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Abstract

The standard Black-Scholes model is a continuous time model to predict asset move-

ment. For the standard model, the volatility is constant but frequently this model is

generalised to allow for stochastic volatility (SV). As the Black-Scholes model is a contin-

uous time model, it is attractive to have a continuous time stochastic volatility model and

recently there has been a lot of research into such models.

One of the most popular models was proposed by Barndorff-Nielsen and Shephard

(2001b) (BNS), where the volatility follows an Ornstein-Uhlenbeck (OU) equation and is

driven by a background driving Lévy process (BDLP). The correlation in the volatility

decays exponentially and so the model is able to explain the volatility clustering present

in many financial time series. This model is studied in detail, with assets following the

Black-Scholes equation with the BNS SV model.

Inference for the BNS SV models is not trivial, particularly when Markov chain Monte

Carlo (MCMC) is used. This has been implemented in Roberts et al. (2004) and Griffin

and Steel (2003) where a Gamma marginal distribution for the volatility is used. Their

focus is on the difficult MCMC implementation and the performance of different proposals,

mainly using training data generated from the model itself. In this thesis, the four main

new contributions to the Black-Scholes equation with volatility following the BNS SV

model are as follows:-

(1) We perform the MCMC inference for Generalised Inverse Gaussian and Tempered

Stable marginal distributions, as well as the special cases, the Gamma, Positive

Hyperbolic, Inverse Gamma and Inverse Gaussian distributions.

(2) Griffin and Steel (2003) consider the superposition of several BDLPs to give quasi

long-memory in the volatility process. This is computationally problematic and so we

allow the volatility process to be non-stationary by allowing one of the parameters,

which controls the correlation in the volatility process, to vary over time. This allows

the correlation of the volatility to be non-stationary and further volatility clustering.

(3) The standard Black-Scholes equation is driven by Brownian motion and a general-

isation of this allowing for long-memory in the share equation itself (as opposed to

the volatility equation), which is based on an approximation to fractional Brownian

motion, is considered and implemented.

(4) We introduce simulation methods and inference for a new class of continuous time

SV models, with a more flexible correlation structure than the BNS SV model.

For each of (1), (2) and (3), our focus is on the empirical performance of different

models and whether such generalisations improve prediction of future asset movement. The

models are tested using daily Foreign Exchange rate and share data for various different

countries and companies.
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Chapter 1

Introduction

The main practical focus of this thesis is on the generalisation of the Black-Scholes equation

to predict asset movement in statistical finance. The main methodological focus is the

attempt to characterise different financial processes. The performance of different models

is tested empirically on real data. Before introducing these models, the standard Black-

Scholes equation is introduced and some of the characteristics, which it is unable to explain

in real financial data, are given. A brief discussion of how the Black-Scholes equation

could be generalised is given in Section 1.3.2. For such generalisations, inference will be

performed using Markov chain Monte Carlo (MCMC) and this is described in Section

1.4.1. Options can then be priced using Monte Carlo integration, which is documented in

Section 1.4.2. Section 1.5 gives an overview of the remaining chapters.

Initially a glossary of important definitions that will be used in this thesis, along with

some useful theorems, is given.

1.1 Definitions

Many of the following definitions can be found in Bertoin (1994), Grimmett and Stirzaker

(2001), Lukacs (1970) and Rogers and Williams (2000).

Definition 1 The Characteristic function, φ (t), of a distribution on Rd, with density

fX (x), is defined by

φ (t) =

Z
Rd

eit.xfX (x) dx, t ∈ Rd.

Definition 2 A distribution, with characteristic function φ (t), is said to be infinitely
divisible if ∀n ∈ Z+ there exists a distribution with characteristic function φn (t) such

15
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that

φ (t) = {φn (t)}1/n .

Definition 3 If a distribution is infinitely divisible then the characteristic exponent,
Ψ (t), is continuous and is defined by

φ (t) = exp {−Ψ (t)} .

This is the definition of Bertoin (1994).

Definition 4 If φ (t) is the characteristic function of a random variable X, then X is

self-decomposable if for all c ∈ (0, 1) there is some family of characteristic functions
{φc : c ∈ (0, 1)} such that

φ (t) = φ (ct)φc (t) .

All self-decomposable distributions are infinitely divisible (see Barndorff-Nielsen and Thor-

bjørnsen (2002)).

Definition 5 Let X1, . . . ,Xn be observations of a discrete time random process with com-

mon mean, E [Xi] = µ, and variance, V [Xi] = σ2 <∞ and define

ρ (i, j) =
E [(Xi − µ) (Xj − µ)]

σ2
.

If

ρ (i, j) = ρ (i− j) = ρ (j − i)

then Xt is a weakly stationary process. The correlation between two observations Xi

and Xj is a function of |i− j| (the distance between the observations).

Definition 6 For a stationary process, Xt, if ∃ α ∈ (0, 1) and a constant c ∈ R+ such
that

lim
k→∞

ρ (k)

ck−α
= 1

then Xt is a stationary process with long-memory or long range dependence. A

process which has short-memory or short range dependence is a process which does
not have long-memory.

Definition 7 The Hurst Parameter, H, is defined as H = 1 − α
2 , where α is defined

in Definition 6. We then have long-memory for 1
2 < H < 1.
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Definition 8 {Yt} is an integrated process of order 0, written Yt ∼ I (0), if Yt is sta-

tionary. {Yt} is an integrated process of order 1, written Yt ∼ I (1), if it can be represented

as

Yt = Yt−1 + ut,

where ut is a stationary time series.

Definition 9 A function, f (x), is said to have bounded variation on [a, b] if there

exists a finite M such that

|f (x1)− f (a)|+ |f (x2)− f (x1)|+ · · ·+ |f (b)− f (xn)| ≤M

for all a < x1 < x2 < · · · < xn < b.

Definition 10 A real-valued stochastic process {Bt : t ∈ R+} is a Brownian motion if
the following hold:-

(i) B0 (ω) = 0, ∀ω.

(ii) the map t 7−→ Bt (ω) is a continuous function of t ∈ R+, ∀ω.

(iii) ∀t, h ∈ R+, Bt+h −Bt ∼ N (0, h) and is independent of {Bu : 0 ≤ u ≤ t}.

Definition 11 A real valued process (Xt)t∈T indexed by some set T is said to be a

Gaussian process if, for any t1, . . . , tn ∈ T, the law of (X (t1) , . . . ,X (tn)) is a mul-

tivariate Gaussian.

Definition 12
©
BH
t : t ∈ R

ª
is fractional Brownian motion (fBm), with index H ∈

(0, 1), if it is a zero mean Gaussian process with covariance function

ρ (t, s) =
1

2

³
|t|2H + |s|2H − |t− s|2H

´
and, when H = 0.5, we have ρ (t, s) = min (t, s) and standard Brownian motion is recov-

ered.

Definition 13 If W (t) is Brownian motion with W (1) = 0 then {W (t) : 0 ≤ t ≤ 1} is
called a Brownian bridge (i.e. it is Brownian motion over a unit time interval, where
the end points of the process are both fixed at 0).
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Definition 14 A stochastic process z (t), with z (0) = 0, is a Lévy process if for every
s, t ≥ 0, the increment z (t+ s)− z (t) is independent of the process {z (u) , 0 ≤ u ≤ t}. If
these increments have the same distribution as z (s) (so the increments are stationary),

then the process is a homogeneous Lévy process and if the increments do not have the
same distribution as z (s) we have an non-homogeneous Lévy process.

Definition 15 A subordinator is a Lévy process which is positive. i.e.

z (t) ≥ 0 ∀t ≥ 0.

Subordinators are non-decreasing.

Definition 16 X (t) is an Ornstein-Uhlenbeck process if it is a solution to the

Ornstein-Uhlenbeck equation

dX (t) = α (µ−X (t)) dt+ σdz (t) ,

where α, µ, σ ∈ R and z (t) is a Lévy process.

1.2 Theorems

Theorem 1 The random variable x is self-decomposable if and only if there is a stationary
stochastic process, x (t), and a Lévy process, z (t), such that x (t) L

= x (so the stochastic

process x (t) has the same marginal distribution as x) and

x (t) =

Z t

−∞
exp {−λ (t− s)} dz (λs)

=

Z 0

−∞
exp (λs) dz {λ (t+ s)}

=

Z 0

−∞
exp (s) dz {λt+ s}

for all λ > 0 (see Wolfe (1982) for details).

Theorem 2 A distribution, with density fX (x) and characteristic exponent Ψ (λ), is in-
finitely divisible if and only if there exists some a ∈ Rd, a positive semi-definite quadratic

Q on Rd and some measure u (x) on Rd/ {0} such that ∀t ∈ Rd

Ψ (t) = ia.t+
1

2
Q (λ) +

Z
Rd

¡
1− eit.x + it.x1|x|<1

¢
u (x) dx (1.1)

and Z
Rd

³
1 + |x|2

´
u (x) dx <∞.
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Equation (1.1) is called the Lévy-Khintchine formula, u (x) is the Lévy measure of
fX (x) and Q (t) is the Gaussian coefficient. {a,Q (t) , u (x)} is called the Lévy triplet
of the distribution fX (x). See Sato (1999) for a detailed proof of this theorem.

If x ∈ Rd
+ then a ≥ 0, Q (t) = 0 andZ

Rd
it.x1|x|<1u (x) <∞,

so the it.x1|x|<1 term can be absorbed into a.

Bertoin (1994) has proved that in the one dimensional case

lim
|t|→∞

Ψ (t)

t2
=

Q

2
≥ 0. (1.2)

If the Lévy process has bounded variation (see Definition 9), then Q = 0 and equation

(1.1) can be rewritten as

Ψ (t) = id.t+

Z
Rd

£
1− eit.x

¤
u (x) dx

and in one dimension with bounded variation

lim
|t|→∞

Ψ (t)

t
= id. (1.3)

If fX (x) is a one dimensional density on R+, Theorem 2 can be rewritten as the

following theorem (see Rogers and Williams (2000), pg 78).

Theorem 3 A one dimensional distribution D on R+, with probability density function
(pdf) fX (x), is infinitely divisible if and only if, ∀t ∈ R+, there is a representationZ ∞

0
e−txfX (x) dx = exp

½
−ct−

Z ∞

0

¡
1− e−tx

¢
u (x) dx

¾
for some c ≥ 0 and measure u (x) on (0,∞) satisfyingZ ∞

0
min (1, x)u (x) dx <∞,

where u (x) is called the Lévy measure or Lévy density of D. In the literature, the Lévy

measure or density are sometimes defined as u (x) dx which can be abbreviated to u (dx).

For examples of derivations of Lévy measures of standard distributions on R+ see

Barndorff-Nielsen and Shephard (2001b) and Section 2.2.



1.3. Black-Scholes equation 20

The Lévy-Khintchine formula (equation (1.1)) can be expressed in various different

forms. One such form can be obtained from the canonical representation of an infinitely

divisible distribution as follows. This is only given in one dimension (which is where our

interest is focused).

Theorem 4 (Feller (1971), pg 563) A univariate distribution, with characteristic function
Ψ (t), is infinitely divisible if and only if there exists some b ∈ R, such that for all λ ∈ R,
Ψ (λ) can be expressed in the form

Ψ (t) =

Z ∞

−∞

½
1 + it sin (x)− eitx

x2

¾
M (x) dx+ ibt,

where M (x) is a measure such that Z β

α
M (x) dx

is finite for all finite α and β and the following two integrals converge for all x > 0

M+ (x) =

Z ∞

x−

M (y)

y2
dy

and

M− (−x) =
Z −x+

−∞

M (y)

y2
dy.

M (x) is the canonical measure.

The relationship between the Lévy and canonical measure is u (x) = M (x)x−2 for

x 6= 0. The canonical measure, M (x), is defined at the origin, unlike the Lévy measure,

u (x), with which we shall be mainly concerned. Note that in Feller (1971) the convention

used is Ψ (t) = log (φ (t)) but we use Ψ (t) = − log (φ (t)).

The Lévy measure, u (x), appears in another canonical representation (Feller (1971),

pg 564)

Ψ (t) = itλ+
σ2

2
t2 + lim

δ→0

Z
|x|>δ

©
1− eitx − it sin (x)

ª
u (x) dx.

Here u (x) is not defined at zero and everywhere else is again equal to M (x)x−2. Further

equivalent representations for the Lévy measure can be found in Sato (1999).

1.3 Black-Scholes equation

The Black-Scholes equation, to model the movement of an asset S, is

dS (t) = µS (t) dt+ σS (t) dW (t) , (1.4)
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where µ (drift) and σ (volatility) are constants andW (t) is Brownian motion, so dW (t) ∼
N (0, dt) (see Definition 10). In a risk neutral world, in the absence of arbitrage, the drift

must be equal to the risk free interest rate, r (see Hull (2000)). The returns are defined

by dS (t). Much modern option pricing is based on variations of this model.

Equation (1.4) has two components; a deterministic part and a random part. It is a

sensible model for asset movement for the following reasons:-

(1) The deterministic part (dS (t) = µS (t) dt) forces S (t) to increase (or decrease)

exponentially at a rate determined by µ. If µ is equal to the risk free interest rate,

then without the Brownian motion, S (t) will move as if the equivalent amount of

money had been invested in a bank. This is important as it prevents arbitrage

opportunities (so there is no expected difference in investing in the share or putting

the money in a bank).

(2) The random part (dS (t) = σS (t) dW (t)) gives continuous sample paths for S (t),

as well as forcing the share to move up or down with equal probability. As the

Brownian motion is multiplied by S (t), we have a geometric solution, which forces

S (t) to remain positive.

(3) It is reasonable to assume that the variance of the return over the time period

(t, t+ dt) is proportional to dt (i.e. the length of the time interval). This is true for

equation (1.4) as dW (t) ∼ N (0, dt).

Black and Scholes (1973) have derived a differential equation, which the price of any

option must satisfy, if it is assumed to follow equation (1.4). As we consider generalising

equation (1.4), option prices for the generalised models need not obey the differential

equation derived in Black and Scholes (1973).

We shall be interested in capturing certain properties of the log returns, so let x (t) =

log [S (t)]. Then x (t) is the log of the asset and equation (1.4) implies it satisfies

dx (t) =

µ
µ− σ2

2

¶
dt+ σdW (t) . (1.5)

This is simple to derive and is included in Appendix A.1. In practice, the dt term can

often be integrated out.

The log returns, y = {y1, . . . , yT}, each separated by ∆ days, are

yi =

Z i∆

(i−1)∆
dx (t) .
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Define the discretely observed volatility as

σ2i =

Z i∆

(i−1)∆
σ2 (u) du, (1.6)

which is σ2∆ for σ2 (u) = σ2, and let

ai =
yi −

³
µ∆− σ2i

2

´
σi

,

then ai
iid∼ N (0, 1) and, if inference about µ and σ2 is required, the likelihood for y is given

by

fY
¡
y
¢
=

TY
i=1

1

σ
√
∆
fAi (ai) .

1.3.1 Weaknesses in the Black-Scholes formulation

The standard Black-Scholes model works well for predicting asset movement over long

time periods where the normal tail behaviour is realistic. For small time periods, it is

unable to describe some observed properties of financial data. These properties include:-

(1) Log returns have heavier tails than normal (see Fama (1965)), particularly for high

frequency data. Equation (1.5) gives Gaussian tail behaviour.

(2) There is high correlation in the absolute value of the log returns. The Black-Scholes

model with constant volatility generates uncorrelated log returns (and any function

of the log returns), as the volatility is constant and W is Brownian motion (which

has independent increments). An example of this property in real data is given in

the first graph of Figure 1.1, which is the autocorrelation function (ACF) of the

absolute value of the log returns of the US Dollar vs Turkish Lira exchange rate

from 6th March 1993 to 1st December 2003.

(3) There is volatility clustering - the asset has periods of high and low activity. Equation

(1.5) gives constant volatility. An example of this property for real data is given in

the second graph of Figure 1.1, which is a plot of the log returns of the Turkish Lira

from 6th March 1993 to 1st December 2003.

1.3.2 Extensions to the standard Black-Scholes equation

We try to amend equation (1.5) to capture some observed properties of financial data

which were given in Section 1.3.1. The exact details of the generalisations can be found

in Chapters 3, 4 and 6 and Appendix D and are outlined here.
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Figure 1.1: Two graphs which demonstrate correlation in the absolute value of the log

returns and volatility clustering for the US Dollar vs Turkish Lira exchange rate.

To increase the weights of the tails of the log returns, allow the volatility to vary over

time, so

dx (t) =

µ
µ− σ2 (t)

2

¶
dt+ σ (t) dW (t) . (1.7)

If we are able to specify the marginal distribution of the volatility, ignoring the dt term

(which can often be integrated out), the kurtosis of the log returns, Y , will then be (see

Appendix A.2)

KY = 3
E
£
σ4 (t)

¤
(E [σ2 (t)])2

.

The kurtosis will then be greater than three and can be controlled by the form of the

marginal distribution imposed on σ2 (t).

To try to induce correlation in the absolute value of the log returns, as well as volatility

clustering, we would like a volatility model which generates correlated σ2 (t), where the

strength of this correlation can be controlled.

The model proposed in Barndorff-Nielsen and Shephard (2001b) (referred to as the

BNS SV model) is a very flexible model and satisfies all the previously mentioned require-

ments. Here the volatility follows the Ornstein-Uhlenbeck equation

dσ2 (t) = −λσ2 (t) dt+ dz (λt) , (1.8)

where z (t), called the background driving Lévy process (BDLP), is a subordinator with
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z (0) = 0 (see for example Sato (1999) and Rogers and Williams (2000) for an introduction

to Lévy processes) and λ is a positive constant controlling the strength of the correlation

in the volatility process. The timing of the subordinator ensures λ does not alter the

marginal distribution of σ2 (t). Further details on this process are given in Section 3.2 and

technical details are given in Appendix D.

The Lévy process is constant apart from when it has positive jumps. A realisation

from a Lévy process is given in Figure 1.2.

t

z(
t)

0 2 4 6

0
1

2
3

Figure 1.2: Graph of a typical homogeneous Lévy process, with Ga (1, 1) jumps, which

might drive the Ornstein-Uhlenbeck equation. The jump times are the arrival times of a

Poisson process of unit intensity.

Later on, to add more flexibility to the model, correlated increments are used to drive

the asset equation (1.7). This is introduced in Section 3.5 and will induce correlation in

the absolute value of the log returns. This reduces the amount of correlation that the

volatility model must capture.

In Section 3.3, equation (1.8) is generalised by allowing the correlation parameter, λ,

to vary over time. This gives the volatility process a richer correlation structure.

1.4 Parameter estimation

The stochastic volatility model used in Barndorff-Nielsen and Shephard (2001b) has latent

parameters which specify the BDLP. It is impossible to write out the likelihood function
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for the volatility given the other non-latent parameters (such as λ in equation (1.8) and

parameters controlling the exact form of the marginal distribution of σ2 (t)). The only

likelihood available directly is p (yi|σi, µ), where the volatility, σi, is not observed but
is specified by the latent and non-latent parameters. Various likelihood based methods

to estimate the non-latent parameters are discussed in Barndorff-Nielsen and Shephard

(2001b). We shall use MCMC: an overview of this is now given.

1.4.1 Markov chain Monte Carlo

Let θ = {θ1, . . . , θn} be n unknown parameters and let p (θ) be our prior belief about

the distribution of θ before data, y = {y1, . . . , yT}, are observed. MCMC is an algorithm
which samples from the posterior distribution, p

¡
θ|y
¢
, of the parameters given the data,

y, and the prior distribution, p (θ). This is used in Chapters 4 and 5 to make inference

about the unknown parameters of the financial models.

Markov chain Monte Carlo is an iterative procedure, where a Markov chain is con-

structed with a stationary or target distribution equal to the posterior distribution, p
¡
θ|y
¢
,

which we are interested in sampling from. Let st be the state of the chain at time t. The

chain is Markov because the state at time t+1, st+1, is only dependent on the state at time

t, st, and no previous states. After the chain is run for a sufficiently long period of time,

the algorithm samples from the stationary distribution, though these samples are corre-

lated. The key step is to ensure that moves are proposed from st to st+1 which guarantee

the required stationary distribution (i.e. the posterior distribution of the unknown para-

meters, θ, in light of observed data, y). There are two standard techniques to do this. The

first method to be developed was the Metropolis-Hastings (MH) sampler (see Metropolis

et al. (1953) and Hastings (1970)) and is described in Section 1.4.1. The second stan-

dard method is the Gibbs sampler (see Geman and Geman (1994)), where parameters are

updated in order, from their full posterior conditional distributions. Although the Gibbs

sampler is not strictly used in our MCMC; parameters are updated in order, though not

from their full posterior conditional distributions (a Metropolis-Gibbs hybrid). An outline

of the Metropolis-Hastings algorithm is now given (the Metropolis-Gibbs hybrid is similar

but with parameters updated in order). MCMC produces correlated samples from the

posterior distribution and if this correlation is high, the samples can be thinned before

they are used, to reduce the correlation.
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Metropolis-Hastings algorithm

Choose any starting state, s0, for the unknown parameters, θ and set i = 1. Given the

current state, s, propose a new state, s
0
, with probability q

³
s→ s

0
´
. Set si = s

0
with

probability

α
³
s, s

0
´
= min

⎡⎣1, p
³
s
0 |y
´

p (s|y)
q
³
s
0 → s

´
q (s→ s0)

⎤⎦ ,
otherwise set si = s. Increment i and repeat.

Running this chain for a sufficiently long period of time samples dependent variates

from the stationary distribution of the chain, p
¡
θ|y
¢
.

MCMC for variable dimension problems (reverse jump MCMC)

The MCMC algorithm described above can be used when the number of unknown parame-

ters is fixed. For some of the problems that are later considered, the number of unknown

parameters is also an unknown. Reverse jump MCMC (see Green (1995)), abbreviated

RJMCMC, can be used to jump between dimensions and is similar in many ways to the

standard MH algorithm. Note that when we are not proposing to change the dimension

of the problem (even if the problem is variable dimension), the standard MH algorithm

can be used to update parameters (though this will not give samples from the posterior

distribution, p
¡
θ|y
¢
, without the inclusion of a reverse jump move).

Let the chain be in state s = {s1, . . . , sd1} of dimension d1 and suppose a move to

a higher dimension state, s
0
=
n
s
0
1, . . . , s

0
d1+d2

o
, of dimension d1 + d2, is proposed. Let

u = {u1, . . . , ud2} be the d2 random variables that are generated and used in conjunction

with s to generate s
0
, so s

0
= g (s, u) (this function must be invertible).

Define the Jacobian transformation matrix, J , as

Ji,j =

¯̄̄̄
¯∂s

0
i

∂sj

¯̄̄̄
¯ , for 1 ≤ j ≤ d1

and

Ji,j =

¯̄̄̄
¯ ∂s

0
i

∂uj−d1

¯̄̄̄
¯ , for d1 + 1 ≤ j ≤ d2.

Accept state s
0
with probability

α
³
s, s

0
´
= min

⎡⎣1, p
³
s
0 |y
´

p (s|y)
q
³
s
0 → s

´
q (s→ s0)

|J |

⎤⎦ .



1.4. Parameter estimation 27

The acceptance probability for the jump down in dimension from state s
0
to s is

α
³
s
0
, s
´
= min

⎡⎣1, p (s|y)
p (s0 |y)

q
³
s→ s

0
´

q (s0 → s)

1

|J |

⎤⎦ .
We frequently choose proposals where the Jacobian is the identity matrix, so the update

is very similar to the MH update for a fixed dimension move. Running this chain for a

sufficiently long period of time samples dependent variates from the stationary distribution

of the chain, p
¡
θ|y
¢
.

1.4.2 Monte Carlo integration

Deterministic numerical algorithms provide an efficient method to accurately evaluate low

dimensional integrals. For higher dimensional integrals, Monte Carlo (MC) integration

tends to provide more accurate estimates. For numerical integration, there are often

deterministic bounds on the accuracy of the answer, whilst for Monte Carlo integration

(using pseudo random numbers) the error for the integration is stochastic.

In Chapter 5, the expected payoffs of options are evaluated using MC integration. Here

MCMC is used to sample from the posterior distribution of some unknown parameters,

given observed financial data. These samples can be used to approximate the posterior

distribution. We would like to evaluate the expected payoff of an option, given the model

enforced on the volatility and the posterior samples of the parameters. To do this, we can

directly simulate the share forward (this is called forward sampling) and take the average

payoff. This is a form of MC integration which is briefly outlined below.

Let

Ep [f (x)] =

Z
f (x) p (x) dx

be an integral which is not available in analytical form and so must be evaluated compu-

tationally. To do this, generate a large sample, x1, . . . , xN , from p (x) (which might be our

posterior sample), and estimate the integral as

Ep [f (x)] ≈
1

N

NX
j=1

f (xj) .

The estimate converges almost surely under standard regularity conditions.

The standard MC approach can be modified in the following ways. Importance sam-

pling can be used to try to decrease the variance of the MC estimate (so it is more

accurate) but, for our problem, we can sample directly from the share and, as a result, it

is not easy to use such methods to improve the rate of convergence of the option pricing.



1.5. Plan of thesis 28

Quasi-random sampling (see Tezuka (1995) and Birge (1995)) is perhaps the easiest way to

improve the rate of convergence of the Monte Carlo integration and uses random numbers

that have a low discrepancy. Stratified sampling is a similar idea and can be used to im-

prove the efficiency of the method (see for example Ribeiro and Webber (2003)) and these

techniques can dramatically improve the rate of convergence (though are quite involved).

Antithetic variables (which use random numbers that are negatively correlated) can also

improve the rate of convergence. More details on these techniques, as well as other MC

speed up methods can be found in Robert and Casella (2002).

Computing high-dimensional integrals becomes much more difficult very quickly as

the dimension increases. For this reason, speed up techniques only allow the evaluation of

slightly higher-dimensional integrals than before they were implemented and so they are

not implemented.

1.5 Plan of thesis

Chapter 2 shows how to sample from Lévy processes and how these are related to the Lévy
measure of the process. The Lévy measures of some standard distributions are derived for

both Lévy processes with positive jumps - subordinators - (which is the focus of this thesis

in later sections) as well as some processes with negative jumps. The technique to sample

from four of the Lévy processes is discussed in detail and illustrations of these processes

are given.

Chapter 3 considers whether a model to predict share movement should have long-
memory. Real data sets are tested for long-memory in the log, absolute value and square

of the log returns. A new and popular stochastic volatility model in continuous time is de-

scribed, as well as an alteration to the original Black-Scholes equation to allow for leverage

in the model. The results from the long-memory tests motivate a further generalisation of

the standard Black-Scholes model.

The exact MCMC implementation details, for the models described in Chapter 3, are

given in Chapter 4. The MCMC implementation is extensively tested on four training
data sets and one real data set and the results are summarised. The chapter concludes

by comparing the efficiency of our algorithm with the Hybrid algorithm of Roberts et al.

(2004).

Chapter 5 describes how to compare the performance of the different models, using
predictive densities and option pricing methods. First an introduction to predictive den-

sities and option pricing is given, followed by the results of these tests, which are also

discussed.
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Chapter 6 introduces a new class of stochastic volatility models, based on the work
of Wolpert and Taqqu (2004). This chapter focuses on how to simulate from these models

and inference, and demonstrates their flexible correlation structure.

Chapter 7 details future work and extensions.

The Appendix is split into four parts:-

(A) Analytical Results.

(B) Numerical Algorithms.

(C) Simulation Results.

(D) Theory behind solutions of the Ornstein-Uhlenbeck equation.



Chapter 2

Lévy measures and Lévy processes

Our main use of Lévy processes is to drive the BNS SV model. This chapter introduces the

basic principles of Lévy processes and focuses on how to sample from them. Initially the

characteristics of Lévy processes are discussed, before the Lévy measures of some standard

distributions are given, and simulation is discussed.

2.1 A note on characteristic functions and Lévy processes

If X ∼ N
¡
µ, σ2

¢
then the characteristic exponent is

ΨX (t) = −iµt+
t2σ2

2
.

Recall the Lévy-Khintchine formula in one dimension (equation (1.1)); the characteristic

exponent of any infinitely divisible distribution can be written as

Ψ (t) = iat+
1

2
Qt2 +

Z
R

¡
1− eitx + itx1|x|<1

¢
u (x) dx.

This is made up of the characteristic exponent of a Normal (−a,Q) variate and an integral
with respect to the Lévy measure, u (x).

If we want to sample from a (possibly non-homogeneous) Lévy process which has a

known distribution at time t = ∞, or a homogeneous Lévy process which has a known
distribution at some time point (which is the focus in Section 3.2 and Chapter 4), then

the process has three parts:-

(1) A deterministic drift part (from the iat term).

(2) A Brownian motion part (from the 1
2Qt

2 term).

30
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(3) A pure jumps part (from the remaining integral).

A rigorous description of this decomposition of Lévy processes can be found in Bertoin

(1994). The BNS SV model is driven by a pure jumps Lévy process and this is why the

focus of this chapter is simulating from pure jumps Lévy processes. Initially homogeneous

Lévy processes (so the process has independent and stationary increments - see Defini-

tion 14) are considered but in Sections 2.3 and 3.3 non-homogeneous Lévy processes are

investigated.

The most widely used Lévy process is Brownian motion and this only has a Brownian

motion part (2). The simplest way to generate a Lévy process is to pick the distribution of

the jumps, z (t+ s)−z (t), and simulate z (i∆t) at discrete time intervals ∆t, 2∆t, 3∆t, . . .
for suitably small ∆t. For Brownian motion (with variance σ2), z (1) ∼ N

¡
0, σ2

¢
and the

jumps satisfy

z (t+∆t)− z (t) ∼ N
¡
0,∆tσ2

¢
.

0.0 0.2 0.4 0.6 0.8 1.0

t

-0
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z(
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Figure 2.1: Simulated Brownian motion with σ = 0.5 and ∆t = 0.0001.

This Lévy process is continuous almost surely and is the only such Lévy process (see Feller

(1971)).

Another method to generate Lévy processes is given in Section 2.3, which uses the

Lévy measure of the distribution from which we want to sample. The Lévy measures of

some standard distributions are now given.
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2.2 Lévy measures of some standard distributions

From Theorem 2, only infinitely divisible distributions have Lévy measures, so only stan-

dard distributions which are infinitely divisible are considered. The first two distributions

are perhaps the most important, as they are very flexible distributions with support on

R+ and are used as the marginal distribution of the stochastic volatility in Section 3.2.

An observation on the Lévy measures of shifted random variables (which take all values

on R) is now given, as it will be useful in deriving some of the Lévy measures.

2.2.1 Shifted random variables

Let X be an infinitely divisible random variable, which can take all values on R and has
density, fX (x), characteristic function, φX (t), characteristic exponent, ΨX (t), and Lévy

measure, u (x). Consider the random variable Y = X +µ, where µ is some constant. The

Lévy measure of Y , uY , therefore has the same domain as the Lévy measure of X, uX .

Then

φY (t) = eitµφX (t)

and so

ΨY (t) = −itµ+ΨX (t) .

The −itµ term can be absorbed into "a" in the Lévy-Khintchine formula (equation (1.1))

and can therefore be ignored. Then

uY (x) = uX (x) , for x ∈ R/ {0}

and the Lévy measure is unaltered by the shift.

2.2.2 Convolution of distributions

Let X and Y be independent random variables (which are both infinitely divisible and so

have Lévy measures) with densities fX (x) and fY (y). Define the random variable Z as

the convolution of X and Y , so Z = X + Y , then

fZ (z) =

Z ∞

−∞
fX (z − y) fY (y) dy =

Z ∞

−∞
fX (y) fY (z − y) dy.

Using the same notation as previously, this gives

φZ (t) = φX (t)φY (t)



2.2. Lévy measures of some standard distributions 33

and hence

ΨZ (t) = ΨX (t) +ΨY (t) ,

so the Lévy measure of Z is

uZ (x) = uX (x) + uY (x) .

This allows the creation of new distributions and their corresponding Lévy measures

by the convolution of two random variables whose Lévy measures are already known. The

convolution of two random variables from the same infinitely divisible distribution often

gives a random variable with the same distribution (e.g. the convolution of two Cauchy

random variables gives another Cauchy random variable so no "new" Lévy measures are

generated); sometimes new distributions can be formed, though often it is difficult to find

fZ (z) in closed form.

2.2.3 Generalised Inverse Gaussian distribution: GIG (γ, ν, α)

Many standard distributions on R+ are special cases of the GIG distribution, such as the

Gamma, Positive Hyperbolic, Inverse Gamma and Inverse Gaussian distributions (which

will be abbreviated to Ga, RPH, IGa and IG respectively). It has been shown in Halgren

(1979) that the Generalised Inverse Gaussian distribution is self-decomposable and so is

infinitely divisible and has a Lévy measure (see Theorem 2).

If X ∼ GIG (γ, ν, α), then

fX (x) =
(α/ν)γ

2Kγ (να)
xγ−1 exp

½
−1
2

¡
ν2x−1 + α2x

¢¾
, for x > 0,

where Kγ () is a modified Bessel function of the third kind.

The Lévy measure of X is

u (x) =
1

x

∙
1

2

Z ∞

0
e−xξ/2ν

2
gγ (ξ) dξ +max (0, γ)

¸
e−α

2x/2, (2.1)

where

gγ (x) =
2

xπ2

n
J2|γ|

¡√
x
¢
+N2

|γ|
¡√

x
¢o−1

(2.2)

and J|γ| and N|γ| are Bessel functions of the first and second kind respectively. This Lévy

measure is derived in Barndorff-Nielsen and Shephard (2001b).

A special case of the GIG (ν, δ, γ) distribution is the Inverse Gamma distribution and

this Lévy process is simulated in Section 2.3.3, using the Lévy measure given in equation

(2.1). The GIG distribution and its four special cases are used as marginal distributions

for the BNS SV models in Chapters 3, 4 and 5. These models require the Lévy measure

of the marginal distribution of the volatility and this is available from equation (2.1).
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2.2.4 Tempered Stable distribution: TS (κ, ν, α)

Special cases of the Tempered Stable distribution include the Inverse Gaussian, Lévy and

Stable distributions.

If X ∼ TS (κ, ν, α), then for 0 < κ < 1 and ν, α > 0, the density is

fX (x) = eναfX|κ,ν (x) exp

(
−α

1/κ

2
x

)
, for x > 0, (2.3)

where

fX|κ,ν (x) =
ν−1/κ

2π

∞X
j=1

(−1)j−1

j!
sin (jκπ)Γ (jκ+ 1) 2jκ+1

³
xν−1/κ

´−jκ−1
, for x > 0,

is the density function of the positive κ − stable law (see Feller (1971) and Barndorff-

Nielsen and Shephard (2001c)). Different parameterisations can be used for the Stable

distribution and the relationship between the representation used in Feller (1971) and

Barndorff-Nielsen and Shephard (2001c) is given in Appendix A.3. Further details on the

Tempered Stable distribution can be found in Tweedie (1984).

The Lévy measure of X is

u (x) =

½
νκ2κ

Γ (1− κ)

¾
x−1−κ exp

(
−α

1/κ

2
x

)

(see Barndorff-Nielsen and Shephard (2001c)).

2.2.5 Generalised Asymmetric Laplace distribution: GAL (α, β, µ)

If X ∼ GAL (α, β, µ), for α, β ∈ R+ and µ ∈ R, the density is

fX (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αβ

α+ β
eβ(x−µ), for −∞ < x ≤ µ

αβ

α+ β
e−α(x−µ), for µ < x ≤ ∞

and the characteristic function is

φ (t) =
αβ (−1)tµ/π

(α− it) (β + it)
.

Using equation (1.2), Q = 0, so we have bounded variation and equation (1.3) can be used

to give a = µ. Consider the case µ = 0; the density is made up of two parts, one for x ≤ 0
and one for x > 0.
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For X > 0, X has the form of a Ga (1, α) distribution (ignoring normalising constants).

Then E [X] = 1/α and the characteristic function is

φ (t) =
α

α− it

and its Lévy measure is given by equation (2.1). That is

u (x) =

⎧⎪⎨⎪⎩
x−1e−αx x > 0

0 x < 0

.

For X ≤ 0, −X has the form of a Ga (1, β) distribution (ignoring normalising constants).

This has characteristic function

φ (t) =
β

β + it

and Lévy measure

u (x) =

⎧⎪⎨⎪⎩
0 x > 0

−x−1eβx x < 0

.

From the definition of the Lévy measure given in equation (1.1), the Lévy measure of the

GAL (α, β, 0) distribution is

u (x) =

⎧⎪⎨⎪⎩
x−1e−αx x > 0

−x−1eβx x < 0

.

This Lévy measure has two parameters which control the decay in the positive and negative

planes and is similar to that used in the CGMY model (see Carr et al. (2002)).

If X ∼ GAL (α, β, 0) , then X + µ ∼ GAL (α, β, µ) with characteristic function

φX+µ (t) =
αβ (−1)tµ/π

(α− it) (β + it)
= φX (t) (−1)tµ/π .

As both X and X + µ are on R, the Lévy measure is independent of µ and is the same as
the Lévy measure of the GAL (α, β, 0) distribution (see Section 2.2.1).

2.2.6 Generalised Cauchy distribution

For µ ∈ R and θ ∈ R+, the density function of the Generalised Cauchy distribution is

fX (x) =
θ

π
³
θ2 + (x− µ)2

´ , for −∞ < x <∞
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and the characteristic exponent is

Ψ (t) = −iµt+ θ |t| ,

so the Generalised Cauchy process has bounded variation and Q = 0 (see equation (1.1)).

The Lévy measure, u (x), will be an even function, as fX (x) is even when µ = 0.

When the exponential part of equation (1.1) is written as trigonometric functions, the

integral of (1− cos (tx))u (x) must be proportional to |t|. We therefore seek a solution
of the form u (x) = cx−2, for some constant, c, (this corresponds to constant canonical

measure, M (x), in Theorem 4). Then

Ψ (t) = iat+ c

Z ∞

−∞

1− cos (tx)
x2

dx+ ci

Z ∞

−∞

tx1|x|<1 − sin (tx)
x2

dx

= iat+ c

Z ∞

−∞

1− cos (tx)
x2

dx+ ci

Z 1

−1

tx− sin (tx)
x2

dx− ci

Z
|x|>1

sin (tx)

x2
dx

The second and third integrands are odd. The second integrand has a removable singularity

at x = 0 and the third integrand does not have any singularities in the range of integration.

Therefore both of these integrals are 0. This gives

Ψ (t) = iat+ c

Z ∞

−∞

1− cos (tx)
x2

dx = iat+ cπ |t|

(details in Appendix A.4).

Picking a = −µ and c = θ/π gives

Ψ (t) = −iµt+ θ |t| ,

which is the characteristic exponent of the Generalised Cauchy distribution. Therefore

the Lévy measure of the Generalised Cauchy distribution is

u (x) =
θ

πx2
.

Note that the location parameter, µ, does not appear in the Lévy measure (which was

known from Section 2.2.1).

2.2.7 Hyperbolic Cosine (Cosh) distribution

For a, µ ∈ R, the density function of the Hyperbolic Cosine distribution is

fW (w) =
1

π |a| cosh
¡w−µ

a

¢ , for −∞ < w <∞.

The derivation of the Lévy measure is quite involved and so is included in Appendix A.5.

The Lévy measure is

u (x) =
sign (a)

x
¡
ex/a − e−x/a

¢ .
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2.2.8 Hyperbolic Sine (Sinh) distribution

The density function of the Hyperbolic Sine distribution is

fX (x) =
2

π2
x

sinh (x)
, for −∞ < x <∞.

It can be shown (see Feller (1971), pg 503) that this has characteristic function

φ1 (t) =

Z ∞

−∞

2

π2
xeitx

sinh (x)
dx =

½
cosh2

µ
πt

2

¶¾−1
.

This is the characteristic function for the random variable Z = X + Y , where X and Y

are independent and identically distributed Cosh random variables (see Appendix A.6).

Therefore the Sinh distribution is infinitely divisible and has Lévy measure

u (x) = 2sign (a)
1

x
¡
ex/a − e−x/a

¢ = sign (a)

x sinh (x/a)

(see Section 2.2.2).

Letting W = Y − µ, for µ ∈ R, gives

fW (w) =
2sign (a)

π2a2
(w − µ)

sinh
¡w−µ

a

¢ , for −∞ < w <∞

and it is known from Section 2.2.1 that the Lévy measure will be unaltered by the shift.

2.2.9 Normal distribution: N (µ, σ2)

For µ ∈ R and σ ∈ R+, the density of the Normal distribution is

fX (x) =
1

σ
√
2π
exp

(
(x− µ)2

2σ2

)
, for −∞ < x <∞.

It easily follows that

E
£
eitX

¤
= eiµt−σ

2t2/2

and the Lévy measure is u (x) = 0 (and is not defined at the origin). Note that the location

parameter, µ, does not appear in the Lévy measure.

The canonical measure is, perhaps, more interesting than the Lévy measure. The

following derivation is from Feller (1971). Using Theorem 4 we have

Ψ (t) =

Z ∞

−∞

½
1 + it sin (x)− eitx

x2

¾
M (x) dx+ ibt. (2.4)
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Let g (x) be the integrand of equation (2.4) and try M (x) = cδ (x), then (see Appendix

A.7) Z ∞

−∞

½
1 + it sin (x)− eitx

x2

¾
M (x) dx =

ct2

2
.

This requires us to define

g (0) = lim
x→0

g (x) .

Choosing b = −µ and c = σ2 in equation (2.4) then gives

Ψ (t) =
σ2t2

2
− iµt,

which is the characteristic function of the N
¡
µ, σ2

¢
distribution and so the canonical

measure is

M (x) = σ2δ (x) .

2.2.10 Student-t distribution

For n ∈ R+, the density of the Student-t distribution with n degrees of freedom is

fX (x) =
Γ
¡
n+1
2

¢
Γ
¡
n
2

¢ 1√
nπ

µ
1 +

x2

n

¶−(n+12 )
, for −∞ < x <∞

and the characteristic function is

φ (t) =
2(3−n)/2

Γ (n− 1) /2 |t|
(n−1)/2K(1−n)/2 (|t|) . (2.5)

This can be calculated by noting that if the two independent random variables V, Y are

distributed

V ∼ IGa
³n
2
,
n

2

´
Y ∼ N (0, V ) ,

then Y is distributed Student-t with n degrees of freedom. This is illustrated in Figure

2.5. The characteristic function can then be found by taking iterated expectations.

The characteristic function is not available in closed form for general degrees of freedom,

n, other than in the forms of a modified Bessel function of the third kind given in equation

(2.5). The Lévy measure is only known for the case n = 1, when the Cauchy distribution is

recovered (see Section 2.2.6). Although the Lévy measure could be computed numerically

by inversion of the characteristic function, this approach is computationally intensive and

rather unusable. We adopt a different approach to sample from a Lévy process which has

X∞ ∼Student-t(n).
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As the Student-t distribution is a scale mixture of a normal random variate and the

root of an IGa
¡
n
2 ,

n
2

¢
random variate, we can sample from a Lévy process which has

Student-t marginal distributions (in a similar way to the techniques used in Section 2.3),

even though the Lévy measure is not available. To sample from the Student-t distribution

process, either generate an Inverse Gamma Lévy process, take the root of the process

and multiply by a N (0, 1) variate (this is referred to as Method1), or generate Brownian

motion up to time t = 1 and multiply this by the root of an Inverse Gamma variate (this is

referred to as Method2). Algorithms to sample from Brownian motion and the IGa
¡
n
2 ,

n
2

¢
Lévy process are discussed earlier in this chapter. The real Student-t Lévy process should

have both positive and negative non-infinitesimal jumps. The construction using Method1

or Method2 cannot generate this, as Brownian motion only has infinitesimal jumps and the

Inverse Gamma Lévy process only has positive jumps (though they are non-infinitesimal).

The distribution of the end point of this mixture will have a Student-t distribution and

this is similar to the Lévy processes described in Section 2.3, though clearly this is not the

genuine Student-t Lévy process.

2.2.11 Convolution of Cosh variates

The general formula for the density of the convolution of n independent Cosh variates has

been derived in Baten (1934) and is

fZ (z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4n−1

(2n− 1) !2θ2
z

sinh (πz/2θ)

nQ
j=1

³
z2

4θ2
+j2

´
n even

22n−1

(2n) !θ2cosh (πz/2θ)

nQ
j=1

³
z2

4θ2
+
¡
j−12

¢2´
n odd

.

The corresponding Lévy measure is then simple to calculate given the known Lévy measure

of the Cosh distribution and is

u (x) =
sign (θ)n

2x sinh (2θx/π)

(see Section 2.2.2).
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2.2.12 Tables of densities and Lévy measures

Densities on R+

Distribution Density, fX (x) Lévy measure, u (x)

GIG (γ, ν, α) c exp
©
−12

¡
ν2x−1 + α2x

¢ª
e−α

2x/2

x

h
1
2

R∞
0 e−xξ/2ν

2
gγ (ξ) dξ +m (γ)

i

TS (κ, ν, α) exp
³
να− α1/κ

2 x
´
fY |κ,ν (x)

µ
νκ2κ

Γ (1− κ)

¶
x−1−κ exp

³
−α1/κ

2 x
´

Table 2.1: Table of Lévy measures of standard distributions on R+.

where

c =
(α/ν)γ

2Kγ (να)
xγ−1,

m (γ) = max (0, γ) and fY |κ,ν (x) is the positive κ− stable density (see Feller (1971) and

Barndorff-Nielsen and Shephard (2001c)).
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Densities on R

Distribution Density, fX (x) Lévy measure, u (x)

GAL (α, β, µ)

αβ
α+β e

βx −∞ < x ≤ 0

αβ
α+β e

−αx 0 < x ≤ ∞

−x−1e−βx x > 0

x−1e−αx x < 0

Generalised Cauchy
θ

π
n
θ2 + (x− µ)2

o θ

πx2

Hyperbolic Cosine
1

π |a| cosh
¡x−µ

a

¢ sign (a)

2x sinh
¡
x
a

¢

Hyperbolic Sine
2sign (a)

π2a2
(x− µ)

sinh
¡x−µ

a

¢ sign (a)

x sinh
¡
x
a

¢

n Hyperbolic Cosines

(n even) 4n−1

(2n−1)!2θ2
x

sinh(πx2θ )

nQ
j=1

³
x2

4θ2
+ j2

´
sign (θ)n

2x sinh
¡
2θx
π

¢
(n odd) 22n−1

(2n)!θ2 cosh(πx2θ )

nQ
j=1

³
x2

4θ2
+
¡
j − 1

2

¢2´

Normal, N
¡
µ, σ2

¢
1

σ
√
2π
exp

n
(x−µ)2
2σ2

o
0

Table 2.2: Table of Lévy measures of standard distributions on R.

