing sequence { Vp;n €N} of open subsets of Z with {20} =N Vp, a subsequence
{xn;n €N} of {zn: n €N}, and also a sequence {xpi;i € N} in B which converges to xp such
that{xpi; i € N} U{xn} € Vn— Vs for each n €N. Let Zo = {xp;n € N} U {xni;n,i eN}

U {zo ). Then it is easy to see that Z, is closed in Z, hence is sequential. So, as is seen in the
proof of [5; Proposition 7.3], 6Zo = Z, is the k¢y-space M of [5; Example 5.1], which is not
locally compact. However, since S¢ x Z has countable tightness, by [26; Proposition 1.1 (2)],
each k,-subspace of Z is locally compact. This is a contradiction. Thus Z is Fréchet. This
completes the proof.

In [25], under CH, we gave a characterization for the product of two closed images of
metric spaces to be a k-space. Gary Gruenhage [7] proved this characterization (without CH) is
equivalent to “the following set-theoretic axiom BF(w,) is false”, which is weaker than CH.

BF(w,): If FC{f;fiN->Nis a functidn}’ has cardinality less than w,, then there is a
function g:N — N such that {n e N; f(n) > g(n) } is finite for all fe F.

Lemma 3.5. [7; Lemma 1]. S, x Sw, is not a k-space if and only if the set-theoretic
axiom BF(w,) is false.

Now we are ready for the main result.

Theorem 3.6. The following are equivalent.

(2). BF(w,) is false.

(b). Let fi:X;~ Yj(i=1,2) be closed maps such that Xj are paracompact bi-k and Yj are
sequential. Then Y; x Y, is sequential if and only if one of the properties below holds.

(1). Y; or Y, islocally comﬁact.

(2). Y, and Y, are locally Kg,,. -

(3). Y, and Y, are bik.

Proof. It is easy to see that S, is neither locally compact nor bi-k, and also S¢,, is not
locally k¢,. So, we have (b) = () from lemma 3.5. Assume (a) holds. For the “if” part of (b), -
we do not use any axioms of set theory beyond ZFC. Indeed, Y; x Y, is a k-space from the
“if” part of Lemma 32. Thus, by [19; Theorem 2.2] Y, x Y, is sequential. So, we need to
prove the “only if” part of (b). If each of; !(y,) and each 8f;(y,) are Lindeldf, then (1), (2)
or (3) holds from Lemma 2.2. Thus we assume that some 3f7'(y;") is not Lindeldf. Since X, is
paracompact, the subset aff' (y;’)of X;is not w,- compact. Then, by Lemma 3.3, Y,
contains a closed copy of S, . Since BF (w,) is false, by Lemma 3.5, Y, contains no
closed copy of S¢,, for S¢y; %S¢, isakspace if Y, contains a closed copy of S,;. Thus, by
Lemma 3.3 each 3f;' (y,) is compact. Hence, by [12; Proposition 3.E.4], Y, is bi-k. On the
other hand, since the subset 3f;! (y,") of X is not compact, by [12; Lemma 9.1 and Theorem
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991, Y, is not bik. Hence, by Lemma 3.1, Y, must satisfy k(w). Therefore, by [24, Corollary
2.31Y, is locally compact.

Recall that a space X is oi pointwise countable type, if each point of X has a k-sequence of
open neighborhoods in X (equivalently, if each point of X is contained in a compact set of
countable character in X).

It is easy to see that CH implies “BF(w,) is false.” Then, from Theorem 3.6 we have the
following, which is a generalization of [25; Theorem 1.1].

Corollary 3.7. [CH]. Let fi:Xj — Yj (i= 1,2) be closed maps such that Xj are paracompact
spaces of pointwise countable type and Yj are sequential. Then Y1 x Y, is a sequential space if
and only if one of the properties (1), (2) and (3) of Theorem 3.6 holds.

Remark 3.8. (1). As for the sequentiality for the product Y, , without CH, we have

Proposition A. (Cf. [8; Theorem 2.11]). Let f:X—>Y be a closed map such that X is
paracompact bi-k and Y is sequential. Then Y? is sequential if and only if Y is bik or locally
k.

(2). As for the “Fréchetness” for the product Y; x Y,, we have the following from [13;
Theorem 9.2] and [12; Theorems 3.D.3 and 9.9] . Also, cf. [12; Proposition 4.D.5].

Proposition B. Let fi:Xj— Yj(i= 1,2) be closed maps with Xj paracompact bi-sequential
(for definition of bi-sequential spaces, see [12; Definition 3.D.1]). Then Y, x Y, is Fréchet if
and only if (1). Y, or Y, is discrete, or (2). Y, and Y, are bi-sequential.

In concluding this paper, we shall consider the product of hereditarily isocompact spaces.
It is shown that [2; Theorem 2.12] the product of any collection of hereditarily isocompact
spaces is isocompact. For the hereditarily isocompactness of products, we have the following in
terms of the product of sequential spaces.

Theorem 3.9. (2% < 2“ or MA). Let Xy(y € T') be hereditarily isocompact spaces. Then
X,y is hereditarily isocompact if and only if all but a countable number of spaces Xy must be a

single point. If each X is especially hereditarily paracompact, then the assumption (2« < 2%
or MA) can be omitted.

Proof. If T1Xy is hereditarily isocompact, then each countably compact subset. of IIXy is
closed in it. Thus, by [20; Lemma 2.1] all but a countable number of spaces X must be a
single point. So, we prove the “if” part. Let C be any countably compact subset of
Xy (%(flo Xy.), and let Ili:‘flo X7. - Xy. be projections. Then Xj = ITj(C) is a compact subspace

of Xy m Wthh every countably compact subset is closed. Hence, by the mam result of M.
Ismail [9; Theorem 1.24] each Xj is sequentiai. Then by [14; Theorem 4.5] H Xl is compact

sequential. Since C is a countably compact subset of the sequential space it Xl, C is closed in
i=1

i} X;. Hence C is compact. This shows that Il X7(~ i} X7 ) is hereditarily isocompact.
“A

If each Xy(yeT) is hereditarily paracompact, then each Xy is hereditarily normal and
each countably compact subset of X, is closed in Xy. Then, in view of [18; Theorem 15} we
can see that every compact subset of Xy is Fréchet, hence sequential. Thus, similarly Xy is
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hereditarily isocompact. That completes the proof.

Supplement. After preparing this paper, the author knew the following paper which has
some relevance to section 1.

A. V. Arhangel’skii, “On bicompacta which are unions of two subspaces of a certain type
“Comment, Math. Univ. Carolinae, 19 (1978), 524-540.
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