2.3 Sampling from Lévy processes: the Ferguson and Klass
(1972) representation

In this section we study the simulation of Lévy processes to enhance our understanding of

them. Later on we sample from stochastic integrals with respect to Lévy processes, using

series representations similar to the ones introduced in this section.
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Let θ ∈ R and Xθ be a random variable with density fXθ
(xθ) and Lévy measure uθ (x).

Using the same notation as before, the Lévy representation is (see equation (1.1))

Ψθ (t) = iaθt+
Qθ

2
t2 +

Z ∞

−∞

µ
eitx − 1− itx

1 + x2

¶
uθ (x) dx.

Define

dNl,θ (x) =

⎧⎪⎨⎪⎩
uθ (x) dx x ≤ 0

0dx x ≥ 0

and

dNu,θ (x) =

⎧⎪⎨⎪⎩
0dx x ≤ 0

uθ (x) dx x ≥ 0
,

where uθ (x) is the Lévy measure and dNl,θ (x) and dNu,θ (x) must satisfy certain con-

straints (see Walker and Damien (2000)), one of which is dNl,θ (x) , dNu,θ (x) ≥ 0.

The representation given in Ferguson and Klass (1972) is

Ψθ (t) = iaθt+
Qθ

2
t2 +

Z 0

−∞

µ
eitx − 1− itx

1 + x2

¶
dNl,θ (x)

+

Z ∞

0

µ
eitx − 1− itx

1 + x2

¶
dNu,θ (x) . (2.6)

Using the same notation as Walker and Damien (2000) let M (x) be the decreasing

function

M (x) =

Z ∞

x
dNu,∞ (z)

and let
τ1 ∼ Exp (1)

τ i − τ i−1
iid∼ Exp (1) i = 2, 3, . . . .

Define the jumps, Ji, as

Ji = 0, if τ i > M (0)

τ i = M (Ji) , if τ i ≤M (0) .

As the τ i are increasing, the Ji are decreasing. This is a fundamental property in the

simulation algorithm, as it facilitates truncation of the sum in equation (2.7).

In general, Ji|τ i may need to be calculated numerically. In order to generate small
samples from each different Lévy process (on modern computers), it generally does not

matter how efficient the numerical method is and, for this reason, the numerical techniques
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used are not given in this section. Detailed descriptions of the numerical methods used to

calculate the jumps are given when the efficiency of generation is more important (such

as in Section 4.3 when MCMC is used to make inference about the Lévy process).

Further, let

nθ (x) =
dNu,θ (x)

dNu,∞ (x)
,

which behaves like a cumulative density for θ|x and θ ∈ R+, as it is increasing and tends
to 1.

The Ferguson and Klass (1972) series representation of a Lévy process with positive

jumps is

Xθ
L
=

∞X
i=1

JiI {ui ≤ nθ (Ji)} , (2.7)

where ui
iid∼ U (0, 1) for i = 1, 2, . . . . Note that the same uniforms are used for all the Xθ

and that the series may need to be truncated to simulate from Xθ.

To generate from a Lévy process with positive and negative jumps, the process is split

into two Lévy processes, one with positive jumps, one with negative and the processes

are added together (as indicated in equation (2.6)). The Cauchy and Cosh processes are

implemented in Sections 2.3.1 and 2.3.2 using this technique.

Note that

X∞
L
=

∞X
i=1

JiI {ui ≤ n∞ (Ji)} =
∞X
i=1

Ji

and, from Ferguson and Klass (1972) and Walker and Damien (2000), we have

− log
¡
E
£
e−tXθ

¤¢
=

Z ∞

0

¡
1− e−tz

¢
dNu,θ (z) ,

with a similar result for the negative jumps. As a result, Xθ has Lévy measure uθ (x) from

the Lévy-Khintchine formula (equation (1.1)) and therefore has density fXθ
(xθ). This

allows us to test if the algorithm to sample from a Lévy process has been implemented

correctly, comparing the density of X∞ and its theoretical distribution with histograms

and QQplots.

In all of our examples, we choose dNθ (x) = α (θ)u (x) dx, so

nθ (x) =
dNθ (x)

dN∞ (x)
=

α (θ)

α (∞) ,

which is independent of x and then

Xθ
L
=

∞X
i=1

JiI

½
ui ≤

α (θ)

α (∞)

¾
.
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The processes chosen for this were the Cauchy, Cosh, Inverse Gamma and Student-t

distribution processes. Our main focus later on will be Lévy processes with only positive

jumps, so the Cauchy and Cosh processes will not be used outside this chapter. The

Inverse Gamma process was included as it will be of particular interest later, when it is

used as a marginal distribution for volatility.

For our simulations, we choose α (θ) = θ/ (1 + θ). The results for all four processes are

given in Section 2.3.5. Algorithms to simulate from four Lévy processes are now discussed

in detail. The algorithms’ correct implementation is tested by comparing the distributions

of X∞ and its theoretical distribution.

2.3.1 Cauchy process

For θ1 ∈ R+ and µ ∈ R, the Cauchy distribution has density

fX (x) =
θ1

π
³
θ21 + (x− µ)2

´
and the Lévy measure is

u (x) =
θ1
πx2

.

Therefore

dNθ (x) = α (θ)
θ1
πx2

dx

and

M (x) =
θ1
πx

.

The integration for M (x) can be performed analytically for the Cauchy process.

As M (0) = ∞, we have an infinite Lévy measure and so the process will have an
infinite number of (mostly small) jumps. Therefore τ i ≤M (0) for all i and Ji is given by

Ji =
θ1
πτ i

.

This means that Ji 6= 0 ∀ τ i and the sum must be truncated at some point.

Generating sufficiently many uniforms gives

X∞
L
=

∞X
i=1

JiI {ui ≤ n∞ (Ji)} =
θ1
π

∞X
i=1

1

τ i
.

For testing purposes, a standard Cauchy process (θ1 = 1, µ = 0) was simulated (see Figure

2.2).
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2.3.2 Cosh process

For θ1 ∈ R, the convolution of 2n Cosh random variables has density

fX (x) =
4n−1

(2n− 1)!2θ21
x

sinh (πx/2θ1)

n−1Y
j=1

µ
x2

4θ21
+ j2

¶
(see Baten (1934)). The Lévy measure is

u (x) =
2n

x sinh (2θ1x/π)
.

For θ1 ∈ R, the convolution of 2n+ 1 Cosh random variables has density

fX (x) =
22n−1

(2n)!θ1

1

cosh
³
πx
2θ1

´ nY
j=1

(
x2

4θ21
+

µ
j − 1

2

¶2)

(see Baten (1934)). The Lévy measure is

u (x) =
(2n+ 1)

2x sinh (2θ1x/π)
,

so

dNθ (x) = α (θ)
k

2x sinh (2θ1x/π)
dx,

where k can be chosen to be any integer and is specified by the number of Cosh random

variables that are convoluted. In this example, we pick k = 1. Then

M (x) =
k

2

Z ∞

x

1

z sinh (2θ1z/π)
dz

=
k

2

Z ∞

2θ1x/π

1

w sinh (w)
dw

=
k

2

Z π/2θ1x

0

1

y sinh (1/y)
dy

and again, as M (0) =∞, we have an infinite Lévy measure. Therefore τ i ≤M (0) and Ji
satisfies

τ i =
k

2

Z π/2θ1Ji

0

1

y sinh (1/y)
dy

and must be evaluated numerically.

Once the Ji can be calculated, generating sufficiently many uniforms gives

Xt
L
=

∞X
i=1

JiI {ui ≤ α (t)} .

For testing purposes, a standard Cosh process (θ1 = 1, µ = 0) was simulated (see Figure

2.3). For the QQplot for the Cosh process, it is easy to generate from the standard Cosh

distribution using cdf inversion. Details for this are given in Appendix C.1.
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2.3.3 Inverse Gamma process

The Inverse Gamma process is of particular interest as we are interested in using this

for the marginal distribution for our stochastic volatility and comparing its performance

against other marginal distributions. When an Inverse Gamma distribution is used as a

marginal distribution for stochastic volatility in equation (1.8), the returns will be heavy

tailed, approximately Student-t distributed.

If X ∼ GIG
¡
−ν,
√
2α, 0

¢
, for ν, α > 0, then X ∼ IGa (ν, α) (i.e. the density of the

reciprocal of a Ga (ν, α) random variable) and the density is

fX (x) =
αν

Γ (ν)
x−ν−1e−α/x, for x > 0

and from equation (2.1), the Lévy measure is

u (x) =
1

π2x

Z ∞

0

e−xy/4α

y
©
J2ν
¡√

y
¢
+N2

ν

¡√
y
¢ªdy.

Using the same form for dNθ (z) as before,

M (x) =
1

π2

Z ∞

x

1

z

"Z ∞

0

e−zy/4α

y
©
J2ν
¡√

y
¢
+N2

ν

¡√
y
¢ªdy# dz (2.8)

and, as M (0) = ∞, we have an infinite Lévy measure, so Ji 6= 0 for all finite τ i. Rear-

ranging τ i =M (Ji) gives

τ iπ
2 =

Z ∞

0

Ei (1, Jiy/4α)

y
©
J2ν
¡√

y
¢
+N2

ν

¡√
y
¢ªdy, (2.9)

where the exponential integral, Ei (1, x), is defined by

Ei (1, x) =

Z ∞

1
e−xtt−1dt.

Equation (2.9) is preferable to (2.8) as it is a single integral involving standard functions

and can be computed efficiently. Equation (2.8) can be solved using a look up table and

binary search, where the integral is evaluated using Gaussian Quadrature (see Appendix

B.1). For testing purposes, an IGa (1.3, 1.445) process was simulated (see Figure 2.4).

2.3.4 Student-t distribution process

The Student-t distribution process is the fourth simulation example. This is not strictly

the Student-t Lévy process, as it is constructed as the product of a Lévy process (the
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Normal Lévy process or the Inverse Gamma Lévy process) and a random variable (an

Inverse Gamma or Normal random variable respectively), as described in Section 2.2.10.

The purpose of simulating from this process is to show the difference in jumps between

the two Student-t distribution processes and to show that when the root of an Inverse

Gamma variable is multiplied by a Normal random variable, the product is a Student-t

distribution. This is of interest because, when an Inverse Gamma marginal distribution

is used for the stochastic volatility process in Chapter 4, the log returns will then be

approximately Student-t distributed.

2.3.5 Graphs of four Lévy processes

Three graphs for the Cauchy, Cosh and Inverse Gamma Lévy process are given. The first

graphs are individual simulations of each process showing how the processes jump. The

second graphs are histograms of X∞ and the third graphs are QQplots of X∞ against

the corresponding distribution that X∞ should be theoretically, to verify the process has

been generated correctly. For the Student-t distribution process, results for Method1 are

in row 1 and results for Method2 are in row 2 of Figure 2.5. Two graphs are given for

each simulation method; the first column shows how the processes jump and the second

column is a QQplot of end points of the process and a Student-t(3) distribution. As we

chose to sample from the Student-t(3) process, the parameters for the Inverse Gamma

Lévy process and Inverse Gamma random variable are 1.5.
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Figure 2.2: Path of a standard Cauchy process, histogram of the end points and QQplot

of the end points against a Cauchy random variable.
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Figure 2.3: Path of a standard Cosh process, histogram of the end points and QQplot of

the end points against a Cosh random variable.
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Figure 2.4: Path of an IGa(1.3, 1.445) process, histogram of the end points and QQplot

of the end points against an IGa(1.3, 1.445) random variable.
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Figure 2.5: Paths of the two Student-t distribution processes and QQplots of the end

points against a Student-t(3) random variable.

The first graph for each process shows how the different processes jump: jumps in Xt tend

to get smaller as t increases (apart from Method2 of the Student-t distribution process).

The histograms and QQplots suggest the algorithms have been implemented correctly. For

the Student-t distribution process, results are as expected: Method1 has non-infinitesimal

jumps in one direction and Method2 has infinitesimal jumps up and down. For both

methods, the end point of the process is distributed Student-t(3).



Chapter 3

Applications in Finance

The standard Black-Scholes equation (with constant volatility) was introduced in Section

1.3, as most option pricing is based on some variation of this model. Examples were

given to illustrate the standard Black-Scholes model’s inadequacy in explaining certain

properties of financial data, to help motivate generalisations of the model, which were

briefly introduced in Section 1.3.2. One further "stylised feature" of financial data is now

illustrated before further details on the generalisations of the Black-Scholes model are

given.

The main original contributions from this chapter are:-

(1) We recall the BNS SV model and simulate from this when the volatility has an

Inverse Gamma marginal distribution.

(2) We allow the correlation parameter of the BNS SV models to vary over time, so that

the volatility process has a more flexible correlation structure.

(3) We consider a multivariate normal approximation to fractional Brownian motion

and use this to drive the asset equation.

Continue assuming that we have T equally spaced observed log returns, y1, . . . , yT ,

each separated by ∆ days. Typically, observations are daily, so ∆ = 1.

3.1 Long-memory in financial data

Some of the shortcomings of the standard Black-Scholes equation are well accepted (e.g.

kurtosis of the log returns is too small for observed data). However, when it comes to long-

50
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memory in financial data, results in the literature are mixed. It is generally accepted that

long-memory is not present in the returns series, though there are still sources suggesting

otherwise (see for example Barkoulas et al. (2000), where evidence of long-memory in the

returns of the Greek Stock market is found). The long-memory tests are applied to the

log-returns series to facilitate comparison with the MCMC results of Secion 5.3.4. Results

for the square of the log returns series are more consistent but there are still discrepancies.

For example, Ding et al. (1993) and Bollerslev and Mikkelsen (1996) find evidence of long-

memory in the square of the log returns, while Krämer et al. (2002) find less conclusive

evidence of long-memory in the square of the returns (for different financial time series).

Some standard long-memory tests are implemented on the data sets which we investigate

later on because of the mixed results in the literature. The results of these tests motivate

a further generalisation of the model to allow for long-memory. Tests for kurtosis and

volatility clustering are not included as the results for such tests on financial data are

widely accepted.

Whilst there are many methods to test for long-memory, there is not an accepted

standard test and the results of different tests are not always consistent with each other

(see for example Tolvi (2003)). The two tests used here are the R/S statistic, which was

introduced by Hurst (1951) and then modified by Lo (1991), and the GPH test, introduced

by Geweke and Porter-Hudak (1983). The Hurst parameter (which controls the strength

of the long-memory) will be estimated using three different methods.

There are various other long-memory tests but the focus here is to test whether a

long-memory model is needed to effectively model financial data, rather than to assess the

merits of different tests. All the algorithms used are available in the S+FinMetrics add

on for Splus.

Although most previous long-memory testing has been on individual market indices

(see for example Breidt et al. (1998)), the tests are applied to the Foreign Exchange (FX)

rates and shares to which the models are later calibrated. Before their application, the

tests and estimating methods are briefly introduced .

Recalling the definition of long-memory given in Definition 6, we would like to test if

0.5 < H < 1 in the equation

lim
k→∞

ρ (k)

ck2H−1
= 1,

where c ∈ R+ and ρ (k) is the correlation between the stationary process of interest at lag
k.

Long-memory is only concerned with the asymptotic decay of the correlation, so cor-

relation in the process could decay very rapidly initially yet still have long-memory. Es-

timating the correlation at large lags is difficult and this is why it is hard to test for
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long-memory and why there are many long-memory tests. For the Ornstein-Uhlenbeck

stochastic volatility model, the correlation of the log returns decays exponentially. Al-

though this is not a long-memory process, for small λ in equation (1.8), the long-memory

tests often conclude that there is significant evidence for long-memory unless the data set

is sufficiently large.

3.1.1 Tests for long-memory

The algorithms of the two most popular tests for long-memory are described below. For

this section, denote the sample mean (of observed log returns data yi, i = 1, . . . , T ) by y

and standard deviation by sT .

R/S statistic

The R/S (rescaled range) statistic calculates the maximum distance between
Pk

j=1 (yi − y)

and rescales this by the sample standard deviation. The R/S statistic is

QT =
1

sT

⎧⎨⎩ max
1≤k≤T

kX
j=1

(yi − y)− min
1≤k≤T

kX
j=1

(yi − y)

⎫⎬⎭ .

If yi
iid∼ N

¡
µ, σ2

¢
, then QT/

√
T converges weakly to V , where V is the range of a

Brownian bridge (see Definition 13) on the unit interval.

Lo (1991) observed that this statistic can incorrectly conclude that series have long-

memory, when in fact they do not. He suggested a new statistic, fQT , using a modified

standard deviation bσT (q) = bγ0 + 2 qX
j=1

µ
1− j

1 + q

¶bγj ,
where q < T and

bγk = 1

n

n−|k|X
t=1

¡
Xt −Xn

¢ ¡
Xt+|k| −Xn

¢
.

bσ2T (q) is the Newey-West estimate of the long run variance for bandwidth q (see Newey

and West (1994)). For our tests, q =
h
4 (T/100)1/4

i
, which is the default bandwidth choice

in Splus. For q = 0 the original R/S statistic is recovered.
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GPH test

Define the fractionally integrated process, yt, as

ut =

( ∞X
k=0

Ã
k

d

!
(−1)k Lk

)
(yt − y) , (3.1)

where L is the lag operator defined as

L0yt = 1

Lkyt = yt−k k = t, . . . , 1 and t = 1, . . . , T

and ut is a stationary short-memory process with E [ut] = 0.

Definition 17 The spectral density, f (ω), of a stationary process, yt, is

f (ω) =
1

2π

∞X
k=−∞

ρ (k) eikω,

where ρ (k) is the correlation at lag k.

The spectral density of yt, at Fourier frequency ω, is

f (ω) =
n
4 sin2

³ω
2

´o−d
fu (ω) ,

where fu (ω) is the spectral density of ut and d is the fractional difference parameter (so

d = H − 1
2). Then

log {f (ωj)} = − log {fu (ωj)}− d log
n
4 sin2

³ωj
2

´o
, for j = 1, 2, . . . , nf (T ) =

T

2
+ 1

and for small ωj , fu (ωj) is approximately constant, so

log {f (ωj)} = −β − d log
n
4 sin2

³ωj
2

´o
+ ej , for j = 1, 2, . . . , nf (T ) .

Definition 18 For an equally spaced time series X1, . . . ,Xn, the periodogram is a plot at

frequency ωj = 2πj/n and is given by

I (ωj) =
1

2πn

¯̄̄̄
¯
nX
t=1

¡
Xt −Xn

¢
eitωj

¯̄̄̄
¯
2

=
1

2π

n−1X
k=−(n−1)

bγkeikωj j = 1, . . . ,

∙
n− 1
2

¸
.
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Using a periodogram estimate of f (ωj) and for large T , if nf (T ) = Tα (for 0 < α < 1),

the least squares estimate, bd, is distributed
bd ∼ N

⎛⎜⎜⎜⎝d,
π2

6
nfP
j=1

¡
Uj − U

¢2
⎞⎟⎟⎟⎠ ,

where Uj = log
£
4 sin2 (ωj/2)

¤
.

This is then used in a hypothesis test, where the null hypothesis is yt does not have

long-memory (so d = 0). If the null is rejected, the test concludes yt has long-memory.

This test was developed by Geweke and Porter-Hudak (1983).

3.1.2 Estimating the Hurst parameter

Three methods are described to estimate the Hurst parameter, H, so that the strength of

the long-memory in different financial data series can be compared.

R/S method

Mandelbrot (1975) showed that for a short-memory process, where Hurst parameter H =

0.5, or for a long-memory process, with Hurst parameter 0.5 < H < 1, the R/S statistic

converges in distribution to a random variable at rate TH . For large T , the log-log plot of

the R/S statistic against sample size should approximately be a straight line with gradient

H.

Periodogram method

It can be shown that f (ω) ∼ cf |ωj |1−2H as |ωj |→ 0. As the spectral density can be esti-

mated by a periodogram, the log-log plot of the periodogram against ω will approximately

be a straight line with gradient equal to 1 − 2H for small ωj , typically taken to be the

Fourier frequencies ωj = 2πj/n.

Whittle’s method

The parameters in equation (3.1) (one of which is d) can be estimated by minimising

Q (θ) =

Z π

−π

I (ω)

f (θ, ω)
dω,
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where θ is a vector of the unknown parameters, I (ω) is the periodogram of yt and f (θ, ω)

is the spectral density (see Beran (1994)). The estimate for H is then bH = bd+1/2, wherebd is the estimate for d.
3.1.3 Results of long-memory tests on observed financial data

Foreign Exchange rate data

The tests will be applied to the Foreign Exchange rate data for the US Dollar against

various currencies. The data are daily log returns from 6th March 1993 through to 1st

December 2003 (excluding when markets were closed). This gives 3653 observations.

US Dollar against yi

Statistics Estimates

R/S test GPH test HR/S Hpg HW

Australian Dollar 1.8927* -0.1217 0.60 0.49 0.51

Brazilian Real 1.1167 0.2986 0.52 0.65 0.50

British Pound 1.2149 -1.07 0.55 0.40 0.52

Canadian Dollar 1.3511 -0.1524 0.58 0.53 0.50

Colombian Peso 1.2532 1.3724 0.59 0.60 0.52

Danish Krone 1.8614 1.3143 0.61 0.55 0.51

Euro 1.608 0.5654 0.56 0.52 0.49

Iceland Krona 1.9321* 2.3471* 0.58 0.59 0.54

Japanese Yen 1.6 0.8551 0.60 0.51 0.56

Moroccan Dirham 1.7258 1.4983 0.58 0.48 0.46

Singapore Dollar 1.3602 0.6452 0.61 0.57 0.56

Thai Baht 2.1578** 2.3457* 0.63 0.70 0.53

Table 3.1: Long-memory tests on the log returns of FX data.
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US Dollar against |yi|
Statistics Estimates

R/S test GPH test HR/S Hpg HW

Australian Dollar 5.1768** 4.9634** 0.66 0.74 0.62

Brazilian Real 4.6917** 5.554** 0.78 1.05 0.71

British Pound 2.7259** 2.6517** 0.69 0.66 0.58

Canadian Dollar 4.7594** 6.7123** 0.68 0.90 0.63

Colombian Peso 2.4478** 2.3767* 0.70 0.79 0.67

Danish Krone 3.2208** 4.6043** 0.68 0.80 0.56

Euro 2.4177** 3.5981** 0.61 0.65 0.55

Iceland Krona 5.2893** 3.9752** 0.59 0.67 0.64

Japanese Yen 3.5464** 4.839** 0.75 0.82 0.63

Moroccan Dirham 3.4952** 4.05** 0.71 0.80 0.62

Singapore Dollar 4.7487** 5.8275** 0.72 0.78 0.71

Thai Baht 5.1327** 6.9568** 0.78 1.02 0.72

Table 3.2: Long-memory tests on the absolute value of the log returns of FX data.

US Dollar against y2i
Statistics Estimates

R/S test GPH test HR/S Hpg HW

Australian Dollar 3.9526** 3.8624** 0.67 0.69 0.60

Brazilian Real 2.4255** 2.6609** 0.74 0.94 0.65

British Pound 2.2811** 1.6355 0.66 0.63 0.58

Canadian Dollar 3.8436** 5.9681** 0.68 0.88 0.64

Colombian Peso 1.728 1.4461 0.65 0.70 0.62

Danish Krone 3.2325** 3.9258** 0.67 0.75 0.57

Euro 2.4971** 4.0746** 0.62 0.62 0.56

Iceland Krona 3.9911** 4.6667** 0.60 0.58 0.56

Japanese Yen 2.4926** 4.0993** 0.68 0.71 0.67

Moroccan Dirham 2.287** 2.2124* 0.66 0.68 0.59

Singapore Dollar 3.8127** 4.6522** 0.65 0.71 0.65

Thai Baht 3.0116** 2.3882* 0.76 0.82 0.57

Table 3.3: Long-memory tests on the square of the log returns of FX data.

* : significant at 5% level

** : significant at 1% level
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The results suggest that, for FX data, y rarely has significant evidence of long-memory,

while |y| and y2 often have significant evidence of long-memory. For the data sets exam-

ined, the long-memory is stronger for |y| than y2. Most of the time, the two tests agree

on whether a particular series has long or short-memory.

Share data

The tests will now be applied to open prices of shares on the New York Stock Exchange

(NYSE). The data are daily log returns from 6th March 1989 through to 1st December

2003 (excluding when the market is closed), giving 3733 log returns. For data sets where

the company had not been a quoted corporation (equivalent to public limited company

in the UK) from 6th March 1989, the data were drawn from the time that it became a

publicly quoted company until 1st December 2003.

Company yi

Statistics Estimates

R/S test GPH test HR/S Hpg HW

British Airways PLC 1.5032 -1.4812 0.51 0.49 0.50

Citigroup Inc 0.8589 -1.5244 0.51 0.42 0.45

Coca-Cola Co 0.6148** -1.7592 0.47 0.47 0.49

General Motors Corp 1.1258 -1.1585 0.56 0.51 0.52

HJ Heinz Co 0.9276 -1.3009 0.52 0.48 0.42

Host Marriott Corp 1.5211 0.5507 0.58 0.56 0.52

JP Morgan Chase & Co 1.5296 0.4815 0.53 0.51 0.48

Kellogg Co 1.1359 0.5839 0.57 0.50 0.45

McDonald’s Corp 1.1647 -0.0398 0.51 0.49 0.47

Microsoft 0.8726 -1.7711 0.49 0.47 0.46

Procter & Gamble Co 0.7686* -1.0472 0.53 0.42 0.48

S&P 500 INDEX 1.5479 -0.2718 0.54 0.51 0.48

Textron Inc 1.4322 -0.6426 0.54 0.45 0.48

Time Warner Inc 1.1507 -1.82 0.45 0.36 0.46

Table 3.4: Long-memory tests on the log returns of share data.
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Company |yi|
Statistics Estimates

R/S test GPH test HR/S Hpg HW

British Airways PLC 4.9843** 5.7948** 0.75 0.90 0.69

Citigroup Inc 3.1348** 3.3731** 0.72 0.78 0.62

Coca-Cola Co 2.2878** 2.9215** 0.64 0.64 0.55

General Motors Corp 3.0993** 3.3416** 0.61 0.68 0.58

HJ Heinz Co 2.0911* 3.4386** 0.64 0.65 0.59

Host Marriott Corp 1.9605* 3.3599** 0.80 0.75 0.69

JP Morgan Chase & Co 3.7773** 3.9799** 0.71 0.81 0.64

Kellogg Co 3.412** 4.0863** 0.65 0.73 0.60

McDonald’s Corp 2.912** 3.0813** 0.60 0.62 0.57

Microsoft 2.0196* 1.7344 0.60 0.68 0.56

Procter & Gamble Co 2.8967** 3.799** 0.67 0.65 0.57

S&P 500 INDEX 5.8177** 4.4547** 0.75 0.90 0.67

Textron 3.8589** 2.3312* 0.70 0.71 0.61

Time Warner Inc 2.3416** 3.0394** 0.61 0.69 0.60

Table 3.5: Long-memory tests on the absolute value of the log returns of share data.

Company y2i
Statistics Estimates

R/S test GPH test HR/S Hpg HW

British Airways PLC 2.5437** 2.7662** 0.69 0.68 0.58

Citigroup Inc 1.5707 0.6638 0.61 0.62 0.52

Coca-Cola Co 0.9151 -0.2979 0.59 0.49 0.48

HJ Heinz Co 0.9418 0.2074 0.58 0.50 0.50

Host Marriott Corp 1.3874 1.271 0.73 0.63 0.59

General Motors Corp 1.0038 2.025* 0.57 0.49 0.50

JP Morgan Chase & Co 1.687 0.5348 0.64 0.50 0.51

Kellogg Co 0.7761* -0.3505 0.57 0.49 0.50

McDonald’s Corp 0.7226* 0.1964 0.60 0.48 0.50

Microsoft 0.7815* -1.2662 0.50 0.45 0.50

Procter & Gamble Co 0.7964* -0.9585 0.59 0.45 0.50

S&P 500 INDEX 4.5929** 3.3338** 0.70 0.83 0.67

Textron 1.1368 0.0821 0.67 0.50 0.50

Time Warner Inc 1.7552 0.2615 0.54 0.48 0.51

Table 3.6: Long-memory tests on the square of the log returns of share data.
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* : significant at 5% level

** : significant at 1% level

The results suggest that, for share data, y and y2 rarely have significant evidence of long-

memory, while |y| almost always have significant evidence of long-memory. Most of the
time, the two tests agree on whether a particular series has long or short-memory.

Although results are mixed, in many of the data sets there is evidence that the data

has long-memory in either the absolute value of the log returns and/or the square of the

log returns. This is a "stylised feature" that financial data are often said to have, though

results in the literature are mixed as well. We are unable to conclude that the data does

not require a model with long-memory and so a generalisation of the model is considered

which has long-memory. Empirical testing of the models in Chapter 5 will try to assess

which data sets require the generalised long-memory model.

3.2 Stochastic volatility: The Ornstein-Uhlenbeck model

Recall equation (1.7),

dx (t) =

½
µ− σ2 (t)

2

¾
dt+ σ (t) dW (t) ,

where W (t) is Brownian motion and σ (t) is the stochastic volatility, assumed to be inde-

pendent of W (t). Again, let σi be the discretely observed volatility at time i∆ (defined

in equation (1.6)) and y = {y1, . . . , yT} be the observed log returns and

ai =
yi −

³
µ∆− σ2i

2

´
σi

,

so Ai
iid∼ N (0, 1) and, if inference about µ and σi is required, the likelihood for y is

fY
¡
y
¢
=

TY
i=1

1

σi
fAi (ai) .

For the volatility process, assume that σ2 (t) is a stationary non-Gaussian Ornstein-

Uhlenbeck (OU) process (as given in equation (1.8)), with

dσ2 (t) = −λσ2 (t) dt+ dz (λt) ,

where z (t), called the Background driving Lévy process (BDLP), is a non-Gaussian Lévy

process with z (0) = 0 and λ is a positive constant. This is a popular model suggested in

Barndorff-Nielsen and Shephard (2001b).
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Recalling what a typical Lévy process, z (t), might look like (see Figure 1.2 and Section

2.3.5) we observe that dz (t) is zero everywhere apart from where the BDLP "jumps". If

z (t) does not jump in the time interval (t, t+ δt), then

σ2 (t+ δt) = e−λδtσ2 (t)

and σ2 (t) decreases exponentially at a rate determined by λ.

Positive jumps in z (t) cause positive jumps in σ2 (t) (times of these jumps can be

viewed as times at which new information arrives to the markets, causing the volatility

to increase). These jumps occur more frequently as λ increases. Therefore λ determines

both the rate at which jumps in σ2 (t) occur and the rate of decay in-between these jumps.

The form of equation (1.8) is such that the marginal distribution of σ2 is unaltered by the

parameter λ (see Barndorff-Nielsen and Shephard (2001b) and Appendix D).

The aggregate returns over the time (i− 1)∆ < t < i∆ is

yi =

Z i∆

(i−1)∆
dx (t) ,

where x (t) = log [S (t)] is the log asset. Barndorff-Nielsen and Shephard (2001b) have

proved if the Ornstein-Uhlenbeck process of equation (1.8) is used as an SV model for the

Black-Scholes equation (1.7), then the square of the log returns have correlation structure

corr
¡
y2i , y

2
i+s

¢
= ce−λ∆(s−1) (3.2)

and the discretely observed volatility (see equation (1.6)) has correlation structure

corr
¡
σ2i , σ

2
i+s

¢
= de−λ∆(s−1),

where

1 ≥ d =

©
1− e−λ∆

ª2
2 {e−λ∆ − 1 + λ∆} ≥ c =

©
1− e−λ∆

ª2
6 {e−λ∆ − 1 + λ∆}+ 2 (λ∆)2 (ζ/ω)2

≥ 0,

for ζ = E
£
σ2 (t)

¤
and ω2 = V ar

£
σ2 (t)

¤
. Therefore λ determines the correlation of both

the volatility and the aggregate returns and both processes will have short-memory.

Figures 3.1 and 3.2 demonstrate this correlation structure by looking at the autocor-

relation function (ACF) of simulations from the BNS SV model. Figure 3.1 shows graphs

of volatility processes with IGa (5, 2) marginals and Figure 3.2 shows ACF plots of two

volatility processes with different λ values. This volatility process should have a mean of

approximately 0.5 and a variance of 1/12 = 0.083.
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Figure 3.1: Plots of σ2 (t) for an IGa(5, 2) marginal distribution for λ = 0.05 and λ = 0.5.

0 10 20 30 40

Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

λ=0.05

0 10 20 30 40

Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

λ=0.5

Figure 3.2: ACF plots of σ2 (t) for an IGa(5, 2) marginal distribution for λ = 0.05 and

λ = 0.5 and their theoretical correlation function.
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λ = 0.05 λ = 0.5

E
£
σ2 (t)

¤
0.499 0.495

V
£
σ2 (t)

¤
0.092 0.080

Table 3.7: Mean and variance of volatility processes with IGa(5, 2) marginals and different

correlation parameters.

The means and variances of each process are as expected. In practice, for a finite sample,

the mean and variance tend to be closer to the theoretical values when λ is large, as the

σ2 (t) is less correlated.

Figure 3.3 is a QQplot of the two volatility processes given in Figure 3.1 (but for

T = 30, 000) and illustrates that λ does not alter the marginal distribution of σ2 (t) (this

is a result of Theorem 1. Further details can be found in Appendix D).
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Figure 3.3: QQplot of two volatility processes with IGa(5, 2) marginals but with different

λ parameters.

The marginal distribution of σ2 (t) is entirely specified by the type of BDLP which

drives the Ornstein-Uhlenbeck process in equation (1.8). The relationship between σ2 (t)

and z (t) is through their Lévy measures and is derived in Barndorff-Nielsen and Shephard
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(2000). This means that the practitioner can either pick the form of the BDLP or the

marginal distribution of the volatility (which should be on R+). We shall consider picking
the form of the marginal distribution of σ2 (t), as it is easier to interpret how this influences

the volatility process than choosing the BDLP.

By using different marginal distributions for σ2 (t), the weight of the tails of σ (t) dW (t)

can be controlled (e.g. if σ2 ∼ IGa (ν, δ) then σ (t) dW (t) has a Student-t distribution,

which has much fatter tails than in the standard Black-Scholes framework with constant

volatility - see for example Section 2.3.5). The model also has volatility clustering because

of the correlation in the volatility process.

From equation (1.7), it can be seen that y2i ≈ σ2i . The results in Table 3.3 suggest a

model with long-memory in the volatility process might be appropriate. Griffin and Steel

(2003) consider a superposition of Lévy processes each with their own individual decay

parameter, λi and BDLP. That is

σ2 (t) =
mX
j=1

w+j σ
2
j (t) ,

where the weights satisfy
mX
j=1

w+j = 1.

The autocorrelation function is then

w1 exp (−λ1 |s|) + · · ·+ wm exp (−λm |s|)

(see Barndorff-Nielsen and Shephard (2001b)). This allows the volatility process, σ2 (t), to

have quasi long-memory. We do not implement this, as, although the results from Section

3.1.3 suggest that, for the data sets the models are applied to, both |y| and y2 might have
long-memory, it was clear that the superposition of processes was over-parameterised and

long-memory could be incorporated equally well with fewer parameters (see Sections 3.3

and 3.5). Another variation on the BNS SV models can be found in Barndorff-Nielsen

(2001), where a volatility process with long-memory is created by allowing λ to vary for

each data point, whilst having that same distribution at each time point. Chapter 6

considers other continuous time SV models, driven by Lévy processes, which have a more

flexible correlation structure than the BNS SV models and do not require superposition

to give a long-memory model.

The superposition of Lévy processes does allow the appealing feature of having different

λ’s so that the BDLPs can cause jumps in the volatility at different rates. A similar idea

to this is introduced in Section 3.3, by allowing λ to change over time. This keeps the

same marginal distribution of volatility over the entire series and uses just one BDLP to

drive the Ornstein-Uhlenbeck equation at any individual time point.
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3.3 Stochastic λ in the Ornstein-Uhlenbeck model

For the BNS SV model, the correlation of the square of the log returns decays exponentially

(see equation (3.2)). However, for financial data, the correlation structure of y2i is often

complex and this is illustrated with a real data set. The open value of McDonald’s Corp

shares on the NYSE from 2nd Feb 1970 to 25th June 2004 has 8678 log returns and a

complex correlation structure, changing over time. Figure 3.4 shows two ACF plots of the

square of the log returns, split at the 3769th observation.
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Figure 3.4: ACF plot of the square of the log returns of the McDonald’s Corp data set,

split at time 3769.

Figure (3.4) shows that the decay in correlation is very different over the two time periods.

The lines are possible BNS SV exponential decays which could be used in each series. This

motivates generalising the BNS OU SV model to allow λ to vary over time.

The BDLP, z (λt), in equation (1.8), is a homogeneous Lévy process, as the size and rate

of jumps are stationary. By allowing λ to vary stochastically over time, the rate at which

jumps in z (λt) occur is no longer stationary and the Lévy process is non-homogeneous.
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The theorem of Wolfe (1982) requires λ > 0 in equation (1.8) and so any stochastic process

for λ must be strictly positive. For the BNS SV model, the volatility jumps when new

information arrives to the market and then decays exponentially. It is less obvious how

the arrival of information to the markets should effect the stochastic λ process, so it is

desirable to allow λ to jump both up and down, whilst still remaining strictly positive.

Let ςt = log (λt) be a pure jumps Lévy process (and so has no Brownian motion part, see

for example Bertoin (1994)). The model for ςt is as follows:-

(1) Jumps occur according to a Poisson process with intensity r/T∆ (r > 0).

(2) The jumps are independent and identically distributed (and independent of the Pois-

son process), with distribution g (). These jumps need to be both positive and

negative to allow λt to increase and decrease.

ςt will have jumps occurring in a similar way to the Cosh and Cauchy process given

in Figures 2.2 and 2.3, though jumps in ςt will not necessarily decrease in size as time

increases.

Let {Λt∆} be the stochastic process for λt and λ0 be the value of λ at time zero (this

is constant from the viewpoint of the stochastic process for λ) and let N2 be the number

of jumps for λt∆ occurring in (0, t∆). Then N2 ∼ Po (rt/T ) and E [Λt∆|N2 = 0] = λ0.

Consider the case when g () = N
¡
ω, ε2

¢
. Then for n 6= 0,

Λt∆|N2 = n ∼ LN
¡
nω + log (λ0) , nε

2
¢
,

where LN is the log-normal distribution. Recall if X ∼ LN
¡
µ, σ2

¢
,

fX (x) =
1

σ
√
2π

1

y
exp

(
−1
2

µ
log (y)− µ

σ

¶2)

and E [X] = exp
©
σ2/2 + µ

ª
. Therefore, for n 6= 0,

E [Λt∆|N2 = n,Λ0 = λ0] = exp

½
nε2

2
+ nω + log (λ0)

¾
.

This gives a quasi log-normal Lévy process. The log-normal distribution is a pop-

ular marginal distribution for some discrete time SV models, though this distribution

is not as easy to use as a marginal in the BNS SV models (this is briefly discussed in

Barndorff-Nielsen and Shephard (2001b)). This quasi log-normal Lévy process is used

for the stochastic λ process as it is a straightforward way to introduce both positive and

negative jumps and we are unable to use the log-normal distribution as a marginal for the

distribution of σ2 (t).
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3.3.1 Properties of {Λt}

Let c = rt/T and d = ε2/2 + ω. As the Poisson process and the jumps are independent,

E [Λt∆|Λ0 = λ0] =
∞X
i=0

P (N2 = i)E [Λt∆|N2 = i]

= λ0e
−c + e−c

∞X
i=1

(c)i

i!
exp

½
iε2

2
+ iω + log (λ0)

¾

= λ0e
−c
(
1 +

∞X
i=1

(c)i

i!
eid

)

= e−rt/Tλj0

∞X
n=0

(rt/T )n

n!
exp

∙
n

½
ε2

2
j (j − 1)

¾¸
= λ0

∙
exp

½
rt

T

µ
exp

µ
ε2

2
+ ω

¶
− 1
¶¾¸

.

To ensure the mean is stationary (i.e. E [Λt∆|Λ0 = λ0] = λ0), pick ω = −ε2/2. Then only
two further parameters are introduced into the model, ε2 and r.

fΛt∆|Λ0=λ0 (λ0) = P (N2 = 0) +
∞X
j=1

fΛt∆|Λ0=λ0,N2=j (λ0)P (N2 = j)

= e−rt/T

⎡⎣1 + c
∞X
j=1

(rt/T )j

j!

1√
j
exp

(
−1
2

(log (λ0)− µ)2

jε2

)⎤⎦ , (3.3)
where

c =
1

λ0

1

ε
√
2π

.

Then for λt∆ 6= λ0,

fΛt∆|Λ0=λ0 (λt∆) =
∞X
j=1

fΛt∆|Λ0=λ0,N2=j (λt∆)P (N2 = j)

= e−rt/T
1

λt∆

1

ε
√
2π

∞X
j=1

(rt/T )j

j!
√
j
exp

(
−1
2

(log (λt∆)− µ)2

jε2

)
. (3.4)

Equations (3.3) and (3.4) cannot be simplified further.
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As Λt∆|N2 = n2,Λ0 = λ0 ∼ LN
¡
−n2ε2/2 + log (λ0) , n2ε2

¢
, E

h
Λjt∆

i
is

E
h
Λjt∆

i
= e−rt/T

∞X
n=0

(rt/T )n

n!

Z ∞

0
xjfΛt∆|N2 (x|n) dx

= e−rt/T
∞X
n=0

(rt/T )n

n!
exp

½
j log (λ0)− nj

ε2

2
+ nj2

ε2

2

¾

= e−rt/Tλj0

∞X
n=0

(rt/T )n

n!
exp

½
n
ε2

2
j (j − 1)

¾
= e−rt/Tλj0 exp

∙µ
rt

T

¶
exp

½
ε2

2
j (j − 1)

¾¸
and

V [Λt∆] = λ20

∙
exp

½
rt

T

³
eε
2 − 1

´¾
− 1
¸
. (3.5)

For constant r, as ε increases, V [Λt∆] grows rapidly and so an informative, pragmatically

chosen prior for ε2|r is used to control the variance of ΛT∆ in MCMC simulations.

Using the series expansion for the characteristic function of Λt∆,

E
£
eijΛt∆

¤
=

∞X
k=0

(ij)k

k!
E
h
Λkt∆

i
= e−rt/T

∞X
k=0

(ij)k

k!
λk0 exp

∙µ
rt

T

¶
exp

½
ε2

2
k (k − 1)

¾¸
,

which cannot be simplified further.

Covariance and correlation of {Λt}

Let s ∈ Z+, then corr
¡
Λt∆,Λ(t+s)∆|λ0

¢
is specified by cov (Λt,Λt+s|λ0), as V [Λt|λ0] is

already known from equation (3.5). Then

cov
¡
Λt∆,Λ(t+s)∆|λ0

¢
= E

£
(Λt∆ − λ0)

¡
Λ(t+s)∆ − λ0

¢
|λ0
¤
,

as E [Λt∆|λ0] = λ0 by construction of the stochastic process for λt.

Let K be the number of jumps of the stochastic λ process in (0, t), so K ∼ Po (rt/T ).

Further, let J be the number of jumps in the time (t, t+ s), so J ∼ Po (rs/T ) (because

the number of events occurring in any two non-overlapping intervals are independent for

a Poisson process). The covariance is

cov
¡
Λt∆,Λ(t+s)∆

¢
=

∞X
k=0

P (K = k)
∞X
j=0

P (J = j)E
£
(Λt∆ − λ0)

¡
Λ(t+s)∆ − λ0

¢
|λ0, k, j

¤
,
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as the Poisson process is independent of the jumps in λ.

Note that if k = 0 then Λt∆ = λ0 and this does not contribute to the summation. So,

cov
¡
Λt∆,Λ(t+s)∆

¢
=

∞X
k=1

P (K = k)
∞X
j=0

P (J = j)E
£
(Λt∆ − λ0)

¡
Λ(t+s)∆ − λ0

¢
|λ0, k, j

¤
.

Also, if j = 0 then Λ(t+s)∆ = Λt∆ and

E
£
(Λt∆ − λ0)

¡
Λ(t+s)∆ − λ0

¢
|λ0,K = k, J = 0

¤
= V [Λt∆|λ0,K = k] ,

so

cov
¡
Λt∆,Λ(t+s)∆

¢
=

∞X
k=1

P (K = k)

⎧⎨⎩V [Λt∆|λ0,K = k] +
∞X
j=1

P (J = j)EΛt∆,Λ(t+s)∆|

⎫⎬⎭ ,

where

EΛt∆,Λ(t+s)∆| = E
£
(Λt∆ − λ0)

¡
Λ(t+s)∆ − λ0

¢
|λ0,K = k, J = j

¤
denotes the conditional covariance given k and j. Hence

cov
¡
Λt∆,Λ(t+s)∆

¢
= V [Λt∆] +

∞X
k=1

P (K = k)
∞X
j=1

P (J = j)EΛt∆,Λ(t+s)∆| (3.6)

and the first term of this is already known from equation (3.5). The expectation term is

equal to

EΛt∆,Λ(t+s)∆| = E [(λ0Z − λ0) (λ0ZY − λ0) |λ0,K = k, J = j] ,

where Z and Y are independently distributed random variables with distributions Z ∼
LN

¡
−kε2/2, kε2

¢
and Y ∼ LN

¡
−jε2/2, jε2

¢
. The expectation part is then

λ20E
£
Z2Y − Z − ZY + 1

¤
= λ20

©
exp

¡
kε2
¢
− 1
ª
.

Substituting this in equation (3.6) gives

cov
¡
Λt∆,Λ(t+s)∆

¢
= V [Λt∆] + λ20

∞X
k=1

P (K = k)
©
exp

¡
kε2
¢
− 1
ª ∞X
j=1

P (J = j)

= V [Λt∆] + λ20

n
1− exp

³
−rs
T

´o ∞X
k=1

P (K = k)
©
exp

¡
kε2
¢
− 1
ª

= V [Λt∆] + λ20

n
1− exp

³
−rs
T

´o½
exp

∙
rt

T

³
eε
2 − 1

´¸
− 1
¾

= V [Λt∆]
n
2− exp

³
−rs
T

´o
λ20,

so

corr
¡
Λt∆,Λ(t+s)∆|λ0

¢
=

V [Λt∆]
n
2− exp

³
−rs
T

´o
q
V [Λt∆]V

£
Λ(t+s)∆

¤
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and the λ0 terms cancel. Writing V
£
Λ(t+s)∆

¤
= cV [Λt∆], solving for c and substituting

into the above equation gives

corr
¡
Λt∆,Λ(t+s)∆

¢
=
n
2− exp

³
−rs
T

´o
vuuuuut

exp

µ
rt

T
d

¶
− 1

exp

µ
r (t+ s)

T
d

¶
− 1

,

where d = exp
¡
ε2
¢
− 1.

3.3.2 The p (λt|λ0, ε2, N2) prior

The model above is fitted using MCMC and, although priors for most of the models

are given in Section 4.3.4, the priors for the parameters of the stochastic λ process are

described here, as they are based on calculations of this section. The joint prior is

p
¡
λt, ε

2, r
¢
= p (λ0) p

¡
ε2|r

¢
p (r) p (N2|r) p

¡
λt|λ0, ε2, N2

¢
,

where
p (λ0) = Ga (1, 1)

p (r) = Ga (1, rp)

p
¡
ε2|r

¢
= Ga

µ
1,

1

log (1 + log (2) /r)

¶

p (N2|r) = Po (r)

and

p
¡
λt|λ0, ε2, N2

¢
=
(T −N2 − 1)!
(T − 1)! p

¡
λ1∆|λ0, ε2, Ju

¢ T−2Y
j=1

p
¡
λ(j+1)∆|λj∆, ε2, Ju

¢
,

where Ju are the jump times of the stochastic λ process. The prior for p (λ0) is discussed

in Section 4.3.4. The prior for r prevents the process from jumping too much. The prior

expected number of jumps in our time series is controlled by rp. The prior for ε2|r has a
prior mean for ε2 which gives V [ΛT∆] = λ20 (see equation (3.5)) and so this prior controls

the variance of the end point of the stochastic process for λt. The factorial terms are from

the different permutations of the times that the jumps in λ can occur.

Abusing notation, let Λj∆ be the jth point at which the λ process jumps. Then
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Λ(j+1)∆ = Λj∆e
Xj+1 , where Xj+1

iid∼ N
¡
−ε2/2, ε2

¢
and

FΛ(j+1)∆|Λj∆
¡
λ(j+1)∆|Λj∆ = λj∆, Ju

¢
= p

¡
Λ(j+1)∆ ≤ λ(j+1)∆|Λj∆ = λj∆, Ju

¢
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¡
λj∆e

Xj+1 ≤ λ(j+1)∆
¢

= FXj+1

µ
log

µ
λ(j+1)∆

λj

¶¶
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fΛj+1|Λj
¡
λ(j+1)∆|Λj∆ = λj∆, Ju

¢
=

1

λ(j+1)∆

1

ε
√
2π
exp

⎡⎢⎣−1
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³
λ(j+1)∆
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´
+ ε2

2

ε

⎫⎬⎭
2
⎤⎥⎦ ,

so

p
¡
λt|λ0, ε2, N2

¢
=

(T −N2 − 1)!
(T − 1)!

µ
1

ε
√
2π

¶N2

⎛⎝N2−1Y
j=0

1

λ(j+1)∆

⎞⎠
× exp

⎡⎢⎣−1
2

N2−1X
j=0

⎧⎨⎩ log
³
λ(j+1)∆
λj∆

´
+ ε2

2

ε

⎫⎬⎭
2
⎤⎥⎦ . (3.7)

This section introduced the theory behind the stochastic λ process, allowing the corre-

lation parameter, λ, to vary over time. The size of the jumps are controlled by ε2 and the

number of jumps by r. The empirical performance of this model is investigated in Section

5.3.3.

3.4 Incorporating leverage

In practice, negative log returns often generate a larger volatility than positive log returns

of similar magnitude (this is referred to as leverage). It is generally thought that leverage

is most significant in share data (see for example Meyer and Yu (2000)), though there

is evidence that leverage is also present in FX data (see for example McKenzie (2002)),

as well as evidence that it is not present for FX data (see for example Jacquier et al.

(2001)). The BNS SV model of Section 3.2 is generalised to incorporate the leverage

effect, using the model proposed in Barndorff-Nielsen and Shephard (2001a). This has

also been implemented in Griffin and Steel (2003). Equation (1.7) is replaced by

dx (t) =

½
µ− σ2 (t)

2

¾
dt+ σ (t) dW (t) + ρdz (λt) , (3.8)

where ρ is the leverage parameter and z is a "centred" BDLP defined as

z (t) = z (t)−E [z (t)]
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(see Barndorff-Nielsen and Shephard (2001a)). The likelihood for the log returns yi is

yi −
³
µ∆− σ2i

2

´
− ρzi

σi

iid∼ N (0, 1) , for i = 1, . . . , T, (3.9)

where zi is a "centred" version of the BDLP and is equal to

zi =

Z i∆

(i−1)∆
dz (λt)−E [z (∆)]

=
1

λ
{z (λi∆)− z (λ (i− 1)∆)}−∆E [z (1)] .

As Z i∆

(i−1)∆
dz (λt)

L
= z (λ∆) ,

we have E [zi] = 0.

If ρ < 0 and there is a jump in the volatility (so zi > 0), the likelihood will be greatest

for yi < 0 and this is equivalent to a fall in the share value S (t) (i.e. falls in the share

value tend to generate larger volatility values than rises).

It is important to note that ρ can take any value on the real line (or negative real

line to guarantee leverage), unlike the leverage parameter(s) found in many discrete time

models, where ρ is a correlation parameter between two (normal) variates. This can make

ρ difficult to interpret quantitatively in the BNS SV model. A relationship between ρ and

a leverage parameter of a popular discrete time model is given in Appendix A.8.

One further potential problem with this leverage parameter, ρ, is that the amount of

leverage induced will depend on the variation in zi, which is determined by the variance

of the marginal distribution of the volatility. For a given data set, the different marginal

distributions tend to give similar marginal variances and so it is possible to compare the

leverage parameter for different marginals on the same data set. If two models have

different marginal variances (such as for different data sets), it is difficult to compare the

leverage parameters of each model.

An alternative leverage parameter, which has zero mean and unit variance, is discussed

in Appendix A.9.

3.5 Fractional Brownian motion

Recalling equation (3.8), the most general model considered so far is

dx (t) =

½
µ− σ2 (t)

2

¾
dt+ σ (t) dW (t) + ρdz (λt) .
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The variance of the log returns is the product of the stochastic volatility multiplied by the

independent normal variates (from the Brownian motion). Correlation in the log returns

must be induced from correlation in the volatility process.

Section 3.1.3 suggests financial data might require a long-memory model. There are

two possible approaches:-

(1) Alter the volatility process in Section 3.2 so that it has long-memory.

(2) Leave the volatility process unaltered (so it has short-memory) but alter the share

equation itself (3.8).

Griffin and Steel (2003) induce quasi long-memory via (1), using a superposition of

BNS SV processes (each with their own BDLP and correlation parameter) as described in

Section 3.2. This is not implemented because of fears of over-parameterisation in the model

and identifiability problems of the parameters. Although a superposition of volatility

processes allows different BDLPs to describe short-term and long-term movements in the

volatility specifically (because one process doesn’t have to describe all observed data itself),

estimating λ accurately is not easy (even with the single volatility process). It was felt

that, as more volatility processes are used, identifying these parameters would become

problematic. A (finite) superposition of processes may generate a process which looks like

it has long-memory but the asymptotic behaviour of the correlation in the volatility will

decay exponentially, at the slowest rate of the individual processes, and so still have short-

memory. This makes it difficult to interpret quantitatively how strong the long-memory is

for a given data set and estimated parameters. Instead, long-memory is induced via (2).

If the increments of the Brownian motion, W (t), were positively correlated, this could

reduce the amount of correlation required from the volatility process, as the correlation in

the log returns could be partly explained by the correlation in the increments process for

the share itself.

Equation (1.4) is driven by Brownian motion, which has independent increments, as

it is driven by white noise. Fractional Brownian motion (fBm) is a generalisation of

Brownian motion, which can have correlated increments and these increments are called

fractional Gaussian noise (fGn). The strength of this correlation is determined by the

Hurst parameter, 0 < H < 1. When 0 < H < 0.5 there is negative correlation and when

0.5 < H < 1.0 there is positive correlation in the fGn and the fBm has long-memory.

When H = 0.5, standard Brownian motion is recovered. For further details on fBm see

Samorodnitsky and Taqqu (1994).
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3.5.1 Arbitrage

When the asset equation is driven by fBm, if pathwise integration is used for option

pricing, for H 6= 0.5, there are arbitrage opportunities (see Rogers (1997) and Dai and

Heyde (1996)). This problem is not difficult to bypass. A method for constructing a

stochastic process with the same long range dependence behaviour as fBm that does not

lead to arbitrage was given by Rogers (1997). For Gaussian approximations based on such

processes that are arbitrarily close to fBm, fitting model parameters and pricing options

gives identical results to using the fBm model. In addition, Cheridito (2003) showed that

if trading is restricted to time points at least a fixed time interval apart, arbitrage may be

avoided even with the original fBm model. Thus fBm-type models should not be rejected

for arbitrage reasons alone. We utilise this model for inferential purposes, in order to

assess whether a long range dependence structure is warranted, rather than to facilitate

option pricing, and thus problems associated with arbitrage are avoided.

3.5.2 Properties of fractional Brownian motion

Cajueiro and Barbbachan (2003) use fBm to drive the constant volatility asset equation.

They estimate H = 0.59, for options on Brazilian stocks, by fitting model and market

option prices. This suggests that the stocks have long-memory and that Brownian motion

with constant volatility is not capable of accurately modelling the stock movement. There

are few examples in the literature of MCMC being used to estimate the Hurst parameter,

especially in finance.

The correlated increments in fBm are fractional Gaussian noise (fGn). For Brownian

motion, the increments are independent and identically distributed. It is the increments,

dW (t), which contribute to the likelihood in equation (3.9). Graphs are now given of fBm

for different Hurst parameters, H. The first graphs are sample paths of the fBm and the

second graphs are ACF plots of the corresponding fGn which is driving the fBm, along

with the theoretical correlation function given in equation (3.10).
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Figure 3.5: Plot of fractional Brownian motion for a Hurst parameter H = 0.3 and ACF

plot of the corresponding fractional Gaussian noise and theoretical correlation function.
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Figure 3.6: Plot of fractional Brownian motion for a Hurst parameter H = 0.5 and ACF

plot of the corresponding fractional Gaussian noise and theoretical correlation function.
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Figure 3.7: Plot of fractional Brownian motion for a Hurst parameter H = 0.8 and ACF

plot of the corresponding fractional Gaussian noise and theoretical correlation function.

For 0 < H < 0.5, there is negative correlation in the fGn and the fBm is noisy. ForH = 0.5,

the increments are independent as it is standard Brownian motion. For 0.5 < H < 1,

there is positive correlation in the increments and the process appears less noisy than for

H ≤ 0.5.

3.5.3 Inference for the long-memory model

Using MCMC, to make inference about model parameters, requires evaluation of the

likelihood of the data, given a particular set of parameters of the model. Unfortunately

for fGn, the likelihood of the log returns is not available analytically and would have to

be evaluated numerically, possibly using Monte Carlo integration. This is impractical for

large data sets as it requires the frequent evaluation of a high-dimensional integral in the

MCMC.

To overcome this problem, the fGn is approximated by a multivariate normal (MVN)

distribution, with variance/covariance matrix Σ. For fGn, with Hurst parameter H, the

correlation between two increments at discretely observed times i and j is given by (and

hence equal to Σi,j)

Σi,j =
1

2

n
|j − i+ 1|2H − 2 |j − i|2H + |j − i− 1|2H

o
(3.10)
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see Beran (1994), pg 74. Equation (3.8) is then replaced by

dx (t) = µdt− σ2 (t)

2
(dt)2H + σ (t) dWMVN (t) + ρdz (λt) , (3.11)

where WMVN is the approximation to fBm. The likelihood is

fY
¡
y
¢
=

Ã
TY
i=1

1

σi

!
fG
¡
g
¢
, (3.12)

where

gi =
yi −

³
µ∆− σ2i

2 ∆
2H−1 + ρzi

´
σi

and G ∼ MVN (0,Σ) (see Hu and Øksendal (2003)). In the case that H = 0.5, the

approximate fBm recovers the original Brownian motion model.

Recall if G = (G1, . . . ,Gn)
T ∼MVN (0,Σ) then

fG
¡
g
¢
=

1

(2π)n/2
p
|Σ|

exp

½
−1
2
gTΣ−1g

¾
. (3.13)

i.e. to evaluate the likelihood, the inverse of the variance/covariance matrix, Σ−1, must

be calculated, as well as the determinant, |Σ|.

In general, matrix inversion requires O
¡
n3
¢
calculations. Cholesky decomposition can

be used to take advantage of the symmetry that is present in variance/covariance matrices

(i.e. Σi,j = Σj,i) but this only doubles the speed of inversion and does not alter the order

of the method. For T large (say >1000), it would not be feasible to evaluate likelihoods

for MVN densities using this algorithm.

However, Σ is not only symmetric, it is Toeplitz (i.e. Σi,j = Σi+1,j+1: for any given

south-east diagonal all the elements are the same). That is

Σ =

⎛⎜⎜⎜⎜⎜⎝
1 r1 . . . rT−1

r1 1
. . .

...
...

. . . . . . r1

rT−1 . . . r1 1

⎞⎟⎟⎟⎟⎟⎠ .

An overview of different algorithms which can be used to calculate Σ−1 and |Σ| is given
in Ammar (1996). These algorithms solve

ΣA = v, (3.14)

where Σ is a Toeplitz matrix of size n × n, A is an unknown vector (which we want to

solve) and v is some known vector. Typically, our data sets will be of size n = 1000.
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A brief outline of different algorithms which can be used to calculate Σ−1 and |Σ|, for
Toeplitz matrices, is now given.

Algorithms which calculate Σ−1, |Σ| and Σ−1v for a Toeplitz matrix, Σ, in O
¡
n2
¢
cal-

culations are referred to as fast algorithms. Levinson’s algorithm (see Golub and Van Loan

(1996)) was used to compute these quantities in Chapters 4 and 5. This has an inversion

phase (where the inverse is computed) and a solution phase (where Σ−1v is calculated).

For Levinson’s method, both of these are O
¡
n2
¢
algorithms, though there are complex

algorithms to decrease this operation count to O
¡
n log2 (n)

¢
and O (n log (n)) algorithms

respectively. These methods require very large n before they become faster than the sim-

pler fast algorithms. Fast Fourier Transform based algorithms are able to compute the

second phase of Levinson’s algorithm in O (n log (n)) operations and are called superfast

algorithms. These are particularly advantageous when n is very large (and preferably a

power of 2) and equation (3.14) must be solved for many different v, all with the same

Toeplitz matrix, Σ. In our problem we will need to solve for at most two different v (corre-

sponding to new and old states in the MCMC) whilst using the same Toeplitz matrix. For

the Levinson algorithm it is easy to compute all three quantities of interest at the same

time (so three separate complex algorithms to find Σ−1, Σ−1v and |Σ| are not required).

Ammar and Gragg (1988) argued (theoretically) that one superfast solver should be

as fast as the second phase of Levinson’s algorithm for n = 256 (and faster thereafter)

for positive definite Toeplitz matrices. In our problem, the Toeplitz matrix is symmetric

and this can easily be used to give a 50% speed improvement in the Levinson algorithm

(which will increase the crossover point to perhaps n = 512). For these reasons the super-

fast algorithms were not implemented and Levinson’s algorithm for symmetric Toeplitz

matrices was used.

Additionally, sampling from the model, requires samples from a MVN (0,Σ) distribu-

tion. The standard method that shall be used for this is the upper Cholesky decomposition

of Σ multiplied by a vector of independent standard normals. Therefore, the Cholesky

decomposition of the symmetric Toeplitz matrix Σ must also be calculated. An example of

this is where samples from the model are generated by forward simulation of the asset for

option pricing and, in this thesis, this tends to be for options over a small period of time

(T ≈ 20 say). For small T , little is gained by using Cholesky decomposition algorithms
which take advantage of the Toeplitz structure of Σ. Should we wish to generate from the

model for T large, an O
¡
n2
¢
algorithm should be used to find the Cholesky decomposition

and this can be found in Golub and Van Loan (1996).

From now on, even if the long-memory model is not implemented, the likelihood for

the long-memory model is given. For the short-memory model, this corresponds to a Hurst

parameter of 0.5, so Σ = IT in equation (3.13).



Chapter 4

MCMC inference and testing of
the models

Chapter 3 introduced several generalisations of the Black-Scholes equation for the move-

ment of an underlying. The unknown parameters from these models can be estimated

from different data sets using MCMC. The implementation of the MCMC can be quite

involved and the algorithmic details of the MCMC are given in this chapter, which require

theory/results from Barndorff-Nielsen and Shephard (2001b) and Appendix D. At the

end of this chapter, the MCMC implementation is tested on various training and real data

sets.

Although MCMC has been used for many years, the use of Lévy processes in the

Ornstein-Uhlenbeck equation is a new idea and the MCMC implementation is difficult.

For this reason, there are only two thorough documented implementations of MCMC for

these models, namely Roberts et al. (2004) and Griffin and Steel (2003) (although it should

be noted that the implementation of Roberts et al. (2004) is not for an asset following

the stochastic volatility Black-Scholes equation (1.7)), though Frühwirth-Schnatter and

Sögner (2001) have performed similar inference. For these papers, the implementation is

simplified because the volatility is restricted to a Gamma marginal distribution, which

facilitates the MCMC inference (see Section 4.2.1). We extend and generalise the work in

these papers.

To the best of our knowledge, no one else has performed the MCMC inference for any

marginal distribution other than the Gamma or combined this with the generalisations

introduced in Chapter 3.

The MCMC algorithm is described before the model generalisations are extensively

tested. This chapter tests the following aspects of the MCMC algorithm:-
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(1) The correct implementation of the different marginal distributions is tested by gen-

erating a volatility process with unit mean and variance and correlation parameter

λ = 0.05 and checking that the posterior supports these values.

(2) The correct implementation of the leverage parameter is tested by generating training

data with a leverage parameter ρ = −3.0 for each marginal distribution and checking
that the posterior supports this.

(3) The correct implementation of the Hurst parameter is tested by generating training

data with a Hurst parameter H = 0.6 for each marginal distribution and checking

that the posterior supports this.

(4) The correct implementation of the stochastic λ process is tested by generating three

training data sets, some with λ varying over time, and we check the posterior contains

a sensible number of jumps and λ values at each time point, when compared to the

λi which generated the training data.

4.1 Sampling scheme

The solution to the Ornstein-Uhlenbeck equation (1.8) is

σ2 (t) = e−λtσ2 (0) + e−λt
Z t

0
eλsdz (λs) (4.1)

and the integrated volatility is

σ2∗ (t) =

Z t

0
σ2 (u) du,

which is an important quantity for pricing European options (see Hull and White (1987)).

For the SV model proposed in Barndorff-Nielsen and Shephard (2001b), it can be shown

that

σ2∗ (t) =
1

λ

©
z (λt)− σ2 (t) + σ2 (0)

ª
. (4.2)

This relatively simple form for the integrated volatility is an attractive feature of the BNS

SV model. If σ2i is the discretely observed volatility, then

σ2i = σ2∗ (i∆)− σ2∗ ((i− 1)∆) (4.3)

and it can be shown (see Griffin and Steel (2003), Barndorff-Nielsen (1998) and Appendix

D) that

σ2i = σ2∗ (i∆)− σ2∗ ((i− 1)∆)

=
1

λ

©
z (λi∆)− σ2 (i∆)− z (λ (i− 1)∆) + σ2 ((i− 1)∆)

ª
=

1

λ

n
ηi,2 − ηi,1 +

³
1− e−λ∆

´
σ2 ((i− 1)∆)

o
, (4.4)
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where (
σ2 (i∆)

z (λi∆)

)
=

(
e−λ∆σ2 ((i− 1)∆)
z (λ (i− 1)∆)

)
+ ηi

and

ηi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−λ∆

Z ∆

0
eλtdz (λt)Z ∆

0
dz (λt)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−λ∆

Z λ∆

0
etdz (t)Z λ∆

0
dz (t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.5)

is a vector of random jumps and will be referred to as the random shock vector.

If u (x) is the Lévy measure of the marginal distribution of σ2 (t) and w (x) is the Lévy

measure of z (1), then it has been shown that (Barndorff-Nielsen (1998))

w (x) = −u (x)− x
du (x)

dx
.

Using the same notation as Barndorff-Nielsen and Shephard (2001b), define the Tail Mass

function as

W+
p (x) =

Z ∞

x
w (y) dy = xu (x) (4.6)

and the Inverse Tail Mass function as

W−1
p (x) = inf

©
y > 0 :W+

p (y) ≤ x
ª
, (4.7)

where p are the parameters specifying the marginal distribution of σ2 (t). These are both

monotonic decreasing functions.

Barndorff-Nielsen and Shephard (2000) proved (the proof is included in Appendix D)

that, for our BDLP, z (t), if f (s) ≥ 0 for 0 < s < ∆ and, if f (s) is integrable with respect

to dz (s), then Z ∆

0
f (s) dz (s)

L
=

∞X
j=1

W−1
p

³aj
∆

´
f (∆rj) , (4.8)

where W−1
p () is the Inverse Tail Mass function as defined in equation (4.7), ai are the

arrival times of a Poisson process of intensity 1 and ri are independent standard uniform

variates (also independent of ai). Note that W−1
p (ai/∆) ≥ 0 is a decreasing function

and that, if it is non-zero for large ai, the integral can be approximated by truncating

the infinite series at some point. This is similar to the truncation scheme used to sample

from Lévy processes in Walker and Damien (2000). We consider using GIG and TS

marginal distributions for the volatility and the only special case of these distributions,

where the terms W−1
p (ai/∆) are zero for sufficiently large ai, is the Gamma distribution

(see Appendix A.10).

Assume that ηi is truncated by discarding all Poisson points which are greater than

ac (so the same truncation scheme is used for each element of the random shock vector).
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Let ni be the number of Poisson points which are less than ac for the ith entry of the

random shock vector (i.e. the number of Poisson points which contribute to ηi). The

approximation to equation (4.5) is then

ηi
L
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−λ∆

niX
j=1

W−1
p

³ai,j
λ∆

´
eλ∆ri,j

niX
j=1

W−1
p

³ai,j
λ∆

´
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (4.9)

where ai,j and ri,j are the arrival times of a Poisson point process and uniforms as described

previously. Continue with the notation

A =

⎛⎜⎜⎝
a1,1 . . . a1,n1
...

. . .
...

aT,1 . . . aT,nT

⎞⎟⎟⎠ R =

⎛⎜⎜⎝
r1,1 . . . r1,n1
...

. . .
...

rT,1 . . . rT,nT

⎞⎟⎟⎠ . (4.10)

4.2 Different marginal distributions for σ2 (t) and their In-
verse Tail Mass functions

There are two possible ways to proceed when implementing the BNS OU SV models:-

(1) Pick the form of the BDLP, z (1), which specifies the marginal distribution of σ2 (t).

(2) Pick the marginal distribution of σ2 (t) , which specifies the BDLP.

Barndorff-Nielsen and Shephard (2001b) consider both (1) and (2). Roberts et al.

(2004) and Griffin and Steel (2003) consider (2) where a Gamma marginal distribution

is chosen. We pick the marginal of σ2 (t), as it is more obvious how this relates to the

overall volatility process and easier to understand how the marginal distribution of the

volatility controls the tail behaviour of the log returns. In addition to the Gamma dis-

tribution, Generalised Inverse Gaussian (GIG) and Tempered Stable (TS) distributions

are implemented, as well as their special cases, the Positive Hyperbolic, Inverse Gamma,

Tempered Stable and Inverse Gaussian distributions. These are self-decomposable distrib-

utions on R+ and so are suitable choices for the marginal distribution of σ2 (t) in equation
(1.8). These distributions can give very different volatility processes and properties of the

log returns. A graph demonstrating this is given in Figure C.4, where the 95% credible

intervals for the volatility of four of the marginal distributions are plotted, when the BNS

SV model is applied to Standard and Poor’s 500 INDEX (S&P 500) data. The credible

intervals are noticeably different, particularly in the tails of the volatility distributions.
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The TS distribution is less well known than the GIG and its density is difficult to

interpret as it is only available as an infinite series. However, it is a flexible distribution

and the implementation is easier than for the GIG as its Lévy Measure is simple, leading

to a straightforward Inverse Tail Mass function (see equations (4.7) and (4.8)). Details on

the TS distribution can be found in Tweedie (1984) and Barndorff-Nielsen and Shephard

(2001c).

Ideally, the log-normal distribution would also have been implemented as this is a pop-

ular choice in some discrete time models. Although it is a self-decomposable distribution

(see Bondesson (1992)) on R+ (and so is a valid choice of marginal distribution), the model
structure requires the Lévy measure of the log-normal distribution and this is not known

in closed form. The characteristic function is useful in calculating the Lévy measure and,

for the log-normal distribution, the characteristic function is not available in analytical

form either and is only available as an infinite series (see Leipnik (1991)). It might be

possible to evaluate the Lévy measure numerically and from this obtain a numerical value

for the Inverse Tail Mass function, though this is likely to be very difficult and slow to

implement, even compared to the GIG (γ, ν, α) distribution.

If we wanted a log-normal marginal distribution, we could make the log of the volatility

have a normal distribution and then exponentiate, similar to the Student-t distribution

process of Section 2.2.10. However, the normal Lévy process is Brownian motion and does

not have any non-infinitesimal jumps. Therefore the exponential of such a process will

also not have non-infinitesimal positive and negative jumps and this model will have very

different properties to the BNS SV models. For these reasons a continuous time SV model

with log-normal marginal distribution was not implemented.

4.2.1 Generalised Inverse Gaussian distribution: GIG (γ, ν, α)

If X ∼ GIG (γ, ν, α), for γ ∈ R and ν, α > 0, the density is

fX (x) =
(α/ν)γ

2Kγ (να)
xγ−1 exp

½
−1
2

¡
ν2x−1 + α2x

¢¾
, for x > 0,

where Kν is a modified Bessel function of the third kind.

The Lévy measure of X is then (see equation (2.1))

u (x) =
1

x

½
1

2

Z ∞

0
exp

µ
− xξ

2ν2

¶
gγ (ξ) dξ +max (0, γ)

¾
exp

µ
−α

2x

2

¶
,

where

gγ (x) =
2

xπ2

n
J2|γ|

¡√
x
¢
+N2

|γ|
¡√

x
¢o−1
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and J|ν| and N|ν| are Bessel functions of the first and second kind respectively (see

Barndorff-Nielsen and Shephard (2001b) for proof).

Using equation (4.6), the Tail Mass function is

W+
γ,ν,α (x) =

½
1

2

Z ∞

0
exp

µ
− xξ

2ν2

¶
gγ (ξ) dξ +max (0, γ)

¾
exp

µ
−α

2x

2

¶
and equation (4.7) implies the Inverse Tail Mass function is

W−1
γ,ν,α (x) = z,

where z satisfies

x =

½
1

2

Z ∞

0
exp

µ
− zξ

2ν2

¶
gγ (ξ) dξ +max (0, γ)

¾
exp

µ
−α

2z

2

¶
. (4.11)

Computation of the Inverse Tail Mass function in general for the GIG distribution is

feasible numerically. The value of x for a given z can then be found using a look up table

and binary search. The integral was split into two parts and Gaussian Quadrature was

used to evaluate the integral on a finite domain (including the origin). Gauss-Laguerre in-

tegration was used to evaluate the remaining integral on the infinite domain (see Atkinson

(1988) and Appendix B.1 for details on these numerical algorithms). The GIG (γ, ν, α)

marginal was implemented, as well as three standard distributions which are special cases.

a) Gamma distribution: Ga (ν, α)

If X ∼ GIG
¡
ν, 0,
√
2α
¢
, for ν, α > 0, then X ∼ Ga (ν, α) and the density is

fX (x) =
αν

Γ (ν)
xν−1e−αx, for x > 0.

Using equation (4.6), the Tail Mass function is

W+
ν,α (x) = νe−αx

and equation (4.7) implies the Inverse Tail Mass function is

W−1
ν,α (x) = max

"
0,−

log
¡
x
ν

¢
α

#
.

It is unusual to be able to write W−1
p (x) in such a simple analytic form. Note that only

when x < ν is W−1
p (x) 6= 0. This is the only case of the GIG (γ, ν, α) and TS (κ, ν, α)

distributions where the Inverse Tail Mass function is zero for all sufficiently large x and the

summation in equation (4.9) need not be truncated (a proof of this is given in Appendix

A.10). For all the other marginals considered, the infinite sum which constructs ηi must

be truncated. Details on this truncation can be found in Section 4.3.5 and Appendix B.2.
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b) Positive Hyperbolic distribution: RPH (ν, α)

If X ∼ GIG (1, ν, α), for ν, α > 0, then X ∼ RPH (ν, α) and the density is

fX (x) =
α

2νK1 (να)
exp

½
−1
2

µ
ν2

x
+ α2x

¶¾
, for x > 0.

The Inverse Tail Mass function is available as a special case of equation (4.11) and can be

evaluated using a similar method to the one used for the GIG marginal distribution.

c) Inverse Gamma distribution: IGa (ν, α)

If X ∼ GIG
¡
−ν,
√
2α, 0

¢
, for ν, α > 0, then X ∼ IGa (ν, α) (i.e. the density of the

reciprocal of a Ga (ν, α) random variable) and the density is

fX (x) =
αν

Γ (ν)
x−ν−1e−α/x, for x > 0.

The Inverse Tail Mass function is available as a special case of equation (4.11) and can be

evaluated using a similar method to the one used for the GIG marginal distribution.

4.2.2 Tempered Stable distribution: TS (κ, ν, α)

If X ∼ TS (κ, ν, α), for 0 < κ < 1 and ν, α > 0, the density is

fX (x) = eναfY |κ,ν (x) exp

Ã
−α

1/κ

2
x

!
, for x > 0,

where

fY |κ,ν (x) =
ν−1/κ

2π

∞X
j=1

(−1)j−1

j!
sin (jκπ)Γ (jκ+ 1) 2jk+1

³
xν−1/κ

´−jκ−1
, for x > 0,

is the density function of the positive κ-stable law (see Feller (1971) and Barndorff-Nielsen

and Shephard (2001c)). If κ = 0.5 the Inverse Gaussian distribution is recovered.

The Lévy measure of X is then

u (x) = Ax−B−1e−Cx, (4.12)

where A = νκ2κ/Γ (1− κ), B = κ and C = α1/κ/2 (see Barndorff-Nielsen and Shephard

(2001c)).

For this Lévy measure, the Inverse Tail Mass function is

W−1
κ,ν,α (x) =

µ
A

x

¶1/B
exp

"
−LambertW

Ã
C

B

µ
A

x

¶1/B!#
, (4.13)
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where the LambertW function satisfies

LambertW (x) ∗ exp [LambertW (x)] = x

and is a standard function available numerically. For further details on the LambertW

function see Jeffrey et al. (1996).

For the Tempered Stable distribution, an alternative series representation to equation

(4.8) has been suggested in Rosiński (2000). This series representation avoids the calcula-

tion of W−1
κ,ν,α (x), though the convergence of the series is slower. When implementing the

MCMC for the Tempered Stable marginal, for large κ, many terms in the summation are

required before the answer is sufficiently accurate to truncate. For this reason, the alter-

native representation is not implemented and the Barndorff-Nielsen and Shephard (2000)

series representation is used. Additionally, from an MCMC viewpoint, this representation

has fewer random terms in it, reducing the dimension of the problem on which the MCMC

must be performed. A comparison of the two representations is now given and graphs of

typical sizes of the terms for each series are shown in Figure 4.1.

Consider ηi,1; For the Barndorff-Nielsen and Shephard (2000) series representation,

ηi,1 = e−λ∆
∞X
j=1

W−1
κ,ν,α

³ai,j
λ∆

´
eλ∆ri,j

= e−λ∆
∞X
j=1

µ
Aλ∆

ai,j

¶1/B
exp

"
−LambertW

Ã
C

B

µ
Aλ∆

ai,j

¶1/B!#
eλ∆ri,j ,

whilst for the Rosiński (2000) series representation,

ηi,1 = e−λ∆
∞X
j=1

min

(µ
ai,jB

Aλ∆

¶−1/B
, eiv

1/B
i

)
eλ∆ri,j ,

where ei
iid∼ exp

¡
1
C

¢
, vi, ri,j

iid∼ U (0, 1) and ai,j and ri,j are the same as in the Barndorff-

Nielsen and Shephard (2000) representation.

Graphs of the log of the average of the terms for a TS (κ, 1, 1) marginal, using the

two representations given above, when λ = ∆ = 1, can be seen in Figure 4.1. The terms

e−λ∆ and eλ∆ri,j are not included in these graphs as they are common to both series.

Additional details on the Rosiński (2000) series can be found in Barndorff-Nielsen and

Shephard (2001c), where our results for the Rosiński (2000) representation (dashed line)

can also be verified. Averages were taken over 1,000,000 samples.
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Figure 4.1: Graphs of the log of the individual terms for the Barndorff-Nielsen and Shep-

hard (2000) and Rosiński (2000) series representation for the TS (κ, 1, 1) distribution.

Figure 4.1 shows that a higher proportion of the mass of the sum is in the first few terms

for the Barndorff-Nielsen and Shephard (2000) series, though each term is more expensive

to compute (because of the Inverse Tail Mass function given in equation (4.13)). As

κ → 1, the difference between the two representations becomes smaller though there is

still a noticeable advantage for κ = 0.7.

a) Inverse Gaussian distribution: IG (ν, α)

If X ∼ TS
¡
1
2 , ν, α

¢
, for ν, α > 0, then X ∼ IG (ν, α) and the density is

fX (x) =
νeνα√
2π

x−3/2 exp

⎧⎨⎩−
³
ν2

x + α2x
´

2

⎫⎬⎭ , for x > 0.

From equation (4.13) the Inverse Tail Mass function, defined in equation (4.7), is

W−1
ν,α (x) =

1

α2
LambertW

µ
ν2α2

2πx2

¶
.
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Note that, although the IG (ν, α) distribution is a special case of the both the GIG (γ, ν, α)

and TS (κ, ν, α) distributions (when γ = −0.5 and κ = 0.5), it is easier to evaluate the

Inverse Tail Mass function given in equation (4.13) than the one given in (4.11).

4.2.3 Properties of the six marginal distributions

The mean and variance of σ2 (t) for the six different marginal distributions are given in

Table 4.1, along with the kurtosis of the distribution of the log returns. This is useful

for comparing the behaviour of the marginals by matching up the mean/variance of the

distributions so that the volatility processes are in some sense similar. Let Bγ = Kγ (να),

then the mean and variance of the distributions are given in Table 4.1.

fΣ2
¡
σ2
¢

Mean Variance Kurtosis of log returns

GIG (γ, ν, α) νB1+γ/αBγ see equation (4.14) see equation (4.16)

TS (κ, ν, α) 2νκα1−1/κ 4κ(1− κ)να1−2/κ 3κνα+1−κκνα

IG (ν, α) ν/α ν/α3 31+νανα

Ga (ν, α) ν/α ν/α2 31+νν

RPH (ν, α) 1
α2
(2 + ναB0/B1) see equation (4.15) see equation (4.17)

IGa (ν, α) α
ν−1

α2

(ν−1)2(ν−2) 3ν−1ν−2

Table 4.1: Mean and variance of the six different marginal distributions and the kurtosis

of the log returns.

For the Inverse Gamma distribution, the mean, variance and kurtosis are correct when

ν > 1 and ν > 2, whilst for the Tempered Stable, Inverse Gaussian, Gamma and Pos-

itive Hyperbolic marginals, the mean, variance and kurtosis are always correct for valid

parameters ν, α > 0.

The mean and variance for the Tempered Stable distribution can be found in Appendix

A.2 and Schoutens (2003). There is a slight error in the skewness and kurtosis in Schoutens

(2003), though once the correct values are known, in principle, calculating the kurtosis

of the log returns is straightforwards by calculating the non-centralised moments for the

Tempered Stable distribution. As there is little cancelling/factoring in the algebra, the
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kurtosis of the Generalised Inverse Gaussian and Positive Hyperbolic distributions were

not included in the table.

For the Generalised Inverse Gaussian distribution, the variance is

ν

α3B2γ

©
να
¡
B2γ −B21+γ

¢
+ 2BγB1+γ (1 + γ)

ª
(4.14)

and for the Positive Hyperbolic distribution, it is

1

α4

n
4 + ν2α2 − ν2α2 (B0/B1)

2
o
. (4.15)

For the Generalised Inverse Gaussian distribution, the kurtosis of the log returns is

3
B|γ|

©
cB|γ| + 2 (1 + γ)B|γ+1|

ª
cB2|γ+1|

, (4.16)

whilst for the Positive Hyperbolic distribution, it is

3B1

©
c2B1 + 4cB0 + 8B1

ª
{cB0 + 2B1}2

, (4.17)

where c = να.

For all six different marginal distributions for σ2 (t), the kurtosis of the log returns is

greater than three and so the tails of the log returns will be heavier than in the standard

Black-Scholes equation with constant volatility.

Now we are able to pick the marginal distribution for σ2 (t) from a rich class of distri-

butions and sample from the discretely observed volatility, σ2i . An outline of the MCMC

algorithm to estimate the parameters is now given.

4.3 MCMC algorithm

We try to keep the MCMC algorithm as general as possible and do not focus on proposals

or priors tailored for any specific marginal distribution for σ2 (t). Also, we shall not

concentrate on trying to find ‘optimal’ proposals as, in practice, for option pricing most of

the computer time is spent on the Monte Carlo integration (simulating the asset forward)

rather than the MCMC itself i.e. the chain can easily be run for a longer period of time

and/or thinned more and overall it will not significantly increase the amount of time

required to price most options numerically.

The ‘generic’ proposals used here are not significantly outperformed by those consid-

ered in Roberts et al. (2004) and Griffin and Steel (2003) when applied to training data.
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This is because the correlation between the parameters can be very complex, even when

using training data and this makes constructing efficient proposals difficult. For real data,

the correlation between the parameters can become even more unpredictable and good

proposals are harder to obtain. The proposals used in Griffin and Steel (2003) were de-

signed for training data, where the correlation between parameters is more predictable. A

comparison of our algorithm and the preferred method of Roberts et al. (2004) is given in

Section 4.4.6.

4.3.1 Treating σ2 (0∆) as an unknown parameter

Equation (4.4) requires σ2 (0∆) to be known, which Griffin and Steel (2003) define as some

constant. This can cause problems in the MCMC, depending on the properties of the data

to which the model is applied and the constant that is chosen. An example of this is

shown in Appendix C.2, which shows that setting σ2 (0∆) to be some constant can cause

non-stationarity in the mean and variance of σ2 (t). In their comment to Barndorff-Nielsen

and Shephard (2001b), J.E. Griffin and M.F.J. Steel said they used σ2 (0∆) drawn from

the prior marginal process. However, the graphs of σ2 (t) in Griffin and Steel (2003), pg

15, 16, 17, have σ2 (0∆) = 1. Assuming they rescaled their data so that the marginal

mean was one, simulations of σ2 (0∆) should be concentrated near σ2 (0∆) = 1, though

not actually equal to one, so they do not appear to have implemented this prior.

Roberts et al. (2004) consider σ2 (0∆) as missing data. Whilst this does not lead to

the same problems as defining it to be some constant, it reduces the amount of available

data and it is not obvious how much data should be used to ensure that the instantaneous

volatility has converged to its correct value. The amount of data that must be discarded

is highly influenced by the value of λ in equation (1.8) because of the correlation structure

of σ2 (t).

For the Tempered Stable marginal, Rosiński (2000) has derived the distribution of

σ2 (0∆) |κ, ν, α in terms of an infinite series, which avoids the need to define it as some
constant or to treat it as missing data. Details of this series representation are given in

Section 4.3.2 and Appendix C.2.

For all other marginals, we let σ2 (0∆) be a latent parameter in the MCMC, with a

prior the same as the marginal distribution of σ2 (t). Further details on this can be found

in Appendix C.2.
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4.3.2 The distribution of σ2 (0∆) for the Tempered Stable marginal

Equation (4.4) requires σ2 (0∆) to be known. For all distributions other than the Tempered

Stable, it is treated as a latent parameter, with a prior the same as the marginal distribution

used for σ2 (t), as described in Section 4.3.1.

The prior for σ2 (0∆) requires evaluation of the density function of the marginal dis-

tribution of σ2 (t). For the Tempered Stable marginal, it is difficult to evaluate the density

(techniques to evaluate the Tempered Stable density can be found in Nolan (1997)), par-

ticularly for small arguments (see Appendix B.3) and so a different representation for

σ2 (0∆) is used. Rosiński (2000) has shown that, when σ2 (t) has a TS (κ, ν, α) marginal

distribution, the distribution of σ2 (0∆) satisfies

σ2 (0∆)
L
=

∞X
i=1

min

½³aiκ
A

´−1/κ
, eiv

1/κ
i

¾
, (4.18)

where ai are the arrival times of a Poisson process with intensity 1, ei
iid∼ exp

¡
1
C

¢
and

vi
iid∼ U (0, 1) (all independent of each other) and

A =

½
νκ2κ

Γ (1− κ)

¾
C =

α1/κ

2
.

This is the representation used in Barndorff-Nielsen and Shephard (2001c).

Although the series in equation (4.18) avoids the calculation of the Inverse Tail Mass

function, the series converges more slowly than the Barndorff-Nielsen and Shephard (2000)

series representation (see Section 4.2.2). The equivalent Barndorff-Nielsen and Shephard

(2000) series representation for equation (4.18) is

σ2 (0∆)
L
=

∞X
i=1

W−1
κ,ν,α (a0,j)

and, for a Tempered Stable marginal, this gives

σ2 (0∆)
L
=

∞X
i=1

µ
A

a0,j

¶1/κ
exp

"
−LambertW

(
C

κ

µ
A

a0,j

¶1/κ)#
. (4.19)

To be consistent with the representation used in equation (4.9), the equivalent represen-

tation of equation (4.19) is used, avoiding evaluation of the Tempered Stable density.

4.3.3 Treating the interest rate, µ, as an unknown parameter

Interest rate modelling is a very complicated problem in its own right; there are many

models which are used for interest rate prediction and there is no universally accepted
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method (see James and Webber (2000) for a review of interest rate models). Should

a complicated model for the interest rate be used, this would make the MCMC more

complex. For option pricing, the interest rate will alter how the asset is simulated forward,

as well as how much the expected payoff of the option must be discounted by, to give the

fair price.

The models in this thesis were constructed to try to improve the Black-Scholes model

over short periods of time. The options priced in Chapter 5 are over 20 days, where it is

realistic to assume that the interest rate is approximately constant and so can be treated

as a further unknown parameter in the MCMC. This is the approach taken in Griffin and

Steel (2003), and is the one adopted here.

4.3.4 Priors

For each marginal distribution, there are two parameters, ν and α (and additionally one

further parameter for the Generalised Inverse Gaussian and Tempered Stable distribu-

tions), which specify the exact form of the distribution of σ2 (t). The λ parameter controls

the rate of exponential decay in the volatility as well as the rate at which the jumps from

the BDLP contribute to σ2 (t). The interest rate, µ, is treated as a further unknown

parameter in the MCMC, even though it could be argued that the interest rate will be

known for share options (provided the options start and end near to the last data point).

For FX data, µ would typically be unknown and for this reason it was treated as a further

unknown, for share data, so options on FX rates and shares are priced using the same

algorithm. The leverage parameter, ρ, and Hurst parameter, H, are the remaining non-

latent parameters of the models. The priors for the parameters controlling the stochastic

λ process are as described in Section 3.3.

For the latent parameters, the instantaneous volatility at time zero is given a prior

which is the same as the marginal distribution of σ2 (t). The priors for rows of A and

R (defined in Section (4.10)) are the arrival times of Poisson processes of intensity 1 and

standard uniform distributions (all independent).

The joint prior is

p
¡
σ2 (0∆) , ρ,µ, λ, γ, κ, ν, α,H,A,R

¢
= p

¡
σ2 (0∆) |ν, α

¢
p (ρ) p (µ) p (λ) p (γ) p (κ)

×p (ν) p (α) p (A) p (R) p (H) .

Reparameterise by letting
x1 = αc1νc2

x2 = αc3νc4 ,
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where c1, . . . , c4 are constants chosen to reduce the correlation in the chain. This transfor-

mation must be invertible, which puts some constraints on the possible values of c1, . . . , c4.

The implied prior for x1, x2 is (see Appendix C.3)

p (x1, x2) ∝ p (α (x1, x2)) p (ν (x1, x2)) {α (x1, x2)}1−c1−c3 {ν (x1, x2)}1−c2−c4 .

For the original parameters, the priors used throughout are

p
¡
σ2 (0∆) |ν, α

¢
= M (ν, α) 1

p (µ) = N(0,m2
p)

p (λ) = Ga (1, lp)

p (γ) = N
¡
0, 52

¢
p (κ) = Beta (1, κ1)

p (ν) = Ga (1, np)

p (α) = Ga (1, ap)

p (H) = U (0.5, 1)

Table 4.2: Priors for the MCMC.

Note that σ2 (0∆) is not treated as an additional parameter with a Metropolis-Hastings

update for the Tempered Stable distribution and is instead updated by performing a

Metropolis-Hastings update on the parameters determining σ2 (0∆) in equation (4.19).

The term rp (from the stochastic λ process) was chosen to be 1.0 whilst mp was taken

as 0.0004 (so one standard deviation corresponds to approximately 15% interest per year).

Typically np and ap are chosen to be small (say 0.001), so that the priors are reasonably

flat. Note that the latter two are not priors for the original GIG parameters but are priors

for the parameters of the specific marginal.

A discussion of the κ prior is given in Appendix C.4. For the Inverse Gamma marginal,

a Ga (1, np) prior for (ν − 2) is used, so the mean, variance and kurtosis of the log returns
are finite (see Section 4.2.3).

These priors are not consistent across each marginal. Consistent priors could be chosen

so that the mean and variance of the volatility process (and skewness for three parameter

distributions) are the same in the prior, though this can be difficult because of the complex

nature some of the means and variances. It turns out that the posterior is not strongly

dependent on the prior. By using relatively flat priors for parameters controlling the

marginal distribution, we can easily compare our results with those of Roberts et al.

(2004) and Griffin and Steel (2003).

1M is the marginal distribution used for σ2 (t).
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Griffin and Steel (2003) suggest using a Ga (1, 1) prior for λ. Little difference was

found between this prior and a less informative Ga (1, 0.001) prior, apart from on training

data which had been generated using constant volatility (see Section 5.2.3). The Ga (1, 1)

prior kept the system smaller in size, whilst not affecting the simulated volatility process

σ2i significantly. For training data, the flatter prior for λ is used and for real data, the

informative prior, Ga (1, 1), is used. A Ga(1, 250) prior is used for µ when the data sets

are training data sets generated with µ > 0 or shares (which should have a positive drift,

as it should be equal to the interest rate of the country in which the shares are traded).

For this prior, the mean is 4.3% interest per year and the probability that the interest rate

is less than 28% is 0.9.

4.3.5 Reverse jump and truncation of the random shock vector

The infinite series representation of the random shock vector is

ηi
L
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−λ∆

∞X
j=1

W−1
p

³ai,j
λ∆

´
eλ∆ri,j

∞X
j=1

W−1
p

³ai,j
λ∆

´
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (4.20)

where p are the parameters specifying the marginal distribution for σ2 (t). As

ηi,2 > ηi,1 > 0, we focus on suitable truncation for ηi,2, as ηi,1 should be accurate if ηi,2 is.

Griffin and Steel (2003) suggest truncating after the terms W−1
p

¡ai,j
λ∆

¢
fall below a

certain level. Then

ηi
L
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−λ∆

∞X
j=1

W−1
p

³ai,j
λ∆

´
eλ∆ri,j

∞X
j=1

W−1
p

³ai,j
λ∆

´
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−λ∆

niX
j=1

W−1
p

³ai,j
λ∆

´
eλ∆ri,j

niX
j=1

W−1
p

³ai,j
λ∆

´
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (4.21)

where ni is the number of Poisson points which are less than some critical value, ac.

If only terms from the Poisson point process which contribute at least ztol to the

summation are included, then the critical a, ac, at which the Poisson points are truncated

will satisfy

W−1
p

³ ac
λ∆

´
= ztol,

so

ac = λ∆W+
p (ztol) . (4.22)

Note that if λ varies over time (as in Section 3.3), then there is a vector of ac’s and

an alteration in any of the elements of p alters all of the critical "a" values in a similar
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way (i.e. each critical "a" value is proportional to the value of λ in that segment, so if a

change in p increases one critical "a" value, it increases all of them). This is convenient

for reverse jump MCMC as it is easy to calculate how λ moves alter the ac’s, provided a

simple truncation scheme as suggested above and in Griffin and Steel (2003) is used. If a

more advanced variable truncation scheme is used (as in Appendix B.2), each individual

segment of ac’s must be calculated without knowledge of the previous value, as ac|ztol, ν, α
is no longer proportional to λ for all parameter values.

For the Gamma marginal, the series does not need to be truncated, as only a finite

number of the terms have non-zero contribution. From equation (4.22)

ac = λ∆νe−αztol

and, setting ztol = 0 (no approximation/truncation), gives ac = λν∆.

For the GIG (γ, ν, α) marginal

ac = λ∆

½
1

2

Z ∞

0
exp

µ
−ztolξ
2ν2

¶
gγ (ξ) dξ +max (0, γ)

¾
exp

µ
−α

2ztol
2

¶
.

For the RPH (ν, α) marginal

ac =
λ∆

π2
exp

µ
−α

2x

2

¶Z ∞

0

exp
³
−ztoly
2ν2

´
y
©
J21
¡√

y
¢
+N2

1

¡√
y
¢ªdy + 1.

For the IGa (ν, α) marginal

ac =
λ∆

π2

Z ∞

0

exp
³
−ztoly
2α2

´
dy

y
n
J2|ν|

¡√
y
¢
+N2

|ν|
¡√

y
¢ody.

For the TS (κ, ν, α) marginal

ac =
λν∆κ2κ

Γ (1− κ)
z−κtol exp

Ã
−α

1/κztol
2

!
.

For the IG (ν, α) marginal

ac =
λν∆√
2πztol

exp

µ
−α

2ztol
2

¶
.

In practice, this approximation works well for the six distributions and most parameter

values for ztol = 0.001, provided the data are rescaled so that E
£
y2i
¤
= 1. Details on rescal-

ing can be found in Section 5.2.1. This can be verified by sampling from the model and

testing the marginal distribution and correlation structure of the instantaneous volatility

process, such as in Figure 3.2. For the Generalised Inverse Gaussian, Positive Hyper-

bolic and Inverse Gamma distributions it is difficult to improve the truncation scheme
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because of the form of W−1
p (x) in equation (4.11). For the Tempered Stable and Inverse

Gaussian marginals, W−1
p (x) is simpler and an improved truncation scheme is employed,

using knowledge of the asymptotic behaviour of W−1
p (x). For a TS (κ, ν, α) marginal and

for large x, it can be shown that

W−1
p (x) ≈ 2

µ
νκ

Γ (1− k)

¶1/κµ1
x

¶1/κ
.

As κ and ν determine the rate of decay of the terms, a more advanced truncation scheme

is considered, which depends on the parameters κ, ν, α (see Appendix B.2). This is also

used for the Inverse Gaussian marginal (TS(12 , ν, α)).

Whenever a move in x1, x2 or λ is performed, in order to maintain a constant level of

precision in the approximation of the infinite sum, we add (or remove) a’s and r’s (using

RJMCMC). The proposals for the new a’s and r’s are direct from their priors given the

change in ac. The proposal to remove a’s and r’s is deterministic, with probability specified

by the upwards dimension move, because of the construction of reverse jump MCMC. The

acceptance probability for a move on x1 is then

min

⎡⎣1, p
³
y|σ02

´
p (y|σ2)

p
³
x
0
1, x2

´
p (x1, x2)

q
³
x
0
1 → x1

´
q
¡
x1 → x

0
1

¢
⎤⎦

(see Appendix C.5). Acceptance probabilities for moves on x2 and λ are similar.

4.3.6 Proposals

The MCMC algorithm is as follows

(1) γ, κ move (reverse jump) (if a Generalised Inverse Gaussian or Tempered Stable

marginal is used).

(2) x1 move (reverse jump).

(3) x2 move (reverse jump).

(4) λ or λ0 move (reverse jump) (if we have a stochastic λ process as in Section 3.3).

(5) ε2 move (fixed dimension).

(6) r move (fixed dimension).

(7) N2 move (reverse jump).

(8) Update the jump times of the stochastic λ process (reverse jump).
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(9) Update the jump sizes of the stochastic λ process (reverse jump).

(10) H move (fixed dimension).

(11) σ2 (0∆) move (fixed dimension) (provided the marginal for the volatility is not Tem-

pered Stable).

(12) µ move (fixed dimension).

(13) ρ move (fixed dimension).

(14) Joint A and R move (fixed dimension). If the marginal for the volatility is Tempered

Stable, this will update σ2 (0∆) using equation (4.19).

For (2), the proposal is from a Ga (c1, c1/x1) density. Similar moves are used for (3),

(4), (5), (6), (9), and (11) as these parameters are also restricted to R+. For parameters on
the entire real line (γ, µ and ρ) a symmetric random walk proposal is used. A symmetric

random walk on the positive integers is used for the N2 move in (7). For parameters on a

finite domain (κ and H) a similar Gamma local proposal is used, as was used for x1, but

on a function of the parameter (see Appendix C.6). The different constants were chosen

to give acceptance rates of approximately 35%.

For the A and R update (14), if ni = 0 then no update can be performed on the ith

row of A or R, as the dimension is kept fixed. Otherwise, a move on each row is proposed

for A and R in turn, again with proposals direct from the priors given ni. As proposals

are direct from their priors, the acceptance probability is

min

⎡⎣1, p
³
y|σ02

´
p (y|σ2)

⎤⎦ .
One potential problem with this move is that it is not a "local" move, so acceptance might

be poor. It also requires the generation of σ2j for each j ≥ i and the likelihood must be

calculated for values at which σ2j has altered, which can be expensive. The most extreme

example of this is for the Gamma marginal, as the Inverse Tail Mass function is easy to

compute and a lot of time (approximately 40%) is spent generating the volatility process

and evaluating the likelihood. As the Inverse Tail Mass function becomes more difficult to

compute (such as for the Generalised Inverse Gaussian marginal), the proportion of time

spent evaluating the likelihood decreases and this is less of a concern.

Roberts et al. (2004) use a clever update for several points of A and R, which does

not alter the likelihood and avoids the problem described above. This update is aided by

the simple Inverse Tail Mass function from a Gamma marginal. Similar techniques can

be implemented for other marginals but numerical errors can cause problems using this
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update and so it is not implemented. Even without this proposal, our algorithm performs

similarly to the preferred algorithm of Roberts et al. (2004) (see Section 4.4.6). Further

details on the MCMC algorithm can be found in Appendix C.5.

4.4 Testing the algorithm on simulated data

Tests are now performed to verify correct implementation of the MCMC. Test1, Test2 and

Test3 are tests on training data of size T = 1500. For these tests, the results for theGamma

marginal are similar to those of Griffin and Steel (2003). Priors with higher variance than

described in Section 4.2 are used for λ and κ, to test the correct implementation of the

MCMC. The prior for λ is Ga (1, 0.001) and a U (0, 1) prior is used for κ. This is not

sensible for real data, as it supports κ = 0, 1 (which give marginals concentrated at one

point - constant volatility). This uniform prior does not cause problems for training data

generated from the TS
¡
1
2 , 1, 1

¢
distribution, as κ = 1

2 is well identified and the MCMC does

not visit κ = 0, 1. On real data (such as Test5 and Chapter 5), with the uniform prior, the

MCMC sometimes visits large κ values (which gives nearly constant volatility σ2 (t) = 2ν).

This causes truncation problems in the infinite sum of equation (4.9). For this flat prior,

the MCMC does not visit κ = 0 and so, for real data, a more informative prior, Beta (1, 15),

is used for κ to prevent the truncation errors of the infinite sum. Further details on the κ

prior can be found in Appendix C.4. As described in Griffin and Steel (2003) and Section

4.3.4, an informative Ga (1, 1) is used for λ for real data. Test4 is designed to test the

correct implementation of the algorithm for the stochastic λ process and Test5 is a test on

a real data set (the S&P 500 data from 2nd January 1980 to 30th December 1987). This

data set has been used in Griffin and Steel (2003), where a Gamma marginal was used

with inference via MCMC. This data set has also been used in Gallant et al. (1992) and

Jacquier et al. (1994), though for different volatility models. Nicolato and Venardos (2003)

use the same stochastic volatility model with Gamma and Inverse Gaussian marginals,

making inference by minimising the squared difference between 87 model-produced and

market option prices on the S&P 500 on 2nd November 1993. i.e. their inference is based

on the option prices on a given date rather than the log returns themselves (note that

the S&P 500 data set used in Nicolato and Venardos (2003) are market option prices on

2nd November 1997, whilst our data set ends on the 30th December 1987). This makes

it more difficult to compare results quantitatively. In Test6 the efficiency of our MCMC

algorithm is investigated and compared with the Hybrid algorithm proposed in Roberts

et al. (2004).

For tests which are not testing the different marginal distributions, the Gamma mar-

ginal was used as it is the fastest to run.
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This section demonstrates that the MCMC has been implemented correctly and the

empirical performance of the models, for real data sets, will be examined in Chapter 5.

4.4.1 Test1

Test1 was constructed to test the correct implementation of proposals (1), (2), (3), (4),

(11), (12) and (14). These are proposals for the parameters controlling the exact form

of the marginal distribution, σ2 (0∆), µ and A and R. Test1 does not involve a lever-

age parameter for reasons which were briefly mentioned in Section 3.4 and these will be

discussed in Test2.

Parameters of the marginal distribution were chosen to give the marginal a unit mean

and variance and σ2 (0∆) was set to 0.5. This allows us to see how dominant the prior

for σ2 (0∆) is, as the prior should have a mean of approximately 1. The training data

were generated with λ = 0.05 and µ = 0.0001 (3.7% interest rate per year). This value

of λ is typical for observed financial data (see for example Griffin and Steel (2003)). For

Test1, we set ρ = 0 and this was held constant (no MCMC was performed on ρ). For

the Generalised Inverse Gaussian distribution, the data were generated with γ = −0.5
and for the Tempered Stable distribution, the data were generated with κ = 0.5 (these

both correspond to IG (1, 1) distributions). For the Positive Hyperbolic marginal, it is not

obvious how to pick ν and α to give unit mean and variance. Instead, training data were

generated with ν = 0.15 and α = 1.4 (which approximately give unit mean and variance).

For the Inverse Gamma marginal, picking ν and α to give unit mean and variance gives

ν = 2, so E
£
σ8 (t)

¤
is infinite. Instead, the training data were generated with ν = 5 and

α = 2 (corresponding to a mean and variance of 12 and
1
12).

Histograms are posteriors of 30,000 samples, taken after a burn-in period of 10,000.

Trace plots for the unnormalised log-likelihood (ll) and λ parameter are also given to

demonstrate the convergence of the chain.
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Figure 4.2: Histograms of the posterior distribution of σ2 (0∆) for Test1. The true value

is σ2 (0∆) = 0.5.

For the six marginals, the posterior supports σ2 (0∆) = 0.5. Estimating this parameter

is more difficult than some of the other parameters, as only the first few data points are

important in determining the distribution σ2 (0).
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Figure 4.3: Histograms of the posterior distribution of µ for Test1. The true value is

µ = 0.0001.

All posteriors are able to identify that µ is small but are unable to pick out µ = 0.0001

accurately. Histograms of the posterior of µ are not given in Griffin and Steel (2003), so

all that can be concluded is that, for small µ, the model is not significantly altered as µ

varies, provided it remains small. Although a prior which is more concentrated around

µ = 0.0001 could be used to improve identifiability, for a generic financial time series, it

was felt that this would be unknown and could not justify using a much more informative

prior than the Ga(1, 250) used here.

µ× 10000
GIG 84.3 (0.00, 403)

Ga 72.6 (0.01, 381)

RPH 148 (0.04, 491)

IGa 101 (0.00, 437)

TS 173 (0.03, 573)

IG 116 (0.02, 514)

Table 4.3: Posterior medians and 95% credible intervals (in brackets) for µ for Test1.
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For all marginal distributions, Table 4.3 supports the true value of µ× 10000 = 1, though
each marginal does not have a posterior for µ concentrated near the true value from which

the data were generated.
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Figure 4.4: Histograms of the posterior distribution of ν for Test1.

The inference of the MCMC is much better for ν than for µ. These posteriors have a mean

and mode at approximately the same ν value from which the training data were generated

(see Table 4.4) and are similar to those given in Griffin and Steel (2003). The posterior for

the Gamma marginal is not as concentrated near its true value as the other distributions

for this simulation. For other seeds, the posterior of ν for the Gamma marginal is often

closer to ν = 1 than in Figure 4.4. This property can also be seen in Griffin and Steel

(2003) and occurs because of the high correlation in the volatility and the size of the data

set.

ν

GIG 1

Ga 1

RPH 0.15

IGa 5

TS 1

IG 1

Table 4.4: True values of ν for Test1.
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Figure 4.5: Histograms of the posterior distribution of α for Test1.

These posteriors are similar to those given in Griffin and Steel (2003) and all have a

mean and mode at approximately the same α value from which the training data were

generated (see Table 4.5). Again, for the Gamma marginal, the posterior for α is not

as concentrated near its true value as the other marginals, which was justified for the

ν parameter previously. For the Gamma marginal, the joint posterior of ν, α gives a

volatility process with approximately unit mean (like the training data).

α

GIG 1

Ga 1

RPH 1.4

IGa 2

TS 1

IG 1

Table 4.5: True values of α for Test1.
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Figure 4.6: Histograms of the posterior distribution of λ for Test1. The true value is

λ = 0.05.

These posteriors have a mean and mode at approximately the same λ value from which

the training data were generated (λ = 0.05) and are similar to those given in Griffin and

Steel (2003). The trace plot for this parameter is now given, as it is easy to compare this

parameter across the different marginal distributions.
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Figure 4.7: Trace plots of λ for Test1.

All simulations have converged and the posterior contains the value from which the training

data were simulated, λ = 0.05.
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Figure 4.8: Plots of the unnormalised log-likelihood for Test1.
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All simulations have converged and the likelihood is stable.
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Figure 4.9: Histograms of the posterior of γ and κ for the Generalised Inverse Gaussian

and Tempered Stable marginals for Test1.

For both marginal distributions, the posterior supports the values from which the training

data were generated. Given that γ determines the thickness of the tails of the log returns

and κ ∈ (0, 1), it might be hoped that the variance in the posterior was less. For exam-
ple, for the GIG, the posterior correctly identifies that the Positive Hyperbolic (γ = 1)

distribution is highly unlikely, though it is not clear if the training data were generated

from an Inverse Gaussian (γ = −0.5) or Inverse Gamma (γ < 0) marginal. The Inverse

Gamma marginal looks unlikely, but this is not as strongly rejected as the Positive Hyper-

bolic. It is difficult to estimate all three parameters of the GIG (γ, ν, α) (or TS (κ, ν, α))

distribution unless the data set is very large. It is particularly difficult to estimate the

third parameter of the GIG when the data are from an Inverse Gamma distribution (so

α = 0), even when the data are independent IGa variates and MCMC is used to estimate

the parameters of the GIG directly. This can be verified by generating variables from the

GIG (γ, ν, α = 0) distribution and estimating the three parameters using MCMC (this is

not MCMC for the volatility process, improving α estimation). 10, 000 random variables
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from the GIG
¡
−5,
√
2, 0
¢
(IGa (5, 1)) distribution were generated and 50, 000 iterations

were taken after a burn-in of 10, 000. Histograms of the posterior of the γ and α parame-

ters are given in Figure 4.10. The priors used were the same as for the volatility process

MCMC.
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Figure 4.10: Histograms of the posterior of the first and third parameters of the GIG

distribution on independent IGa (5, 1) variables.

Figure 4.10 shows that estimating the third parameter of the GIG distribution is difficult

if it is small, even when the data set is 10, 000 independent IGa (5, 1) variates. The

financial data sets we investigate are typically of size 1000 and are assumed to follow

the BNS SV model, so observations are correlated. This makes it difficult to assess if

the posterior distribution of α supports the IGa distribution. Instead we shall use the

posterior distribution of γ to assess if the posterior of the GIG parameters supports the

IGa marginal, by checking if the posterior only supports γ < 0.

Additionally, for inference using the BNS SV models, only the first two moments of

the marginal distribution are used in the likelihood and estimating three parameters is

difficult when only examining two moments of the data. This is not a major concern
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here, as later the performance of the different models is tested empirically, where any over

parameterised models (such as perhaps the GIG (γ, ν, α) and TS (κ, ν, α) marginals) will

not predict "unseen" asset movement well.

To summarise the results of Test1, there are identifiability problems for the interest

rate parameter, µ, for all marginal distributions. The MCMC is able to infer that µ is

small but is not able to accurately pick out its value. Griffin and Steel (2003) do not give

posterior histograms for µ, but their posterior median and 95% credible intervals for µ are

influenced by the model that they are imposing. i.e. with/without leverage alters their

credible intervals.

All the data contribute to estimating the most important parameters ν, α and λ (and

additionally γ and κ for the Generalised Inverse Gaussian and Tempered Stable marginals)

and these are well estimated by the MCMC (though the variance of the posterior of γ and

κ are higher than those of ν and α).

The main focus is the performance of the MCMC on real data and so scatterplots

of posterior samples are not given here. In Section 4.4.5, S&P 500 data are used and a

discussion of the MCMC algorithm and possible reparameterisations are discussed. MCMC

algorithms for the Gamma marginal can be found in Roberts et al. (2004) and Griffin and

Steel (2003). The efficiency of our algorithm is compared with the preferred algorithm of

Roberts et al. (2004) in Section 4.4.6.

4.4.2 Test2

Test2 is similar to Test1 but with leverage (see Section 3.4). The reason this was not

included in Test1 is because the strength of the leverage induced is not only determined

by the magnitude of the leverage parameter, ρ, but also by the variance of the marginal

distribution of σ2 (t). Here, histograms of the posterior of ρ are given for training data

generated with the same parameters as Test1 (but with the additional leverage parameter).

The training data were generated with ρ = −3.0, which is typical for financial data (see
Griffin and Steel (2003) and Section 4.4.5). Only histograms of ρ are given. The other

histograms were similar to Test1. 50,000 iterations were taken after a burn-in of 10,000.
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Figure 4.11: Histograms of the posterior distribution of ρ for Test2. The true value is

ρ = −3.0.

The training data were generated with ρ = −3.0 and the posterior has mean and mode at
approximately this value for each marginal.

4.4.3 Test3

Test3 was designed to test the correct implementation of the MCMC for the Hurst para-

meter introduced in Section 3.5. The same parameters were used as in Test2 to generate

the training data, with the Hurst parameter set to H = 0.6. Histograms are given for the

posterior of H (other histograms were similar to Test1 and Test2). 10,000 iterations were

taken after a burn-in of 10,000.
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Figure 4.12: Histograms of the posterior distribution of H for Test3. The true value is

H = 0.6.

The posterior contains H = 0.6 and only supports H close to 0.6, suggesting the algorithm

is working correctly. The posterior does not support H = 0.5 or H = 1.0. Figure 4.13 is

a histogram of the posterior of H for a Gamma marginal on training data with the same

parameters as Figure 4.12 apart from H = 0.5. This is included so we can compare the

posterior histograms of the Hurst parameter for real data with data for which we know

H = 0.5, to try to assess if real data supports H = 0.5.
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Figure 4.13: Histogram of the posterior distribution of H for Brownian motion data. The

true value is H = 0.5.

Figure 4.13 shows that, for Brownian motion data, the posterior has a mode at H = 0.5

and is monotonic decreasing. There is very little posterior support for H > 0.56.

4.4.4 Test4

Test4 was designed to test the correct implementation of the MCMC for the stochastic λ

process introduced in Section 3.3. The same parameters were used as Test3 to generate
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the training data. There were three different λi values used for this test, namely

TestA λi = 0.05 i ≤ 1000

TestB λi =

(
0.01 i ≤ 500
0.5 500 < i ≤ 1000

TestC λi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.05 i ≤ 1000
0.3 1000 < i ≤ 2000
0.05 2000 < i ≤ 3000
0.3 3000 < i ≤ 4000

40,000 iterations were taken after a burn-in of 10,000. The prior for r was Ga (1, 0.5).

This has higher variance than the Ga (1, 1) prior suggested in Section 3.3. In Section

5.3.3, where MCMC is performed on real data, simulations are run for both priors for

r. TestA and TestB are data sets of size 1000 with no jumps and one jump respectively.

TestC has three jumps in the stochastic λ process and is of size 4000, as it is difficult to

make inference about the jump times and sizes when the jumps are close together.

For TestA, histograms are given for the posterior of N2 (number of jumps in the

stochastic λ process) and λ0 when N2 = 0 (other histograms were similar to Test1, Test2

and Test3).
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Figure 4.14: Histograms of N2 and λ, when N2 = 0, for Test4 TestA.
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The model identifies that it is most likely there are no jumps and when N2 = 0, estimates

λ to be approximately 0.05.

n2 Prior P (N2 = n2) Posterior P (N2 = n2)

0 0.333 0.736

1 0.222 0.222

2 0.148 0.038

3 0.099 0.004

Table 4.6: Prior and posterior probabilities for N2 for Test4 TestA.

Table 4.6 shows the posterior for N2 has more support at N2 = 0 than the prior.

For TestB, histograms are given for the posterior of N2 (number of jumps in the λ

process), the positioning of the jumps when N2 = 1, as well as histograms of the posterior

of the values of λ in the first and second segment when N2 = 1 (other histograms were

similar to Test1, Test2 and Test3).

0 1 2 3 4 5

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

N2

N2

0 200 400 600 800 1000

0
20

00
40

00
60

00
80

00
10

00
0

Jump time when N2=1

Jump time

Figure 4.15: Histograms of N2 and jump time, when N2 = 1, for Test4 TestB.
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The model identifies that one jump is most plausible and locates this jump in the correct

place, T = 500.

n2 Prior P (N2 = n2) Posterior P (N2 = n2)

0 0.333 0.000

1 0.222 0.675

2 0.148 0.272

3 0.099 0.007

Table 4.7: Prior and posterior probabilities for N2 for Test4 TestB.

Table 4.7 shows that the posterior has more support at N2 = 1 and N2 = 2 than the prior.

The posterior probabilities for 0 jumps is 0.000 to three decimal places.
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Figure 4.16: Histograms of λ before and after the jump, when N2 = 1, for Test4 TestB.

The MCMC picks out the correct values of λ to the left and right of the jump.

For TestC, histograms are given for the posterior of N2 (number of jumps in the λ

process), the positioning of the jumps when N2 = 3, as well as histograms of the posterior
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of λ values when N2 = 3 (other histograms were similar to Test1, Test2 and Test3).
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Figure 4.17: Histograms of N2 and jump time, when N2 = 3, for Test4 TestC.

The model identifies that three jumps is most plausible and locates these jumps accurately.

n2 Prior P (N2 = n2) Posterior P (N2 = n2)

0 0.333 0.000

1 0.222 0.000

2 0.148 0.000

3 0.099 0.862

4 0.066 0.128

5 0.044 0.010

Table 4.8: Prior and posterior probabilities for N2 for Test4 TestC.

Table 4.8 illustrates the strong posterior support for N2 = 3. The following graphs are

also conditional on N2 = 3.
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Figure 4.18: Histograms of λ at the beginning, end and in between jumps, when N2 = 3,

for the stochastic λ process, for Test4 TestC.

The MCMC picks out the correct values of λ in each segment.

4.4.5 Test5

The previous tests were on training data. Test5 is a test on S&P 500 data from 2nd January

1980 to 30th December 1987. All marginals are run on this data and the mean/variance

of the different marginals are compared. Results for the Gamma marginal can also be

compared with those of Griffin and Steel (2003) and Nicolato and Venardos (2003) (which

fits the BNS SV models to S&P 500 data over a different time period).

Before running any simulations, it was noted that the results from these two sources

are quite different. Nicolato and Venardos (2003) report a λ value of approximately 2.4958

and 1.6787 for the Gamma and Inverse Gaussian marginals respectively (this is a concern,

as the marginal distribution of σ2 (t) and λ value should be unrelated (see Appendix D)),

while Griffin and Steel (2003) reports λ ∈ (0.004, 0.05) for the Gamma marginal. The
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Griffin and Steel (2003) estimate for λ is more in keeping with the general opinion that

the correlation in volatility decays slowly for financial time series. Nicolato and Venardos

(2003) also do not give any credible intervals for their estimates and this makes it difficult

to check if their results are similar to ours.

Initially, the MCMC was run for all the model generalisations that have been tested

so far but without the stochastic λ process, to make it easier to compare results with

other sources (i.e. the model was run with leverage and the MVN approximation to

fBm). Histograms are given for the posterior of H in Figure 4.19. 10,000 iterations were

taken after a burn-in of 10,000. The data were rescaled by multiplying yi by 88.8 so that

E
£
y2i
¤
≈ 1. The prior for κ was Beta (1, 15).
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Figure 4.19: Histograms of the posterior distribution of H for Test5.
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H

GIG 0.505 (0.500, 0.524)

Ga 0.505 (0.500, 0.524)

RPH 0.505 (0.500, 0.525)

IGa 0.505 (0.500, 0.527)

TS 0.507 (0.500, 0.532)

IG 0.505 (0.500, 0.524)

Table 4.9: Posterior medians and 95% credible intervals (in brackets) for the Hurst para-

meter for Test5.

For each marginal, the posterior has most support at H = 0.5, and is similar to Figure

4.13, suggesting H ≈ 0.50 and fBm is not required to model the S&P 500 data. The

MCMC was rerun without the Hurst parameter, so our results can be directly compared

with those of Nicolato and Venardos (2003) and Griffin and Steel (2003). A sample of

50,000 iterations were taken after a burn-in of 10,000. Results are summarised in Tables

4.10 and 4.11.

ρ λ ll

GIG -3.88 (-6.99, -1.81) 0.047 (0.027, 0.082) -2349 (-2376, -2322)

Ga -5.31 (-11.17, -1.95) 0.040 (0.023, 0.080) -2377 (-2403, -2349)

RPH -2.37 (-5.34, -1.58) 0.039 (0.022, 0.079) -2377 (-2403, -2339)

IGa -1.89 (-3.91, -0.62) 0.052 (0.030, 0.091) -2352 (-2383, -2323)

TS -3.49 (-7.53, -2.41) 0.051 (0.027, 0.095) -2361 (-2390, -2330)

IG -3.11 (-4.69, -0.68) 0.045 (0.027, 0.079) -2365 (-2395, -2336)

Table 4.10: Posterior medians and 95% credible intervals (in brackets) for parameters

which do not directly influence the marginal for Test5.

For each marginal, the posterior credible interval for ρ does not contain 0, suggesting

that, for this data set, a model with leverage is required. The summaries for the different

marginals for the leverage parameter are less similar to each other than the posterior for

other parameters; this is discussed in Sections 3.4 and Appendix A.9. For the Gamma and

Inverse Gaussian marginals, the credible intervals for the leverage parameters are similar

to those estimated in Nicolato and Venardos (2003) and Griffin and Steel (2003).

For λ, the summaries suggest the parameter is small and hence there is a slow decay in

correlation of the volatility. The posterior of λ is similar for each marginal and these are

similar to the values reported in Griffin and Steel (2003). Our posteriors for λ do not agree

with the large values estimated by Nicolato and Venardos (2003) and, even though they fit

the model to observed market option prices (and the data set is over different time periods),
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the results should be similar, as they both characterise the S&P 500 movement (assuming

it follows a stationary process). The value of λ should be similar for each marginal and

this is the case for all of our marginals. Even though the marginal process does not have

the same mean and variance in the prior, the posterior mean and variance are similar for

each marginal and this is not the case for the results of Nicolato and Venardos (2003). Our

λ values agree with those of Griffin and Steel (2003) and suggests the results of Nicolato

and Venardos (2003) need further examination for verification.

Finally, the log-likelihood (ll) suggests the Inverse Gamma and Generalised Inverse

Gaussian marginals fit the data best. The log-likelihood for the Inverse Gamma distri-

bution is larger than that of the three parameter Tempered Stable marginal. The worst

performing is the Gamma marginal. The aim of Test5 is not to compare the performance

of different models; this is left until Chapter 5, where a more thorough comparison of the

different models’ empirical performance is given.

E
£
σ2 (t) |ν, α, κ

¤
V
£
σ2 (t) |ν, α, κ

¤
γ or κ

GIG (γ, ν, α) 0.94 (0.71, 1.28) 0.34 (0.15, 1.16) -0.23 (-3.27, 2.19)

Ga (ν, α) 1.07 (0.74, 1.79) 0.37 (0.19, 1.18)

RPH (ν, α) 1.20 (0.89, 1.58) 0.46 (0.21, 0.93)

IGa (ν, α) 0.83 (0.71, 0.99) 0.27 (0.17, 0.42)

TS (κ, ν, α) 0.96 (0.75, 1.27) 0.36 (0.18, 0.76) 0.50 (0.33, 0.67)

IG (ν, α) 1.04 (0.81, 1.36) 0.31 (0.13, 0.88)

Table 4.11: Posterior medians and 95% credible intervals (in brackets) for parameters

which do directly influence the marginal for Test5.

For the Generalised Inverse Gaussian distribution, the posterior 95% credible intervals

for γ are unable to reject any of the other marginal distributions, as the credible interval

supports γ positive (Gamma), γ negative (Inverse Gamma), γ = −0.5 (Inverse Gaussian)
and γ = 1 (Positive Hyperbolic). We shall not overly concern ourselves with this here and

leave model selection until Chapter 5. For the Tempered Stable marginal, the credible

interval for κ contains 0.5 and suggests the Inverse Gaussian distribution is a reasonable

marginal to use for volatility for the S&P 500 data set. This is reflected in the large log-

likelihood for the Inverse Gaussian distribution in Table 4.10. The informativeBeta (1, 15)

prior keeps κ small, suggesting the log returns require a fat-tailed distribution; it is not

surprising that the Inverse Gamma distribution has a large log-likelihood for this reason.

The data were rescaled so E
£
y2i
¤
= 1 and this can be seen in the median and cred-

ible interval for E
£
σ2 (t) |ν, α, κ

¤
, which all contain 1, except for the IGa (ν, α) mar-

ginal which contains 0.99. Posterior summaries for V
£
σ2 (t) |ν, α, κ

¤
are similar for each

marginal and are in keeping with the results of Griffin and Steel (2003). This is not
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the case in Nicolato and Venardos (2003), where for the Gamma and Inverse Gaussian

marginals, V
£
σ2 (t) |ν, α, κ

¤
is 114 and 18, 000 respectively. It might be expected that

V
£
σ2 (t) |ν, α, κ

¤
≈ V

£
y2i
¤
(which is 88.5 for this data set) and this is not the case. This

is because the model fits a smoothed process to the observed data and the data set has

a small number of extreme observations. Removing the four largest y2i from the rescaled

data alters E
£
y2i
¤
from 1 to 0.74 and V

£
y2i
¤
from 88.5 to 2.34. Such extreme observa-

tions are often explained through the leverage term, rather than the volatility process (i.e.

V
£
σ2 (t) |ν, α, κ

¤
need not necessarily be similar to V

£
y2i
¤
). Griffin and Steel (2003) also

find the leverage term explains the large (and negative) log returns, particularly when

they use a "quadratic leverage term".

Note that the mean and variance of each marginal distribution is similar, unlike those

of Nicolato and Venardos (2003).

4.4.6 Test6

The correlation structure between parameters in the posterior can be complex (particularly

for observed data) and this makes efficient MCMC implementation difficult. A discussion

of the correlation of the parameters for the Gamma marginal is given in this test and the

performances of different MCMC algorithms are compared. We only consider the simple

forms of the model (no fBm approximation or stochastic λ process) so the algorithm can

be compared with that of Roberts et al. (2004).

To increase the acceptance rate and/or size of the MCMC moves, it is preferable

that the posterior of the parameters have low correlation (see for example Robert and

Casella (2002) for discussion). When a Gamma distribution is used as the marginal for

the volatility, there are five non-latent parameters (µ, ρ, ν, α and λ) and many latent

parameters (σ2 (0), the Poisson point process, A, and the uniforms, R). Griffin and Steel

(2003) consider proposals which are based on the knowledge of the high correlation between

λ and n, where

n =
TX
i=1

ni.

This correlation occurs because as λ increases, the value at which the Poisson points is

truncated increases (see equation (4.22)). Although it is intuitive that λ and n are likely

to be positively correlated, the correlation between other parameters (such as ν and α)

and n is less clear. A table of correlations between the different parameters is now given

for the Gamma marginal run on S&P 500 data, where sum_a is

sum_a =
TX
i=1

niX
j=1

ai,j .
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ρ ν α λ n sum_a

µ 0.171 -0.091 -0.020 -0.087 -0.092 -0.096

ρ -0.518 -0.580 -0.522 -0.713 -0.665

ν 0.901 0.114 0.632 0.595

α 0.072 0.596 0.540

λ 0.802 0.758

n 0.964

Table 4.12: Correlation in the posterior of the parameters of a Gamma marginal on S&P

500 data.

The two most notable values from Table 4.12 are that of corr (ν, α) and corr (λ, n), which

have a high correlation in the posterior. It was expected that corr (λ, n) would be large

and the proposal described in Appendix C.5 reflects this. Additionally, as it is known that

ν and α specify the value, ac, at which the Poisson points are truncated, the proposals for

an update in either ν or α consider adding or removing Poisson points and uniforms, to

keep constant accuracy of the approximation of the infinite sum in equation (4.21). As the

likelihood is Normal, two moments of the volatility process are fitted and, for the Gamma

distribution, the first moment is ν/α and this suggests why there may be high correlation

between these two parameters in the posterior.

There is strong correlation in other parameters which might not be expected, for

example (ρ, α), (ρ, n) and (ν, n). To try to combat the high correlation between ν and α,

Griffin and Steel (2003) reparameterise, using the parameters (ν/α, α). Figure 4.20 is a

scatter plot, demonstrating the correlation in the posterior of the parameters (ν, α) and

(ν/α, α).
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Figure 4.20: Scatterplots demonstrating the correlation in the posterior of (ν, α) and

(ν/α, α) for a Ga (ν, α) marginal distribution on S&P 500 data.

The correlation is higher for the original parameterisation and without considering joint

moves on (ν, α), the MCMC algorithm might be inefficient. For the (ν/α, α) parameteri-

sation, there is less correlation, so the reparameterisation might improve the convergence

rate and/or correlation in the chain. A table of correlations between the new parameters

is now given (with the old parameterisation values in bold).
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ρ ν/α α λ n sum_a

µ
0.171 -0.157

-0.091
-0.020 -0.087 -0.092 -0.096

ρ
0.180

-0.518
-0.580 -0.522 -0.713 -0.665

ν/α
-0.304

0.901
0.089

0.114
0.018

0.632
0.057

0.595

α
0.072 0.596 0.540

λ
0.802 0.758

n
0.964

Table 4.13: Correlation in the posterior of the reparameterisation for a Ga (ν, α) marginal

distribution on S&P 500 data.

Table 4.13 suggests that the reparameterisation of Griffin and Steel (2003) could improve

the efficiency of the chain, assuming that there is not much correlation structure between

the parameters in the table and the latent parameters. ACF plots of α (which is common

to both parameterisations) are now given for the two parameterisations.
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Figure 4.21: ACF(α) plots for the (ν, α) and (ν/α, α) parameterisations for a Ga (ν, α)

marginal distribution on S&P 500 data.
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Figure 4.21 shows that the reparameterisation has improved the efficiency of the chain,

as the ACF of the common parameter decays more rapidly for the reparameterisation.

However, there could be another parameter which converges/mixes more slowly than the

ν and α parameters and so plots of the log-likelihood of the two different parameterisations

are now examined. This compares the efficiency of the two MCMC algorithms, without

focusing on one individual parameter. A parameterisation which decreases the correlation

in the log-likelihood will provide a less correlated sample from the predictive density, which

we sample from in Chapter 5.
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Figure 4.22: ACF(log-likelihood) plots for the (ν, α) and (ν/α, α) parameterisations for a

Ga (ν, α) marginal distribution on S&P 500 data.

The ACF plots are similar for both parameterisations. At lag 100 the (ν, α) parameter-

isation has correlation 0.61 and the (ν/α, α) parameterisation has correlation 0.53. The

improvement is not as noticeable as in Figure 4.21 because there are other parameters

converging/mixing more slowly (than ν and α), limiting the effectiveness of the repa-

rameterisation. For example, ACF (λ) tends to decay slowly, even though our algorithm

already uses knowledge of the correlation between λ and the number of Poisson points and

uniforms. Similar reparameterisations (where one parameter is the mean of the marginal

distribution) are not trivial for all of the marginal distributions and as the performance
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increase is slight, these reparameterisations are not implemented in later sections. As our

focus is prediction (using predictive densities and option pricing results), these MCMC

algorithms perform similarly.

Roberts et al. (2004) focus on the performance of different MCMC algorithms and

their preferred algorithm and ours is now compared. They implement two algorithms,

which they denote the CA (centred algorithm) and NCA (non-centred algorithm). They

conclude that a hybrid of the two algorithms performs best (our algorithm is a non-

centred algorithm). This is referred to as the Hybrid algorithm. As our interest is for

the MCMC acting on real data, timings of our algorithm and the Hybrid algorithm2 for

50, 000 iterations (after 10, 000 burn-in) on six of the real data sets are now given. Each

data set is size T = 1000 and the same computer was used for the timings. Timing results

are summarised in Table 4.14. These data sets are used in Chapter 5 and are not described

fully here, as we are only focusing on the MCMC algorithm performance.

Date Set Hybrid algorithm Our Algorithm Hybrid Our

time/s time/s thinning thinning

British Airways PLC 1267 1652 3 2

Coca-Cola Co 1281 1678 3 2

HJ Heinz Co 1365 1681 4 3

JP Morgan Chase & Co 1281 1580 4 3

McDonald’s Corp 1270 4782 4 0

Procter & Gamble Co 1272 610 0 1

Table 4.14: Timings for the Hybrid algorithm of Roberts et al. (2004) and our algorithm

to perform 50,000 iterations on six share data sets.

The Hybrid algorithm of Roberts et al. (2004) takes a similar length of time to run for

every data set, whilst our algorithm speed changes across data sets. The most obvious

difference between data sets which will alter the speed of our algorithm is the posterior

for λ, as this alters the point at which the Poisson point process is truncated, ac, linearly

(for the simple truncation scheme).

2We are grateful to Dr O. Papaspiliopoulos for generously allowing us to use his code.
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Date Set Posterior 95% credible interval for λ

British Airways PLC 0.077 (0.045, 0.155)

Coca-Cola Co 0.056 (0.010, 0.120)

HJ Heinz Co 0.117 (0.079, 0.197)

JP Morgan Chase & Co 0.114 (0.070, 0.173)

McDonald’s Corp 0.215 (0.038, 0.668)

Procter & Gamble Co 0.029 (0.018, 0.038)

Table 4.15: Posterior 95% credible intervals for λ for six share data sets.

Table 4.15 shows the first four data sets have similar posteriors for λ and therefore take

a similar length of time to run in Table 4.14. For the McDonald’s data set the posterior

supports larger λ values and Procter & Gamble Co supports only smaller λ values. These

posteriors partly explain the time differences for our algorithm on these data sets. However,

ν also alters ac in a similar way to λ, so the posterior for λ is not able to entirely explain

speed differences of our algorithm across the data sets.

The thinning of Table 4.14 ensures that each MCMC algorithm uses almost the same

cpu time for a given data set. ACF plots of να (which Roberts et al. (2004) examined

to compare MCMC algorithm performance) for these thinnings are given in Figure 4.23,

where 500, 000 samples were taken after a burn-in of 50, 000 iterations. As the thinning

of the MCMC samples is not constant for each data set, Figure 4.23 cannot be used

to compare the efficiency of the algorithms across data sets and should only be used to

compare the performance of the two MCMC algorithms.
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Figure 4.23: ACF(να) plots of the Hybrid MCMC algorithm of Roberts et al. (2004) (solid

line) and our algorithm (dashed line).

Our algorithm outperforms the Hybrid algorithm for five of the six data sets. For the

remaining McDonald’s Corp data set, the Hybrid algorithm performs very slightly better.

The aim of Test6 was to show it is not easy to significantly improve our MCMC algorithm.

Now this has been achieved, we assume the MCMC algorithm is working correctly (from

previous tests) and that provided the chain is thinned sufficiently, we can sample (approx-

imately) independently from the posterior. The empirical performances of the models on

real data are investigated in the next chapter.



Chapter 5

Model selection: Empirical
performance of the models

The performances of the different models are now compared on real data. The data sets

are various Foreign Exchange rates and shares of companies on the NYSE. The models

are compared using predictive densities and empirical option pricing results. Each data

set is size 1000, with the last observation on 1st December 2003. Options all expire in 20

days.

5.1 Predictive densities

Predictive densities assess how likely "unseen" data (on which the model was not fitted)

is for different models. The method used is similar to the one in Vrontos et al. (2003),

where the performance of some popular discrete time financial models is investigated.

Assume we have observed log returns, y = {y1, . . . , yT} (on which the model is fitted)
and "unseen" data Y

0
= {yT+1, . . . , yT+t}, which is not used to fit the model (and so

can be viewed as a random variable). Let θ be a vector of the non-latent parameters

specifying the model. The posterior predictive distribution is an average of predictions

over the posterior distribution p
¡
θ|y
¢
and is defined as

p
³
Y
0 |y
´
=

Z
p
³
Y
0 |θ
´
p
¡
θ|y
¢
dθ.

For the models under investigation, it is not possible to calculate this posterior analytically,

soB samples from the posterior distribution are taken (using the MCMCmethod described

in Section 4.3 and Appendix C.5) and denoted by θ1, . . . , θB. The "Rao-Blackwellized"

127
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MC estimate for the predictive density is

bp³Y 0 |y
´
=
1

B

BX
i=1

p
³
Y
0 |θi, y

´
,

where p
³
Y
0 |θi, y

´
is estimated by averaging the likelihood function given in equation

(3.11) over many volatilities generated from the non-latent parameters θi. This method is

similar to those described in Pitt and Shephard (1999) and Vrontos et al. (2003).

The predictive density given θi, p
³
Y
0 |θi, y

´
, is estimated using

p
³
Y
0 |θi, y

´
=
1

B2

B2X
j=1

p
³
Y
0 |σj , y

´
, (5.1)

where σj is a volatility generated using θi and B2 is large enough so that the approximation

is sufficiently accurate. This will increase rapidly as the number of "unseen" data points

and dimension of the Monte Carlo integration increases.

Models, which are fitted to y and have large bp³Y 0 |y
´
, explain the "unseen" data, Y

0
,

well. This gives a way of comparing the out of sample fit of the different models.

5.2 Option pricing

All our option pricing assumes that investors are completely indifferent to the risk involved

in an investment and is only concerned about expected return, and so are risk-neutral.

For the models described in Chapter 3, in general, option prices must be evaluated

numerically, computing the expected discounted payoff of the option (with Monte Carlo

integration say). For certain European options, techniques have been developed to try to

improve the numerical evaluation of these integrals (see Nicolato and Venardos (2003) and

Hubalek and Tompkins (2001)), though these techniques perform best when the payoff is

only dependent on the expiry (or strike) value of the asset, such as for a European call

or put. For more complicated options, such as an Asian option (which is dependent on

the average value of the asset over some time period), the methods are less efficient. For

this reason, all options are priced using forward simulation of the share, from equation

(3.11), as the forward simulation of the asset must be performed for some of the more

complicated options. Evaluating the simpler payoffs at the same time does not alter the

efficiency significantly.

To price a European option, the expected discounted payoff is calculated (using the

estimated constant interest rate). The prices of the algorithm are indifferent to risk and
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therefore risk neutral. To test the performance of the different models, the models were

fitted to 1000 data points and the expected discounted payoff of a variety of different

options was calculated. The rescaled sum of the squared error loss between predicted and

actual discounted option payoffs is then reported. The rescaling is such that the Inverse

Gamma marginal has a rescaled error of 1. The actual discounted payoffs are evaluated

by discounting using the estimated drift, as although the actual drift for shares at a given

time can be looked up (as it is the interest rate), the actual drift of FX data cannot.

If many different option payoffs are considered, models which predict paths close to the

actual share path will perform well. In this case, although it is the path of the share which

is important (as is also the case for predictive densities), conclusions based on predictive

densities and option pricing results need not be the same. Predictive densities have a loss

function controlled by the likelihood, whilst for option pricing results, the loss function is

chosen by the user, which we choose to be the rescaled squared error loss. For each data

set and marginal distribution we price 27 options and reportP27
i=1 (PM,i −Oi)

2P27
i=1 (PIGa,i −Oi)

2 ,

where Oi is the observed discounted payoff of option number i and PM,i is the predicted

discounted payoff of option number i for marginal distribution M .

5.2.1 Simulation from the asset process and rescaling

From equation (3.11), the log asset, x (t), follows the equation

dx (t) = µdt− σ2 (t)

2
(dt)2H + σ (t) dWMVN (t) + ρdz (λt) .

The discrete solution to this is

xt+∆ − xt = µ∆− σ2t∆
2H−1

2
+ σtAi + ρzi, (5.2)

where A ∼MVN (0,Σ) and σt are discrete simulations from the volatility process of the

MCMC applied to the original observed log returns (see Hu and Øksendal (2003)).

It is sometimes favourable to rescale the data, so that parameters in the MCMC are of

reasonable size. Let x2 = βx (this is the equivalent to running the model on the rescaled

log returns y2 = βy), then equation (3.11) becomes

dx2 (t) = β

½
µdt− σ2 (t)

2
(dt)2H

¾
+ βσ (t) dWMVN (t) + βρdz (λt) ,

where σ (t) is the volatility for the original log returns.
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If σ (t) and z (t) are the volatility and BDLP which drive the Ornstein-Uhlenbeck

equation (1.8) for the original data and ξ (t) and z2 (t) are the volatility and BDLP for the

rescaled log returns respectively, then ξ (t) = βσ (t), z2 (t) = β2z (t) (from equation (4.4))

and so

dx2 (t) =

½
βµdt− ξ2 (t)

2β
(dt)2H

¾
+ ξ (t) dWMVN (t) +

ρ

β
dz2 (λt) (5.3)

and the likelihood for Y2 is specified by the likelihood for Y given in equation (3.12). This

is proportional to

fY2
¡
y2
¢
=

Ã
TY
i=1

1

ξi

!
fG
¡
g
¢
,

where

gi =

¡
y2
¢
i
− βµ∆+ ξ2i∆

2H−1/2β − ρzi/β

ξi

and G ∼ MVN (0,Σ). Comparing equation (3.11) with equation (5.3) and using the

solution given in equation (5.2), gives

x2,t+∆ − x2,t =

µ
βµ∆− ξ2i

2β
∆2H−1

¶
+ ξiAi +

ρ

β
(z2)i ,

where A ∼MVN (0,Σ).

As x2 = βx, the discrete solution for the original share is

xt+∆ − xt =

µ
µ∆− ξ2i

2β2
∆2H−1

¶
+

ξi
β
Ai +

ρ

β2
(z2)i .

Although this is easier to evaluate by setting ξ (t) = βσ (t) in equation (5.2), it is still

useful as it forces the correct derivation of the likelihood. Simulation of the share requires

generation of MVN (0,Σ) random variates and this was discussed in Section 3.5.

5.2.2 General option pricing algorithm

To price an option which expires at time t, given T observed data points, the algorithm

used is as follows:-

(1) Perform MCMC on the data set of size T until convergence, so we are sampling from

the posterior of ρ, µ, λ, γ, κ, ν, α and H (A, R and σ2 (0∆) are latent parameters).

(2) Simulate σ21, . . . , σ
2
t |λ, γ, κ, ν, α from equation (4.4) by generating A, R and σ2 (0∆)

direct from their priors given γ, κ, ν, α.

(3) Perform Monte Carlo integration in t dimensions, simulating the asset forward (using

ρ, µ and H), taking the average discounted payoff, discounting using the constant

interest rate, µ.
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(4) go to (2) until enough volatilities have been used so that the expected discounted

payoff given ρ, µ, λ, γ, κ, ν, α is sufficiently accurate.

(5) go to (1) and take another sample from the posterior of ρ, µ, λ, γ, κ, ν, α and average

the estimates from (4). Repeat this until this estimate is sufficiently accurate.

The rescaled sum of squared errors between the expected discounted and actual discounted

payoffs of the options are then examined to compare the performance of the different

models. Histograms of the expected discounted payoff from (4), for two popular options

on real data sets, are given in Figures 5.1 and 5.2 and demonstrate the BNS SV model

accurately predicting the payoff of two exotic options.

The fair price of an option is the expected discounted payoff, so prices of the algorithm

are indifferent to risk and risk neutral. Nicolato and Venardos (2003) derive the set

of equivalent martingale measures (i.e. the set of all risk neutral measures) when the

volatility follows the BNS SV model with Gamma or Inverse Gaussian marginals. To test

the empirical performance of the BNS SV models for risk neutral pricing, only one risk

neutral measure is required and the algorithm described above is used.

Nicolato and Venardos (2003) derive the set of equivalent martingale measures (that

is the set of all risk neutral measures) when the volatility follows the BNS SV model

with Gamma or Inverse Gaussian marginals. To test the empirical performance of the

BNS SV models for risk neutral pricing, only one risk neutral measure is required and the

algorithm described above is used. As options expire in 20 days and typically µ is small,

the discounting in (3) only slightly alters the option price.

The BNS SV model was constructed to try to improve on shortcomings in the Black-

Scholes model for option pricing over small time periods. For this reason, typically t will

be small and it will be feasible to perform the Monte Carlo integration in step (3) of the

option pricing algorithm.

Our focus is to compare the performance of the different marginal distributions and

so all options considered are European (meaning that the option expires at a fixed time

in the future and the holder cannot exercise before this time). This simplifies the Monte

Carlo integration as it does not require knowledge of how to exercise the option.

For options with payoffs which are a function of the continuous movement of the

underlying (i.e. the payoff is not determined by the underlying at a finite number of

discrete time points), the option pricing method described above can give biased estimates

for the fair price (see for example Ribeiro and Webber (2003)), though the algorithm can

be adjusted to give unbiased estimates. Here, all option prices are determined by the open

prices of the asset over 20 days, so are a function of the underlying at discrete time points
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Figure 5.1: Histograms of the expected discounted payoff for different posterior samples

from the MCMC, for an arithmetic Asian option on Microsoft shares.

and the unbiasing technique need not be implemented. For example, for a continuous

Asian option, the payoff is an average of the underlying over some time period (and so the

payoff is a function of the continuously moving asset). The Asian options we consider are

averages of the underlying open prices on each day (and so the payoff is a function of the

asset at discrete time points).

5.2.3 Test example: constant volatility

For the constant volatility Black-Scholes model, the fair price of an option can be calculated

by solving equation (1.4), for appropriate boundary conditions. For the Test example,

consider this model, for two of the simplest standard options: the European call and put

(sometimes referred to as the vanilla call and put as they are standard calls and puts).

The European call gives the owner the option to purchase the asset at a price E at time

T . The European put gives the owner the option to sell the asset at a price E at time T .

For known constant volatility, σ, and constant interest rate, r, if VC (t, E) is the fair
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Figure 5.2: Histograms of the expected discounted payoff for different posterior samples

from the MCMC, for a knock in option with vanilla call payoff on Procter & Gamble Co

shares.

price (at the present time) of a European call which expires at time t on asset S and

VP (t, E) is the fair price (at the present time) of a European put expiring at the same

time t and on the same asset S, then (see Hull (2000))

VC (t, E)− VP (t, E) = S (0)−Ee−rT .

For this test, let t = 0, T = 20, S (0) = 100, E = 97 and r = 0.000133681 (the daily interest

rate corresponding to a rate of 5% per year). The fair price of the call-put is £3.26. For

σ = 0.03, the fair price of the call and put are £7.05 and £3.79 respectively. These

can be calculated by numerical solution of the Black-Scholes equation for the appropriate

boundary conditions.

To test the correct implementation of the option pricing algorithm, training data were

generated from the Black-Scholes model with constant volatility and inference was made

on the non-latent parameters of the BNS SV model using MCMC. Volatilities were then

generated using these non-latent parameters and the expected discounted payoff, given

these simulated volatilities, was computed using Monte Carlo integration, discounting the
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payoff using the estimated interest rate, µ. Samples from the MCMC were taken after

a burn-in period of 10, 000 iterations, thinning by taking every 250th sample. For each

marginal distribution, the convergence of the method to the correct price can be seen in

Figures C.5, C.6 and C.7. The thick line is the expected discounted payoff given σ = 0.03.

Note that the Black-Scholes equation with constant volatility will give uncorrelated

σ2 (t), so the MCMC should give large λ (corresponding to a rapid decay in the correlation

of the volatility). Our experience is that this tends to be the case, though sometimes

the chain can initially move to a state where λ is very small and σ is almost constant

(corresponding to very slow exponential decay in the volatility). If the chain is run for

long enough, it eventually leaves this state and converges to the "expected" large λ.

Another implementation problem, for constant volatility data, is that it is not obvious

when the chain has converged. It is to be expected that the simulated σ2i be approximately

σ2 and, in practice, this can mean that ν, α and λ all increase in size giving the correct

mean, almost zero variance and low correlation in σ2. This makes A and R (see equation

(4.10)) grow in size, as more points are needed before the summation is truncated. This

slows the algorithm down and can cause the program to crash due to lack of memory.

However, the difference in the simulated σ2i does not vary significantly as soon as ν and

α get large, almost regardless of the parameters λ, A and R. The λ prior suggested by

Griffin and Steel (2003), Ga (1, 1), gives smaller λ than the flatter Ga (1, 0.001) prior (used

for testing purposes in Chapter 4) and this can stop the system expanding too much. This

predominantly occurs on training data where the correlation in volatility is zero.

5.2.4 Battery of tests

Having verified the correct option pricing of some of the models for a vanilla call and put on

data generated from the constant volatility Black-Scholes model (in Section 5.2.3), options

are now priced on real data sets with more complicated payoffs, to test the empirical

performance of the models.

The 27 (European) option payoffs are combinations of the following standard options:-

(1) European call/put.

(2) Binary call/put.

(3) Asian (arithmetic and geometric averages).

(4) Barrier (knock in/out).

(5) Parisian (price based on how often the share is within some specified range).
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(6) Lookback (assumes the option expired at the time which would have given the max-

imum payoff).

More details on different option payoffs can be found in Hull (2000). The exact payoffs

used can be found in Appendix C.7.

The FX rates are the interbank exchange rate between the US Dollar and various

currencies and the shares data sets are open prices on the NYSE for the shares used in

Section 3.1.3. The data sets are listed in Table 5.1.

Exchange rates (US Dollar vs) Shares

Australian Dollar British Airways PLC

Brazilian Real Citigroup Inc

British Pound Coca-Cola Co

Canadian Dollar General Motors Corp

Colombian Peso HJ Heinz Co

Danish Krone Host Marriott Corp

Euro JP Morgan Chase & Co

Iceland Krona Kellogg Co

Japanese Yen McDonald’s Corp

Moroccan Dirham Microsoft

Singapore Dollar Procter & Gamble Co

Thai Baht S&P 500

Textron Inc

Time Warner Inc

Table 5.1: FX rates and shares used for model selection.

For FX options, the data are daily from 6th March 2001 to 1st December 2003, whilst for

share options, the data are daily (excluding days when the NYSE market was closed) from

29th November 1999 to 1st December 2003.

The chains were run for 10,000 iterations (burn-in) and then run for a further 10,000

iterations, calculating the predictive densities at each of the second batch of 10,000 itera-

tions. After these 20,000 iterations, the options were priced, thinning the MCMC by taking

every 250th generated volatility. A minimum of 250 and maximum of 1000 volatilities were

used to price the options. More volatilities were used until the maximum variance of each

of these estimates for the option prices was less than 0.02. If the maximum variance of

the prices was still greater than 0.02 after 1000 volatilities, the simulation was stopped

and the estimated prices from 1000 volatilities were reported.
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For a given volatility, 20 estimates for the fair prices were obtained, each using 1000

paths in the Monte Carlo integration. More estimates were then generated for the fair

price, each using a further 1000 points. Once the variance of the estimates of the fair prices

were less than 0.02, the fair prices of the options for that specific stochastic volatility were

taken to be the averages of these estimates.

5.3 Model selection results

The results for the predictive densities and option pricing for real data are now summarised.

For predictive densities, the entries in the tables are posterior median and 95% credible

intervals on the log scale. Results for posterior summaries of individual parameters are

recorded similarly. For predictive densities over 20 "unseen" data points, 1000 volatilities

were used to estimate bp³Y 0 |θi, y
´
in equation (5.1) (i.e. B2 was set equal to 1000) and

for 80 "unseen" data points 10,000 volatilities were used. For option pricing, the rescaled

sum of the squared error between expected discounted and actual discounted payoffs are

reported.

Comments on the performance of the different models are given for the FX rates and

shares individually, in the section where the results are displayed. After the results for

both sectors are presented, the results are discussed.
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5.3.1 Different marginal distributions: Predictive densities over 20 "un-
seen" data points and option pricing results

a) FX rates

Predictive Density GIG (γ, ν, α) TS (κ, ν, α) IG (ν, α)

Australian Dollar -38.4 (-39.4, -36.7) -38.6 (-39.6, -37.1) -38.7 (-39.2, -38.0)

Brazilian Real -17.1 (-20.7, -11.5) -18.1 (-21.6, -12.8) -17.1 (-18.5, -15.5)

British Pound -41.2 (-42.7, -38.7) -41.2 (-42.6, -38.9) -42.6 (-43.1, -42.1)

Canadian Dollar -54.5 (-56.7, -52.6) -54.9 (-56.7, -53.8) -54.7 (-55.6, -53.9)

Colombian Peso -38.1 (-40.2, -35.1) -38.2 (-40.8, -35.3) -39.9 (-42.7, -37.1)

Danish Krone -43.7 (-44.8, -42.2) -43.5 (-44.6, -42.2) -43.4 (-44.2, -42.7)

Euro -43.6 (-44.5, -42.6) -43.4 (-44.2, -42.4) -43.2 (-43.9, -42.6)

Iceland Krona -31.4 (-35.0, -26.8) -31.6 (-34.8, -27.1) -37.8 (-38.9, -35.9)

Japanese Yen -39.7 (-40.8, -37.8) -39.4 (-40.5, -37.7) -39.4 (-40.1, -38.5)

Moroccan Dirham -63.1 (-70.1, -57.5) -61.7 (-67.8, -56.8) -61.3 (-64.6, -58.4)

Singapore Dollar -45.5 (-46.7, -44.2) -45.7 (-47.0, -44.4) -44.5 (-45.6, -43.7)

Thai Baht -29.7 (-30.8, -28.6) -30.6 (-31.9, -28.8) -29.2 (-30.3, -28.0)

Table 5.2: Median and 95% credible intervals for predictive densities of GIG, TS and IG

marginal distributions for FX data.

Predictive Density Ga (ν, α) RPH (ν, α) IGa (ν, α)

Australian Dollar -38.6 (-39.6, -37.8) -38.6 (-39.4, -37.9) -38.7 (-39.3, -38.3)

Brazilian Real -17.4 (-21.1, -11.9) -25.2 (-27.3, -21.4) -24.8 (-26.8, -23.0)

British Pound -40.8 (-41.6, -39.4) -42.2 (-43.0, -40.7) -43.4 (-43.8, -43.0)

Canadian Dollar -54.7 (-56.0, -53.7) -54.5 (-55.6, -53.8) -54.7 (-55.7, -54.0)

Colombian Peso -38.0 (-40.2, -35.0) -37.8 (-38.4, -36.9) -38.2 (-38.5, -37.9)

Danish Krone -43.7 (-44.8, -42.2) -42.6 (-43.4, -41.6) -42.0 (-42.5, -41.5)

Euro -43.5 (-44.3, -42.5) -42.7 (-43.1, -42.2) -42.1 (-42.5, -41.7)

Iceland Krona -31.3 (-34.8, -26.7) -38.2 (-39.3, -35.3) -40.2 (-40.7, -39.7)

Japanese Yen -39.5 (-40.7, -37.5) -39.9 (-40.6, -39.0) -41.0 (-41.5, -40.6)

Moroccan Dirham -59.0 (-60.0, -58.2) -60.8 (-63.3, -58.6) -60.6 (-62.0, -59.6)

Singapore Dollar -45.6 (-46.9, -44.3) -43.4 (-43.8, -43.1) -42.9 (-43.2, -42.6)

Thai Baht -31.0 (-32.2, -29.3) -30.1 (-31.4, -28.1) -31.3 (-32.5, -29.9)

Table 5.3: Median and 95% credible intervals for predictive densities of Ga, RPH and IGa

marginal distributions for FX data.



5.3. Model selection results 138

There is no clear trend to suggest any of the marginal distributions have a noticeably

larger predictive density than the others. Although this is not helpful is assessing which

marginal distribution should be used for FX data, there are still the option pricing results

to try to answer this. Predictive densities on their own were unable to direct us to which

marginal is most appropriate.

Option Pricing GIG (γ, ν, α) TS (κ, ν, α) IG (ν, α)

Australian Dollar 0.96 1.01 1.03

Brazilian Real 0.97 1.00 1.12

British Pound 1.36 1.37 1.07

Canadian Dollar 0.85 1.05 1.01

Colombian Peso 0.80 0.80 1.23

Danish Krone 1.70 1.72 1.53

Euro 1.33 1.34 1.20

Iceland Krona 1.46 1.45 1.52

Japanese Yen 1.27 1.23 1.17

Moroccan Dirham 1.42 1.37 1.26

Singapore Dollar 1.05 1.01 1.05

Thai Baht 0.97 1.40 1.05

Sum 14.14 14.76 14.25

Table 5.4: Summaries of option pricing performance of GIG, TS and IG marginal distri-

butions for FX data; rescaled squared errors.
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Option Pricing Ga (ν, α) RPH (ν, α) IGa (ν, α)

Australian Dollar 1.01 1.00 1.00

Brazilian Real 0.97 0.90 1.00

British Pound 1.43 1.18 1.00

Canadian Dollar 1.01 1.01 1.00

Colombian Peso 0.74 0.66 1.00

Danish Krone 1.69 1.47 1.00

Euro 1.33 1.24 1.00

Iceland Krona 1.46 1.20 1.00

Japanese Yen 1.23 1.14 1.00

Moroccan Dirham 1.39 1.13 1.00

Singapore Dollar 1.05 1.03 1.00

Thai Baht 1.50 0.97 1.00

Sum 14.81 12.91 12.00

Table 5.5: Summaries of option pricing performance of Ga, RPH and IGa marginal dis-

tributions for FX data; rescaled squared errors.

For the three parameter distributions, we find the GIG to predict the payoff more ac-

curately than the TS. For the two parameter distributions, we find the IGa marginal

to predict the expected discounted payoff of the options most accurately, when using the

rescaled squared error loss. The IGa also has a smaller loss than the GIG distribution

and demonstrates that if the user is interested in option pricing, then generalisation to the

more complicated GIG density is not warranted and the IGa distribution should be used

instead. This shows that, when financial models are tested, they should be tested for the

purpose for which the models were developed, as tests need not have identical conclusions.
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b) Shares

Predictive Density GIG (γ, ν, α) TS (κ, ν, α) IG (ν, α)

British Airways PLC -33.6 (-34.1, -33.0) -34.4 (-38.4, -33.0) -33.9 (-34.8, -33.0)

Citigroup Inc -28.8 (-29.8, -28.0) -34.9 (-38.6, -32.6) -29.5 (-31.0, -28.1)

Coca-Cola Co -33.0 (-33.8, -32.3) -38.0 (-40.7, -36.6) -35.0 (-36.2, -33.9)

General Motors Corp -45.6 (-46.2, -45.0) -46.3 (-47.2, -45.8) -46.0 (-46.4, -45.6)

HJ Heinz Co -24.9 (-27.0, -24.0) -34.8 (-42.6, -29.2) -27.8 (-31.0, -25.1)

Host Marriott Corp -36.2 (-37.0, -35.2) -36.5 (-37.4, -35.6) -35.9 (-36.7, -35.2)

JP Morgan Chase & Co -26.0 (-28.6, -24.4) -25.9 (-28.3, -24.4) -25.9 (-27.5, -24.4)

Kellogg Co -35.9 (-36.4, -35.5) -37.8 (-39.9, -36.6) -36.5 (-37.4, -35.8)

McDonald’s Corp -48.1 (-48.5, -47.6) -48.9 (-49.5, -48.3) -48.5 (-49.2, -48.0)

Microsoft -24.9 (-27.1, -23.1) -26.3 (-32.2, -23.8) -24.1 (-25.8, -22.6)

Procter & Gamble Co -28.2 (-28.8, -27.7) -28.0 (-28.7, -27.4) -28.0 (-28.8, -27.3)

S&P 500 -32.8 (-33.4, -32.3) -37.4 (-41.9, -35.5) -33.6 (-34.9, -32.5)

Textron Inc -42.6 (-42.9, -42.2) -42.7 (-43.3, -42.2) -42.6 (-43.0, -42.2)

Time Warner Inc -31.8 (-32.2, -31.4) -37.4 (-44.3, -32.8) -32.3 (-33.8, -31.3)

Table 5.6: Median and 95% credible intervals for predictive densities of GIG, TS and IG

marginal distributions for share data.

Predictive Density Ga (ν, α) RPH (ν, α) IGa (ν, α)

British Airways PLC -34.0 (-34.8, -33.3) -34.0 (-34.9, -33.3) -34.7 (-35.5, -34.1)

Citigroup Inc -28.8 (-30.0, -28.0) -29.2 (-30.8, -28.0) -31.3 (-32.5, -29.9)

Coca-Cola Co -34.9 (-36.3, -33.9) -34.9 (-36.1, -34.0) -35.8 (-37.2, -34.7)

General Motors Corp -45.9 (-46.3, -45.5) -46.0 (-46.4, -45.5) -46.0 (-46.4, -45.6)

HJ Heinz Co -26.1 (-28.6, -24.5) -26.3 (-30.2, -23.8) -30.4 (-32.7, -27.9)

Host Marriott Corp -36.1 (-36.9, -35.4) -36.2 (-37.1, -35.5) -37.6 (-38.2, -37.1)

JP Morgan Chase & Co -24.4 (-26.1, -23.0) -25.2 (-27.0, -23.7) -29.1 (-30.5, -27.7)

Kellogg Co -36.3 (-37.0, -35.7) -36.5 (-37.5, -35.8) -37.1 (-38.0, -36.4)

McDonald’s Corp -48.8 (-49.7, -48.3) -48.7 (-49.7, -48.2) -50.0 (-51.3, -48.7)

Microsoft -22.4 (-24.4, -21.2) -23.4 (-25.7, -21.8) -27.8 (-29.2, -26.3)

Procter & Gamble Co -28.6 (-29.2, -28.1) -29.2 (-30.5, -28.4) -29.2 (-30.2, -28.4)

S&P 500 -33.6 (-34.9, -32.5) -33.5 (-35.0, -32.4) -34.4 (-35.7, -33.2)

Textron Inc -42.6 (-43.0, -42.1) -42.6 (-43.0, -42.2) -42.5 (-42.8, -42.2)

Time Warner Inc -32.1 (-33.2, -31.5) -32.4 (-35.1, -31.5) -33.3 (-34.8, -32.1)

Table 5.7: Median and 95% credible intervals for predictive densities of Ga, RPH and IGa

marginal distributions for share data.
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For the three parameter distributions, the GIG has a larger log predictive density than

the TS and so provides a better out of sample fit to the "unseen" data. For the two

parameter distributions, the Ga has the largest predictive density, though this is not as

large as for the GIG. Boxplots demonstrating the large GIG predictive density are given

in Figure 5.3.
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Figure 5.3: Boxplots of samples from the predictive densities of the six different marginals

on Coca-Cola Co and S&P 500 data.
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Option Pricing GIG (γ, ν, α) TS (κ, ν, α) IG (ν, α)

British Airways PLC 1.02 1.26 1.01

Citigroup Inc 1.00 0.99 1.00

Coca-Cola Co 1.04 1.04 1.07

General Motors Corp 1.01 0.99 1.01

HJ Heinz Co 1.01 0.97 1.03

Host Marriott Corp 1.01 1.24 1.04

JP Morgan Chase & Co 1.00 0.99 1.00

Kellogg Co 1.04 0.99 1.04

McDonald’s Corp 1.02 1.11 1.00

Microsoft 1.01 1.14 1.04

Procter & Gamble Co 0.99 1.01 1.01

S&P 500 1.00 1.01 1.00

Textron Inc 1.00 0.98 1.00

Time Warner Inc 1.00 0.99 1.00

Sum 14.16 14.70 14.26

Table 5.8: Summaries of option pricing performance of GIG, TS and IG marginal distri-

butions for share data; rescaled squared errors.

Option Pricing Ga (ν, α) RPH (ν, α) IGa (ν, α)

British Airways PLC 1.02 1.01 1.00

Citigroup Inc 1.00 1.00 1.00

Coca-Cola Co 1.05 1.05 1.00

General Motors Corp 1.01 1.00 1.00

HJ Heinz Co 1.03 1.05 1.00

Host Marriott Corp 1.00 1.00 1.00

JP Morgan Chase & Co 1.00 1.00 1.00

Kellogg Co 1.05 1.04 1.00

McDonald’s Corp 0.99 0.99 1.00

Microsoft 1.03 1.02 1.00

Procter & Gamble Co 0.99 1.03 1.00

S&P 500 0.99 0.99 1.00

Textron Inc 0.99 1.00 1.00

Time Warner Inc 0.99 1.00 1.00

Sum 14.15 14.19 14.00

Table 5.9: Summaries of option pricing performance of Ga, RPH and IGa distributions

for share data; rescaled squared errors.
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For the three parameter distributions, we find the GIG to predict the payoff more accu-

rately than the TS and so again the GIG outperforms the TS. For the two parameter

distributions, we find the IGa marginal to predict the expected discounted payoff of the

options most accurately, when using a squared error loss. The IGa also has a smaller

loss than the GIG distribution and demonstrates that if the user is interested in option

pricing, then generalisation to the more complicated GIG density is not warranted and

the IGa distribution should be used instead.

The important conclusion from this section is that the Inverse Gamma marginal dis-

tribution should be used when the stochastic volatility follows the BNS SV models and

the focus is option pricing. The models have similar predictive densities for FX rates and

often the Generalised Inverse Gaussian distribution has the largest predictive density for

share data.

For the remaining results, only predictive densities are summarised. In principle,

option pricing results could be calculated, though are computationally intensive. We

continue using the Gamma marginal distribution, as this is the fastest to implement.

5.3.2 Posterior distributions of parameters of the GIG distribution

We now look at the posterior distributions of parameters of the GIG distribution to give

a greater understanding of which distributions are suitable for the marginal distribution

of the volatility.

Form of GIG (γ, ν, α) distribution Standard two parameter family

GIG
¡
ν, 0,
√
2α
¢

Ga (ν, α)

GIG (1, ν, α) RPH (ν, α)

GIG
¡
−ν,
√
2α, 0

¢
IGa (ν, α)

GIG
¡
−12 , ν, α

¢
IG (ν, α)

Table 5.10: Special cases of the GIG distribution.

The posterior summaries for γ, ν, α (for the GIG distribution) are now given. Posterior

summaries for the TS distribution are not given as the only standard special case of this

is the IG distribution, which is also a special case of the GIG.
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FX rate γ ν α

Australian Dollar 0.39 (0.25, 0.50) 0.02 (0.01, 0.08) 0.91 (0.79, 1.04)

Brazilian Real 0.20 (0.17, 0.24) 0.00 (0.00, 0.00) 0.69 (0.62, 0.76)

British Pound 0.42 (0.29, 0.51) 0.02 (0.00, 0.07) 0.91 (0.80, 1.04)

Canadian Dollar 0.40 (0.32, 0.54) 0.01 (0.00, 0.03) 0.88 (0.78, 0.99)

Colombian Peso 0.22 (0.19, 0.27) 0.00 (0.00, 0.00) 0.75 (0.67, 0.85)

Danish Krone 0.40 (0.32, 0.44) 0.00 (0.00, 0.10) 0.85 (0.76, 0.94)

Euro 0.44 (0.35, 0.54) 0.02 (0.00, 0.05) 0.93 (0.82, 1.05)

Iceland Krona 0.25 (0.22, 0.29) 0.00 (0.00, 0.00) 0.72 (0.65, 0.80)

Japanese Yen 0.37 (0.26, 0.48) 0.04 (0.00, 0.14) 0.89 (0.73, 1.03)

Moroccan Dirham 0.27 (0.23, 0.31) 0.00 (0.00, 0.00) 0.79 (0.72, 0.87)

Singapore Dollar 0.32 (0.27, 0.38) 0.00 (0.00, 0.00) 0.79 (0.72, 0.90)

Thai Baht 0.46 (0.10, 0.55) 0.03 (0.00, 0.22) 1.01 (0.79, 1.14)

Table 5.11: 95% credible intervals for the parameters of the GIG distribution for FX data.

For FX data, the posterior distributions of the three parameters of the Generalised Inverse

Gaussian support the Gamma distribution. The three other special cases of the GIG

distribution are not supported. A graph of the posterior of the (γ, ν) plane for the British

Pound data set is given in Figure 5.4 to illustrate this.
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Figure 5.4: Posterior samples in the (γ, ν) plane for the British Pound data set.

Figure 5.4 shows that the Ga distribution is supported by the posterior of γ (note the

scale of the ν axis) and the three other special cases of the GIG are not. Tables 5.2

and 5.3 reflect this, where the Ga marginal has the largest predictive density of the two

parameter distributions for the British Pound data set. Although this posterior for ν is

typical for the FX data sets investigated, the Gamma distribution does not always have a

large predictive density or perform well for option pricing for FX data set. Models should

therefore be accepted or rejected based on tests which concentrate on what the model will

be used for.
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Share γ ν α

British Airways PLC -1.44 (-2.11, -0.49) 1.21 (0.92, 1.48) 0.37 (0.06, 1.06)

Citigroup Inc -1.59 (-2.75, -0.77) 1.40 (1.11, 1.77) 0.59 (0.06, 1.25)

Coca-Cola Co -0.63 (-2.44, 1.41) 1.40 (0.69, 2.02) 1.41 (0.45, 2.14)

General Motors Corp 0.22 (-2.34, 1.88) 1.37 (0.43, 2.28) 1.68 (0.42, 2.35)

HJ Heinz Co 0.78 (-1.08, 2.73) 0.86 (0.26, 1.66) 1.69 (0.91, 2.49)

Host Marriott Corp -1.67 (-2.08, -1.26) 1.14 (0.98, 1.34) 0.10 (0.00, 0.40)

JP Morgan Chase & Co -1.44 (-1.81, -0.92) 1.14 (0.94, 1.33) 0.40 (0.04, 0.87)

Kellogg Co -1.12 (-2.70, -0.12) 1.37 (1.00, 1.99) 0.95 (0.18, 1.55)

McDonald’s Corp -0.83 (-1.50, 0.65) 1.27 (0.68, 1.61) 1.06 (0.59, 1.65)

Microsoft -1.80 (-2.31, 1.18) 1.18 (0.96, 1.39) 0.22 (0.03, 0.58)

Procter & Gamble Co -1.39 (-1.81, -1.03) 0.84 (0.70, 0.98) 0.16 (0.00, 0.41)

S&P 500 -0.21 (-3.29, 2.20) 1.38 (0.72, 2.34) 1.57 (0.67, 2.47)

Textron Inc -0.87 (-1.83, 1.27) 1.18 (0.45, 1.56) 0.96 (0.38, 1.88)

Time Warner Inc -0.26 (-1.54, 2.05) 1.04 (0.18, 1.55) 1.09 (0.28, 2.20)

Table 5.12: 95% credible intervals for the parameters of the GIG distribution for share

data.

For share data, the 95% credible interval for ν is not concentrated near ν = 0 (unlike

the results of Table 5.11), so the Gamma distribution is not supported by the GIG. The

95% credible interval for the posterior of γ supports γ = 1 (RPH ) for six data sets and

γ = −0.5 (IG) is supported for nine data sets. As discussed in Section 4.4.1, even for
data from the GIG

¡
−ν,
√
2α, 0

¢
(IGa (ν, α)) distribution, the third parameter need not

necessarily be estimated to be very close to zero. For this reason, conclusions relating

to the IGa distribution are not based on the third parameter of the GIG but are based

the first parameter only. For six data sets, the posterior of γ is strictly negative, so the

IGa distribution is only partly supported by the GIG (and this is illustrated in the very

negative log-likelihood of the Inverse Gamma marginal of Table 5.7). As the posteriors of

γ, ν, α for share data are less consistent than FX data, two data sets with typical posterior

distributions are displayed in Figure 5.5.
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Figure 5.5: Posterior samples in the (γ, ν) plane for the Heinz and Host Marriott data

sets.

Figure 5.5 illustrates that the Gamma marginal is not supported by the GIG distribution

(note the difference in the ν − axis scale for Figures 5.4 and 5.5) and this is the case for

all share data sets. For Heinz share data, the RPH marginal looks like the most suitable

two parameter marginal, though as the posterior is not concentrated near γ = 1, the

generalisation from the RPH to the GIG marginal looks necessary. The IG marginal is

supported, though less than the RPH. The IGa is unsupported as almost all the posterior

is in the positive γ plane. For the Host Marriott data set, the only two parameter marginal

which is supported is the IGa.
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5.3.3 Stochastic λ process: Predictive densities over 20 and 80 "unseen"
data points

a) FX rates

Predictive Density Constant λ Stochastic λ

Australian Dollar -38.6 (-39.6, -37.8) -38.5 (-39.7, -37.0)

Brazilian Real -10.9 (-14.6, -5.38) -15.1 (-15.5, -14.9)

British Pound -40.8 (-41.6, -39.4) -41.3 (-45.2, -39.0)

Canadian Dollar -54.7 (-56.0, -53.7) -55.4 (-58.2, -55.0)

Colombian Peso -38.0 (-40.2, -35.0) -38.2 (-40.5, -35.2)

Danish Krone -43.7 (-44.8, -42.2) -43.4 (-43.6, -43.2)

Euro -43.5 (-44.3, -42.5) -43.5 (-44.5, -42.6)

Iceland Krona -31.3 (-34.8, -26.7) -31.6 (-35.1, -27.2)

Japanese Yen -39.5 (-40.7, -37.5) -39.6 (-40.7, -37.7)

Moroccan Dirham -59.0 (-60.0, -58.2) -60.8 (-62.3, -60.0)

Singapore Dollar -45.6 (-46.9, -44.3) -45.2 (-46.4, -43.9)

Thai Baht -31.0 (-32.2, -29.3) -27.9 (-30.8, -27.4)

Table 5.13: Summaries of predictive densities of models with constant and stochastic λ

processes for FX data.

Results are mixed and it is not clear that there is any significant performance difference

between using a constant or stochastic λ. Although for eight of the data sets the constant

λ model has a larger predictive density (compared to only four for the stochastic λ), the

differences in the median of the predictive densities are often small and it is difficult to

draw a firm conclusion.
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Predictive Density Posterior for r Posterior for ε2

Australian Dollar 2.98 (0.247, 10.2) 0.017 (0.000, 1.20)

Brazilian Real 0.422 (0.094, 1.30) 4.99 (2.32, 11.9)

British Pound 3.23 (0.121, 13.5) 0.014 (0.000, 4.75)

Canadian Dollar 0.327 (0.034, 1.35) 4.06 (1.60, 10.3)

Colombian Peso 1.39 (0.289, 15.3) 0.851 (0.000, 4.12)

Danish Krone 0.126 (0.009, 0.731) 8.36 (2.75, 19.6)

Euro 3.80 (0.229, 18.5) 0.008 (0.000, 1.40)

Iceland Krona 0.404 (0.069, 1.33) 4.14 (2.01, 8.60)

Japanese Yen 2.52 (0.060, 13.6) 0.030 (0.000, 2.54)

Moroccan Dirham 0.400 (0.054, 1.42) 3.89 (1.66, 9.66)

Singapore Dollar 0.550 (0.072, 2.07) 2.23 (0.940, 6.01)

Thai Baht 0.368 (0.085, 2.58) 6.06 (0.113, 13.1)

Table 5.14: Summaries of the posterior of the stochastic λ process parameters for FX data.

When the posterior median of ε2 is small (such as the Australian Dollar, British Pound,

Euro and Japanese Yen) any jumps in λ will be small, so the generalisation to the stochastic

λ process is probably not necessary and this is reflected in the similar predictive densities

for these data sets for the two models. The posterior summaries for r and ε2 are noticeably

different for different data sets.
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b) Shares

Predictive Density Constant λ Stochastic λ

British Airways PLC -34.0 (-34.8, -33.3) -33.7 (-35.3, -32.1)

Citigroup Inc -28.8 (-30.0, -28.0) -28.6 (-29.9, -27.9)

Coca-Cola Co -34.9 (-36.3, -33.9) -35.2 (-37.3, -33.9)

General Motors Corp -45.9 (-46.3, -45.5) -46.0 (-46.5, -45.6)

HJ Heinz Co -26.1 (-28.6, -24.5) -26.2 (-28.6, -24.9)

Host Marriott Corp -36.1 (-36.9, -35.4) -36.4 (-39.1, -35.6)

JP Morgan Chase & Co -24.4 (-26.1, -23.0) -23.8 (-24.5, -23.2)

Kellogg Co -36.3 (-37.0, -35.7) -35.9 (-36.7, -35.2)

McDonald’s Corp -48.8 (-49.7, -48.3) -48.7 (-50.9, -48.2)

Microsoft -22.4 (-24.4, -21.2) -22.0 (-25.2, -21.2)

Procter & Gamble Co -28.6 (-29.2, -28.1) -28.2 (-28.8, -27.5)

S&P 500 -33.6 (-34.9, -32.5) -33.3 (-34.9, -32.3)

Textron Inc -42.6 (-43.0, -42.1) -42.7 (-43.1, -42.2)

Time Warner Inc -32.1 (-33.2, -31.5) -32.6 (-33.8, -31.7)

Table 5.15: Summaries of predictive densities of models with constant and stochastic λ

processes for share data.

Again the results are not conclusive. For eight data sets, the stochastic λ model appears

to perform best while a constant λ performs best in the remaining six.
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Predictive Density Posterior for r Posterior for ε2

British Airways PLC 0.627 (0.098, 2.19) 1.63 (0.209, 4.96)

Citigroup Inc 0.537 (0.071, 2.14) 2.01 (0.406, 8.43)

Coca-Cola Co 0.504 (0.031, 2.22) 1.50 (0.051, 5.93)

General Motors Corp 0.526 (0.055, 2.21) 1.56 (0.128, 7.12)

HJ Heinz Co 0.333 (0.030, 1.87) 2.87 (0.293, 12.9)

Host Marriott Corp 0.601 (0.028, 2.57) 0.813 (0.032, 5.09)

JP Morgan Chase & Co 0.648 (0.110, 2.20) 2.05 (0.675, 7.51)

Kellogg Co 0.622 (0.089, 2.14) 1.86 (0.550, 5.16)

McDonald’s Corp 0.617 (0.042, 2.54) 0.829 (0.036, 5.53)

Microsoft 0.451 (0.028, 2.12) 1.77 (0.135, 12.5)

Procter & Gamble Co 0.654 (0.110, 2.34) 2.72 (0.795, 7.18)

S&P 500 0.623 (0.034, 2.45) 1.14 (0.064, 5.30)

Textron Inc 0.637 (0.081, 2.43) 1.10 (0.075, 4.74)

Time Warner Inc 0.528 (0.051, 2.12) 1.89 (0.446, 8.11)

Table 5.16: Summaries of the posterior of the stochastic λ processes parameters for share

data.

For the share data sets, the posteriors of r and ε2 are similar between data sets (unlike

for FX data sets). For example, the median of the posterior of ε2 for each share data set

is not near 0, whilst for FX rates sometimes it is.

It was hoped that the stochastic λ process would be able to accurately pick out a

sensible value of λ at the end of each data set (which is then used as λ0 for the predictive

density calculations). The constant λ series cannot do this as it must pick a λ which fits

the entire data series on which the MCMC is run. This is why it was felt that there may

be an advantage using the stochastic λ process, even for predictive densities over small

time periods, though it turned out not to be the case.

The stochastic λ process predicts jumps in λ. When the predictive densities are calcu-

lated using a small number of "unseen" data points, very few jumps will be predicted and

this might make the predictive densities of the constant and stochastic λ process similar.

To try to distinguish between the two models, predictive densities over 80 "unseen" days

are now given using two different priors for the number of jumps in the "seen" 1000 data

points. For many "unseen" data points, the stochastic λ process will predict more jumps

(and so hopefully have a different predictive density to the constant λ process) but it

becomes unfeasible to perform the Monte Carlo integration (of equation (5.1)) accurately

for many "unseen" data points.
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a) FX rates

Predictive Density Constant λ Stochastic λ

prior rp = 1.0 prior rp = 0.5

Australian Dollar -196.8 (-207.9, -187.5) -196.8 (-207.5, -187.6) -192.3 (-199.3, -185.4)

Brazilian Real -117.9 (-126.3, -105.5) -94.5 (-103.8, -91.9) -95.5 (-108.6, -89.4)

British Pound -225.3 (-242.1, -211.5) -224.8 (-242.8, -209.4) -217.6 (-234.4, -209.0)

Canadian Dollar -223.9 (-226.4, -222.3) -229.6 (-271.9, -223.0) -238.8 (-284.1, -229.3)

Colombian Peso -194.8 (-250.3, -166.2) -205.9 (-263.6, -168.1) -173.6 (-173.9, -173.6)

Danish Krone -215.3 (-238.9, -199.5) -197.4 (-197.6, -195.4) -204.3 (-214.2, -196.1)

Euro -210.3 (-221.5, -200.1) -209.2 (-220.0, -199.4) -207.9 (-221.3, -198.7)

Iceland Krona -208.7 (-247.7, -182.2) -188.1 (-207.6, -175.5) -181.1 (-181.6, -180.8)

Japanese Yen -154.5 (-159.0, -148.1) -154.7 (-159.3, -148.4) -154.6 (-159.5, -148.6)

Moroccan Dirham -232.1 (-237.9, -229.6) -229.9 (-231.1, -229.2) -229.8 (-230.5, -229.3)

Singapore Dollar -183.8 (-205.9, -171.0) -181.5 (-198.2, -170.7) -180.9 (-196.9, -169.7)

Thai Baht -178.3 (-185.7, -170.9) -177.0 (-182.5, -170.7) -182.5 (-189.0, -174.8)

Table 5.17: Summaries of predictive densities over 80 "unseen" data points of models with

constant and stochastic λ processes for FX data.

For both priors, the stochastic λ process has a larger predictive density than the constant

λ model for ten of the twelve data sets. For eight of the twelve data sets, the prior

rp = 0.5 has a larger predictive density than that of rp = 1.0. The stochastic λ process

was a methodological improvement of the BNS SV models and we have verified that this

can predict "unseen" data more accurately than the constant λ model for FX data. We

will not focus on how to pick rp. The posterior distribution of N2 = 0 for FX rates are

summarised in Table 5.18 for prior rp = 0.5.
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Predictive Density Posterior P (N2 = 0) Posterior mode

Australian Dollar 0.000 P (N2 = 2) = 0.82

Brazilian Real 0.000 P (N2 = 1) = 0.57

British Pound 0.000 P (N2 = 2) = 0.81

Canadian Dollar 0.000 P (N2 = 2) = 0.71

Colombian Peso 0.000 P (N2 = 1) = 0.93

Danish Krone 0.000 P (N2 = 2) = 0.86

Euro 0.003 P (N2 = 2) = 0.49

Iceland Krona 0.000 P (N2 = 2) = 0.56

Japanese Yen 0.000 P (N2 = 1) = 0.48

Moroccan Dirham 0.000 P (N2 = 2) = 0.78

Singapore Dollar 0.022 P (N2 = 2) = 0.28

Thai Baht 0.026 P (N2 = 1) = 0.69

Table 5.18: Posterior probability P (N2 = 0) for FX data.

Table 5.18 provides further evidence that the stochastic λ process is favourable to the

constant λ model for FX data as there is very little support in the posterior for N2 = 0.

For many of the data sets, the posterior is concentrated almost entirely at one N2 value.
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b) Shares

Predictive Density Constant λ Stochastic λ

prior rp = 1.0 prior rp = 0.5

British Airways PLC -168.5 (-170.0, -166.1) -167.4 (-170.3, -164.6) -169.6 (-172.8, -165.6)

Citigroup Inc -112.1 (-115.9, -109.6) -111.5 (-114.8, -109.8) -111.6 (-115.7, -109.9)

Coca-Cola Co -137.6 (-141.7, -135.3) -137.1 (-141.2, -135.5) -137.3 (-141.5, -135.6)

General Motors Corp -160.4 (-161.9, -158.9) -161.3 (-162.4, -159.7) -161.2 (-163.2, -159.5)

HJ Heinz Co -131.6 (-135.5, -129.1) -131.7 (-135.8, -128.5) -131.6 (-137.5, -130.2)

Host Marriott Corp -143.0 (-145.6, -140.7) -144.5 (-147.8, -141.4) -144.6 (-147.5, -141.3)

JPM Chase & Co -105.1 (-112.3, -99.2) -94.5 (-98.1, -93.0) -95.1 (-97.5, -93.5)

Kellogg Co -124.8 (-127.9, -122.9) -125.9 (-131.2, -123.5) -126.4 (-130.3, -123.3)

McDonald’s Corp -164.0 (-167.6, -161.3) -170.8 (-171.5, -165.7) -170.3 (-171.9, -162.8)

Microsoft -93.9 (-101.9, -86.7) -78.2 (-99.4, -76.7) -77.0 (-78.1, -76.6)

Procter&Gamble Co -113.9 (-115.1, -112.8) -112.1 (-113.0, -111.7) -112.1 (-112.9, -111.5)

S&P 500 -138.7 (-141.7, -137.1) -138.2 (-142.7, -136.9) -137.6 (-139.6, -136.6)

Textron Inc -150.9 (-152.8, -149.6) -150.6 (-152.0, -149.7) -150.8 (-152.7, -149.6)

Time Warner Inc -115.5 (-119.0, -114.0) -115.7 (-119.5, -114.3) -115.9 (-123.2, -114.5)

Table 5.19: Summaries of predictive densities over 80 "unseen" data points of models with

constant and stochastic λ processes for share data.

For eight of the fourteen data sets, the stochastic λ model has a larger predictive density

for rp = 1.0, whilst for rp = 0.5 the predictive density is larger than the constant λ model

in seven of the fourteen data sets. It is again not clear if the generalised model is warranted

by the share data. The posterior distribution of N2 = 0 for shares are summarised in Table

5.20 for prior rp = 0.5.
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Predictive Density Posterior P (N2 = 0) Posterior mode

British Airways PLC 0.010 P (N2 = 1) = 0.65

Citigroup Inc 0.000 P (N2 = 2) = 0.51

Coca-Cola Co 0.000 P (N2 = 1) = 0.72

General Motors Corp 0.032 P (N2 = 1) = 0.47

HJ Heinz Co 0.000 P (N2 = 1) = 0.62

Host Marriott Corp 0.236 P (N2 = 1) = 0.44

JPM Chase & Co 0.000 P (N2 = 1) = 0.53

Kellogg Co 0.000 P (N2 = 2) = 0.39

McDonald’s Corp 0.039 P (N2 = 1) = 0.59

Microsoft 0.000 P (N2 = 3) = 0.88

Procter&Gamble Co 0.000 P (N2 = 2) = 0.47

S&P 500 0.093 P (N2 = 1) = 0.39

Textron Inc 0.214 P (N2 = 1) = 0.53

Time Warner Inc 0.050 P (N2 = 1) = 0.50

Table 5.20: Posterior probability P (N2 = 0) for share data.

Table 5.20 suggests that the stochastic λ process is favourable to the constant λ model

for shares as there is very little support in the posterior for N2 = 0, apart from the Host

Marriott Corp and Textron Inc data sets. For most data sets, the posterior is not as

concentrated at one individual N2 value as it is for FX rates.

Comments on results for both sectors

For both FX and share data, it is not possible to distinguish between the predictive den-

sities of the stochastic and constant λ models for 20 "unseen" data points. For predictive

densities over 80 "unseen" data points, the stochastic λ model has a larger predictive

density than the constant λ model for FX data. For share data, the results are mixed and

it is unclear if the generalised model or original model is preferable.
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5.3.4 Long-memory: Predictive densities over 20 and 80 "unseen" data
points

a) FX rates

Predictive Density Brownian Motion Approximate fBm Posterior for H

Australian Dollar -31.6 (-32.6, -30.8) -38.4 (-39.4, -36.8) 0.510 (0.501, 0.538)

Brazilian Real -17.4 (-21.1, -11.9) -18.1 (-21.8, -12.4) 0.508 (0.500, 0.535)

British Pound -40.8 (-41.6, -39.4) -41.4 (-42.7, -38.9) 0.510 (0.501, 0.540)

Canadian Dollar -54.7 (-56.0, -53.7) -54.7 (-56.1, -53.9) 0.510 (0.500, 0.538)

Colombian Peso -38.0 (-40.2, -35.0) -38.2 (-40.5, -35.2) 0.515 (0.503, 0.542)

Danish Krone -43.7 (-44.8, -42.2) -43.6 (-44.7, -42.2) 0.509 (0.501, 0.534)

Euro -43.5 (-44.3, -42.5) -43.5 (-44.4, -42.5) 0.507 (0.500, 0.527)

Iceland Krona -31.3 (-34.8, -26.7) -31.2 (-34.9, -26.5) 0.531 (0.504, 0.571)

Japanese Yen -39.5 (-40.7, -37.5) -39.5 (-40.7, -37.5) 0.511 (0.501, 0.540)

Moroccan Dirham -59.0 (-60.0, -58.2) -60.9 (-68.3, -57.5) 0.506 (0.501, 0.524)

Singapore Dollar -45.6 (-46.9, -44.3) -45.5 (-46.7, -44.2) 0.505 (0.500, 0.531)

Thai Baht -31.0 (-32.2, -29.3) -31.1 (-32.2, -29.4) 0.506 (0.501, 0.527)

Table 5.21: Summaries of predictive densities over 20 "unseen" data points of models with

Brownian and approximate fractional Brownian motion for FX data.

For each data set, the posterior distribution of H does not deviate far from H = 0.5 and

this suggests that if long-memory is required in the share equation, it is not very strong.

The performance of the two models is very similar with and without long-memory and it

is not possible to decide which model should be used to predict "unseen" data. As the

posterior for H is concentrated near H = 0.5, histograms of the posterior are examined.

Figure 5.6 shows posterior histograms of the Hurst parameter for the first three FX data

sets.
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Figure 5.6: Posterior histograms of the Hurst parameter for Australian Dollar, Brazilian

Real and British Pound vs US Dollar data sets.

Figure 5.6 suggests that the approximate fBm model is not required for the Brazilian Real

data set as the support is maximum at H = 0.5 (compare this histogram with Figure

4.13). For the Australian Dollar and British Pound data sets, although the posterior

suggests H is small, the mode of the posterior is not at H = 0.5 and this suggests that

the long-memory model may be required, even though any long-memory should be weak.

Posteriors for the remaining data sets which do not have a mode at H = 0.5 are given in

Figure 5.7.
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Figure 5.7: Posterior histograms of the Hurst parameter for Colombian Peso, Danish

Krone, Iceland Krona and Japanese Yen vs US Dollar data sets.

For these data sets, there is evidence that the fBm model is preferable to the standard

Brownian motion model. Posteriors for the remaining six FX data sets were similar to

that of the Brazilian Real and do not require the fBm approximation. Boxplots are given

of the correlation of the MVN approximation to fBm for the Brazilian Real and Iceland

Krona data sets.
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Figure 5.8: Boxplots of the correlation for lags one to five of the MVN approximation to

fBm for the Brazilian Real and Iceland Krona vs US Dollar data sets.

Figure 5.8 shows the decay in the correlation of the fBm approximation for the Iceland

Krona is slower than that of the Brazilian Real.
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b) Shares

Predictive Density Brownian Motion Approximate fBm Posterior for H

British Airways PLC -34.0 (-34.8, -33.3) -33.9 (-34.6, -33.0) 0.512 (0.501, 0.548)

Citigroup Inc -28.8 (-30.0, -28.0) -29.1 (-30.4, -28.2) 0.505 (0.501, 0.523)

Coca-Cola Co -34.9 (-36.3, -33.9) -34.7 (-36.0, -33.6) 0.523 (0.502, 0.563)

General Motors Corp -45.9 (-46.3, -45.5) -45.8 (-46.2, -45.3) 0.512 (0.500, 0.542)

HJ Heinz Co -26.1 (-28.6, -24.5) -26.2 (-30.2, -24.3) 0.503 (0.500, 0.517)

Host Marriott Corp -36.1 (-36.9, -35.4) -36.1 (-36.8, -35.4) 0.512 (0.503, 0.551)

JP Morgan Chase & Co -24.4 (-26.1, -23.0) -24.3 (-25.9, -23.1) 0.510 (0.501, 0.540)

Kellogg Co -36.3 (-37.0, -35.7) -36.4 (-37.3, -35.8) 0.504 (0.501, 0.514)

McDonald’s Corp -48.8 (-49.7, -48.3) -49.0 (-50.0, -48.4) 0.510 (0.502, 0.535)

Microsoft -22.4 (-24.4, -21.2) -22.6 (-24.1, -21.4) 0.506 (0.501, 0.529)

Procter & Gamble Co -28.6 (-29.2, -28.1) -28.8 (-29.8, -28.1) 0.508 (0.500, 0.528)

S&P 500 -33.6 (-34.9, -32.5) -33.8 (-35.0, -32.8) 0.507 (0.500, 0.530)

Textron Inc -42.6 (-43.0, -42.1) -42.6 (-43.1, -42.2) 0.518 (0.501, 0.554)

Time Warner Inc -32.1 (-33.2, -31.5) -32.1 (-33.4, -31.4) 0.510 (0.502, 0.535)

Table 5.22: Summaries of predictive densities over 20 "unseen" data points of models with

Brownian and approximate fractional Brownian motion for share data.

The results are similar to the results for the FX data. If the data requires long-memory in

the share equation, it is only weak long memory. As the posterior for H is concentrated

near H = 0.5, histograms of the posterior are examined. Figure 5.9 shows posterior

histograms of the Hurst parameter for Coca-Cola Co and British Airways PLC.
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Figure 5.9: Posterior histograms of the Hurst parameter for British Airways PLC and

Coca-Cola Co.

Figure 5.9 suggests that, for Coca-Cola Co, the long-memory model is required, asH = 0.5

is not supported. For British Airways PLC there is a lot of support for H = 0.5, suggesting

that the long-memory model is not necessary for this data set. For the twelve remaining

share data sets, the posteriors for H are similar to the British Airways PLC share and this

suggests that the approximate fBm generalisation is not necessary and the short-memory

model is preferred to the long-memory model.

Comments on results for both sectors

Results between the two sectors are similar; posteriors for H are close to H = 0.5, sug-

gesting standard Brownian motion may be suitable (ignoring posterior histograms of H).

However, predictive density estimates do not suggest a performance advantage using either

model. Before the tests were carried out, it was not known how strong the long-memory

parameter would be, so predictive densities were taken over only 20 "unseen" data points

(as the volatility model was constructed to improve the Black-Scholes model particularly
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over small time periods). As the Hurst parameter appears to be quite small, the predic-

tive densities are again calculated but over 80 "unseen" data points and 10, 000 volatilities

were used in equation (5.1) to estimate bp³Y 0 |y
´
(i.e. B2 was set equal to 10, 000). More

points were needed than for 20 "unseen" points as it is a higher dimensional integral. The

predictive densities over 80 "unseen" data points are summarised in Tables 5.23 and 5.24.

Predictive Density Brownian Motion Approximate fBm

Australian Dollar -196.8 (-207.9, -187.5) -194.7 (-203.5, -186.4)

Brazilian Real -117.9 (-126.3, -105.5) -117.1 (-126.1, -104.6)

British Pound -225.3 (-242.1, -211.5) -225.4 (-241.8, -210.8)

Canadian Dollar -223.9 (-226.4, -222.3) -224.3 (-227.0, -222.4)

Colombian Peso -194.8 (-250.3, -166.2) -197.9 (-241.4, -167.3)

Danish Krone -215.3 (-238.9, -199.5) -212.3 (-230.5, -198.1)

Euro -210.3 (-221.5, -200.1) -210.3 (-223.2, -199.7)

Iceland Krona -208.7 (-247.7, -182.2) -199.3 (-231.9, -178.3)

Japanese Yen -154.5 (-159.0, -148.1) -154.8 (-159.7, -148.5)

Moroccan Dirham -232.1 (-237.9, -229.6) -282.4 (-312.8, -254.3)

Singapore Dollar -183.8 (-205.9, -171.0) -182.1 (-195.8, -170.8)

Thai Baht -178.3 (-185.7, -170.9) -178.8 (-186.0, -171.4)

Table 5.23: Summaries of predictive densities over 80 "unseen" data points of models with

Brownian and approximate fractional Brownian motion for FX data.
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Predictive Density Brownian Motion Approximate fBm

British Airways PLC -168.5 (-170.0, -166.1) -168.2 (-170.5, -166.1)

Citigroup Inc -112.1 (-115.9, -109.6) -112.1 (-116.4, -109.7)

Coca-Cola Co -137.6 (-141.7, -135.3) -138.3 (-143.2, -135.5)

General Motors Corp -160.4 (-161.9, -158.9) -160.2 (-161.6, -158.5)

HJ Heinz Co -131.6 (-135.5, -129.1) -131.6 (-135.7, -129.1)

Host Marriott Corp -143.0 (-145.6, -140.7) -143.1 (-145.3, -140.8)

JP Morgan Chase & Co -105.1 (-112.3, -99.2) -105.0 (-111.8, -99.3)

Kellogg Co -124.8 (-127.9, -122.9) -125.7 (-130.0, -123.6)

McDonald’s Corp -164.0 (-167.6, -161.3) -164.5 (-169.3, -161.9)

Microsoft -93.9 (-101.9, -86.7) -92.3 (-100.5, -86.0)

Procter & Gamble Co -113.9 (-115.1, -112.8) -115.1 (-117.4, -113.0)

S&P 500 -138.7 (-141.7, -137.1) -138.5 (-141.1, -137.0)

Textron Inc -150.9 (-152.8, -149.6) -151.0 (-152.9, -149.6)

Time Warner Inc -115.5 (-119.0, -114.0) -115.1 (-118.7, -113.5)

Table 5.24: Summaries of predictive densities over 80 "unseen" data points of models with

Brownian and approximate fractional Brownian motion for share data.

Again, there is no clear performance advantage for the long-memory model. We therefore

conclude from the posteriors of H (see Figures 5.6, 5.7 and 5.9) that the generalisation

to fractional Brownian motion may be warranted for some of the FX data sets (six out

of twelve data sets) and very rarely for the asset data sets (one in fourteen of the data

sets). For all data sets, the long-memory is weak (even if the posterior does not support

H = 0.5) and this makes it difficult to distinguish between the models based on their

empirical performance. It is currently not feasible (computationally) to consider much

larger data sets and predictive densities over a longer period of "unseen" data, though as

computers become more powerful, it would be interesting to test if the fBm model has a

larger predictive density for the data sets where H = 0.5 is not supported.
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5.3.5 Leverage: Predictive densities over 20 "unseen" data points

a) FX rates

Predictive Density Without Leverage With Leverage Posterior for ρ

Australian Dollar -31.6 (-32.6, -30.8) -38.3 (-39.4, -36.7) -5.49 (-16.9, 1.74)

Brazilian Real -10.9 (-14.6, -5.38) -18.09 (-21.8, -12.6) 0.704 (-1.17, 2.21)

British Pound -40.8 (-41.6, -39.4) -41.2 (-42.7, -38.7) -5.98 (-23.5, 3.70)

Canadian Dollar -54.7 (-56.0, -53.7) -54.8 (-55.9 -54.0) -9.61 (-24.8, 2.55)

Colombian Peso -38.0 (-40.2, -35.0) -57.5 (-66.1, -39.4) 5.60 (4.81, 21.5)

Danish Krone -43.7 (-44.8, -42.2) -43.2 (-44.3, -41.8) -9.97 (-16.6, -3.48)

Euro -43.5 (-44.3, -42.5) -43.4 (-44.3, -42.4) -1.95 (-11.4, 7.16)

Iceland Krona -31.3 (-34.8, -26.7) -31.2 (-34.7, -26.5) -8.18 (-15.1, -3.38)

Japanese Yen -39.5 (-40.7, -37.5) -39.5 (-40.6, -37.5) -1.32 (-12.7, 10.1)

Moroccan Dirham -59.0 (-60.0, -58.2) -60.4 (-62.6, -58.8) 15.2 (10.2, 23.3)

Singapore Dollar -45.6 (-46.9, -44.3) -45.7 (-46.9, -44.4) 11.4 (1.14, 24.9)

Thai Baht -31.0 (-32.2, -29.3) -31.2 (-32.3, -29.6) 4.72 (-9.14, 19.4)

Table 5.25: Summaries of predictive densities of models with and without leverage for FX

data.

First note that only two of the data sets have a 95% credible interval for the posterior of

the leverage parameter which is strictly negative and here the predictive density is larger

than the model without leverage. Three of the data sets have posteriors for ρ which are

strictly positive (contrary to what might be expected) and here the model with leverage

has a smaller predictive density than the model without leverage.

For the remaining data sets (where the credible interval for ρ contains zero), six out

of eight data sets have a larger predictive density for the model without leverage. When

the credible interval is strictly negative, the model with leverage predicts "unseen" data

better than without the leverage parameter. When the credible interval is strictly positive,

the leverage model predicts "unseen" data worse than the model without the leverage

parameter. For the FX data sets considered here, most of the time the credible interval

contains zero and there is little evidence to suggest the requirement of a leverage parameter.

This is in agreement with accepted wisdom.



5.3. Model selection results 165

b) Shares

Predictive Density Without Leverage With Leverage Posterior for ρ

British Airways PLC -34.0 (-34.8, -33.3) -33.9 (-34.7, -33.4) -1.64 (-2.54, -0.901)

Citigroup Inc -28.8 (-30.0, -28.0) -28.6 (-30.1, -27.4) -4.33 (-5.73, -3.11)

Coca-Cola Co -34.9 (-36.3, -33.9) -34.9 (-36.3, -33.8) -4.77 (-8.53, -1.81)

General Motors Corp -45.9 (-46.3, -45.5) -46.3 (-46.8, -45.7) -3.40 (-6.04, -0.244)

HJ Heinz Co -26.1 (-28.6, -24.5) -27.7 (-31.1, -25.5) -5.08 (-8.98, -3.12)

Host Marriott Corp -36.1 (-36.9, -35.4) -37.9 (-38.6, -36.3) -5.35 (-7.73, -3.39)

JP Morgan Chase & Co -24.4 (-26.1, -23.0) -23.9 (-26.0, -22.4) -4.59 (-6.57, -3.08)

Kellogg Co -36.3 (-37.0, -35.7) -36.1 (-37.0, -35.3) -1.01 (-3.58, 1.86)

McDonald’s Corp -48.8 (-49.7, -48.3) -50.1 (-51.3, -48.9) -3.82 (-9.02, -1.38)

Microsoft -22.4 (-24.4, -21.2) -21.3 (-24.0, -20.2) -3.30 (-5.16, -0.313)

Procter & Gamble Co -28.6 (-29.2, -28.1) -28.2 (-29.3, -27.7) -4.20 (-5.59, -3.40)

S&P 500 -33.6 (-34.9, -32.5) -33.3 (-34.6, -32.4) -6.23 (-14.1, -2.34)

Textron Inc -42.6 (-43.0, -42.1) -42.6 (-42.9, -42.3) -3.90 (-7.62, -0.507)

Time Warner Inc -32.1 (-33.2, -31.5) -31.7 (-33.0, -30.9) -1.88 (-3.26, -0.961)

Table 5.26: Summaries of predictive densities of models with and without leverage for

share data.

Here thirteen of the fourteen data sets have a posterior for ρ which is strictly negative and

suggests that leverage is present in the share data sets. The predictive density is larger

for the model with leverage for ten of the fourteen data sets and there is a performance

advantage of using the leverage model for share data.

Comments on results for both sectors

For both sectors, if the posterior for ρ was strictly negative, generally, the leverage model

had a large predictive density. This was almost always the case for share data and rarely

for FX data. A useful pricing strategy could be to assume leverage is present (without

assuming ρ < 0) and examine the posterior for ρ. If this is strictly negative, continue

pricing using leverage, otherwise price without leverage.
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5.3.6 Results summary

The results for all the model generalisations are summarised:-

(1) Predictive density results for FX data are mixed and it is not clear which marginal

distribution is most suitable.

(2) For share data the Generalised Inverse Gaussian and Inverse Gamma distributions

have the largest predictive density.

(3) For both FX and share data the Inverse Gamma distribution predicts the actual

discounted payoff most accurately and is the marginal of choice for option pricing.

(4) The stochastic λ process has a larger predictive density than the constant λ model

for FX rates, whilst for share data the performance of the models is similar.

(5) For the fBm model, all data sets either do not require the generalisation to the

long-memory model, or require weak long-memory with a Hurst parameter near to

H = 0.5. There is evidence to suggest that half of the FX data sets and one of

the share data sets require the long-memory model. Further testing, possibly using

predictive densities over large "unseen" data sets, is required to verify this, though

this is not feasible with current computing power.

(6) There is strong evidence that the leverage model of Barndorff-Nielsen and Shephard

(2001a) is required for share data sets and not required for FX data sets.



Chapter 6

Non Ornstein-Uhlenbeck Lévy
processes

This chapter describes some recent developments of potential continuous time stochastic

volatility models. Some of these models are generalisations of the BNS SV models and have

a more flexible correlation structure than the exponential decay of the models investigated

in Chapters 4 and 5. The models of this chapter are new and there is little in the literature

on them, particularly when they are used as stochastic volatility models. These models

were introduced in Wolpert and Taqqu (2004) to model the Telecom process and important

results from this paper are included here for completeness. To the best of our knowledge

the simulation (and therefore inference) for such models has not been performed and the

models have yet to be used in a stochastic volatility setting. The purpose of this chapter

is to introduce a new class of stochastic volatility models and some of its properties, along

with methods to simulate from them. These SV models do not need a superposition of

processes to give long-memory. Related work can be found in Brockwell (2001), where

models similar to those in Wolpert and Taqqu (2004) are investigated.

The main original contribution of this chapter is showing how to simulate from such

models, using the series representation of Barndorff-Nielsen and Shephard (2000) and we

introduce a volatility process whose correlation structure decays asymptotically like t−λ,

where λ > 1 is a parameter of the model.

167
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6.1 Ornstein-Uhlenbeck processes: Alternative series rep-
resentation

The OU process defined previously is

dσ2 (t) = −λσ2 (t) dt+ dz (λt) , (6.1)

which has solution

σ2 (t) =

Z t

−∞
f2 (λ, t, s) dz (λs) (6.2)

=

Z ∞

0
f1 (λ, t, s) dz (λs) +

Z t

0
f2 (λ, t, s) dz (λs) (6.3)

= e−λtσ2 (0) + e−λt
Z t

0
eλsdz (λs) , (6.4)

where the two Lévy processes of equation (6.3) are independent copies of each other (i.e.

series representations for the stochastic integrals use independent realisations from the

same Lévy process) and

f1 (λ, t, s) = e−λ(t+s)

and

f2 (λ, t, s) = e−λ(t−s).

It is already known that for these f1 and f2, the process has correlation structure

corr
¡
σ2 (t) , σ2 (t+ j)

¢
= exp (−λj)

and that σ2 (t) is stationary and positive for a wide range of functions f1 and f2 (see

Barndorff-Nielsen and Shephard (2001b)). Barndorff-Nielsen and Shephard (2001b) men-

tion using models with more general functions f1 and f2 and decide to concentrate on OU

models, where f1 and f2 are as described above.

The timing of the BDLP, dz (λs), in equation (6.1) was chosen so that λ does not

influence the marginal distribution of σ2 (t). Instead of considering equation (6.3), consider

σ2 (t) =

Z ∞

0
f1 (λ, t, s) dz (s) +

Z t

0
f2 (λ, t, s) dz (s) (6.5)

= I1,t + I2,t.

This is the same representation as used in Wolpert and Taqqu (2004). Unlike the BNS

SV models, the rate of jumps of the Lévy process is not controlled by λ.

Simulation from the OU process is relatively straightforward because the time de-

pendent term of f1 and f2 can be removed from the stochastic integrals of equation



6.1. Ornstein-Uhlenbeck processes: Alternative series representation 169

(6.3) and this allows I1,t to be written in terms of the volatility at time zero, σ2 (0),

in equation (6.4). If the OU equation is generalised, so integrands are not of the form

f1 (t, s) = g1,1 (t) g1,2 (s), then σ2 (t) can no longer be expressed in terms of σ2 (0). For

general f1 and f2, it is also not possible to separate the t and s terms in I2,t. This makes

simulating from such models more complicated than the original BNS SV OU models.

We now describe how to sample from such models. Consider the approximation for

I1,t,

I1,t ≈
Z d

0
f1 (λ, t, s) dz (s) ,

where d is large enough so the approximation is sufficiently accurate. The Barndorff-

Nielsen and Shephard (2000) series representation is thenZ d

0
f1 (λ, t, s) dz (s)

L
=

n1,jX
j=0

W−1 (aj/d) f1 (λ, t, rj) , (6.6)

where da1,c is the value at which the Poisson point process (order statistics of uniform ran-

dom variables) is truncated, n1,j ∼ Po (da1,c), aj are the order statistics of n1,j U (0, da1,c)

random variables, rj
iid∼ U (0, d), all variables are independent and W−1 is the Inverse Tail

Mass function as defined previously. For every t, the same Poisson points, aj , and uni-

forms, rj , are used and this induces the correlation in I1,t, so I1,t = e−λtσ2 (0) for the OU

case. This allows us to sample from I1,t.

For the finite integral, the situation is more complex. Previously a series representa-

tion was used, based on independent Poisson point processes and uniforms and this was

possible because the volatility could be written in terms of the previous volatility and a

stochastic integral (independent of previous stochastic integrals). Further, the stochas-

tic integrals were unaltered by t. For more general functions than f2 (λ, t, s) = e−λ(t−s),

it is not possible to write the volatility in terms of previous volatilities, though we are

able to express the integral as a summation of integrals on disjoint domains and then use

independent series representations for these integrals. The second integral at time t− 1 is

I2,t−1 =

Z t−1

0
f2 (λ, t− 1, s) dz (s)

and now consider I2,t|I2,t−1

I2,t =

Z t−1

0
f2 (λ, t, s) dz (s) +

Z t

t−1
f2 (λ, t, s) dz (s) . (6.7)

The domains of these two integrals are disjoint and so any realisations from these integrals

use independent series representations. Equation (6.7) can be rewritten as

I2,t =
t−2X
j=0

Z j+1

j
f2 (λ, t, s) dz (s) +

Z t

t−1
f2 (λ, t, s) dz (s)



6.2. Continuous time SV models driven by Lévy processes 170

but the integrals of the summation are also disjoint, so by the independent increments

assumption,

I2,t
L
=

t−2X
j=0

Z 1

0
f2 (λ, t, s+ j) dz (s) +

Z 1

0
f2 (λ, t, s+ t− 1) dz (s)

=
t−1X
j=0

Z 1

0
f2 (λ, t, s+ j) dz (s) ,

where integral terms in the sum are all with respect to independent realisations of the

BDLP (as they represent partitions of the integrals in equation (6.7)). This gives t disjoint

independent integrals and these can be simulated using the series representation derived

in Barndorff-Nielsen and Shephard (2000) and given in equation (4.8). If the series are

again truncated by discarding all Poisson points which are greater than a2,c, then the

series representation is

I2,t
L
=

t−1X
j=0

n2,jX
i=0

W−1 (a2,j,i) f2 (λ, t, r2,j,i + j) , (6.8)

where n2,j ∼ Po (a2,c), a2,j are the order statistics of n2,j U (0, a2,c) random variables,

r2,j,i
iid∼ U (0, 1), all variables are independent of each other and W−1 () is the Inverse Tail

Mass function as defined previously. For the OU process, simulating using these series

representations gives the properties of σ2 (t) that were discussed in Chapters 3 and 4 (this

is illustrated in Figure 6.1). We are now able to simulate from processes of the form

σ2 (t) =

Z ∞

0
f1 (λ, t, s) dz (s) +

Z t

0
f2 (λ, t, s) dz (s)

for general f1 and f2. Note that simulating from the instantaneous volatility using the

series representation of equation (6.8) is an order t2 algorithm, unlike the series represen-

tation that was used for the OU process in Chapter 4, which was order t. We now consider

what forms of these functions should be examined.

6.2 Continuous time SV models driven by Lévy processes

Continue assuming that we wish to sample from stochastic integrals with respect to the

homogeneous BDLP, z (t), where z (1) has Lévy measure

w (x) = −u (x)− xu (x) ,

and u (x) is the Lévy measure of the marginal distribution of the BNS SV model with the

same BDLP. We will focus on marginal distributions on the positive real line, so z is a

subordinator. The Lévy-Khintchine formula for z (1) is

log
h
E
h
eiθz(1)

ii
=

Z ∞

−∞

³
eiθx − 1

´
w (x) dx,
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and w (x) is zero for x ≤ 0.

Definition 19 A stochastic process, Xt, is a continuous moving average process if it
can be expressed as

Xt =

Z t

0
f (t, s) dz (s) ,

where z (s) is a Lévy process.

Definition 20 The function G (s) is non-anticipating with respect to dz (s) if G (s)

cannot be used to predict future movement in dz (s). The process

Xt =

Z tn

t0

G (s) dz (s)

is then also non-anticipating.

Consider non-anticipating moving average processes of the form

σ2 (t) =

Z t

−∞
h1 (t− s) dz (s) , (6.9)

where the Lévy measure of z (1) is w (x) and h1 (t− s) ≥ 0 for s < t (so σ2 (t) has only

positive jumps). Assume that Z t

−∞
h1 (t− s) ds <∞, (6.10)

so that the stochastic integral in equation (6.9) exists. Ignoring the timing of the BDLP,

this is a generalisation of the solution given in equation (6.2). Therefore

σ2 (t) =

Z ∞

−∞
h (t− s) dz (s) , (6.11)

where

h (x) =

(
0 x < 0

h1 (x) x ≥ 0
.

For models of the form of equation (6.11), the negative of the characteristic exponent is

log
n
E
h
eiθσ

2(t)
io

= log

½
E

∙
exp

µ
iθ

Z ∞

−∞
h (t− s) dz (s)

¶¸¾

= log

⎧⎨⎩E

⎡⎣exp
⎛⎝iθ

∞X
j=−∞

Z (j+1)∆

j∆
h (t− s) dz (s)

⎞⎠⎤⎦⎫⎬⎭
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and as σ2 (t) is non-anticipative,

log
n
E
h
eiθσ

2(t)
io

= log

⎧⎨⎩E

⎡⎣exp
⎛⎝iθ

∞X
j=−∞

h (t− j∆) (z ((j + 1)∆)− z (j∆))

⎞⎠⎤⎦⎫⎬⎭
= log

⎧⎨⎩E

⎡⎣ ∞Y
j=−∞

exp (iθh (t− j∆) zj (∆))

⎤⎦⎫⎬⎭ ,

where zj (t) are independent and identical homogeneous Lévy processes with Lévy measure

w (x). Then

log
n
E
h
eiθσ

2(t)
io

=
∞X

j=−∞
E [exp (iθh (t− j∆) zj (∆))]

=
∞X

j=−∞

Z ∞

−∞
{exp (iθh (t− j∆)x)− 1}w (x) dx

and letting ∆→ 0 this gives

log
n
E
h
eiθσ

2(t)
io
=

Z ∞

−∞

Z ∞

−∞
{exp (iθh (t− s)x)− 1}w (x) dxds (6.12)

and

log
h
E
h
eiθσ

2(t)
ii
=

Z ∞

−∞

Z ∞

0

³
eiθxh(s) − 1

´
w (x) dsdx, (6.13)

which can be found in Wolpert and Taqqu (2004). The variance and covariance of the

process can be calculated by considering the joint characteristic function1. Using equation

(6.12), the joint characteristic function of σ2 (t) and σ2 (0) is

E
h
eiθ1σ

2(t)+iθ2σ2(0)
i
=

Z ∞

−∞

Z ∞

−∞

n
eiθ1h(t−s)x+iθ2h(−s)x − 1

o
w (x) dxds

and then the covariance is

Cov
£
σ2 (t) , σ2 (0)

¤
= − ∂2

∂θ1∂θ2

¯̄̄̄
θ1=θ2=0

Z ∞

−∞

Z ∞

−∞

n
eiθ1h(t−s)x+iθ2h(−s)x − 1

o
w (x) dxds

=

Z ∞

−∞

Z ∞

−∞
x2h (t− s)h (−s)w (x) dxds

= σ2
Z ∞

−∞
h (t+ s)h (s) ds

= σ2
Z ∞

0
h1 (t+ s)h1 (s) ds

where

σ2 =

Z ∞

−∞
x2w (x) dx <∞.

1 I am grateful to Prof R. Wolpert for his enlightening comments.
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The variance of the process is therefore

σ2
Z ∞

0
h21 (s) ds, (6.14)

which we require to be finite. The correlation at lag t is

ρ (t) =

R∞
0 h1 (|t|+ s)h1 (s) dsR∞

0 h21 (s) ds
. (6.15)

By picking suitable functions for h1 (x), we are able to generate from a wide range of

distributions and correlation structures which have Lévy measure and correlation structure

specified by equations (6.13) and (6.15) respectively. In general, the discretely observed

volatility (see equation (1.6)) is not readily available and this makes it difficult to fit SV

models of this form using the discretely observed volatility.

Two examples of the flexibility of models of this form are now given, before fractional

Ornstein-Uhlenbeck processes are introduced.

6.2.1 Ornstein-Uhlenbeck process

The marginal distribution of the BNS SV OU volatility models is unaltered by the λ

parameter. Instead of using this OU process, consider

h1 (t− s) =
√
2λe−λ(t−s)

in equation (6.9). This is the OU process used in Wolpert and Taqqu (2004) (and given

in equation (6.18)), where λ influences the marginal distribution of σ2 (t). The correlation

is specified by equation (6.15) and is

ρ (t) = e−λt,

as for the BNS SV OU models. The relationship between the marginal and λ is now given,

when the BDLPs of Chapter 4 drive the OU process.

Substituting r = xh (s) in equation (6.13) implies the negative of the characteristic

exponent is
1

λ

Z ∞

0

Z x
√
2λ

0

©
eitr − 1

ª
r−1w (x) drdx

and swapping the order of integration (taking care with domains of the integrals), this is

1

λ

Z ∞

0

Z ∞

r/
√
2λ

©
eitr − 1

ª
r−1w (u) dxdr
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and so σ2 (t) has Lévy measure

1

λ
r−1

Z ∞

r/
√
2λ
w (x) dx =

1

λ
r−1 [−xu (x)]∞

r/
√
2λ

=
1

λ
√
2λ

u
³
r/
√
2λ
´
. (6.16)

When the BDLP, which gives a GIG (γ, ν, α) marginal for the BNS SV OU model, is used

to drive equation (6.18), using equation (6.16) and equation (2.1), the Lévy measure of

σ2 (t) is

1

λ
x−1

∙½
1

2

Z ∞

0
exp

µ
− xξ

2ν2
√
2λ

¶
gγ (ξ) dξ +max (0, γ)

¾
exp

µ
− α2x

2
√
2λ

¶¸
.

In general, it is not possible to write the distribution of σ2 (t) in terms of a GIG distribution

because of the complex nature of the integrand. However, to demonstrate these models,

we use the BDLP which gives a Ga (ν, α) (GIG
¡
ν, 0,
√
2α
¢
) distribution for the BNS SV

model, so the integral is zero. Then

σ2 (t) ∼ Ga

µ
ν

λ
,

α√
2λ

¶
.

This marginal distribution is verified in Figure 6.1, which also demonstrates that the

correlation structure is e−λt, as given by equation (6.15).



6.2. Continuous time SV models driven by Lévy processes 175

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
OU process

2 4 6 8 10

2
4

6
8

10

Ga(ν λ, α 2λ)

S
im

ul
at

ed
 p

ro
ce

ss

Figure 6.1: ACF of the OU process of Wolpert and Taqqu (2004) for λ = 0.1 for a

Ga(1, 1)−OU BDLP using the series representation of Section 6.1.

The simulation results of Figure 6.1 are as the theory suggests. This demonstrates the

correct implementation of the series representation of Section 6.1 for the OU process.

When the BDLP, which gives a TS (κ, ν, α) marginal for the BNS SV OU model, is

used to drive equation (6.18), using equation (6.16) and equation (4.12), the Lévy measure

of σ2 (t) is

A
0
r−B

0−1e−C
0
x,

where

A
0
=

A

λ (2λ)κ/2
, B

0
= B and C

0
=

C√
2λ
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and A,B and C are as defined under equation (4.12). From this it can be shown that

σ2 (t) ∼ TS
³
κ, νλ−1 (2λ)−κ/2 , α (2λ)−κ/2

´
and so the IG-OU BDLP generates σ2 (t) ∼ IG (with different parameters).

6.2.2 Power Decay process

As we have seen in Chapter 3, for observed financial data, it is sometimes argued that

the square of the log returns have long-memory or that the correlation of them decays

more slowly than exponentially. We now consider a SV model whose correlation decays

asymptotically like a power. Let

h1 (t− s) =
1

(α+ β |t− s|)λ
(6.17)

in equation (6.9), where λ > 1 (so that the integral in equation (6.15) exists). We will

focus on the case α = 1, as other α values do not offer a richer correlation structure,

as their effect only rescales the β parameter. Substituting r = xh (s) in equation (6.13)

implies the negative of the characteristic exponent is

1

βλ

Z ∞

−∞

Z 1

0

¡
eitr − 1

¢
x1/λr−(1+1/λ)drw (x) dx.

Therefore the Lévy measure of σ2 (t) is

1

βλ
r−(1+1/λ)

Z 1

0
x1/λw (x) dx.

Both the Lévy measure and correlation structure of σ2 (t) can be expressed in terms of

standard numerical functions, though these expressions are complex. For this reason we

focus on the cases λ = 1.5 and λ = 2, which will be used for simulation purposes later. In

the case of the Ga( ν, α2)-OU BDLP, the Lévy measure is

3ν

5α
1/3
2

e−α2/2WhittakerM

µ
1

3
,
5

6
, α2

¶
r−5/3 λ = 1.5

ν

2
√
α2

©√
π erf

¡√
α2
¢
− 2√α2e−α2

ª
r−3/2 λ = 2,

where WhittakerM(µ, ν, z) is a standard numerical function. These are limiting cases of

the TS (1/λ, ν2, α3) distribution as α3 → 0 (where ν2 is determined by ν, α2 and λ). The

correlation is specified by equation (6.15) and is

4

β2

¡
2 + βt− 2

√
1 + βt

¢
t2
√
1 + βt

λ = 1.5

3

β3t3 (1 + βt)

½
2 (1 + βt) log

µ
1

1 + βt

¶
+ βt (2 + βt)

¾
λ = 2.
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The asymptotic decay of the correlation is proportional to

lim
t→∞

Z ∞

0

1

{(1 + βs) (1 + β (t− s))}λ
ds,

truncating the integral at some large K (¿ t) gives the correlation proportional to

lim
t→∞

Z K

0

1

{(1 + βs) (βt)}λ
ds

and so the asymptotic decay in the correlation is t−λ. Recall we require λ > 1 so equation

(6.10) is satisfied. As λ → 1, the asymptotic decay in the correlation tends to t−1 so the

model mimics a long-memory model. For λ = 1.5 the correlation decays asymptotically

like t−3/2 and for λ = 2 is decays like t−2. This gives a slower decay than the BNS SV OU

models. Figure 6.2 are ACF plots for simulations of size 50, 000 from this process, when

β = 0.1 and for λ = 1.5 and λ = 2, using the Ga (1, 1)−OU BDLP and demonstrate the

correct decay of the correlation of the volatility process.
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Figure 6.2: ACF of the Power Decay volatility process for β = 0.1, λ = 1.5 and λ = 2.

As λ increases the asymptotic decay of the process increases. The dashed line shows the

theoretical correlation and suggests that the series representation of Section 6.1 has been
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implemented correctly. The β parameter can be used to further control the correlation

structure. Figure 6.2 are the same ACF plots as Figure 6.3 but for β = 1.
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Figure 6.3: ACF of the Power Decay volatility process for β = 1, λ = 1.5 and λ = 2.

For β = 1, the initial decay in the correlation is faster than when β = 0.1. Models with

h1 (t− s) given by equation (6.17) can control the initial decay of the volatility through

the β parameter and the asymptotic decay by the λ parameter.

6.2.3 Fractional Ornstein-Uhlenbeck process

Instead of using the Ornstein-Uhlenbeck process of previous chapters we consider the OU

process with solution

σ2 (1, t) =
√
2λ

Z t

−∞
e−λ(t−s)dz (s) , (6.18)

as was used in Section 6.2.1.

Definition 21 TheRiemann-Liouville operator of fractional integration of a func-
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tion, f (s) , is defined by

D−nf (s) =
1

Γ (n)

Z t

a
(t− s)n−1 f (s) ds, (6.19)

where D−n is the n-fold integral (see Anh and McVinish (2003)).

Define σ2 (κ, t) as

σ2 (κ, t) =

Z t

−∞
λe−λ(t−s)σ2 (κ− 1, t) (s) ds, (6.20)

for κ 6= 1 (the κ = 1 case has been covered in Section 6.2.1). It can be shown that

σ2 (κ, t) =
√
2λ

Z t

−∞

λκ−1

Γ (κ)
(t− s)κ−1 e−λ(t−s)dz (s)

(see Wolpert and Taqqu (2004) and Appendix A.11). The process σ2 (κ, t) is therefore

called the fractional Ornstein-Uhlenbeck Lévy (fOUL) process as it is of the form of equa-

tion (6.19) with n = κ and

f (s) =
√
2λλκ−1e−λ(t−s).

Equations (6.18) and (6.20) are equivalent to those used in Wolpert and Taqqu (2004)

to define fOUL processes. Unlike the BNS SV OU models, the marginal distribution of

the volatility is influenced by λ for these OU processes. We shall not change the timing

of the BDLP to avoid this, as although this is possible with the OU solution, for the

fOUL solution, κ also alters the marginal and it is difficult to manipulate equation (6.20)

to ensure this is not the case (and therefore we will be unable to make the marginal

independent of both λ and κ). Wolpert and Taqqu (2004) use fOUL processes to model

the Telecom process and are interested in the covariance function of these processes, whilst

we are usually concerned with the correlation function. The fOUL process is a special case

of equation (6.11), when

h (x) =

⎧⎨⎩ 0 x < 0
√
2λ

λκ−1

Γ (κ)
xκ−1e−λx x ≥ 0

.

The variance of the process is given by equation (6.14) and so we restrict our attention

to the finite variance processes, where κ > 1/2. Equation (6.15) gives the correlation

function

ρκ (t) =
2

Γ (κ− 1/2)

µ
λt

2

¶k−1/2
Kκ−1/2 (λ |t|) .

For small lags, the correlation decays like a power for the fOUL process (unlike the OU

process). Although the fOUL process has a more flexible correlation structure than the

OU, both processes decay exponentially for large lags and do not have long-memory. The
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decay of the correlation for small lags is controlled by κ and the decay for large lags is

determined by λ. Figure 6.4 demonstrates how the correlation structure varies with κ for

constant λ = 0.1.

Unfortunately, using a similar method to that used in Section 6.2.1, to calculate the

marginal distribution of the volatility, it is difficult to derive the Lévy measure or distri-

bution of σ2 (κ, t) for fOUL processes in general for the BDLPs of Chapter 4. As before,

consider the homogeneous BDLP, z (t), with Lévy measure

w (x) = −u (x)− xu (x) ,

where u (x) is the Lévy measure of the marginal distribution of the BNS SV model with

the same BDLP.

From equation (6.18), the negative of the characteristic exponent of σ2 (κ, t) is

log
n
E
h
eitσ

2(κ,t)
io
=

Z ∞

0

Z ∞

0

n
eituh(s) − 1

o
w (x) dsdx,

where

h (s) =
√
2λ

λκ−1

Γ (κ)
xκ−1e−λx,

from equation (6.20). Previously, we performed the substitution r = uh (s) and more care

must be taken to perform this substitution for general h (s) as, for some κ values, the

substitution is not one to one on the domain of integration. The difficulties for the case

1/2 < κ < 1 are discussed below.

The substitution r = uh (s) is one-to-one on R+ for 1/2 < κ < 1 (unlike when κ > 1).

However, this is still more complex than for the OU process, as

dr = uh
0
(s) ds

and
1

uh0 (s)
=

1

uh (s)

s

(κ− 1− λs)
= r−1

h−1 (r/u)

(κ− 1− λh−1 (r/u))
,

where

h−1 (s) = x1/(1−κ) exp

"
−LambertW

Ã
λx1/(1−κ)

1− κ

!#
.

Then

log
n
E
h
eitσ

2(κ,t)
io
=

Z ∞

0

Z ∞

0

©
eitr − 1

ª
r−1

h−1 (r/u)

(λh−1 (r/u) + 1− κ)
drw (u) du

and σ2 (κ, t) has Lévy measure

r−1
Z ∞

0

h−1 (r/u)

(λh−1 (r/u) + 1− κ)
w (u) du.
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Due to the complex nature of h−1, it is not possible to simplify this further, even when

we have a Ga−OU BDLP. This demonstrates that both λ and κ specify the exact form

of the marginal distribution of σ2 (κ, t). Even for specific κ values (such as κ = 3/4) it is

not possible to evaluate this integral.

We will concentrate on simulating from such models with the Ga−OU BDLP, as this

gives finite summations in equations (6.6) and (6.8) and the Inverse Tail Mass function is

available directly. Using the numerical methods described in Chapter 4 and Appendix B.1,

along with the series representation of Section (6.1), allows us to simulate from integrals

with respect to any of the BDLPs used in Chapter 4.
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Figure 6.4: ACF of the fOUL process for λ = 0.1, κ = 0.75 and κ = 1.5.



6.3. Inference using MCMC 182

Even though we were unable to derive the marginal distribution of the volatility for

this BDLP, empirical results suggest the volatility might be distributed Gamma when

the Ga − OU BDLP is used to drive the fOUL process. Figure 6.5 are QQplots of the

simulated volatility processes against two Gamma distributions, with parameters of the

Gamma distributions chosen from moment matching.
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Figure 6.5: QQplots of the fOUL process for λ = 0.1, κ = 0.75 and κ = 1.5 against

Gamma distributions with parameters chosen from moment matching.

6.3 Inference using MCMC

An MCMC algorithm to estimate the parameters of the BNS OU SV models was described

in Chapter 4. This algorithm simulates from the stochastic integral of equation (4.5)

using the series representation of equation (4.9). For a data set of size T this is an O (T )

algorithm. For the models described in this chapter, in general, we need to sample from

stochastic integrals of the form of equation (6.5) and can use a similar series representation,

given in equations (6.6) and (6.8), which gives an O
¡
T 2
¢
algorithm to sample from the

instantaneous volatilities, σ2 (0∆) , . . . , σ2 (T∆).
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The likelihood for BNS OU SV models in Chapter 4 is specified by the discretely

observed volatility, σ2i , defined in equation (1.6) as

σ2i =

Z i∆

(i−1)∆
σ2 (u) du,

which has a simple form for the BNS OU SV models, given in equation (4.2). In general,

for the models of this chapter, this discretely observed volatility isZ i∆

(i−1)∆

Z ∞

0
f1 (λ, u, s) dz (s) du+

Z i∆

(i−1)∆

Z t

0
f2 (λ, u, s) dz (s) du.

As the time dependent term of σ2 (t) cannot be separated from the stochastic integral

term, this cannot be simplified to a single integral, as was the case for the BNS OU SV

models. The series representations for the models of this chapter are slower to implement

because of the O
¡
t2
¢
series representation of equation (6.8). The double integrals for the

discretely observed volatility are very intensive to compute and not currently feasible to

implement for an MCMC algorithm. However, the instantaneous volatility and discretely

observed volatilities have similar properties and so we can fit the models of this chapter

using the same likelihood as before but with the approximation

σ2i =

Z i∆

(i−1)∆
σ2 (u) du ≈ σ2 ((i− 1)∆)∆.

Alternatively, we could use the approximationZ i∆

(i−1)∆
σ2 (u) du ≈ σ2 (i∆)∆,

or use the trapezium rule to make the approximationZ i∆

(i−1)∆
σ2 (u) du ≈

½
σ2 (i∆)− σ2 ((i− 1)∆)

2

¾
∆.

For simulation purposes, each approximation gives similar results. For this reason we use

the approximation σ2i ≈ σ2 (i∆)∆, as the correlation structure of σ2 (i∆) is already known

and gives a simple correlation structure for σ2i .

To test the correct fit of the models to observed data, we can look at the observed

and theoretical correlation structure of the square of the log returns given the estimated

model parameters. To estimate

corr
£
y2i , y

2
i+s

¤
, for s > 0,

make the approximation

yi ∼ N
¡
0, σ2 (i∆)

¢
.
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Then E
£
y2i
¤
= E

£
σ2 (i∆)

¤
and so

Cov
£
y2i , y

2
i+s

¤
= E

h³
σ2 (i∆)X2

i − σ2 (i∆)
´³

σ2 ((i+ s)∆)X2
i+1 − σ2 ((i+ s)∆)

´i
= ρ (s)V

£
σ2 (i∆)

¤
,

whereXi
iid∼ N (0, 1) is independent of the volatility process and ρ (t) is as given in equation

(6.15). We also have

V
£
y2i
¤
= V

£
y2i+s

¤
= V

£
σ2 (i∆)

¤
V
£
X2
i

¤
= 2V

£
σ2 (i∆)

¤
and so

Corr
£
y2i , y

2
i+s

¤
=

ρ (s)

2
.

The MCMC algorithm is the same as previously, using the new stochastic integrals

and series representations. Due to the intensive series representation, efficient coding is

very important, so that the models run in sensible time. Note that when the bth row of

Poisson points and uniforms are updated, as

I2,t
L
=

t−1X
j=0

n2,jX
i=0

W−1 (a2,j,i) f2 (λ, t, r2,j,i + j) ,

we have that

I
0
2,t|I2,t

L
= I2,t −

n2,jX
i=0

W−1 (a2,b,i) f2 (λ, t, r2,b,i + b) +

n2,jX
i=0

W−1
³
a
0
2,b,i

´
f2

³
λ, t, r

0
2,b,i + b

´
,

which does not require O
¡
t2
¢
operations. To further improve the speed, the values

W−1 (a2,b,i) and f2 (λ, t, r2,b,i + b) can be stored, to avoid repeat calculations. We will

focus on the Ga-OU BDLP to facilitate algorithm run time, though any of the previous

BDLPs could be used. The MCMC algorithm for the Ga-OU BDLP for the new models

runs at a similar speed to the GIG-OU BDLP for BNS OU SV models for data sets of size

T = 1000. Our focus is to show the MCMC inference is possible and demonstrate this on

training with the Power Decay process and real data, using both processes. For the Power

Decay process, we use a Ga (1, 0.1) prior for λ + 1 and a Ga (1, 0.5) prior for β. For the

fOUL process, we use a Ga (1, 0.5) prior for λ and a Ga (1, 2/3) prior for κ+ 1
2 . Posteriors

of λ and β for the Power Decay process on training data are shown in Figure 6.6, where

100, 000 iterations were taken (and thinned by recording every 10th value) after a burn-in

of 10, 000, for the simplest model (no leverage, stochastic λ process etc.). As the models of

this chapter give flexible correlation structures, we concentrate on the parameters which

determine this structure.
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Figure 6.6: Histograms of the posterior distribution of λ and β for training data.

The posterior supports the true values from which the data were generated for the Power

Decay process.

The inference for the fOUL process is the same as for the Power Decay process (apart

from the form of the functions f1 and f2) and so we now assume the MCMC algorithm

is working correctly and fit the models to the S&P 500 data set. Posterior histograms of

the parameters determining the correlation of the square of the log returns are given in

Figures 6.7 and 6.8. 10, 000 iterations were taken, thinning by recording every 10th value,

after a burn-in of 10, 000.
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Figure 6.7: Power Decay process: Histograms of λ and β for S&P 500 data.

The posterior for λ supports small λ values and fits a volatility process which decays

asymptotically at a rate between t−1 and t−3. The posterior is not concentrated at λ = 1,

so the volatility process does not have long-memory.
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Figure 6.8: fOUL process: Histograms of λ and κ for S&P 500 data.

The posterior supports κ = 1 and so supports the BNS OU model.
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Figure 6.9: ACF of the square of the log returns of S&P 500 data and theoretical ACF of

the fitted Power Decay and fOUL processes.
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Figure 6.9 demonstrates the Power Decay and fOUL models accurately fitting the corre-

lation structure of the S&P 500 data set. These graphs are ACF plots of the square of the

log returns and the theoretical distribution of the square of the log returns of the fitted

processes for one set of parameters, taken after the MCMC had converged.

6.4 Chapter summary

Wolpert and Taqqu (2004) consider a class of stochastic processes driven by Lévy processes.

We recall these models and suggest they could be used for stochastic volatility models

because of their rich correlation structure. We describe how to simulate from such models

and some of the properties of them. Although the models of this chapter can have a more

flexible correlation structure than the BNS SV models, they are less tractable because the

stochastic integrands have a more complex form. For example, for the BNS SV model,

the relationship between the BDLP and marginal distribution of the volatility is simple,

whilst for the models of this chapter it is often not available analytically. The models

of this chapter require a more complex series representation and this makes simulation

slower. Therefore MCMC inference for these models, using the series representation of

this chapter and a similar algorithm to that of Chapter 4, is slower, though still feasible

for the Ga-OU BDLP.



Chapter 7

Further Work

Some ideas for potential further work are suggested. These have not been implemented as

they are not feasible on modern computers with current mathematical theory and/or were

considered beyond the scope of this thesis, which largely focuses on the implementation

and performance of the stochastic volatility models proposed in Barndorff-Nielsen and

Shephard (2001b).

7.1 Multivariate volatility models

Although the thesis focuses on Lévy measures of univariate distributions, the Lévy mea-

sure definition (see Theorem 2) is for multivariate distributions. Barndorff-Nielsen and

Shephard (2001b) concentrate on univariate SV models but observe that the models extend

to multivariate Lévy processes. In principle, there is no reason why an infinitely divisible

distribution cannot be used as a marginal distribution for the volatility between several

underlying assets. The multivariate Inverse Gaussian distribution (see Minami (2003))

is an example of an infinitely divisible multivariate distribution. The multivariate model

allows correlation between the volatilities of different assets, rather than modelling the

volatility for each asset independently. Given the difficulty of the MCMC implementation

in the univariate case and the time taken to run it, MCMC inference for multivariate mod-

els is not feasible with current computing power and the techniques used in this thesis (at

least not with multivariate generalisations of all the marginal distributions that are used

in Chapters 4 and 5). It might be possible to perform the inference for a small number of

assets with carefully chosen marginal distributions which have simple Inverse Tail Mass

functions (such as a multivariate generalisation of the Gamma distribution). It would be

interesting to compare the empirical performance of multivariate BNS SV models for a

189
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small number of assets and univariate BNS SV models (with the same marginal distribu-

tion) to see if the extra complexity of the multivariate models improves the prediction of

future assets movements.

7.2 Comparison with discrete time models

All the models used in this thesis were continuous time models (apart from the stochastic λ

process in Section 3.3). Although the asset was only simulated at discrete time points, the

differential equations driving the underlying are continuous (such as the Black-Scholes and

Ornstein-Uhlenbeck equations). There are many stochastic volatility models in discrete

time, such as those given in Bollerslev (1987) and Shephard and Pitt (1997). The MCMC

inference for such models is generally more straightforward than for the BNS SV models.

It has been argued that continuous time models are more appropriate than discrete ones

as observations occur in continuous time. Certain analytical results are available for the

continuous BNS SV model which are less tractable for the discrete time models (such as a

simple expression for the integrated volatility). However, there is no concrete mathematical

justification as to why a continuous or discrete model should have any advantage over the

other for option pricing or forecasting.

It would be interesting to compare some of the popular discrete time models with the

Ornstein-Uhlenbeck model to see if any of the models are able to outperform the others

empirically.

7.3 Long-memory models

Although significant evidence of long-memory was found in real financial data in Section

3.1.3, results in the literature are less conclusive (and we were unable to identify any

empirical advantage of the long-memory generalisation in Chapter 5). To try to cater for

long-memory, an approximation to fractional Brownian motion was introduced in Section

3.5. Quasi long-memory can also be created by considering a superposition of Ornstein-

Uhlenbeck processes though this introduces many more parameters. Various long-memory

models in discrete time exist, such as the Long-Memory Stochastic Volatility (LMSV),

introduced by Breidt et al. (1998).

It would be interesting to try to generalise an Ornstein-Uhlenbeck model for the volatil-

ity so it could generate long-memory in the absolute and square log returns in the original

Black-Scholes equation. Sadly such generalisations, which keep the analytic tractabil-

ity of the model proposed in Barndorff-Nielsen and Shephard (2001b), are not obvious.
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Theorem 5 (proved by Jurek and Vervaat (1983)) guarantees that all self-decomposable

distributions can be used as a marginal distribution for volatility and written in terms of a

BDLP. Differentiating this Lévy representation of the infinitely divisible distribution gen-

erates the Ornstein-Uhlenbeck equation. Similar theorems to that of Jurek and Vervaat

(1983), which can be manipulated into an attractive stochastic differential equation for

the stochastic volatility, are not readily available. If there were other infinitely divisible

distributions that could be written in terms of a different stochastic integral (with respect

to a different type of Lévy process) then other models would be easier to discover. SV

models with polynomial decay in the correlation of the volatility process were considered

in Chapter 6 and these could be used to try to better explain the correlation structure of

observed financial data.

An example of a long-memory model in continuous time is where the log of the volatility

follows the Ornstein-Uhlenbeck equation (see Comte and Renault (1998), though this

paper uses Brownian motion to drive the OU equation). For this model (not necessarily

driven by Brownian motion) the integrated volatility is not available analytically (unlike

the BNS SV models). Additionally, for the BNS SV models, it is easy to specify the

marginal distribution of the volatility and this is a very appealing feature of the model.

The model of Comte and Renault (1998) could be compared with the BNS SV model to

try to see if there are any data sets which can take advantage of the long-memory model

(though this is currently difficult to test empirically as observed in Section 5.3.4).

7.4 Lévy processes in the Black-Scholes equation

The standard Black-Scholes equation uses Brownian motion to drive the asset equation.

As shown in Chapter 2, Brownian motion is a special example of a Lévy process. Lévy

processes other than Brownian motion could be used to drive the Black-Scholes equation,

which would generate jumps in the share process. It is not obvious how to pick this

Lévy process from observed financial data, though this would be a logical way to further

generalise the model. In the finance literature, parameters for such models are often

estimated by minimizing some function of the difference between model and market option

prices (see for example Carr et al. (2003)). It would be interesting to investigate which Lévy

processes can be used to modify the standard Black-Scholes equation and most accurately

predict "unseen" data, in a similar way to Section 5.1, again, possibly estimating model

parameters using MCMC.
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7.5 Improved truncation of the infinite sum of the random
shock vector

For marginals other than the Gamma distribution, the infinite sum given in equation (4.20)

must be truncated at some point. The truncation algorithms suggested in Section 4.3.5

and Appendix B.2 are sufficiently accurate, as samples from the model generate marginal

distributions with the correct mean and variance for a wide range of parameter values of

the marginal distributions, as well as the correct correlation structure for the volatility

process. However, if it was possible to accurately estimate the error of the truncation (such

as was performed in Appendix B.2 for the Tempered Stable marginal), for the Generalised

Inverse Gaussian, Positive Hyperbolic and Inverse Gamma marginals, the infinite sums

could be truncated earlier, without significantly altering the accuracy, and the speed of

the MCMC would increase. Alternatively, a higher accuracy could be obtained with a

similar computer run time. Working out the asymptotic behaviour of the Inverse Tail

Mass function for the Generalised Inverse Gaussian distribution (see equation (4.11)) is

not obvious and makes it difficult to find improved truncation schemes. The speed (and/or

accuracy) of the MCMC could be increased if we had an adaptive ztol, similar to the one

used for the Tempered Stable.

7.6 Comparing leverage parameters for different marginal
distributions

One of the disadvantages of the volatility models introduced by Barndorff-Nielsen and

Shephard (2001b) is that the leverage parameter is influenced by the marginal distrib-

ution of the volatility (see for example Table 4.10). This makes it hard to interpret,

quantitatively, the posterior distribution of leverage parameters between different mar-

ginals and different data sets. The ingenious choice and timing of λ in equation (1.8)

means that it is unaltered by the marginal distribution used for σ2 (t). When the MCMC

was run on data from the Standard and Poor’s 500 stock price (see Section 4.4.5) it can

be seen that the posterior distributions for λ are very similar for each different marginal,

whilst the posteriors for ρ differ slightly (though are still of the same order of magnitude).

It would be useful to investigate why these posteriors are different and how to compare

the leverage parameters of different marginals and data sets.
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7.7 Different jump distributions in the stochastic λ process

Section 3.3 allowed λ to vary over time, with jumps from a Normal distribution (on the

log scale) occurring as a Poisson process. This choice of jump distribution is somewhat

arbitrary, as there is no compelling reason to believe jumps should be distributed in this

way. It would be interesting to allow for jumps from other distributions, though the

distributions must be able to cause λ to jump both up and down and keep λ positive.

The most obvious way to do this is by considering jumps on the log scale and allowing

positive and negative jumps. Other distributions which could be investigated include the

Generalised Asymmetric Laplace, Generalised Cauchy and Cosh/Sinh distributions (see

Chapter 2 for example). Empirical tests similar to those described in Chapter 5 could be

used to assess which jump distributions fit observed financial data well. For a carefully

chosen jump distribution, the stochastic λ process may perform better in Section 3.3 and

clearly outperform the constant λ model.

7.8 Empirical performance of the models of Chapter 6

Chapter 6 motivated and explained how to simulate from a new class of SV models. The

empirical performances of these models were not investigated. It would be interesting to

see if these models can be fitted using MCMC, with current computing power and similar

algorithms of Chapters 4 and 6, for more complex BDLPs than the Ga-OU BDLP. If it is

feasible to fit the models using MCMC, it would be useful to test the empirical performance

of the different models. This might give an insight as to what the correlation structure

of SV models should be and whether capturing the asymptotic decay of the correlation in

the volatility is as important as it is often made out to be.



Appendix A

Analytical Results

A.1 Derivation of the log asset equation

From equation (1.4), the asset equation is

dS (t) = µSdt+ σSdW (t) .

Let x (t) = log (S (t)), so

dx =
∂x

∂t
dt+

∂x

∂S
dS +

1

2

∂2x

∂S2
(dS)2

and, as W (t) is Brownian motion, dW ∼ N (0, dt), so (dS)2 = σ2S2dt+h.o.t. in dt. Then

dx =

µ
µ− σ2

2

¶
dt+ σdW (t) ,

as in equation (1.5). IfW (t) is fractional Brownian motion (see Definition 12), with Hurst

parameter H, (dS)2 = σ2S2 (dt)2H + h.o.t. (see Hu and Øksendal (2003)).

A.2 Kurtosis of the log returns

From equation (1.7), the log asset, x (t), obeys the stochastic differential equation

dx (t) =

½
µ− σ2 (t)

2

¾
dt+ σ (t) dW (t) .

Assuming the dt term can be integrated out/ignored, the likelihood for the unobserved

log returns, Yi, is

Yi
L
= σiεi,
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where εi
iid∼ N (0, 1) and σi is the root of the discretely observed or actual volatility as

defined in Barndorff-Nielsen and Shephard (2001b) and equation (4.3). Then

E [Yi] = 0

and

E
h
(Yi −E [Yi])

2
i
= E

£
Y 2i
¤
= ∆E

£
σ2i
¤

and finally

E
h
(Yi −E [Yi])

4
i
= E

£
Y 4i
¤
= 3∆2E

£
σ4i
¤
.

The kurtosis of random variable Z is defined as

KZ =
m4

(m2)
2 ,

where mj is the jth centralised moment of Z. The kurtosis of the log returns is therefore

KY =
E
h
(Yi −E [Yi])

4
i

n
E
h
(Yi −E [Yi])

2
io2 = 3 E

£
σ4i
¤¡

E
£
σ2i
¤¢2 .

This is not equal to 3KZ2 , where Z
2 is a random variable with the same distribution as

the marginal of σ2 (t), as the terms E
£
σ4i
¤
and E

£
σ2i
¤
are not centralised. The log returns

have heavier tails than a normal distribution because KY > 3.

Non-centralised moments m2, m4, for three of the six different marginal distributions,

are now given, along with the corresponding kurtosis of the log returns, Ky (note Ky is

kurtosis of the log returns and is not a Bessel function). The table has the second and

fourth moments of the different marginal distributions, though only the first and second

moments contribute to the kurtosis.

IG (ν, α) Ga (ν, α) IGa (ν, α)

m2
ν(1+να)

α3
ν(1+ν)
α2

α2

(ν−1)(ν−2)

m4
ν(ν3α3+6ν2α2+15να+15)

α7
ν(1+ν)(2+ν)(3+ν)

α4
α4

(ν−1)(ν−2)(ν−3)(ν−4)

Ky 31+νανα 31+νν 3ν−1ν−2

Kurtosis parameters να ν ν

Table A.1: Non-centralised moments for three of the six different marginal distributions

and the kurtosis of the log returns.

The GIG (γ, ν, α), TS (κ, ν, α) and RPH (ν, α) distributions are not included in Table A.1

as m2,m4 and KY are complicated. These missing values can be found in Section 4.2.3.
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A.3 Representations of the Stable distribution

The representation used in Feller (1971), pg 549, for the density of the Stable (α, γ) density

(for 0 < α < 1) is

fX (x) =
1

πx

∞X
j=1

Γ (jα+ 1)

j!

¡
−x−α

¢j
sin

½
jπ

2
(γ − α)

¾
, for x > 0

=
1

πx

∞X
j=1

Γ (jα+ 1)

j!
(−1)j−1 x−αj sin

½
jπ

2
(α− γ)

¾
.

Picking α = κ and γ = −κ gives

fX (x) =
1

π

∞X
j=1

Γ (jκ+ 1)

j!
(−1)j−1 x−κj−1 sin (jπκ) , for x > 0.

Define the random variable Y = cX (for c > 0), then

fY (y) =
1

c
fX

³y
c

´
, for y > 0

=
1

πc

∞X
j=1

Γ (jκ+ 1)

j!
(−1)j−1

³y
c

´−κj−1
sin (jπκ) .

Picking c = 2δ1/κ gives

fY (y) =
1

πc

∞X
j=1

(−1)j−1 sin (jπκ) Γ (jκ+ 1)
j!

2κj+1
µ

y

δ1/κ

¶−κj−1
, for y > 0.

This is the representation used in Barndorff-Nielsen and Shephard (2001c) and Section

4.2.2 for the positive κ− Stable distribution.

A.4 Evaluation of
R∞
−∞

1−cos(tx)
x2 dx

Consider the function

f (z) =
1− eitz

z2

= −it
z
− i2t2

2!
− i3t3

3!
z − . . . ,

where t ∈ R+ and z ∈ C. Therefore f (z) has a simple zero at z = 0 with residue −it.

Use the contour which is a semi-circle, of radius R, in the positive imaginary plane,
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1−cos(tx)
x2 dx 197

indented at the origin with a semi-circle of radius ε, to avoid the pole (0 < ε < R).

Use the star domain C\{z = x+ iy : y ≤ 0}. There are no singularities inside the contour
above so Z

γ1+γ2+γ3+γ4

f (z) dz = 0.

Considering real parts,Z
γ1+γ3

f (z) dz =

Z −ε

−R

1− cos (tx)
x2

dx+

Z R

ε

1− cos (tx)
x2

dx

and (indentation lemma)Z
γ2

f (z) dz = −πi [residue {f (z) , z = 0}]

= −πt.

The extra minus occurs as the small semi-circle contour is clockwise.

Let g (z) = e−itzf (z) and write z = x+ iy (x, y ∈ R), then on γ4

|g (z)| =

¯̄
e−itz − 1

¯̄
|z2|

≤
¯̄
e−itx−ty

¯̄
+ 1

R2

=
e−ty + 1

R2

and t ≥ 0 so
|g (z)| ≤ 2

R2
,
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which tends to zero as R→∞. Applying Jordan’s lemma givesZ
γ4

eitzg (z) dz → 0 as R→∞

and therefore letting R→∞ and ε→ 0 we obtainZ ∞

−∞

1− cos (tx)
x2

dx = πt,

for t ≥ 0. Note that for t ≥ 0 Z ∞

−∞

1− cos (−tx)
x2

dx = πt,

as cos is even. Hence Z ∞

−∞

1− cos (tx)
x2

dx = π |t| .

A.5 Derivation of the Lévymeasure of the Cosh distribution

The density function is

fX (x) =
1

π cosh (x)
, for −∞ < x <∞. (A.1)

It has been shown that

φ1 (t) =

Z ∞

−∞

eitx

π cosh (x)
dx =

1

cosh (πt/2)
.

Though not proved here, a technique to prove this is described in Feller (1971), pg 503.

Letting Y = X/a, for a ∈ R, gives

fY (y) =
1

π |a| cosh (y/a) , for −∞ < y <∞

and

φ2 (t) =

Z ∞

−∞

eity

|a|π cosh (y/a)dy =
1

cosh (πta/2)
.

Then

Ψ (t) = − log {φ2 (t)} = log {cosh (πta/2)} (A.2)

and
d2

dt2
{Ψ (t)} = π2a2

4
{φ2 (t)}2 ,

so fY (y) is infinitely divisible.
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Also, (φ2 (t))
2 is the characteristic function of the random variable Z = X + Y , where

X and Y are independent and identically distributed with density function fX (.) from

equation (A.1). This characteristic function is derived in Feller (1971). This gives

fZ (z) =
4sign (a)

π2a2
z

ez/a − e−z/a
.

The derivation of fZ (z) is given in Appendix A.6.

So,
d2

dt2
[Ψ (t)] = sign (a)

Z ∞

−∞
eitx

x

ex/a − e−x/a
dx

and integrating with respect to t gives

d

dt
[Ψ (t)] = sign (a)

Z ∞

−∞

eitx + f1 (x) + if2 (x)

ix

x

ex/a − e−x/a
dx, (A.3)

where f1 (x) , f2 (x) ∈ R. From equation (A.2), we then have

d

dt
[Ψ (t)] =

πa

2
tanh (πta/2) ,

so

i
πa

2
tanh (πta/2) = sign (a)

Z ∞

−∞

eitx + f1 (x) + if2 (x)

x

x

ex/a − e−x/a
dx, ∀t ∈ R.

Taking real and imaginary parts, we have f1 (x) and f2 (x) satisfyZ ∞

−∞

cos (tx) + f1 (x)

ex/a − e−x/a
dx = 0 (A.4)

and

sign (a)

Z ∞

−∞

sin (tx) + f2 (x)

ex/a − e−x/a
xdx =

πa

2
tanh (πta/2) . (A.5)

To prevent a pole occurring in equation (A.4), we require

lim
x→0

cos (tx) + f1 (x)

ex/a − e−x/a
= c.

Therefore the power series for f1 (x) has only positive powers. Letting t = 0, for f1 (x),

we require Z ∞

−∞

1 + f1 (x)

ex/a − e−x/a
dx = 0.

An obvious f1 (x) which satisfies this is f1 (x) = −1. However, this is not the only such
function which would work. For example f1 (x) = −1 + x2 also satisfies equation (A.4).

For f2 (x), letting t = 0, Z ∞

−∞

f2 (x)

ex/a − e−x/a
xdx = 0. (A.6)
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The most obvious such f2 (x) is f2 (x) = 0. Again, this is not unique as f2 (x) = x2 satisfies

equations (A.5) and (A.6). Continuing with the "obvious" f1 (x) and f2 (x), equation (A.3)

becomes
d

dt
[Ψ (t)] = sign (a)

Z ∞

−∞

eitx − 1
ix

x

ex/a − e−x/a
dx, ∀t ∈ R.

Integrating again, we obtain

Ψ (t) = −sign (a)
Z ∞

−∞

eitx − itx+ f3 (x) + if4 (x)

x2
x

ex/a − e−x/a
dx,

where f3 (x) , f4 (x) ∈ R. Using equation (A.2) we have

log {cosh (πta/2)} = −sign (a)
Z ∞

−∞

eitx − itx+ f3 (x) + if4 (x)

x2
x

ex/a − e−x/a
dx

and using an argument similar to that used previously, we try f3 (x) = −1 and f4 (x) = 0,
then

Ψ (t) = sign (a)

Z ∞

−∞

1 + itx− eitx

x2
x

ex/a − e−x/a
dx. (A.7)

This is not quite in the canonical form that appears in Theorem 4. However, note thatZ ∞

−∞

itx

x2
x

ex/a − e−x/a
dx = 0

and Z ∞

−∞

it sin (x)

x2
x

ex/a − e−x/a
dx = 0,

so equation (A.7) can be rewritten as

Ψ (t) = sign (a)

Z ∞

−∞

1 + it sin (x)− eitx

x2
x

ex/a − e−x/a
dx

and the canonical measure, M (x), is given by

M (x) = sign (a)
x

ex/a − e−x/a
.

Setting u (x) = M (x)x−2 gives the Lévy measure (i.e. satisfies Theorem 1.1, the Lévy-

Khintchine formula). Setting W = Y − µ, where µ ∈ R, gives

fW (w) =
1

π |a| cosh
¡w−µ

a

¢ , for −∞ < w <∞.

It is already known from Section 2.2.1 that the Lévy measure will be unaltered by the

shift.
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A.6 Derivation of the density of the convolution of two iid
Cosh variates

LetX and Y be two independent and identically distributed random variables with density

function

fX (x) =
1

π |a| cosh (x/a) , for a ∈ R and −∞ < x <∞.

Let Z = X + Y, so

fZ (z) =

Z ∞

−∞
fX (z − y) fx (y) dy

=
4

π2a2

Z ∞

−∞

dy¡
ez/ae−y/a + e−z/aey/a

¢ ¡
ey/a + e−y/a

¢ .
Substitute t = ey/a

fZ (z) =
4

π2a

Z
dt

t
³
ez/a

t + e−z/at
´ ¡

t+ 1
t

¢
=

4

π2a

Z
tdt¡

ez/a + e−z/at2
¢
(t2 + 1)

,

for suitable limits in the integration. Using partial fractions

fZ (z) =
4

π2a

Z
At

ez/a + e−z/at2
+

Bt

t2 + 1
dt

=
2

π2a

n
Aez/a log

³
t2e−z/a + ez/a

´
+B log

¡
t2 + 1

¢o
,

where

A =
1

1− e2z/a
and B =

1

ez/a − e−z/a
.

So

Aez/a = −B

and

fZ (z) =
2B

π2a

∙
log

µ
t2 + 1

t2e−z/a + ez/a

¶¸
.

For a > 0 this gives

fZ (z) =
2B

π2a

∙
log

µ
t2 + 1

t2e−z/a + ez/a

¶¸∞
0

=
2B

π2a

n
log
³
ez/a

´
− log

³
e−z/a

´o
=

4B

π2a2
z
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©
1 + it sin (x)− eitx

ª
x−2cδ (x) dx 202

and if a < 0

fZ (z) =
2B

π2a

∙
log

µ
t2 + 1

t2e−z/a + ez/a

¶¸0
∞

= − 4B

π2a2
z.

Therefore

fZ (z) =
4sign (a)

π2a2
z

ez/a − e−z/a
,

which is the density of the Sinh distribution (see Section 2.2.8).

A.7 Evaluation of
R∞
−∞
©
1 + it sin (x)− eitx

ª
x−2cδ (x) dx

Z ∞

−∞

½
1 + it sin (x)− eitx

x2

¾
cδ (x) dx = c lim

x→0
1 + it sin (x)− eitx

x2

= c lim
x→0

1 + it sin (x)− cos (tx)− i sin (tx)

x2

= c lim
x→0

−
³
− t2x2

2! + . . .
´
− i

³
− t3x3

3! + . . .
´
+ . . .

x2

= c
t2

2

A.8 Relationship between the leverage parameters of two
popular SV models

A popular discrete time model for the log asset, x (t), is

dx (t) =

½
µ− σ2 (t)

2

¾
dt+ σ (t) dW1 (t) ,

where the stochastic volatility follows the equation

d log
£
σ2 (t)

¤
= α+ β log

£
σ2 (t)

¤
dt+ σvdW2 (t)

and W1 (t) and W2 (t) are two Brownian motions with corr [dW1 (t) , dW2 (t)] = ρ1 (so ρ1
is a correlation between two Brownian motions and is the leverage parameter). Further

details on this model can be found in Yu (2002).

For the BNS OU model with leverage, the log underlying, x (t), follows the equation

dx (t) =

½
µ− σ2 (t)

2

¾
dt+ σ (t) dW (t) + ρ2dz (λt) , (A.8)
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where ρ2 is the leverage parameter and z is a "centred" BDLP defined as

z (t) = z (t)−E [z (t)] (A.9)

and the stochastic volatility follows the Ornstein-Uhlenbeck equation

dσ2 (t) = −λσ2 (t) dt+ dz (λt) .

To compare ρ1 and ρ2, calculate the correlation between the two random processes in

the share and volatility equation for the continuous model. First rewrite equation (A.8)

as

dx (t) =

½
µ− σ2 (t)

2

¾
dt+ σ (t) {dW (t) + kdz (λt)} ,

where k = ρ2/σ (t). We are interested in the correlation

C (ρ2) = corr [dz (λt) , dW (t) + kdz (λt)]

and from equation (A.9), dz (t) = dz (λt), so

C (ρ2) = corr [dz (t) , dW (t) + kdz (λt)] .

As dz (t) and dW (t) are independent

cov [dz (λt) , dW (t) + kdz (λt)] = E [{dz (λt)−E [dz (λt)]} k {dz (λt)−E [dz (λt)]}]
= kV ar [dz (λt)] .

Then,

C (ρ2) =
kV ar [dz (λt)]p

V ar [dz (λt)]
p
V ar [dW (t)] + k2V ar [dz (λt)]

=
ks

k2 +
V ar [dW (t)]

V ar [dz (λt)]

.

As W (t) is Brownian motion, dW (t) =W (t+ δt)−W (t) ∼ N (0, δt), so

V ar [dW (t)] = δt.

For V ar [dz (λt)], we note that

V ar [dz (λt)] = V ar [dz (λt)]

and use a similar technique to the one used for Brownian motion. That is

dz (λt) = z (λ (t+ δt))− z (λt)
L
= z (λδt)
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and then

V ar [dz (λt)] = V ar [z (λδt)]

= λδtV ar [z (1)]

= 2λδtV ar
£
σ2 (t)

¤
.

Finally,

C (ρ2) =
kr

k2 +
1

2λV ar [σ2 (t)]

=
sign (ρ2)s

1 +
1

ρ22

σ2 (t)

2λV ar [σ2 (t)]

.

This is a monotonic increasing function of ρ2, like the leverage parameter in the discrete

model. When ρ1 and ρ2 are negative, there is negative correlation in both models and the

strength of this correlation becomes stronger as the parameters become more negative.

Unlike the discrete model, the correlation between the two driving processes (for the

asset and volatility) is not completely specified by the leverage parameter; it is also deter-

mined by λ, σ2 (t) and V ar
£
σ2 (t)

¤
.

A.9 Alternative leverage parameter

From Section 3.4, the leverage parameter enters the likelihood expression in the form ρzi,

where

zi = ηi,2/λ−∆E
£
σ2 (t)

¤
L
= ∆

©
z (1)−E

£
σ2 (t)

¤ª
and satisfies E [zi] = 0.

Consider V [zi] = ∆2V [z (1)] and let km be the mth cumulant of z (1). That is

km = E
hn

z (1)− z (1)
omi

and also let dm be the mth cumulant for the marginal distribution which is used for σ2 (t).

Then Barndorff-Nielsen and Shephard (2001a) have shown

km = mdm.

If m = 2

k2 = V [z (1)] = 2V
£
σ2 (t)

¤
,
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and

V [zi] = 2∆
2V
£
σ2 (t)

¤
,

so define

z
0
i =

zi

∆
p
2V [σ2 (t)]

=
ηi,2/λ−∆E

£
σ2 (t)

¤
∆
p
2V [σ2 (t)]

.

Then E
h
z
0
i

i
= 0 and V

h
z
0
i

i
= 1 (so the mean and variance of the leverage are independent

of the marginal distribution used for σ2 (t) as well as being independent of λ).

A.10 GIG (ν, 0, γ) is the only GIG (ν, δ, γ) distribution with
finite RSV sum

It is already known that the GIG (ν, 0, γ) (Gamma) distribution has a finite sum in equa-

tion (4.9) and does not require truncation. Continue with δ 6= 0 and

ηi =

⎧⎪⎪⎨⎪⎪⎩
e−λ∆

∞P
j=1

W−1 ¡ aj
λ∆

¢
eλ∆rj

∞P
j=1

W−1 ¡ aj
λ∆

¢
⎫⎪⎪⎬⎪⎪⎭ .

In order that the sum be finite, it must be possible to truncate exactly at some ni. As aj ’s

are the arrival times of a Poisson process with intensity 1, there must be some K ∈ R+,
such that W−1 ¡ aj

λ∆

¢
= 0 for all aj > K. From equation (4.7)

W−1
³ aj
λ∆

´
= inf

n
y > 0 :W+ (y) ≤ aj

λ∆

o
so

inf
©
y ≥ 0 :W+ (y) ≤ l

ª
= 0 ∀ l ≥ K

λ∆
.

The sum is finite if and only if limy→0W+ (y) is finite. Using equation (4.6),

lim
y→0

W+ (y) = lim
y→0

yu (y)

= lim
y→0

½
1

2

Z ∞

0
exp

µ
− yξ

2δ2

¶
gν (ξ) dξ +max (0, ν)

¾
exp

µ
−γ

2y

2

¶
.

This is finite when

lim
y→0

Z ∞

0
exp

µ
− yξ

2δ2

¶
gν (ξ) dξ

is finite. Recall equation (2.2),

gν (x) =
2

xπ2

n
J2|ν|

¡√
x
¢
+N2

|ν|
¡√

x
¢o−1
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and as

lim
ξ→∞

gν (ξ) = 0 ∀ ν ∈ R,

we are interested in when Z ∞

0
gν (y) dy

is finite. Consider asymptotic expansions for J2|ν| (
√
x) and N2

|ν| (
√
x) (details of these

expansions can be found in Gradshteyn and Ryzhik (1965)):

J±ν (x)=

r
2

πx

n
cos
³
x∓ π

2
ν − π

4

´
(S1n,ν,x +R1)− sin

³
x∓ π

2
ν − π

4

´
(S2n,ν,x +R1)

o
and

N±ν (x)=

r
2

πx

n
sin
³
x∓ π

2
ν − π

4

´
(S1n,ν,x +R2) + cos

³
x∓ π

2
ν − π

4

´
(S2n,ν,x +R2)

o
,

where

S1n,ν,x =
n−1X
k=0

(−1)k Γ
¡
ν + 2k + 1

2

¢
(2x)2k (2k)!Γ

¡
ν − 2k + 1

2

¢
and

S2n,ν,x =
n−1X
k=0

(−1)k Γ
¡
ν + 2k + 3

2

¢
(2x)2k+1 (2k + 1)!Γ

¡
ν − 2k − 1

2

¢
and R1 and R2 are the remainders

|R1| <
¯̄̄̄
¯ Γ

¡
ν + 2n+ 1

2

¢
(2x)2n (2n)!Γ

¡
ν − 2n+ 1

2

¢ ¯̄̄̄¯ , for n >
ν

2
− 1
2

and

|R2| ≤
¯̄̄̄
¯ Γ

¡
ν + 2n+ 3

2

¢
(2x)2n+1 (2n+ 1)!Γ

¡
ν − 2n− 1

2

¢ ¯̄̄̄¯ , for n ≥ ν

2
− 3
4
.

These remainders tend to zero as x → ∞ and are smaller than the other terms in the

summations. Consider the behaviour of J|ν| (
√
x) and N|ν| (

√
x) as x→∞

J|ν|
¡√

x
¢
∼ 1

4
√
x

(
cos
³
x∓ π

2
|ν|− π

4

´
− sin

³
x∓ π

2
|ν|− π

4

´ 1

2x

Γ
¡
|ν|+ 3

2

¢
Γ
¡
|ν|− 1

2

¢)
∼ 1

4
√
x
cos
³
x∓ π

2
|ν|− π

4

´
and

N|ν|
¡√

x
¢
∼ 1

4
√
x

(
sin
³
x∓ π

2
|ν|− π

4

´
+ cos

³
x∓ π

2
|ν|− π

4

´ 1

2x

Γ
¡
|ν|+ 3

2

¢
Γ
¡
|ν|− 1

2

¢)
∼ 1

4
√
x
sin
³
x∓ π

2
|ν|− π

4

´
,



A.11. Proof of the solution of the fOUL process 207

so

J2|ν|
¡√

x
¢
+N2

|ν|
¡√

x
¢
∼ 1√

x

n
cos2

³
x∓ π

2
|ν|− π

4

´
+ sin2

³
x∓ π

2
|ν|− π

4

´o
=

1√
x
.

Therefore, as x → ∞, gν (x) = O
¡
x−1/2

¢
and

R∞
0 gν (y) dy is never finite for δ 6= 0.

Therefore the only GIG (ν, δ, γ) distribution, which has a finite sum for ηi, occurs when

δ = 0 and this is the Ga
¡
ν, γ2/2

¢
distribution.

It is easy to see that there are no cases of the TS (κ, ν, α) distribution (for 0 < κ < 1)

which give a finite summation by inspection of equation (4.13).

A.11 Proof of the solution of the fOUL process

We have

σ2 (1, t) =
√
2λ

Z t

−∞
e−λ(t−s)dz (λs)

and the recursive definition

σ2 (κ, t) =

Z t

−∞
λe−λ(t−s)σ2 (κ− 1, s) ds (A.10)

and want to prove the statement p (k) :

σ2 (κ, t) =
√
2λ

Z t

−∞

λκ−1

Γ (κ)
(t− s)κ−1 e−λ(t−s)dz (λs) .

Observe that p (1) is true and assume p (k) is true. Equation (A.10) implies that

σ2 (κ+ 1, t) =

Z t

−∞
λe−λ(t−s)σ2 (κ, s) ds

and, as we have assumed p (k) is true, that is

σ2 (κ+ 1, t) =
√
2λ

Z t

−∞
λe−λ(t−s)

Z s

−∞

λκ−1

Γ (κ)

³
s− s

0
´κ−1

e
−λ s−s0

dz
³
λs

0
´
ds

=
√
2λ

λκ

Γ (κ)

Z t

−∞

Z t

s
0
e
−λ t−s0 ³

s− s
0
´κ−1

dsdz
³
λs

0
´

=
√
2λ

λκ

Γ (κ+ 1)

Z t

−∞

³
t− s

0
´κ−1

e
−λ t−s0

dz
³
λs

0
´
,

so p (k + 1) is true by induction.



Appendix B

Numerical Algorithms

B.1 Evaluating the Inverse Tail Mass function for the IGa

marginal distribution

When using an IGa (ν, α) marginal for σ2 (t), we must solve for z (for a given ν, α, x)

xπ2 =

Z ∞

0

exp
³
− zy

4α

´
y
n
J2|ν|

¡√
y
¢
+N2

|ν|
¡√

y
¢ody. (B.1)

For the GIG and RPH marginals, similar integrals must be evaluated.

Bounds for z can be found by using the monotonic property of W−1
ν,α (y), provided this

integral can be evaluated numerically. Once bounds for z are known, a binary search

method (and look up table) is used to solve for z. The difficult part of this is evaluating

the integral itself for a given z, ν, α.

It proves numerically favourable to rewrite the integral asZ ∞

0
gν,α,z (y) dy,

where

gν,α,z (y) =
exp (−y)

y

½
J2|ν|

µ
2

r
αy

z

¶
+N2

|ν|

µ
2

r
αy

z

¶¾ . (B.2)

Consider the integral on (0, 1). As y → 0,

exp (−y) ∼ 1− y

Jν (y) ∼
1

2νΓ (ν + 1)
yν

Nν (y) ∼ −2
νΓ (ν)

π
y−ν

208
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and

gν,α,z (y) ∼
π2

{Γ (ν)}2
³α
z

´ν
yν−1.

This has very important implications as far as the numerical evaluation of the integral is

concerned.

(1) If ν > 1, as y → 0 the integrand converges to 0.

(2) If ν ≥ 2, the integrand has a finite derivative at the origin, whilst if 1 < ν < 2 it is

not differentiable as y → 0.

(3) If ν = 1, the integrand is some non zero constant at y = 0 and is smooth at the

origin.

(4) If ν < 1, the integrand explodes to infinity as y → 0.

It is often easier to perform numerical integration on finite ranges, as it does not require

approximation of the tail behaviour of the integrand. However, in this case, the integrand

is not always well behaved near the origin and special care must be taken.

Due to possible problems in performing the integration near the origin, the integral

was split: Z ∞

0
gν,α,z (y) dy =

Z 1

0
gν,α,z (y) dy +

Z ∞

1
gν,α,z (y) dy

= I1 + I2.

Numerical methods can perform poorly on integrands that have infinite derivatives or

that become infinite. To cope with these problems, an exponential mapping can be used

to "crush" the integrand so that it (and the derivative) remain finite whenever ν < 1 or

1 < ν < 2.

For I1, use the change of variable

φ (t) =

R t
0 e
−c/uduR 1

0 e
−c/udu

,

where c is some positive constant. Then

I1 =

Z 1

0
gν,α,z (φ (t))φ

0
(t) dt (B.3)

and manipulation of φ (t) and φ
0
(t) gives

φ (t) =
cEi (1, c/t)− te−c/t

cEi (1, c)− e−c

φ
0
(t) = − e−c/t

cEi (1, c)− e−c
.
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The integrand of equation (B.3) is smoother than gν,α,z (y), in the sense that it does

not have an infinite derivative anywhere. This improves the numerical integration and

the constant c can be chosen to further improve efficiency (though the choice of c is not

obvious).

A linear map was then used to change the range of integration to (−1, 1) and Gaussian
Quadrature (see Atkinson (1988)) was used, with w (x) = 1, to evaluate the integral. One

disadvantage of Gaussian Quadrature is that, although it can give a very high accuracy

for a given number of points, estimating the error is difficult/impossible. In practice, the

best way to ensure the integration is accurate is to keep on evaluating the integral with

more and more points until the difference in the estimate is sufficiently small. Even using

this, it is not obvious how to increase the number of points. e.g. having used 16 points,

the number of points to use for the next integral estimate is not clear. The approach we

take is to double the number of points, until the estimate is sufficiently accurate.

Now the integrand on the infinite range is examined. As y →∞,

Jν (y) ∼
r
2

π
cos
³
y − πν

2
− π

4

´ 1
√
y

Nν (y) ∼
r
2

π
sin
³
y − πν

2
− π

4

´ 1
√
y

and

gν,α,z (y) ∼ π

r
α

z
y−

1
2 e−y,

so the integrand decays at least exponentially and Gauss-Laguerre integration can be

used. Gauss-Laguerre integration assumes that the tail behaviour of the integrand dies at

least as fast as e−y. The change in integrand from equation (B.1) to (B.2) satisfies this

assumption and this is why it proves more numerically efficient to use the second form of

the integral.

For I2, use the change of variable x =
y−1
p , for p some positive constant, then

I2 = p

Z ∞

0
gν,α,z (xp+ 1) dx.

Gauss-Laguerre integration was then used to compute this as it performs very well when

the integrand decays exponentially (as we have here). The constant p can again be chosen

to improve the performance of the numerical integration.

B.2 Improved truncation for the Tempered Stable marginal

Assume an initial truncation has been made as suggested in Section 4.3.5 and consider

the error term, Ei, for ηi,2 (note that the terms for ηi,1 are less than the terms for ηi,2).
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Recall equation (4.9),

ηi,2 =
∞X
j=1

W−1
ν,α

³ai,j
λ∆

´
.

At present, let the Poisson point process be truncated at ac,1, so

ηi,2 =

niX
j=1

W−1
ν,α

³ai,j
λ∆

´
+Ei,

where nj is the number of Poisson points occurring before ac,1 and

Ei =
∞X

j=ni+1

W−1
ν,α

³ai,j
λ∆

´
.

Assume that for the Ei summation, all the ai,j are large and asymptotic assumptions can

be made.

The central idea is then to approximate Ei analytically and pick a new truncation

point (if the accuracy is not sufficient) making Ei small. This requires knowledge of the

exact form of the Inverse Tail Mass function.

For the Tempered Stable marginal, the Lévy measure is given by equation (4.12) and

using equations (4.6) and (4.7), for large x we have

W−1
ν,α (x) = z ≈ B1/C

1

x1/C
.

Consider truncating ai,j at d > ac,1 and dropping the ordering of the Poisson points. The

error, Ei, will be approximately

Ei ≈ (Bλ∆)1/C
ni,2X
j=1

1

u
1/C
i,j

,

where ni,2 ∼ Po (d− ac,1) is the number of the Poisson points in (ac,1, d) and ui,j
iid∼

U (ac,1, d) is also independent of ni,2. Taking expectations for constant ni,2, we have

E [Ei|ni,2] ≈ ni,2 (Bλ∆)
1/C E

h
u
−1/c
i,j

i
= ni,2 (Bλ∆)

1/C

µ
C

1− C

¶Ã
a
C−1
C − d

C
1−C

d− ac,1

!
.

Taking the expectation with respect to ni,2 gives

E [Ei] = (Bλ∆)
1/C

µ
C

1− C

¶³
a
C−1
C − d

C
1−C

´
.

Noting that 0 < B = κ < 1 and letting d→∞ gives

E [Ei] ≈
µ

C

1−C

¶
(Bλ∆)1/C a

C−1
C

c,1 ,
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so consider using the new truncation point

ac,2 =

½
E [Ei]

µ
1− C

C

¶¾ C
C−1

(Bλ∆)
1

1−C ,

where E [Ei] is our desired expected error in the summation (for our simulations we chose

E [Ei] = 0.001). The maximum of ac,1 and ac,2 can then be used as previously.

For the Inverse Gaussian(ν, α) distribution (TS
¡
1
2 , ν, α

¢
), B = ν/

√
2π and C = 1

2

and

ac,2 =
(λν∆)2

2π

1

E [Ei]
.

B.3 Evaluating the Tempered Stable density function

If σ2 (0) is assigned a TS (κ, ν, α) prior, if σ2 (0) = X, simulating from the model requires

simulation from

fX (x) = fY |κ,ν (x) exp

(
να− α1/κ

2
x

)
, for x > 0,

where

fY |κ,ν (x) =
ν−1/κ

2π

∞X
j=1

(−1)j−1 sin (jκπ) Γ (jκ+ 1)
j!

2jκ+1
³
xν−1/κ

´−jκ−1
, for x > 0.

As j gets sufficiently large, Γ (jκ+ 1) /j! ensures that the individual terms tend to zero

(recall 0 < κ < 1).

It has been shown that the Stable density (fY |κ,ν (x)) can be represented as a one di-

mensional integral on a finite domain in Nolan (1997). Although this makes the numerical

evaluation of the Stable density easier, it can still run into difficulties unless an advanced

numerical integration algorithm is used. For certain values of κ, ν and x, the integrand

becomes spikey and this can lead to inaccuracies in the density evaluation. The integral

representation used in Nolan (1997) was implemented, but with Gaussian Quadrature

(see Atkinson (1988) Appendix B.1), the inaccuracies sometimes proved significant in the

MCMC implementation and so could not be reliably used.

Similar problems occur when evaluating the density by using the infinite sum and these

can cause MCMC convergence problems. Numerical techniques are available to improve

the convergence of the sum (see Higham (1996)) though these tend only to postpone the

accuracy problems until the parameters become more extreme.

Graphs are given demonstrating the numerical problems which can occur when eval-

uating the infinite sum. All graphs are for a TS (0.5, 1, 1) density. This Tempered Stable



B.3. Evaluating the Tempered Stable density function 213

distribution is the Inverse Gaussian distribution with unit parameters. The log of the

absolute value of the terms is plotted for different values of x. Only odd terms are plotted,

as even terms are zero for κ = 0.5.
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Figure B.1: Plots of the log of the absolute values of terms of the TS (0.5, 1, 1) density

sum for different arguments.

The terms often alternate in sign and, for small x, this can lead to large numerical errors

because of the subtraction of large numbers of similar magnitude.

Instead, a series representation for σ2 (0) is used. Details on possible series represen-

tations are given in Rosiński (2000) and Section 4.3.2. These are easier to implement

accurately than using a Metropolis-Hastings update for σ2 (0) with a TS (κ, ν, α) prior.



Appendix C

Simulation Results

C.1 Sampling from the Cosh distribution

We wish to simulate a random variable, X, with density

fX (x) =
1

π |a| cosh
¡x−µ

a

¢fX (x) , for −∞ < x <∞,

where µ, a ∈ R.

This has the same distribution as X = µ+ aY , where Y has density given by

fY (y) =
1

π cosh (y)
, for −∞ < y <∞.

Then FY (y) = 2 arctan (e
y) /π and to generate from Y , set Y = log {tan (πu/2)}, where

u ∼ U (0, 1).

C.2 Constant σ2 (0∆)

The following graphs are boxplots of σ2i when a Gamma marginal is used on training data

from the Black-Scholes model, with constant volatility σ2 = 0.5. They demonstrate that,

if σ2 (0∆) is not set at the correct value, even on "simple" training data, the MCMC may

not generate the σ2i which might be expected.

214
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Figure C.1: Boxplots of σ2 (t) for constant σ2 (0∆) = 0.1 and σ2 (0∆) = 1.0 for training

data generated with σ2 (t) = 0.5.

For both σ2 (0∆) = 0.1 and σ2 (0∆) = 1.0, the σ2 (i∆) converge to the expected constant

0.5 but for small i the choice of σ2 (0∆) is very important. This becomes even more

important when λ is small (as there is higher correlation in the volatility - see equation

(4.1)). For constant volatility, the MCMC converges to larger values of λ than would

be expected for real data and so this problem would be worse in reality than illustrated

above.

In this test case, it would be feasible to estimate σ2 (0∆) using some likelihood based

method. This becomes more difficult if it is not known that the training data has constant

volatility.

If σ2 (0∆) was not treated as another parameter in the MCMC, it would not be obvious

how many of the first σ2i should be discarded before the solution becomes independent of

the σ2 (0∆) from which the chain was primed. Provided enough σ2 (i∆) are discarded, the

initial choice of σ2 (0∆) will be unimportant. Typically there is a lot of available financial

data, so the missing data approach used by Roberts et al. (2004) seems more favourable
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than fixing σ2 (0∆) as some constant as Griffin and Steel (2003) have done. However, the

number of data points required before the process σ2 (i∆) is stationary is highly influenced

by λ and this can make the implementation of the method suggested by Roberts et al.

(2004) difficult.

Even if the system is primed with the correct σ2 (0∆), in practice, the mean of σ2 (i∆)

becomes stationary but the variance does not. Figure C.2 is a graph of σ2 (i∆) for the

same data used in the two boxplots in Figure C.1 but using σ2 (0∆) = 0.5.
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Figure C.2: Boxplot of σ2 (t) for training data generated with σ2 (t) = 0.5.

The mean is constant for each σ2 (i∆) but the variance is smaller for small i. This is

because each volatility plays a part in generating the next volatility. If the variance of

σ2 (i∆) is small then the variance of σ2 ((i+ 1)∆) will also be small.

There are several possible ways to try to fix this problem. It could be assumed that

σ2 (0∆) was known sufficiently accurately and then a shift/scale transformation on the

instantaneous volatility could be performed to try to make the mean and variance sta-

tionary. In practice, although some success can be gained doing this, there are problems

knowing exactly how to pick the shift and scale change and σ2 (0∆) must still be estimated

accurately.

The second fix is to consider σ2 (0∆) as another latent variable in the model and
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perform an additional MCMC Metropolis-Hastings update for this point. Naïvely, a flat

prior for σ2 (0∆) could be used. This works to some extent - the correct mean for σ2 (1∆) is

obtained but the variance of the initial volatilities tends to be large. On closer inspection,

a flat prior does not seem totally logical, as the marginal distribution (Ga (ν, α) say) for

the volatility is already known and a prior more in agreement with this would seem more

sensible. When a Ga (ν, α) prior is used for σ2 (0∆) on the above training data, the boxplot

of σ2 (i∆) is given in Figure C.3.
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Figure C.3: Boxplot of σ2 (i∆) on Black-Scholes data when a Ga (ν, α) prior is used for

σ2 (0∆).

Here the mean and variance are stationary and the correct constant volatility is obtained.

The instantaneous volatility at time 0, σ2 (0∆), was therefore treated as a latent parameter

in the model, with a prior the same as the marginal distribution of σ2 (t).

C.3 Implied prior for x1 and x2

Recall x1 and x2 are defined as

x1 = αc1νc2

x2 = αc3νc4 .
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Let c1c4 − c2c3 = K, so

ν−K =
xc31
xc12

and

αK =
xc41
xc22

.

It is required that c1c4 − c2c3 6= 0, so the transformation can be inverted. Then

ν =

µ
xc31
xc12

¶−1/K
α =

µ
xc41
xc22

¶1/K
and

p (x1, x2) = p (ν (x1, x2) , α (x1, x2)) kJk ,

where

|J | =

¯̄̄̄
¯̄̄̄ ∂ν

∂x1

∂ν

∂x2
∂α

∂x1

∂α

∂x2

¯̄̄̄
¯̄̄̄

=
1

K2

¯̄̄̄
¯ c3x

−c3/K−1
1 x

c1/K
2 c1x

−c3/K
1 x

c1/K−1
2

c4x
c4/K−1
1 x

−c2/K
2 c2x

c4/K
1 x

−c2/K−1
2

¯̄̄̄
¯

=
1

K

h
x
(c4−c3)/K−1
1 x

(c1−c2)/K−1
2

i
=

1

K
α1−c1−c3ν1−c2−c4

and α = α (x1, x2) and ν = ν (x1, x2). Then

p
³
x
0
1, x

0
2

´
p (x1, x2)

=
p
³
ν
0
³
x
0
1, x

0
2

´
, α

0
³
x
0
1, x

0
2

´´
p (ν (x1, x2) , α (x1, x2))

⎧⎨⎩α
0
³
x
0
1, x

0
2

´
α (x1, x2)

⎫⎬⎭
1−c1−c3⎧⎨⎩ν

0
³
x
0
1, x

0
2

´
ν (x1, x2)

⎫⎬⎭
1−c2−c4

.

C.4 Prior for κ for the TS (κ, ν, α) marginal distribution

The TS (κ, ν, α) distribution has mean

M = 2νκα1−1/κ

and variance

V = 4κ(1− κ)να1−2/κ,

where 0 < κ < 1 and ν, α > 0. The density of the TS (κ, ν, α) distribution is given in

equation (2.3) and is not easy to interpret. For this reason, the prior for κ is based on the

mean and variance, as well as simulation arguments, which are now discussed.



C.4. Prior for κ for the TS (κ, ν, α) marginal distribution 219

The mean and variance of the TS (κ, ν, α) distribution are rescaled by ν and so we will

not concern ourselves with this parameter or multiplicative constants contributing to the

mean or variance. For all valid parameter values we have

lim
κ→1

M = 2ν.

Consider the two cases:-

a) α < 1

Then

lim
κ→0

M =∞

and

lim
κ→0,1

V =∞.

b) α ≥ 1

Then

lim
κ→0

M = 0

and

lim
κ→0,1

V = 0.

In practice, the MCMC is able to reject moves to very small κ values as the mean of the

marginal distribution becomes 0 or ∞ and the likelihood rejects these moves. For moves

proposed to large κ values, when α < 1, the variance of the marginal becomes infinite and

so the MCMC is also able to reject moves to these states. However, when α ≥ 1, moves to
large κ values generate a volatility process which is concentrated at σ2 (t) = 2ν and the

MCMC is not able to guarantee rejection of these moves from the likelihood alone. This

constant volatility model can be generated from the TS
¡
1
2 , ν, α

¢
distribution for suitably

large ν and α. If κ gets too close to 1, then too many terms are required in the summation

to feasibly store them (see Figure 4.1). This is why, for observed data, an informative

prior for κ is used, keeping it away from 1. For example in Section 4.4.5, where the S&P

500 data set is fitted, the prior is Beta (1, κ1 = 15). A prior which does not support both

κ = 0 and κ = 1 could also be used, such as Beta (κ2, κ1), where κ2 > 1, though this does

not alter the simulation results noticeably as the likelihood is already able to reject moves

to small κ values.
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C.5 Additional details of the MCMC algorithm

From Section 4.3, the MCMC algorithm is of the form:-

(1) γ, κ move (reverse jump) (if a Generalised Inverse Gaussian or Tempered Stable

marginal is used).

(2) x1 move (reverse jump).

(3) x2 move (reverse jump).

(4) λ move (reverse jump) or λ0 move if we have a stochastic λ process as in Section

3.3.

(5) ε2 move (fixed dimension).

(6) r move (fixed dimension).

(7) N2 move (reverse jump).

(8) Update the jump times of the stochastic λ process (reverse jump).

(9) Update the jump sizes of the stochastic λ process (reverse jump).

(10) H move (fixed dimension).

(11) σ2 (0∆) move (fixed dimension) (if we are not using the Tempered Stable marginal).

(12) µ move (fixed dimension).

(13) ρ move (fixed dimension).

(14) Joint A and R move (fixed dimension). If we are using the Tempered Stable marginal

this will update σ2 (0∆) using equation (4.19).

Let the prior for state s be p (s) and propose a move up in dimension from state

s = (s1, . . . , sd1) to s
0
=
³
s
0
1, . . . , s

0
d1+d2

´
, with probability q

³
s→ s

0
´
. Let l

¡
yi|σ2i

¢
be the

likelihood of the data given the discretely observed volatility process σ2i .

For (5), (6), (10), (11), (12), (13) and (14) (fixed dimension moves), d2 = 0, and the

acceptance probability is

min

⎡⎣1, l
³
yi|
¡
σ2i
¢0´

l
¡
yi|σ2i

¢ p
³
s
0
´

p (s)

q
³
s
0 → s

´
q (s→ s0)

⎤⎦ .
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For updates which alter the accuracy of the finite truncation of the infinite sum of the

random shock vector given in equation (4.9) (i.e. moves which alter the critical value, ac,

at which the infinite sum is truncated (see Section 4.3.5 and Appendix B.2)), reverse jump

MCMC is used to add or remove points from the Poisson point processes, a1, . . . , aT , and

the uniform random variables, r1, . . . , rT at the same time as the parameter update.

Consider the case when a move up from dimension d1 to d1 + d2 is proposed, with

probability p (d1 → d1 + d2). Generate random variables u ∼ q (u) and let g (s, u) be the

function which generates the new state s
0
(i.e. s

0
= g (s, u)). The move is accepted with

probability

min

⎡⎣1, l
³
yi|
¡
σ2i
¢0´

l
¡
yi|σ2i

¢ p
³
s
0
´

p (s)

q
³
s
0 → s

´
q (s→ s0)

1

q (u)

¯̄̄̄
¯
Ã

∂s
0

∂ (s, u)

!¯̄̄̄
¯
⎤⎦ , (C.1)

where elements of the Jacobian matrix are given byÃ
∂s

0

∂ (s, u)

!
i,j

=
∂s

0
i

∂sj
, for 1 ≤ j ≤ d1

Ã
∂s

0

∂ (s, u)

!
i,j

=
∂s

0
i

∂uj−d1
, for d1 < j ≤ d2.

The acceptance probability for the jump down in dimension from state s
0
to s is

min

⎡⎣1, l
¡
yi|σ2i

¢
l
³
yi|
¡
σ2i
¢0´ p (s)

p (s0)

q
³
s→ s

0
´

q (s0 → s)
q (u)

1¯̄̄³
∂s
0

∂(s,u)

´¯̄̄
⎤⎦

because of the nature of reverse jump MCMC. Individual acceptance probabilities are now

given for each of the updates listed above.

C.5.1 (2) x1 update

Let x
0
1|x1 be generated with probability q

³
x1 → x

0
1

´
. The new critical value, a

0
c, at which

the Poisson points are truncated (see Section 4.3.5 and Appendix B.2), is calculated given

x
0
1. For a

0
c > ac, N ∼ Po

³
a
0
c − ac

´
new Poisson points are generated, for each Poisson

process, as the order statistics of N uniform random variables in
³
ac, a

0
c

´
. The random

uniforms are generated direct from their prior. As the new Poisson points and uniforms

are direct from their priors, many of the terms in equation (C.1) cancel. The acceptance

probability is

min

⎡⎣1, l
³
yi|
¡
σ2i
¢0´

l
¡
yi|σ2i

¢ p
³
x
0
1

´
p (x1)

q
³
x
0
1 → x1

´
q
¡
x1 → x

0
1

¢
⎤⎦ .
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The removal of Poisson points and uniforms is deterministic (when a
0
c < ac) because of the

nature of reverse jump MCMC, with the acceptance probability as described previously.

The acceptance probabilities for (1), (3) and (4) are similar.

For (14), as the Poisson points and uniforms are generated direct from their prior, the

acceptance probability is

min

⎡⎣1, l
³
yi|
¡
σ2i
¢0´

l
¡
yi|σ2i

¢
⎤⎦ .

When λ is allowed to vary over time, the acceptance probabilities are more complicated.

Extra details for these moves are now given.

C.5.2 (5) ε2 update

The acceptance probability is

min

⎡⎣1, p
³
ε2

0 |r
´

p (ε2|r)
p
³
λt|λ0, ε2

0
,N2

´
p (λt|λ0, ε2, N2)

q
³
ε2

0 → ε2
´

q (ε2 → ε20)

⎤⎦ ,
where p (λt|λ0, σ,N) is given in equation (3.7). As a move in ε2 does not explicitly alter

the stochastic λt process, the volatility process is unaltered.

C.5.3 (6) r update

The acceptance probability is

min

⎡⎣1, p
³
r
0
´

p (r)

p
³
ε2|r0

´
p (ε2|r)

p
³
N2|r

0
´

p (N2|r)
q
³
r
0 → r

´
q (r → r0)

⎤⎦ ,
where N2|r ∼ Po (r). As a move in r does not explicitly alter the stochastic λt process,

the volatility process is unaltered.

C.5.4 (7) N2 update

If N2 = 0, a move up in dimension is proposed, whilst if N2 = T − 1 a move down
in dimension is proposed. When adding in an extra jump, the new jump is proposed

uniformly at times where there are no current jumps (removal of jumps is also proposed

uniformly). The inclusion of a new jump at time i randomly alters λ to the left or right of

the new jump time, only altering λ up until the point where it reaches the previous/next

jump.
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Originally, the jump removal algorithm uniformly proposed to remove a jump and

altered λ from where the jump was removed until the next jump (so the λ process was

unaltered apart from in one segment to the right of where the jump was removed). This

leads to mixing problems in the chain because it only removes a jump and alters the

future λ values after this jump time. A proposal which is able to alter λ before or after

the removed jump time was found to be more successful. Again, a jump is randomly

selected to be removed uniformly and λ values to the left or right of this jump are altered

with equal probability.

λ
0
i is generated from a Ga (c, c/λi−1) distribution and again the Poisson points and

uniforms are proposed direct from their priors, given the change in λt (c was tuned to give

a suitable acceptance rate). The acceptance probability for a move up in dimension is

min

⎡⎣1, l
³
yi|
¡
σ2i
¢0´

l
¡
yi|σ2i

¢ p
³
N

0
2|r
´

p (N2|r)
p
³
λ
0
t|λ0, ε2, N

0
2

´
p (λt|λ0, ε2, N2)

q
³
s
0 → s

´
q (s→ s0)

⎤⎦
and the move down in dimension is specified by this as described in Section 1.4.1.

C.6 Proposals for parameters on finite domains

If the volatility has a Tempered Stable marginal distribution, the parameter controlling

the tail behaviour of the distribution must satisfy 0 < κ < 1. For the MVN approximation

to fBm, the Hurst parameter, H, must satisfy 0.5 < H < 1 (assuming we wish to induce

positive correlation in the fBm motion).

Consider a random variable, X, restricted to a < X < b, then

0 < Y =
b−X

X − a
<∞.

Generate Y
0 ∼ Ga (c, c/Y ) so E

h
Y
0 |Y
i
= Y and V ar

h
Y
0 |Y
i
= Y 2/c. The constant c

controls the variance of the proposal and how local the move in X is. Then

fX0 |X

³
x
0 |x
´
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³
1 + y

0
´2
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.
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C.7 Different option payoffs for the battery of tests

The different payoffs used for Section 5.2.4 are all based on the daily open price of the

asset and are:-

Very standard options:-

(1) European vanilla call, with exercise price, E = 0.99 ∗ S0.

(2) European binary call, with exercise price, E = S0.

Asian options:-

(3) Arithmetic Asian.

(4) Geometric Asian.

Knock in options:-

(5) Knock in at 1.005 ∗ S0 then European call, with exercise price, E = S0.

(6) Knock in at 0.995 ∗ S0 then European put, with exercise price, E = S0.

(7) Knock in at 0.995 ∗ S0 then binary call, with exercise price, E = S0.

(8) Knock in at 0.995 ∗ S0 then binary put, with exercise price, E = S0.

(9) Knock in at 0.995 ∗ S0 then arithmetic Asian.

(10) Knock in at 0.995 ∗ S0 then geometric Asian.

(11) Knock in with outstrike. Option is knocked out if the asset hits 1.05∗S0 otherwise it
must be knocked in by hitting 1.005∗S0, then payoff is a European call with exercise
price, E = S0.

(12) Knock in with outstrike. Option is knocked out if the asset hits 1.05∗S0 otherwise it
must be knocked in by hitting 1.005∗S0, then payoff is a European put with exercise
price, E = S0.

Knock out options:-

(13) European call with exercise price, E = S0 and with knock out at 0.99 ∗ S0.



C.8. Sampling from the Tempered Stable distribution 225

(14) European put with exercise price, E = S0 and with knock out at 0.97 ∗ S0.

(15) Binary call with exercise price, E = S0 and with knock out at 0.995 ∗ S0.

(16) Binary put with exercise price, E = S0 and with knock out at 0.99 ∗ S0.

(17) Arithmetic Asian with knock out at 0.995 ∗ S0.

(18) Geometric Asian with knock out at 0.995 ∗ S0.

(19) Double knock out option. Knock out if S0 hits either of the barriers 0.97 ∗ S0 or
1.05 ∗ S0 otherwise European call with exercise price, E = S0.

(20) Double knock out option. Knock out if S0 hits either of the barriers 0.95 ∗ S0 or
1.03 ∗ S0 otherwise European put with exercise price, E = S0.

Parisian options:-

(21) Proportion of days the asset is greater than 1.01 ∗ S0.

(22) Proportion of days the asset is less than 1.01 ∗ S0.

(23) Proportion of days the asset is between 0.98 ∗ S0 and 1.02 ∗ S0.

Lookback options:-

(24) Lookback for vanilla call, with exercise price, E = S0.

(25) Lookback for vanilla put, with exercise price, E = S0.

(26) Lookback for binary call, with exercise price, E = S0.

(27) Lookback for binary put, with exercise price, E = S0.

C.8 Sampling from the Tempered Stable distribution

Option pricing when the volatility has a Tempered Stable marginal distribution, requires

samples from the distribution with density

fX (x) = fX|κ,ν (x) exp

Ã
να− α1/κ

2
x

!
, for x > 0,

where fY |κ,ν is the positive κ− Stable density.
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It is relatively unimportant that the generation is very efficient and, as the density

for fY |κ,ν is not straightforward or easy to interpret, consider rejection using the positive

κ-Stable density (to generate X from the positive κ-Stable density see Section C.9).

The algorithm is:-

(1) Set M = maxx>0
fX(x)
gX(x)

= eνα.

(2) Generate a positive κ− Stable random variable, Y , using the method given in Ap-

pendix C.9 and a U (0, 1) variate, U .

(3) if fX(y)
MgY (y)

= exp
¡
−α1/κy/2

¢
> U , set X = Y , else go to (2).

As both fX (x) and gY (y) are normalised pdfs, the acceptance probability is 1
M = e−να

and is most efficient for "small" (να).

C.9 Sampling from the positive κ-Stable distribution

Appendix C.8 requires samples from the Tempered Stable distribution. This can be done

using rejection sampling, provided it is known how to sample from the positive κ−Stable

distribution. To generate from the positive Stable distribution, the method of Chambers

et al. (1971) was used.

For the representation used in Feller (1971), the characteristic exponent is

Ψ (λ) = − |λ|α eiπγ/2, for λ > 0

and in the Chambers et al. (1971) representation for the Stable (α, β) distribution the

characteristic exponent is

Ψ (λ) = − |λ|α eiπ/2−αβ, for λ > 0, 0 < κ < 1.

We need γ = −αβ for these to be the same. Recalling α = κ and γ = −κ (see
Appendix A.3), it can be seen that β = 1.

For the Chambers et al. (1971) representation, sampling from the Stable (κ, 1) dis-

tribution, for 0 < κ < 1, is straightforward. This will have the same distribution as a

Stable(κ,−κ) distribution in the representation used by Feller (1971). So, to generate X
from the positive κ-Stable distribution with density

fX|κ,ν (x) =
ν−1/κ

2π

∞X
j=1

(−1)j−1 sin (jκπ) Γ (jκ+ 1)
j!

2jk+1
³
xν−1/κ

´−jκ−1
, for x > 0,
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generate Y ∼ Stable (κ, 1), using the notation and algorithm given in Chambers et al.

(1971), then set X = 2ν1/κY (see Appendix A.3).

C.10 95% credible intervals for σ2 (t) for four marginals on
S&P 500 data

The MCMC was run on the S&P 500 data set for the Gamma, Inverse Gaussian, Positive

Hyperbolic and Inverse Gamma marginal distributions. 95% credible intervals for each

marginal were then calculated using the MCMC output. The x-axis is σ2 and y-axis is

fΣ2
¡
σ2
¢
.

0.0 0.5 1.0 1.5 2.0

0
2

4
6

Gamma
Inverse Gaussian
Positive Hyperbolic
Inverse Gamma

Figure C.4: 95% credible intervals for the volatility process of four different marginal

distributions applied to the S&P 500 data set.

Although each MCMC run gives almost the same mean for σ2 (t), the marginals are notice-

ably different. The Generalised Inverse Gaussian and Tempered Stable distributions are

not included to preserve interpretability of the graph and because of numerical difficulties
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evaluating the Tempered Stable distribution near the origin.

C.11 Results for Black-Scholes option pricing on constant
volatility data

Graphs are displayed of the numerical evaluation of the fair price for the Test example

options (see Section 5.2.3) on training data generated with constant volatility.
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Figure C.5: Graphs of the estimated fair price of a vanilla call for constant volatility,

σ = 0.03.
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Figure C.6: Graphs of the estimated fair price of a vanilla put for constant volatility,

σ = 0.03.
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Figure C.7: Graphs of the estimated fair price of a vanilla call-put for constant volatility,

σ = 0.03.

The thick line is the expected result knowing the correct constant value for σ2 and demon-

strates the correct implementation of the option pricing algorithm.



Appendix D

Theory behind solutions of the
Ornstein-Uhlenbeck equation

This appendix describes some of the more technical details and theorems behind the solu-

tion to the Ornstein-Uhlenbeck equation given in Sections 1.3.2 and 3.2. Most of the proofs

and theorems of this appendix can be found in Barndorff-Nielsen (1998), Barndorff-Nielsen

and Shephard (2000) and Barndorff-Nielsen and Shephard (2001b) and are included here

for completeness. If the reader does not wish to get involved in the specific details of the

solution to the Ornstein-Uhlenbeck equation, this Appendix can be skipped; it is here to

provide more details on some of the results which are quoted in earlier chapters.

D.1 Existence of solutions to the Ornstein-Uhlenbeck equa-
tion

Using Theorem 1, the distribution x is self-decomposable if and only if there is a stochastic

process σ2 (t) that has the same distribution as x and, for all λ > 0, can be written as

σ2 (t) =

Z 0

−∞
exp (s) dz (λt+ s) , (D.1)

where z
³
t
0
´
is a homogeneous Lévy process (see Definition 14). Note that solutions of

this type are stationary, as the Lévy process, z
³
t
0
´
, is homogeneous and the stochastic

integral is only determined by the length of the range over which exp (s) is integrated with

respect to z
³
t
0
´
and this is constant for each value of t.

The returns of financial series are often rescaled so they are a reasonable size and so it

is attractive for volatility to have a self-decomposable distribution, as the marginal distri-

230
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bution is altered in a predictable way by rescaling. Any such self-decomposable marginal

distribution for the volatility process, σ2 (t), can be written in the form of equation (D.1).

Instead of considering this type of volatility process directly, consider

σ2 (t) =

Z 0

−∞
f (s) dz (λt+ s) .

This process was suggested (but not examined in detail, for reasons which were discussed

in Chapter 6) in Barndorff-Nielsen and Shephard (2001b). Manipulating this equation

gives

σ2 (t) =

Z 0

−∞
f (λs) dz (λ (t+ s))

=

Z 0

−∞
f {λ (s− t)} dz (λs) +

Z t

0
f {λ (s− t)} dz (λs) ,

where f (s) is a function such that the integrals exists. When f (s) = es, the distribution of

σ2 (t) is self-decomposable by Theorem 1. If there is no such Lévy process with f (s) = es,

then the marginal distribution of σ2 (t) is not self-decomposable. Assume that

f (s1 + s2) = f (s1) f (s2) ,

which implies

f (s) = ks, for some k ∈ R+

and therefore

σ2 (t) = k−λt
Z 0

−∞
kλsdz (λs) +

Z t

0
kλ(s−t)dz (λs)

= k−λtσ2 (0) + k−λt
Z t

0
kλsdz (λs) . (D.2)

In the absence of any jumps in the Lévy process, we would like the contribution of σ2 (0)

to σ2 (t) to decrease as t increases, so require k > 1. Differentiating this gives

dσ2 (t) = −λ log (k) k−λtσ2 (0) dt+ dz (λt)− λ log (k) k−λtdt

Z t

0
kλsdz (λs)

= −λ log (k)σ2 (t) dt+ dz (λt) , (D.3)

Therefore σ2 (t) is an Ornstein-Uhlenbeck process (see Definition 16). If z () is restricted

to be a subordinator (i.e. a Lévy process with non-negative jumps), then jumps in z ()

cause positive jumps in the volatility. When there are no jumps in (t, t+ s)

σ2 (t+ s) = σ2 (t) k−λs

and σ2 (t) is a positive process (as required for volatility models).
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To sum up so far: Equation (D.3) has solution given by equation (D.2) and this solution

is stationary. Further, if k = e, then the marginal distribution of σ2 (t) is self-decomposable

and for any self-decomposable distribution, there exists a corresponding homogeneous Lévy

process which will generate this marginal distribution. The relationship between σ2 (t) and

z (t) is now given.

Barndorff-Nielsen (1998) has generalised some of the results in this Chapter so they

hold on the real line (i.e. when the OU equation is not driven by a subordinator). Our

focus is on volatility modelling, which requires σ2 (t) > 0, so these generalisations are not

included.

D.2 Relationship between the volatility and the BDLP

Jurek and Vervaat (1983) proved the following theorem.

Theorem 5 A random variable x is self-decomposable if and only if

x
L
=

Z ∞

0
e−tdz (t) ,

for some homogeneous Lévy process z (t).

Further, if u (x) and w (x) are the Lévy measures of x and z (1) respectively, then

U (a, b) =

Z ∞

0
W
©
et (a, b)

ª
dt,

where b ≥ a and

U (a, b) =

Z b

a
u (x) dx

and

W {f (t) (a, b)} =
Z b

a
f (t)w (x) dx.

So, for x > 0,

U ([x,∞)) =
Z ∞

0
W
¡
et [x,∞)

¢
dt

and letting s = et gives

U ([x,∞)) =
Z ∞

1
s−1W ([sx,∞)) ds,

so Z ∞

x
u (s) ds =

Z ∞

x
s−1W ([s,∞)) ds.
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Differentiating this with respect to x gives

u (x) = x−1W ([x,∞)) ,

so

W ([x,∞)) =W+ (x) =

Z ∞

x
w (s) ds = xu (x)

and a further differentiation yields

w (x) = −u (x)− x
du (x)

dx
. (D.4)

As the solution to equation (D.1) is stationary, the Lévy measure of σ2 (t) can be chosen

and this specifies Lévy measure, w (x), of z (1). Consider σ2 (0) in equation (D.1) and,

comparing it with Theorem 5, it can be seen that the Lévy measure of σ2 (0) and z (1)

specify each other through equation (D.4). Further, as the Lévy process is homogeneous,

the entire Lévy process is specified by the Lévy measure of z (1), which is specified by the

marginal distribution of σ2 (t).

D.3 Equations for the integrated and discretely observed
volatility

From equation (D.2), it follows that

σ2 (t) = k−λtσ2 (0) + k−λt
Z t

0
kλsdz (λs) ,

which satisfies equation (D.3), that is

dσ2 (t) = −λ log (k)σ2 (t) dt+ dz (λt) .

The integrated volatility is

σ2∗ (t) =

Z t

0
σ2 (u) du

=
σ2 (0)

λ log (k)

³
1− k−λt

´
+

Z t

0
k−λu

Z u

0
kλsdz (λs) du.

Switching the order of integration (taking care with the ranges) gives

σ2∗ (t) =
σ2 (0)

λ log (k)

³
1− k−λt

´
+

Z t

0

Z s

0
k−λudukλsdz (λs)

=
1

λ log (k)

½
σ2 (0)

³
1− k−λt

´
+

Z t

0

³
k−λs − k−λt

´
kλsdz (λs)

¾
=

1

λ log (k)

½
σ2 (0)

³
1− k−λt

´
+

Z t

0
dz(λ) (s)−

Z t

0
kλ(s−t)dz (λs)

¾
.
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Using equation (D.2),

σ2∗ (t) =
1

λ log (k)

n
σ2 (0)

³
1− k−λt

´
+ z (λt)− σ2 (t) + k−λtσ2 (0)

o
=

1

λ log (k)

©
z (λt)− σ2 (t) + σ2 (0)

ª
.

This quantity is important in pricing European options (see Hull and White (1987)). This

relatively simple form for the integrated volatility is an attractive feature of the BNS SV

models.

If observations are separated by ∆ days, the discretely observed or actual volatility is

σ2i = σ2∗ (i∆)− σ2∗ ((i− 1)∆)

=
1

λ log (k)

©
z (λi∆)− σ2 (i∆)− z (λ (i− 1)∆) + σ2 ((i− 1)∆)

ª
,

where the Lévy process, z (t), satisfies

z (λi∆) = z (λ (i− 1)∆) +
Z λi∆

λ(i−1)∆
dz (t)

L
= z (λ (i− 1)∆) +

Z λ∆

0
dz (t)

and, for the instantaneous volatility,

σ2 (i∆) = k−λ∆σ2 ((i− 1)∆) + k−λ∆
Z λi∆

λ(i−1)∆
ktdz (t)

L
= k−λ∆σ2 ((i− 1)∆) + k−λ∆

Z λ∆

0
ktdz (t) .

D.4 Infinite series representation for stochastic integrals

The following proof is derived in Barndorff-Nielsen and Shephard (2000) and allows the

stochastic integrals given in Chapter 4 to be written as an infinite sum of random variables,

which facilitates MCMC inference.

Assume z is a subordinator, so the Lévy-Khintchine formula (see Theorem 2) can be

written as

C (f ‡ z) = log
n
E
h
eifz

io
=
1

∆

Z ∞

0

Z ∆

0

³
eif(ω)x − 1

´
u (x, ω) dωdx, (D.5)

where f () is some non-negative integrable function. Define

K (θ ‡ x) = log
n
E
h
e−θx

io
and L (θ ‡ x) = exp

£
K (θ ‡ x)

¤
, (D.6)
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so

K (θ ‡ x) = C (iθ ‡ x) . (D.7)

Substituting this into equation (D.5) gives

K (θ ‡ z) = 1

∆

Z ∞

0

Z ∆

0

³
e−θx − 1

´
u (x, ω) dωdx.

Let a1, a2,... be the arrival times of a Poisson point process of unit intensity and ac ∈ R+

and let nac be the number of Poisson points less than ac. Let

Ωi
iid∼ U (0,∆)

and define

σ =
∞X
i=1

f (ωi)W
−1 (ai;ωi)

and

σac =

nacX
i=1

f (ωi)W
−1 (ai;ωi) ,

where

W+ (x, ω) =

Z ∞

x
u (s, ω) ds

and

W−1 (a;ω) = inf
£
x > 0 :W+ (x, ω) ≤ a

¤
.

Then

L (θ ‡ σac) = ENτ

h
EΣac |Nτ=nτ

h
e−θσac

ii
= ENτ

"
nτY
i=1

E
£
exp

¡
−θf (ωi)W−1 (ai;ωi)

¢¤#

= ENτ

"
nτY
i=1

exp
©
K
¡
θf (ωi) ‡W−1 (ai;ωi)

¢ª#
.

Given nτ , the arrival times of a Poisson point process have the same distribution as the

order statistics of nτ uniform variables on (0, ac), so dropping the ordering of the ai gives

L (θ ‡ σac) = ENτ

£
exp

©
nτK

¡
θf (ω) ‡W−1 (rac;ω)

¢ª¤
,

where r and ω are independent random variables with distributions r ∼ U (0, 1) and

ω ∼ U (0,∆). Further, as Nτ ∼ Po (ac),

L (θ ‡ σac) = e−τ
∞X
n=0

anc
n!
exp

©
nK

¡
θf (ω) ‡W−1 (rac;ω)

¢ª
= exp

£
ac
¡
exp

©
K
¡
θf (ω) ‡W−1 (rac;ω)

¢ª
− 1
¢¤



D.4. Infinite series representation for stochastic integrals 236

and comparing this with equation (D.6), gives

L (θ ‡ σac) = exp
£
K (θ ‡ σac)

¤
= exp

£
ac
©
L
¡
θf (ω) ‡W−1 (rac;ω)

¢
− 1
ª¤

. (D.8)

Note that

L
¡
θ ‡W−1 (rac;ω)

¢
= EfΩ

∙Z 1

0
exp

©
−θW−1 (rac;ω)

ª
dr

¸
= EfΩ

∙Z 1

0
exp

©
−θW−1 (rac;ω)

ª
− 1dr

¸
+ 1,

so letting x =W−1 (rac;ω), gives

L
¡
θ ‡W−1 (rac;ω)

¢
= − 1

ac
EfΩ

"Z W−1(ac;ω)

∞

n
e−θx − 1

o
u (x, ω) dx

#
+ 1

=
1

ac
EfΩ

"Z ∞

W−1(ac;ω)

n
e−θx − 1

o
u (x, ω) dx

#
+ 1

and

lim
ac→∞

ac
©
L
¡
θ ‡W−1 (rac;ω)

¢
− 1
ª
= EfΩ

∙Z ∞

0

n
e−θx − 1

o
u (x, ω) dx

¸
. (D.9)

From equations (D.5) and (D.6) it is already known that

K (θ ‡ σ) = C (iθ ‡ σ)

=
1

∆

Z ∞

0

Z ∆

0

³
e−θf(ω)x − 1

´
u (x, ω) dωdx.

Using equations (D.8) and (D.9) gives

K (θ ‡ σ) = lim
ac→∞

K (θ ‡ σac)

=
1

∆

Z ∆

0

Z ∞

0

³
e−θf(ω)x − 1

´
u (x, ω) dxdω

and from equations (D.5) and (D.7),

K (θ ‡ σ) = K (θf ‡ z) . (D.10)

As in Barndorff-Nielsen and Shephard (2000), define

f (ω) • z (t) =
Z ∆

0
f (s) dz (s) .

Jacod and Shiryaev (1987) have proved that

K (θf ‡ z) = K (θ ‡ f • z) ,
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so equation (D.10) can be rewritten as

K (θ ‡ σ) = K (θ ‡ f • z) .

Therefore

lim
τ→∞

σac =
∞X
i=1

f (ωi)W
−1 (ai;ωi)

L
=

Z ∆

0
f (s) dz (s)

and the integral with respect to the Lévy process can be written in terms of an infinite

sum of random variables.

D.5 Correlation structure of the OU volatility process

Let X (t) = σ2 (t) be a solution to the OU equation (D.3), so for s > 0,

X (t+ s) |X (t) L= k−λsX (t) + k−λs
Z λs

0
kudz (u)

and continue assuming V [X (t)] = V is finite. Then cov [X (t) ,X (t+ s)] isZ ∞

0
(X (t)−M)

µ
k−λsX (t) + k−λs

Z λs

0
eudz (u)−M

¶
fX(t) (x) dx,

where M = E [X (t)]. Noting thatZ ∞

0
(X (t)−M) fX(t) (x) dx = 0,

it can be seen that

cov [X (t) ,X (t+ s)] = k−λs
Z ∞

0
(X (t)−M)X (t) fX(t) (x) dx

= k−λs
£
V +M2 −M2

¤
= V k−λs,

so the correlation is

corr [X (t) ,X (t+ s)] = k−λs.

At first, this may look like a more general correlation structure than the BNS SV models,

where k = e. To ensure that the correlation between σ2 (t) and σ2 (0) decreases as t

increases, we require k > 1, so

corr [X (t) ,X (t+ s)] = ds,

where 0 < d = k−λ < 1 and the extra parameter, k, only alters the scale of λ, without

providing a different correlation structure to that of the BNS SVmodels. This is frustrating

because models of the form

σ2 (t) =

Z t

−∞
f {λ (s− t)} dz (λs)
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are difficult to simulate from for f (s) 6= ks, as it is not easy to rewrite σ2 (t) in terms

of σ2 (0) (and some integral with respect to the BDLP on a finite range). To simulate

from such models requires the simulation from an integral with respect to the BDLP on

the negative real line and this is more involved than evaluating k−λtσ2 (0) and makes

parameter estimation more difficult. Models where f (s) 6= ks are considered in Chapter

6.
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